
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
UbiBot : a system for experimenting with mobile devices on a wireless network

Permalink
https://escholarship.org/uc/item/4vq4s6g3

Author
Vedar, Erwin Abad

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vq4s6g3
https://escholarship.org
http://www.cdlib.org/

!

!

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UbiBot: A System for Experimenting with Mobile Devices on a Wireless Network

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Erwin Abad Vedar

Committee in charge:

 Professor William Griswold, Chair
 Professor James Hollan
 Professor Ranjit Jhala

2011

!

!

!

! """!

The Thesis of Erwin Abad Vedar is approved, and it is acceptable in quality and form
for publication on microfilm and electronically:

Chair

University of California, San Diego

2011

!

! "#!

DEDICATION

I’d like to dedicate this thesis to my advisor, Bill Griswold. He’s always encouraged
me to continue and finish what I was doing, even in my moments of doubt. This work
would not have been possible without his academic leadership and patience with his
busy student.

!

! #!

TABLE OF CONTENTS

Signature Page………………………………………………………………….... iii

Dedication………………………………………………………………………... iv

Table of Contents………………………………………………………………… v

List of Abbreviations…………………………………………………………….. vii

List of Figures……………………………………………………………………. viii

List of Tables…………………………………………………………………….. ix

Acknowledgements……………………………………………………………… x

Abstract…………………………………………………………………………... xii

Ch. 1: Introduction……………………………………………………………….
 1.1 Motivation………………………………………………………
 1.2 Mobile Wireless…………………………………………………
 1.3 Context Awareness……………………………………………...
 1.4 Mobile Context Aware Computing……………………………..
 1.5 Barriers to Entry………………………………………………...
 1.6 Extensibility…………………………………………………….
 1.7 Hypothesis………………………………………………………
 1.8 Approach………………………………………………………..
 1.9 Results…………………………………………………………..
 1.10 Structure of the Thesis…………………………………………

1
1
2
3
5
6
8
9
10
10
11

Ch. 2: UbiBot…………………………………………………………………….
 2.1 Subscription……………………………………………………..
 2.2 Hosting…………………………………………………………..
 2.3 Delegation……………………………………………………….
 2.4 Summary………………………………………………………...

12
13
17
22
27

Ch. 3: Extending and Experimenting with UbiBot………………………………
 3.1 Location-Based Instant Messaging……………………………...
 3.2 GPS Proxy………………………………………………………
 3.3 Location-Based Automated Tour Guide……………..………….
 3.4 Enhanced Location-Based Reminders Service………………….

28
28
33
38
41

Ch. 4: Discussion………………………………………………………………..
 4.1 Enabling MCAC………………………………………………...

44
44

!

! #"!

 4.2 Enabling Experimentation………………………………………

45

Ch. 5: Conclusion……………………………………………………………….
 5.1 The UbiBot Development Framework………………………….
 5.2 Contributions of the Project…………………………………….
 5.3 Future Work…………………………………………………….

47
47
47
48

References……………………………………………………………………….. 50

!

! #""!

List of Abbreviations

MCAC mobile context-aware computing

LBIM Location-Based Instant Messaging

LBR Location-Based Reminders

LBAT Location-Based Automated Tour Guide

!

! #"""!

LIST OF FIGURES

Figure 2-1: Location-Based Reminders Service subscribes to Alice’s GPS …… 17

Figure 2-1: Location-Based Reminders Service subscribes to Alice’s GPS……. 22

Figure 2-3: Flow of information with and without proxying……………………. 26

Figure 3-1: Client-service communication in Location-Based Instant Messaging 33

Figure 3-2: Client-service communication in Location-Based Automated Tour

Guide…………………………………………………………….....

41

!

! "$!

LIST OF TABLES

Table 2-1: Currently supported kinds and typical facilities……………………... 18

!

! $!

ACKNOWLEDGEMENTS

 I would like to acknowledge the guidance and support of Professor Bill

Griswold. His encouragement and patience have been invaluable.

 I would also like to acknowledge W. Brian Evans for continuing the work of

UbiBot beyond the intital proof-of-concept stage. His efforts enabled students not

affiliated with the project to expand upon it. Also, I’d like to thank John Egan and

Mark Gahagan for their efforts in developing the Enhanced Location-Based

Reminders service.

Chapters 1, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper.

Chapters 2, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper.

Chapters 3 is, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

!

! $"!

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper.

!

!"##!

ABSTRACT OF THE THESIS

UbiBot: A System for Experimenting with Mobile Devices on a Wireless Network

by

Erwin Abad Vedar

Master of Science in Computer Science

University of California, San Diego 2011

Professor William Griswold, Chair

Web 2.0 technologies have fueled a new generation of applications that come

to the desktop from the network. The emerging field of mobile context-aware

computing (MCAC) would benefit from network-based applications even more than

desktop computing. With MCAC, there are many issues that a network application

infrastructure needs to address beyond providing mere functionality, such as low

network speed and robustness, small, battery-powered devices, and limitations in the

!

!"###!

software these devices are able to run. Furthermore, these devices offer unique

sensing capabilities such as microphones, cameras, and GPS. Taking full advantage of

these in network-based applications requires more flexibility than simply providing

computing and network utilities.

We introduce UbiBot, an extensible system for experimenting with network-

based services for the mobile. UbiBot addresses many of the problems of mobile

computing by employing a publish-subscribe architecture that enables dynamically

reconfiguring the system to incorporate new services, delegate computation, and

manage network performance issues, yet without having to modify the software on the

mobile devices. Furthermore, the software for the mobile can be adapted to the

evolving capabilities of new devices. We demonstrate the flexibility and ease of

UbiBot through several case studies.

! "!

CHAPTER 1: INTRODUCTION

1.1 Motivation

 The emerging field of mobile context-aware computing (MCAC) can benefit

from experimentation to accelerate development in the area, as well as support

research and education. However, there are many challenges to experimentation with

mobile context aware software. Mobile devices are small and battery-powered, and

the software that they are able to run is limited in comparison to their desktop

counterparts. Experimenters need to account for these resource constraints, or risk

creating software that is unusable, or undesirable because it drains the device of

battery or computation resources. Furthermore, the network connections for these

devices, compared to a desktop machine wired into the network, are relatively low

speed and not very robust. Experimenters cannot assume a constant connection to the

network, or a static arrangement of clients and servers. These issues are further

frustrated in research and education settings, where timelines are tight and such issues

can derail the investigation into the topic of interest. Unless the investigation at hand

is into network issues or mobile device limitations, these barriers hinder the progress

of that investigation. Ideally, students could prototype a basic application that

validates the basic functionality, and then add support for the above mobility

considerations later in development, once the basic features had been worked out.

!

!

#!

1.2 Mobile Wireless

The problem space of mobile computing is characterized by distributed

systems in which participants connect and disconnect during operation, possibly at a

different access point [Gad08], [Far04], [Cap03]. Thus the challenge in solving

problems for this space is to create systems and applications that can function in a

dynamic environment, subject to these changing connections within the system

[Dav04]. The mobile computing space includes interactions over wireless networks.

Connections to wireless networks are naturally mobile, with weak connections

[Far04]. Creating applications for mobile devices such as smart phones falls into this

problem space. As users move around with their devices, they may move out of range

of one network access point while moving into range and reconnecting through

another access point.

Smart phones are a common type of mobile device. Smart phone research and

development has drawn much attention because of the devices’ evolving capabilities

and the concomitant increase in business potential [Dav04]. The number and

popularity of such devices continues to increase [Dav04], [Sam01].

However, many barriers have to be overcome in order to reap the benefits

offered by smart mobile phones, or more generally, mobile devices. The devices are

characterized by small screens, low memory capacity and computational power

[Muh04], [Dav04], [Gad08]. Their connections to the network are spotty and have

!

!

$!

limited bandwidth [Far04], [Dav04], [Muh04], [Anc02]. While they pose much

potential in terms of profitability and novel modes of interaction, these hurdles must

be overcome to reach that potential. As the computation and interaction capabilities of

mobile devices continue to grow, their limitations still need to be handled in a way

that is acceptable to the user and easy for the developer.

The problems created by mobility can be reformulated as the need to create a

meaningful, stable façade for the user that handles the limitations of the device and the

network in the background. That is, users expect that their devices simply work as

they move around; the connection and disconnection to the network should have as

little consequence for the user as possible. These issues distract them from the task at

hand. If the application is unable to function once partitioned from the network, it

should still handle the situation in a graceful way. Also, cooperating applications need

to be able to find each other in the network, regardless of their host device or the

device’s physical location in the network.

If the problems of mobility are sufficiently hidden from the user, then adoption

of mobile devices will be a natural transition from the desktop.

1.3 Context Awareness

Mobility, as defined above, implies the possibility that the environment that

the device is used in may change during operation. This yields different computing

“contexts”. Dey defines context as “Any information that can be used to characterize

!

!

%!

the situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user and

applications themselves” [Dey01]. Context-aware applications don’t purely rely on

the user for input, but take information gathered from sensors in order to make

decisions, possibly in an automated way [Du08].

 Context awareness can potentially “enable a new breed of applications and

services which would extend the functionality of human’s subconciousness, being able

to provide or act at the right time, with the right level of information” [Dev07]. In

effect, this would “make computing devices smarter and more thoughtful for users”

[Du08]. Context awareness, when used correctly, can make applications both more

useful and easier to use. For example, a map application is more useful if the user’s

location on the map can be automatically calculated using GPS and displayed at the

right place on the map. The user doesn’t have to do any extra data entry, and the

application can display information and interact with the user in a way that’s relevant

to the user’s current situation. For example, if the user is looking for the nearest gas

station, the application can limit its search results to the region closest to the user.

 Context awareness presents many challenges to be overcome before these

smart applications can be realized. Many have to do with converting raw sensor

information to a form that is usable by the application and user. For example, GPS

signals have to converted to GPS coordinates, but GPS coordinates aren’t necessarily

useful to the common user, who would better understand a street address.

Furthermore, for a given context, there can be multiple, distributed, unconventional,

!

!

&!

and heterogeneous sensors [Sal99] [Roc05]. The array of sensors is evolving [Gri03],

increasing the complexity of the issue. To further complicate matters, these sensors

communicate in an asynchronous fashion [Roc05] and the data that they produce is

strongly time-dependent [Dem07]. This is primarily due to the nature of context data,

which changes as frequently as the context it represents.

 Like mobility, the problem with context-awareness can be reformulated as a

problem of abstraction. In this case, it is a matter of taking raw data and abstracting it

to a form that can be acted upon programmatically, and successfully hiding the nature

of the sensors used to gather the information. This involves dealing with multiple data

types, and writing programs that can act upon context information. Once these issues

are addressed, applications can effectively use context to enhance the user experience.

1.4 Mobile Context Aware Computing

Mobile wireless devices open the door for context aware applications, yet

impose challenges due to the limitations and variety of the devices. The field of

Mobile Context Aware Computing (MCAC) deals primarily with the issues associated

with software that can adapt to its context on distributed, heterogeneous devices. This

includes adapting to the resource limitations and sensory capabilities of the devices

themselves.

 MCAC is an emerging field with many open issues. For instance, application

designers in this sphere cannot treat the hardware as an isolated black box. MCAC

!

!

'!

requires consideration of the limitations of the devices involved, the environment, and

network connections.

1.5 Barriers to Entry

Development with MCAC is more difficult than traditional software

development because of the use of context information, location-enhanced behaviors,

and user mobility [Li04]. As discussed above, the devices themselves also impose

difficulties to developers. The process and tools people use to design and test software

will also differ a bit within MCAC, because special considerations for the target

devices and the OS that they run must be made. Additionally, inputs to the program

may not be generated by the user directly, but through the user’s context, making unit

testing and automation more complex. Together, these issues form a high barrier to

entry, which is unfortunate for an emerging field that could benefit from

experimentation, particularly by the research and academic communities.

 Several attempts at lowering these barriers have already been made, ranging

from toolkits to complete programming suites. Salber, et al., created the Context

Toolkit to hide much of the specifics of interacting with low-level sensors in order to

enable context-aware applications [Salb99]. It is based on the idea of the widgets,

which abstract away the details of the context sensors to a more easily used form.

This approach enables developers to create reusable solutions for low-level sensing

mechanisms, then separately use those solutions to create applications. Grisworld, et

!

!

(!

al., extended beyond the idea of the toolkit to explore the issues of extensibility and

integration among context aware applications in ActiveCampus [Gris03a]. This

system exemplifies the approach of creating distributed and connected context aware

services, and explores the issues within this approach.

Du and Wang placed more focus on the development process [Du08]. They

aimed at creating an entire suite for developers to work, including a development

environment. In effect, his work is complementary to ActiveCampus; it addresses the

human problem of how they perform their work, rather than the problems of how the

technology works. Topiary addresses the human problem as well, targeting

application designers rather than software engineers [Li04]. It attempts to allow

experimentation with different interactions during early stage design, and to allow

rapid iteration utilizing user feedback.

 In order to quickly progress the MCAC field, both human and technology

problems need to be addressed. Sensors need to be abstracted and applications need to

integrate together. Designers need to easily design applications, and engineers need to

implement them. Students and researchers need to address their burning research

questions, without technology creating further difficulties. Although many efforts

have been made to address these different issues, having one solution to experiment

with these issues could potentially reveal subtle interactions and synergies between

them. In complement to these efforts, our goal is to enable learning through

experimentation more quickly and easily by supporting incremental development.

!

!

)!

Furthermore, the solution should be easy to learn and extend, in order to avoid raising

the barrier to entry.

1.6 Extensibility

 The purpose of experimentation software is to enable learning through trial

more quickly and easily than development of a full-scale solution. This way, results

are generated and iterations take place faster and with less risk of wasted resources. In

the domain of MCAC, it is particularly important that experimentation software

support extensibility. “A typical system might regularly undergo the addition of new

kinds of context sensors, modeled entity types, services, or end-user devices”

[Gris03a]. Changes to applications and sensors may require changes to the context

model [Roc05]. Experimentation software should be able to handle these changes

quickly and easily.

 Building a system with sufficient flexibility and generality introduces further

issues. Often, a tradeoff must be made between flexibility and generality versus

performance and scalability [Roc05] [Roc07]. The more versatile a system must be,

the more work it must do to achieve that versatility. Also, one must be careful not to

build software components for generality while losing utility. That is, sometimes

when something is built to do anything, it sometimes it takes a lot of work to make it

do something. Interchangeable pieces with defined interfaces are common practices

!

!

*!

for handling change in a software system. However, some integration between parts is

useful and beneficial from a performance standpoint [Gris03a].

 In short, experimentation software, particularly when MCAC is concerned,

must facilitate rapid change in the components of the system and the information that

is passed between components.

1.7 Hypothesis

 We hypothesize that many of the problems of mobile computing can be

addressed by an extensible, dynamically reconfigurable context publish-subscribe

architecture. A publish-subscribe architecture decouples producers and consumers of

context information, insulating their communication from the low network speed and

lack of robustness typical of mobile networks. Also, it naturally enables a system to

evolve along with the sensing capabilities of mobile devices by incorporating new

types of events for publication. Furthermore, dynamic reconfiguration allows devices

to offload computation onto the network, compensating for the limited software that

runs on small, battery-powered mobile devices. Extensibility in the software enables

it to evolve along with the sensing capabilities of mobile devices by incorporating new

data types. However, these capabilities alone are not enough to support MCAC. The

addition of dynamic reconfiguration allows devices to introduce new computational

functions at low effort, move computations close to their data source, or offload them

onto the network to, say, compensate for the limited resources of small, battery-

!

!

"+!

powered mobile devices. In aggregate, these features comprise a flexible and easy-to-

use experimentation platform for mobile devices.

1.8 Approach

 We decided to test our hypothesis by creating UbiBot, a system of client and

server software based on an extensible, dynamically reconfigurable context publish-

subscribe architecture. The client software runs on mobile devices with weak

connections to the network, while the server software is designed to run on stationary

machines with strong network connections.

An experimenter who wants to create a new service need only create a server

using the libraries included with UbiBot. The libraries provide the publish-subscribe

communication architecture, and the means for clients to perform dynamic

reconfiguration. The libraries are designed to be extensible with new data types.

 We created a few diverse services on the UbiBot platform to determine if it is a

system that experimenters could use to quickly and easily try out new services in the

MCAC field. These services will show not only the range of software supported by

UbiBot, but the effort involved in creating services with it.

1.9 Results

!

!

""!

We were able to demonstrate the capability of UbiBot by creating a diverse

array of applications. Furthermore, we showed the ease with which others could use

the software to create a new MCAC application. Together, UbiBot’s core mechanisms

of subscription, hosting, and delegation lowered the barrier to entry for MCAC.

1.10 Structure of the Thesis

 The remainder of this thesis is organized as follows. Chapter 2 describes

UbiBot’s client and service software. We focus on how the software simplifies the

process of creating services. Chapter 3 discusses the communication between the

parts, particularly on how the tenuous connections to the network are handled.

Chapter 4 is an evaluation of the system, using a few representative services as

examples. Chapter 5 provides a conclusion and discusses future work.

Chapter 1, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper

! "#!

CHAPTER 2: UBIBOT

MCAC is a challenging field because of the variety of devices, the common

features of which being their difficulties: small size, weak connectivity, and lack of

computing power. An effective programming infrastructure for this field would

provide the building blocks to create a variety of interesting applications, and make

use of the opportunities provided by context-awareness and mobility. It would further

provide a communication protocol to connect those building blocks together. Also, it

would be easy to learn and use, so that students and researchers can spend their time

and efforts in conducting their experiments, rather than learning and setting up the

infrastructure.

This section describes how UbiBot provides such an infrastructure by

examining a few of its key mechanisms and features. UbiBot’s core feature is the

service. A service is a semi-autonomous computational unit that has the capability to

publish events of a prescribed type, as well as subscribe to events of a type as

prescribed by another service. A full-blown application consists of one or more

services. For example, a mobile phone application may provide services for location,

sound capture, image capture, etc. When an application consists of just a single

service, it may be referred to simply as a service itself.

In order to tie the pieces together, we’ll discuss how location-based reminders,

one of the applications from ActiveCampus [Gris03a], could be implemented in

UbiBot. Location-Based reminders can be thought of as an alarm clock that goes off

!

!

"$!

at a certain spatial occurrence, rather than a temporal one, as in a traditional alarm

clock. That is, if one desires to be reminded to do something at a certain place, rather

than a certain time, it would be useful to be reminded of the task when in that place.

For example, in some cases, the best time to be reminded to buy cereal is when you’re

at or near the grocery store.

Specifically, Location-based reminders are signals sent to the user when

certain criteria of his location are satisfied. For simplicity, the user can define the

criteria via the GPS coordinates of a bounding box. When the user’s coordinates fall

within the bounding box, the alert is triggered. Thus the bounding box can be set

around a building, so that when the user is near the building, he can reminded of a task

that needs to be done in that building.

2.1 Subscription

In order to create context-aware applications that are distributed over the

network, information must flow from the context-gathering sensors to the applications

that will process and transform that information into something useful. On a resource-

rich server, desktop, or laptop, with plenty of computing cycles, memory, and a strong

network connection, this would not be a problem. However, with mobile devices that

lack those luxuries, the dual burden of gathering the information and doing something

interesting with it can be too much load for it to handle. This load is even greater for

applications that combine and process information from several devices, such as in a

!

!

"%!

social-based application. In order to enable separation between context gathering and

context processing, a communication protocol needs to support information flow from

the sensors to the processors. In classroom and research settings with specific focus

on a topic and tight deadlines, it’s useful to use a simple protocol with a low learning

curve. Thus the focus can remain on the topic of interest and not learning a complex

information dissemination protocol.

The publish-subscribe paradigm is a simple approach that meets the need for

distributing context information. It also provides several other benefits relevant to the

mobile space. A device serves as a publisher of its context information, and other

parties interested in that information, possibly to combine it with the information from

others, are its subscribers. A publisher can have many subscribers; when it has an

update, the information is sent to all of them. Conversely, a service can subscribe to

the context information from several devices. For example, an application requiring

the GPS location of several devices would subscribe to the GPS location of each of

those devices. When one of them had an update to their location, they would publish

that update to all of its subscribers, including that application. The application can

then take the appropriate action based on the new location.

The nature of the mobile, distributed sphere of MCAC is that there are many

different kinds of devices, and that variety continues to increase with time. Publish-

subscribe is useful in this respect because it decouples the publishers and subscribers.

From the point of view of the publisher, a subscriber is just another party on its list of

subscribers interested in a particular type of information. Transactions are based

!

!

"&!

simply on the data that is provided, without any need to deal with the specifics of the

devices themselves. Thus the heterogeneity of the devices is not an issue, nor is their

evolution. The devices and services are free to grow and change independent of each

other, as long as the protocol for communication between them is maintained.

In the example of location-based reminders, it would be possible for a mobile

device to host the service on its own. It could monitor its user’s location, and compare

it to a local list of locations that have reminders associated with them. However,

moving to the service to a different machine has several advantages; these are detailed

in the next section. Assuming a distributed application, then, the mobile device would

only be in charge of gathering the location of the user, and sending the information to

the Location-Based Reminders service. That information would be relevant to the

Location-Based Reminders service on an ongoing basis; it would need to track the

location of the user in case he or she entered into a zone that has a reminder associated

with it. To ensure that it has this information, the service would subscribe to the

location of the user by sending a subscription request to the device. Thus when a

device obtains a new location for the user and publishes it, the Location-Based

Reminders service would receive it.

Consider an example in which Alice and her officemate Bob are trying to keep

their shared office stocked with enough office supplies and snacks, both of which are

currently running low. Alice already has plans to stop by the grocery store and the

office supply store later during the week. She just has to remember to get supplies for

the office in each location. Bob starts a Location-Based Reminders service on the

!

!

"'!

server in their office, and preloads it with the locations and relevant reminders for the

grocery store and office supply store. He gives the UbiBot identifier for the Location-

Based Reminders service (“LBR” in the example) to Alice.

Alice’s GPS-enabled phone runs UbiBot. Whenever the GPS has fixed a new

location, it sends out an update to everyone that has subscribed to her GPS location.

Essentially, her update consists of two name-value pairs: her name and GPS location.

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>GPS<VALUE>32.875697,-117.240573

In this case, “32.875697,-117.240573” are Alice’s GPS coordinates, since she is near

the Biomedical Library at the University of California, San Diego. Currently she has

no subscribers.

 Given the name of Bob’s instance of the Location-Based Reminders service,

she instructs her UbiBot instance to identify itself to it in order to begin participating

in its service. As part of the negotiation for the service, the service subscribes to

Alice’s location information in order to provide its service. It sends the message:

 <ENTITYUPDATE><ENTITYNAME>LBR<PROPERTIES>

<PROP>Subscribe<VALUE>GPS

This indicates to Alice’s device that it should send an update to Bob’s server whenever

it has fixed a new location.

!

!

"(!

Figure 2-1: Location-Based Reminders Service subscribes to Alice’s GPS

2.2 Hosting

 Mobile devices are lower-powered and have less capacity than their desktop

counterparts. However, there is still a demand for rich user experiences on these

devices. One solution is to push all of the business logic to a resource-rich and stable

host for the application, and simply handle the rendering of content on the remote

device. This hosting approach is used by UbiBot to offload mobile devices while still

providing rich experiences to users.

!

!

")!

 Since the focus of UbiBot is to enable experimentation with low overhead,

interaction with services should be enable rich experiences, yet be easy to implement.

This is accomplished through UbiBot facilities. Facilities are interaction widgets that

appear on the device, but are populated and controlled by the host service. UbiBot

features an extensible list of facilities that includes a web browser, buddy list, and text

area. These can be used to render images, simple web pages, make a buddy list based

on custom criteria, or display text to the user.

 However, in the spirit of MCAC, it would be best not to assume the

capabilities of the mobile device. Developers need to be prepared to deal with a

variety of devices. What if the mobile device was simply a smart wristwatch, or had

no screen at all? To this end, UbiBot further abstracts the facilities into kinds. A kind

is a data type that can be handled by a facility.

Table 2-1: Currently supported kinds and typical facilities

Kind Facility

Locatable Map

Postable Text Box

Renderable Web Browser

Messageable Instant Messenger

!

!

"*!

A combination of subscription and hosting is used to negotiate participation in

a service by a device. The service can be agnostic about the actual capabilities of the

device, as long as it supports the required kinds. Devices are free to evolve, change,

and differ from each other, without concerns for compatibility with the existing

services, as long as it can handle the necessary kinds.

 In the example of Location-Based Reminders, the service would be hosted on a

machine separate from the mobile device. It would receive updates through the

subscription mechanism detailed in the previous section. In order to show the

reminder to the user, the service could use the postable kind. On most devices,

postable kinds would be displayed in text boxes. However, the reminders service

doesn’t control what facility the device uses. If UbiBot is running on an advanced

wristwatch device with text-to-speech conversion, perhaps it would make sense for the

device to handle the postable kind by reading the post aloud.

Negotiation of the kinds used in a service are handled when a UbiBot instance

running on a device identifies itself to the service. When Alice instructs her device to

identify itself to the service, it sends the following information to the bot:

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Supports<VALUE>Postable

<PROP>Supports<VALUE>Renderable

!

!

#+!

This tells the service that the user identified as Alice is using a device that can post

text to the user (postable information) and also render simple web pages (renderable

information). In Alice’s case, it can open up a tab in the interface on Alice’s device

with a text box that accepts updates in order to accommodate the postable type, and/or

a web browser to handle the renderable type. Bob’s Location-Based Reminders

service uses simple text reminders, so it only needs the postable kind. The service

indicates to Alice’s device that this is what it needs.

<ENTITYUPDATE><ENTITYNAME>LBR<PROPERTIES>

<PROP>Supports<VALUE>Postable

In turn, Alice’s UbiBot instance opens a tab in the interface on her device with a text

box that accepts updates. To enable the updates, Alice’s UbiBot instance sends Bob’s

service a reference to the text box.

 <ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Handle1<VALUE>Postable

The value appended to the handle property indicator is a unique numerical identifier

(in this case, 1) that Alice’s device uses to refer to the text box. When the Location-

Based Reminders service wants to update the text in the box, it sends an update to

Alice’s device:

!

!

#"!

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Handle1<VALUE>Buy cookies

In order to be effective, though, these reminders should coincide with Alice’s

GPS location, so that she is reminded to buy cookies when she arrives at the grocery

store, or printer paper when she is at the office supply store. Since Bob’s service is

subscribed to Alice’s GPS location, it can do just that. It will receive Alice’s location

from her device when the GPS has fixed a new location. If that location is in or near

the grocery store, the service sends an update to the text box on Alice’s device

reminding her to buy cookies. In the case of the office supply store, it can remind her

to buy printer paper. Thus, she can be reminded at times that are relevant to her ability

to take action, rather than at a scheduled time like a typical alarm clock. Thus she can

go to each store at her leisure, and be reminded to get the right supplies at the right

place. Furthermore, Bob could also get his own mobile device to participate in the

service, so that he can also be reminded to resupply the office if he happens to be near

the grocery or office supply stores.

!

!

##!

Figure 2-2: Location-Based Reminders negotiates kinds with Alice’s device

2.3 Delegation

Sometimes a client may be able to provide a service to others, but with high

power cost and low reliability, due to the frequent use of the unreliable network. An

example is a client publishing its location to all subscribers. A more efficient solution

would be for the client to publish its location once, and to have a non-mobile service

store and distribute this information to other services. However, such a solution could

incur substantial development delays during initial rapid prototyping. Ideally, the

simple but ineffective location service could be developed initially, and then later the

!

!

#$!

more robust and efficient service could be added in later – at low cost – if desired.

In UbiBot, this is achieved via the proxying mechanism. Any context

information that can be gathered by the device can be proxied by another machine.

All existing and future subscriptions are forwarded to the proxy. When the device has

an update to publish, it publishes it once to the proxy, which in turn fulfills all of the

subscriptions. Thus the mobile device is relieved of the burden of publishing multiple

copies of the same information.

Since mobile devices have inherently less stable network connections than

standard stationary machines, it makes sense that such stationary machines serve as

the proxies for mobile devices. In doing so, context information can flow more

reliably to all of the subscribers, even if the mobile device suffers from intermittent

disconnections. Furthermore, by design, UbiBot is dynamic. That is, new services

and subscriptions are added at runtime. Also, as a user moves to different locations

within one or more wireless networks, the network connection for his or her device

will change. Consequently, then, the proxying mechanism itself is dynamic, both to

cope with these issues and to facilitate experimentation with different arrangements of

devices.

 Consider the case in which several instances of the Location-Based Reminders

service are running. One could imagine that each instance could be run by a different

group of people, and an active student would be interested in the reminders from each

of them. For example, one could be run by the student’s research group, another by a

social club, another by the student for his or her own personal reminders, and another

!

!

#%!

by his or her dorm. This arrangement allows each group to manage their own

reminders to meet their needs, and ensures that there’s no single point of failure for all

of one person’s reminders. However, each reminder service would need the location

of the user’s device, and publishing that location would involve sending that data

several times. Imagine that the user’s device is low on battery, and that its connection

to the network isn’t very strong, so perhaps a few of the publications get lost. The

student could start a proxy service on a machine that sits in his or her dorm room, and

use UbiBot’s proxying mechanism to forward all of the subscriptions to that proxy.

When publishing updates, the device need only successfully communicate once, to the

proxy. The proxy then passes along the update to all of the subscribers. Thus the

device has offloaded the work onto the proxy, and achieved more reliable delivery of

information.

In summary, there are several benefits to proxying. Once the proxy has the

client’s information, the client device no longer has to compute latitude and longitude;

it can turn off its GPS unit or bypass its GSM location translation facility, whichever

method it was employing. It uses the network much less to communication its

location, decreasing power consumption. If the client drops off of the network briefly,

its location remains available to its subscribers.

 Continuing Alice and Bob’s example, suppose she continues to participate in

the Location-Based Reminders service that Bob set up in her office. Furthermore, she

participates in a Location-Based Instant Messaging service (LBIM), as well as a

Location-Based Automated Tour Guide of her campus (LBAT). These bots are

!

!

#&!

described in Chapter 3. Each of these services relies on timely updates to Alice’s

location in order to function. However, each time she updates her GPS location, she

sends out three copies of the same information, which can drain her device. Alice

starts up a location proxy service from a server she runs at home. When it comes

online, she has it set to identify itself as a proxy to her device.

<ENTITYUPDATE><ENTITYNAME>AliceProxy<PROPERTIES>

<PROP>Proxy<VALUE>GPS

Having received this introduction, Alice’s device automatically records then forwards

all current and future subscriptions to her GPS location on to the proxy.

 <ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Subscriber<VALUE>LBIM

<PROP>Subscriber<VALUE>LBR

<PROP>Subscriber<VALUE>LBAT

Now, when Alice’s device fixes a new GPS location, it only gets sent once by her

device to the proxy, via the standard update method. The proxy sends an

acknowledgement to Alice’s device.

!

!

#'!

 <ENTITYUPDATE><ENTITYNAME>AliceProxy<PROPERTIES>

<PROP>ACK<VALUE>GPS

If the proxy were to fail to send the acknowledgement, it would be an indication to

Alice’s device that it must revert to the old method of sending an update to each of its

recorded subscribers. However, if Alice’s proxy is running correctly, it can send the

updates via a hard connection to the network to each of the subscribers.

!

!

#(!

Figure 2-3: Flow of information with and without proxying

2.4 Summary

The Location-Based Reminders example showed how UbiBot can be used to

create a context-aware application using subscription and hosting. The proxying

mechanism enables the device to offload some of the work to another machine. What

makes UbiBot unique is its ability to “program” the network through hosting and

delegation, enabling developers to start with a very basic system, and then gradually

evolve it into a more mature form.

Chapter 2, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper.

! #)!

CHAPTER 3: EXTENDING AND EXPERIMENTING WITH UBIBOT

 A good programming infrastructure helps to bridge the gap between the

programming interface exposed by the device and the developer’s vision of a useful

product or experiment. It handles the lower-level details of the interface so that the

developer can pursue the higher-level results more quickly and with greater focus.

Typically, infrastructures suggest a certain style of programming through the libraries

they provide, but a good infrastructure still gives the developer the flexibility to create

a variety of applications.

 Infrastructures have great potential in experimental, research, and classroom

settings because of the increased increase in development speed they promise.

Academic endeavors often focus on a specific hypothesis or lesson for a short period

of time; programming infrastructures are useful because they handle details that are

irrelevant to the question at hand. In this way, the little time that students and

researchers have to do their work can be spent pursuing results, not figuring out an

API or setting up a framework.

 We hypothesize that UbiBot is flexible and easy enough to use for

experimentation in research and classroom settings. In order to show the usefulness

and ease of experimentation with UbiBot, we developed a variety of services on the

platform. These services show that UbiBot supports a range of applications.

3.1 Location-Based Instant Messaging

!

!

#*!

 The basic criteria for an MCAC application is that it runs on a mobile device,

and uses context to enhance the user experience. In order to show the sufficiency of

UbiBot for such a minimal foray into the UbiBot realm, we developed a Location-

Based Instant Messaging service on the platform. It is a good minimal example

because it leverages both mobility and context to enhance online communication

between users.

Griswold, et al., developed a location-based instant messaging system on the

ActiveCampus platform [Gris03b]. The general idea is to take the concept of instant

messaging, and augmenting the availability status of participants with location

information. That is, when a user is deciding whether to engage a buddy in

conversation, that user can know a bit more about their buddy’s current status beyond

their being online or offline. The user will have some concept of the buddy’s location.

As noted in the ActiveCampus project, users are more likely to message buddies in

close proximity than buddies that are further away [Gris03b].

Given the belief that the more proximate buddies are more interesting, one

possible interface design would be to only show buddies that are nearby. This way,

only the most relevant and desired options are shown to the user. UbiBot Location-

Based Instant Messaging service takes this approach and populates a buddy list on the

user’s device based on a configurable distance threshold between the two parties. If

they are within a certain distance, they appear on each other’s buddy lists. If not, they

do not appear on each other’s buddy lists.

!

!

$+!

There are several tasks necessary to provide this service. The locations of each

participant need to be gathered, their pair-wise distances calculated, and buddy lists

updated accordingly. To minimize the demands on the mobile devices that participate

in the service, it is reasonable to off-load the location aggregation, distance

calculations, and buddy list management to a service at a fixed location. The UbiBot

Location-Based Instant Messaging service achieves this through the hosting

mechanism described in Chapter 2. A central server is set up that receives a each

participant’s location through the subscription mechanism, calculates their respective

pair-wise distance, then updates the buddy lists on the devices accordingly. The

central computer, then, alleviates the devices of any work aside from what is strictly

necessary, i.e. gathering and sending on location information, displaying a buddy list

to the user, and sending and receiving instant messages.

All of this functionality on the device side is built into the client. That is, no

changes to the client device are necessary to participate in the Location-Based Instant

Messaging service. UbiBot’s client software can gather location information, and the

built-in subscription mechanism forwards that information on to interested parties. In

the case of Location-Based Instant Messaging, the service filters and combines the

information before sending it out to the interested parties. The service then uses

UbiBot’s buddy list to display the buddies nearby; the buddy list feature is a list that

can be populated and manipulated by outside services.

UbiBot is built on top of instant messaging (IM) as its communication

substrate. That is, services and clients send instant messages to each other in order to

!

!

$"!

communicate via Microsoft Messenger. Instant messaging provides location-

independent naming of services, asynchronous messaging, and routing through

firewalls. This makes it relatively easy to set up a basic MCAC system from scratch.

All that is needed is the creation of new IM accounts for each of the relevant nodes in

the system (participating fixed computers or mobile devices). It is not necessary to set

up a centralized server or related software. Nodes can host one or more services. A

message processor watching the IM channel parses incoming messages (event objects)

to recognize the destination service and route appropriately. Messages between

services on the same node are handled with internal routing, avoiding the IM channel.

Before discussing the development of the service software, we examine the

interaction between the service software and the client. As described in Chapter 2, the

user enrolls in the service by introducing itself to the service and telling it what

facilities it supports.

<ENTITYUPDATE><ENTITYNAME>LBIMUser<PROPERTIES>

<PROP>Supports<VALUE>Mesageable

The service receives the message, and selects the Messageable facility so that it

can receive a handle to a buddy list on the device.

<ENTITYUPDATE><ENTITYNAME>LBIM<PROPERTIES>

<PROP>Supports<VALUE>Messageable

!

!

$#!

This instructs the client’s device to open a tab in its interface with an empty buddy list.

This buddy list will be used to show a subset of buddies, chosen by the service, based

on the buddy’s proximity to the user. In order to carry out these tasks, the service

subscribes to the client’s GPS location.

<ENTITYUPDATE><ENTITYNAME>LBIM Bot<PROPERTIES>

<PROP>Subscribe<VALUE>GPS

Whenever there is an update to the client’s (Bob’s) location, it sends it to the service.

 <ENTITYUPDATE><ENTITYNAME>Bob<PROPERTIES>

<PROP>GPS<VALUE>32.881800, -117.233575

Assuming that at least one other buddy has carried out the same process with

the service, location-based instant messaging can begin. Given the location of two

entities, the service calculates the distance between the two. With that information, it

can decide if they should appear on each other’s buddy lists due to their proximity.

 Clearly, the buddy list can be populated based on location, but other uses of

context information are possible. This service demonstrates the ability of UbiBot to

support location-based (and thus similar context-aware) applications.

!

!

$$!

Figure 3-1: Client-service communication in Location-Based Instant Messaging

3.2 GPS Proxy

One of UbiBot’s design philosophies is to perform work where it makes most

sense. Mobile devices travel through interesting contexts, and feature an expanding

array of sensors such as microphones, GPS, and cameras. However, compared to their

more stationary counterparts on the desktop, they are lower-powered and weakly

connected to the network. Thus, it makes sense that these devices gather context

information, but as much as possible the aggregation and manipulation of the data,

particularly if it is drawn from several mobile devices, be handled by a server at a

!

!

$%!

fixed location. Furthermore, since the server has a more dependable connection to the

network, it can serve as a central point of communication for the more weakly-

connected devices. This way, it can serve as a single source of truth providing the

most up-to-date information, should devices become partitioned from one another.

Generally, the UbiBot mechanism for this is a form of proxying, as described

in Chapter 2. This allows a device to choose another machine, presumably one with

greater computation power and a stronger connection to the network, to handle

requests for context information. That is, requests for context information about the

user will be handled by a machine better able to handle it. As long as the device keeps

the proxy up to date, the proxy will provide the correct context information. If the

device becomes partitioned from the network and cannot provide updates to the proxy,

the proxy can still report the most up-to-date information that has been received. Then

any services in which it was participating can still include the partitioned device, if it

still makes sense to do so. If the proxy fails, the device can revert back to its original

mode of servicing requests on its own.

To demonstrate the proxying capabilities of UbiBot, we present GPSBot, a

service designed to serve as a proxy for GPS information. GPS information is useful

for any application that uses location to enhance its functionality. However, the

varying location of the device (and hence its interesting GPS coordinates) implies that

the strength of network connection may vary due to the changing distance from the

wireless router. Thus the ability of the user to participate in location-aware

applications may be hampered. GPSBot addressed this problem by offloading the

!

!

$&!

distribution of location information to a stronger machine with a more reliable

connection to the network. If the device has a spotty connection to the network, its

last known location can be maintained by the GPSBot until the device reconnects and

is able to send another update.

 The device is also spared the additional load of sending out redundant

information. For example, if the user participates in n different location-aware

application simultaneously, a single update to location will be sent n times by the

device. However, this is redundant and the cost to the device in terms of computation

cycles and battery life may negate the usefulness of the applications. GPSBot

addresses this by allowing the device to send a single update with confidence that it

will propagate the new location information to all interested parties.

 In research and classroom settings, dealing with real-world network connection

issues may impede the progress toward proving or disproving the learning hypothesis.

By hiding the spottiness of the device’s network connection from location-aware

experiments, this obstacle no longer poses as much of a problem to the researcher or

student. This way, the changing context of the device can be explored without

interference from network connectivity issues.

 Let’s examine how the GPSBot functions and alleviates the user’s device of

communication issues. Consider Alice, who currently participates in the Location-

Based Reminders service described above. In order to serve her requests, the LBR

service needs to know her location, and so it sends a subscription request to her.

!

!

$'!

<ENTITYUPDATE><ENTITYNAME>LBR<PROPERTIES>

<PROP>Subscribe<VALUE>GPS

Thus when Alice’s location changes, for example, to 32.875697, -117.240573,

her device knows to publish the update to LBR, a subscriber.

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>GPS<VALUE>32.875697,-117.240573

Now Alice also wishes to participate in Location-Based Instant Messaging so

that she can communicate to fellow students near her. Of course, the LBIM service

needs to know her location as well, so it sends a subscription request to Alice as well.

Now, when Alice’s location changes, it sends two identical updates: one to LBR and

one to LBIM. To reduce the redundant work her mobile device has to perform, she

calls Bob back at the office and asks him to activate GPSBot. Once online, GPSBot

sends Alice’s device a notice that it can proxy her GPS information.

<ENTITYUPDATE><ENTITYNAME>GPSPxoy<PROPERTIES>

<PROP>Proxy<VALUE>GPS

For simplicity, UbiBot automatically accepts any proxying requests. To set up,

Alice’s device tells GPSBot that she currently has two subscribers: LBR and LBIM.

!

!

$(!

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Subscriber<VALUE>LBIM

<PROP>Subscriber<VALUE>LBR

Also, it notifies LBR and LBIM that GPSBot will be the proxy. When Alice

has a location update to publish, rather than send two redundant updates, it sends a

single unique update to GPSBot.

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>GPS<VALUE>32.875697,-117.240573

GPSBot then forwards this update to LBR and LBIM, fulfilling their

subscription requests. Also, GPSBot echoes back the request to Alice’s device as an

acknowledgement that the request was received.

 After this setup, Alice decides to participate in yet another location-aware

service, the Location-Based Automated Tour Guide, which will be described in the

next section. As the name implies, it too needs to know Alice’s GPS coordinates.

However, this time when Alice’s device receives the request, it immediately responds

that the GPSBot will be the proxy for her location information. Alice’s device sends

the new subscription on to GPSBot, which will now fulfill the requests when Alice’s

device publishes a new location. However, now that she is a client of GPSBot, her

!

!

$)!

device only sends a single update do GPSBot, rather than to every one of her

subscribers.

 If the customer were to also participate in the Location-Based Automated Tour

Guide, as described in the next section, a new subscription request would be sent to

Alice’s device. Alice’s device would immediately forward the request to the proxy.

 As with any proxying relationship, if the proxy should fail, the default

behavior is for the user’s device to resume sending out her own updates. This

condition is detected when the GPSBot fails to acknowledge an update. Since the

initial subscription requests are recorded by and fulfilled through the user’s device, the

device has a record of all of its current subscribers. Thus, the device can take over

update duties without any loss of interaction with the applications involved.

3.3 Location-Based Automated Tour Guide

 Mobile devices continue to evolve their abilities to render multimedia content

through native applications such as their web browsers. Combined with the location-

sensing abilities of mobile devices, this presents an opportunity for rich user

experiences that combine context with media. The Location-Based Automated Tour

Guide service showcases UbiBot’s capability in combining context with media.

 LBAT takes the concept of Location-Based Reminders a step further. Recall

that LBR posts a text reminder created by the user when the user meets certain

location criteria. LBAT, on the other hand, utilizes the device’s web browser to render

!

!

$*!

content for the user. Thus the “reminder” can be in any media form supported by the

user’s browser. The intent of the “reminder” though, is not to be an item of the user’s

personal to-do list. It is instead a link created by whoever set up the LBAT, for

anyone interested in information about their current location, similar to a tour guide.

For instance, if the user were running the service 32.881800, -117.233575, which is

the location of the Computer Science and Engineering (CSE) department of the

University of California, San Diego, he or she could be served with the department’s

home page. One can imagine that a special page might be created for anyone taking a

campus tour.

 The setup of LBAT is similar to that of the LBR service. First Alice sends a

request to the LBAT, introducing herself and her device’s capabilities.

<ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Supports<VALUE>Postable

<PROP>Supports<VALUE>Renderable

The LBAT responds to Alice by requesting a handle to Alice’s renderable facility.

 <ENTITYUPDATE><ENTITYNAME>Bob<PROPERTIES>

<PROP>Supports<VALUE>Renderable

!

!

%+!

Alice’s device sends back the handle.

 <ENTITYUPDATE><ENTITYNAME>Alice<PROPERTIES>

<PROP>Handle1<VALUE>Renderable

Then the LBAT subscribes to Alice’s GPS information as described in Section

2.1. If Alice is currently using a proxy, this request is forwarded to her proxy and the

LBAT is notified. Now, whenever Alice’s device (or her proxy) sends out updates,

the LBAT receives the update and matches her location to a webpage, if any exist for

her location. If one does exist, it sends Alice a message.

<ENTITYUPDATE><ENTITYNAME>LBAT<PROPERTIES>

<PROP>Handle1<VALUE>http://www.cs.ucsd.edu/

 This indicates to Alice’s UbiBot application to open a new web browser tab at

this location. In the case of the Alice being near the CSE building, the department

website (http://www.cs.ucsd.edu/) would be appropriate. She would see information,

perhaps a mixture of text and pictures, pertaining to the department.

 In order to support multimedia content, UbiBot makes use of the multimedia

capabilities of the device’s web browser. This way, it can leverage any new

developments in the browser; advances in the browser are advances in the capabilities

!

!

%"!

of UbiBot. LBAT demonstrates how UbiBot can be used to combine the multimedia

capabilities of the device with context information.

Figure 3-2: Client-service communication in Location-Based Automated Tour

Guide

3.4 Enhanced Location-Based Reminders Service

As a preliminary evaluation of the UbiBot concept, two students taking a

project class were recruited to develop a location-based reminder service for Windows

Mobile phones (HP 6945’s). As a twist on the usual reminder service, a reminder

!

!

%#!

could be sent to a buddy, not just oneself. Reminders could be limited to being

delivered within a given time range, and could be reset for later delivery if delivered at

an inconvenient time.

The students divided their application into server and client components. The

client was developed as a plugin that could be hosted by a hosting service on a phone.

The hosting service provided a skeleton GUI that permitted a “tab” to be plugged in to

its display. The pre-existing client framework also consisted of services that published

the phone’s GPS location and GSM observations.

At a high level, an instance of the application is set-up by the phone’s client

hosting service, by sending subscribe reminder to the location service (this may be

initially typed in by the phone’s user or read from a simple scripting file). The service

sends back a handle to the plug-in, which the client loads. The service also subscribes

to the phone’s location. (Alternatively, the loaded plug-in could have subscribed to the

phone’s location, allowing it to filter unneeded location events, when the phone isn’t

moving significantly.)

The students were advised to take an incremental development approach,

starting with the most basic self-reminder application, later adding time windows for

reminders, and then the ability to remind buddies. For this latter “fancy” feature, its

core was simply to subscribe a chosen buddy to a specific reminder, rather than one

self. The last incremental enhancement to the application was to delegate the location,

as in the previous example. With a single statement of code, the students delegated the

GPS location calculation to a GSM {latitude,longitude} UbiBot service that had been

!

!

%$!

developed earlier on top of Google’s hidden API for its “My Location” function of

Google Mobile Maps.

The server component consists of five classes, comprising 469 non-blank non-

comment lines of code. The client component consists of four classes, comprising 551

lines of code (excluding GUI code generated by Visual Studio), for a total of 1020

LOC. About half of the client code is GUI code, and the students reported that most of

their time was spent on getting the GUI to work properly, which required the use of

C# delegates, a concept unfamiliar to them as Java programmers. Still, the students

had little trouble completing the project in the 10-week class term, and most of their

effort was concentrated into a few of weeks scattered across the quarter.

The ability to employ incremental development, especially in adding the “fancy”

features of the application (reminders to buddies and delegated location calculation),

allowed the professor (the third author) to define concrete milestones throughout the

quarter that could be verified with a running demonstration, avoiding ugly surprises

and saving all but the last feature from the (unfulfilled) prospect of failure.

Chapter 3, in part, is a reprint of the material as it appears in “UbiBot –

Prototyping Infrastructure for Mobile Context-Aware Computing” in Proceedings of

the Second Workshop on Pervasive Computing Education (PerEd ’09). Erwin Vedar,

W. Brian Evans, William G. Griswold, 2009. The thesis author was the primary

investigator and author of this paper.

! %%!

CHAPTER 4: DISCUSSION

4.1 Enabling MCAC

 The Location-Based Automated Tour Guide and Location-Based Instant

Messaging demonstrate that UbiBot supports mobile context-aware applications.

However, as mentioned above, it is necessary that UbiBot provide more than mere

functionality in order to be considered a true enabler for MCAC. It must address the

limitations of mobile devices and wireless networks.

 Certainly, the bots demonstrate the use of context-awareness. Both use the

location of the mobile device to enhance the user experience. Furthermore, UbiBot

addresses issues associated with mobility: tenuous connections to the network as well

as underpowered/under-supported devices. For both issues, UbiBot’s design

philosophy is to offload the burden from the mobile device onto another device

(usually a desktop machine) that can handle it more easily.

GPSBot exemplifies UbiBot’s approach to connectivity issues for mobile

devices. Rather than forcing the mobile device to manage the demands of subscribers

to its context, the GPSBot (and other bots using the proxying mechanism) alleviates

that strain from the device by acting as a forwarding service for the device.

Furthermore, assuming that the service is provided on a machine with a sturdy

connection to the network, the GPSBot can continue to fulfill subscriptions even when

the mobile device using its services repeatedly connects and disconnects from the

!

!

%&!

network. From the point of view of the subscribers, the device of interest has the

network connection of a desktop machine, with the interesting contextual information

of a mobile device.

UbiBot’s approach to underpowered devices is similar to that used to address

connectivity issues: if the device can’t handle the burden, shift it to a machine that can.

The mobile device’s proximity to the user is the primary benefit it provides versus the

desktop machine. Being attached to the user, it is the gatherer of information as well

as the user’s interface. Behind the scenes, the system architect has the option of

hosting the service on another machine, thus alleviating the device of computation that

is not strictly necessary to do locally. The choice between computing locally on the

device or remotely on another machine can be made based on the results of

experiments, as the answer will vary from service to service and from device to

device.

4.2 Enabling Experimentation

 As shown in Section 3.4, with little effort UbiBot was built upon for a project

class without the need to write much code. It did so by supporting incremental

development while imposing a low learning curve.

Developing for UbiBot requires very little prior knowledge of network or web

protocols. Communication takes place over an existing instant messaging platform,

MSN Messenger, with which many students will already be familiar. This also makes

!

!

%'!

intercepting and debugging communications much easier, and it can be done from any

device that can send and receive messages over the IM network. The format of

communication is a simplified XML-like format.

In terms of performance, one concern might be over the performance of Instant

Messaging as a communication substrate. By timing the round trip times between

mobile devices and a laptop, we determined that, over a typical home wireless

network, instant messages typically take less than 2 seconds round-trip. More precise

measurements are outside the scope of the current paper. As long as context

information or communication doesn’t need to be faster than this (which may be the

case in prototyping/experimenting environments not focused on performance), this

time should be acceptable.

! %(!

CHAPTER 5: CONCLUSION

5.1 Summary

Mobile Context-Aware Computing is a field that presents both expanded

possibilities for rich applications, and high barriers to developing those applications.

In order to quickly and easily experiment in the field, we created UbiBot. UbiBot is a

simple infrastructure that can be built upon and expanded. It provides the basic means

to set up and communicate between mobile clients and services, gather and send

context information, as well as the means to create simple UI experiences.

5.2 Contributions of the Project

 The following is a summary of the primary contributions of the thesis.

A method for offloading the management of context. UbiBot allows the

dynamic restructuring of the flow of context information to increase robustness of the

network configuration. Developers can set up a client and server in one network

configuration, run experiments, and then quickly change the configuration to include

any number of proxies.

!

!

%)!

 A library for developing context-aware applications on mobile devices.

The UbiBot library enables experimenters to create context-aware multimedia

applications on mobile devices. The UbiBot client software runs on the devices to

allow the developers to take advantage of the context-gathering capabilities of the

device, as well as display graphics and other feedback to the users. The software was

written to be extensible, to allow for the incorporation of new types of sensors and

display capabilities. The server software is designed to allow the user to create a

simple server that processes UbiBot messages, without the steep learning curve or

limitations of creating a standard web server. Both are based on the C#.Net platform,

meaning that it can be adapted to any device that supports the .NET framework.

Sample context-aware mobile applications. Oftentimes, the best way to

educate users quickly on how to use a new framework is to provide examples. It not

only shows how the it is used, but also the style in which to use it. We developed a

couple of sample applications in the exploration of UbiBot in order to show the range

of capabilities of the software, which can also be used as examples for future

developers. The Location-Based Instant Messenger provides a sample for users who

want to develop mobile applications that create custom buddy lists based on context.

The Location-Based Automated Tour Guide illustrates how to use context to display

content to the users beyond the text format.

5.3 Future work

!

!

%*!

UbiBot is designed to embrace a variety of devices, with various sensors and

facilities. It is currently targeted for the HP iPAQ hw6945 mobile phone device, but

we would like to bring UbiBot to a wider variety of devices in order to reach a broader

academic audience. Porting UbiBot to even more dramatically different form factors,

such as a wristwatch-like device would allow us to explore the limits of the UbiBot

framework, and different modes of interaction.

Since we aimed to create an easy way for UbiBot servers to be created, it

would be interesting to compare it against another facility for convenient server

creation: cloud computing. By creating a cloud-compatible version of UbiBot, it

would be possible to explore the implications that cloud computing could have on the

classroom and the study of mobile devices.

While expanding the scope and reach of UbiBot, we’d also like to focus on its

purpose: to enable rapid experimentation in the classroom and in research. The true

test of UbiBot would be to take UbiBot back to the classroom and laboratory and see

what applications students and researchers are able to develop.

! &+!

REFERENCES

[Ance02] Emmanuelle Anceaume, Ajoy K. Datta, Maria Gradinariu, and Gwendal
Simon. Publish/Subscribe Scheme for Mobile Networks. In Proceedings of the
second ACM international workshop on Principles of mobile computing (POMC ’02),
pages 74-81, October 2002.

[Capo03] Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design
and Evaluation of a Support Service for Mobile, Wireless Publish/Subscribe
Applications. IEEE Transactions on Software Engineering, 29(12):1059-1071,
December 2003.

[Davi04] Oleg Davidyuk, Jukka Riekki, Ville-Mikko Rautio, and Junzhao Sun.
Context-Aware Middleware for Mobile Multimedia Applications. In Proceedings of
the 3rd international conference on Mobile and ubiquitous multimedia (MUM 2004),
pages 213-220, October 2004.

[Demi07] Thanos Demiris. Context Revisited: A brief survey of research in context
aware multimedia systems. In Proceedings of the 3rd international conference on
Mobile multimedia communications (Mobimedia ‘07), 2007.

[Deva07] Anusiriya Devaraju, Simon Hoh, and Michael Hartley. A Context
Gathering Framework for Context-Aware Mobile Solutions. In Proceedings of the 4th
international conference on mobile technology, applications, and systems and the 1st
international symposium on Computer human interaction in mobile technology
(Mobility ‘07), pages 39-46, 2007.

[Dey01] Anind K. Dey. Understanding and Using Context. In Personal and
Ubiquitous Computing, 5(1):4-7, 2001.

[Du08] Weichang Du and Lei Wang. Context-Aware Application Programming for
Mobile Devices. In Proceedings of the 2008 C3S2E conference (C3S2E ‘08), pages
215-227, 2008.

[Faro04] Umar Farooq, Shikharesh Majumdar, and Eric W. Parsons. Engineering
Mobile Wireless Publish/Subscribe Systems for High Performance. In Proceedings of
the The IEEE Computer Society's 12th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS
’04), pages 295-305, 2004.

[Gadd08] Abdulbaset Gaddah and Thomas Kunz. A Pro-active Mobility Extension
for Pub/Sub Systems. In Proceedings of the 1st international conference on MOBILe

!

!

&"!

Wireless MiddleWARE, Operating Systems, and Applications (MOBILWARE ’08),
February 2008.

[Gris03a] William G. Griswold, Robert Boyer, Steven W. Brown, and Tan Minh
Truong. A Component Architecture for an Extensible, Highly Integrated Context-
Aware Computing Infrastructure. In Proceedings of the 25th International Conference
on Software Engineering, pages 363-372, May 2003.

[Gris03b] William G. Griswold, Patricia Shanahan, Steven W. Brown, Robert Boyer,
Matt Ratto, R. Benjamin Shapiro, Tan Minh Truong. ActiveCampus—Experiments in
Community-Oriented Ubiquitous Computing. In IEEE Computer, 37:73-81, 2003.

[Li04] Yang Li, Jason I. Hong, and James A. Landay. Topiary: A Tool for
Prototyping Location-Enhanced Applications. In Proceedings of the 17th annual ACM
symposium on User interface software and technology (UIST ’04), pages 217-226,
October 2004.

[Muhl04] Gero Muhl, Andreas Ulbrich, Klaus Hemann, and Torben Weis.
Disseminating Information to Mobile Clients Using Publish-Subscribe. Internet
Computing, 8(3):46-53, May-June 2004.

[Roch05] Ricardo Couto A. da Rocha, Markus Endler. Evolutionary and Efficient
Context Management in Heterogeneous Environments. In Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-hoc computing (MPAC
2005), pages 1-7, November-December 2005.

[Roch07] Ricardo Couto A. da Rocha, Markus Endler. Domain-based Context
Management for Dynamic and Evolutionary Environments. In Proceedings of the 4th
on Middleware doctoral symposium (MDS ’07), November 2007.

[Salb99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI is the limit (CHI
’99), pages 434-441, 1999.

[Samu01] Michael Samulowitz, Florian Michachelles, Claudia Linnhoff-Popien.
Adaptive Interaction for Enabling Pervasive Services. In Proceedings of the 2nd ACM
international workshop on Data engineering for wireless and mobile access (MobiDE
2001), pages 20-26, 2001.

