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A systematic study of parameter correlations in
large scale duplicate document detection

Shaozhi Ye1?, Ji-Rong Wen2, and Wei-Ying Ma2
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2 Microsoft Research Asia
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Abstract. Although much work has been done on duplicate document
detection (DDD) and its applications, we observe the absence of a sys-
tematic study of the performance and scalability of large-scale DDD. It
is still unclear how various parameters of DDD, such as similarity thresh-
old, precision/recall requirement, sampling ratio, document size, corre-
late mutually. In this paper, correlations among several most important
parameters of DDD are studied and the impact of sampling ratio is of
most interest since it heavily affects the accuracy and scalability of DDD
algorithms. An empirical analysis is conducted on a million documents
from the TREC .GOV collection. Experimental results show that even
using the same sampling ratio, the precision of DDD varies greatly on
documents with different size. Based on this observation, an adaptive
sampling strategy for DDD is proposed, which minimizes the sampling
ratio within the constraint of a given precision threshold. We believe the
insights from our analysis are helpful for guiding the future large scale
DDD work.

1 Introduction

Duplicate pages and mirrored web sites are phenomenal on the web. For exam-
ple, it was reported that more than 250 sites mirrored the documents of Linux
Document Project (LDP)3. Broder et al. clustered the duplicated and nearly-
duplicated documents in 30 millions documents and got 3.6 millions clusters con-
taining 12.1 millions documents [1]. Bharat and Broder reported that about 10%
of hosts were mirrored to various extents in a study involving 238,000 hosts [2].

Because of the high duplication of Web documents, it is important to de-
tect duplicated and nearly duplicated documents in many applications, such as
crawling [3], ranking [4] [5], clustering [6] [7] [8], archiving and caching. On the
other hand, the tremendous volume of web pages challenges the performance and
scalability of DDD algorithms. For instance, Google4 announced to have indexed
eight billions web pages in April 2005. How can DDD algorithms process these
? This work was conducted when this author visited Microsoft Research Asia.
3 http://www.linuxdoc.org
4 http://www.google.com
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pages in acceptable time and scale up with the volume of Web? As far as we
know, Broder et al. for the first time proposed a DDD algorithm for large-scale
documents sets in [1]. Many applications and following research, such as [2] [9]
[3] [10] [11], later adopted this algorithm for its simplicity and efficiency.

While much work has been done on both DDD algorithms and their applica-
tions, little has been explored about the factors affecting their performance and
scalability. Meanwhile, because of the huge volume data, all prior work makes
some kinds of tradeoffs in DDD. How do these tradeoffs affect accuracy? To our
best knowledge, no previous work conducts any systematic analysis on correla-
tions among different parameters of DDD, and none of them provides a formal
evaluation of their tradeoff choices.

This paper studies several of the most important parameters of DDD al-
gorithms and their correlations. These parameters include similarity threshold,
precision/recall requirement, sampling ratio, document size. Among them, sam-
pling ratio is of most interest, for it greatly affects the accuracy and scalability
of DDD algorithms.

To uncover the correlations of parameters, an empirical analysis is conducted
in this paper. The TREC .GOV collection5, which includes a million web pages,
are used as our testing dataset. Although the volume of this collection is much
smaller than the whole Web, we believe that this collection to some extent repre-
sents the Web well for DDD algorithms [12]. Experiment results show that even
using the same sampling ratio, the precision of DDD in documents of different
size varies greatly. To be more specific, small sampling ratio heavily hurts the
accuracy of DDD for small documents. Based on this observation, we propose
an adaptive sampling method for DDD which uses dynamic sampling ratio for
different document size with constraint of given precision thresholds. We believe
that our analysis is helpful for guiding the future DDD work.

The remainder of this paper is organized as follows. Section 2 reviews the
prior work on DDD. Section 3 describes the duplicate detection algorithm and
the definition of document similarity used in this paper. Section 4 presents the
experimental results on parameter correlations, and then proposes an adaptive
sampling strategy. Finally we conclude this paper with Section 6.

2 Prior Work

The prior work of duplicate document detection can be partitioned into two
categories based on the ways to calculate document similarity, shingle based
and term based algorithms, both of which can be applied offline and online. We
review these algorithms in this section.

2.1 Shingle Based Algorithms

The algorithms, such as [13] [14] [1] [15] [2] [9] [16] [10] [11], are based on the
concept of shingle. A shingle is a set of contiguous terms in a document. Each
5 http://es.csiro.au/TRECWeb/govinfo.html
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document is divided into multiple shingles and a hash value is assigned to each
shingle. By sorting these hash values, shingles with the same hash value are
grouped together. Then the resemblance of two documents is calculated based
on the number of shingles they share.

Because of the large size of the document collections to be examined, sev-
eral sampling strategies have been proposed to reduce the number of shingles to
compare. Heintze selects shingles with the smallest N hash values and removes
shingles with high frequencies [14]. Broder et al. samples one of 25 shingles by
selecting the shingles whose value modulo 25 is zero and choose at most 400
shingles for each document [1]. In this way they process 30 millions web pages
in 10 days. Another more efficient alternative is also proposed in [1], which
combines several shingles into a supershingle and computes the hash values of
supershingles. Although the supershingle algorithm is much faster, the authors
noted that it does not work well for small documents and no detailed results of
this algorithm are reported. In [15][16], exact copies are removed in advance and
then every two or four lines of document are made as a shingle. Fetterly et al.
use five-gram as a shingle and apply a 64-bit hash to get fingerprints of shin-
gles, then employ 84 different hash functions to construct a feature vector for
each document [3][10]. More precisely, they apply 84 different(randomly selected
but fixed thereafter) one-to-one functions to produce shingle fingerprints of each
document. For each function, they retain the shingle with numerically smallest
hash value of its fingerprints. Thus a vector of 84 shingles is constructed for each
document. Then the 84 shingles are separated into six supershingles, in other
words, each supershingle contains 14 adjacent shingles. The documents having
two supershingles in common are clustered as nearly-duplicate documents. Fet-
terly et al. processed 150M web pages by using this method. We summarize some
of the previous work in Table 1.

Table 1. Parameters used in Prior Work

Work Volume of Shingling Hash Similarity
Documents Set Strategy Function Threshold

Broder97[1] 30M 10-gram 40-bit 0.5

Shivakumar98[15], 24M entire document, 32-bit 25 or 15
Cho00[16] 25M two or four lines shingles in common

Fetterly03[3][10] 150M 5-gram 64-bit two supershingles
in common

Sampling Ratio/Strategy

Broder97[1] 1/25 and at most 400 shingles per document

Shivakumar98[15] and Cho00[16] No Sampling

Fetterly03[3][10] 14 shingles per supershingle
six supershingles per document
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To deal with the large-scale data, almost all the previous work employs sam-
pling strategies. However, none of them provides an analysis of how their sam-
pling strategies affect the accuracy of DDD algorithms. On the other hand,
sampling has to be adopted to scale up with the index volume of search engines.
So it is important to study the impact of sampling in DDD.

2.2 Term Based Algorithms

Term based algorithms [17] [18] [19] use individual terms/words as the basic
unit, instead of continuous k-gram shingles. Cosine similarity between docu-
ment vectors is usually used to calculate similarity between documents. Many
IR techniques, especially feature selection, are used in these algorithms, which
makes them much more complex than shingle-based algorithms. The largest set
processed by term based algorithms contains only about 500K web pages [17].

Term based DDD algorithms work well for small-scale IR systems and most
of them also achieve good performance when used in online DDD. But for search
engines which need to answer over 100M queries everyday, online methods are
not a good choice because of their prohibitive computing cost. Meanwhile, in
some applications, we have to do DDD offline. In this paper, we focus on shingle
based approaches and do not discuss more about term based and online methods.

3 Algorithm

Although much work has been done on DDD algorithms and many applications
employ DDD techniques, there is no systematic analysis on how the parameters
in DDD correlate, such as accuracy, similarity and sampling ratio. And there is
also no formal study on the accuracy and scalability of DDD. This paper aims
to explore these problems. We choose the method in [1] for analysis since many
DDD algorithms and applications follow it, while we believe our conclusions can
also guide other DDD algorithms especially in sampling strategies.

3.1 Document Similarity

Since the exactly duplicate documents, which have no differences between two
documents, are easily to identify by comparing the fingerprints of the whole doc-
ument, this paper focuses on nearly duplicates, which have slightly differences
between two documents. We choose the resemblance in [1] as our document sim-
ilarity metric for its widely usage in DDD. However, we believe the conclusions
based on this similarity can be easily extended to other metrics of document
similarity.

The resemblance given by [1] is defined as follows. Each document is viewed as
a sequence of words and is transformed into a canonical sequence of tokens. This
canonical form ignores minor details such as formatting and HTML tags. Then
every document D is associated with a set of subsequences of token S(D, w). A
contiguous subsequence in D is called a shingle. Given a document D we define
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its w-shingling S(D,w) as the union of all unique shingles with size w contained
in D. Thus, for instance, the 4-shingling of (a, rose, is, a, rose, is, a, rose) is the
set {(a, rose, is, a), (rose, is, a, rose), (is, a, rose, is)}.

For a given shingle size, the resemblance r of two documents A and B is
defined as:

r(A, B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)| . (1)

Where |S| represents the number of elements in the set S.
In our experiments, the shingle size w is set to 10, the same as that in

[1]. Different shingle size affects the performance of DDD. Generally, greater w
results in higher precision and lower recall. In our own experiences, although
greater w produces fewer shingles for each document, greater w also hurts the
recall of DDD. So a moderate w is usually chosen to get a balance between
precision and recall.

3.2 Hash Function

32-bit and 40-bit Rabin [20] hashes are used in some of the prior work [1] [15] [16] [2] [9].
However, for large scale dataset with several millions of documents and several
billions of shingles, 32-bit or 40-bit hash may produce many false positives. A
40-bit message digest has the probability 1/2 that a collision (false positive) is
found with just over 220 (about a million) random hashes [21]. In this paper,
we use the well known 128-bit MD5 hash for both document fingerprints and
shingle fingerprints, which generates many fewer false positives for it requires
264 hashes for a collision with 1/2 probability.

4 Experiments

4.1 Data Description

There are several datasets used in prior work, most of which are not public
available. [17] chooses 2GB NIST web pages and TREC disks 4&5 collections
as their testing data, but these two sets contain only 240k and 530k documents
respectively. In this paper we choose the TREC .GOV collection as our testing
dataset since it contains about a million documents and is widely used in Web
related research. Table 2 summarizes the main properties of this dataset.

Table 2. Summary of the TREC .GOV Collection

HTML Documents 1,053,034

Total Size 12.9 GB

Average Document Size 13.2 KB

Average Words per Document 699
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4.2 Data Preprocessing

First we canonicalize each document by removing all HTML formatting infor-
mation. Special characters such as HT (Horizontal Tab), LF (Line Feed) and CR
(Carriage Return) are converted into spaces, and continuous spaces are replaced
by one space. Thus each document is converted into a string of words separated
by single spaces.

Then we remove the exact duplicates from the Web collection since we focus
on detecting nearly-duplicate documents. By calculating MD5 hash for each
document, we cluster exactly duplicate documents, then choose a document
from each cluster as the representative and remove the other documents in the
cluster. As a result, 94,309 documents are removed from the collection and the
final set contains 958,725 documents.

The distribution of words in documents is shown in Figure 1. Then documents
are divided into 11 groups based on the number of words they contain, as shown
in Table 3.

Fig. 1. Distribution of Words in Documents

4.3 Implementation

We implement the algorithm in [1] and run DDD experiments with different
similarity thresholds and sampling ratios for each group. Since the size of groups
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Table 3. 11 Groups of Documents

Group Words Number Shingles
in Document of Documents in Group

0 0-500 651,983 118,247,397

1 500-1000 153,741 105,876,410

2 1000-2000 78,590 107,785,579

3 2000-3000 28,917 69,980,491

4 3000-4000 14,669 50,329,605

5 4000-5000 8,808 39,165,329

6 5000-6000 5,636 30,760,394

7 6000-7000 3,833 24,750,365

8 7000-8000 2,790 20,796,424

9 8000-9000 1,983 16,770,544

10 >9000 7,775 93,564,410

varies greatly, we implement two versions of DDD. For the small groups, we use
the map of STL (C++ Standard Template Library) to store shingles, thus all the
shingles are kept in memory. For the large groups which will consume more than
2GB memory to store shingles, we implement an external-sort version based on
the BTREE structure of BerkeleyDB6, which is much slower than the memory
version because of disk I/O cost.

We use three machines with 4GB memory and 1T SCSI disks, one with Intel
2GHz Xeon CPU and the other two with 3GHz Xeon CPU. It takes us two
weeks to run about 400 trials of DDD experiments with different combinations
of parameters.

Broder et al. [1] processes 30 millions web pages in 10 CPU days. There are
two main tradeoffs in their approach. First, they sample one out of 25 shingles
and at most 400 shingles are used for each document. They also discard common
shingles which are shared by more than 1,000 documents. Second, they divide
the data into pieces to fit the main memory. However, [1] does not give the
size of each piece. It just mentions that “the final file containing the list of the
documents in each cluster took up less than 100Mbytes.” Thus we believe that
the size of each piece can not be too large, and small pieces hurt the recall of
DDD since duplicates across different clusters are missed. Moreover, although
the CPU speed has been greatly improved since then, the speed of ram and disk
advances not so much. So our experiments are rather time consuming although
we use much more powerful hardware than theirs.

4.4 Experimental Results

For evaluation we use the result without sampling as the ground truth and com-
pare the result using sampling with this ground truth to calculate the precision.

6 http://www.sleepycat.com



8

If two documents are judged as duplicates in the result using sampling while
they are not judged as duplicates in the result without sampling, it is a false
positive. The precision of a trial is calculated by the ratio between the number
of correctly detected duplicate document pairs and the number of total detected
duplicate pairs in this trial.

For sampling experiments, we make use of the module of the numerical hash
value to select shingles. For example, when using 1/2 sampling ratio, we select
the shingles whose hash value modulo two is zero, that is, the singles with even
hash value. We also run multiple trials for each sampling ratio. For example,
when the sampling ratio is 1/2, we run two trials by selecting shingles with odd
and even hash value respectively and then calculate the average performance of
these two trials. Thus, when the sampling ratio is 1/n, we run n trials by selecting
the singles with different remainders. In our experiments, we count the number
of both selected shingles and total shingles and find that the selection ratio is
consisted with the given sampling ratio. And there are only slight differences
between the precision of different trials with the same sampling ratio, which
verifies that MD5 is a good hash function for this sampling task.

The experimental results of 1/4 and 1/16 sampling ratio are shown in Figure 2
and Figure 3.
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Fig. 2. Precision with Different Similarity Thresholds Using Sampling Ratio: 1/4

As shown in Figure 2, precision of DDD decreases with the increasing of
similarity threshold. The curve of Group 0, documents having fewer than 500
words, decreases significantly. In Figure 3, the highest precision on Group 0 is
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Fig. 3. Precision with Different Similarity Thresholds Using Sampling Ratio: 1/16

lower than 0.8 no matter what similarity threshold is used. Also, the precision
on several groups with small documents drops dramatically when the similarity
threshold is higher than 0.9. The low precision on groups with small documents
proves that small documents are sensitive to sampling and it is hard for them
to achieve good precision when small sampling ratio or high similarity threshold
is required. On the other hand, for groups with large documents, the precision
is high and stable even when the similarity threshold is high and sampling ratio
is small. We also ran experiments with sampling ratio 1/2 and 1/8, which show
the similar properties as 1/4 and 1/16 sampling ratios.

4.5 Adaptive Sampling Strategy

Based on above observations, we propose an adaptive sampling strategy that
applies small sampling ratio on large documents and large sampling ratio on
small documents. To show the power of our sampling strategy, we conduct the
following experiment. We partition the TREC .GOV collection into 11 groups
as previous experiments. For every group we minimize the sampling ratio out of
1/2, 1/4, 1/8, 1/16, subjected to different given precisions ranging from 0.5 to
0.99, thus we minimize the total shingles which we have to process. For example,
with the precision requirement 0.8 and similarity threshold 0.6, we choose 1/8
sampling ratio for Group 0 and 1/16 sampling ratio for the other groups, so
only 8% of the total shingles have to be processed. As shown in Figure 4, our
algorithm greatly reduces the shingles to process and thus can deal with larger
scale documents sets than the previous unified sampling strategy.
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Due to the well known long tailed distribution of web document size, small
documents consist of a large proportion of the whole documents collection. In our
experiments, the documents having fewer than 500 words consist of 68% of the
whole collection. For higher precision we can not do small sampling in these small
documents, otherwise it would greatly hurt the overall precision. Fortunately
these small documents consist of only 17% shingles, thus our adaptive sampling
strategy greatly reduces the total shingles to process by applying small sampling
ratio on large documents.

4.6 Summary of Parameter Correlations

Here we give a summary of the correlations between precision and other param-
eters.

– Similarity Threshold: precision drops with the increase of similarity thresh-
old., especially when the threshold is higher than 0.9. When high similarity
threshold, greater than 0.9, is required, sampling ratio should be increased
to achieve a good precision.

– Sampling Ratio: precision drops with the decreasing of sampling ratio, espe-
cially for small documents containing fewer than 500 words. When dealing
with small documents, either similarity threshold should be decreased or
sampling ratio should be raised.

– Document Size: small documents are more sensitive to similarity threshold
and sampling ratio than large documents. Sampling ratio can be decreased
when dealing with large documents to reduce the shingles in computation.
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Generally, sampling ratio does not hurt recall because sampling only gener-
ates false positives. While for small documents, recall may drop because some
of the documents have no shingle sampled by chance.

5 Conclusion and Future Work

Although much work has been done on duplicate document detection and many
applications employ this technique, little has been explored on the performance
and scalability of DDD. In this paper, a systematic study on parameter correla-
tions in DDD is conducted and several most important parameters of DDD are
analyzed.

Our experiment results show that small sampling ratio hurts the precision
of DDD, especially for small documents which consist of a major fraction of
the whole Web. Based on this observation, an adaptive sampling strategy is pro-
posed, which minimizes the sampling ratio of documents with constraint of given
precision thresholds, making DDD feasible to deal with large scale documents
collections. We believe the observations in our work are helpful in guiding the
future DDD work.

In the future, we plan to detect pages sharing almost identical contents but
different formats, e.g., two same pages with different site templates. For these
pages, we can not simply set a fixed threshold to determine whether they are
duplicates. A possible solution is to partition pages into blocks [23], detect the
templates of web sites [24], discard the template blocks and then compute the
similarity of two pages based on their content blocks.
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