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ABSTRACT OF THE DISSERTATION

Overhearing in 802.11 Mesh Networks

by

Mikhail Afanasyev

Doctor of Philosophy in Computer Science

University of California, San Diego, 2009

Professor Alex C. Snoeren, Chair

802.11-based mesh networks provide a useful and practical alternative to regular

infrastructure-based wireless networks, but they have an intrinsic scaling limit due to

their less efficient airtime utilization. Mesh networks forward packets multiple times,

increasing airtime utilization and decreasing path throughput and useful channel capacity

available to the clients. In this dissertation, we explore ways to optimize forwarding in

order to decrease the number of packet transmissions and increase path throughput.

The main technique that we explore in this dissertation is a phenomenon called

‘overhearing’. Traditional mesh networks use only ‘good’ links with low packet loss rates

in order to forward packets; overhearing allows utilization of the links with high losses in

order to reduce the number of transmissions where possible. This dissertation proposes

two methods that allow mesh networks to take full advantage of overhearing: ‘RTS-id’ is

a backwards-compatible link-layer modification that allows adding overhearing support

to traditional mesh networks without requiring changes to hardware or transport protocols.

‘Modrate’ is a new rate selection algorithm that can increase the amount of overhearing

in bulk transfer systems that are already taking advantage of overhearing opportunities.

In order to verify the operation of RTS-id, we implement the algorithm on a

xv



software-defined radio. We verify that RTS-id is compatible with existing, unmodified

radios. We then develop a probabilistic transmission simulator and use it to quantify the

potential gains from deploying RTS-id on existing large-scale wireless mesh networks.

In order to verify the operation of modrate, we set up two wireless testbeds:

a large, building-wide testbed operating in the 2.4-GHz range, and a smaller testbed

operating in the 5-GHz range. We apply modrate to two existing overhearing-aware

routing protocols, ExOR and MORE, and use our testbeds to measure the improvement

provided by modrate in those systems.

Finally, motivated by the somewhat unimpressive performance of modrate, we

study the specific reasons for performance improvements in the ExOR and MORE proto-

cols. We measure the performance of each protocol with various pieces of functionality

disabled, and come to surprising conclusions: while systems such as ExOR and MORE

have significantly better performance than traditional systems, a large fraction of these

performance gains is caused not by overhearing, but by simpler protocol aspects like flow

control and group acknowledgments.
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Chapter 1

Introduction

Wireless networks based on the 802.11 family of standards have become ubiqui-

tous. Most of the computers sold today have a built-in wireless interface, and wireless

Internet access is available in many places. Existing wireless networks span a wide range

of sizes: from small networks that share Internet within a single apartment to very large

networks that cover entire cities.

Most existing networks run in so-called ‘infrastructure mode’. This mode requires

a special dedicated device, known as an ‘access point’, which is connected to the Internet

via a wired link. Each access point has a finite range, and therefore provides wireless

Internet access to a limited area. If a larger area needs to be covered, it is possible to

install multiple access points, each with its own wired Internet uplink. This procedure is

trivial for small (apartment-size) networks, but gets complicated quickly as network size

grows. A modest-sized building might have dozens of access points, requiring extensive

wiring and network equipment for proper installation.

An alternative approach to infrastructure networks is multi-hop wireless network-

ing, also known as mesh networking. This approach simplifies the deployment of larger

wireless networks by forwarding packets from source (client station) to destination (ac-

cess point) via intermediate stations. This way, only a few stations need to be connected

to uplink nodes, and the total amount of fixed wiring is greatly reduced. Multi-hop

networks are becoming a popular mechanism for providing Internet access, both in urban

areas [BM03] and in rural and developing settings [RC04]. By reducing the need for

a fixed wired infrastructure, they offer the hope of providing cheaper connectivity and

1
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SRC DEST

FORWD

70% loss

1% loss 1%loss

Figure 1.1: A simple overhearing scenario

faster deployment.

One of the biggest disadvantages of multi-hop networks is an intrinsic limitation

of raw channel capacity [LBD+01]: physical properties of radio transmissions limit the

total transfer rate of the data from all stations. Since multi-hop networks transmit each

data packet multiple times, a large fraction of the channel capacity is used for forwarding

packets between the nodes, further reducing the maximum data throughput available

to each client. Wireless networks are by nature broadcast: a transmission from one

node may interfere with or be received by multiple other nodes. The broadcast nature

of these networks limits the channel capacity, and together with requirement that nodes

forward traffic on behalf of one another, constitutes one of the primary scaling limitations

of multi-hop wireless networks. In this dissertation, we explore the ways to optimize

forwarding in large mesh networks in order to increase path throughput.

1.1 Overhearing

The main technique that we explore in this dissertation is to leverage phenomenon

called overhearing. A number of research projects attempt to turn the broadcast nature

of wireless networks into an advantage, instead of considering it purely an interference-

causing liability. Traditional multi-hop wireless networks use only ‘good’ links with low

loss rates for data transmission; however, frequently there are other links with higher loss

rates which could be used to transfer some of the packets. Thus, it is possible that a node

closer to the destination than the intended forwarder will overhear a packet transmission

before the forwarder node has sent the packet.



3

1.1 shows a trivial example of overhearing. There is a multi-hop wireless network

consisting of three nodes: source (SRC), forwarder (FORWD) and destination (DEST).

When the source transmits a packet, there is a 99% chance that the forwarder will

receive it, but there is also 30% chance that the destination will receive it directly. A

traditional mesh network will always forward the packet through the FORWD node.

Assuming that each node retries the transmission until the packet is acknowledged, and

that acknowledgment are not lost, it will take on average 1.01 transmissions to get

packet from SRC to FORWD, and 1.01 transmissions to eventually deliver every packet

from FORWD to DEST, for 2.02 transmissions total. However, 30% of packets from

SRC are overheard by DEST, and thus do not have to be forwarded. An overhearing-

aware algorithm could take 0.30 + 0.70 ∗ 2.02 = 1.7 transmissions in expectation, an

improvement of 15%.

There have been a number of proposed approaches to take advantage of overhear-

ing: by caching opportunistically overheard objects (e.g., in satellite-based distribution

systems [AL04]); by modifying ad hoc routing protocols to enable them to acknowledge

packets received later in the forwarding chain (ExOR[BM05]); by using network coding

on bi-directional traffic streams [KRH+06]; and, most recently, by using network coding

to achieve similar benefits without explicit coordination (MORE[CJKK07]). In this

dissertation, we approach the problem from two directions: first, we consider the ways to

add overhearing to existing systems, and second, we explore ways to increase overhearing

in systems that already take advantage of it. Our thesis is that it is possible to further

improve the performance of mesh networks, including large-scale wireless networks, by

taking full advantage of overhearing.

1.2 Contributions

This dissertation has four main contributions. First, we perform a detailed study

of existing overhearing systems on multiple testbeds, in both simulation and experiment,

to discover the similarities between the different kinds of networks. Second, we present

‘RTS-id’, a new method to take advantage of overhearing which is designed to be applied

to non-overhearing-aware systems, requires few modifications to 802.11 nodes, and
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Figure 1.2: Types of overhearing. Solid lines represent primary links, while dotted lines
represent overhearing links

is fully backwards compatible. Third, we present ‘modrate’, a way to improve the

performance of existing overhearing-aware systems by increasing the total amount of

overhearing. Finally, we closely examine the performance of overhearing-aware systems

which show great improvements over non-overhearing-aware systems, and discover that

the true cause of those performance improvements is not overhearing, but rather general

protocol modifications.

1.2.1 Study of previous solutions

There has been a number of research projects that study overhearing, but the

experimental verification was limited. Each paper typically run the experiments on a

single testbed, at a single channel, power setting and frequency. Moreover, each paper

uses its own testbed, so a direct comparisons of results was not possible.

To facilitate head-to-head comparition, we set up two test-beds: a large, building-
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wide testbed, and a smaller, 10-node testbed. By varying the power level and by taking a

subset of nodes, it is possible to simulate a variety of the real-world conditions. Further-

more, we develop a simulator for existing wireless mesh protocols and study the amount

of overhearing under different experimental conditions.

In order to illustrate the various types of overhearing, we show a sample network

1.2. The first part of this picture shows a path that a packet routed using a traditional

routing algorithm would take.

1.2.2 On-path overhearing

The simplest way to take advantage of overhearing is to introduce overhearing

support to a traditional mesh routing algorithm. This is illustrated in a second picture in

1.2. In this case, when overhearing is not present, the packets are routed using existing

mesh algorithms, and if the packet is overheard, then some of the transmissions are not

made. For example, if a packet sent from B to node D was overheard by DST, then D

does not need to send packet to DST, thus saving a transmission and increasing overall

performance. This conservative optimization routes packets using existing paths, and we

call this type of overhearing ‘on-path overhearing’.

We introduce a simple per-hop link-layer modification, that we call ‘RTS-id’, that

takes advantage of overheard packets in a protocol and topology-independent manner

requiring only the cooperation of adjacent nodes in a path. We implement and test this

modification using a software-defined radio. Additionally, we use simulation to estimate

the speed gain on a larger scale.

RTS-id is backwards compatible with existing 802.11 hardware: individual nodes

can be upgraded by replacing the 802.11 driver and/or firmware, yet they will continue

to inter-operate with legacy nodes. We verify that the RTS-id extensions are ignored by

hardware that does not support it with no ill effects. While substantially more modest

than the bulk transfer improvements demonstrated by overhearing-aware bulk transfer

systems, the system has a number of advantages in its compatibility: it works well with

TCP and UDP protocols, thus it does not require application rewrites; and it could be

deployed incrementally, with nodes automatically taking advantage of the system as it

becomes available.
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1.2.3 Off-path overhearing

Some of the more advanced networks take advantage of the overhearing in a more

complex way – instead of using a traditional mesh protocol as a base, they completely

change the routing structure. Instead of being confined to a traditional paths, packets have

a large number of alternative paths, each packet chooses the most optimal route. Since

there is no longer an single optimal path for the packet, we call this kind of overhearing

‘off-path overhearing’.

Off-path overhearing works by changing the core routing idea. In traditional

routing, there is a fixed forwarder list, with each node having a ‘next’ node which is an

expected recipient of each packet sent. In off-path overhearing systems, each node has a

metric which indicates closeness to the source. When a node transmits a packet, all nodes

listen, and any recipient which is closed to destination than transmitter may forward a

packet. An example of this kind of overhearing is illustrated in third part of 1.2: each

packet is forwarded by the station closest to the DST. For instance, if SRC sends a packet

which is received by B and C, then station C will forward it. If this transmission is not be

received by DST, then some other station that heard it, such as D, will forward it again.

Off-path overhearing is used by protocols such as ExOR and MORE.

An important part of the routing process is selection of ‘bitrate’, or transmission

rate – the packets which are sent at slower rate are more likely to be received by far-away

stations, but they take a longer time to transmit. The problem of rate selection has been

surprisingly little studied. We introduce ‘modrate’ – a new rate-selection algorithm that

seeks to jointly optimize individual link bitrate selections with network-wide overhearing

opportunities. In particular, as opposed to selecting bitrates in a link-local fashion based

only upon a packet’s next hop, modrate selects the bitrate that minimizes a packet’s

expected number of transmissions along a path to its eventual destination assuming

that any overhearing can be profitably exploited. We integrate modrate with ExOR and

MORE protocols, and deploy it on our testbeds. We demonstrate that modrate provides

modest, but noticeable improvement to those networks.
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1.2.4 Extensive study of overhearing

Our testbeds present ample opportunities for overhearing, and its prevalence

varies noticeably with the particular bitrates employed. We therefore expected modrate to

provide significant further throughput improvement on ExOR and MORE. While modrate

is able to increase performance in some instances, the boost is surprisingly modest in

many cases. A detailed evaluation of the cause leads to the final contribution of this

dissertation: we show that while proposed opportunistic algorithms—ExOR and MORE

in particular—can provide tremendous performance improvement, in our environment

at least, the vast majority of their gains come not from leveraging overhearing, but

instead from a number of other substantial changes to the transfer protocols in their

implementations.

Motivated by this observation we present a careful analysis of a spectrum of

potential protocols on our testbeds, starting with Srcr, a state-of-the art traditional routing

protocol that does not leverage overhearing [BABM05], and incrementally applying

changes to arrive at ExOR with modrate. Previous studies have compared only two points

in this spectrum, typically traditional routing and their proposed protocol. By considering

each modification individually, we discover that in many circumstances ExOR gains more

from the relatively prosaic step of eliminating individual per-packet acknowledgments

than from taking advantage of overhearing. This discrepancy is especially pronounced in

networks with lossy links.

While considerable work remains to be done to determine the generality of our

findings, we believe the results may have significant implications. In particular, many

researchers—ourselves included—may have overestimated the ability of existing systems

to effectively exploit overhearing in mesh networks. Conversely, it appears significant

gains can be extracted from far more banal protocol changes.

1.3 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2, we provide an introduction

to relevant technologies: an overview of parts of the 802.11 standard important to

overhearing, and various routing protocols used in wireless networks. We present the
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wireless networks used in our study in detail in Chapter 3, including our simulator and

the testbeds that serve as a source of input data for simulator. Chapter 4 describes

RTS-id, a new way to take advantage of overhearing in regular wireless networks.

Chapter 5 describes ‘modrate’, an improvement to wireless networks that are already

taking advantage of overhearing. Chapter 6 provides important insights, confirmed by

simulations and experiments, on the importance of overhearing in the wireless mesh

protocols. Finally, Chapter 7 summarizes the conclusions of this dissertation.



Chapter 2

Background

This chapter covers background information about the technologies discussed in

the rest of the dissertation. It provides a basic overview of the 802.11 wireless protocol

(WiFi): physical layer, media access layer, as well as management procedure. We also

provide an overview of existing mesh routing protocols.

2.1 The 802.11 wireless protocols

The 802.11 standard defines a family of WLAN (wireless local area network)

protocols, designed for the transmission of data in the medium range (about 20 meters). It

operates in the 2.4-GHz or 5-GHz unlicensed band, and is extremely widely used today.

The most popular frequency band today is 2.4-GHz. Protocols which operate

in this range are described in 802.11g, and its predecessor, 802.11b. The available

bandwidth is split into 5-MHz wide channels, and the transmissions are 22-MHz wide.

Thus, two stations transmitting on frequencies less than 5 channels apart will interfere

with each other. The number of available channels varies by country. In the US, there

are 11 available channels, and only 3 orthogonal ones. The small number of available

orthogonal channels has a profound impact on the operation and design of wireless

networks: any technology that uses wireless transmissions has to share the channel with

other devices, and the overall channel capacity limits the maximum attainable bandwidth.

The alternative band, which is used by the 802.11a standard, is 5-GHz. The

amount of allocated bandwidth is much larger than in the 2.4-GHz range, and, thus, the

9
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5-GHz band has up to 12 independent channels (8 in US). However, this band has its

own disadvantages. The higher frequency is more easily absorbed by solid objects, such

as walls and doors, and, as a result, the indoor range of 5-GHz devices is smaller than

2.4-GHz devices.

The upcoming 802.11n standard improves on 802.11a and 802.11g to add features

such as MIMO antennae for better interference reduction, and channel bonding for higher

bandwidth. It has not been officially released yet, but a number of devices based on

a draft of the standard are already available. While 802.11n is certainly an interesting

research topic, we do not study it in this dissertation.

2.1.1 Physical layer

Historically, the 802.11 standard and all of its additions have described four mod-

ulation standards: FHSS (Frequency-hopping spread spectrum), infrared transmission,

DSSS (directly sequence spread spectrum), and OFDM (orthogonal frequency division

multiplexing). However, the first two are present only in the very first version of the

protocol, and have been subsequently depreciated and removed. In the next section, we

describe the two protocols used today: DSSS and OFDM.

Direct Sequence Spread Spectrum

Direct Sequence Spread Spectrum (DSSS) is the original modulation standard,

initially defined in the 802.11 document in 1997, with its final definition published in

802.11b at the end of 1999. It allows for four modulation rates: 1, 2, 5.5 and 11 Mbps

(MBit/second), and uses the 2.4-GHz band. It has since been superseded by more modern

standards such as 802.11g, but it has seen wide adoption and plays important role in

existing networking research: papers published as late as 2007 use 802.11b-only testbeds

for verification [CJKK07].

An 802.11b packet consists of multiple parts (see 2.1). It starts with a ‘preamble’,

a bit pattern which is used to wake up the receiver and synchronize the decoder. The

preamble is followed by a header, which is always transmitted at the lowest speed, 1

Mbps, and the contains packet duration and modulation rate for the rest of the packet.

After the header, there is a small pause to allow the receiver and transmitter to change
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Figure 2.1: 802.11b packet format

modulation rates to the new setting, followed by the payload, encoded at the specified

data rate.

The physical modulation used depends upon the bit rate. The lower rates (1 and 2

Mbps) transmit data at 1 or 2 bits per symbol, using Barker encoding and binary phase

shift keying (BPSK)/quadrature phase-shift keying (QPSK) sequencing. The higher data

rates use QPSK encoding directly in order to transmit 4 or 8 bits per symbol. There is

a per-packet checksum, but no inter-symbol error correction, so a burst of interference

which is longer than a symbol will cause bit errors and packet loss.

Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM) is the newer modulation

scheme. It was originally introduced for use in the 5-GHz band in 802.11a standard in

1999, but adoption was slow. However, in 2003, 802.11g standard introduced OFDM

to the 2.4-GHz band. Adoption of 802.11g has been quite rapid, and today the majority

of devices are 802.11g-compatible. OFDM modulation used in 802.11a and 802.11g

standards provides rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps.

Similarly to the DSSS 802.11b case, an 802.11a packet in the 5-GHz band

also contains a preamble, header and payload. However, the header is transmitted

using OFDM. The preamble is thus transmitted using OFDM, and is used to lock in

the frequency and set up gain control on the receiver. The header contains the same

information that the DSSS header contains, and is sent at the lowest speed, 6 Mbps.

In the 2.4-GHz band, the situation is more complicated. When there are no
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Table 2.1: 802.11a modulation parameters
Rate Data bits Coded bits Subcarrier

(Mbps) per symbol Coding rate per symbol modulation
6 24 1/2 48 BPSK
9 36 3/4 48 BPSK

12 48 1/2 96 QPSK
18 72 3/4 96 QPSK
24 96 1/2 192 16-QAM
36 144 3/4 192 16-QAM
48 192 2/3 288 64-QAM
54 216 3/4 288 64-QAM

802.11b devices around, the OFDM preamble and header from 5-GHz band are used.

However, if there are 802.11b devices present, they can cause compatibility problems.

OFDM spreads the power much more evenly over the available bandwidth, and therefore

the carrier detect function of DSSS might not detect the presence of OFDM signal. In

order to prevent that, the 802.11g standard supports an ‘802.11b protection mode’, in

which the preamble and header are sent at 1 Mbps using Barker encoding. This way, old

802.11b-compatible stations decode the header and reserve the channel for the specified

duration. Protection mode is required when there are any old stations present, but it adds

significantly to the per-packet overhead — when it is enabled, the packet must contain two

separate preambles: an 802.11b-compatible preamble for headers, and OFDM preamble

for the payload.

802.11a/g transmits using large symbols, from 24 to 216 data bits. Each symbol

is transmitted using 52 separate subcarriers. The data bits are scrambled, convolutionally

coded, and sent as Quadrature Amplitude Modulation (QAM) with 2 to 64 constellations.

As a result, the proper symbol value can be recovered even if a significant number of

subcarriers is unreadable. There is no inter-symbol checksum, but the symbols are

much longer then 802.11b symbols, and, as a result, a short interference bursts which

might have completely damaged 802.11b packet, can be survived by 802.11g packet. 2.1

summarizes the rates and coding overhead in 802.11a and 802.11g.

An important property of 802.11a/g modulation, the one we leverage in this work,

is the wide variety of modulation methods and coding rates.
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2.1.2 Media access control (MAC)

Wireless transmissions use a shared channel, and if two stations transmit simulta-

neously, they might interfere with each other, resulting in damage to both packets. In

order to prevent that, a media access control (MAC) scheme must be used to mediate

access to the channel. 802.11 uses carrier sense, multiple access with collision detection

(CSMA/CD). The MAC operates in two steps: first, it senses the power on the channel

(carrier sense) to make sure that no one is transmitting. If the channel has been empty

for some time, the station transmits a packet. The intended recipient should receive

the packet and send an acknowledgment packet (ACK). If the sender receives the ac-

knowledgment, it marks the packet as sent and transmissions ends. If the sender does

not receive the acknowledgment, for example because of insufficient signal strength

or because of interference, the packet is presumed lost. The sending station backs off

for an exponentially increasing time, and re-tries the transmission once the channel has

been idle again. If the packet is not transmitted after multiple retries (the exact number

is not specified, and is configured by the user), the packet is marked as not sent, and

transmission is aborted.

Multicast and broadcast packets do not have a pre-defined destination, and do not

use acknowledgments. These packets are transmitted only once, as there is no way for

the transmitter to detect if the packet was successfully received by all destinations.

The basic 802.11 MAC, while simple, has a number of important properties. First,

for successful reception, the channel must be free at the destination, yet the sender only

checks the channel at the source. This scheme causes two potential problems. A ‘hidden

terminal’ is a station whose transmissions can be detected by the destination, but not by

the source. When a hidden terminal transmits, its transmission does not have enough

energy to trigger the carrier sense at the source and defer the transmission, but it does

have enough energy to jam the signal at the receiver. This condition has the potential to

degrade multi-hop transmissions under some conditions by increasing the packet loss

rate.

The converse problem is known as an ‘exposed terminal’. In this case, the exposed

station can be heard by the sender, but not by the receiver. Thus, the exposed terminal

might cause un-necessary backoff – the sender will detect the channel as being busy,
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while a transmission would be possible. Exposed terminals do not typically cause packet

loss, and therefore have less impact than hidden terminals.

Finally, the symmetric nature of link-layer transmission (data forward, ACKs in

reverse) requires connectivity in both directions on the link. This requirement can cause

a problem, and excessive data retransmissions, when there is poor connectivity in one

direction only.

2.1.3 Avoiding hidden terminals

In order to prevent a problem with hidden terminals, a 802.11 specification defines

a specific method which uses two special packets, ‘Ready to Send’ (RTS) and ‘Clear

To Send’ (CTS). These packets do not contain any data payload, and only have two

fields: the address of the recipient and a duration. When a device needs to transmit a

packet, it waits for the channel to clear in the usual manner, and then transmits an RTS

packet, which contains expected duration of the frame exchange (including both data

packet and ACK transmissions). The destination station receives the RTS and replies

with CTS, which contains the remaining duration. Once the source receives the CTS,

the data transfer proceeds as usual: the source sends data packet, and then waits for

acknowledgment packet. All other stations always listen for the RTS/CTS packets. If any

of them receive the CTS, then their internal timer will automatically postpone any station

transmission until the original transaction is over.

RTS/CTS is effective against hidden terminal problems, but it slows down the

transmission by introducing additional overheads. The main overhead is the extra time,

attached to every packet, which is required to send RTS and receive CTS. Traditionally,

the CTS packet is transmitted at lower speeds in order to maximize the effective coverage

area. As a result, the RTS/CTS overhead while transmitting a short packet (such as a TCP

acknowledgment) could be over 90% of the total packet duration. A second problem

is caused by additional loss rate during RTS or CTS transmission: RTS/CTS losses in

highly lossy channel would be frequent, and more retransmissions would be required.

Practically, most networks do not see a speed advantage from RTS/CTS exchanges, and

therefore keep this method disabled.
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2.1.4 Rate adaptation

As discussed previously, 802.11 physical layers support multiple bit rates, ranging

from 1–11 Mbps for 802.11b, 6–54 Mbps for 802.11a, and 1–54 Mbps for 802.11g.

Because channel characteristics vary across space and time, an effective 802.11 sender

will periodically reconsider the bitrate it employs. A large number of rate-adaptation

techniques have been proposed in the literature [Bic05, HVB01] [KM97, SKSK05,

WYLB06] including several [Bic05, KM97] which have been deployed in commercial

products. Each seeks the same goal, however: to optimize the goodput of the wireless

link between sender and receiver.

Because the basic 802.11 standard does not provide for explicit feedback about

channel quality at the receiver, senders are forced to estimate the optimal transmission

rate through indirect means. The mechanism first deployed commercially, Auto Rate

Fallback (ARF) [KM97], defaults to the highest bitrate and falls back to slower speeds

if it fails to receive a link-layer acknowledgment for a transmitted frame. ARF speeds

back up after a string of successive successful packet transmissions. Researchers have

observed, however, that 802.11’s link-layer retransmission mechanism may mask frame

losses, causing ARF to over-estimate the optimal bit rate.

As an alternative, Receiver-Based Auto Rate (RBAR) [HVB01] proposes to have

the receiver report received channel quality in RTS packets, allowing the sender to

dynamically adjust transmission rates according to current channel conditions. This

presumes that CTS signal-to-noise ratios are effective predictors of frame-exchange

success, however, which Bicket found was not always the case [Bic05]. Instead, he

proposes to send periodic probe packets at speeds higher than the one currently em-

ployed and keep track of their relative success rates in a protocol he calls SampleRate,

which has been widely deployed in the MadWifi driver and employed by follow-on

research projects [BABM05, BM05, CJKK07]. Recent results, however, have shown

that SampleRate can be too conservative in certain cases; indeed its poor performance

has lead to its deprecation within the MadWifi driver. Instead, Starsky et al. have

proposed combining feedback from the RTS/CTS exchange with loss-rate information

gathered at the current rate into a system they call Robust Rate Adaptation Algorithm

(RRAA) [WYLB06].
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2.2 Routing

Routing is essential for the operation of wireless networks. The 802.11 standard

describes a management layer, which is used for basic routing. However, the management

layer does not cover the case of large wireless networks, either limiting the connectivity to

the devices in the range of each other or requiring multiple dedicated stations hard-wired

to main router.

A number of research projects attempt to enable large wireless networks without

wired links. Those systems usually work by adding a routing layer which can route the

packet over the multiple wireless stations before reaching the final destination. They

bypass the management layer, and insert themselves between layers 3 (Network) and 4

(Transport). A routing daemon is responsible for processing and forwarding packets.

2.2.1 802.11 Management Layer

The 802.11 standard specifies a management layer that allows devices to discover

and form networks. The main component of an 802.11 wireless network is the Basic

Service Set (BSS), a set of stations which can talk to each other. The BSS ID is a 48-bit

value that is stored in the header of each data packet transmitted, and stations ignore

packets with BSS values different than their own.

There are two main methods of BSS formation: Independent BSS, also known as

ad-hoc networking, and Extended BSS, also known as ‘Access Point’ (AP) or infrastruc-

ture mode.

In ad-hoc mode, all stations have equal status, and a BSS ID is chosen to be the

MAC address of one of the stations. A set of management packets is used to set up a

network, choose a main station and select a channel. This mode was intended to be used

by peer-to-peer communication without any centralized control.

In the ‘Access Point’ mode, there are special, dedicated stations called access

points, and every BSS has exactly one access point. All other stations are clients, and the

only possible communications are between clients and access points. In order to support

mobile stations, multiple BSS can be united into an Extended Service Set, all sharing the

same network name. Management packets are used to authorize and associate a client
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with an access point, or switch from one access point to another. It is assumed that all

access points are physically connected to the same network via a wired backbone.

Both of those modes require an association procedure, which takes some time,

and which often causes problems in the low signal-strength conditions. As a result,

some card manufacturers have implemented more basic modes which do not require

management packets. One example, implemented by some Atheros cards, is ‘Ad-hoc

demo’ mode, which is very similar to ad-hoc mode, but requires the user to manually

specify a channel and BSS ID. The most generic solution is ‘monitor mode’, in which the

whole management layer is bypassed: stations receive every packet on the same channel,

and they can send packets with any BSS ID values in packet headers. Originally designed

for debugging and troubleshooting, this mode is widely used by custom routing layers.

2.2.2 Traditional mesh protocols

The routing problem is significantly more complicated in wireless network as

compared to wired ones. Unlike wired networks, wireless networks often have a large

number of possible links of varying quality. Due to various radio propagation effects,

such as fading, interference, and client mobility, the quality of the links is constantly

changing. Thus, a wireless routing algorithm must be able to frequently evaluate link

quality, and update and propagate new routing tables based on any changes.

There is a number of routing protocols currently used for wireless transmissions.

They can be classified by the way the routes are updated (proactive or reactive), as well

as by the way the packets are routed (routing table vs. source routing).

Proactive protocols continuously monitor link quality. The monitoring is usually

achieved by continuously sending special probe packets, and monitoring the loss rate of

incoming probe packets from neighbors. Sometimes, these probe packets contain routing

information. The frequency of such packets presents a tradeoff: a higher frequency

provides more precise delivery probabilities, and can react faster to route changes, but it

creates more overhead for the network, especially when they are dense.

Alternatively, reactive protocols only maintain routes which are actively in use.

The first packet in a flow requires a route discovery step, for example by flooding the

network. Once a path to the destination is found, the remaining packets are sent via that
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established path.

Another division is the way the packets are routed. In protocols based on routing

table, each node maintains a route to every other node (or to every active destination, in

case of reactive protocols). When a station needs to send a packet, it consults its routing

table for the next-hop information, and then sends the packet there. A next-hop node will

consult its own routing table to see where to forward the packet. This model is similar

to the operation of wired networks (for example RIP works the same way), but it may

suffer from loops due to out-of-date node state. There are multiple ways to prevent loops.

For example, the Destination Sequenced Distance Vector (DSDV [PB94]) protocol uses

route sequence numbers to prevent loops.

An alternative approach to distance vector algorithms is source-routing. Unlike

protocols which use per-hop routing table, protocols which use source routing have to

have the complete and up-to-date routing information during each packet transmission.

The complete path to the destination is then computed and stored in the packet header,

and all that the intermediate node has to do is to forward packet as specified in the header.

Source routing algorithms are naturally loop-free, but they require a much bigger state

maintained at each node. An example of a source-routed protocol is Srcr [BABM05].

Routing metrics

An important step in operation of mesh network protocols is computing routes

between two nodes. In general, routing protocols attempt to compute paths that minimize

some cost metric. The most natural metric, commonly used in wired networks, is hop

count. While straightforward to compute, hop count favors paths consisting of fewer,

longer hops, which tend to be less reliable than shorter hops.

Instead, the Roofnet urban mesh network introduced ETX, or expected trans-

mission count, which accounts for the retransmissions that are likely to be required

on less-reliable links [CABM03]. This metric has been shown to outperform previous

routing metrics [DPZ04]. It is defined as a sum of expected number of transmissions

at each link. Assuming that the packet will be deliver with probability Pdata, and the

transmission will be retried until the packet is delivered successfully, the expected number

of transmissions is simply 1/Pdata. If the protocol uses acknowledgment packets, then the
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metric needs to account for that, too: assuming that probability that the acknowledgment

is delivered is PACK , the metric is defined as 1/PdataPACK . Thus, only data packets are

counted, as they take most of the time in the packet transmission.

Yet, if a particular link employs a lower bitrate which is more likely to succeed, it

is also more likely to be included on a path despite other, potentially higher-throughput

alternatives. To address this deficiency, Roofnet replaced ETX with ETT, or expected

transmission time, that incorporates link rates in addition to retry attempts into the link

cost [BABM05]. ETT equals to sum of expected transmission time at each hop, where

expected transmission time is simply time to transmit packet once multiplied by expected

number of transmissions. Time to transmit once includes all parts required to send a

packet – time to check that the channel is free, transmitting data packet itself, transmitting

ACK, CTS and RTS as required per protocol.

In the original definition of ETT, PACK is based upon the measured delivery rate

of 60-byte ACK packets transmitted at 1 Mbps. In most surveys, we do not have the

specific information about the loss rate for the short packets, and thus we calculate PACK

based on measured delivery rate at 1500 bytes.

2.2.3 Multi-path routing

An alternative to traditional, single-path mesh routing systems is multi-path rout-

ing. In this case, instead of having a single, pre-defined next hop node, each transmission

has a list of potential forwarders, each of them might forward a subset of the packets.

This method has a number of advantages: it naturally takes advantage of any overhearing,

and it requires a less accurate estimate of the network state.

In particular, both ExOR [BM05] and the more recent MORE [CJKK07] define

new, bulk-transfer transport protocols that leverage multi-path routing to dramatically

increase network goodput. While effective at achieving high throughput, both systems

are unfortunately incompatible with traditional transport protocols like TCP and latency-

sensitive applications.
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Figure 2.2: Operation of EXOR system

ExOR

ExOR is a bulk-data protocol: rather than transmitting individual packets, it

transfers ‘batches’ of packets. The source gathers together the set of packets destined for a

particular destination and transmits them all at once, along with a precomputed ‘forwarder

list’ enumerating any likely intermediate nodes between the source and destination (in

order to keep the list size manageable in dense networks, ExOR prunes nodes expected

to overhear less than 10% of the packets.) The source prioritizes the forwarder list based

upon its estimation of their proximity to the destination (computed using the ETX metric,

described above). Any nodes contained within the forwarding list that successfully

receive packets transmitted by the sender buffer them until the batch is completed.

Once the sender has finished sending the batch, the receiving node with highest

priority begins forwarding any packets it has buffered. The node annotates this so-called

batch ‘fragment’ with its estimation of the highest-priority node to have received each

packet in the batch, called a ‘batch map’. Subsequently, each node in the forwarding

list takes its turn sending any packets not previously acknowledged in another’s batch

map until the destination has received at least 90% of of the packets in the batch. The

remainder of the packets are forwarded using traditional routing.

One of the most challenging aspects of implementing ExOR is ensuring each

forwarder transmits its batch fragment at the appropriate time. If transmissions are

uncoordinated, fragments will collide, eliminating any potential benefits. Moreover, until

first packet is transmitted by a higher priority node, the lower priority nodes do not have
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the complete batch map. Thus, if nodes start transmitting in the wrong order, they will

transmit extraneous packets, discarding any benefits. For those reasons, the ExOR design

requires a sophisticated scheduling system which keeps a transmission timer, as well as

records the fragment numbers being transmitted to estimate the effective channel rate

and predict when individual forwarders will complete their fragment transmissions.

The operation of ExOR protocol is illustrated in 2.2. There are four packets, A, B,

C, and D and four stations, n1 to n4. Each station is annotated with the batch map. The

solid lines show the packet propagation, and annotated with the packets that the station

would send when it is scheduled to transmit. Note that n2 will not send the B packet

because it knows that n3 already has the packet, and n3 is closer to the destination than

n2.

Rate selection for the ExOR protocol is still an open question. The original paper

ran all stations at a fixed data transmission rate (11 Mbps), while the code available

for download uses standard rate selection algorithms such as SampleRate to select the

transmission rate on hop-by-hop basis. Since ExOR is based on the ETX metric, which

includes the transmission rate, another obvious solution would be to utilize the rate used

in the ranking algorithm. However, these rate selection strategies are not aware of the

multiple possible paths: SampleRate optimizes the rate to the next hop, while ETX

optimizes the rate along the single best route to the destination. In this dissertation, we

explore a more advanced method of rate selection that is aware of the overhearing.

MORE

MORE is another routing protocol, proposed in [CJKK07]. MORE’s operation

is similar to ExOR, but it uses network coding to avoid the need for ExOR’s scheduler.

Mostly by increasing opportunities for spatial reuse, MORE achieves unicast throughput

22–45% higher than ExOR’s [CJKK07].

Linear network coding breaks data into native blocks, and then transmits the

linear combination of those blocks. This has a useful property: if the original data was

broken into n blocks, one can generate a very large number of coded blocks – each coded

block being a linear combination of all native blocks. Each coded block is annotated

with code vector, which describes the coefficients of the native blocks. Once any n coded
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blocks with independent code vectors have been received, all native blocks, and thus the

original data, could be recovered using simple matrix operations.

MORE uses finite-field linear network coding, which ensures that coded blocks

have the same size as native blocks, and that code vectors are small. A source generates

and transmits coded blocks with random code vectors. Forwarder nodes listen to all

received coded blocks and checks if they are ‘innovative’ – they contain new data that

could not be calculated from stored blocks. If a coded block is innovative, the forwarder

stores it. Additionally, when a block is received from a node which is farther from the

destination than forwarder, the forwarder calculates a random linear combination of the

blocks it has, thus generating a new coded block, and transmits it. The destination simply

listens to all coded blocks, and once enough coded blocks to reconstruct original data are

received, stops the process.

The operation of algorithm is illustrated in 2.3. There are three native packets, A,

B and C, and four stations, n1 to n4. Each packet that a station could sent is illustrated by

the solid black dot, and annotated with corresponding code vector.

MORE does not have a strict scheduler which ExOR has; instead, each node

makes a local decision based on pre-calculated flow amounts. Before each transfer, the

control system calculates the expected number of inbound and outbound packets for

each node, corrected for the measured link loss rate. The source transmits continuously

(subject to MAC restrictions), and the nodes transmit enough to maintain the calculated

ratio. For example, if calculations showed that for a 100-block batch, some node would
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have to receive 90 coded blocks and transmit 110 coded blocks, then during the actual

data transfer, this node would send out the packets in order to maintain this ratio. Since

each transmitted block is a different linear combination of stored blocks, the nodes can

transmit more than they receive, and still generate useful information. The lack of strict

scheduler simplifies the system, but at the same time potentially increases the hidden

terminal problems.

The original MORE paper does not address the issue of rate selection, and

performs all experiments at a fixed rate. We explore the question of rate selection in

MORE in Chapter 5.

COPE

Another notable approach based on network coding, COPE [KRH+06], does

not target opportunistic overhearing in quite the same fashion as the schemes described

previously. Instead, it takes advantage of the fact that a sender in the middle of a

three-node chain can be heard by both of the nearby nodes during a single transmission,

allowing bidirectional traffic to be sent using three transmissions instead of four. This is

illustrated in 2.4: the system contains two data streams, from n1 to n3, and from n3 to

n1. There is no direct connectivity between n1 and n3, so n2 acts as forwarder. Without

COPE, four packets transmissions are needed to transfer one packet from each stream.
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With COPE, n2 sends a sum of two packets. Each station can retrieve the other packet by

subtracting the packet that it sent.

While we believe that there is room to optimize the performance of COPE, we

leave this to future work.

2.3 Summary

While infrastructure-based wireless networks are widely used and well known,

there is a lot of research in the area of mesh networking. A variety of existing projects

separately study various aspects of mesh: routing, rate selection, and overhearing. How-

ever, there are few studies that try to combine these various methods of link optimization.

In the rest of this dissertation, we explore two scenarios related to overhearing: taking

advantage of overhearing in regular (single-path) mesh networks, as well as increasing

overhearing in multi-path networks.



Chapter 3

Networks under test

Before proposing methods to take advantage of overhearing, we seek to under-

stand how frequently it occurs, and which possible benefits it can bring. An efficient way

to do so is to simulate networks with and without overhearing and compare the results.

This chapter describes our simulation efforts. It describes the the design of our simulator,

the datasets we use, and finally provides the initial results. We also describe the testbeds

that we have set up, and that we will use for the experimental evaluation of our protocol

improvements.

3.1 Metrics of interest

Our high-level goal is to increase the efficiency of mesh networks. There are a

number of metrics that attempt to evaluate efficiency; in this work, we focus on total

airtime utilization. The total airtime utilization determines the total duration of all

transmissions that are required to transfer a single packet from source to destination. The

main limitation in mesh networks is network capacity, thus, for a network with large

number of users, the total airtime utilization is going to directly affect the goodput of all

users.

As a simplification, we sometimes refer to a different metric, the total number

of packets transmitted. If all nodes transmit at the same rate, this metric is loosely

proportional to total airtime, neglecting overheads like acknowledgment packets.

As a starting point, we seek to study the potential benefits of overhearing, so we

25
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simulate simplified, abstract protocols. In the latter parts of this dissertation, we work

with specific protocols, and we modify the simulator to provide specific details for those

protocols.

3.2 Datasets

In order to properly understand the phenomena of overhearing, we need extensive

measurements of real networks, namely the transmission probabilities between each

station pair at all rates. We call such a set of measurements ‘dataset’. In this work, we

use four datasets: one existing set of measurements, two taken from testbeds we have set

up, and one set of measurements we captured ourselves from an existing network. Later,

we use these datasets to quantify the potential improvement from overhearing using a

simulator that we have developed.

3.2.1 Roofnet

Our initial analysis is based on the Roofnet mesh network dataset. Roofnet

[ABB+04] is a mesh network deployed in Cambridge, MA. It consists of 38 nodes,

spreading over four square kilometers. Nodes are are located at apartments of volunteers,

which were not selected in any particular way (except to provide basic radio connectivity).

The location of nodes is shown in 3.1.

Each node has a single wireless network card based on Intersil Prism 2.5 chipset,

which supports 802.11b. The cards are set up to use channel 3 of the 2.4-GHz band,

and transmit at +23 dBm (200 mW). Each node has an antenna mounted outside, on the

roof of the building. Antennas are omni-directional, and provide 8 dBi of gain, with

a 20-degree -3 dB vertical beam width. The cables and lightning arrestors introduce

additional an 6 to 10 dB of loss.

The dataset was collected on this network as follows:

Each node in turn sends 1500-byte 802.11 broadcast packets as fast as it
can, while the rest of the nodes passively listen. Each sender sends for
90 seconds at each of the 802.11b bit-rates. The experiment uses 802.11
broadcast packets because they involve no link-level acknowledgments or
retransmissions. [ABB+04]
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Figure 3.1: The Roofnet mesh network. Reproduced from [ABB+04].
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The reception rates were measured while only one Roofnet node was transmitting

at a time—though there likely were other 802.11 sources during the experiment. It is

possible that simultaneous Roofnet transmissions would decrease the rate of overhear-

ing as the load on the network increases, but it unclear how significant this effect is.

Unfortunately, there are no published Roofnet datasets under such conditions.

The available dataset contains the complete log of every packet being sent or

received. From this raw data, we calculate a direct distribution, which specifies the

probability that a packet transmitted at one node is received at some other node. In other

words, this distribution specifies Prr[A→ B] ∀ A,B ∈ G, r ∈ {1, 2, 5.5, 11}Mbps.

Using the direct distribution, however, requires us to assume that the transmission

probabilities are mutually independent. We lift this assumption by calculating a joint

distribution – that is, the probability that a packet sent by one node is received by subset

of a nodes: Prr[A→ S] ∀ A ∈ G,S ⊂ G, r ∈ {1, 2, 5.5, 11}Mbps.

Unfortunately, the Roofnet dataset does not include the 60-byte loss data necessary

to calculate ETT; hence, we modify ETT slightly to always consider the delivery rate on

the reverse channel at 1 Mbps, but are forced to use the rate for 1500-byte packets, which

is likely to be lower.

3.2.2 Jigsaw testbed

While the Roofnet dataset is well studied, it is based on a single survey, and

does not cover variations like different transmit powers, different channels or 802.11a /

802.11g standards. Thus, we replicate the measurements ourselves on a testbed based on

the Jigsaw wireless analysis engine at the University of California, San Diego [CAV+07,

CBB+06].

The Jigsaw system is deployed within the Computer Science and Engineering

building and spans four and a half floors covering approximately 150,000 square feet of

floor space and one million cubic feet of volume. 3.2 shows the layout of the sniffer nodes.

In addition to human inhabitants, the building contains thousands of workstations and a

large variety of electronics operating in the same 2.4 and 5-GHz unlicensed frequency

bands as 802.11, resulting in highly variable channel quality in different portions of the

building and during different times of the day [CBB+06]. There are 39 ‘pods’, each
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Figure 3.2: The UC San Diego Jigsaw wireless testbed. For our work, we use the Jigsaw
mesh nodes (depicted as circles); production 802.11 access in the building is provided by
traditional infrastructure-mode access points (represented as triangles).
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consisting of two sniffer nodes, plus a number of additional nodes installed later to

provide coverage for a total of 92 sniffers. All nodes are connected to a central server

with a wired Ethernet control connection. The central server saves all received data and

runs an analysis engine to synchronize the data.

Sniffer nodes are based on a modified Soekris Engineering net4826 embedded

computer, and contain a 266-MHz AMD Geode CPU, 128 MB of DRAM, 64 MB of

Flash RAM, a 100-Mbps Ethernet interface, and two Wistron CM9 miniPCI 802.11a/b/g

interfaces based on the Atheros 5004 chipset. Each wireless interface is connected, via

shielded cable, to a separate external omnidirectional‘rubber duck’ antenna mounted six

inches apart on an aluminum enclosure. The antennas provide a signal gain of 2-3 dBi at

2.4-GHz. Each monitor receives wired connectivity and power through a port on an HP

2626-PWR switch. There are seven such switches.

Sniffer nodes have a fixed channel assignment: out of a total of four cards in a

pod, three cover the common 802.11b channels (1, 6 and 11), and the fourth one is either

disabled, or monitors some other channel, such as channel 3 or 8. The wireless cards

on the sniffers are permanently placed in monitor mode, and special dumping software

continuously collects all received packets and sends them to a central server via the

control connection.

The Jigsaw analysis engine is particularly appropriate for our needs, since it

is able to tightly time-synchronize traces collected at multiple nodes and precisely

determine which received frames are actually identical—i.e., a single transmission that

was successfully decoded at multiple receivers—and which are duplicates (such as those

that result from link-layer retransmission). The infrastructure also automatically records

the RSSI and any associated hardware errors reported along with each received frame.

For our tests, we do not want to disrupt the normal operation of the Jigsaw system,

and thus we use the existing channel assignment. I.e., when we run experiments on a

channel 11, we select only those sniffers which have a radio sniffing a channel 11, and

convert them into a testbed node by running our custom software. This way, our full

testbed effectively has 48-50 nodes, with only one radio used in most pods.

To support a comprehensive evaluation, it would be desirable to have multiple

testbeds with varying physical properties. It would be difficult to create a number of
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separate testbeds, however, so we instead vary the subset of nodes we select or vary the

transmit power of the nodes in use. By employing different subsets of the nodes, we

can change the set of possible routes: the whole testbed spans multiple floors, naturally

providing multiple possible paths, especially when source and destination are not on the

same floor. Also, by limiting our experiments to a single floor, we can construct a ‘flat’

topology with a smaller number of paths which should be closer to other ‘flat’ topologies

like Roofnet. Another way to vary the testbed is to alter the transmission power. Reduced

power will cause decreased reception range, roughly equivalent to increasing inter-node

distance. This will cause route length to increase, thus presenting more opportunities for

overhearing.

To measure the performance of the testbed, we conduct a network-wide link

survey simular to that conducted by Roofnet researchers. During each survey, we fix all

nodes to the same 802.11 channel (11 in these experiments), set them to listen in monitor

mode, and then perform the test. We conduct our experiments during the night to reduce

the level of interference.

In our initial experiments, we implemented the Roofnet procedure, iterating

through each of the nodes in the network in the following fashion. At each node, we

transmit 1,000 maximum length (1,500-byte) packets back-to-back at a particular bitrate.

We cycle through each of the 12 available 802.11g bitrates in order before moving on

to the next node. The entire process takes roughly 10 minutes. Once the transmission

phase is complete, we submit the traces to the Jigsaw analysis engine to determine how

many stations received each individual frame and calculate the probability matrices. The

analysis takes an additional 10 minutes, during which the infrastructure cannot conduct

further probe experiments.

We discovered, however, that this measurement technique can be highly inaccu-

rate in our environment. In particular, a moderate-length burst of broadband interference

can completely distort measurements for one or more links. Thus, we alter our survey

procedure to split transmissions into groups: We divide the 1,000 packets that each

node transmits into 10 groups. Then, at each node, we transmit 100 1,500-byte packets

back-to-back at a particular bitrate. We cycle through every node in the system and then

move to next bitrate. Once all bitrates are done, we repeat the whole process 10 times
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Figure 3.3: ALIX network map. All nodes are located on the third floor.

until every station has transmitted 1,000 packets at each bitrate. In addition to spreading

the impact of broadband interference, this method also allows us to estimate short-term

variations in link quality. We calculate the standard deviation of the reception rate of

each link. In our experience, the deviation is an important parameter of the link, staying

relatively consistent over each measurement. For a typical link with 0.70 reception

probability, we see deviations that range from 0.01 to 0.30.

3.2.3 ALIX testbed

While the wireless network cards in Jigsaw sniffer nodes network support the

5-GHz band, some of them require a separate antenna. This antenna is not installed

in the existing nodes, making them effectively incapable of supporting 802.11a trans-

missions. Additionally, testing shows that a higher frequency signal has significantly

less penetration through the walls, and that more dense a testbed is needed to obtain a
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well-connected network. Therefore, we deploy an additional, separate testbed to evaluate

5-GHz performance.

The second testbed is based on ALIX 3d2 embedded computers from PC Engines.

These nodes contain a 500-MHz AMD Geode LX800 CPU, 256 MB of DRAM, 1 GB

of Flash RAM on CompactFlash card, a 100-Mbps Ethernet interface, and one or two

Wistron CM9 miniPCI 802.11a/b/g interfaces based on the Atheros 5004 chipset. These

nodes do not support PoE, so each node is powered by an AC adapter.

We densely deploy the ALIX nodes around the third floor of the building as

shown in 3.3. Unlike Jigsaw nodes which are mounted primarily in the hallways near

the ceiling, the ALIX nodes are placed on the tables in people’s offices. The nodes are

connected to the same central server that was used for the Jigsaw testbed, but we do not

run the Jigsaw sniffing software on these nodes. In all other aspects, the ALIX nodes

are running the same software, and performed the measurements in the same fashion as

nodes in the Jigsaw testbed.

At the time of our experiments, there were no access points or clients operating

at 5-GHz band in the building. Thus, the ALIX testbed provides measurements that are

more repeatable and consistent than measurements on the Jigsaw testbed. For that reason,

we use it as the primary network in the analysis.

3.2.4 Google network

Finally, we obtained limited access to the Google WiFi network – a free, outdoor

wireless Internet service deployed in Mountain View, California. The network has been

continuously operational since August 16, 2006, and provides public access to anyone

who signs up for an account.

The network consists of over 500 Tropos MetroMesh pole-top access points.

Each Tropos node has a distinct identifier and a well-known geographic location; 3.4

shows the approximate location of the Tropos nodes. Each Tropos node serves as an

access point (AP) for client devices, as well as a relay node in a wide-area backhaul

mesh that provides connectivity to the wired gateways. The topology of the Tropos mesh

network is constructed dynamically through a proprietary Tropos routing algorithm. A

pure mesh network of this scale exhibits significant traffic congestion at nodes close
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Figure 3.4: Google WiFi network
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to the gateway router, however. To alleviate the congestion, the Google WiFi network

is hierarchically clustered around approximately 70 point-to-point radio uplinks that

serve as a fixed long-haul backbone for the mesh network. This effectively partitions

the Google network into multiple separate partitions, each containing exactly one uplink

node. The channel assignment mechanism attempts to select different channels for each

partition, and a same channel for all nodes within that partition. As a result, the network

is split into a large number of small sub-networks, with up to 14 nodes each.

We were not able to run our experimental code on the Google network, thus we

are limited in the measurements we were able to obtain. Still, we feel that it presents an

important data point, being an existing, commercially deployed mesh network.

3.3 Network characteristics

In this section, we present basic measurement results from different networks.

These measurements show general channel characteristics, and allow us to estimate the

frequency of overhearing and effects of the link rates on the amount of overhearing.

3.3.1 Number of recipients

We examine the the average number of recipients of a transmission. While those

results do not measure overhearing-related factors directly, they can provide a hint of

possible overhearing – a small number causes the network to have few possible paths

with little opportunities for overhearing, but a large number implies short paths with

reduced opportunities for overhearing.

We plot a CDF over each of the nodes in the testbeds. The horizontal axis shows

expected number of recipients per single packet transmission – thus, a value of 2 can

mean either two links with 100% transmission rate, or four links with 50% transmission

rate. We expect every value to be at least two for a well-connected network.

3.5 shows the information for the Roofnet testbed. The Roofnet network is not

well connected – about 10% of nodes have less than one expected recipient, even at

the lowest bitrate, meaning that no matter which path and bitrate is chosen, multiple

transmissions will be likely required. We discard the three least connected nodes from all
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Figure 3.5: CDF of the number of the average number of recipients per packet as a
function of bitrate. Roofnet testbed.
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Figure 3.7: CDF of the number of the average number of recipients per packet as a
function of bitrate. Maximum transmission power, Jigsaw network
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further analysis.

The network supports only 802.11b, so only four bitrates are available. The

higher bitrates show lower reception probabilities: while at a minimum bitrate (1 Mbps)

a transmission from the median station is heard by 7.1 stations on average, at maximum

bitrate (11 Mbps) this number decreases to 4 stations. Since Roofnet is an outdoor

network, we expect that most of the packet loss is caused by signal attenuation, thus more

sensitive encoding methods produce a better range.

3.7(a) shows the results for the Jigsaw testbed. This testbed is quite different –

since the Jigsaw testbed is indoors, interference has a significantly higher impact. As

a result, Barker-based modulation (1 Mbps and 2 Mbps) has smaller reception range

than CCK-based modulation (5.5 Mbps and 11 Mbps). The bitrate has little impact for

802.11b CCK-based encodings (5.5 and 11 Mbps): we see that the curves for each of

these speeds are very similar. In contrast, 802.11g encodings show markedly smaller

reception ranges in general, and significantly different reception rates at the high end

(i.e., 54, 48 and 36 Mbps). For example, switching between 54 and 48 Mbps adds one

additional recipient to the median node, while dropping all the way down to 24 Mbps

adds 4 additional receivers on average, and up to 10 in the best case. The lower rates, on

the other hand, perform almost identically to each other.

Yet, this network is still not well connected – some nodes have less than one

expected recipient even at the slowest rates. We discard the poorly connected nodes when

running the experiments on the whole testbed.

Since the results are very similar for the lower 802.11g rates, we limit the subset

of rates that we study in the remainder of this paper. We consider only 1, 2, 5.5, 11 Mbps

in the 11b range, and rates 24, 36, 48, 54 in the 11g range.

3.7(b) shows the results for subset of the Jigsaw nodes located on the second

floor. While similar to the whole network, the subset has significantly stronger reception

– in particular, at speeds of 36 Mbps and below, every node has at least two expected

recipients. This effect is caused by the lack of ‘difficult’ inter-floor links. We use

this subset of the testbed as a sample well-connected network for some of our routing

experiments.

Finally, 3.6 shows the results for the ALIX testbed. The results are qualitatively
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similar to the second-floor results, although the absolute number of nodes receiving a

single transmission is lower due to the smaller size of the testbed, and there is far greater

separation between the three high 802.11a speeds and the remaining ones.

3.3.2 Power control

We can vary the connectivity of the testbeds by adjust nodes’ transmit power.

3.8(a) and 3.8(b) compare the transmission range of 24 and 54 Mbps link rates on an

ALIX testbed across a range of channel powers. These graphs show that power control

is effective in changing the network density – depending on the transmit power, node

connectivity varies across a wide range. Some of the experiments in the latter part of this

thesis will use experiments at power level of 30.

3.3.3 Google network measurements

While we could not conduct explicit measurements on the Google network, we

are able to collect basic information about the mesh topology and link properties through

an administrative interface exported by the Tropos nodes.

Mesh degree is the number of recipients capable of receiving transmissions.

Those values can be compared to average number of recipients graphs in the section

3.3.1. However, unlike number of recipients graph, the mesh degree does not indicate the

link quality, and any link which could be a considered neighbor adds 1 to the graph. 3.9

shows three distinct ways to measure the average Mesh degree.

The relatively dense deployment of APs provides significant path diversity. When

considering neighbors which provide acceptable link quality (SNR ratio of 14 dBm or

better [SR07]), only 5% of APs have a unique neighbor; the median AP can communicate

with at least 4 neighboring APs, and the most well-connected 10% have more than 8

potential next hops. We observe, however, that very few of these potential links are used

in practice. The ‘active link’ curve plots only the links which are being used by routes in

the network. Most access points use just one link. (There is a very small fraction of nodes

with zero mesh links—these are nodes with a point-to-point uplink, but no neighbors in

the mesh.)
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Figure 3.8: Expected number of recipients as a function of transmit power, ALIX network.
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Figure 3.11: Signal and noise levels for both Tropos nodes and clients.

One of the main advantages of overhearing-aware systems is ability to make use

of low quality links which are avoided by regular routing. Thus, the quality of each link

is important. In an attempt to quantify the quality of the mesh backbone links, we collect

signal strength and noise measurements at the Tropos nodes as reported by the Tropos

administrative interface. (To the best of our knowledge, however, the Tropos routing

software does not use link quality measurements to establish routes, instead preferring

reception probabilities—which we do not have the facilities to report.) 3.10 shows a

CDF of the signal to noise level measured at each Tropos nodes for links to both other

Tropos mesh nodes and individual network clients. The AP curve plots all possible links

(c.f. 3.9), including adequate links which are not currently in use and those with SNRs

of less than 14 dBm. While qualitatively similar, APs appear to enjoy a slightly higher

SNR than clients. This phenomena is explained in 3.11 by observing that the noise levels

are essentially identical for both types of nodes, but the received signal strength of other

Tropos nodes is generally higher than clients, likely due to the line-of-sight provisioning

of the pole-top Tropos nodes.

It is well known that SNR levels do not correlate directly with link quality,
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however. 3.12 plots the packet error ratio (PER) of mesh backbone links, i.e., links

between Tropos nodes, as reported by the transmitter. Concretely, it is the average

number of frame transmissions required to successfully transmit a packet measured over

the same interval as the signal and noise data reported previously. We see that the median

link needs to retransmit frames more than 20% of the time. We have not studied whether

any particular aspects of Tropos node placement leads to better or worse PER values.

3.4 Simulator design

The traditional way to simulate wireless network transmission is a per-packet

network simulator, such as ns2 [ns]. Such simulators typically employ a Ricean or

Rayleigh fading model to simulate the physical transmissions of each individual packet.

These simulators can provide a good approximation of real-life behavior if the model

parameters are set adequately. However, such simulators have disadvantages: they require

many hard-to-determine parameters in order to properly simulate an existing network;

they are not very good in simulating indoor networks with large amounts of fading and



44

interference; and event-based simulations are extremely time consuming, requiring long

experiments to provide precise results.

In this dissertation, we focus on the overall performance at a given path between

source and destination, rather than on an tracing each individual packet, so we chose a

different approach. Rather than use time-based simulators, we create a statistical network

simulator which uses Bayes Theorem and Markov chains to calculate the expected

number of total transmissions for each node per unique source packet. The output of the

simulator is total airtime utilization. Our simulator will cover three cases:

1. Traditional case has no overhearing at all. This will be used as a baseline in all our

comparisons.

2. On-path overhearing is the simplest form of overhearing. It assumes a network

with a structure similar to traditional, but with an additional property that any

packets overheard by nodes closer to the destination do not have to be transmitted

to that node.

3. Off-path overhearing assumes a complete re-design of the protocol in order to take

full advantage of overhearing. Such networks no longer have a single, default route

and instead have a large number of forwarder nodes, each of them is ready to send

data to the destination.

3.4.1 Traditional case

The baseline case is a traditional mesh routing protocol like Srcr. For the purpose

of the simulation, we assume that the route information is up-to-date on all nodes – there

are no routing loops or transient effects. In this case, the total transmission time is the

same as ETT route metric[BABM05], which is the route metric used by Srcr.

3.4.2 On-path overhearing

On-path overhearing refers to the case when packet sent to a node is also received

by a node further along the path. For the purpose of this section, we assume that there

is some scheme that can take advantage of that fact – for example, there exists some
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additional channel which can notify a sender that the receiver has already heard the

packet. In this case, every overheard packet will cause one less packet transmission, thus

saving airtime. One implementation of such a scheme will be given in the next chapter.

To evaluate whether on-path overhearing can increase performance by avoiding

transmissions, we construct a statistical model to estimate the expected number of

transmissions along each path. We examine each source/destination pair individually,

and, for each pair:

1. Create a state machine in which each state corresponds to the set of nodes that have

heard a given packet. For example, if a route has three hops: A→ B → C → D,

the initial state is A and the final state is ABCD.

2. Next, calculate the probability for each state transition under both normal 802.11

and using on-path overhearing. Initially, we consider only data packets and link-

layer ACKs. Transitions exist between a node and itself (self-loops due to failed

transmissions, regardless of overhearing), adjacent nodes on the path (successful

normal transmissions) and a node and all subsequent nodes in the path (due to

overhearing). For the base 802.11 case, we consider a transmission successful if

the packet reaches the receiver and the corresponding ACK reaches the sender. For

the overhearing-aware case, we ignore the ACK delivery rate, and compute state

transition probabilities based upon the overhearing distribution. For simplicity, in

each state we assume that the packet is only transmitted by the node furthest along

the path.

3. Finally, calculate the expected number of transitions (i.e., packet transmissions)

required to reach the last state (where the destination has received the packet) from

the first state. We compute the expected number of transmissions twice, once

using the overhearing transitions and probabilities, and once using only the on-path

A → AB and AB → ABC base-case 802.11 transitions (in the latter case, the

results are identical to the route metric).

Without overhearing, only two transitions leave each state: AB → ABC for

successful delivery, and AB → AB for failure. With overhearing, the picture is far more
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Figure 3.13: Actual overhearing scenarios. Self-loops represent complete packet loss
events. All probabilities are based upon a 1-Mbps transmission rate.

interesting. 3.13 shows four state machines corresponding to actual paths in our datasets.

3.13(a) depicts a path with no overhearing; that is, C never overhears A’s transmission,

therefore the only possible transition is from A to AB, which occurs 92.65% of the time

(the other 7.35% of the time the packet is lost and must be resent). The link fromB toC is

much worse, and succeeds less than 60% of the time. 3.13(b) shows a simple overhearing

scenario, where 12.85% percent of the time A’s transmission to B is overheard by C.

The remaining two examples depict more complicated transitions that occur with

longer paths. 3.13(c) shows a case in which roughly 20% of the time, a packet can be

transmitted directly from A to D, obviating the need to forward through B or C. The

careful reader may wonder why ETT selected B rather than C as the first hop in the

path, as A→ C appears to have the higher success probability. In this case, the return

path (not shown) from C to A is quite lossy, so ETT correctly avoids this hop because

the ACKs will be lost. An overhearing-aware system, on the other hand, benefits from

this overhearing because it does not need to ACK directly from C to A. Finally, 3.13(d)

shows three distinct overhearing paths from A to E: A→ B → E,A→ D → E, and

A→ C → D → E.
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3.4.3 Off-path overhearing

Off-path overhearing is more complex, and implemented by protocols like ExOR.

Unlike on-path overhearing, there is no default ‘path’ for packets to follow. Any node

that has received a packet has a chance to forward it, as long as it involves ‘making

progress’. The ‘making progress’ step is important, as it will ensure that the whole

transfer will eventually terminate. ExOR assigns a rank to each node the same way Srcr

rank is assigned, from highest to lowest, and only forward packets which came from

a node with higher rank. Thus, any node will forward a packet from the source, since

the source has the highest rank. On the other hand, nodes which have high probability

of delivering packets directly to the destination will have a very small rank, and their

packets will not be forwarded needlessly.

From the simulation standpoint, the situation is very similar to on-path over-

hearing. We simulate an ExOR-like protocol. The differences from the on-path case

are:

1. Set of input nodes: instead of routing over the small set of nodes located on the

shortest path from source to destination, there is a much larger set of nodes which

are closer to destination than sources, according to the routing metric.

2. Routing metric: Since ExOR does not need per-packet acknowledgments, the

quality of reverse link does not affect the metric. In our simulator, we assume that

the batch maps are always propagated.

3.4.4 Potential benefits

For the testbed networks, we can compute a simplified estimation of overhearing,

which attempts to measure the amount of the overhearing in the intuitive way. We

compute the probability of overhearing by all node pairs that occur together on some

valid source-destination route in the topology. To do so, we create a superset distribution

of packet reception Prr[A → {B,C}],Prr[A → {B,C,D}] . . . , the probability that

a packet transmitted by A to B at rate r is received by all possible combinations of

receivers {B,C}, {B,C,D}, etc.
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We consider all ETT paths P ∈ G longer than one hop, where P := X1 → X2 →
. . . Xn, and compute the probability that any transmission along the path is overheard

by a node further along the path. That is, Xi’s transmission to Xi+1 is overheard by

Xj, j > i+1. There are two cases of interest: where Xi+1 does not and does also receive

the transmission. The first case, where the packet is overheard but not delivered to its

intended next hop, requires a significantly more sophistication from overhearing-detection

algorithm – now Xj has somehow communicate to Xi+1 or Xi that it has overheard a

packet and that Xi does not need to retransmit. Doing so would require knowledge

of the intended route, and the situation is unlikely to occur frequently in practice with

reasonable route selection. Indeed, it occurs only rarely in the practice. Hence, for

simplicity, we forgo the seemingly minimal potential performance improvement and

only act upon packets that are both overheard and successfully received by their intended

recipient. 3.14 shows the CDF of the overhearing probabilities for paths between each

pair of nodes in the network for Roofnet network. Transmissions between a fifth of all

node pairs are overheard more than 20% of the time at 1 Mbps. Overhearing is less

common at higher speeds. At 11 Mbps, only 5% of node pairs are overheard more than

20% of the time. In an outdoor environment like Roofnet, however, nodes frequently

transmit at lower link rates, so ample opportunity exists to exploit overhearing.

We also plot a number of transmissions results from our simulator. We do not

plot a total airtime, as it depends on the specific details of wireless protocol, however the

number of data packets transmitted is a good estimator that should be constant across all

protocols. We show simulator results for Roofnet network.

3.15(a) plots the expected number of transmissions for all-pairs paths of length

greater than one. We omit the one-hop paths for clarity, although we note that the savings

is non-zero due to avoided spurious retransmissions. Without overhearing, each path

requires at least as many transmissions as there are hops, sometimes many more due

to failed transmissions. Overhearing is able to significantly decrease the number of

transmissions required, often quite dramatically. To clearly illustrate the performance

improvement, 3.16 plots both the relative performance improvement for various path

lengths at 1 Mbps and 11 Mbps.

At 1 Mbps, we are able to save over 20% of path transmissions for the median
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Figure 3.14: Overhearing in Roofnet. We plot the probability that any transmission
along an ETT path is overheard by a node further along the path. We plot two mutually
exclusive cases: when intended destination does and does not also receive the packet.
Both y axes start at 60%.
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Figure 3.15: The expected number of packet transmissions per ETT path with and without
on-path overhearing
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Figure 3.16: On-path overhearing performance improvement versus ETT on the Roofnet
dataset. The graphs plot the CDF of the fraction of transmissions saved per path for 1
and 11 Mbps transmission rates.
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path, and more than 40% (i.e., turn a 5-hop path into a 3-hop path) for over 10% of the

paths. Due to the restricted overhearing at 11 Mbps, however, algorithm provides at least

20% savings for only a quarter of all paths.

3.17, 3.18 and 3.19 shows the simulator results for off-path overhearing for all

testbeds. There are two lines on each graph, which show the CDF of expected total

transmission time per packet for the traditional routing (no overhearing) and for ExOR

system. In all cases, ExOR shows a reduced total airtime. While these results can not

be directly translated into an increase in goodput, they show that while the absolute

transmission time is different for each testbed, one can expect to see some improvement

from overhearing in all cases.

3.5 Taking advantage of overhearing

We have shown that many mesh networks have a potential for improvement if

they can take advantage of overhearing. However, a practical implementation of an

overhearing-aware systems needs to answer an three important questions: which packets

to send, at what speed and when. These question is trivial in the traditional routing

schemes, as they assume a presence of reverse channel that could be used to deliver

an acknowledgment packets, determine optimal speed, and schedule forwarding time.

However, overhearing-aware systems operate over several lossy links simultaneously,

and thus do not have the luxury of well-defined return path.

We explore various ways of solving this problem in the remainder of the disserta-

tion. In the next section, we introduce a simple on-path overhearing optimization that

works by explicitly asking the receiver if the given packet was overheard. In the Chapters

5 and 6, we explore the performance of existing off-path optimization systems.

Chapter 3, in part, is a reprint of the material as it appears in the proceedings

of the ACM/USENIX Symposium on Networked Systems Design and Implementation,

2008, Afanasyev, Mikhail; Andersen, David G.; Snoeren, Alex C.. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, in part, is a preprint of material that has been accepted for publica-

tion in the proceedings of the ACM SIGCOMM Conference on Internet Measurement,
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2009, Afanasyev, Mikhail; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the proceedings for

the ACM SIGCOMM Conference on Internet Measurement, 2008, Afanasyev, Mikhail;

Chen, Tsuwei; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was the

primary investigator and author of this paper.



Chapter 4

On-path overhearing

In this chapter, we propose a system that takes advantage of on-path overhearing.

This system, which we call ‘RTS-id’, is a simple per-hop link-layer modification that

takes advantage of overheard packets in a protocol and topology-independent manner

that requires only the cooperation of adjacent nodes in a path.

The main advantage of RTS-id is the fact that it introduces few modifications to the

regular 802.11 routing stack, and is backwards compatible with existing 802.11 hardware.

This means that individual nodes can be upgraded by replacing the 802.11 driver and/or

firmware, yet they will continue to inter-operate with legacy nodes. We verify that the

RTS-id extension is ignored by hardware that does not support it with no ill effects.

Furthermore, while substantially more modest than the bulk transfer improvements

obtained by the overhearing-aware systems discussed in the next chapter, the gains we

report are independent of transport-layer protocol: they are equally applicable to UDP

and TCP.

4.1 Algorithm design

Our proposed technique, RTS-id, adds a small exchange before packet transmis-

sion to ask the receiver if it already has the packet in question. Receivers maintain a

small cache of recently observed packets that they check during this exchange. To reduce

overhead and ensure backwards-compatibility, RTS-id piggy-backs this query on the

existing 802.11 request-to-send (RTS) frames.

56
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As described in section 2.1.3, the 802.11 standard defines RTS/CTS as a mech-

anism which reduces the hidden terminal problems. It operates by having senders

broadcast a ‘request to send’ (to a particular receiver) specifying the expected duration

of the frame exchange. Original specification allowed only one possible answer: if the

receiver received the packet, it replies with a ‘clear to send’ (CTS) frame containing the

expected remaining duration of the frame exchange. RTS-id changes the algorithm in

two small ways: first, the RTS packet now has short ID number which identifies the data

packet associated with a given RTS/CTS request. Second, RTS-id adds an additional

possible response to an RTS packet: if the data packet has been overheard, then the

receiver can directly acknowledge the packet with a special ‘CTS-ACK’ frame. This

frame will prevent the transmission of the data packet, but at the same time, it will signal

the host that the transmission was successful, thus ensuring that the host will not attempt

to retransmit the packet.

This section first examines the roles of senders and receivers in RTS-id, then

discusses the design alternatives to identify packets. Finally, because RTS-id increases

the size of RTS frames (or necessitates their use in a system that does not use them), we

discuss how senders and receivers can dynamically enable RTS-id based upon an on-line

determination of whether it would benefit them.

4.1.1 Sender and receiver operation

RTS-id is an improvement which is intended to be used together with the existing

mesh routing systems such as SRCR. Thus, every node may act as a sender and a receiver

simultaneously. We study each of these roles separately.

RTS-id senders operate as shown in 4.1: they first decide whether to use RTS-id

for a packet, based on the packet size and whether the use of RTS-id will benefit the

performance. If so, they transmit an RTS-id frame to the receiver, and expect to receive

either a CTS-ACK (the receiver has the packet already) or a normal CTS (the receiver

does not have the packet; the sender must transmit). An RTS-id frame is simply a standard

RTS frame extended to include a packet ID. With RTS-id, however, rather than setting

the duration field to the standard value, it sets it only to the time in microseconds required

to transmit the CTS frame and one SIFS (short inter-frame space) interval. This way,
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Figure 4.1: RTS-id operation. For clarity, this figure assumes that the sender does not fall
back to normal RTS/CTS use.

nodes overhearing the RTS will only consider the channel reserved for the RTS-id/CTS

exchange at this point.

When a node receives a normal data frame, it operates according to the flowchart

in 4.2. It inserts into a small FIFO cache all received packets larger than cache thresh

bytes, regardless of the packet’s source or destination. The cache thresh avoids

wasting cache entries on small packets such as TCP ACKs. If the packet was previously

cached, the receiver informs the sender that the transmission could have been avoided,

which enables the adaptive enabling scheme below.

Upon reception of an RTS-id frame, the receiver checks its local packet cache for

a packet whose ID matches that in the RTS frame. If present, the receiver sends a CTS-

ACK and processes the frame as if it had been received normally. A CTS-ACK is simply

a normal CTS frame with the remaining duration field set to zero. This both signals

to the sender that the packet was already received, and resets the network allocation
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vector (NAV) for other stations in the contention domain. If the packet was not found,

the receiver sets the CTS duration field to be the same value that would have been used in

response to a normal RTS frame, reserving the channel for the time expected to transmit

the pending frame, plus one ACK frame and two SIFS intervals.

4.1.2 Choice of hash and collisions

RTS-id uses a 32-bit hash of the IP packet contents—not the link-layer frame—as

the packet ID. Such a small hash is acceptable if it provides three properties:

Low drop and duplication rate: A hash collision results in both a drop (of the

transmitted packet) and a duplication (of the cached packet it collides with). A 32-bit

hash with a 64-packet cache will drop about 1 in 67 million packets due to hash collisions.

This rate is much lower than typical end-to-end loss on wireless networks.

Independent collisions for transport-layer retransmissions: If the drop prob-

ability is non-negligible, then a collision that prevented a particular frame exchange
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must not cause the end-to-end retransmission of that packet to also be dropped with high

probability. This property is provided as long as 1) the hash of the retransmitted packet

is different from that of the original; or 2) the contents of the cache differ during the

retransmission. Fortunately, both conditions are likely to hold, as several fields in the

packet typically change when a packet is retransmitted at the transport or application

layers, such as the IP ID, TCP timestamps, DNS query IDs, etc.

Resistant to attacks: The hash should ensure that a non-local attacker cannot

guess the ID of a packet and that no attacker can easily craft a packet that will collide

with a target packet. We assume that an attacker who transmits on the order of 232 packets

over the course of a few seconds has at his command a more effective way of denying

service than causing packet collisions.

4.1.3 Adaptively enabling RTS-id

RTS-id adds 32 bits of overhead to the small RTS packets. On links in which

RTS-id does not provide benefit, this cost may loom large, because 802.11 transmits

RTS/CTS packets at a low rate, (1 Mbps for 802.11b or 802.11g networks, and 6 or 12

Mbps for 802.11a networks), while the data may be sent at higher rates. Moreover, for

networks that would not otherwise use RTS/CTS, the insertion of an entirely new frame

exchange comes at considerable cost. Each sender therefore dynamically determines

whether or not to use RTS-id when communicating with a particular receiver, based on

its past history of cache hits and the size of the packet it is about to transmit.

First, RTS-id processing only considers packets larger than cache thresh

≈ 500 bytes. Smaller packets are transmitted directly (they may, however use normal

RTS/CTS depending on the station configuration). For large packets, every participating

receiver maintains an RTS-id cache, regardless of whether senders choose to use it. On

receiving a packet, the receiver checks its cache to see if the packet had already been

heard. If it had, the receiver sets a bit in the ACK packet it sends in response to the

packet arrival. Otherwise, it leaves this bit unset. The sender thus is able to determine

which packets would have resulted in a cache hit had it used RTS-id (to avoid the need

to redefine the ACK packet in practice, we overload the “retry” bit. In our experience,

current 802.11 devices do not set the retry bit on ACK frames).
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Before transmitting each packet, the sender calculates the (possibly negative) time

saved, Ts, by using RTS-id. In the calculation that follows, Trtscts is the time required for

a normal RTS-CTS exchange, or zero if RTS-CTS is not enabled.

Bs = The bytes saved

=

{
0 if no cache hit

Packet size if cache hit

Ts =
Bs

ratetx

− (Trtsid − Trtscts) .

The sender maintains for each (link-level) receiver an exponential weighted moving

average with parameter w ≈ 1
200

of the time saved for each packet:

savings = (1− w) · savings+ w · Ts.

If the estimated time savings for a particular receiver is large enough, the sender will

enable RTS-id. It is not necessary to explicitly enable RTS-id on the receiver: it can

promiscuously cache packets whenever sufficient memory and power are available, and

may always respond to an RTS-id packet with a normal CTS frame if it is not currently

caching packets.

4.2 Implementation

In order to verify the practicality of the solution, we implement RTS-id on real

hardware and verify its operation. The main complexity of the implementation is the

extremely short time that a station has to send a CTS or CTS-ACK, which is smaller than

interrupt latency, and rules out the use of regular 802.11 wireless cards for our prototype

without access to their firmware. At the time of writing, no commercial 802.11 cards

provide access to their firmware.

In order to work around the high latency of regular 802.11 cards, we implement

RTS-id using the CalRadio 1.0 platform designed and manufactured by CalIT2 [Cal],

shown in 4.3. The CalRadio is a relatively low-cost software radio platform consisting of

an ARM processor, an on-board Texas Instruments DSP, and a Prism 802.11b baseband
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Figure 4.3: The CalRadio 1.0 platform.
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Figure 4.4: RTS and RTS-id packet formats.

processor. The salient feature of the CalRadio for our purposes is that the MAC protocol

is implemented almost entirely in C, which allows us to change the format and contents

of the RTS and CTS packets. The ARM has access to 4 MB of flash ROM, 2 MB of

static RAM and 16 MB of SDRAM, while the DSP operates with 512 KB of RAM. The

802.11 MAC protocol is implemented on the DSP, while the operating system (µCLinux

[Emb] 2.4.19) and user-level programs run on the ARM.

4.2.1 Packet details

The RTS-id packet is a simple extension to the standard 802.11 RTS packet as

shown in 4.4. Note that the new ID field is sent after the normal RTS frame fields,

including the frame check sequence (FCS). Furthermore, when transmitting the RTS-id

frame, the length field of the PLCP header is set to the length of the standard RTS

frame, not including the new ID field. Hence, spec-compliant 802.11 stations that do not
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support RTS-id will not even decode the hash field, and the frame will look like a normal,

well-formed RTS frame. We have verified that existing 802.11 devices (specifically,

the Atheros chip sets), properly decode the RTS-id frame as an RTS. In the worst case,

non-compliant stations will simply discard the seemingly mal-formed RTS-id frame with

no ill effects. RTS-id capable stations, however, expecting an RTS-id frame, will know to

decode the additional field.

It is important to note that the use of RTS-id does not interfere with the normal

ability of RTS/CTS to prevent hidden terminals. The duration specified by the sender’s

RTS-id frame will reserve the channel until the end of the RTS-id/CTS exchange. If the

data frame is eventually sent, its duration field will update the NAV for all stations in

range of the sender. Nodes that hear only the CTS frame will obey its duration field.

Because, however, we insert a different value into the RTS-id duration field, the receiver

no longer knows how long the pending packet will take to transmit, and is unable to

accurately fill out the duration field in the corresponding CTS frame.

To resolve this problem, stations sending a CTS can estimate the appropriate

duration based upon a packet size of cache thresh (smaller packets would not have

instigated an RTS-id exchange) and the previous transmission speed used by the sender.

(Over-estimating the size prevents hidden terminal problems, but potentially wastes air

time. Under-estimating creates a small window where a collision may occur that normal

RTS/CTS would have prevented.) If greater accuracy is needed, the low-order bits of the

RTS-id duration field can be used to encode the approximate size of the pending data

packet. Our prototype, however, does not yet implement this extension.

While the ID field is not covered by the FCS (in order to preserve backwards

compatibility), a corrupt ID field has little effect. All nodes in our implementation

recompute the ID of received packets before insertion into the cache or local delivery,

so there is no danger of cache or data corruption. Hence, there are only two issues of

concern: First, an ID that should hit in an overhearer’s cache is corrupted so that it misses.

In this case, an avoidable transmission occurs, resulting in a slight performance decrease.

The second, somewhat more expensive case occurs when an ID is corrupted so that it

collides with that of a previously overheard case. This situation is no different than a

normal hash collision, and occurs (assuming a binary symmetric channel) with equal
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probability. Such a collision results in a drop (of the corrupted packet) and retransmission

(of the packet the ID collided with), impairing performance but not correctness.

4.2.2 Packet caching and RTS-id

According to the 802.11 specification, a station must respond within 10 microsec-

onds to an RTS request. To inter-operate with legacy stations, RTS-id nodes should

conform to this response time requirement for both CTS and CTS-ACK packets. We

therefore implement the packet cache on the DSP. Due to the tight cycle budget, our

implementation uses the CRC32 checksum of invariant [SPS+02] packet contents (in-

cluding the transport layer header and a portion of the payload) as its ID. This choice is

obviously deficient with respect to attack resilience; a future implementation will use the

low-order 32 bits of a strong cryptographic hash.

4.2.3 Test-bed deployment

Our current test-bed consists of three CalRadio devices. Because of the small size

of the test-bed, and the limited functionality of the CalRadio devices, we do not perform

extensive measurements of this testbed at the different rates, and do not include it in the

list of our data sets.

While CalIT2 distributes CalRadio with basic 802.11b PHY code, the publicly

available MAC code is far from complete. We have extended the provided code base

to support the core of the 802.11b MAC protocol, including data, ACK, RTS/CTS, and

RTS-id/CTS-ACK frames as well as link-layer retransmission and collision avoidance.

Due to a hardware defect with the CalRadio platform, however, we are not able to

faithfully implement carrier sense. Our implementation is sufficient to exchange packets

both between CalRadios and with other, Atheros-based 802.11b devices in our lab, but

suffers from an unusually high loss rate due to lack of carrier sense. We have attempted

to ameliorate this issue by introducing a fixed, per-station delay after the completion of a

previous transmission to avoid frequent collisions. While this slotting mechanism does

not interfere with the operation of RTS-id, it has the unfortunate effect of decreasing the

effective channel utilization. When RTS(-id)/CTS is enabled, however, this limitation
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Figure 4.5: Testbed system for RTS-id

impacts only the RTS/CTS exchange, as the successful completion of such an exchange

will reserve the channel for data transmission.

4.2.4 Experimental Setup

The small size of our CalRadio testbed limits the scenarios which could be

verified. We attempt to simulate a typical three-station overhearing case, shown in 4.5.

We set up three nodes in a controlled topology. We physically connect three nodes

together through a series of splitters and variable attenuators so that the path loss between

A and B is L dB, B and C is 20 dB, and the loss between A and C is (50 + L) dB. We

have found that our CalRadios can tolerate path loss of approximately 100 dB in our

noise-free configuration, so we can control the prevalence of overhearing by adjusting

the value of L.

Node A is configured to use node B as its first-hop router. Node B plays the role

of an forwarder by forwarding A’s packets on to node C. We use the ttcp application

to send 1100-byte UDP packets and report our results both in terms of individual frame

exchanges and path throughput. To reduce the impact of external nodes, we set the

CalRadios to channel nine, a relatively quiet channel in our building. All three nodes

support RTS-id. Node A first sends the packet to node B. The Linux networking stack

on node B then forwards the packet to node C. Meanwhile, node C is promiscuously

listening to all packets; since all three nodes are in close physical proximity, C frequently

overhears A’s transmissions to B. In such cases, it caches the packet and records the

packet ID. When B subsequently sends an RTS-id frame to C requesting to transmit a

packet with an ID that C just overheard, C delivers the cached copy to the Linux kernel
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Table 4.1: Experimental results from the CalRadio test-bed.
Node Tx success CTS-ACK CTS ACK

A 99.3% 0% 56.6% 99.9%
B 98.6% 0% 45.0% 99.9%

110-dB path loss : 2.05 data frames per packet, 29.13 KBps
A 99.7% 0.1% 96.6% 99.8%
B 99.9% 97.6% 1.1% 100%

100-dB path loss: 1.01 data frames per packet, 36.74 KBps

and responds with a CTS-ACK preventing the transmission of the data frame. If C did

not overhear the original transmission, it sends a CTS, and B transmits the data frame to

C, which acknowledges its receipt and delivers the packet to the application.

4.2.5 Transmission reduction

To demonstrate the effectiveness of RTS-id, we conduct two separate experiments

with drastically different overhearing rates. In the first, we set the variable attenuator

to L = 60 dB, resulting in a path loss from A to C of 110 dB, effectively preventing

overhearing. In the second, we adjust the attenuator to 50 dB, giving an effective path loss

of 100 dB which results in significant overhearing. Both experiments attempt to transmit

a train of UDP packets from A to C at 1 Mbps with RTS-id enabled. We set the link-layer

retransmission count to ten, meaning a sender will attempt the RTS-id/CTS/data/ACK

frame exchange at most ten times for each packet.

4.2.4 presents the results of these experiments. For each node, we show the

fraction of attempted packet transmissions successfully completed by that node, as well

as the fraction of RTS attempts that were met with either a CTS-ACK (and therefore

avoided) or a regular CTS (and therefore transmitted). Finally, we show the percentage

of transmitted data frames that were successfully acknowledged by the receiver.

Due to lack of carrier sense, RTS/CTS exchanges fail relatively frequently in

our experiment, especially without overhearing. Recall that the frame exchange will be

attempted up to ten times for each packet, so the overall transmission success rate is

still quite high. In contrast, almost no data frames are dropped. The stark difference in

RTS/CTS success rates between the two experiments is due to the fact that node B rarely
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needs to transmit data frames in the overhearing case, so there is far less contention for

the channel.

As expected, node C overhears a large fraction of the transmissions from A

to B when L = 50 dB; hence, it is able to prevent all but 1.1% of the packets from

being forwarded by B. Comparing the overhearing case with the non-overhearing case,

RTS-id provides dramatic savings, reducing the number of data frames transmitted per

successfully delivered packet from just over 2.05 (recall that 2.0 is the best case without

overhearing if there is no data frame loss) to 1.01, a 50.7% reduction in transmission

rate, which resulted in a 26.1% improvement in end-to-end bandwidth in our testbed

configuration.

4.2.6 RTS/CTS overhead

Most infrastructure deployments do not enable RTS/CTS by default; as a result,

using our adaptive algorithm an AP will only enable RTS-id if the expected savings

outweigh the additional overhead (Section 4.1.3). Due to the lack of carrier sense, we

are unable to effectively measure the performance improvement in this scenario. Using

statistics collected from the experiments depicted in 4.2.4, however, we can calculate

the air time usage for a non-RTS-id network from the non-overhearing case by simply

summing the amount of air time used by the data transmissions, as RTS/CTS frames

would not be used in this case. Conversely, we can calculate the total air time usage for

an adaptive RTS-id deployment by summing the air time used by the data transmissions

from A to B in the overhearing case and combining that with the data transmissions and

RTS-id/CTS frames from B to C. Considering the 1100-byte packets transmitted at 1

Mbps in the previous experiment, an RTS-id enabled network would use 46.1% less air

time than one not using RTS/CTS at all. The savings reduce to 25.2% if one considers

MTU-sized packets at 11 Mbps.

4.3 Other networks

Due to the limited availability of CalRadios, we use our simulator to evaluate the

effectiveness of RTS-id in a multi-hop mesh network. Since our implementation supports
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802.11b only, we use Roofnet, an 802.11b network, as the dataset for our simulator.

In this scenario, the benefits of RTS-id range from a 20% savings for the me-

dian route at 1 Mbps to a 12% savings for the median route at 11 Mbps. In general,

we find that RTS-id benefits even highly optimized routing mechanisms, but that its

benefit is somewhat inversely proportional to how optimal the route choice and—more

significantly—rate and power selection is. This follows intuitively: a large amount of

overhearing along a transmission path is a possible signal that the sender is transmitting

“too well” to reach the receiver, and so could perhaps spend that extra signal/noise ratio

by using a faster transmission rate or lower power.

Our mesh evaluation first considers how often a node can overhear transmissions

in realistic environments at fixed rates, and how that impacts the number of transmissions

required to forward a packet using the popular ETT routing metric [ABB+04]. We then

evaluate the effect of rate adaptation and alternate traffic patterns. Next, we examine how

RTS-id provides greater benefit to less sophisticated route selection metrics, and then

evaluate the savings provided by RTS-id in an environment that does not use RTS/CTS

by default.

RTS-id exactly implements the on-path overhearing as described in previous

chapter, so 3.15(a), which plots the expected number of transmissions for all-pairs paths

of length greater than one, applies to RTS-id. We omit the one-hop paths for clarity,

although we note that the savings is non-zero due to avoided spurious retransmissions.

Without RTS-id, each path requires at least as many transmissions as there are hops,

sometimes many more due to failed transmissions. RTS-id is able to significantly de-

crease the number of transmissions required, often quite dramatically. To clearly illustrate

the performance improvement of RTS-id, 3.16 plots both the relative performance im-

provement for various path lengths at 1 Mbps and 11 Mbps. At 1 Mbps, RTS-id is able to

save over 20% of path transmissions for the median path, and more than 40% (i.e., turn a

5-hop path into a 3-hop path) for over 10% of the paths. Due to the restricted overhearing

at 11 Mbps, however, RTS-id provides at least 20% savings for only a quarter of all paths.
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Rate adaptation

As the previous results show, RTS-id is more effective with lower transmission

rates that can reach more nodes. Choosing transmission rates on a per-node basis is

complex: higher rates have smaller reception distances, and so may require more hops

through the ad hoc network. Here, we model Roofnet’s “SampleRate” technique for

rate selection [Bic05, BABM05]. For each link, SampleRate selects the bit-rate with

the lowest instantaneous ETT metric. While Roofnet can adjust transmission rates on

a per-packet basis, it constructs routes using long-term averages. Hence, we compute

an ETT-based path for each source/destination pair as before, except that each hop uses

the bit-rate selected by SampleRate. The resulting routes approximate those used by the

current version of Roofnet except that we again use the 1500-byte 1-Mbps loss rate for

the return channel.

4.6 plots both the overhearing prevalence (c.f. 3.14) and the relative performance

improvement versus ETT (c.f. 3.16) with dynamic rate adaptation. It turns out that most

links in our dataset select the 11 Mbps transmit rate, so the overhearing is closer to that

observed with a constant 11-Mbps transmit rate than a 1-Mbps transmit rate, resulting

in similar savings (interestingly, its designers note that Roofnet generally transmits at

5.5 Mbps in practice [BABM05], so we are likely understating the potential savings.) In

particular, RTS-id provides more than 20% savings for one quarter of all routes, and over

35% savings for the most-improved 5%.

Actual traffic patterns

So far, we have considered all source/destination pairs, which is reasonable for

many mesh networks. Some mesh networks (e.g., Roofnet), however, rarely route traffic

between internal nodes; instead, they forward traffic to and from a few gateway nodes

that transfer packets to the Internet. To confirm that our results are not biased by poorly-

performing internal routes, and, instead, are representative of the paths traversed by

actual traffic, we restrict ourselves to only those paths connecting each Roofnet node to

each of the four Roofnet gateway nodes. Because we do not have a traffic matrix, we

consider paths to all four gateways from every node, although only one of them is likely

used at any point in time. 4.7 shows the same data as 4.6(b), except that it contains only
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Figure 4.6: The impact of rate adaptation. The first graph shows the overhearing
prevalence (c.f. 3.14), and the second shows the relative performance improvement
versus ETT.
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Figure 4.7: The relative performance improvement versus ETT for paths leading to or
from a Roofnet gateway.

gateway routes. The overall distribution of savings is roughly unchanged.

4.3.1 Improving other routing protocols

In general, RTS-id improves the performance of routing more if those routing

protocols do not select routes optimally. Our evaluation of RTS-id using ETT (currently

the best-performing routing protocol available for mesh-based networks) gives ETT a

large advantage, assuming that ETT has perfect knowledge of link loss rates and that

those loss rates are stationary. Our ETT routes are computed as the optimal value over

the entire 90-second measurement. In practice, however, networks cannot devote all of

their resources to measurement.

For example, the Roofnet network computes its metrics using only ten mea-

surement packets sent every five minutes, leading to less accurate information for route

construction. Furthermore, many networks currently operate with much simpler protocols

that do not need to collect such fine-grained loss information. Here, we demonstrate that

not only does RTS-id substantially improve the performance of these routing protocols,
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but that RTS-id, operating only on a local per-link basis, raises the performance of other

routing protocols above and beyond ETT’s performance.

4.8 shows the performance of three routing protocols, ETT (c.f. 4.6), ETX, and

shortest path, where shortest path simply selects the path between source and destination

with fewest hops, assuming the link delivery rate is above 80%. (80% is arbitrary, and

results are similar for other cut-offs.) Note that not all node pairs are connected by

paths consisting entirely of links with greater than 80% delivery rates, so the shortest

path algorithm constructs fewer routes. For each routing protocol, we plot the absolute

number of expected transmissions per path with and without RTS-id. Note that any

routing protocol with RTS-id is generally superior to the best protocol (ETT) without it.

4.3.2 RTS/CTS overhead

As noted earlier, RTS/CTS is not commonly used in infrastructure deployments

(though in some, CTS-to-Self packets are sent for 802.11b/g compatibility). While it was

designed for multi-hop scenarios, some mesh networks also eschew its use [BABM05],
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particularly those with infrequent contention. As in the single AP study, enabling RTS-id

in these scenarios also requires an extra RTS/CTS exchange, so we again quantify the

transmission time required for all packets in the transmission.

We measure this overhead in the Roofnet dataset by examining the path transmis-

sion time (the sum of all transmission times along the path). We plot this transmission

time normalized against two baselines: a network using no RTS/CTS at all, and a network

that already uses RTS/CTS. Note that in this simulation, there is no contending traffic,

and so no opportunity for RTS/CTS to provide any benefit. 4.9 shows the CDF of this

normalized transmission time when we do not adaptively enable or disable RTS-id and

simply leave it enabled on all links. The two lines on the left of the graph show that

RTS-id improves transmission times greatly when the network already uses RTS/CTS;

the two lines on the right of the graph show the overhead of enabling RTS/CTS and

show that in some cases, blindly enabling RTS-id can reduce performance over the base

network. Some of the paths, however, still benefit from RTS-id, by up to 20%. (The left

pair of lines are represent the same data as the ETT and shortest-path lines from 4.8.)
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Adaptively enabling RTS-id as described in Section 4.1.3 avoids the slowdown on

links where RTS-id does not provide benefits. To evaluate adaptation, we enable RTS-id

only for those link-layer senders who benefit in expectation. 4.10 shows the fraction of

the path transmission time for adaptive RTS-id vs. a network that does not use RTS/CTS

at all. The higher overhead of the RTS/CTS exchange means that RTS-id is used on many

fewer links than in a network that natively uses RTS/CTS. As a result, its benefits are

smaller, but it still provides a 10% reduction in air time for about 5% of the paths, with

significantly larger reduction for some paths. Unlike the equivalent lines in 4.9, adaptive

RTS-id never harms transmission time.

4.4 Summary

In this section, we presented RTS-id, a system that directly implements on-path

overhearing, while remaining compatible with existing 802.11 devices. We show the

operation of the algorithm and implement it in the physical hardware. Due to tight timing
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constraints, we used a CalRadio, a software radio platform, in our implementation. Using

a synthetic testbed consisting of three CalRadio nodes, we verified that RTS-id can save

transmissions when the overhearing is present, and that it is compatible with existing

802.11 devices.

Due to the small size of the CalRadio testbed, we used the simulator developed

in Section 3.4 in order to estimate the potential gain from the RTS-id system. The

simulation of the Roofnet dataset shows that a reduction of more than 20% in the number

of transmissions is possible for one quarter of the routes. An interesting property of the

RTS-id is that it increases tolerance of sub-optimal routing algorithm – even a simple

protocol like ‘shortest path’, when combined with RTS-id, performs as well as ETT.

However, RTS-id introduces an additional overhead by required the stations to be using

RTS/CTS. While the algorithm is adaptively enabled, thus never increasing transmission

time, the resulting overhead results in overall improvements of 10% in airtime for about

5% of the paths.

While the general premise of RTS-id works, the resulting time improvements are

significantly smaller than the reduction in number of transmitted packets, suggesting that

the overhead introduced by per-hop queries is significant. Thus, in the next chapter we

turn to off-path overhearing networks, which do not need to be compatible with existing

networks, and can use more efficient ways to collect information about overheard packets.

Chapters 4, in part, is a reprint of the material as it appears in the proceedings

of the ACM/USENIX Symposium on Networked Systems Design and Implementation,

2008, Afanasyev, Mikhail; Andersen, David G.; Snoeren, Alex C.. The dissertation

author was the primary investigator and author of this paper.



Chapter 5

Off-path overhearing

In the previous chapter, we have shown how to exploit on-path overhearing in

traditional mesh routing systems. However, such systems do not take full advantage of

the overhearing present in the system. In order to maximize performance, we must use

systems that implement off-path overhearing, such as ExOR and MORE. In this chapter,

we investigate a way to optimize off-path overhearing systems. Specifically, we focus

on the selection of the transmission rates: we present a rate-selecting algorithm, and

implement it on both ExOR and MORE systems.

5.1 Rate selection

The selection of transmission rates in overhearing-aware systems has been little

studied. Existing off-path overhearing algorithms use a single, fixed rate for all nodes in

the network — 1 Mbps in the original ExOR work, and 11 Mbps for MORE (although

Chachulski et al. also publish results for ExOR at 11 Mbps)—and defer issues of

bitrate selection to future work [BM05, CJKK07]. Other systems, like our RTS-id

work, or ExOR extensions in Chachulski’s master thesis [Cha07] leveraged existing

rate-adaptation techniques designed for non-overhearing aware systems to determine

appropriate bitrate.

In either case, the resulting transmissions are likely to be sub-optimal in the

global sense. As we have seen in 3.3.1, the transmission range, and therefore number of

recipients, varies greatly depending on the rate, thus we would expect that the selection of

76
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transmission rate would impact overall performance. We consider how one might select

more efficient bitrates to improve throughput when possible. We begin by considering

the case of an 802.11b network, as used in previous work, and then present ‘modrate’, an

approach better suited for modern, 802.11a/b/g networks.

5.1.1 Fixed range

From the section 3.3.1, we see that all of the 802.11b rates provide approximately

the same range in our testbeds, so if we consider an 802.11b-only transmitter, it likely

suffices to select the bitrate for each node independently—as in traditional routing

algorithms [Bic05]—since the transmitting node’s choice is unlikely to have a significant

impact on the set of forwarder nodes that will receive the batch fragment. Indeed, it

appears even for 802.11g the same can be said for most speeds—all but the highest three,

in fact, when transmitting at the highest power in our test bed. In other words, each

transmitter can disregard the presence (or absence) of overhearing, and focus on the

natural goal of selecting the bitrate that minimizes the remaining expected transmission

time (ETT) of the batch fragment to its ultimate destination.

Happily, this is the same goal in traditional routing: Roofnet’s Srcr routing proto-

col [BABM05] selects a shortest path in terms of ETT presuming each node transmits

to the next hop at its optimal bitrate. In fact, ExOR uses ETT to determine the priority

order of the forwarding list, so it will automatically incorporate any improvements due

to bitrate selection into its forwarding algorithm. Extending the notation of Chachulski

et al. [CJKK07], let εrij denote the the expected loss probability when node i transmits

to note j at rate r. If we denote the time taken to transmit a packet at rate r as T (r) (a

constant value regardless of the nodes in question), we can write

ETT r
ij =

T (r)

1− εrij
.

Because ExOR only transmits packets for a single destination in any given batch,

a node can consider each batch fragment transmission independently. In particular, for a

batch fragment originating at s destined to node d, forwarding node i selects the bitrate

as follows. Assume node j is the next hop on the optimal Srcr-computed route from i to

d. (Note that, due to overhearing, i may not have been on the original Srcr route from s
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to d.) Then, i selects a bitrate r that minimizes ETT r
ij:

r(i, j) = arg min
r∈Ratesi

(
T (r)

1− εrij

)
(5.1)

where Ratesj is the set of bitrates available at node i.

5.1.2 Modrate

Modern systems typically use 802.11a/b/g radios, however, which have a direct

correlation between transmission rate and average reception range. Thus, it is important

to consider the potential impact of decreased overhearing opportunities when choosing

an appropriate bitrate. We propose a rate-selection algorithm called ‘modrate’ that jointly

optimizes next-hop throughput and overhearing prevalence. Said another way, instead of

trying to optimize for the expected single (Srcr) path as above, the rate instead is selected

to minimize the expected transmission time over all useful paths including those that

arise from overhearing.

In ExOR, a packet could be received at multiple destinations, but will be processed

first by the destination with lowest ETT to the destination; to ease discussion we order

all nodes in terms of their ETT to d, s ≥ i ≥ j ≥ d = 0, Now, rather than adjusting

the bitrate in view of just the next Srcr hop, we seek to consider the bitrate in view of

the furthest (i.e., closest to d) recipient. If we define ρr
ij as probability that the furthest

recipient of the packet sent from i at rate r will be j, we can compute the expected total

transmission time for the packets which are received by j as:

(T (r) + ETTjd) · ρr
ij (5.2)

This formula is valid even for the transmissions which were not received by any other

nodes: in this case, we assume that i = j, or that the sender always hears its own packet.

Given that, we can determine the optimal bitrate r∗ as

r∗(i) = arg min
r∈Ratesi

(∑
j≤i

[
(T (r) + ETTjd) · ρr

ij

])
(5.3)

How could we calculate ρr
ij? One way is to assume that all transmission proba-

bilities are independent, a frequent assumption in the literature [CJKK07, RMRW06].
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Then, we just need to calculate the probability that a transmission would be received by j

and not by any k < j:

ρr
ij = (1− εrij)

∏
k<j

εrik.

An alternative method is to not rely on independence, and instead measure probability of

reception for all possible sets of receivers. We adopt the latter approach in our evaluation.

During the measurements, we calculate and store probability that a packet sent by i will

be received by some subset of nodes A for every subset of nodes: Pr [i→ A] , A ⊆
P(nodes). Then, ρr

ij can be computed directly:

ρr
ij = Pr [i→ A | (j ∈ A) ∧ (k /∈ A∀k < j)]

5.2 Experimental setup

In order to verify the advantages of the modrate, we implement both ExOR and

MORE routing protocols and evaluate them on our testbeds.

5.2.1 Testbeds

We conduct our tests on both ALIX and Jigsaw testbeds. We drive the experiments

with a centralized controller that has wired connectivity to each node in the network.

We begin experiments by performing the network-wide link survey as described in

Section 3.2.2 in order to produce appropriate routing and speed information, which

we calculate using our simulator described in Section 3.4. This information is then

communicated to the stations; thus, the stations themselves do not run any routing code,

ensuring that all protocols operate with the same routes.

When conducting experiments comparing various protocols, we run all the pro-

tocols under test in sequence at each pair of source/destination nodes, before moving

to the next pair. By doing so, we roughly equalize any impact of out-of-date delivery

probabilities. Additionally, for long-running experiments, we update our estimates of the

transmission probabilities and re-calculate routes every twenty minutes.
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5.2.2 Traditional routing

As a baseline, we measure the throughput of traditional, single-path routing that

employs both link-layer and end-to-end acknowledgments to ensure reliable delivery. In

order to evaluate the most prevalent scenario in today’s wireless networks—TCP data

being sent over a single, rate-adapting path—we implement a simple Srcr forwarder.

Our Srcr forwarder uses the link probabilities calculated by our measurement procedure

and selects routes using a modified ETT metric that accounts for asymmetric links. We

assume that ACKs are always sent at the lowest speed for the 802.11 protocol in use (1

or 6 Mbps). This is a Click-based system which forwards all packets between two hosts

along a predefined path, as provided by the experiment controller. We use the regular

Linux 2.4 kernel TCP stack without modifications, and the ttcp application to measure

the time it takes to transfer 1 megabyte of data. We refer to this mechanism in all of our

results as ‘trad-TCP.’

5.2.3 ExOR implementation

We were unable to obtain the original ExOR implementation, so were forced to

reimplement it. Because we are unsure whether we were able to faithfully replicate the

exact behavior of the transmission timer, we instead implement a scheduling “oracle”

within the control server: Once a forwarding node is done transmitting a batch fragment,

it notifies the control server over the wired network. The server then notifies the next

node in the batch’s forwarding list to begin transmission. Should that node not have any

remaining packets to send, it may send a set of empty packets to propagate the batch

map; regardless, it notifies the server when finished. Communication with the scheduling

oracle takes time, so each station keeps track of how long it spent transmitting the batch

fragment. Once the batch is successfully received at the destination, all round times

are added together to get the actual transmission time without oracle communication

overhead.
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5.2.4 MORE module

We implement the MORE algorithm using the publicly available MORE source

code. The implementation is completely separate from our ExOR code base, so by default,

it uses its own code to calculate routes. To increase consistency in route selection, we use

our simulator to calculate the list of forwarder nodes and their transmission speeds with

and without modrate. We then instrument the public MORE code to fix the forwarder

list and forwarder rates to the specified list. This way, we still use the original MORE

code for MORE-specific calculations, such as expected input/output ratio, and we use our

simulator for the task of selecting off-path overhearing routes, with or without modrate

support.

It is worth noting that MORE is substantially more CPU-intensive than any of the

other protocols we evaluate. Even with data calculations disabled (i.e., only verification

of innovativeness was done), it still requires more CPU power than the Jigsaw testbed

can provide. Thus, we report MORE results only for the ALIX testbed.

As originally described, MORE uses a single, fixed link speed for all nodes in the

network. The publicly available implementation selects a link-local optimal speed based

upon the ETX metric in a manner similar to Equation 5.1 [Cha07]. While it would be

possible to use this implementation, we instead elect to use our simulator to select speeds,

as we believe it provides a more consistent comparisons between MORE and ExOR.

According to the original paper [CJKK07], MORE prunes the potential forwarder

nodes in a simular fashion to ExOR: nodes which are expected to transmit less than 10%

of the total number of packets are removed. The available implementation, however,

implements a more advanced algorithm, which involves pruning on the basis of both total

packets received, as well as on the received/transmitted packet ratio. We find out that the

selection of pruning algorithm parameters can have a large effect on the performance.

For more consistent comparisons, we consider the pruning algorithm described in the

paper. A rigorous exploration of the pruning algorithms is interesting, but beyond the

scope of this dissertation.
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5.3 Results

In order to facilitate direct comparisons, our experimental methodology largely

follows those of the original ExOR [BM05] and MORE [CJKK07] papers, although with

several slight differences. For each source/destination pair, we transfer a 1.5-megabyte

file, consisting of 10 batches of 100 packets, each containing 1,500 bytes (c.f. 1,024 in

the original ExOR paper) of payload. As is customary, we do not implement traditional

routing of the final 10%; instead, we stop and report the throughput when the destination

has received 90% of the packets in each batch. Thus, our experiments result in ten

separate transmission times, each corresponding to the successful reception of at least

90% of a 150-KB chunk of the original file.

5.3.1 Overhearing-oblivious rate selection

To begin, we consider the performance of ExOR as originally described by Biswas

and Morris [BM05]. In particular, we assume that all nodes in the network use a single,

fixed speed. 3.6 suggests that the performance in the ALIX testbed with bit rates less than

24 Mbps are likely to be gated by link speeds rather than reception rates. Increasing speed

beyond 24 Mbps, however, seems likely to markedly decrease the degree of connectivity

in the network, potentially harming performance.

5.1(a) plots the performance of four fixed speeds, 6, 24, 36, and 48 Mbps on the

ALIX testbed when all nodes transmit at maximum (60) power, roughly equivalent to 18

dBm. Recall that throughput is the total number of bytes delivered over 10 independent

batches divided by the cumulative time required. For all of the graphs in this section, we

report on the performance of 40 randomly selected node pairs among the 100 possible

combinations. We bias the 40 routes to include longer-hop paths if possible, as one-hop

paths tend to be uninteresting. None of our paths are longer than four hops. To select

the 40 random paths, we first select up to 10 paths of each length—four, three, two, and

one hops—and then fill in the remainder with randomly selected paths if we do not have

enough of a particular length.

While performance generally improves with higher links speeds, the network

becomes disconnected at 48 Mbps and no route exists for 11 of the selected route pairs;
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Figure 5.1: Throughput of ExOR and MORE with automatic and various fixed rate
selections. ALIX network with full power.



84

this phenomenon is even more pronounced at 54 Mbps. The globally optimal rate will

obviously vary from network to network, and likely even over time. Instead, we see

that an automatic rate assignment that selects the locally optimal speed for each link

(neglecting overhearing potential) as specified in Equation 5.1 generally outperforms any

fixed speed selection. We refer to this automatic-rate-assignment ExOR implementation

as ’ExOR’ in all subsequent graphs.

5.3.2 ExOR evaluation

We now consider the additional performance gains from considering the impact

of link rates on overhearing opportunities. In particular, we enhance ExOR with the

modrate algorithm described in Equation 5.3 and conduct a second experiment on the

ALIX testbed at a highest power level.

An example route

5.2(a) diagrams one particular route where modrate dramatically changes the

forwarding behavior. The top portion shows a two-hop Srcr route from alix3 to alix1 that

uses alix8 as an intermediary when nodes transmit at full power; alix3 transmits at 54

Mbps, while alix8 selects 36 Mbps. In addition to link speed, each node is annotated with

the number of packets it transmits (O) and receives (I). The links are labeled with both

the number of packets successfully transferred as well as the experimental and predicted

(by the survey) reception rate. The middle portion shows how ExOR uses the route,

leveraging overhearing by node alix6 to assist with packets on the second hop. In one

particular batch, alix6 overhears all of the packets transmitted by alix8, and is able to

deliver 247 of them to alix1, saving retransmissions.

Finally, the bottom portion of the figure shows how modrate enhances overhearing

by decreasing the transmission speeds of alix3 (from 54 to 36 Mbps). By doing so, it

introduces three new overhearing opportunities: First, the destination is able to directly

receive packets approximately 8% of the time. Second, alix4 and alix6, which are closer

to the destination than alix8, are now able to overhear transmissions. In fact, between the

two of these nodes, they are able to forward all of the packets to the destination, freeing
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the original intermediate hop, alix8, from forwarding any packets at all in this particular

batch.

The same effect is presented in another format in 5.2(b), which depicts the same

transfer from alix1 to alix3. The y axis indicates the number of packets a station transmits

normalized to the total number of packets transmitted along the route (although we do

not plot link-layer transmissions used by the ‘hop-by-hop’ protocol). Node alix3 is the

source, and therefore has to transmit all packets at least once. The four transmitting nodes

are laid out along the x axis, ordered in increasing proximity to the destination. Bars

correspond to the average among all 10 batches, while the dots indicate the performance

predicted by the measured reception rates.

5.3.3 MORE evaluation

We have enhanced MORE with the modrate algorithm, and run the set of experi-

ments on the ALIX testbed at the highest power. 5.1(b) shows the performance of the

MORE protocol when all nodes run at the same, fixed speed.

Our immediate observation on the MORE algorithm is the lack of any rate control

– the source, for example, transmits packets any time the air is free, thus increasing the

probability of packet collisions and exacerbating any hidden-terminal problems that the

system might have. We find that practically speaking, this causes serious performance

degradation on some paths.

This effect is already visible on 5.1, if one compares ExOR and MORE at, for

example, a 36 Mbps transmission rate. The median throughput is much higher for MORE

– 2.2 megabytes per second for MORE versus 1.2 megabytes per second for ExOR, but

the median variation is also much higher: the number of routes that transfer less than 0.1

megabytes per second is 2% for ExOR and 18% for MORE.

5.3.4 Network-wide performance

5.3 plots throughput in the same fashion as 5.1, comparing ExOR, ExOR with

modrate, MORE, MORE with modrate, and traditional routing. Despite some significant

changes in speed selections, the overall difference in performance between ExOR and
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ExOR+modrate are slight. 5.4 accentuates the differences by plotting the per-route

throughput normalized to that of ExOR; a positive difference means that the performance

is better than ExOR, and negative implies less throughput.

The differences between MORE and MORE+modrate lines are bigger, but some

of them are caused by the degradation from hidden terminals. In order to understand

the real impact of modrate on MORE, we plot the per-route relative differences against

traditional routing in 5.5. The negative speed differences are likely to indicate a hidden

terminal problem. The positive speed differences show that modrate works well with

MORE.

In theory, the performance of the modrate-enabled algorithm should be strictly

better than the regular one, but some variance is to be expected in practice due to

time-varying delivery probabilities, and has been reported many times in the litera-

ture [CJKK07, WYLB06]. In this experiment, modrate+ExOR manages to equal or best

the link-local scheme on all but 10% of the routes, and is rarely more than 10% worse. In

the ExOR configuration, modrate provides limited benefit for the vast majority of routes,
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Figure 5.6: Path throughput for 15 representative routes. ALIX network, max power.

but brings significant improvement in around 15% of paths. This is easily explained by

observing that modrate degenerates to the link-local scheme in the case of one-hop routes;

even for longer routes, modrate select identical rates 62% of the time. It is impossible

to tell from the CDFs, however, precisely which routes are seeing improvement. 5.6

presents 15 representative routes sorted according to their length and performance under

traditional routing. Error bars report the standard deviation of the 10 constituent batches.

We see that modrate provides performance increases in many of the two- and three-hop

cases, but—as expected—none of the one-hop paths.

5.3.5 Building-wide performance

5.7 shows the performance of various schemes on the top three (2nd through 4th)

floors of the Jigsaw testbed. These experiments use 802.11g so they were conducted late

at night in an attempt to reduce the interference from the production 802.11g network.

The Jigsaw nodes are significantly less powerful than those in the ALIX testbed, and turn

out to be CPU-limited when using the MORE protocol, so we do not report results for

MORE.

Due to the disparate layouts of the floors, there is significant variation between

the connectivity of individual floors. Hence, we also plot the performance one floor at
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a time. 5.8 and 5.9 show the results for floors two and three, respectively. Each floor

has a similar area and density of nodes, so comparing floors reveals differences between

similar networks in different physical locations.

While the differences between traditional routing and on-path overhearing varies

between each floor, the difference between non-modrate and modrate-enabled version of

ExOR stays approximately the same for all testbeds. We explore this phenomena in more

details in next chapter.

5.4 Conclusion

In this chapter, we have presented modrate, an algorithm for selecting optimal

transmission rates in off-path overhearing systems in order to optimize throughput by

increasing the prevalence of overhearing. We have also implemented the system on two

of our testbeds using the ExOR protocol, and on one testbed using the MORE protocol.

Our results show that the ExOR with modrate support outperforms regular ExOR on

most routes in the Jigsaw testbed, but provides on average 20% improvement on 15% of

the routes in the ALIX testbed. MORE with modrate support also outperforms regular

MORE in many cases, but the exact results are unclear because of the high variability of

MORE’s performance. There is often detectable improvement, but it is still much smaller

than the improvement introduced by enabling off-path overhearing, and smaller than the

differences in the reception range as a function of modulation rate may suggest. In the

next section, we take a closer look at the operation of the ExOR and MORE in order to

determine the main factors which affect performance.

Chapter 5, in part, is a preprint of material that has been accepted for publica-

tion in the proceedings of the ACM SIGCOMM Conference on Internet Measurement,

2009, Afanasyev, Mikhail; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.



Chapter 6

The importance of overhearing

While modrate functions as expected, we were initially surprised by its modest

gains given the dramatic differences in reception ranges shown in 3.7. In particular,

modrate is often able to significantly increase overhearing opportunities as shown in

5.2, yet throughput gains are limited. Attempting to “debug” this situation leads to

the last major contribution of our dissertation, namely uncovering the reasons behind

ExOR and MORE’s performance. Our experiments indicate that, for our testbeds at least,

overhearing plays a relatively minor role.

6.1 Analysis of ExOR

In this section, we take a close look at the ExOR protocol. In order to attribute

performance gains to various aspects of the ExOR implementation, we have expanded the

number of cases that we are testing – in addition to the two existing protocols, traditional

and off-path overhearing, we have implemented three intermediate protocols, derived

from ExOR, each with a subset of features disabled.

We replot the results of our previous experiments on the ALIX network in 6.1.

Note that these graphs use the same dataset as 5.3 and 5.4, and that both ’trad-TCP’

and ’ExOR’ lines are unchanged. We describe the additional protocol versions and their

relative performance in increasing levels of sophistication (and performance) below.

94
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6.1.1 Traditional routing

Traditional routing is used to represent a no-overhearing case. It uses TCP for

flow control and standard 802.11 ACK and retry mechanisms (as described in 2.1.2) are

used to ensure the reliable delivery of packets at each hop. We employ our Srcr forwarder,

described in more detail in Section 5.2.2.

6.1.2 Bulk transport

Perhaps the most fundamental aspect of practical implementations of off-path

overhearing protocols such as ExOR and MORE a their batch structure. Rather than

transmitting packets as a stream (or windowed stream as in TCP), these protocols uses an

explicit batch construct. In ExOR, each node transmits an entire batch at a time before

pausing to allow downstream nodes to forward them. We implement this functionality on

top of traditional routing with link-level acknowledgments. In this mode, the ExOR’s

batch map is not used (but for better comparison, it is still included as an overhead).

Instead, each station transmits all packets it has once. Packets are sent in 802.11 unicast

mode (as opposed to off-path protocols’ usual broadcast), so link-level retransmissions

may occur on lossy links, up to 10 times in our configuration. We note that this—not our

’trad-TCP’ line—is what the ExOR paper [BM05] calls ’Srcr’.

It is frequently observed that TCP’s back-off behavior is not ideal in wireless

mesh networks. Hence, one might expect that bulk transfer, even operating on exactly the

same routes at the same speeds, would perform better. Indeed, the simple bulk-transfer

variant, labeled ‘hop-by-hop’ in the graphs, significantly out-performs ’trad-TCP’, on

average constituting more than 50% of ExOR’s improvement. Interestingly, in almost

20% of cases, it actually out-performs ExOR itself.

6.1.3 Group acknowledgments

For a protocol transmitting batches at a time, it is natural to consider getting rid

of individual packet acknowledgments in favor of bulk or group acknowledgments. In

particular, instead of waiting for a link-level ACK after every frame, a node can send

a single, combined transport-layer ACK at the end of transfer. Indeed, this is precisely
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what ExOR does with its batch maps. Group acknowledgments increase the latency of

retransmissions, but latency is not a figure of merit for ExOR or the other protocols we

study.

We have implemented a group acknowledgment scheme by simply disabling

overhearing in ExOR. In particular, a node will only accept packets transmitted by the

previous hop according to the underlying Srcr route. This algorithm is labeled ’group-

ACK’ in the graphs. We observe that ’group-ACK’ is likely to perform well on low-loss

links—because no time is wasted on superfluous link-level ACKs—and asymmetric links

with lossy ACK channels. Given the significant improvement over the ‘hop-by-hop’ line

in this configuration, we conjecture one or both of these instances occur frequently. We

ascribe the small number of routes where ’hop-by-hop’ outperforms ‘group-ACK’ to

experimental variation.

6.1.4 On-path overhearing

While ExOR takes advantage of off-path overhearing, on-path overhearing is

easier to build into existing protocols (as we showed in Chapter 4). We evaluate the effec-

tiveness of strictly on-path overhearing by restricting the forwarder list to include nodes

only on the Srcr path—as opposed to any node that is predicted to overhear at least 10%

of the transmissions. Note that unlike RTS-id, which operates with traditional transfer

protocols, we leverage a fully batched bulk transfer protocol. Since the system already

includes group acknowledgments, this method of implementing on-path overhearing does

not require additional per-packet transfers, and thus does not add significant overhead

like RTS-id does.

Forwarding with this restricted form of overhearing is labeled ’on-path’ in the

graphs. In our implementation, there can be no overhead with respect to group acknowl-

edgments (any deviations are once again attributable to experimental noise). In this

configuration, however, there is also no significant benefit. Theoretically, however, on-

path overhearing can add value when there is no single high-quality link for a particular

hop in a route, but the combination of reception rates at the the next hop and down-line

forwarders combine to provide efficient performance.



98

6.1.5 Off-path overhearing

The final addition to arrive at ExOR is to enable off-path overhearing; namely, to

include the full set of potential forwarders in the forwarder list. In this case, there are

multiple possible paths, and packets choose the best path dynamically. We expect that

extra nodes will improve the performance when when routing information is unreliable

or out of date, as the extra nodes might suddenly become valuable.

We observe, however, that ExOR is not always the most efficient. In particular,

these extra nodes can actually add overhead due to scheduling: it takes time to communi-

cate the longer forwarder list and start and stop a round. Also, if the additional nodes

have poor reception, they may not receive batch maps, and keep transmitting the same

data over and over again. We find that ExOR works best when routes are generally poor,

but there are many of them.

6.2 MORE analysis

In this section, we turn our attention to the MORE protocol. Again, in order

to attribute the performance gains, we have disabled some functionality of the MORE

algorithm. In practice, we find that MORE’s performance varies dramatically over

time. In order to decrease the impact of this variability on our evaluation, we follow the

following procedure:

1. In order to estimate the variability of the algorithm, we run each experiment twice

over an approximately 3-minute interval. The resulting graphs have two lines with

the same color and label – those lines correspond to the two consecutive runs of

the algorithm, and provide an appreciation of how stable the results are.

2. We have removed all data for paths where one of the MORE runs shows worse

performance than trad-TCP. About 35% of the routes were removed this way.

6.2(a) shows individual CDFs for each algorithm, and 6.2(b) shows the per-route

performance relative to first execution of MORE.
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Figure 6.2: The detailed performance of the MORE algorithm. ALIX network, maximum
power.



100

6.2.1 Traditional protocol

The MORE publication does not explicitly describe the details of the implemen-

tation of their Srcr protocol. The code that the authors make publicly available on their

website includes a simplified version of Srcr, which is internally called ‘SPP’. This is a

bulk transport protocol that transfers packets one at a time in unicast mode, using 802.11

link-level acknowledgments in order to ensure the reliability of each link.

We attempted to use SPP in our comparisons, but found that the protocol is

unreliable on our testbeds, frequently failing to transfer any significant amount data.

A closer study of the supplied code reveals that SPP does not use any form of flow

control at all, instead transmitting packets from the source at the maximum rate that

channel utilization allows. This configuration causes overflow of packet queues at the

intermediate nodes and significant packet loss. Because of these problems, we instead

use the same ‘hop-by-hop’ and ‘trad-TCP’ protocols that we considered in ExOR case,

shown in 6.1. The plots are based on the same data, but they look different, since only

those paths that do not exhibit hidden terminals are displayed.

6.2.2 Group acknowledgments

The MORE protocol uses network coding and does not implement any acknowl-

edgments in the traditional sense. While using coding in order to avoid retransmissions

in the link-layer is a known technique, it is normally used only on one independent link.

It is possible to disable overhearing in MORE, but time constraints force us to

leave this to the future work.

6.2.3 On-path overhearing

We implement on-path-only overhearing in MORE by limiting the set of nodes

which can forward packets to the nodes that are on the Srcr path. The restricted version of

the protocol appears on the graph as ‘MORE-onpath’, and shows better performance than

regular ‘MORE’. This is not surprising, given that one of the biggest problems in MORE

is caused by large number of stations transmitting simulatenously. On-path overhearing

uses fewer stations, and thus produces better results on our testbed.
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6.2.4 Summary

The main difference between the MORE and ExOR algorithms is the lack of

any kind of acknowledgments or scheduling mechanisms. While those properties help

MORE provide a significantly higher median throughput, they also cause severe hidden

terminal problems on some paths. Thus, it is hard to evaluate the impact of overhearing

on MORE. The difference between on-path overhearing and off-path overhearing is

small, and comparable to the same difference for the ExOR mechanism. Thus, we belive

that most of the performance advantages of MORE relative to ExOR come from very

aggressive flow control, and the ability of all nodes to transmit simultaneously.

6.3 Power variations

Given the small contribution that overhearing—either on-path or off-path—makes

to ExOR’s and MORE’s performance in the testbed configuration studied so far, in

retrospect it is not at all surprising that modrate would have relatively modest gains.

In particular, intuitively, modrate provides larger gains when a protocol runs all links

at high speed (so there is room for modrate to decrease them), but reception rates are

similar across a range of intermediate hops (so the best path is just one of a number of

alternatives).

In order to evaluate the potential for modrate to improve performance when

these conditions arise, we attempt to modify the average transmission rates selected

by the algorithm by changing the connectivity of the network. Rather than modify the

topology—which would make it hard to compare results across runs—we adjust the

network-wide power level. As observed in 3.6, different power levels have dramatically

different reception ranges in the ALIX testbed. Due to similarity of our findings in

the previous sections, we believe that the results would be similar for both ExOR and

MORE. However, due to the high variance of MORE’s performance, we will consider

only ExOR going forward. We re-run the previous ExOR experiments at three additional

power levels—40, 50, and 60 (full power)—in addition to the level 30 results previously

reported. As previously noted, modrate frequently chooses the same rate as ExOR.

Hence, we restrict our attention to those routes where modrate selects different link
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Figure 6.3: Protocol break-down for ExOR on the ALIX network at power levels 30.
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Figure 6.5: Protocol break-down for ExOR on the ALIX network at power level 50.
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speeds—approximately 7 to 10% of all possible routes in the ALIX testbed, depending

on the power level employed. We present the results for all four speeds in 6.3 thru 6.6. In

an effort to account for experimental noise, we run both ExOR and the ExOR+modrate

algorithm twice, so the graphs have two lines with identical labels corresponding to

the two consecutive runs. In addition, the plots showing relative performance have a

line labeled ‘ExOR-2’, which directly indicates the experimental noise between the two

ExOR runs.

Not only does the contribution of modrate change with power level (peaking at

power level 50 when connectivity is high, but still more variable than at full power),

but the various components of ExOR do as well. Notably, the contribution of group

acknowledgments decreases at power level 40, presumably because ExOR has selected

unreliable links. Bulk acknowledgments are similarly of limited utility in the presence of

lossy links. Several overall observations can be made as well: none of the techniques

provide much improvement at low or full power, as poorly connected network generally

has only one path made of of low quality links, while, conversely, a well-connected

network with short paths does just fine with traditional routing. Networks with a range of

connectivity provide the most fertile ground for all of the enhancements, but the relative

importance of each can vary.

6.4 Jigsaw testbed

In order to verify that the results that we obtain on the ALIX testbed are not

anomalous, we repeat the experiment on the Jigsaw testbed. Since MORE is too CPU-

intensive for Jigsaw nodes, we only repeat ExOR experiments. The results are shown in

6.7 thru 6.9 as overlays to 5.7 thru 5.9 — the ’trad-TCP’, ’ExOR’ and ‘ExOR+modrate’

lines are unchanged, but new lines in the middle provide additional information on the

reasons for performance.

5.7 shows the performance of various schemes on the top three (2nd through

4th) floors of the Jigsaw testbed. Because it was originally deployed as a passive sniffer

network, the Jigsaw nodes are quite dense. Hence, the overall results most closely

resemble those from the maximum-power ALIX experiment: there is little difference
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between ExOR and any of its variants—including modrate. Due to the disparate layouts

of the floors, however, there is significant variation between the connectivity of individual

floors. Hence, we also plot the performance one floor at a time.

5.8 and 5.9 show the results for floors two and three, respectively. Each floor has a

similar area and density of nodes, so comparing floors reveals differences between similar

networks in different physical locations. Floor two, in particular, shows substantial

improvement from modrate and bulk transport—similar to power 50 in the ALIX testbed.

Yet floor three has some routes with dramatic improvements under modrate, some

exceeding 100%, over and above the already dramatic improvements due to group

acknowledgments.

6.5 Conclusion

In this chapter, we have researched the specific causes of performance improve-

ment in both the ExOR and MORE protocols. We have evaluated the protocols with

various subsets of their features disabled, in order to determine how much each feature

contributes to overall performance. Our results definitely show that for the ExOR proto-

col, the major contributors to its performance on our testbeds are the elimination of TCP

flow control and removal of per-packet acknowledgments. Both on-path and off-path

overhearing contribute much less improvement, relatively speaking.

Our analysis of the MORE protocol was more complicated due to MORE’s

susceptibility to the hidden terminal problem. While we are unable to definitely separate

the contributions of flow control, per-packet acknowledgments and on-path overhearing,

we see only modest improvements from off-path overhearing and modrate, which leads us

to suspect that the majority of MORE’s speed advantages do not come from overhearing

either.

Chapters 6, in part, is a preprint of material that has been accepted for publica-

tion in the proceedings of the ACM SIGCOMM Conference on Internet Measurement,

2009, Afanasyev, Mikhail; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.



Chapter 7

Conclusion

Mesh networks provide a useful and practical alternative to traditional infrastruc-

ture wireless networks, but they have an intrinsic scaling limit – the raw channel capacity.

Wireless networks are broadcast, so a packet sent to one station might interfere with or

be received by other nearby stations. Mesh networks forward packets multiple times,

increasing airtime utilization and decreasing path throughput and channel capacity avail-

able to the clients. In this dissertation, we have explored ways to optimize forwarding in

order to increase path throughput.

The main technique that we explored in this dissertation is a phenomenon called

‘overhearing’. Traditional mesh networks use only ‘good’ links with low data losses in

order to forward packets; overhearing allows utilization of the links with high losses

in order to reduce the number of transmissions where possible. Our thesis is that it is

possible to improve the performance of wireless mesh networks by taking full advantage

of overhearing.

7.1 Summary

We considered two types of overhearing in this dissertation. Previous work

introduced opportunistic routing systems that support off-path overhearing. However,

such systems require a complete re-design of transport layer protocols, and thus are

not compatible with existing protocols like TCP. We have shown that it is possible

to achieve some of our goals without a complete re-design of transport protocols. In

109
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order to do this, we use on-path overhearing – an optimization applied to traditional

mesh routing systems. On-path overhearing can prevent un-needed retransmissions

when a packet is received by a node that is closer to the destination than the intended

forwarder. We introduced a per-hop link-layer modification that we call ‘RTS-id’, that

can take advantage of overheard packets in a protocol and topology-independent way.

This system is backwards-compatible with existing 802.11 hardware, and thus can be

deployed incrementally. Additionally, it works well with existing transport protocols and

does not require application rewrites.

In order to verify our RTS-id system, we have implemented it in the hardware

using CalRadio, a software radio platform developed at CalIT2. We first implemented a

basic 802.11 MAC in order to make CalRadio operational, and then extended the MAC

with RTS-id support. Using a small testbed consisting of three CalRadio nodes, we have

verified that RTS-id works as designed, and that it is backward-compatible with existing

802.11 radios.

The number of CalRadio devices available to us is limited, so in order to see

the results of RTS-id on the large-scale systems, we implemented a statistical, trace-

based simulator. We obtained traces from an existing wireless mesh network (Roofnet),

and used our simulator to estimate the expected performance gains from large-scale

installation of RTS-id system.

The results show that overhearing can save a significant number of transmissions,

up to 20% for a quarter of all routes. However, due to the overheads, the transmissions

themselves are longer, and as a results, the airtime usage savings are modest: up to 10%

reduction in airtime for only 5% of possible paths. One observation that we have is

that RTS-id brings the most improvement to systems that do not use advanced routing

protocols, and that even a simple routing protocols (such as shortest path), when combined

with RTS-id, outperforms the state-of-the-art traditional routing protocols like Srcr. Thus,

it appears that, in some cases at least, an optimized link-layer protocol can compensate

for less-than-optimal routing protocol, and vice versa.

Motivated by the relatively modest improvements of RTS-id, we decided to look

at the systems that support off-path overhearing, opportunistic routing systems like ExOR

and MORE. These systems use an alternative routing structure with each packet taking
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an individual, most optimal route. We observed, however, that the important question

of the rate selection in such systems has not been studied. As our measurements shows,

a lower transmission rate increases the range, and thus provides more opportunities for

overhearing. At the same time, a higher transmission rate decreases the time it takes to

send a packet. We designed a system called ‘modrate’, which allows selection of optimal

transmission rates in opportunistic routing systems. Modrate globally optimizes the rates

in order to increase the amount of overhearing in the systems, and minimize the total

transmission time.

In order to verify and demonstrate our approach, we set up two new wireless

testbeds: an 802.11b/g testbed which is based on the Jigsaw infrastructure and spans four

floors in our building, and a smaller, 802.11a ten-node testbed made from ALIX nodes,

which spans one wing of the building.

We have implemented ExOR and MORE algorithms with modrate support, and

ran a large number of experiments on those testbeds. We discovered that modrate

increases probability of overhearing, and improves the end-to-end goodput by 10% to

20% for over 15% of the routes for ExOR protocol. We have also confirmed that modrate

increases the performance of the MORE protocol. While these results are better than

RTS-id, they are still not as good as improvements seen from adding off-path overhearing

– a route might have 200%–400% throughput gain from adding ExOR, and an additional

10%–20% gain from adding modrate. Since we believed that most of the performance

gains came from off-path overhearing, we were surprised by those improvements.

Finally, in order to explain our modrate results, we studied the specific causes

of performance improvements in the ExOR and MORE protocols. We evaluated the

protocols with a subset of features disabled in order to isolate the contribution of each

feature to the overall performance. We discovered that most of the performance im-

provement in ExOR comes not from the overhearing, but from more prosaic things

like elimination of per-packet acknowledgments and using a specialized flow-control

algorithms instead of TCP. We have also evaluated MORE, and came to the conclusion

that most of the performance improvement of MORE comes from the same sources, with

an additional improvement coming from the lack of an explicit scheduler. The latter

reason, unfortunately, significantly increases the effects of hidden terminals, making
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MORE unusable in over 15% of our routes.

7.2 Open questions

There are multiple directions of future work for this thesis. First, it would be

interesting to determine how typical our situation is. We have run experiments only on

indoor testbeds – while our experiences with the Google urban WiFi network lead us to

believe results would be similar, the experiments on outdoor testbed would be extremely

valuable.

Next, given the relative unimportance of overhearing in existing bulk-transfer

protocols, it would be interesting to try to improve the non-overhearing aspects of the

existing algorithms. For example, MORE has somewhat trivial scheduler and flow control

system, and ExOR does not use spectrum in most efficient way. Since it seems that those

factors have an extremely large effect on the algorithm’s performance, it seems likely

that some optimizations could significantly improve the algorithms’ performance.

Finally, it is worth considering whether overhearing is useful at many circum-

stances. Since most of the performance gains come from bulk acknowledgments and

per-flow algorithms, it is quite possible that a simpler algorithm can achieve much of

the performance advantage that ExOR and MORE have, but without significant added

complexity.
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