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ABSTRACT OF THE DISSERTATION

Individual 3D Face Modeling and Recognition in a Video Network

by

Hoang Thanh Nguyen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2012

Dr. Bir Bhanu, Chairperson

Given an uncalibrated network of video cameras, we are tasked with the problem of

building a 3D model of every person’s face as they move within the network. The

process of doing so requires overcoming many challenges including person detection,

tracking, cross-camera correspondence (how to determine if a person in one camera

is the same person in another), and the final 3D model reconstruction from multiple

views in real-time or at near real-time speeds (efficient modeling and data fusion from

multiple hardware sources). Towards this goal, a wireless camera network was designed

and built from the ground up, a new tracking algorithm and a cross-camera human

signature method was developed, and face modeling using multiple cameras in a real-

world setting was performed.
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Chapter 1

Introduction

If you were asked to build a 3D model of every person who walked through

a building, what would it require? Approaching such a problem requires solving a

number of significant computer vision problems, some of which are still unsolved today.

The challenges involved include designing a sensor system capable of monitoring the

building, detecting and tracking individuals in each sensor, fusing data from separate

sensors to recognize whether individuals in one sensor are the same as those in another,

and finally using the sensor data to generate the 3D models.

To approach the problem of building a sensor network, we require a sensor type

and a location. The location we selected is the Winston Chung Hall engineering building

at the University of California, Riverside. In this building, we have designed and built

from the ground up a network consisting of 37 outdoor ceiling-mounted pan/tilt/zoom

video cameras, 16 indoor ceiling-mounted fixed cameras, and 3 camera-equipped mobile

robots. Chapter 2 goes into detail the design and optimization of this network.

Once the video network has been built, it is necessary to identify and detect

our targets of interest, namely pedestrians. Using inspiration from biological systems,
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we use swarm intelligence algorithms to perform tracking of individuals in the network.

Chapter 3 details in depth the algorithms we used and how we improved on them. In

addition, we developed our own swarm intelligence algorithm inspired by the foraging

behavior of zombies in order to perform tracking. Chapter 4 details the development

and performance of this new Zombie Survival Optimization algorithm.

In order to fuse data after single-camera tracking has been performed, we

devised a part-based appearance signature in order to allow us to match individuals

across cameras in the network. Chapter 5 details the statistically-based partitioning

scheme of the human body and optimization of the signature representation.

Finally, face alignment is performed on the faces in the video and a 2D model

is fitted to the pedestrian’s face. Fusing the localized landmark points of each from

both single camera as well as from multiple camera views, the landmark data is used to

morph a 3D model to each individual’s face. Chapter 6 details the process and results

and Chapter 7 offers final closing remarks.
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Chapter 2

Design and Optimization of the

VideoWeb Wireless Camera

Network

Abstract

Sensor networks have been a very active area of research in recent years. How-

ever, most of the sensors used in the development of these networks have been local

and non-imaging sensors such as acoustics, seismic, vibration, temperature, humidity,

etc. The emerging development of video sensor networks poses its own set of unique

challenges, including high bandwidth and low latency requirements for real-time pro-

cessing and control. This article presents a systematic approach by detailing the design,

implementation, and evaluation of a large-scale wireless camera network, suitable for a

variety of practical real-time applications. We take into consideration issues related to

hardware, software, control, architecture, network connectivity, performance evaluation,
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and data processing strategies for the network. We also perform multi-objective opti-

mization on settings such as video resolution and compression quality to provide insight

into the performance trade-offs when configuring such a network and present lessons

learned in the building and daily usage of the network.

2.1 Introduction

We describe the design and development of a new laboratory called VideoWeb

to facilitate research in processing and understanding video in a wireless environment.

While research into large-scale sensor networks has been carried out for various appli-

cations, the idea of massive video sensor networks consisting of cameras connected over

a wireless network is largely new and relatively unexplored. The VideoWeb laboratory

entails constructing a robust network architecture for a large number of components,

including cameras, wireless routers and bridges, and video processing servers. Hard-

ware and equipment selection needs to take into account a number of factors, including

durability, performance, and cost. In addition, VideoWeb requires a number of software

applications including those for data recording, video analysis, camera control, event

recognition, anomaly detection, and an integrated user interface.

Challenges for the design of VideoWeb include creating a wireless network

robust enough to simultaneously support dozens of high-bandwidth video cameras at

their peak performance, providing power and connectivity to cameras, building a server

farm capable of processing all the streaming data in real-time, implementing a low-

latency control structure for camera and server control, and designing algorithms capable

of real-time processing of video data.

The article is organized as follows: In Section 2.2 we cover related work and
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Figure 2.1: Overall architecture. Top down: a single interface is used for direct control
of any server/camera and high-level processing (e.g., user-defined face recognition). The
server connects to a switch which hosts a database and joins two sets of servers: a
series of mid-level (e.g., feature extraction) and low-level processors (e.g., detecting
moving objects). The switch connects to routers which communicate with wireless
bridges connected to the IP cameras.

contributions of this article. Section 2.3 discusses the requirements and specifications

used in designing the system and discusses the technical challenges and solutions for

actual implementation. Section 2.4 delves into the performance metrics used to evaluate

the system. Section 2.5 concludes with closing comments and lessons.
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2.2 Related Work and Contributions

Many wireless camera platforms have been proposed ( [1,16,75]) and emerging

research in the design of wireless camera networks includes those with customized cam-

era hardware nodes (e.g., CITRIC [15], eCAM [74]) including iMote2 and WiCa-based

networks ( [48,93]), as well as networks with carefully-calibrated cameras [81].

This article makes the following contributions:

1. We expand upon [70] by exhaustively detailing the design considerations made in

building the VideoWeb wireless network in order to provide a general guideline

for those looking to build their own network. We also discuss lessons learned from

building and using the VideoWeb network so that others may benefit from our

experience.

2. We make the case for IP cameras and server-side processing by designing and im-

plementing a system utilizing network cameras running on a software-reconfigurable

server and network architecture. While we use conventional IP cameras without

on-board camera processing, the configuration of the server-side processing is user-

configurable and allows on-the-fly changes such as going from tiered-processing

(e.g., low-level processing servers do object detection and send silhouettes to

mid-level processors which generate object signatures and broadcast to high-level

servers) to 1-to-1 camera-to-server processing which simulates the behavior of on-

camera processing networks.

3. We describe performance metrics on which to evaluate a video network’s perfor-

mance and show how multi-objective optimization can be used in order to discover

Pareto-efficient settings for configuring the network.

6



2.3 Building a Camera Network

2.3.1 Choosing the Type of Network

There are many types of camera networks (e.g., wired vs. wireless, multi-hop

wireless, distributed vs. central processing), but the most important factor in deciding

what kind of network to build is determining the primary application. For instance, if a

network’s primary concern is surveillance (where reliability or maintaining uptime may

be paramount), a hard-wired network may be the only way to satisfy said requirements.

A wireless network, on the other hand, provides more freedom and allows cameras to go

where hard-wired cameras cannot (restricted only by power source).

Our requirements and implementation

The VideoWeb network consists of a heterogeneous mixture of over 50 wireless

pan/tilt/zoom (PTZ) network cameras, 3 mobile robots equipped with cameras (see

Figure 2.5c), and a 128-core server rack for data processing. The network is designed

to be a flexible general-purpose camera network for use as a research testbed for appli-

cations such as multi-camera tracking, scene analysis, and 3D reconstruction, as well as

for research in improving robustness of wireless camera systems. Our implementation

utilizes wireless cameras in order to take advantage of the flexibility in camera place-

ment and cost savings afforded by not having to run network cable through the walls

and ceilings to connect each of the cameras.

The complete architecture of the VideoWeb network (Figure 2.1) is comprised

of a camera component, a wireless component, an application server component (e.g.,

database servers, digital video recording servers), and a processing component comprised

of 3 levels: a set of servers which process camera feeds at a low level (e.g., human
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detection, per-camera tracking), a set of servers which use this information for mid-level

processing (e.g., feature extraction, multi-camera tracking), and a master interface server

which uses this data for high-level processing and user control (e.g., task assignment,

scene analysis, face recognition). The high-level server is also used as an interface for the

network. Using a central switch to connect the two levels of processing servers allows

data to move flexibly across servers to minimize network latency.

The server architecture is designed as a 3-level tree hierarchy: a master high-

level interface server communicates with a set of mid-level processing servers, which in

turn process data received from a number of low-level servers. A server architecture

physically connected in this fashion would entail cameras forwarding data to one set

of servers which forward low-level data to another set of servers, and once more to the

high-level server. To minimize network overhead, we use a central network switch to

connect the servers (as opposed to physically tiering the servers with direct connections)

and implement the server hierarchy in the network’s DNS configuration and in the

communication strategy of our software.

An interface server is employed to allow users to view live or processed data

from the cameras and to manually assign processing tasks (such as running a particular

algorithm on some arbitrary number of cameras) from a central location (for VideoWeb,

this location is back in the laboratory away from the noisy server room). For the wireless

component of the network, cameras and servers are bridged through a single-hop wireless

network using wireless routers connected to the servers to communicate with wireless

bridges located throughout the building which connect to the cameras.

The following sections detail the design considerations made in building the

network.
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2.3.2 Choosing the Right Camera

Choosing the wrong camera can be a costly mistake when building a large

video network. When selecting a camera, a number of factors should be taken into

consideration. Besides cost, these may include:

• Wired vs. Wireless cameras. Deciding between a wired or wireless camera is

often a trade off between whether or not speed and reliability can be sacrificed in

order to gain flexibility and freedom in placement. Cameras which connect to a

processing location (central or distributed server) with dedicated wire connections

(e.g., Ethernet, audio/video cables) excel in providing improved speed and relia-

bility. This comes at the cost of restricting installation locations to those which

can be reached via physical cables and installation may prove to be very labor-

intensive, expensive, or simply unfeasible. Wireless cameras on the other hand

allow greater freedom in placement as well as offering the opportunity of mobility

(in the case of non-stationary cameras, e.g., robots, field sensors), but may sacrifice

speed, reliability, and/or security. Cameras with built-in wireless are essentially

stuck with the installed protocol (though 802.11n is also backwards-compatible

with 802.11g). Since the IEEE 802.11n standard supercedes 802.11g, this tends

to make 802.11g-dedicated cameras feel outdated (especially if streaming require-

ments later exceed the bandwidth of the protocol or find that frame rates suffer

from congestion and the only way to improve the situation then is by installing

larger antennas, routinely changing wireless channels, and/or installing wireless

repeaters). Cameras with built-in 802.11n wireless are preferred over 802.11g in

almost all cases due to the increase in bandwidth, range, and potentially a less-

crowded frequency range (though this may change with time). It is worth noting
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that wired cameras which lack built-in wireless transmitters can easily be made

wireless cameras via wireless bridges or adapters. This may be a better choice

for long-lifespan camera networks which may need to be concerned with forward

compatibility, for instance, as it avoids the network from being locked into any

single standard. How easy it is to make this modification is affected by whether

the cameras are digital or analog.

• IP vs. Analog CCTV. Digital vs. analog in the context of video cameras

is often an issue of convenience. Traditional analog closed-circuit TV (CCTV)

systems are often simpler and more cost-efficient, but search and retrieval of data

is cumbersome and any applications beyond surveillance and monitoring may be

awkward or require dedicated systems for each application. IP systems, on the

other hand, can be more costly and/or complex, but output digital streams easily

processed on computers and can even be accessed anywhere in the world simply

by putting them on an Internet-accessible connection. If the video streams will be

subject to constant or routine processing, analysis, or retrieval, IP cameras offer

greater convenience and all the benefits of cheap digital storage, but may require

additional network and software training for those only familiar with traditional

CCTV systems.

• Single-hop vs. Multi-hop wireless. If wireless cameras are to be used, there

are two primary ways they can reach their processing/storage destination: via a

single-hop connection (cameras connect directly to wireless router/receivers) or

via multi-hop connections (cameras connect to other cameras and pass on data

before reaching the router/receiver). Multi-hop networks impose additional com-

plexity and hardware as well as increased latency, but gain flexibility and wireless
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coverage by essentially turning every camera into a repeater node; these are more-

suited for cameras with on-board processing capabilities. Single-hop networks are

recommended if it is viable (i.e., network routers can be installed in locations in

which all cameras can reach) for purposes of lower latency and reduced hardware

requirements.

• External vs. On-camera processing. Whether or not to perform processing

on-camera or deferring processing to external computers/systems is impacted by

camera capability/programmability and network latency and bandwidth. For in-

stance, a multi-hop network may be too slow to permit active tracking if video

needs to first be passed through several sensors before reaching a processor, whose

control commands then need to be relayed across several more sensors before the

camera ever receives the command to “pan left”. Outside of basic scripting capa-

bilities, most commercial cameras do not offer the flexibility or processing power to

achieve processing tasks more complicated than basic motion detection or track-

ing. This issue often prompts network builders to develop custom programmable

camera hardware for use in their systems [15,48,74,93]. On-camera processing can

also reduce bandwidth consumption of the network (e.g, transmitting only areas of

interest as opposed to full-frame video), while external processing allows a greater

range of control and processing power.

• Pan/Tilt/Zoom (PTZ) vs. Static cameras. As the name implies, PTZ

cameras offer active panning, tilting, and/or zooming capabilities whereas static

cameras retain a permanent fixed field of view and orientation. PTZ cameras have

the advantage of being able to cover larger areas (as a whole) and can zoom in or
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Figure 2.2: Stream corruption caused by network congestion may manifest in different
ways depending on the video format. Left: corrupted Motion JPEG stream due to
partial data, right: corrupted MPEG-4 stream due to partial data.

Panasonic WVNS202 Axis 215 PTZ

Configuration 640×480 px, 0% compress 704×480 px, 0% compress

Cameras per bridge 2 3 2 3

Frame delay (seconds) < 1.0 > 6.0 < 0.5 < 1.0

Table 2.1: Camera behavior can vary radically across vendors and models. Under
congested network conditions for example, cameras may permanently drop frames or
attempt to resend missed frames at the expense of live data. The Panasonic camera in
this case output “smoother” video (fewer frame drops between two successive frames)
under heavy network congestion (until its onboard cache is exhausted) at the cost of
delays in upwards of 6 seconds.

out to obtain better views of a scene as appropriate. This comes at the cost of

increased complexity by requiring (manual or automated) control in order to take

advantage of this capability. These cameras also contain moving parts, potentially

affecting long-term maintenance. Static cameras on the other hand, are often

less expensive and provide consistent scene coverage. In addition, they also often

allow interchangeable lenses which can mimic some versatility of PTZ cameras by

allowing one to customize a camera for certain applications, e.g., installing a wide-

angle lens to cover a larger area or installing a sharp telephoto lens to capture the

entrance of a certain doorway (note that barrel distortion caused by using wider

lenses should also be taken into account). Even with wider lenses, however, static

cameras may require more installations to cover the same area as PTZ cameras
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and may do so with compromised quality (camera placement is often a balance

between sacrificing area coverage for close-up detail).

• Pan/Tilt/Zoom speed and magnification. If PTZ cameras are used, the re-

sponsiveness of such camera commands should be taken into consideration when

choosing between models, as some cameras may respond or move too slowly to be

useful for applications such as active tracking. Since the timing/latency specifica-

tions are often omitted by camera manufacturers, it is strongly recommended to

experiment with trial cameras and testing if their PTZ speed is adequate before

purchasing. In addition, the level of optical zoom may be important depending on

the detail required for specific applications and the camera’s physical distance from

the scene. For most applications, digital zoom is worthless (at the raw capture

stage) and should only be done in data processing.

• Progressive vs. Interlaced cameras. All other things equal, progressive cam-

eras should be chosen over interlaced cameras where possible. This may not aways

be the case, however, as progressive models may offer reduced frame rate, resolu-

tion, or cost substantially more. While interlaced cameras can usally perform on-

camera de-interlacing to avoid the combing artifacts inherent to interlaced video,

such techniques tend to wash out fine detail for static objects and result in ghost-

ing effects on moving objects ones (the alternative, processing only every other

line in the video, also effectively halves the vertical resolution). There may be

some exceptions to choosing a progressive camera, such as when a CMOS-sensor

progressive camera has a rolling shutter which is so slow that its video exhibits

noticeable skew on moving objects (also known as the “jello effect” as often seen

in handheld cameras when the camera is panned too quickly), but even this may
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be preferred over the combing or ghosting artifacts from interlaced video.

• Sensor size and CMOS vs. CCD Sensor size is often more indicative of a

camera’s image quality than its stated resolution and this is true of video cameras

as much as photographic cameras. Larger sensors tend to offer less image noise

(especially in low light conditions) and sharper image quality. These sensors are

typically either CMOS or CCD. While both sensors are used to achieve the same

thing, complementary metal-oxide-semiconductor (CMOS) sensors typically use

a rolling shutter (i.e., light is captured in a sweep across the sensor) whereas

charge-coupled device (CCD) sensors use global shutters (i.e., light is captured

simultaneously across the sensor). The two are typically characterized by different

kinds of artifacts each produces. For instance, CMOS sensors may suffer from skew

on moving objects or scenes if its shutter speed is too slow, while CCD sensors are

vulnerable to smearing artifacts when bright light sources overload a column or

row of pixels. It is recommended to consider the typical environment the cameras

will be used in (e.g., low light, indoor vs. outdoor) and to trial all candidate

cameras where possible.

• Bandwidth: video format, resolution, and frame rate. Resolution and

frame rate go hand in hand as they will (in addition to video format) directly

affect the bandwidth required for transmitting and storage required for archiving.

Typical video cameras offer VGA resolution (640×480) at 30 frames per second,

but newer high-definition (e.g., 720p or 1080p) cameras are becoming more read-

ily available. While 640×480 resolution may be usable for many computer vision

processing applications, those interested in face recognition (or better yet, face

reconstruction) may find VGA to be particularly challenging to work with. Net-
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works with particularly demanding requirements may want to consider specialty

cameras, e.g., super high-resolution cameras, hardware-stitched 360 ◦ cameras, or

even high-speed cameras, though these tend to demand a premium. The output

format of the camera will also affect image quality; in addition to the traditional

and easy-to-decode Motion JPEG codec (essentially a large series of JPEG im-

ages concatenated together), many cameras also offer MPEG-4 output for reduced

bandwidth and/or higher quality using the same bandwidth via interframe com-

pression. Decoding the video for custom-built applications may be more difficult

with MPEG-4 however, and video artifacts caused by stream corruption (e.g., net-

work congestion, dropped packets) may appear less appealing (see Figure 2.2).

With either format, we recommend using the open source libavcodec [31] library

to facilitate decoding in custom applications.

• Power requirements of camera. Depending on the power requirements, cam-

eras may be able to draw from existing power sources or require separate power

supplies. Depending on the building or location, installing power cabling to the

cameras may be easier than installing cabling for the data (in the case of a wired

network) since a building’s electrical architecture is usually more sophisticated

than its network architecture. For the most remote installations which require

more permanence than battery-operated sensors, readers may want to consider

solar-powered wireless cameras.

• Physical appearance and camera enclosures. Appearance should not to

be overlooked when it comes to installing cameras. If the cameras will be in-

stalled in an outdoor environment, large outdoor enclosures may invoke a sense

of intimidation (see Figure 2.4a). It is recommended to take into consideration
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Figure 2.3: 37 camera locations cover the 14,300 square foot second floor of Engineering
Building Unit II at the University of California, Riverside. Locations were manually
selected and evaluated to ensure that usable fields of view were available for every
square inch of the building from at least two viewpoints.

the environment the cameras will be installed to decide whether discreetness or

visibility are higher concerns. As opposed to surface-mounting (installing a cam-

era directly on a ceiling surface), flush-mounting (cutting a hole and installing a

camera in the ceiling with the optics exposed) will provide a more discreet and

streamlined appearance, but will require permanent alteration to the installation

locations. If a network is temporary, readers are recommended to consider the life

expectancy of the network before opting for flush mounting.

Our requirements and implementation

Initial specifications for the VideoWeb network required a minimum of VGA

resolution (640×480 pixels) as well as a minimum of 20 frames per second as a threshold

for acceptable real-time performance. In addition, we utilize digital IP cameras which

provide a range of benefits such as streamlined processing (no digitizing required), rel-

atively easy data storage, and simplified connectivity. The cameras are to be installed
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in an indoor and outdoor building environment which includes locations such as remote

open spaces exposed to rain and corridors void of sunlight. As a camera network for

long-term applications with year-round use, battery-powered cameras are not sufficient

and we instead use network cameras with power adapters.

Among conventional pan/tilt/zoom (PTZ) cameras considered were the Pana-

sonic WVNS202, Axis 214, and Axis 215 cameras. Besides cost, factors influencing

camera choice include performance, physical size, and availability of non-intimidating

outdoor enclosures. The Panasonic cameras were deemed unsuitable after experiments

which showed that the video stream begins to lag when the network becomes congested

(Table 2.1). That is, in the event of network throughput issues which limit cameras to

low frame rates, instead of dropping frames, the Panasonic resends cached video frames

stored in its buffer. The Axis cameras on the other hand, drops frames, maintaining

a relevant video stream despite low frame rates. Between the two Axis cameras, the

215 was selected as the primary camera (despite being an interlaced camera from lack

of availability at the time of selection) due to lower cost and lower mechanical latency

when issuing PTZ commands.

Using 45-degree fields of view for the cameras, 37 locations were selected for

complete coverage of the 14,300 square foot building (Figure 2.3). As such, the network

consists of 37 outdoor cameras (36 Axis 215 PTZ cameras and a larger Axis 214 PTZ

camera overlooking a courtyard) and 16 indoor legacy cameras. Camera locations are

selected such that every square inch of the building is viewable by at least two cameras.

In testing, each camera is capable of outputting a sustained 2.65 MB/second of Motion

JPEG (M-JPEG) video at a peak of 30 frames per second when set to the maximum

resolution of 704×480 pixels and a minimal compression setting of 0 (out of 100). This
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(a) (b)

(c)

Figure 2.4: Installation of the cameras: a) Axis 214 PTZ in an outdoor-rated enclosure;
only one of these were installed (high above a large open courtyard) due to size and
appearance), b) wireless bridges installed in the ceilings to make the IP cameras wireless,
c) flush-mounted Axis 215 PTZ cameras in sealed indoor enclosures.

represents the maximum throughput and frame rate in an ideal environment (i.e., con-

necting to a camera via a direct ethernet connection and experiencing no frame drops).

Other available resolutions of the cameras include 704×240, 352×240, and 176×120.

While the selected Axis 215 camera offers an outdoor dome enclosure, a dilemma

was faced as there were no discreet outdoor enclosures for them; we had to find a way

to make the cameras relatively weatherproof to withstand humidity and moisture. By

choosing the Axis 215, we had to compensate for the lack of an available outdoor enclo-

sure and improvise using the supplied flush-mount enclosures with smoked domes and

surface-mount enclosures with clear domes, both designed for indoor installation. The

solution was to use the surface-mount enclosures and make them weather-resistant by

sealing the plastic seams with silicone sealant. In addition, the clear domes were inter-
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changed with the smoked domes. The end result was a non-threatening camera dome

suitable for surface-mounting at any of the 37 locations (see Figure 2.4c). Long-term

effects of humidity, heat, and moisture on the cameras despite the sealed domes remains

to be seen.

Electrical power was provided by installing dedicated power supplies in two

of the building’s electrical rooms and running conduit to the camera cluster locations

where power outlets were installed. Since we had full control of the power by using our

own power supplies, the cumbersome power adapters for the cameras were removed and

the required power is supplied directly.

2.3.3 Choosing and Configuring the Network Hardware

The network hardware has a single purpose: to connect the cameras to the

processing location(s) and to be as transparent as possible. Factors to consider when

selecting network hardware include:

• For Wired networking. If IP cameras are being used, it is recommended to

install the highest-rated network cable available (Cat-6 ethernet cable as of this

writing) which can still reach its destination (generally 100 meters for gigabit eth-

ernet or 55 meters for 10-gigabit ethernet using Cat-6a). The cost difference may

be marginal (over Cat-5/5e, for instance) while providing overhead in robustness

in the event that newer higher-bandwidth cameras are installed to replace ag-

ing cameras. Ethernet extenders may be required if cable lengths exceed cable

specifications.

• For Wireless networking: 802.11g vs. 802.11n vs. RF. If wireless IP cam-

eras are used, it will likely be a choice between 802.11g and the newer 802.11n.
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If the choice is available (e.g., wireless bridges are being used to turn an ethernet

camera into a wireless camera), 802.11n from our experience is a major upgrade

from 802.11g for both increasing network throughput and signal strength. How

much of an improvement may be influenced by congestion in the operating fre-

quency range due to other wireless networks in the area. Determining a selection

between analog RF transmitters, on the other hand, can be more difficult as the

performance will vary more widely based on the power, frequency, and data be-

ing transmitted, as well as the environment. It is recommended to get a sample

transmitter and to test each location cameras will be installed; this goes the same

for wireless IP cameras, though wireless repeaters can be more-easily installed to

extend ranges. In addition, selected wireless routers should offer (at minimum) gi-

gabit capabilities, especially if a large number of cameras are expected to connect

to it.

• Wireless encryption. Use anything besides WEP [34].

Our requirements and implementation

Since many IP cameras (the Axis 214 and 215 included) do not have built-in

wireless connectivity, a wireless bridge is required to provide this functionality. As such,

the wireless bridges serve a single purpose: connect the cameras to the routers. Since the

camera locations are often situated in clusters, it is desirable if the bridges can support

multiple clients (i.e., have more than 1 ethernet port). This quickly narrows down the

selection. A conventional IEEE 802.11g bridge made by Buffalo was selected due to

its support of 4 ethernet clients; IEEE 802.11n bridges were only available in 1-port

versions at the time of selection. This paper does not delve into the pros and cons of

individual wireless protocols, though literature on this specific topic has been recently
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made available [56]. Performance testing on the Buffalo bridges revealed no outstanding

issues, but prolonged testing showed that upgrading to 802.11n provides a worthwhile

improvement for frame rates.

The wireless bridges were installed throughout the building in the ceilings and

localized in clusters where possible to better facilitate maintenance and troubleshooting

concerns (see Figure 2.4b). In total, 19 wireless bridges are used to provide connectivity

for the 37 cameras. Though the bridges have 4 inputs, we only use 2; we do not

take full advantage of the bridges’ connectivity capabilities for a reason. We originally

planned to optimistically use 3 cameras per bridge, but found 2 cameras (streaming

simultaneously with maximum video settings) was the limit each bridge could support

without experiencing heavy frame loss. The bridges are configured to communicate with

the routers using WPA-PSK encryption.

At a maximum of 2.65 MB/s per camera (or 5.3 MB/s from each bridge), the

network may be generating over 98 MB/s of data at peak performance. Gigabit routers

are used to handle the amount of expected traffic and IEEE 802.11n capabilities are

chosen to facilitate future upgrades. We use Linksys WRT350N routers for the first

iteration of the network. Routers are split into two clusters receiving from two indoor

locations. In total, 7 routers handle the traffic generated by the 19 bridges. The routers

are configured to assign local addresses to the cameras and port forwarding is used to

address the cameras from the servers.

2.3.4 Building the Server Hardware

Even with on-camera processing, it is still desirable to have external systems,

either for data processing (due to much greater processing power) or storage. For digital

networks, this system will likely be a number of computers. Whether specifying the
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hardware for these machines or building from scratch, it is useful to keep in mind a

number of factors:

• Gigabit network connectivity. When dealing with streaming video data, al-

ways opt for (at minimum) gigabit network adapters. This is especially true if a

single machine is expected to process multiple camera feeds. A gigabit network

switch (or higher) is almost a requirement when connecting the servers together.

• Hard drives. For raw data processing, hard drive speed or capacity does not

matter (all image-processing can be done from memory). For long-term storage,

high-capacity hard drives in a redundant configuration (e.g., RAID 5) are recom-

mended, though it is best to store these in a central high-density storage server

(as opposed to distributed across several servers) in order to facilitate easier re-

trieval. Depending on the expected amount of constant incoming data, expensive

high-RPM drives may or may not be necessary.

• CPU. Depending on the multi-threaded capabilities of the processing software

(either your own or vendor-supplied software), multi-core processors (and even

multi-socket motherboards) may provide a significant improvement in overall sys-

tem performance. This is especially true if servers expect to process feeds from

multiple cameras.

• Memory. Images will be loaded into and read from memory constantly. Faster

memory will reduce overhead, but more memory will likely only waste money as

video images (processed on a per-frame basis) will not occupy very much space,

even when uncompressed. There are exceptions, however, e.g. when using super

high-resolution cameras or for database applications which will cache large quanti-

ties of images (such as a face recognition database), so it is recommended to keep
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expandability in mind (i.e., 64-bit operating systems and motherboard memory

capacity).

• Operating system. Though cross-platform code is preferred, the choice of

operating system is determined mostly by the work/development environment

the network operators and/or programmers feel most comfortable with. Server

builders may want to take into account that most vendor-supplied software today

is Windows-specific, however, but this may be irrelevant if you plan to develop

your own processing software.

• Server location. If there are more than a few computers or servers in the system,

it is recommended that they be moved to a dedicated server room with adequate

cooling facilities; the heat, noise, and power consumption of all the servers can

overwhelm most rooms.

• Alternative power. Uninterruptible power supplies (UPS) are recommended for

all servers; their primary purpose is to allow the servers to gracefully shut down

in the event of a power failure (or to buy time for backup generators to start up).

This can be especially important for storage servers to help maintain the integrity

of the servers’ file systems.

Our requirements and implementation

We decided to go with a multi-core system in order to enable more stream-

lined parallel data processing of multiple cameras per computer. Also, with our server

architecture we have 3 levels of processing. If later on this amount of processing power

is insufficient, each computer should have a second vacant CPU socket for another pro-
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(a) (b)

(c)

Figure 2.5: Processing hardware and mobile cameras: a) control interface and monitors
in laboratory, b) 32-server processing backend connected to the interface, c) cameras
mounted on 3 robots add mobility to the network.

cessor to allow doubling the processing power of the server farm if necessary without

increasing the physical footprint of the system. For uniformity and to facilitate mainte-

nance, all processing servers have the same hardware.

An idea to use conventional desktop computers for data processing was quickly

discarded due to the difficulty in physically scaling ATX-sized desktop computers for a

large number of cameras. Even using MicroATX cases would require a large amount of

space to store the computers and would make moving the components/units particularly

laborious and awkward. We instead opt for 1 height unit (1U) rack servers which can

be housed in a single 42U rack enclosure with wheels for mobility.

In order to reduce contention over resources on the same machine from differ-

ent camera processes, each processing server was specified with multi-core CPUs and

fast memory (Intel Core 2 Quad Q6600 2.4 GHz CPUs and 2GB DDR2 800/PC 6400
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memory). Though the Q6600 is not a true quad-core processor (2 dual-cores instead of

4 true cores), the support for additional threads is useful. Also, while we install 2GB for

our initial setup, we also use motherboards which are expandable to 24GB of RAM for

database applications in development. Gigabit ethernet cards are also selected to pre-

vent any individual networking bottlenecks. Hard disks were given lower consideration,

as most the processing nodes do mostly CPU processing and would not be storing data

locally; the hard disks need only be sufficiently fast enough to run the operating system

and RAM disks are setup in order to provide fast temporary storage for intermediate

data. As such, conventional 80GB SATA hard drives are used. Application servers such

as database or recording servers, on the other hand may emphasize larger and faster

hard disks.

Thirty two identical servers were built and installed into a server rack (Figure

2.5b) and then connected to an interface server with a pair of control monitors as an in-

terface (Figure 2.5a). The building housing the servers fortunately has a suitable server

room with adequate air conditioning and power connectivity. Electricity usage monitors

were used to measure power consumption of the servers. The servers mentioned, for

instance, peak at 198W/1.65A when starting up, use 132W/1.14A when idle, and con-

sume 175W/1.54A under full load on all cores and hard drives. This data was then used

to specify the uninterruptible power supplies (UPS) for the servers, which consist of four

2U APC Smart-UPS 2200VA/120V batteries. Testing showed the batteries capable of

supporting 8 servers each at full load for 5 minutes and 45 seconds, plenty of time to

safely shut down (which can be configured automatically in software using UPS alerts)

or to withstand short power outages.
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2.3.5 Software System

In order to implement the tiered processing scheme of the servers, the software

needs to be both clients and servers to facilitate the sending and receiving of video traffic

and camera controls. Mid-level servers, for instance, may need to broadcast a stream of

processed data to the high-level server for viewing by the user, while at the same time

being able to download cropped object images from low-level servers.

The goal of the first software iteration was to control a networked camera using

a customized program without the use of the supplied camera web interface or vendor-

specific camera-management software included with most network cameras. One of the

advantages of utilizing network cameras is that the camera control interface can be

implemented through sending simple HTTP commands. To demonstrate this, a 10-line

Python script was written for sending manual control commands to a camera. Once it

was shown that it was easy to control the cameras, work started on a C++ application

for the actual image processing.

2.3.5.1 Sample program - head tracking

The basic algorithm framework used for head tracking was based on a gradient

and color-based tracker [7] with additional tweaks. The first implementation of this

was done in C++ and MATLAB [95]. Testing showed this program to be too slow for

real-time processing, so a second iteration was written in pure C++ using OpenCV [9].

The tracker began with tracking synthetic object data consisting of randomly rotated

rectangles of various sizes against a white backdrop. Once this stage was satisfactory,

the next task was to grab live data from the camera.

Instead of relying on vendor-supplied software development kits (SDKs) which

26



would have to be re-integrated into the processing software for potentially every type

of camera, a generic camera controller was written. The SDK for the Axis cameras,

for instance, relied on MFC-based [65] subroutines which would force development on

Windows. In light of the amount of customization needed to incorporate a new SDK

to do essentially the same things for different camera models, a generic cross-platform

control framework was written from scratch. This control framework uses Boost.Asio [49]

(a cross-platform socket wrapper) to directly send HTTP/1.1 [67] camera commands to a

camera and uses the libavcodec library [31] to decode the streaming camera data. Using

this approach, the software gains the benefit of being able to decode a large number

of potential video streams and not just what a camera vendor has included with their

SDK.

Networking communication between the three levels of servers is also imple-

mented with Boost.Asio. For instance, processed results performed by the mid-level

servers is compressed and broadcast as an M-JPEG stream, which is then parsed and

displayed by the interface server.

2.4 Experiments for Performance Characterization and Op-

timization of the Video Network

2.4.1 Measurement software

Software that comes with most IP cameras ranges from small camera control

programs to full surveillance station applications. However, even the most expensive

or sophisticated of these vendor applications can be unsuitable since they are usually

targeted toward security applications and recording, playback, and camera control are

often their sole function. Evaluating performance using these applications is subjective
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and raises the need for our own statistic-recording implementation.

A custom program was written to fulfill this function. Given an IP address

and port number, the application proceeds to:

1. Establish a connection with the camera

2. Attempt to download the M-JPEG video stream

3. Parse the stream into individual JPEG frames

4. Record real-time statistics about the stream

The program records a number of statistics and measurements including band-

width, shortest lag between two frames, and the average, minimum, and maximum

amount of bandwidth required for each frame. The implementation is in C++ and uses

the generic control framework written earlier.

2.4.2 Optimizing Camera Configuration

Depending on the task or application, there are numerous “optimal” ways

to configure a network. For instance, maximizing video resolution and quality may

be paramount for biometrics, particularly in face recognition where a large number of

pixels on the face is beneficial to identifying features. Surveillance and alarm systems,

on the other hand, may find reliability more important. For instance, it may be more

important that every moment is recorded with minimal skipping (not only for evidence in

the event of an incident, but also because security applications often employ vision-based

motion detection). Object tracking in turn, may benefit most by sacrificing resolution

in exchange for a high sustained frame rate.

Configuring the network may consist of changing camera parameters (e.g., res-

olution, compression) as well as physical network parameters (e.g., number of cameras
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per bridge, number of bridges per router, number of routers per square foot). The later

is helpful in introducing a metric for minimizing labor and monetary cost. We define 5

metrics for measuring camera network performance, the first two of which are used as

configuration parameters.

1. Resolution (in pixels) - This measures the size of each video frame in pixels (the

higher, the better). This parameter consists of 4 levels on the Axis cameras

(704×480, 704×240, 352×240, and 176×120).

2. Video compression - This parameter represents the amount of lossy video com-

pression applied to the video by the camera. For M-JPEG streams on the Axis

cameras, this represents JPEG compression and ranges from 0 to 100 (the lower,

the better). In our experiments, we test 5 of these levels (0, 20, 30, 60, and 100).

3. Average frame rate (in frames per second) - This measures the number of complete

frames received per second, averaged over the duration of a measurement trial (the

higher, the better). The frame rate may range from 0 to a maximum frame rate

of 30 on the Axis cameras.

4. Standard deviation of frame rate - This measures the consistency of the video. For

instance, there may be two video streams both 20 frames per second each, but the

first may output a constant 20 frames per second while the second video may be

sporadic and go from 30 to 0 to 10, back to 30 and so forth (but still average to 20

in the end). This metric is useful in evaluating the stability of the video (the lower

the deviation, the better) and is measured by recording the delay between every

two frames (in seconds with millisecond resolution) and calculating the standard

deviation.
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5. Longest lag time between two complete frames (in milliseconds) - This metric

records the longest amount of time taken between any two consecutive frames

(the lower, the better). This is insightful for evaluating a video stream’s reliability

(that is, it measures the longest amount of time a camera is “blind”). In addition

to a depressed frame rate, this may be attributed to dropped/partial frames by

the camera or data corruption/dropped packets undergone during transit.

Figure 2.6: Measurement comparison matrices for 8 cameras. While cameras may ex-
hibit variable performance even when using the same configurations, some configurations
may be inherently better than others and exhibit similar performance across the net-
work. To discover these configurations, 100 trials are performed on each camera under a
variety of parameter configurations (i.e., resolution and compression) and each recorded
measurement is compared for Pareto efficiency against the other 99 trials. This results
in a symmetric matrix where vertical and horizontal axes indicate the measurements Mi

and Mj , respectively (i.e., the top-leftmost square in each matrix indicates the relation-
ship of M1 against M100). Red indicates that a particular Mi is inferior to a particular
Mj , green indicates superiority, and a solid horizontal yellow line denotes rows which
are completely Pareto-efficient (i.e., either superior or non-inferior against all other 99
trials).
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2.4.3 Multi-objective Optimization Using Pareto Efficiency

We use the concept of Pareto efficiency to define which configuration of param-

eters is “better” than another. While this does not always tell a user which configuration

should be used for a particular application, it serves to reduce the large number of pos-

sible configurations by showing which of those are usually “inferior”; a user only has

to consider a configuration from the (potentially) much smaller Pareto set rather than

every possible combination.

2.4.3.1 Inferiority and Non-Inferiority

Let M1 be a vector of measurements of certain metrics for a camera and let M2

be another trial of measurements on the same camera, but under a different parameter

configuration. M1 is said to be inferior to M2 if and only if:

• every measurement in M2 is equal to or outperforms the corresponding measure-

ment in M1

• one or more measurements in M2 outperform the corresponding measurements in

M1

“Outperforms” is metric-specific and means “greater than” or “less than” depending on

how the metric is defined (e.g., a higher frame rate outperforms a lower frame rate and

a lower lag outperforms a longer lag). M2 is said to be superior to or dominates M1 if

M1 is inferior to M2. Finally, M1 and M2 are both said to be non-inferior if neither is

superior nor inferior to one another.

In order for a measurement Mi to be Pareto-efficient (amongst a set), it must

be non-inferior to every other measurement in that set. That is, it possesses at least

one advantage over every other measurement when compared one-on-one (e.g., M1 has
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higher frame rate against M2, lower lag against M3, ..., higher resolution than Mn). The

Pareto set is the set of all Pareto-efficient measurements and ideally, allows a user to

discard a large percentage of inferior parameter configurations from consideration when

setting the cameras.

2.4.3.2 Data Collection

Data collection consists of varying the resolution and compression parameters

and recording the measurements from 37 cameras. In total, we iterate through 4 reso-

lutions (704×480, 704×240, 352×240, and 176×120) and 5 levels of compression (0, 20,

30, 60, and 100) each. Five measurement trials are captured for each of the 37 cameras

per configuration (100 trials total per camera). Each trial consists of streaming from

the camera for 600 frames or up to 2 minutes (whichever comes first).

Camera footage is tested at 5 various points in the day across all cameras.

This exposes the data to a variety of video footage ranging from bright open areas

with upwards of 20 moving people in the scene, to dark and grainy footage of cameras

monitoring lonely halls.

After data collection is completed, each camera is optimized individually to

minimize camera, bridge, or router bias. This is done in O(n2) via exhaustive search

(where n is the number of trials to compare), comparing each measurement to every other

measurement on the same camera. With 20 configurations and 5 trials per configuration,

each camera produces a symmetric 100×100 matrix. The resolution/compression pairs

which result in the Pareto-efficient measurements for each camera are later aggregated

against the entire network.
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2.4.4 Evaluation Results

After over 100 hours of data collection at varying times of day across two weeks,

the Pareto sets for all 37 cameras are calculated (see Figure 2.6 for sample matrices of

8 cameras). Considering only configurations in the Pareto sets eliminates (on average)

approximately half of the tested configurations as inferior and redundant.

Figure 2.7: Probability of configuration membership in any given camera’s Pareto set.

After aggregating the resolution/compression parameters of the Pareto sets for

the entire camera network, we found that, surprisingly, every configuration tested was in

the Pareto set for at least one camera. This suggests that there is no global network-wide

consensus that any camera configuration is inferior to any other; every (tested) setting

was Pareto efficient for at least some camera. Calculating the percentages of the Pareto

set memberships, however, reveals that the cameras tend to exhibit a “preference” for

certain configurations over others (see Figure 2.7). This is in line with the previous

observation that roughly half of the tested configurations are not preferred (less than a

majority agreement between the cameras). It is not surprising to see higher percentages

on configurations with either the maximum resolution or minimal compression since

they already optimize at least one metric by definition. However, configurations such as

176×120/60% and 704×240/20% reveal local optimum which is potentially very useful

for some practical applications of the video network. Using a more fine-tuned set of
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compression levels, we would likely be able to find more such points, aiding in the

creation of a useful set of presets for specialized applications.

In order to evaluate the relative performance of the configurations, the mea-

surements for each camera are normalized across all measurements on the same camera

and then averaged on a per-configuration basis across all cameras using the same con-

figuration. Figure 2.8 shows the relative performance of the top 8 configurations for

the entire network. Intuitively, increasing either the resolution or decreasing the com-

pression (resulting in higher bandwidth) has the effect of a reducing the frame rate,

producing a more discontinuous video stream, and increasing maximum lag time. These

top configurations can then be considered as candidates for a number of applications

or environments. The max resolution/0 compression configuration in Figure 2.8a, for

instance, may be a good candidate for face recognition (so long as fast frame rate is not

required), while face reconstruction may favor the max resolution/20% compression in

Figure 2.8c due to its substantial increase in frame rate. An alternative approach to

this general network optimization, however, is to optimize specifically for certain tasks.

2.4.5 Task-based Optimization

Instead of conducting exhaustive tests to find Pareto-efficient configurations,

the presented multi-objective approach can also be used to optimize network param-

eters for specific applications or tasks. This can be done in much the same way as

with the other performance metrics quantifying application-specific performance (e.g.,

face detection rate, smoothness of tracked objects trajectories) and adding them to the

multi-objective metrics. Optimizing the network for face recognition at an airport, for

instance, may be done by performing the same Pareto-efficiency tests on the precision
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a. 704×480 pixels, 0% compression b. 704×240 pixels, 0% compression

(100% of cameras) (97% of cameras)

c. 704×480 pixels, 20% compression d. 352×240 pixels, 0% compression

(94% of cameras) (91% of cameras)

e. 176×120 pixels, 0% compression f. 176×120 pixels, 60% compression

(74% of cameras) (66% of cameras)

g. 704×480 pixels, 30% compression h. 704×240 pixels, 20% compression

(63% of cameras) (54% of cameras)

Figure 2.8: The top 8 dominating camera configurations as chosen by 37 cameras.
Graphs are ordered by the percentage of cameras in which the particular configuration
was Pareto-efficient and all metrics are normalized to 1.0 across all cameras. Clockwise
from the top: resolution ranges from 176×120 to 704×480 (higher is better), JPEG
compression settings range from 0 to 100 (lower is better, so inverse is shown), and
frame rates range from 0 to 30 FPS (higher is better). For measuring the “smoothness”
of outputted video, the standard deviation of the frame rate (recorded at 1-second
intervals) and maximum lag time between any two sequential frames is recorded (lower
is better, so inverse is shown).
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and recall rates returned by a face recognition algorithm. In order to take advantage of

the video produced across all the network configurations, it is recommended to record

the streams during testing so that tasks which can be performed offline can be optimized

with greater flexibility (e.g., a face recognition algorithm can be continuously tuned and

repeatedly tested against the dataset without actually having to reconfigure the net-

work). Tasks such as continuous PTZ tracking on the other hand, would have to be

performed alongside the live data streaming.

2.5 Conclusions

We have designed an software-reconfigurable architecture for a wireless network

of a large number of video cameras and implemented a working system by building the

servers, installing the cameras, writing the software, and configuring the network to

support it. Further, we gained insight into configuring the network’s cameras by defining

a set of metrics and discovering Pareto-efficient camera configurations by performing

multi-objective optimization on a large volume of real data recorded by the system.

The idea persists that if one has a camera network with 30 FPS cameras, one

will be able to obtain the said 30 frames per second regardless of network configuration or

parameters. Though this may be true in a controlled test environment, the performance

expectation should not be so optimistic for real-world wireless implementations. Even

using the most preferred Pareto-efficient configurations on a non-congested network, it

is shown that frame rates will most certainly suffer and that trade-offs must be made.

During a large workshop hosted in the building, however, it was observed that

frame rates of the cameras would periodically drop and we later found that these drops

coincided with breaks given during the workshop. Suspicious that a number of open
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and local 802.11g networks may be congesting our network, a cluster of bridges were

upgraded from 802.11g to 802.11n. In daily usage, frame rates were seen to reach

up to 20 FPS for even the most bandwidth-intensive configurations (such as 704×480

resolution with 0% compression) where they were previously achieving typically only

3 FPS (even when other bridges in the network were not in use). While this makes a

case for upgrading to 802.11n, this also suggests that network congestion from other

networks may play a large role in frame rates and that networks may wish to operate

in a dedicated frequency range.

In situations when even hardware upgrades can still not achieve sufficient per-

formance, however, we would like to emphasize that partial data is still important.

Rather than having algorithms which assume that the data consists entirely of complete

video frames (and are only capable of processing such frames), real-time computer vision

algorithms should take advantage of as much information as is available to them; the

constant stream of partial frames which may only be missing the last few rows of data

can still be tremendously useful for a number of applications.

This article was originally published in the EURASIP Journal on Image and

Video Processing (JIVP) 2010 [71].
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Chapter 3

Real-Time Pedestrian Tracking

with Swarm Intelligence

3.1 Abstract

Multi-person pedestrian tracking in real-world video is a critical functionality

for many applications in human-computer interaction (HCI) and security/surveillance,

e.g., crowd analysis, anomaly detection, and target identification. In this paper, we

present swarm intelligence algorithms for pedestrian tracking. The most widely imple-

mented solution for tracking, particle filters, are outperformed by Particle Swarm Op-

timization (PSO) [106]. We present a modified Bacterial Foraging Optimization (BFO)

algorithm which poses an opportunity to improve on the speed and accuracy of PSO

for real-time tracking applications. We show that BFO can overcome existing limita-

tions of currently-used evolutionary computation techniques (e.g., slow performance for

real-time use) by distributing search agents more effectively. In our experiments, we

show that BFO’s search strategy is inherently more efficient than PSO under a range of

variables with regard to the number of fitness evaluations which need to be performed
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when tracking. We also compare the proposed BFO approach with other commonly-

used trackers and present experimental results on all 26 corridor videos of the CAVIAR

dataset as well as on difficult PETS2010 S2.L3 videos of crowd scenarios.

3.2 Introduction

Human tracking systems generally consist of three main components: 1) detec-

tion, 2) tracking, 3) track association, and analysis or the fusion of multiple trackers [57].

Since much of the computational effort is spent on tracking, improving the speed and

effectiveness of the tracking component can greatly benefit many surveillance and secu-

rity applications [6]. It will facilitate real-time performance and improve the accuracy

of higher-level track association. A number of challenges, however, make pedestrian

tracking difficult:

1) Change in appearance: The visual appearance of pedestrians may change gradu-

ally or suddenly between frames, e.g., a person may turn (changing his/her silhouette)

or shrink or grow in size depending on his/her distance from the camera.

2) Non-uniform lighting and shadows: Light may not be uniform across a scene,

may change across frames, and pedestrians will generally cast shadows. Non-uniform

lighting results in the changed appearance of the same pedestrian depending on the time

and location in the scene. Further, shadows complicate a pedestrian’s appearance by

altering color and size information which may not carry over into other environments

(e.g., walking from a outdoor hall with concrete floors to a room with red carpet).

3) Uncalibrated cameras: Uncalibrated cameras provide no definite ground plane

or distance information for a tracking algorithm to utilize; regardless of whether the

cameras are fixed or non-static, e.g., movable pan/tilt/zoom (PTZ) cameras. Manually
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Figure 3.1: System diagram of the tracking system. Parts-based appearance signatures
are used to drive a swarm intelligence search algorithm for pedestrian tracking.

calibrating cameras is a labor-intensive task which is not always easy or feasible in

some cases. Since additional calibration data can only help a tracking algorithms (e.g.,

by providing depth information or constraints which can be taken into account into

a tracker’s fitness function), we focus on tracking in the more common uncalibrated

camera environment.

4) Occlusion: Pedestrians may be occluded by other pedestrians, the environment,

or even exhibit self-occlusion. This makes it more difficult to differentiate between two

or more pedestrians involved in the occlusion as to obtain sufficient visual evidence for

determining the appearance/size of a pedestrian.

5) Crowds: People often walk together in groups, complicating separation and associ-

ation. Tracking in dense crowds may be infeasible, even for human interpretation.

This paper focuses on the object tracking component of a human tracking

system which must handle the bulk of the above challenges. The rest of this paper is

organized as follows: Section 3.3 overviews related work in pedestrian tracking and sum-

marizes our contributions, Section 3.4 details the technical components of the proposed

tracking approach, Section 3.5 presents experimental results on the CAVIAR [32] and

PETS 2010 [30] datasets, and Section 3.6 offers closing remarks.
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Table 3.1: Summary of major approaches to the pedestrian tracking problem.

Approach Principle Comments

Optical flow Initialize and track a large number
of points on an object in order to
infer flow or a 2D vector field [64]
which models an object’s movement.

Produces smooth tracks of entire
object surface, but computationally
intensive; requires high frame rate
video or the objects move slowly.

Template
or shape-
based

Learn visual appearance of ob-
jects [82] (e.g., texture, shape,
silhouette from different angles,
lighting conditions, etc.) to per-
form continuous object detec-
tion.

Useful against occlusion, but
potentially time-consuming;
appearances may be highly
application-dependent and
difficult to apply to other scenes.

Behavior
modeling

Analyze movement of objects [54]
(e.g., walking patterns) or un-
derlying structure responsible for
object’s movement (e.g., mus-
cles, skeleton) in order to pre-
dict movement or narrow search
space.

Susceptible to occlusion and
presence of multiple objects; of-
ten used in conjunction with
other approaches.

Kernel-
based

Initialize one or more parti-
cles or kernels (e.g., color his-
togram similarity metric) on im-
age and use some search strategy
(e.g., distribution-based, random
walk) to dictate how to sample
points and how to combine re-
sults of sampled points to esti-
mate object location (e.g., ma-
jority voting, weighted average,
probability distribution).

Occlusion and fast-moving ob-
jects addressed by increasing par-
ticle count; linear scaling as
count of people or particles;
performance very dependent on
search strategy; most popular are
particle filters [41], Mean Shift
[19], and CamShift [8].

Multi-
camera

Use multiple cameras to over-
come occlusion [6,33].

Greatly increases the amount of
data needed to process, but ef-
fective against occlusion; often
used in conjunction with other
approaches.

3.3 Related Work and Contributions

While there are many individual approaches to the tracking problem [102], they

can typically be broken down into five major categories: optical flow-based approaches,

template/shape-based approaches, behavior modeling, kernel-based approaches, and

multi-camera approaches. Each approach possesses its own strengths and weaknesses
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and is usually targeted toward a specific application. Table 3.1 summaries the principle

of each approach.

The most successful approaches for pedestrian tracking usually focus around

Particle Filters [29, 41], Mean Shift [8], or detection-based tracking [97]. An alter-

native approach considers a family of biologically-inspired evolutionary computational

algorithms known as swarm intelligence, a subset of kernel-based approaches. In this

category, the most popular approaches are Particle Swarm Optimization (PSO) [47,105]

or a combination of Ant Colony Optimization with the above approaches [38]. Of those

that are available, they only show results on simple scenarios [63, 110]. These trackers

are often used to generate short-term “tracklets” which are then used in methods such

as Data Association Tracking (DAT) [58,91] to produce long-term inter or intra-camera

tracks. The 5 major categories of tracking methods are discussed below.

3.3.1 Tracking Approaches in the Literature

3.3.1.1 Optical flow

Optical flow is an approach which selects a number of feature points or pixels

on an object and attempts to track the displacement or flow of each individual pixel

between every consecutive frame. That is, for each point, a local neighborhood of pixels

is searched for the new position; this is usually performed in the intensity gradient

domain [64]. The number of points is typically initialized to be very large (in order to

increase overall robustness) and the displacement of these points is used to estimate a

2-dimensional vector field which models the object’s movement in the 2D image.

Optical flow is popular in computer animation (e.g., for facial expression track-

ing [98]) or for applications in which very precise tracking is required and a controlled
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environment is available (e.g., processing can be done offline, high-frame rate cameras

can be used, there is cooperation with the tracked subject, and lighting conditions are

constant). Due to the need of performing correspondence for each feature point in ev-

ery frame, the approach exhibits an exponential runtime as the radius of the search

neighborhood increases. This makes it ill-suited for real-time applications, tracking

fast-moving objects, or in situations where occlusion is common, i.e., correspondence

will fail between two frames when a feature point moves (or appears to move) outside

of the search neighborhood. While there are efforts to make optical flow more robust

to occlusion [40], research on improving performance for fast-moving objects often in-

volves artificially increasing a video’s frame rate [61,62], an approach which is not always

feasible.

3.3.1.2 Template/shape-based approaches

Template or shape-based approaches involve tracking an object based on a

database of learned appearances. This database may be a collection of textures (e.g.,

person tracking may utilize a database of learned hand, leg, and face appearances [82,

107]), shapes (e.g., using an ellipse-shaped template to track a head [7], tracking people

using learned silhouette shapes [60]), or a combination of the two.

Since partial matches can be found on an object even if other parts are oc-

cluded, template/shape-based methods are often used to address occlusion. This comes

at the cost requiring a suitable database of appearances to be created beforehand, in

addition to the large computational overhead associated with performing matching, es-

pecially if the database is large or the templates are complex.
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Figure 3.2: Pedestrian ROIs are segmented into multiple partitions based on statistical
human body ratios to create more robust appearance signatures.

3.3.1.3 Behavior modeling

Behavior modeling involves learning either an object’s movements [54] (in order

to predict its next location) or learning the behavior of objects relative to a scene [33] (in

order to determine areas of high/low activity, common trajectories, etc.). The former

usually models single objects (e.g., humans and animals) where the later often models

groups of objects (e.g., crowds of people, traffic patterns), but both methods can be used

to narrow the search space when searching for an object. In fact, behavior modeling is

often used as a preprocessing step to other tracking strategies in order to improve their

track accuracy, but it can also be used by itself using simple correlation as its search

metric (i.e., matching based on some pattern or mask appropriate to the application).

Applications include analyzing human behavior to predict movement [36] as

well as using physical models (such as skeletons) to model an object’s movement [53].

Behavior modeling is particularly susceptible to scenes where there are many objects,

however, since object interactions may be complex or impractical to model. As such, it

is better suited toward applications where the number of objects being tracked is small.
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3.3.1.4 Kernel-based approaches

Kernel or particle-based approaches use a single kernel/particle or number

of particles in conjunction with some search metric (such as a color [92] or texture

histograms [89]) in order to perform tracking. They differentiate themselves from optical

flow in that the particles are used to infer a central location, whereas optical flow aims

to track the individual location of each particle. Popular single kernel-based approaches

include the Mean Shift [19] and CamShift [8] algorithms and popular multiple particle-

based approaches include Kalman [44] and Particle filters [41].

In the case of Mean Shift and CamShift, tracking is based on distributions

created by the search metric, centering the current search window at the mean of the

previous window. Though simple to implement, they are not robust to factors such as

fast movement (objects easily leave the search window) or occlusion (the distribution

being tracked appears to disappear). Kalman filters, on the other hand, use a linear

model to estimate an object’s location by minimizing squared error between particles.

Since the dynamical model used in Kalman filters is assumed to be linear, it does not

work well when the noise is multi-modal (e.g., when an object appears to be disjoint due

to occlusion). Extended Kalman filters attempt to address this [11]. Particle filters also

evolve from Kalman filters and focus on dealing with non-linear dynamical models and

multi-modal densities by sampling the prior probability and weighting those samples

based on observations. Thus, Extended Kalman filters and particle filters can recover

from occlusion to some extent, provided that there are enough particles on the image.

In practice, however, the larger the number of particles, the higher the computational

cost, thereby making real-time processing challenging to implement.
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3.3.1.5 Multi-camera approaches

Another method aimed at solving the occlusion problem involves using mul-

tiple cameras. Multi-camera tracking is an emerging field which handles the occlusion

problem by using multiple views of the same scene in order to exploit the fact that oc-

cluded objects in one camera may be easily separable or completely visible in another.

This, however, comes with an increase in the amount of data to process and often re-

quires prior calibration of the cameras in order to ensure proper correspondence between

camera views.

Aside from its popular use in computer animation for motion capture (where

multiple cameras are used to track retroreflective markers placed on capture subjects),

such systems are often deployed for surveillance-oriented applications with a focus on

tracking multiple humans [14, 24, 33]. Multiple cameras in close proximity have also

been used in a manner similar to stereo cameras (i.e., a pair of cameras which simulates

binocular vision) in order to address occlusion [43], as well as multiple stereo cameras

themselves being used for tracking [108].

3.3.2 Swarm Intelligence

Swarm intelligence is a family of evolutionary algorithms which are modeled

after the collective behavior of biological swarms, such as ants (Ant Colony Optimiza-

tion [18]), bees (Bee Colony Optimization [94]), or birds and fish (Particle Swarm Opti-

mization [47]). In the context of tracking, swarm intelligence algorithms belong to the

set of kernel-based approaches. A swarm can be represented by a number of particles

initialized on an image which move in subsequent frames according to some basic rule in

order to ultimately achieve a common goal. For example, in Particle Swarm Optimiza-
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Figure 3.3: Occlusion compensation using occlusion layers. Left: ROIs are sorted by
the y-value of their bottom edge and placed into layers in descending order. Right:
the masking of lower layers by higher layers helps minimize the influence of occluding
pedestrians when computing signatures.

tion (PSO), particles are randomly initialized with a random velocity and direction and

search their current location for the object at each step. Particles determine their next

search position as a function of moving towards their previous best location and moving

towards the swarm’s best location, resulting in swarm-like behavior where particles tend

to move together, but each particle follows its own unique path depending on it’s initial

position.

3.3.3 Contributions

In this paper, we make the following contributions:

1. We adapt the Bacterial Foraging Optimization algorithm for real-time tracking

with changes which improve its speed and accuracy. We call the new BFO algo-

rithm as m-BFO.

2. We provide system-level performance measurements of both tracking accuracy

and computational efficiency of swarm intelligence algorithms PSO [47] and BFO
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(a) (b) (c)

Figure 3.4: How pedestrians appear to a tracker. (a) Detected pedestrians, (b) fitness
space for the pedestrian using color similarity in the CIE LAB color space (brighter =
higher fitness), (c) fitness space after applying the foreground mask to the input image
to reduce background noise. Note that the foreground mask is not as effective in the
last PETS2010 video due to sudden lighting changes in the scene.

[76] as well as on commonly-used CamShift and Particle Filter trackers on the

difficult CAVIAR dataset and the PETS2010 S2.L3 crowd scene. Note that of the

numerous approaches to pedestrian tracking, particle filter is the most commonly

used low-level tracker in practice. From the results of [106], however, it has been

shown that the evolutionary computation algorithm Particle Swarm Optimization

(PSO) is an improved and specific variation of particle filter which outperforms

the traditional particle filter implementation. We show that tracking with m-BFO

is better than PSO. Therefor we claim that the proposed m-BFO is better than

the particle filter.
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3. Show that segmenting the a pedestrian body into separate partitions improves

tracking performance by making objects more distinct (as opposed to popular

single ROI-based approaches).

3.4 Technical Approach

Figure 3.1 shows an overview of the system. Background subtraction is first

performed on input frames. Detected blobs from the subtraction are processed with

a pedestrian head-and-shoulders detector, e.g., [55, 97]. The ROI is then extended to

encompass the whole body and body segmentation is performed to create five smaller

ROIs. These are used to create five separate appearance signatures/histograms used

by a fitness function. This fitness function can then be used by a tracker to locate the

target in subsequent frames.

3.4.1 Pedestrian Detection

In order to create an online tracking system, initialization of target locations

must be completely automated. Background subtraction is used to facilitate the extrac-

tion of areas of interest. The modified Gaussian mixture model (GMM) background

subtractor proposed in [112] is used to dynamically learn the background as the input

frames are received (with the additional benefit of removing shadows). We remove shad-

ows in order to not confuse the the appearance signature. This creates a foreground

mask which can be used to detect areas of the image to focus a more sophisticated

pedestrian detector. In all the experiments, the background subtractor is run without

prior training.

Labeling the connected components of the foreground mask returns a set of
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blobs which may potentially contain a pedestrian. Running the pedestrian detector in

this manner (as opposed to running it on the entire image as in traditional approaches)

provides a significant speedup.

In order to automate pedestrian initialization, a Viola-Jones detector [13]

trained to detect heads and shoulders is used on all connected components whose area is

at least as large as the detector’s minimum size (a 22× 20-pixel rectangle in this paper)

and not already covered by a tracker; this results in another significant speedup. An

omega-shape head-and-shoulder detector may be used as an alternative [20, 55]. The

ROIs of positive detections are extended downward to encompass an estimate of the

entire body:

heightbody = heighthead shoulders ×R

where R is a fixed ratio that is dependent on the detector used (R = 3.1 in this paper).

The full body ROI can then be segmented into multiple partitions.

3.4.2 Appearance Signature

3.4.2.1 Body segmentation

Traditional blob-based trackers use the entire ROI of a pedestrian to com-

pute a signature for tracking. Using multiple sub-signatures localized to patches of the

pedestrian, however, increases the descriptive power of a signature while maintaining its

generality when the segmentation is reasonable. While the part-based appearance model

has previously been proposed for fingerprinting objects for target re-identification, it is

seldom used specifically for tracking; those that do are often viewpoint-dependent or

require high resolution [42, 107]. We extend the approach to the lower level of tracking

as opposed to just cross-camera matching.

50



We propose separating the pedestrian ROI into 5 separate horizontal partitions

using statistical ratios of the human body [4]. These 5 partitions are as follows: 1) Head:

the top 87− 100% of the full ROI, 2) Torso: 53.5− 87%, 3) Upper legs: 28.5− 53.5%,

4) Lower legs: 0− 28.5%, 5) Feet: 0− 10%.

This paper makes the reasonable assumption that the orientation of the video

is level (i.e., the physical horizon would appear as a horizontal line in the video) and

the image is not distorted. However, it is possible to extend the proposed approach to

handle non-upright pedestrians (such as those caused by distortions of fish-eye lenses)

by taking an extra step to compute the orientation of the pedestrian [25]. Figure 3.2

shows the segmentation scheme.

3.4.2.2 Occlusion layers

When initializing the signature of a pedestrian to track, it is important to min-

imize noise. Two sources of noise include: 1) pixels from the background and 2) pixels

from other occluding pedestrians. In order to minimize background noise, the foreground

mask is applied to the pedestrian’s ROI. In order to handle occluding pedestrians, we

use the occlusion layers scheme proposed in [59]. Given the reasonable assumption that

the video is captured from a location above the physical ground plane (i.e., the camera

is not positioned below the floor or looking down a steep incline), pedestrians can be

sorted by the y-coordinate of the bottom edge of their ROI. Defining (0, 0) to be the

top-left corner of an image, ROIs whose bottom edge has a higher y-value than other

ROIs are closer to the camera (assuming that the pedestrian is on the ground plane, e.g.,

not jumping). If two or more pedestrian ROIs intersect one another, they are sorted

into layers based on their bottom y-values (higher value = higher layer); ROIs in lower

layers become occluded by ROIs in higher layers (see Figure 3.3).
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(a) (b)

(c) (d)

Figure 3.5: Behavior of a single Bacterial Foraging Optimization swarm searching for a
pedestrian. (a) Random initialization, (b) gradient-hill climbing in random directions,
(c) death/rebirth of agents with poor fitness to location of agents with best fitness, (d)
target location based on consensus of the best agents.

3.4.3 Tracking Using Swarm Intelligence

Swarm intelligence is a family of evolutionary stochastic optimization algo-

rithms modeled after biological systems. A swarm consists of a number of particles

which independently follow a search strategy which allows the swarm to accomplish the

common goal of finding an area of optimal fitness. Two such algorithms are Bacterial

Foraging Optimization and Particle Swarm Optimization.

52



Algorithm 1 Modified BFO (m-BFO) algorithm for tracking

1: I ← image to search
2: Target← hist and prev. location of object to search for
3: R← number of reproduction steps
4: C ← number of chemotaxis steps per reproduction
5: S ← max number of swims per chemotaxis step
6: Step← swim step size in pixels
7: T ← number of agents to relocate per reproduction
8: P ← probability a non-immune agent gets relocated
9: Thresh← minimum fitness to trigger early termination

10:

11: procedure BacterialForaging
12: if I is first frame of target then . Init first frame
13: Initialize agent locations on I
14: end if . Early termination?
15: if fitness(Targetloc, I, Targethist ≥ Thresh then
16: return Targetloc
17: end if
18: for R reproduction steps do . Begin search
19: for C chemotaxis steps do
20: for all agents A do
21: d← random direction
22: for up to S swims do
23: l← new location Step pixels from A toward direction d
24: f ← fitness(l, I, Targethist)
25: if f > Acurrent fitness then . Lookahead
26: Acurrent fitness ← f
27: Acurrent location ← l
28: else
29: Break
30: end if
31: end for
32: end for
33: end for
34: for all top T agents A with best fitness do
35: Aimmunity ← true . Elitism
36: end for . Death/rebirth
37: Move the T agents with worst fitness to
38: locations of the T agents with best fitness
39: end for
40: for all agents A where Aimmunity 6= true do . Elimination/dispersal
41: Relocate A to random position with probability P
42: end for
43: Targetloc ← best location based on all agents A . Return updated location
44: where Aimmunity = true
45: return Targetloc
46: end procedure
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Algorithm 2 Particle Swarm Optimization (PSO) algorithm

1: Image← image to search
2: Target← hist and prev. location of object to search for
3: P ← number of agents
4: I ← number of iterations
5: Wa ← weight of momentum
6: Wb ← weight of particle best location
7: Wc ← weight of global best location
8:

9: procedure ParticleSwarm
10: if Image is first frame of target then
11: Randomly initialize P swarm particles
12: Globalfitness ← 0
13: end if
14: for I iterations do
15: for all particles P do
16: fit← fitness(P, Image, Targethist)
17: if fit > LocalbestP,fitness then
18: LocalbestP,fitness ← fit
19: LocalbestP,location ← Plocation

20: end if
21: if fit > Globalfitness then
22: Globalfitness ← fit
23: Globallocation ← Plocation

24: end if
25: r0 ← rand(0, 1)
26: r1 ← 1− r0
27: Vt+1 = WaVt +Wbr0LocalbestP,location
28: + Wcr1Globallocation
29: Plocation = Plocation + Vt+1

30: end for
31: end for
32: return Globallocation
33: end procedure
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Figure 3.6: Performance contributions of each modification of m-BFO over traditional
Bacterial Foraging Optimization (BFO) on a sample dataset [68] shown with minimum,
average, and max performance measurements.

3.4.3.1 Bacterial Foraging Optimization

Bacterial Foraging Optimization (BFO) [76] is a stochastic evolutionary swarm

intelligence search algorithm designed to model the movement and feeding behavior of

E. coli bacteria. A swarm consists of a number of particles or “agents” which move

or “swim” and “tumble” through an environment searching for concentrations of food

(or regions of high fitness from a feature space point of view). Given an image, a

swarm of agents is first randomly initialized on the image. The algorithm consists of R

“reproduction” loops which execute a number of C “chemotaxis” or movement loops. In

each chemotaxis loop, all agents “tumble” (choose a random direction) and are allowed

to “swim” (or sample) up to S times in steps of size Step in a gradient hill-climbing

55



manner. At the end of each reproduction step, the bottom T agents with the worst

fitness scores die off and an equal number of agents are born at the locations of the T

best agents. In this manner, resources are quickly allocated to regions of higher fitness.

At the end of the algorithm, the agents undergo an elimination/dispersal step which

randomly relocates agents with probability P . This step helps to simulate a changing

environment such that the swarm does not fully converge and cease to track in succeeding

frames. Figure 3.5 shows the behavior of a BFO swarm in a fitness space.

BFO has never been used previously for pedestrian tracking [69], yet possesses

traits which make it suitable to the problem. The near-uniform coverage of the search

space is useful for overcoming occlusion (whereas many other approaches lose track once

they converge). In addition, the fast propagation of agents to regions of high fitness

reduces overhead of having the agents gradually making their way toward global-best

fitness regions. This paper utilizes BFO with the enhancements proposed in [68] for

additional characteristics such as early termination, lookahead, and elitism:

Early Termination allows the algorithm to terminate early if positions of adequate

fitness have been discovered early on.

Lookahead allows the algorithm to accept or reject fitness samples during the gradient

hill climbing to improve local optimality.

Elitism allows the search agents of highest fitness to stop searching after each round

and to select the final location based on a consensus of these agents as opposed to a

single highest-fitness sample.

Algorithm 1 summarizes the full procedure and Figure 3.6 shows the perfor-

mance contributions of each of the above modifications on a recorded dataset [68].
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3.4.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [47] is the most commonly-used swarm

intelligence approach for tracking and is modeled after the social behavior of schools

of fish and flocks of birds. In addition to tracking, it has also been used for a number

of optimization problems [3] and has many variations [96, 105]. PSO’s standard search

strategy moves particles according to a linear combination of their current speed and

direction, the vector to the position of their local best fitness, and the vector to the

position of the swarm’s best fitness (see Algorithm 2).

3.4.3.3 Fitness function

Illumination changes of a scene are handled by the choice in the color space.

In order to find the best color space to represent a pedestrian signature, body segment-

based signatures were extracted using 8 different color spaces from the Viewpoint Invari-

ant Pedestrian Recognition (VIPeR) dataset [37], a popular dataset used for research

in person re-identification [27]. The 8 tested color spaces are: RGB, HSV, HSL, YUV

YCrCb, YUV YIQ, CIE XYZ, CIE Lab, and CIE Luv. For each pedestrian, signatures

were extracted for each color space for each body part using sets of 2, 4, 8, 16, 32, and

64 bins per color space component. The signatures were then boosted using a C4.5 tree

and tested for recognition with 10-fold cross validation. The color space configuration

with the greatest discrimination capability from the tests is YUV YIQ with 32 bins per

component. Figure 3.10 shows the boosted recognition performance of each color space

as the number of histogram bins changes. In order to find the relative discrimination

power of each individual body part, the recognition rates were tested on a per-body part

basis. Figure 3.11 shows that the most important body parts (for YUV YIQ) are first
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the torso, then the upper legs, lower legs, feet, and finally the head.

The fitness or objective function used by the two optimization algorithms is

computed as follows. For each body part, a color histogram is extracted for all pixels

in the YUV YIQ color space using N = 32 bins for each of the Y, I, and Q components

and normalized to the sum of pixels in each body part. The similarity between two

histograms H0 and H1 is computed as the histogram intersection:

intersect(H0, H1) =
N∑
i

min(H i
0, H

i
1)

An appearance signature S is comprised of M = 5 histograms, one for each

body segment. The fitness function for comparing two pedestrian signatures S0 and S1

is defined as the average histogram intersection between the histograms of each body

part:

similarity(S0, S1) =

∑M
i intersect(Si

0, S
i
1)

M

This fitness function can then be used by any conventional tracker for comput-

ing the distance between a query location in an image versus a target signature. Figure

3.4 shows exhaustively-generated fitness spaces for sample pedestrians by computing the

fitness at every pixel against an initialized signature.

In order to address tracking of similarly-dressed pedestrians, an additional

trajectory smoothness component is useful to give preference to areas of fitness which

more closely resemble the current trajectory. Trajectory smoothness at a point can be

defined by both smoothness in velocity and smoothness in direction:

Vt = Pt+1 − Pt

smoothness = Wd ×
Vt−1 · Vt
|Vt−1||Vt|

+Wv ×
2
√
|VT−1||Vt|

|Vt−1|+ |Vt|
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where Vt is the vector between the previous point and a proposed point and Wd,Wv are

weights which sum to 1.0 and control emphasis on either direction or velocity. The final

fitness function is:

fitness = Ws × smoothness+ (1−Ws)similarity

where Ws controls the influence of smoothness.

3.5 Experimental Results

All trackers are implemented in C++ and experiments are performed using a

single Intel Xeon E5345 2.33GHz quad-core CPU. Multi-target tracking is facilitated by

the use of multi-threading, e.g., the tracking of each pedestrian is performed using its

own thread.

3.5.1 Datasets

Experiments are performed on all 26 corridor videos of the CAVIAR dataset

[32] as well as the difficult “S2.L3” crowd scenario of the PETS2010 [30] dataset. The

CAVIAR videos pose a challenge for low-level trackers because: 1) they are low resolution

Common Intermediate Format (CIF) videos (382×288), 2) the ROI sizes of pedestrians

changes dramatically depending on pedestrian’s position in the corridor (the size of

the same person may vary by as much as 450% from one end of the corridor to the

other), and 3) there is much occlusion between pedestrians, not only in the middle of

a pedestrian’s path, but also when pedestrians first enter as well as leave the field of

view. We have categorized the CARVIAR videos into 4 categories to better illustrate

the performance of the algorithms on different scenarios: 1) Very Few Pedestrians, 2)
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Few Pedestrians, 3) Many Pedestrians, and 4) Very Many Pedestrians. Table 3.2 shows

statistics and categorizations of all 26 CAVIAR videos.

While higher resolution (768 × 576), the PETS2010 video is difficult due to

heavy occlusion, lighting changes, and the shear number of individuals within the crowd

(over 40). Figure 3.7 shows sample frames from the CAVIAR videos and Figure 3.8 shows

frames from the S2.L3 video. Note that official groundtruth ROIs are available for the

CAVIAR dataset, but are not publicly available for the PETS2010 dataset (groundtruth

tracks for the S2.L3 video were created manually for the experiments).

3.5.2 Effect of Parameters and their Selection

Bacterial Foraging Optimization. The number of agents A, reproduction steps R,

chemotaxis steps C, and swims S control the runtime of the BFO algorithm: O(A ∗

R ∗ C ∗ S). The step size Step controls how fast agents swim (higher for bigger steps,

lower for finer local search). The number of agents T to relocate controls how much

the algorithm balances its search; higher values increase exploitation of areas of higher

fitness while lower values increase exploration of the entire search space.

Particle Swarm Optimization. The number of particles P and number of iterations

I are the two primary parameters which control the runtime of the PSO algorithm:

O(P ∗ I). Setting Wa < 1.0 makes particles tend to slow down, > 1.0 makes particles

tend to speed up, and = 1.0 preserves the current momentum of a particle. The balance

of parameters Wb and Wc affect the influence of a particle’s local best location so far

vs. the swarm’s global best location so far; setting Wb > Wc leads to higher results

and increased local search while setting Wb < Wc makes the swarm collapse sooner on

a location (though at the risk of converging on a local minima).

Parameter Selection. Parameters are manually optimized for each individual tracking
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algorithm and then fixed for all experiments. To optimize the parameters of the PSO

tracker, for instance, the tracker was run on a random subset of 13 CAVIAR videos

using various parameter configurations. The parameters with the best average perfor-

mance were then selected for the full tests. This was done individually for each tracker.

Similarly, the smoothness parameters were also manually optimized.

For the exhaustive grid search tracker, the fitness is exhaustively computed at

every pixel and a mean filter of halfwidth = 7 is applied to find the point of highest

fitness. For PSO, P = 30, I = 10, Wa = 1.0, Wb = 0.04, and Wc = 0.04. For BFO,

P = 10, E = 1, R = 10, C = 1, and S = 5. We use the CamShift available in OpenCV

and the Particle Filter from OpenCVX [88] using 30 particles. For the detection-based

trackers, the pedestrian detector is run on both the whole image and on every foreground

blob for every frame without the advantage of skipping a blob if a tracker is covering it.

Weights for smoothness are Wd = 0.5, Wv = 0.5, and Ws = 0.01.

3.5.3 Performance Metrics

Tracking accuracy is defined as the percentage of groundtruth ROIs covered by the

tracker initialized on that pedestrian. A query ROI Query is considered to be tracking

a target if its intersection with the groundtruth ROI GT exceeds at least 50% of their

union:

is tracked(Query,GT ) =
Query ∩GT
Query ∪GT

> 0.50

50% is selected as a the benchmark overlap rate in the same fashion as used by CAVIAR’s

performance statistics [32].

This prevents an ROI which encompasses the whole frame from being considered “tracked”.

An accuracy of “40%” on CAVIAR means that on average 53,000 of the 133,000

groundtruth ROIs are tracked.
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Processing speed is evaluated in frames per second (FPS).

3.5.4 Tracking Results

3.5.4.1 CAVIAR Dataset

Figure 3.9 shows the impact of the parts-based segmentation, improving track

accuracy on average 6.5% over the single blob approach. Figure 3.12 shows that the

swarm intelligence approaches perform on par with Particle Filter and BFO even achieves

this performance in real-time using fewer resources (Figure 3.13). Figure 3.16 details the

performance on all 26 videos and shows that segmentation improved tracking accuracy

on almost all videos (single blob approaches may succeed in cases when bad detections

result in improperly-segmented ROIs).

3.5.4.2 PETS2010 Dataset

The PETS2010 S2.L3 video shows that the number of pedestrians (over 40)

significantly impacts the speed of the system, bring the same BFO tracker down to 3.3

FPS (Figure 3.14). However, the swarm intelligence approaches continue to perform on

par (and even out-perform) the Particle Filter (Figure 3.15).

3.5.5 Discussion of Results

Figure 3.9 shows that segmenting body parts increases the discrimination power

of appearance signatures compared to traditional whole-body appearance signatures.

Figures 3.12 and 3.16 show that the PSO and BFO swarm intelligence approaches achieve

comparable results to the more-often used particle filter [41] while Figures 3.13 and 3.14

show that such performance is achievable at faster speeds than with particle filter.
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3.6 Conclusions

We adapted the Bacterial Foraging Optimization (BFO) algorithm for real-time

tracking with a modified algorithm (m-BFO) which improves on the speed of Particle

Swarm Optimization (PSO). PSO in turn is an improvement over traditional parti-

cle filtering methods [106]. We also proposed a parts-based appearance signature for

defining the fitness function. The proposed appearance signature approach made use

of the observation that appearance-based pedestrian signatures can often be broken

into discrete patches due to a person’s clothing. We provided in-depth results of the

tracking performance of PSO and BFO and several other commonly-used trackers on

the CAVIAR dataset and the S2.L3 scenario of the PETS2010 dataset. Since most

previous work relies on blob-based similarity, this work can easily be integrated to im-

prove tracking performance of both low-level and higher-level Data Association Trackers

(DATs) [10,58].
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Figure 3.7: Sample frames from all 26 mall corridor videos of the CAVIAR dataset [32].
All videos have a resolution of 384 × 288 pixels and consist of a total of 35,913 frames
and 131,288 pedestrian ROIs. The objective is to track all pedestrians entering and
exiting the field of view under different shopping scenarios.

Figure 3.8: Sample frames of the “S2.L3” crowd scene from the PETS2010 dataset [30]
(768× 576 pixels, 240 frames, and 470 pedestrian ROIs). The objective is the track the
two pedestrians labeled A and B as they join in walking with a large incoming crowd.
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Figure 3.9: Segmenting the body into parts improves tracking performance as opposed
to using traditional single blob-based histograms. Results are shown averaged with std.
bars over all 26 corridor videos of the CAVIAR dataset, 30 runs for each video.

Figure 3.10: Average recognition accuracy of color histograms using boosted C4.5 trees
on the Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset [37].
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Figure 3.11: Average recognition accuracy of color histograms by body part on the
Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset [37].

Figure 3.12: PSO, BFO, Particle Filter, and whole image detection-based tracking per-
form on par with exhaustive grid search. Of these trackers, BFO performs the fastest
(see Figure 3.13). Results are shown averaged with std. bars over all 26 corridor videos
of the CAVIAR dataset, 30 runs for each video.
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CAVIAR Video # Pedestrians # ROIs # Frames

Very Many People

OneStopMoveEnter1cor 20 13,691 1,590
ShopAssistant2cor 20 11,942 3,700
ThreePastShop1cor 20 9,642 1,650
TwoEnterShop3cor 20 6,856 1,149
WalkByShop1cor 20 11,348 2,360

Many People

TwoEnterShop2cor 16 7,930 1,605
OneStopMoveEnter2cor 14 8,418 2,237
TwoEnterShop1cor 12 7,190 1,645
TwoLeaveShop1cor 11 4,705 1,343
OneShopOneWait2cor 10 7,568 1,462
ThreePastShop2cor 10 9,452 1,521

Few People

OneStopMoveNoEnter2cor 9 2,823 1,035
OneShopOneWait1cor 7 4,496 1,377
OneStopEnter1cor 7 2,390 1,500
OneStopEnter2cor 7 4,142 2,725
OneStopMoveNoEnter1cor 7 2,394 1,665
OneStopNoEnter2cor 7 2,950 1,500
ShopAssistant1cor 7 1,922 1,675
OneLeaveShop1cor 6 1,401 295
OneLeaveShopReenter2cor 6 2,147 560

Very Few People

OneLeaveShop2cor 5 4,189 1,119
EnterExitCrossingPaths2cor 4 768 485
OneLeaveShopReenter1cor 3 408 390
OneStopNoEnter1cor 3 1,714 725
TwoLeaveShop2cor 3 802 600

Totals 254 131,288 35,913

Table 3.2: Statistics and categories for each video of the CAVIAR dataset.
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Figure 3.13: The entire system can be run in real-time on modest hardware (Intel Xeon
E5345 2.33GHz). BFO performs the fastest amongst the trackers which perform on
par with exhaustive search. Run times are averaged across all 26 corridor videos of the
CAVIAR dataset and averaged over 30 runs per video.
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Figure 3.14: Even with multi-threaded tracking of each pedestrian, the number of pedes-
trians in the scene (over 40) saturates all available CPU resources (numbers are averaged
over 30 runs on an Intel Xeon E5345 2.33GHz quad-core CPU).
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Figure 3.15: The swarm intelligence approaches perform slightly better than the same
Particle Filter used on the CAVIAR videos, even without segmentation. Results are
averaged over 30 runs on the video in Figure 3.8.

Figure 3.16: Comparison of tracking accuracy for each category of video of the CAVIAR
dataset (see Table 3.2). Results are averaged over 30 runs for each video.
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Chapter 4

Zombie Survival Optimization: A
Search Optimization Framework
Inspired By Zombie Foraging
Behavior

Abstract

Search optimization algorithms have the challenging task of balancing between

exploration of the search space (e.g., map locations, image pixels, parameter space) and

exploitation of prior or learned information (e.g., statistics, regions of high fitness, model

constraints). To address the challenge of automatically balancing resources between

exploration and exploitation, we present a new algorithmic framework which we call

Zombie Survival Optimization (ZSO), a novel swarm intelligence approach modeled after

the hypothetical foraging behavior of zombies. Low-intelligence zombies (exploration

agents) search in a space where the underlying fitness is modeled as a hypothetical

airborne antidote which cures a zombie’s aliments and turns it back into a human

who is a high-intelligent agent and who attempts to survive by exploiting knowledge

about the search space. Such an optimization algorithm is useful for tracking, such

as searching an image for a pedestrian. Experiments on the CAVIAR dataset suggest

improved efficiency over Particle Swarm Optimization (PSO) and Bacterial Foraging
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Exploration mode Exploitation mode

Hunter mode

Figure 4.1: Agents automatically switch between 3 modes: random walking (search space
exploration), survival mode (search space exploitation), and hunter mode (swarming).

Optimization (BFO). A C++ implementation is made available.

4.1 Introduction

Swarm intelligence is a family of decentralized stochastic algorithms inspired

by the behavior of biological and artificial swarms. Taking cues from nature, the appeal

of swarm intelligence algorithms comes from their ability to efficiently find near-optimal

solutions in a simple distributed manner. Since standard particle filter implementations

are outperformed by evolutionary computation methods such as Particle Swarm Opti-

mization (PSO) [106], we set out to develop a framework which outperforms PSO and
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Figure 4.2: Four of the 1,843 fitness space images generated from the dataset using HSV
signatures initialized on Viola-Jones pedestrian detections. Resolution is 384×288 with
higher (red) locations representing high fitness and lower locations (blue) representing
low fitness.

present a novel algorithm inspired by the foraging behavior of zombies.

The scenario is the following. A virus has broken out and a number of N

zombies or agents occupy a search space. An airborne antidote has been dispersed

into the search space in which the zombies randomly walk (exploration mode). The

concentration of the antidote at any given location corresponds to the fitness function

of that location (i.e., high fitness = high antidote concentration). Sufficient levels of

antidote are able to “cure” any zombies who happen to breathe it in, turning the zombie

agent into a human agent (exploitation mode). Other zombies sense these humans and

attempt to catch them (hunter mode). Since high concentrations of antidote in turn

can cure the chasing zombies, humans attempt to survive by exploiting the local fitness
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Symbol Definition

N Number of zombies/agents

S Speed of zombies, e.g., step size in pixels

V Variance of zombie walk direction

A Fitness threshold which “cures” a zombie

G Max generations for stop condition

T Target fitness for stop condition

Table 4.1: Definitions of symbols used in the Zombie Survival Optimization algorithm.

space, searching for the position of highest fitness which best barricades them from the

impending zombies. Zombies which are able to successfully reach a human agent acquire

sustenance and the resulting bite turns a human agent back into a zombie.

4.2 Related work

When we open our eyes, we do three things: 1) detection, 2) recognition, and

3) tracking. Tracking is a foundational problem in the field of computer vision which

involves localizing the location of a target (e.g., object, pedestrian, point, feature) from

one moment of time to the next, typically in a video sequence.

The most popular approach towards single-view tracking is performed using

a particle filter [29, 100]. Swarm intelligence algorithms, on the other hand, have also

been successful for tracking [63, 110]. include Particle Swarm Optimization (PSO),

which is modeled after the swarming behavior of flocks of birds and schools of fish, [47],

Bacterial Foraging Optimization (BFO), which is inspired by the feeding behavior of

E. Coli bacteria, [76], and Ant Colony Optimization (ACO), an optimization algorithm

designed after the stigmergy behavior of ants [38]. The ultimate goal of any of these

optimization algorithms is to find the global best fitness as efficiently as possible. Since

fitness/objective function calls are often the most resource-intensive component of an

optimization algorithm, efficiency is often defined as using the least number of fitness
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function calls as possible, i.e., fastest convergence to the global optimum.

Unique to ZSO is the automatic balance between exploration and exploitation,

which is traditionally done via explicit parameters (e.g., PSO, BFO) or in a fixed manner

(e.g., 90% exploration, 80% exploration). The ZSO algorithm automatically balances

search agents between randomized exploration agents (zombies) and smarter exploita-

tion agents (humans). Areas of higher fitness correspond to areas of higher antidote

concentration, which thereby temporarily cures a zombie’s aliments and encourages it

to avoid other zombies and search for higher antidote concentrations.

4.3 Technical approach

Agents are initialized in the search space with a uniform distribution for ran-

dom location and direction. There are three states or modes in which agents can be in:

1. Exploration mode: randomly exploring the search space

2. Hunter mode: actively hunting a human

3. Human mode: trying to exploit the local search space

Agents are initialized in the first mode which attempts to explore the search space.

Table 4.1 defines all the symbols used in the algorithm.

4.3.1 Zombie exploration mode

While the exploration search function is generic, the default exploration func-

tion is defined as follows: at each time step, each zombie moves forward in a step of size

S in the current direction with a variance of V . This variance adds noise to the system

which aids in climbing out of local optima. Zombies continue in this manner until they
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either 1) sense a human in which case they start chasing it, 2) stumble upon a position

of high fitness and turn into a human, or 3) reach the boundary of the search space in

which case they simply change direction.

4.3.2 Zombie hunter mode

Zombies are attracted to humans and chase after them. At each time step, if

there are any humans, zombies will change their direction to face the nearest human

and continue to stumble toward them. Stumbling consists of the same variation when

walking as in exploration mode (i.e., zombies can’t walk in perfect straight lines) with

the exception that the general direction is continually reset to face the nearest human.

4.3.3 Human exploitation mode

Zombies can become humans if the fitness of their current position exceeds

threshold A, which can be dynamically defined by the mean of the range R of fitness

values so far:

A =
max(R) +min(R)

2
(4.1)

Humans realize that they will be chased and attempt to find a local optimum

near their current position. Knowing that this improves the odds of pursuant zombies

turning into humans themselves, this offers them the best long-term strategy for survival.

Like the exploration function, the exploitation search function is also generic but is

defined as a local mean shift search [21].

The algorithm ends when either a target fitness value T is reached or a max-

imum number of generations G is reached, whichever comes first. Algorithm 3 details

the full pseudo code for the ZSO algorithm. A C++ implementation can be downloaded

at http://www.cs.ucr.edu/~nthoang/zso/.
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4.4 Experimental results

4.4.1 Dataset

Experiments are performed on the CAVIAR [32] dataset (see Figure 4.4). 1,843

search spaces were generated from objects in the first 300 frames of the six recom-

mended [91] corridor videos EnterExitCrossingPaths1cor, OneStopMoveNoEnter1cor,

ShopAssistant2cor, ThreePastShop1cor, TwoEnterShop3cor, and WalkByShop1cor (see

Figure 4.2). These fitness spaces were generated by automatically detecting pedestri-

ans using a Viola-Jones head and shoulders detector [55,97] and tracking the initialized

signature on all the frames using the exhaustive search. These fitness spaces range in

difficulty from simple to complex (see Figure 4.2).

4.4.2 Metrics and effect of parameters

Number of fitness evaluations is the number of function calls made to

the fitness function (the lower, the better). Given a number of evaluations, the best

average fitness is defined as the average of the best fitness of all 1,843 search spaces

(the higher, the better).

Figures 4.5-4.8 demonstrate the effects of the parameters on algorithm perfor-

mance.

4.4.3 Parameters

Experiments were performed on ZSO with 100 agents, 100 generations, 25 pixel

step, 25 deg variance, 0.50 threshold. Experiments on PSO were performed with 50

agents and 200 generations. The experiments on BFO were perforumed using 10 agents,

500 reproductions, 10 swims, 5px step, 90% disperse. Parameters were individually

optimized for each algorithm using a random subset and fixed for all remaining tests.
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4.4.4 Results

Figure 4.9 shows the performance of ZSO, PSO, and BFO using the fixed

parameters in Section 4.4.3. As the number of fitness evaluations increases, ZSO achieves

higher performance over PSO and BFO, suggesting that ZSO may be better suited for

finding the global optimum.

Despite its performance advantages, Zombie Survival Optimization exhibits

some limitations compared to PSO, in particular:

• More parameters

• Discrete movement steps which may be sensitive to the search space

• A distance metric is required when determining which humans to swarm to

These limitations could be overcome by automatically setting some of the pa-

rameters (e.g., step size, fitness threshold) based on statistical calculations of the search

space (e.g., increase step size if change in fitness is small, decrease step size if change

in fitness is large). It is also possible to consider exploring the option of having zombie

agents become attracted to any human agent instead of simply the closest one.

4.5 Conclusions

A new swarm intelligence algorithm modeled after the behavior of zombies

vs. humans is proposed to address the challenge of balancing between exploration and

exploitation for search optimization. Experiments on real-world multi-person tracking

data show that it can be more efficient than BFO as well as PSO which in turn outper-

forms traditional particle filter [106].
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1) Initialization 2) Exploration

3) One agent is “cured” 4) Hunter mode

5a) Outcome: Defeat 5b) Outcome: Survival

Figure 4.3: 1-2) Initialize and explore. 3) One or more agents turn into humans (green)
due to high antidote concentrations. 4) Zombies pursue humans. 5a-5b) Humans are
either defeated or survive.
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Algorithm 3 Zombie Survival Optimization (ZSO)

1: I ← image to search
2: procedure ZombieSurvivalOptimization
3: . Initialize N zombies in search space
4: for all zombies z do
5: z.location ← random point,
6: e.g., ([0, Iwidth], [0, Iheight])
7: z.direction ← random direction,
8: e.g., [0, 360) degrees
9: end for

10: . Zombies hunt for humans
11: for G generations do
12: for all zombie z (asynchronous) do
13: z.location ← z.location +
14: (z.direction * V * S)
15: f ← evaluate fitness at z.location
16: . Search exploitation mode (human)
17: if f > threshold A then
18: z.is human← true
19: Gradient ascent search
20: of local neighborhood
21: if any zombie z′ within S reach then
22: . Bitten by zombie
23: z.is human← false
24: end if
25: else . Exploration mode (zombie)
26: if any humans exist then
27: Find closest human h
28: z.direction ← toward h
29: end if
30: end if
31: end for . Zombie loop
32: end for . Iteration loop
33: return Location of best fitness
34: end procedure
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Figure 4.4: Samples frames from the CAVIAR dataset [32].
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Figure 4.5: Effects of parameters N (number of agents) and G (number of generations).
Adjusting these parameters can allow the number of total evaluations to remain constant
(10,000 fitness evaluations in this case), while balancing the size of the swarm. Setting
an even balance between the two achieves the best average performance.
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Figure 4.6: Effects of step size parameter S. This search space-dependent parameter
may vary depending on how minute or spread apart fitness value changes may be in
the underlying search space. In this case, the 30 pixel step size was suitable for the
384×288-pixel images.

83



Figure 4.7: Effects of the zombie to human fitness threshold parameter A on best av-
erage fitness. Setting this parameter low results in earlier exploitation search while
setting it higher favors exploration of the search space. A balanced threshold of 0.50
achieved the best performance, suggesting that exploration should be evenly balanced
with exploitation.
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Figure 4.8: Effects of variance parameter V on best average fitness. The important thing
to note is that adding randomness to the agents in their direction is more beneficial than
moving in a straight line, e.g., the 0 degree variance.
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Figure 4.9: Experimental results comparing Zombie Survival Optimization with Particle
Swarm Optimization, Bacterial Foraging Optimization, and Random Search. On the
CAVIAR search spaces, ZSO is able to locate higher average fitness values over time.
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Chapter 5

Multi-camera Appearance
Signatures

Abstract

Tracking in an uncalibrated video network poses the challenging problem of

determining whether or not a person or object seen in one camera is the same person or

object seen in another camera. Pedestrians may appear in multiple cameras simultane-

ously or appear and reappear in other portions of the network at arbitrary intervals. In

addition, the problem is made more challenging if the network’s cameras are located in

a variety of different environments (e.g., lit hallways vs. dark hallways vs. sunny court-

yards). In order to approach the problem of multi-camera correspondence/recognition,

we have devised a part-based appearance signature for identifying individuals.

5.1 Introduction

There are many challenges in developing a robust signature to best represent

a pedestrian from one camera to another camera. Challenges include changes in pose

of the pedestrian as they move in the video, point of view differences among cameras,

varying distances between cameras and pedestrians, and lighting conditions. Logistical

challenges include bandwidth constraints in sending the representations as well as time

constraints in calculating the representation or signature. Without calibration data or
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Figure 5.1: Sample dataset consisting of 5 cameras (2 indoor and 3 outdoor) were used
to record 5 pedestrians. The dataset consists of 4000+ pedestrian ROIs for use in testing
of the discriminative properties of the appearance signature representations.

information about the underlying layout of the video network, it is necessary to provide

means for identification between targets in the network and an appearance signature is

one such solution.

5.2 Technical Approach and Experiments

After obtaining an ROI of a pedestrian, the ROI is partitioned into 5 horizontal

stripes based on body part proportions (see Figure 3.2). For each partition, all pixels

in the foreground are analyzed to create the signature.

Color and texture features were selected as the two main components of the

appearance signature. Since it is difficult to determine which color space is most suitable

for use as an appearance signature, a wide array of color spaces were tested. The color

spaces tested include: RGB, HSV, HSL, YUV YCrCb, YUV YIQ, CIE XYZ, CIE Lab,

and CIE Luv. For the texture component of the signature, Local Binary Partitions were

used with varying fixed and adaptive half-widths.
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Figure 5.2: Recognition accuracy performance of all color and texture features. Color
features far out-perform texture features when used alone.

A dataset consisting of 5 cameras (2 indoor and 3 outdoor) and 5 pedestrians

was recorded (see Figure 5.1). A boosted C4.5 decision tree [80] was used to determine

which color space provided by best overall discriminatory power.

5.3 Results

Figure 5.2 shows the performance in classifying all ROIs based on using indi-

vidual features. Figure 5.3 shows a closer look at only the color features. Figure 5.4

shows the performance of signatures generated using each individual body part. Finally,

Figure 5.5 shows the in-practice online performance of using the fused signatures when

using nearest neighbor classification.
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Figure 5.3: Recognition accuracy performance of all color features. HSV provides the
best performance using 4 bins per HSV-component while an increase to 32 bins per
component favors YUV YIQ.
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Figure 5.4: Recognition accuracy performance by body parts. Using all body parts as
partitions provides improved accuracy over using all body parts as a single partition.

Figure 5.5: Online recognition accuracy using simple nearest neighbor comparison of
histograms.
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5.4 Conclusions

A multi-camera appearance signature was devised and deployed for use in a

video network. It was found that color features outperform the tested texture features

and that YUV YIQ signatures had the best classification performance when compared

to all the other color spaces. In addition, using body partitions improved performance

over using no partitions.
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Chapter 6

Individual 3D Face Modeling

Abstract

3D face models are useful for a number of applications including human com-

puter interaction (HCI), security, and entertainment. Automatically generating 3D face

models from video networks is a complex task which faces many challenges such as low

resolution, inconsistent lighting, and real-time constraints. In this paper, we use facial

landmark points from multi-view video to morph a 3D model to fit a person’s face. Au-

tomatic landmark detection is performed Constrainted Local Models (CLMs) [86]. 2D

facial landmark points are then fused from multiple views and across multiple frames of

video to reconstruct the 3D face model of pedestrians walking in the video network.

6.1 Introduction

A 3D morphable model approach is used to reconstruct the 3D shape of a

person’s head. The process can be broken down into the following steps:

1. Image acquisition: Acquiring the video images

2. Face detection: Detecting the location of the person’s face in a frame

3. Face alignment/pose estimation: Locating the facial landmark feature points

on the face and estimating the person’s head pose
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Figure 6.1: Overview of the proposed system. Once a face has been detected, face
alignment is performed on it to recover landmark facial points. From these points, the
pose is estimated and then used to morph a 3D model to fit the person’s face.

4. Morph 3D model: Calculate the shape parameters to fit the 3D model to the

2D images

5. Texture extraction and fusion: Fusing the texture from multiple cameras into

a single 3D texture

Figure 6.1 visualizes the steps of the approach.

6.2 Related Work

Besides morphable models [83] (deforming a generic model or 3D face “mask”

to fit a 2D face image), other face modeling techniques include shape from silhouette [51]

(calculating shape by estimating the pose and observing the contours of the face’s sil-
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houette), shape from shading [26] (modeling depth from the way the face is illuminated),

and shape from motion [87] (inferring depth from spatial changes of landmarks or texture

in response to change in pose with respect to the camera), as well as hybrid approaches

which use any combination of the above methods [17,84].

6.3 Image Acquisition and Face Detection

Images are captured from standard VGA cameras (i.e., 640 × 480 pixel reso-

lution video). It is assumed that images from multiple cameras can be received at a

central processing unit which performs the multi-camera face modeling. Face detection

is performed using a Viola-Jones wavelet-based face detector [9, 97]. To improve per-

formance, face detection can be performed exclusively on regions which are more likely

to contain a person, such as the top portion of an object tracker or through motion

detection.

6.4 Face Alignment and Pose Estimation

Face alignment involves detecting the location of various feature points or facial

landmarks in a 2D image. Examples of such landmarks include the Farkas feature

points [28], the MPEG-4 Facial Definition Parameters [79], or Active Appearance Models

(AAMs) [99]. Facial landmarks are automatically located for use in the experiments

using Constrained Local Models (CLMs) [86].
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Figure 6.2: Automatic landmark detection done in real-time using Constrained Local
Models (CLMs).
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Figure 6.3: Given a set of landmark facial points, the pose of the head is estimated
by minimizing the mean square error of the landmark points with the projection of the
corresponding points on the 3D generic model. Red points represent the landmark facial
points of the image while blue points represent the projected 3D model points.

Pose estimation is determining the orientation of the person’s head in a 2D

image. Pose can be represented as 7 variables: φ (roll), θ (pitch), ψ (yaw), scalex,

scaley, translationx, translationy, where φ, θ, and ψ are the Euler rotation angles

(about the X, Y , and Z axes, respectively), scalex and scaley are the percentage of

scaling along the X and Y axes, and translationx and translationy are the offsets

which will translate a face centered at [0,0] to the position seen in the image. Pose is

estimated for each image as follows:

scalex =
range of x values of 2D landmarks

range of x values of respective projected 3D landmarks

scaley =
range of y values of 2D landmarks

range of y values of respective projected 3D landmarks

translationx = mean( range of x values of 2D landmarks )
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Figure 6.4: The Basel Face Model (BFM) [77]. Left: mean face of 200 subjects. Right:
same face morphed using the “age” set of parameters.

Figure 6.5: Sample camera environment consisting of three 640 × 480 pixel resolution
videos from three different views of the same room.

translationy = mean( range of y values of 2D landmarks )

φ and θ are determined by least squares regression by minimizing the distance of the

landmarks to the orthogonal projection of the mean face. If landmarks for both eyes

are available, rotation about the Z axis is calculated as:

ψ = angle of line segment connecting the center of the eyes to x axis

=
180

π
× tan−1

| right eye y − left eye y|
| right eye x − left eye x|

Otherwise it is calculated in the same manner as φ and θ.
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6.5 Calculating 3D Shape Parameters

6.5.1 The 3D generic model

The 3D morphable model approach to face modeling requires a 3D generic

model of the human head. The recently proposed Basel Face Model (BFM) [77] is used

to satisfy this requirement, though it is possible to create a model from scratch using a

3D scanner and a large number of volunteers. Limitations to using this model involves

expression, as all face scans are in a neutral expression.

The Basel Face Model (Figure 6.4) is comprised of two primary components:

the mean face of 200 subjects (100 males, 100 females, mostly European, ages 8-62) and

199 basis vectors/principal components computed by Principal Component Analysis

(PCA). The model contains 53,490 vertices and is morphed as follows:

Morphed Model =



Meanx0

Meany0

Meanz0

...

Meanx53490

Meany53490

Meanz53490



+



Basis0,x0 · · · Basis198,x0

Basis0,y0 · · · Basis198,y0

Basis0,z0 · · · Basis198,z0

...
. . .

...

Basis0,x53490 · · · Basis198,x53490

Basis0,y53490 · · · Basis198,y53490

Basis0,z53490 · · · Basis198,z53490



·



s0

s1

s2

...

s198



where S is a vector of 199 real-valued scalar coefficients which morph the model.

6.5.2 Fitting the 3D model

A projection method is required to model the relationship between the 3D

face points to the 2D image. Orthogonal projection is used for its simplicity. This

is a reasonable approach for uncalibrated cameras assuming that the change in depth

between facial landmarks on the person’s face is negligible in comparison to the distance
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Figure 6.6: 13 face images extracted from the 3 videos. The faces range from 20px to
90px in height.

from the person to the camera and is typical for a camera network in which the cameras

are relatively far from the subject physically. A 3D face point [x; y; z] can be projected

as a 2D point [x′; y′] on the image as follows:

 x′

y′

 =

 sx 0 0

0 sy 0

·


1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q21 + q22)

·

x

y

z

+

 tx

ty



q =



q0

q1

q2

q3


=



cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)

sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)

cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)

cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)


where sx, sy, tx, and ty are the respective scale and translation components of the

estimated pose, and φ, θ, and ψ are the pose angles. That is, the projected 2D point

is calculated by rotating the original 3D point to the appropriate pose, dropping its
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Z coordinate (orthogonal projection), scaling it along the X and Y axes, and adding

the translation component. The Euler pose angles are converted into a quaternion and

then converted into a single rotation matrix. Quaternions are used to allow future work

on optimizing the pose parameters themselves, in which case the smooth interpolation

(e.g., spherical linear interpolation [90]) available to quaternions can be used.

In order to quantify the distance between the fitted model and the face align-

ment landmarks, mean square error is used on the Euclidean distance from the projected

points of the fitted model to the 2D landmarks seen in the image. That is, for a single

image with n landmarks, the mean square error is:

MSE =
1

n

n∑
i=1

(landmarki,x − projectedix)2 + (landmarki,y − projectedi,y)2

where landmarki,x and landmarki,y are the X and Y values of the i-th landmark and

projectedi,x and projectedi,y are the respective 2D coordinates of the projected fitted

model. For m multiple frames, this is extended to a weighted distance which takes into

account the confidence of the landmarks in each image:

distance =
m∑
j=1

imageconfidencej ×MSEj

where imageconfidencej is a [0,1] real-valued scalar which quantitatively reflects the

relative importance of each image and MSE is the mean square error of image j. For

reconstruction, the confidence of image j is calculated as a function of image resolution:

imageconfidence =
facewidth × faceheight
maxwidth ×maxheight

where maxwidth and maxheight are the maximum width and height of the source image

(in our example, 480 and 640 pixels, respectively). This allows higher-resolution images

of a person’s face to receive more weight in determining how to fit the 3D model. This
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is a reasonable formulation given the assumption that the overall image quality of all

images is equal (e.g., homogeneous mixture of cameras), though may be reformulated

should sensors be weighted on their image quality (e.g., outdoor IR camera vs. high-

resolution DSLR camera). Since the confidence value places more weight based on

resolution, it is important to avoid utilizing digital zoom on the source video sensor

which may artificially inflate the image’s resolution without providing actual resolution

gains.

Since the principal components of the model are independent, each coefficient

(a real-valued scalar) is individually optimized to fit the landmarks by minimizing the

distance. The curve of the distance function is estimated using weighted least squares

regression; the derivative of this function is set to zero to find the shape parameter

coefficient which minimizes the distance. Refinement of the 3D model from successive

video frames is achieved through a closed feedback loop which feeds the current model

as the starting point for model fitting in the next frame.

6.6 Extracting and Fusing Texture

Texture extraction is performed by projecting the 3D model onto the 2D image

and sampling the RGB values of the image pixel. The primary challenge for a camera

network lies in fusing the texture from multiple images (both from different camera

perspectives as well as from sequential frames in the same video) to form a single texture.

As a starting point, a weighted average technique is used which calculates a 3D point’s

RGB value as the average sampled pixels from the contrast-normalized images, using

image confidence as the weight. This approach is planned for replacement with a more

sophisticated local-alignment technique from the super resolution literature [103].

102



Figure 6.7: The morphed 3D model improves as more frames are added to it. Landmark
points in these faces are manually located.
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Figure 6.8: Comparison of morphed 3D model with groundtruth. Left: Morphed 3D
model using the proposed approach. Center: Morphed model with fused texture. Right:
Groundtruth 3D face scan using a Minolta laser scanner.

Figure 6.9: Bicubic interpolation is used to normalize all images to the same resolution
before fusing. Left: Without interpolation. Right: With interpolation.
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Figure 6.10: Automatically reconstructed 3D faces from video. Facial landmarks from
the MPEG-4 Facial Definition Parameters [79] are detected using Constrained Local
Models [86] and used to morph the Basel Face Model [77] to fit the person’s face.
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Figure 6.11: Using a gender detector to add shape priors to the reconstructed models.

6.7 Experimental Results

6.7.1 Dataset

Three videos are recorded at 640 × 480 resolution (Figure 6.5). 13 frames

of these videos contain images of the same person, with face sizes ranging from 20px

to 90px (Figure 6.6). A subset of 30 landmarks from the MPEG-4 Facial Definition

Parameters [79] is used for 3D reconstruction from the 3D face alignment.

6.7.2 Results

Figure 6.9 shows the benefit of using bicubic interpolation to normalize the

resolution of all images before fusing the texture. Normalization reduces the impact of

pixelation from the low-resolution textures. Figures 6.7 and 6.8 shows the final morphed

result with manually-located facial landmarks, both with and without texture, as well

106



as compared to an actual groundtruth 3D laser scan of the same individual. Figure 6.10

show the reconstructed 3D face results from using automatic facial landmark detection.

Using the FERET Dataset [78], a gender detector using on Fisherfaces [9] can

be trained and used to add gender priors to the shape parameters, thereby improving

the model’s appearance (Figure 6.11);

6.8 Conclusions

A framework for automatic 3D face reconstruction is proposed using Active Ap-

pearance Model landmark facial points from multiple camera views to morph a generic

3D face model to the person’s face. Results show the process can be completely auto-

mated and perform at near real-time speeds with satisfactory results, especially given

the low VGA resolution of the input video.
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Chapter 7

Conclusions

7.1 Building a Video Network

In order to facilitate research on multi-sensor systems, a 37-camera video net-

work was designed and installed at the University of California, Riverside. The network

consists of 37 outdoor pan/tilt/zoom (PTZ) cameras located in order to provide full

coverage of the entire 2nd floor of the Winston Chung Hall engineering bulding, 16 in-

door static cameras, and 3 camera-equipped mobile robots which are also connected to

the network.

Multi-objective optimization was performed on the network’s camera settings

to gain insight into the benefits and drawbacks of optimizaing specific performance

parameters (e.g., resolution, frame rate) toward specific tasks (e.g., tracking vs. recog-

nition).

7.2 Tracking in a Video Network

Toward single-camera tracking in a video network, swarm intelligence algo-

rithms were studied in depth to provide the foundational tracking algorithms used by

the system for pedestrian tracking. Pedestrians are automatically detected, identified

with a color and texture signature, and tracked using Bacterial Foraging Optimization

(BFO).
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In addition, a new swarm intelligence-based optimization algorithm, Zombie

Survival Optimization (ZSO), was developed to provide improved speed and accuracy

performance over previous swarm intelligence algorithms.

7.3 Multi-camera Recognition in a Video Network

To facilitate cooperation between cameras, multi-camera tracking was per-

formed by creating normalized cross-camera pedestrian signatures based on color and

texture. The signature uses a partition-based system based on statistical proportions of

body parts in order to achieve generalization of pedestrian appearances across multiple

views and lighting conditions which may be faced by the video network.

7.4 3D Model Reconstruction in a Video Network

Once a pedestrian has been located, face detection is performed on the pedes-

trian. If the pedestrian’s face is visible from a frontal point of view, a Constrained

Local Model (CLM) tracker is initialized on the person’s face to locate facial landmark

features. Pose estimation is perfored on these landmarks to determine the approximate

orientation of the person’s head.

Using the multi-camera signatures already generated, multiple sets of landmark

points, either from consecutive video frames in a single sensor or from multiple sensors,

are fused together to morph a 3D model. The 3D face model is reconstructed using

a weighted system giving more weight to higher-resolution images of the person’s face.

After resolution normalization, the textures of the face are fused together to extract the

final texture of the 3D model, thus finalizing the 3D face reconstruction. Additional face

images and landmark points can incrementally be added to the reconstructed model in

order to improve the texture of the model as well as refine the 3D shape parameters.

109



Bibliography

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A survey on wireless multimedia sensor
networks. Computer Networks, 51(4):921–960, 2007.

[2] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. Wireless multimedia sensor networks:
Applications and testbeds. Proceedings of the IEEE, 96(10):1588–1605, Oct. 2008.

[3] M. AlRashidi and M. El-Hawary. A survey of particle swarm optimization applications
in electric power systems. IEEE Transactions on Evolutionary Computation (TEVC),
13(4):913–918, August 2009.

[4] M. Altab Hossain, Y. Makihara, J. Wang, and Y. Yagi. Clothing-invariant gait identi-
fication using part-based clothing categorization and adaptive weight control. Pattern
Recognition (PR), 43:2281–2291, 2010.

[5] L. Bazzani, M. Cristani, A. Perina, M. Farenzena, and V. Murino. Multiple-shot person re-
identification by hpe signature. In 20th International Conference on Pattern Recognition
(ICPR), pages 1413–1416, August 2010.

[6] B. Bhanu, C. V. Ravishankar, H. Aghajan, A. K. Roy-Chowdhury, and D. Terzopoulos,
editors. Distributed Video Sensor Networks. Springer, 1st edition, February 2011.

[7] S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 232–237, 1998.

[8] G. R. Bradski. Computer vision face tracking for use in a perceptual user interface. Intel
Technology Journal Q2 1998, 1998.

[9] G. R. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
[10] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Online multi-

person tracking-by-detection from a single, uncalibrated camera. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 33(9):1820–1833, September 2011.

[11] W. Burger and B. Bhanu. Qualitative Motion Understanding. Kluwer international series
in engineering and computer science. Kluwer Academic Publishers, Boston, 1992.

[12] A. J. Carlisle. Applying the Particle Swarm Optimizer to Non-stationary Environments.
PhD thesis, Auburn University, 2002.

[13] M. Castrillón, O. Déniz, M. Hernández, and C. Guerra. ENCARA2: Real-time detection of
multiple faces at different resolutions in video streams. Journal of Visual Communication
and Image Representation (JVCIR), pages 130–140, 2007.

[14] T.-H. Chang and S. Gong. Tracking multiple people with a multi-camera system. In IEEE
Workshop on Multi-Object Tracking (MOT), pages 19–26, 2001.

[15] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton, M. Meingast, S. Oh,
S. Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang, J. Tygar, and S. Sastry. Citric: A
low-bandwidth wireless camera network platform. In Second ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC 2008), pages 1–10, Sept. 2008.

[16] W.-T. Chen, P.-Y. Chen, W.-S. Lee, and C.-F. Huang. Design and implementation of
a real time video surveillance system with wireless sensor networks. In IEEE Vehicular
Technology Conference (VTC Spring 2008), pages 218–222, May 2008.

[17] C.-M. Cheng and S.-H. Lai. An integrated approach to 3d face model reconstruction from
video. In 2001 IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces
and Gestures in Real-Time Systems, pages 16–22, 2001.

[18] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. First
European Conference on Artificial Life, 1991.

110



[19] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using
mean shift. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, pages 142–149 vol.2, 2000.

[20] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol-
ume 1, pages 886–893 vol. 1, June 2005.

[21] M. Deilamani and R. Asli. Moving object tracking based on mean shift algorithm and
features fusion. In 2011 International Symposium on Artificial Intelligence and Signal
Processing (AISP), pages 48–53, June 2011.

[22] W. T. Dempster and G. R. L. Gaughran. Properties of body segments based on size and
weight. American Journal of Anatomy, 1967.

[23] W. Ding, Z. Gong, S. Xie, and H. Zou. Real-time vision-based object tracking from a
moving platform in the air. IEEE/RSJ Int. Conf. on Robots and Systems, pages 681–685,
2006.

[24] S. Dockstader and A. Tekalp. Multiple camera tracking of interacting and occluded human
motion. Proceedings of the IEEE, 89(10):1441–1455, Oct 2001.

[25] M. Enzweiler and D. Gavrila. Integrated pedestrian classification and orientation estima-
tion. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 982–989, 2010.

[26] M. Fanany, M. Ohno, and I. Kumazawa. A scheme for reconstructing face from shading
using smooth projected polygon representation nn. In 2002 International Conference on
Image Processing (ICIP), volume 2, pages II–305 – II–308 vol.2, 2002.

[27] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-identification
by symmetry-driven accumulation of local features. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2360–2367, June 2010.

[28] L. G. Farkas. Anthropometry of the Head and Face. Raven Press, 1994.
[29] X. Fen and G. Ming. Pedestrian tracking using particle filter algorithm. In IEEE Inter-

national Conference on Electrical and Control Engineering (ICECE), pages 1478–1481,
2010.

[30] J. Ferryman and A. Ellis. PETS2010: Dataset and challenge. Seventh IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 143–150,
2010. http://pets2010.net/.

[31] FFmpeg Team. libavcodec: audio/video codec library, 2010.
[32] R. B. Fisher. The PETS04 surveillance ground-truth data sets. In IEEE International

Workshop on Performance Evaluation of Tracking and Surveillance (PETS), pages 1–5,
2004. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

[33] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera people tracking with a
probabilistic occupancy map. IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI), 30(2):267–282, 2008.

[34] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of
rc4. In RC4, Proceedings of the 4th Annual Workshop on Selected Areas of Cryptography,
pages 1–24, 2001.

[35] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2002.
[36] D. M. Gavrila. The visual analysis of human movement: a survey. Computer Vision and

Image Understanding (CVIU), 73(1):82–98, 1999.
[37] D. Gray, S. Brennan, and H. Tao. Evaluating appearance models for recognition, reac-

quisition, and tracking. In IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance (PETS), 2007.

[38] Z. Hao, X. Zhang, P. Yu, and H. Li. Video object tracing based on particle filter with ant
colony optimization. In Second IEEE International Conference on Advanced Computer
Control (ICACC), volume 3, pages 232–236, 2010.

[39] P. Hewitt and D. Dobberfuhl. The science and art of proportionality. Science Scope,
27(4):30–31, 2004.

[40] S. Ince and J. Konrad. Occlusion-aware optical flow estimation. IEEE Transactions on
Image Processing (TIP), 17(8):1443–1451, August 2008.

111



[41] M. Isard and A. Blake. CONDENSATION: Conditional density propagation for visual
tracking. International Journal of Computer Vision (IJCV), 29:5–28, 1998.

[42] F. Jean, R. Bergevin, and A. Albu. Body tracking in human walk from monocular video
sequences. In Second Canadian Conference on Computer and Robot Vision (CRV), pages
144–151, May 2005.

[43] N. Joshi, S. Avidan, W. Matusik, and D. Kriegman. Synthetic aperture tracking: Tracking
through occlusions. In Eleventh IEEE International Conference on Computer Vision
(ICCV), pages 1–8, October 2007.

[44] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME Journal of Basic Engineering, (82 (Series D)):35–45, 1960.

[45] J. Kang, I. Cohen, G. Medioni, and C. Yuan. Detection and tracking of moving objects
from a moving platform in presence of strong parallax. ICCV 2005, 1:10–17 Vol. 1, 2005.

[46] D. Karaboga. An idea based on honey bee swarm for numerical optimization. Techn Rep
TR06 Erciyes Univ Press Erciyes, 129(2):2865, 2005.

[47] J. Kennedy and R. Eberhart. Particle swarm optimization. International Conference on
Neural Networks (ICNN), 4:1942–1948 vol.4, 1995.

[48] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin. Camera mote with a high-performance
parallel processor for real-time frame-based video processing. In IEEE Conference on
Advanced Video and Signal Based Surveillance (PAVSS 2007), pages 69–74, Sept. 2007.

[49] C. M. Kohlhoff. Boost.Asio: a cross-platform c++ library for network and low-level I/O
programming, 2010.

[50] M. Komeili, N. Armanfard, and E. Kabir. A fuzzy approach for multi-feature pedestrian
tracking with particle filter. In IST 2008, pages 570–575, 2008.

[51] J. Landabaso, M. Pardas, and J. Casas. Reconstruction of 3d shapes considering inconsis-
tent 2d silhouettes. In 2006 IEEE International Conference on Image Processing (ICIP),
pages 2209–2212, oct. 2006.

[52] V. Le, Y. Hu, and T. Huang. A quantitative evaluation for 3d face reconstruction al-
gorithms. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1269–1272, April 2009.

[53] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of
avatars animated with human motion data. In ACM Special Interest Group on Graphics
and Interactive Techniques (SIGGRAPH), pages 491–500, New York, NY, USA, 2002.
ACM.

[54] V. Lepetit and P. Fua. Monocular model-based 3d tracking of rigid objects. Foundations
and Trends in Computer Graphics and Vision (FTCGV), 1(1):1–89, 2005.

[55] M. Li, Z. Zhang, K. Huang, and T. Tan. Rapid and robust human detection and tracking
based on omega-shape features. In Sixteenth IEEE International Conference on Image
Processing (ICIP), pages 2545–2548, November 2009.

[56] N. Li, B. Yan, and G. Chen. Measurement study on wireless camera networks. Sec-
ond ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC 2008),
pages 1–10, Sept. 2008.

[57] Y. Li and B. Bhanu. Fusion of multiple trackers in video networks. In Fifth ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC), pages 1–6, August
2011.

[58] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-target
tracker for crowded scene. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2953–2960, June 2009.

[59] Z. Li, Q. Tang, and N. Sang. Improved mean shift algorithm for occlusion pedestrian
tracking. IET Electronics Letters (EL), 44(10):622–623, 2008.

[60] J. Lim and D. Kriegman. Tracking humans using prior and learned representations of
shape and appearance. In Sixth IEEE International Conference on Automatic Face and
Gesture Recognition (AFFG), pages 869–874, May 2004.

[61] S. Lim, J. Apostolopoulos, and A. Gamal. Optical flow estimation using temporally
oversampled video. IEEE Transactions on Image Processing (TIP), 14(8):1074–1087,
August 2005.

112



[62] S. Lim and A. Gamal. Optical flow estimation using high frame rate sequences. In IEEE
International Conference on Image Processing (ICIP), volume 2, pages 925–928 vol.2, Oct
2001.

[63] H. Lu, W. Zhang, F. Yang, and X. Wang. Robust tracking based on PSO and on-line
AdaBoost. In Fifth IEEE Seventh International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP), pages 690–693, 2009.

[64] B. D. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In International Joint Conferences on Artificial Intelligence (IJCAI),
pages 674–679, 1981.

[65] I. Microsoft. Microsoft foundation classes (MFC), 1992-2008.
[66] Network Working Group. RFC 2435: RTP payload format for JPEG-compressed video,

1998.
[67] Network Working Group. RFC 2616: Hypertext transfer protocol – HTTP/1.1, 1999.
[68] H. T. Nguyen and B. Bhanu. Tracking multiple objects in non-stationary video. In

Eleventh ACM/IEEE Annual Conference on Genetic and Evolutionary Computation
(GECCO), pages 1561–1568, July 2009.

[69] H. T. Nguyen and B. Bhanu. Tracking pedestrians with bacterial foraging optimization
swarms. In IEEE Congress on Evolutionary Computation (CEC), July 2011.

[70] H. T. Nguyen, B. Bhanu, A. Patel, and R. Diaz. VideoWeb: Design of a wireless camera
network for real-time monitoring of activities. In Proceedings of the Third ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC 2009), August 2009.

[71] H. T. Nguyen, B. Bhanu, A. Patel, and R. Diaz. Design and optimization of the VideoWeb
wireless camera network. EURASIP Journal on Image and Video Processing (JIVP),
(865803), 2010.

[72] T. B. Nguyen and S. T. Chung. An improved real-time blob detection for visual surveil-
lance. In CISP 2009, pages 1–5, 2009.

[73] Y. Owechko and S. Medasani. Cognitive swarms for rapid detection of objects and asso-
ciations in visual imagery. IEEE Swarm Intelligence Symposium, pages 420–423, 2005.

[74] C. Park and P. H. Chou. eCAM: ultra compact, high data-rate wireless sensor node with
a miniature camera. In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 359–360, New York, NY, USA, 2006. ACM.

[75] H. Park, J. Burke, and M. B. Srivastava. Design and implementation of a wireless sensor
network for intelligent light control. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks, pages 370–379, New York, NY,
USA, 2007. ACM.

[76] K. M. Passino. Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems Magazine (CSM), Vol. 22, No. 3:52–67, 2002.

[77] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for pose
and illumination invariant face recognition. In Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pages 296–301, September 2009.

[78] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The feret evaluation methodology for face-
recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 22(10):1090–1104, October 2000.

[79] R. Pockaj. Mpeg-4 facial definition parameter specifications. ISO/IEC MPEG-4 Part 1
(Systems), 1998.

[80] R. Quinlan. C4.5. http://www.rulequest.com/Personal/.
[81] M. Quinn, R. Mudumbai, T. Kuo, Z. Ni, C. D. Leo, and B. S. Manjunath. Visnet: A

distributed vision testbed. In Second ACM/IEEE International Conference on Distributed
Smart Cameras (ICDSC 2008), pages 364–371, Sep 2008.

[82] D. Ramanan, D. Forsyth, and A. Zisserman. Tracking people by learning their appearance.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29(1):65–81,
January 2007.

[83] S. Romdhani and T. Vetter. Efficient, robust and accurate fitting of a 3d morphable
model. In 9th IEEE International Conference on Computer Vision (ICCV), volume 1,
pages 59–66, oct. 2003.

113



[84] A. K. Roy-Chowdhury and R. Chellappa. Face reconstruction from video using uncertainty
analysis and a generic model. Computer Vision and Image Understanding (CVIU), 91(1-
2):188–213, 2003.

[85] P. Saisan, S. Medasani, and Y. Owechko. Multi-view classifier swarms for pedestrian
detection and tracking. In CVPR Workshops 2005, page 18, 2005.

[86] J. Saragih, S. Lucey, and J. Cohn. Face alignment through subspace constrained mean-
shifts. In 12th IEEE International Conference on Computer Vision (ICCV), pages 1034–
1041, October 2009.

[87] D. S. Sen Wang, Lei Zhang. Face reconstruction across different poses and arbitrary
illumination conditions (avbpa). In Biometric Authentication Workshop, pages 91–101,
2005.

[88] N. Seo. OpenCVX: Yet another OpenCV eXtension. http://code.google.com/p/

opencvx/.
[89] L. G. Shapiro and G. Stockman. Computer Vision. Prentice Hall, January 2001.
[90] K. Shoemake. Animating rotation with quaternion curves. ACM Siggraph Computer

Graphics, 19:245–254, 1985.
[91] B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury. A stochastic graph evolu-

tion framework for robust multi-target tracking. In Eleventh European Conference on
Computer Vision (ECCV), pages 605–619, Berlin, Heidelberg, 2010. Springer-Verlag.

[92] M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision
(IJCV), 7(1):11–32, 1991.

[93] T. Teixeira, D. Lymberopoulos, E. Culurciello, Y. Aloimonos, and A. Savvides. A
lightweight camera sensor network operating on symbolic information. In First Work-
shop on Distributed Smart Cameras 2006, November 2006.

[94] D. Teodorovic, P. Lucic, G. Markovic, and M. D. Orco. Bee colony optimization: Prin-
ciples and applications. In Eighth Seminar on Neural Network Applications in Electrical
Engineering (NEUREL), pages 151–156, September 2006.

[95] The MathWorks. MATLAB, 1994-2012.
[96] F. van den Bergh and A. Engelbrecht. A cooperative approach to particle swarm opti-

mization. IEEE Transactions on Evolutionary Computation (TEVC), 8(3):225–239, June
2004.

[97] P. Viola and M. Jones. Robust real-time object detection. Second International Workshop
on Statistical and Computational Theories of Vision (SCTV), 2001.

[98] D. Vlasic, M. Brand, H. Pfister, and J. Popovi’c. Face transfer with multilinear models.
ACM Transactions on Graphics (TOG), 24(3):426–433, 2005.

[99] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time combined 2d+3d active appear-
ance models. In Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages II–535 – II–542 Vol.2, June-2
July 2004.

[100] J. Xing, H. Ai, and S. Lao. Multiple human tracking based on multi-view upper-body
detection and discriminative learning. In 20th IEEE International Conference on Pattern
Recognition (ICPR), pages 1698–1701, aug. 2010.

[101] F. Xu and M. Gao. Human detection and tracking based on HOG and particle filter. In
CISP 2010, volume 3, pages 1503–1507, 2010.

[102] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,
38(4):13, 2006.

[103] J. Yu and B. Bhanu. Super-resolution of deformed facial images in video. In 15th IEEE
International Conference on Image Processing (ICIP), pages 1160–1163, October 2008.

[104] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object tracking using
network flows. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8, June 2008.

[105] X. Zhang, W. Hu, W. Li, W. Qu, and S. Maybank. Multi-object tracking via species
based particle swarm optimization. In 12th IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 1105–1112, October 2009.

114



[106] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. Sequential particle swarm optimization
for visual tracking. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8, June 2008.

[107] Z. Zhang, H. Gunes, and M. Piccardi. Tracking people in crowds by a part matching
approach. In IEEE Fifth International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 88–95, September 2008.

[108] T. Zhao, M. Aggarwal, R. Kumar, and H. Sawhney. Real-time wide area multi-camera
stereo tracking. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 976–983 vol. 1, June 2005.

[109] T. Zhao, R. Nevatia, and B. Wu. Segmentation and tracking of multiple humans in
crowded environments. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 30(7):1198–1211, July 2008.

[110] Y. Zheng and Y. Meng. The PSO-based adaptive window for people tracking. In First
IEEE Symposium on Computational Intelligence for Security and Defence Applications
(CISDA), pages 23–29, 2007.

[111] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In
17th IEEE International Conference on Pattern Recognition (ICPR), volume 2, pages
28–31, 2004.

[112] Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image pixel
for the task of background subtraction. Pattern Recognition Letters (PRL), 27:773–780,
2006.

115




