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Abstract

The experimental advantages of zebrafish make this model system highly amenable to the field of dermatology. Zebrafish skin
development is similar to humans and its genome is ~70% orthologous to the human genome. Its external developmental process
allows for genetic manipulation and analysis of embryogenesis within a short time frame with all important internal organs and
skin compartments formed within 6 days. Zebrafish models of cutaneous human diseases offer insight into pathogenesis and a
unique platform for testing of potential therapies. This review details the specific advantages of zebrafish and highlights its use in
dermatological research.
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Introduction

Animal models help probe cutaneous pathophysiology and facilitate testing of treatments. Human diseases have been modeled in
mice, through “knock-out” (KO) animals or transgenic mice mutants, but mice as a model system have limitations including high
cost of model development, limited litter size, and a relatively long generation time [1]. Alternative animal model systems may
help address these limitations.

The zebrafish (Danio rerio) is a tropical freshwater fish belonging to the minnow family (Figure 1). Zebrafish are useful models
due to ease of embryological manipulation and in vivo transparency of cell-biological events and have been used in modeling
several human diseases [1]. Forward genetic screens have generated zebrafish models of monogenic human disease, and
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transgenic approaches enable zebrafish to model acquired diseases [2]. Zebrafish can also be used for drug screening, target

identification, and toxicology [3].

Advantages of the Zebrafish Model System

Zebrafish have a remarkable similarity to humans in genetics and skin development. Approximately 70% of human genes have a
zebrafish counterpart, and 84% of the genes that cause human diseases have a zebrafish orthologue [4]. The zebrafish model
system also has the advantage of approximately 50-100 embryos obtained per laying.

Zebrafish embryos are optically transparent during the first several days (Figure 1) [5]. The external development process
facilitates testing embryos with potential therapies. Zebrafish are easily maintained in the laboratory setting with a rapid rate of
maturation from embryos to fully developed fish. Organ structures are identifiable just 24 hours post fertilization (hpf), and the
epidermis and dermis can be recognized. At 5-6 days post fertilization (dpf), organogenesis is largely completed, and skin consists

of distinct compartments.

Figure 1. Timeline of Zebrafish Development a) Zebrafish egg, which is surrounded by a transparent chorion 10 minutes post fertilization. b)
Dechorionated zebrafish 24 hours post fertilization. c) Zebrafish 48 hours post fertilization. d) Zebrafish 4 days post fertilization. ) Adult
zebrafish. f) Close up of adult zebrafish showing melanophores (arrowhead)

Zebrafish Skin Development, Structure and Organization

Similar to humans, zebrafish skin has three compartments: epidermis, dermis and hypodermis (Table 1). The entire skin
development can be comprehensively studied within a very short time window. The basement membrane may be formed as early
as 32 hpf, and lamina lucida and lamina densa can be identified by transmission electron microscopy at 48 hpf [6].

Table 1. Epidermal Organization in Zebrafish Skin

Structure Location Key Function (s) Human Equivalent
Cuticle Epidermis Protection, antimicrobial factors Keratinized epithelium
Microridges Epidermis Support cuticle, improve secretion No equivalent
Superficial stratum Epidermis Stability, gas exchange, shock protection Stratum granulosum
Intermediate stratum Epidermis Mucous goblet cells, club cells, sensory cells, Stratum spinosum
non-differentiated cells
Basal stratum Epidermis Attachment to dermis, hemidesmosomes Stratum basale
Lamina lucida BMZ Contains laminin and integrin Lamina lucida
Lamina densa BMZ Contains collagen Lamina densa



Hemidesmosomes Epidermis, Attach basal layer to extracellular basal lamina  Hemidesmosomes

BMZ

Dermis
Desmosomes Epidermis Adhesive junctions of epithelia Desmosomes
Lateral line Epidermis Sensory organ of movement and vibrations Inner ear hair cells
Melanocytes Dermis Pigmentation, protection against UV-radiation ~ Melanocytes
Scales Dermis Protection, calcium source Hair, teeth
Blood vessel Dermis Blood transport, supply nutrition Blood vessel
Adipocyte Hypodermis  Insulation, calorie reservoir, absorbs trauma Fat cells

BMZ: Basement Membrane Zone

At 1 dpf, well-demarcated keratinocytes are present with distinct cell-cell borders. In the middle of the epidermal surface are
developing microridges, which become well organized by 6 dpf [5]. Pigmented melanocytes develop from neural crest cells,
appear at 24 hpf [7, 8]. The number of melanocytes increases through 60 hpf, reaching approximately 400 melanocytes. Unlike
mammalian melanocytes that transfer melanosomes to keratinocytes, zebrafish melanocytes retain melanin (Figure 1F)[9].

At 6 dpf, the zebrafish skin has a fully distinguished epidermis and dermis. The epidermis is composed of two cell layers: a basal
layer and a superficial layer of keratinocytes [6]. The epidermis is readily noticeable and clearly separated from the underlying
connective tissue stroma by a basement membrane. On the dermal side there is a collagenous stroma with adjacent fibroblastic
cells with well-developed rough endoplasmic reticulum [6].

By 20 dpf, the epidermis increases to three layers: the superficial stratum, the intermediate stratum, and the basal stratum (Table
1). The superficial stratum acts as a seal between the animal and its surroundings. Its surface has actin-rich microridges that
maintain the cuticle layer on the surface of the fish [10, 11]. The cuticle is a mucous layer heavily enriched with antimicrobial
factors, including antibodies, complement, lysozyme, C-reactive protein, lectins, proteases, transferrin, and polypeptide antibiotics
[12]. Beneath this protective mucus, cell-cell junctions of the superficial epithelial cells provide epithelial coherence. The
functions of these tight junctions in fish skin may be relevant for dermatologists investigating the role of tight junctions expressed
by keratinocytes and Langerhans cells [13, 14].

Unlike mammalian skin, zebrafish epithelial cells are only replaced upon death or injury, and all epidermal cells appear capable of
proliferation [6]. In the intermediate stratum, most epithelial cells remain non-differentiated, providing a potential stem cell
reservoir for keratinocytes . Also in this intermediate layer are club cells, sensory cells, and mucous cells that provide the mucous
layer on the zebrafish surface. [15]. The third, deep region of the epidermis is the basal stratum, with hemidesmosomes attaching
epidermis to the underlying dermis.

Cellular Junctions in the Zebrafish Epidermis

The zebrafish genome contains homologues of all mammalian hemidesmosome components (Table 1) [16]. Hemidesmosomes are
found in the dorsal and lateral epidermis of zebrafish, connecting the basal layer to the extracellular basal lamina. Integrin a6
(Itga6) is the membrane receptor of zebrafish hemidesmosomes. Itga6 localizes to the lateral and basal domains of basal epidermal
cells at 2.5 dpf and clusters with intermediate filaments prior to hemidesmosome formation [17]. Hemidesmosomes first become
visible in the basal epidermal cells at 4 dpf, and mature in size and shape at 5.5 dpf. Once hemidesmosome clusters appear, the
laterally-localized Itga6 molecules move to the basal side of the epidermis via the cell polarity protein Lgl2 and vesicle trafficking
protein Clint1[18, 19]. Improper transport of Itga6 results in defective hemidesmosome assembly, which manifests as epidermal
detachment [17].

The adhesion molecules of desmosomes, desmocollin (Dsc) and desmoglein (Dsg), are expressed early in zebrafish development.
Zebrafish contain an orthologue of mammalian desmocollin 1, and two closely related orthologues of mammalian desmoglein 2
[20]. Fully formed desmosomes are present between epidermal cells beginning at 12 hpf. Dsc and Dsg knockdowns have retarded
head development, altered somite morphogenesis, blebbing of the epidermis and some embryonic lethality [20].

Zebrafish Basement Membrane



Zebrafish cutaneous basement membrane is present by 32hpf and fully differentiated by 48hpf. The lamina lucida accumulates
granular material while collagen fibrils insert into the lamina densa, facilitating the dermal-epidermal support and binding (Table
1) [6]. The basement membrane is composed of collagen 1V, VII, X1l and X1V, which link the dermis to the basement membrane
[5, 21, 22]. Also present are laminin, a3-integrin, a6-integrin, and Frasl [5, 23].

Differences between Zebrafish and Mammalian Epidermal Development

Around 30 dpf, the epidermis of adult zebrafish is covered by scales resulting from a genetic cascade that includes sonic hedgehog
expression [24]. In contrast to human epidermis, the epidermis of zebrafish is non-keratinized. Keratinization is uncommon in
fish, occurring only in specific sites that are subjected to abrasion, such as adhesive organs, lips and pads, and the epidermal
surface of some species capable of emerging from the water [25].

Zebrafish lack hair follicles, and sebaceous glands but have specialized aquatic structures including mucous secreting cells and the
lateral line containing mechanosensory neuromast hair cells that sense movement and vibrations in the water (Table 1) [26]. The
hair cells are functionally analogous to mammalian inner ear cells, providing a model system for studying hair cell migration and
regeneration [27].

Zebrafish and Human Cutaneous Gene Expression

The architecture of fish skin is highly homologous to the epidermis of mammals [28, 29]. Markers for studying zebrafish
epidermal development have been defined that compare to mammalian epidermal development, revealing common developmental
pathways, such as sonic hedgehog (SHH), bone morphogenetic protein (BMP), and Wnt signaling pathways [30, 31].

Reverse transcription (RT)-PCR of zebrafish for selected genes expressed in human skin showed several epidermal marker genes,
including keratins 1 and 5, the 230kDa bullous pemphigoid antigenl, and 500kDa plectin, are expressed in zebrafish skin as early
as 1 dpf. Basement membrane genes, including collagens VIl and XVII (bullous pemphigoid antigen 2), and subunit polypeptides
of type IV collagen are detected. Collagens present in human dermis, including collagens I, V, and VI, are also expressed in
zebrafish skin at 6 dpf, while collagens XII, X1V, XV, XVI, XVIII, and XIX are detected at different stages of zebrafish
development [5]. Molecular genetic substances including the retinol-binding protein 4 and apolipoprotein Eb are in both zebrafish
and humans in epidermal and dermal development [32]. Thus, the zebrafish gene expression profile reveals a wide repertoire of
genes also present in the developing human skin.

The zebrafish genome does not appear to contain genes encoding filaggrin, involucrin, or trichohyalin granules [5]. The absence
of these genes may reflect the lack of keratinization. This difference clearly limits the use of zebrafish as a model for some human
epidermal disorders.

Genetic Manipulation in the Development of a Zebrafish Model

The availability of spontaneous and engineered zebrafish mutants with defined skin phenotypes has made this model system an
attractive alternative to mutant mice for cutaneous in vivo experimentation. One approach involves use of ethylnitrosourea (ENU)
or random mutagenesis is carried out using retroviral techniques to introduce discrete point mutations into the genome. Following
mutagenesis, embryos are screened for cutaneous phenotypes, easily facilitated by the transparency of the developing fish. Large-
scale forward-genetics screens also identify mutated genes orthologous to those causing human heritable diseases with phenotypic
similarities.

One such example is the zebrafish orthologue to human kindlin-1, mutations of which result in Kindler Syndrome, a congenital
disorder characterized by skin fragility, photosensitivity, and blistering [33]. A forward genetic screen identified a zebrafish
Kindlin-1 loss-of-function mutant that develops the same mechanical trauma-induced epidermal fragility as seen in Kindler
syndrome [34]. This mutant zebrafish provides a unique model system to study epidermal adhesion mechanisms in vivo. Such
large scale mutagenesis and screening strategies generate zebrafish models of a wide variety of skin disorders, and are now being
increasingly employed in drug discovery and drug development programs [1].

In addition to traditional chemical mutagenesis and insertional mutagenesis methods, there is the more recently developed
technology of gene-breaking transposon (GBT). GBT mutagenesis system integrates a gene-breaking transposon containing a
protein trap that efficiently disrupts gene expression with >97% knockdown of normal transcript amounts (Figure 2a) [35]. This



method allows for systematic conditional mutant alleles using Cre recombinase or morpholinos targeted toward the splice site.
This technology has identified and characterized new genes, expression patterns, and phenotypes in the vasculature, muscle, and
even skin development [36-38].
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Figure 2. Gene manipulating technologies in zebrafish. (a) Diagram of Gene-Breaking Transposon (GBT). Gene-breaking occurs during
transcription of an endogenous locus with a GBT insertion. The splice acceptor in the 5” protein trap cassette intercepts splicing machinery,
resulting in a truncated transcript. The 3” exon trap cassette uses the splice donor to create a GFP fusion transcript with the remaining
downstream endogenous transcript. GBT alleles are revertible because LoxP sites flank the cassettes, allowing for Cre recombinase excision of
mutagenic elements. ITR, inverted terminal repeat; Poly(A)+, polyadenylation signal; STOP, extra transcriptional terminator. (b) Morpholinos:
Splice blocking morpholinos bind at the exon-intron junction, preventing normal splicing activity and preventing mRNA export from the
nucleus. Translation blocking morpholinos bind to the 5’-untranslated region of mMRNA, thus preventing ribosomal activity and binding.

The Zebrafish Integument Project aims to identify new skin genes and phenotypes in zebrafish development [38]. In vivo selection
for skin-specific gene expression identified GBT alleles of genes involved in skin development and human skin diseases, such as
frasl. In humans, loss-of-function mutations in FRAS1 cause the rare congenital disorder Fraser Syndrome, which is characterized
by epidermal or epithelial blistering during fetal development [39]. An ENU-induced zebrafish mutant of Frasl has been defined,
but lethal craniofacial defects limit investigations into epidermal blistering [23]. GBT alleles of fras1 fully phenocopy the mutant
zebrafish model of Fraser Syndrome and allows for allele reversion spatially and temporally. The ability to revert can rescue the
lethal craniofacial defects of frasl mutants, thus allowing for later investigations of epidermal blistering [40].

Another approach to zebrafish model development is specific gene expression “knockdown” by morpholino-based antisense
oligonucleotides [41, 42]. Morpholinos are injected into a 1-to-4 cell embryo and allow for manipulation of expression of specific
genes. Morpholinos inhibit translation or splicing of a mature mRNA by targeting and blocking the translation initiation codon
(AUG) or splice junction, respectively (Figure 2b). Morpholino knockdown specificity can be confirmed by co-injection of the



corresponding mRNA or protein from another species to counteract the phenotype development [41]. Additionally, microinjection
of purified mMRNA (without morpholinos) results in gene overexpression.

Morpholinos have a short half-life (up to 5 days), and therefore this approach is most suitable for evaluation of early zebrafish
development. Therefore, the morpholino knockdown phenotype is most likely to reproduce the clinical manifestations in human
diseases that develop during prenatal development or shortly after birth. One example includes the morpholino knockdown of the
abcal? gene that is associated with harlequin ichthyosis and a variant of lamellar ichthyosis [43]. In harlequin ichythyosis,
newborns are born encased in a thick collodion membrane that distorts their facial features, limits mobility of the extremities as
well as the chest wall, and results in a reduced lifespan with death in childhood or adolescence if they survive the immediate post-
natal period. Knockdown of the abcal2 resulted in morphant fish with absent microridge and development of scale-like spicules
on the skin surface. These phenotypic manifestations resemble the scales seen in human ichthyosis [43].

Dermatological Research in the Zebrafish Model System

Zebrafish are advantageous in studying skin development and pathology because they can mimic human skin disease. One
instance is the morpholino knockdown of the col17ala gene expressed in skin hemidesmosomal complexes. Knockdown fish
manifest blistering of the dermis similar to junctional epidermolysis bullosa due to mutations in the COL17A1 gene [44]. The
zebrafish system is becoming widely recognized as more and more dermatological studies use zebrafish. (Table 2)

Table 2. Zebrafish Models of Human Skin Conditions

Human Condition Zebrafish Model  Reference
Kindler Syndrome kindlin-1 Postel et al. 2013
Fraser Syndrome frasl Carney et al. 2010, Talbot et al. 2012
Human Ichythyosis abcal2 Li, Frank, Akiyama, et al. 2011
Epidermolysis bullosa coll7ala Kim et al. 2010
Melanoma mitfa-BRAF®F  Ppatton et al. 2005
Psoriasis clintl Dodd et al. 2009
penner Sonawane et al. 2005
psoriasis Webb, Driever, and Kimelman 2008
hail Carney et al. 2007

Certain aspects of zebrafish skin development also make this model system appealing to research. Zebrafish have a neural crest-
derived pigment cell system that includes melanocytes, allowing for investigations into the development and pathology of
pigmentation [45]. The increase in melanocyte number from 60 hpf to 2 weeks provides a window to explore melanocyte
regeneration independently of normal ontogenetic mechanisms for melanocyte development. Furthermore, the fact that zebrafish
melanocytes retain melanin serves as a reliable and useful cell-type marker. A number of zebrafish pigmentation mutants that
affect melanocyte specification, differentiation, and function are available. A transgenic zebrafish model for melanoma
overexpresses activated human BRAF oncogene in neural crest cells, and inactivation of p53 in these fish results in melanoma
formation [46]. Moreover, xenografting of human melanoma cells into early zebrafish embryos allow for observation of
tumorigenesis and tumor-host interactions [47]. These models yield valuable insight into melanoma research, serving as a tool for
testing therapies in preventing and treating melanoma.

Other zebrafish mutants have provided clues to epidermal development by exhibiting psoriasis-like phenotypes [17, 19, 30, 48].
The clintl mutant has chronic inflammation characterized by increased interleukin 1f expression, leukocyte infiltration, and
phagocytosis of cellular debris [19]. These mutants display keratinocyte hyperproliferation, the development of epidermal
aggregates, and inflammation similar to psoriasis seen in humans.

Another area of research is vertebrate skin repair. Zebrafish show regeneration in fins, spinal cord, optic nerve, heart and skin [49].
Research of mammalian wound healing may benefit from zebrafish tissue regeneration, such as the regrowth of amputated caudal
fins, or zebrafish blood vessel formation [50, 51]. Based on studies of full-thickness wounds inflicted onto the flank of adult
zebrafish, the major steps of cutaneous wound healing are conserved among adult mammals and adult zebrafish [52]. However,
the mechanisms of fish cutaneous regeneration still have a long way to go before they can be harnessed in healing human skin.



Future research may investigate the role of the fish epidermis in innate protective functions against infections. Antimicrobrial
peptides (AMPS), such as hepcidin, defensin-like peptides, certain apolipoproteins, and piscidin provide an antimicrobial defense
system against pathogenic bacteria, fungi, algae, viruses or parasites [53-56]. Research may provide insight into the innate
immune system of mouse and human skin [57, 58]. AMPs in fish skin may reveal potential AMPs in the search for mammalian
homologues. Fish-derived AMPs could be used in human skin therapy, such as patients with atopic dermatitis whose skin displays
pathologically heavy colonization by bacteria [59].

Systematic exploration of zebrafish skin models is biologically, clinically, and technologically relevant. The zebrafish model
system has contributed to investigative dermatology and offers opportunities for future research. Zebrafish allow for use of
molecular tools, genetic manipulation, and a platform for therapeutic testing. Through the use of these technologies, zebrafish
have become a valuable animal model for the study of cutaneous human disease.
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