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Abstract

Optimal Control of Hybrid Systems in Air Traffic Applications

by

Maryam Kamgarpour

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Claire J. Tomlin, Co-chair

Professor John K. Hedrick, Co-chair

Growing concerns over the scalability of air traffic operations, air transportation fuel emis-
sions and prices, as well as the advent of communication and sensing technologies motivate
improvements to the air traffic management system. To address such improvements, in this
thesis a hybrid dynamical model as an abstraction of the air traffic system is considered.
Wind and hazardous weather impacts are included using a stochastic model. This thesis
focuses on the design of algorithms for verification and control of hybrid and stochastic dy-
namical systems and the application of these algorithms to air traffic management problems.

In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid
systems is proposed based on extensions of classical optimal control techniques. This algo-
rithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind
and storms. In the stochastic setting, the verification problem of reaching a target set while
avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external
agents’ influence on system dynamics. The solution approach is applied to air traffic conflict
prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the haz-
ardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid
framework is extended to account for stochastic target and safe sets. This methodology is
used to maximize the probability of the safety of aircraft paths through hazardous weather.

Finally, the problem of optimization of arrival air traffic and runway configuration in dense
airspace subject to stochastic weather data is addressed. This problem is formulated as a hy-
brid optimal control problem and is solved with a hierarchical approach that decouples safety
and performance. As illustrated with this problem, the large scale of air traffic operations
motivates future work on the efficient implementation of the proposed algorithms.
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Chapter 1

Introduction

This thesis is concerned with development of control synthesis tools for hybrid dynamical
systems. Several applications from the air traffic control domain motivated the formulations
of the theoretical research presented here and have been solved using the numerical techniques
developed.

1.1 Air Traffic Control Challenges

Air Traffic Management (ATM) is responsible for safe, efficient and sustainable operation
in civil aviation. Since its birth in the 1920s, the ATM system has gradually evolved from
its primitive form that consisted of a set of simple operation rules to its current version
that is a complex network of sensing, communication and control subsystems. Although
various automation systems have been continually introduced, the backbone of the current
system was formed during the 1950s when the introduction of radar surveillance and radio
communication technologies revolutionized the way the system was operating [1]. After
more than half a century, a paradigm shift in the current ATM system is being pursued
in order to address the continuous growth of air traffic demand, skyrocketing fuel prices
and growing concerns over the environmental impact of air transportation. The proposed
developments to accommodate this shift are being addressed in Europe within the framework
of the Single European Sky ATM Research (SESAR) [2], and in the United States within
the Next Generation (NextGen) Air Transportation systems [3].

It is proposed that the ATM system can be considerably improved by properly incorporat-
ing modern sensing and information technologies to enable reliable communication, real-time
common situational awareness for pilots and air traffic controllers, and prompt provably safe
decision support systems. The NextGen concept advocates for an evolution from the current
ground-based navigation system to a satellite-based ATM system, where verbal communi-
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cations and ground radar systems are replaced with more reliable and accurate data-link
communications and Global Positioning Systems (GPS), so that many traffic control tasks
can be handled (semi)-automatically [4]. In addition, the increased automation in conflict de-
tection and resolution would facilitate 4D (space-time) Trajectory Based Operations (TBO),
in which individual flights would have the freedom to adjust their trajectories according to
real time traffic and weather conditions.

Currently, ATM imposes certain trajectory restrictions, such as flying through a rigid airway
structure, in order to guarantee safety and ease the task of air traffic controllers. Some of
these restrictions result in non-minimal fuel consumptions and hence higher operative costs
and emissions. The new concept of TBO allows optimization of individual aircraft trajecto-
ries while ensuring that the airspace is used safely and efficiently. An important problem in
implementing the TBO concept is designing trajectories which are optimal with respect to
a cost function determined by the pilot or the operating airline and are provably safe in the
presence of wind, hazardous weather and other aircraft. A natural modeling framework for
aircraft dynamics is a hybrid system abstraction consisting of discrete and continuous states
[5, 6, 7]. In this framework, the discrete states represent the flight modes and operating
procedures, while the continuous states describe the evolution of aircraft motion. Hence,
the task of optimal trajectory design can be formulated as an optimal control problem for a
hybrid system subject to constraints of collision and hazardous weather avoidance. It is also
important to consider the uncertainty due to wind and weather forecasts in the trajectory
planning problem. While a deterministic robust approach should account for the worst-case
of the uncertainty and consequently may result in sub-optimal and very conservative tra-
jectory design, a stochastic approach accounts for the uncertainty by designing trajectories
that have a probability of safety above a desired threshold.

A second area of improvement proposed by NextGen is regulation of air traffic operations
in super dense airspace in the proximity of airports. In airports with multiple intersecting
runways, such as the John F. Kennedy International Airport (JFK) in New York city, the
set of active runways, referred to as a runway configuration for arrival or departure, is chosen
from a larger set based on factors including the crosswind and tailwind magnitudes, visibil-
ity, traffic flow and noise abatement laws. The choice of runway configuration in a dense
airspace affects the arrival routes of incoming traffic to all nearby airports. For example, the
arrival routes of LaGuardia and Newark airport may be modified to accommodate for the
JFK runway configuration. Currently, unanticipated runway configuration switches not only
increase the workload of air traffic controllers and pilots, but also result in many approaching
aircraft being put into holding patterns. Consequently, the capacity lost during the tran-
sitional period of a runway configuration switch is referred to as “perishable capacity” and
the delays are propagated into the airspace far beyond the terminal area. It is a vision of
NextGen to use available weather and traffic forecast data in order to optimally schedule the
runway configuration, anticipate the required switching time between the configurations and
control the arrival traffic to minimize delays. For the problem of configuration planning, an
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appropriate mathematical model is a hybrid system abstraction in which the runway con-
figuration represents the discrete modes of the system and the aircraft configuration in the
airspace of interest represents the continuous state. Optimal runway scheduling subject to
weather constraints can then be posed as a hybrid optimal control problem.

1.2 Background on Control of Hybrid Systems

Hybrid dynamical models arise in systems in which discrete events interact with the con-
tinuous state evolution. One of the motivating application domains for the introduction of
hybrid models is the field of embedded systems in which software, represented as a finite-
state machine, interacts with a continuous physical process. Ever since their introduction,
hybrid models have been used for a large set of engineering problems, including air traffic
management [8, 5, 9], autonomous vehicle motion planning [10, 11], automotive control [12],
robotics [13], manufacturing systems [14], systems biology [15, 16, 17] and bipedal walking
[18]. In these applications, the behavior of the system can be described in terms of an
abstraction in which the discrete state, also referred to as a mode, can capture qualitative
behavior, for example the operating modes of a flight management system or the foot impact
of a bipedal walker, while the continuous state can capture quantitative characteristics such
as the velocity and heading of the aircraft or the joint angles of a biped.

The hybrid modeling framework combines the discrete event dynamical modeling approach
with the differential or difference equation modeling approach from classical control theory.
As such, analysis and control synthesis methods can be categorized based on the approaches
typically used for these systems. In the first approach, model checking and deductive theorem
proving from automata theory have been effective for certain classes of hybrid systems with
simple continuous dynamics, such as timed automata and linear hybrid automata [19, 20,
21, 22]. In order to apply these tools to more complex dynamics, approximate abstractions
of the system may be required [23]. In the second approach, tools for stability analysis,
reachability and control synthesis from classical control theory have been extended in order to
address verification and control of systems with multiple modes of operation [24]. In general,
additional assumptions on the discrete dynamics are imposed, such as the assumption of a
finite number of switches in finite time, and numerical tools have been restricted to certain
classes of hybrid systems, such as those with linear continuous dynamics in each discrete
mode.

Deterministic Hybrid Optimal Control

In order to address optimal control of hybrid systems from the control theoretic approach,
several researchers have extended the optimality conditions which were developed by Bell-
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man and Pontryagin for optimal control of nonlinear dynamical systems [25, 26, 27]. These
optimality conditions originated from the fields Calculus of Variations and Mathematical Op-
timization during the space exploration era of 1950’s and have formed the backbone of the
field of optimal control theory. While in the former Soviet Union, the work of Pontryagin re-
sulted in extensions of the Calculus of Variations into a set of necessary optimality conditions
[28], in the United States, dynamic programming developed by Bellman extended the earlier
work of Hamilton and Jacobi on classical physics and provided a set of sufficient optimality
conditions for the discrete-time optimal control problems [29], while Kalman provided the
continuous-time counterpart [30] and Isaac addressed the game formulation [31]. Although
theoretical results have been developed based on extensions of these necessary and sufficient
optimality conditions for hybrid systems, in practice, unless additional assumptions such as
linearity are made on the continuous dynamics, computation of an optimal control based on
these optimality conditions is difficult. Hence, development of efficient numerical methods
for optimal control of general hybrid dynamical systems is an active area of research.

Stochastic Hybrid Optimal Control & Verification

In many physical processes there are uncertainties in the evolution of the system dynamics,
either due to the presence of random noise or due to modeling imperfections. In addi-
tion, the evolution of the discrete and continuous state may be modeled probabilistically
through analysis of statistical data. For such cases, a natural modeling framework is that
of a Stochastic Hybrid System (SHS) [32, 33, 6, 34]. In a continuous-time stochastic hy-
brid system, research has focused on establishing certain desired properties of the model
such as existence of the solution process and the Markov property. These properties have
been derived for various classes of stochastic hybrid systems such as piecewise deterministic
Markov processes [35, 36], switching diffusions [37] and general stochastic hybrid systems
[38, 39]. The optimal control problem in the stochastic setting can be formulated in terms
of optimization of the expectation of an objective function of the state and inputs. Methods
based on dynamic programming have been shown to hold for a general class of stochastic
hybrid systems and the objective function has been characterized as a solution of a coupled
Hamilton-Jacobi-Bellman equation [39]. Computing numerical solutions of these equations
and obtaining an optimal control input remain as open problems.

In addition to optimization of an objective function, an important problem in systems anal-
ysis and control is verifying safety, that is, the trajectory of the system remains inside a safe
set, and reachability, that is, the trajectory reaches a desired target set. This problem has
been well-studied for deterministic dynamical systems and its connection to optimal con-
trol theory has been established [40, 41]. In addition, numerical tools have been developed
to compute the set of initial conditions which satisfy the reachability and safety properties
[42, 43]. In a stochastic framework, given that the state trajectory is probabilistic, safety
and target attainability are also characterized probabilistically. Thus, in this case the control
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synthesis problem is concerned with maximizing the probability of safety or reachability of
system trajectories. While for certain classes of stochastic hybrid systems the reachability
problem has been addressed either analytically [38] or computationally [44, 45], for a general
stochastic hybrid model in continuous-time, reachability results are not yet well-understood
[38]. Given that measurability results are easier to establish in discrete-time, research has
focused on discrete-time stochastic hybrid systems. Recently, research has explored safety,
and reachability verification, and control synthesis for this class of systems [46, 47]. Exten-
sions of results to more general dynamical models, developing fast numerical methods and
application of these methods to realistic problems are topics of ongoing research.

1.3 Contributions and Organization

In this thesis, we develop algorithms for optimal control of deterministic hybrid systems
(Chapter 2) and stochastic hybrid systems (Chapter 3 and 4). We also develop a framework
for optimizing arrival traffic and runway configuration planning (Chapter 5). The details of
the content of each chapter are as follows.

In Chapter 2, we focus on deterministic hybrid systems. Having a general and unified view-
point of hybrid systems makes development of an efficient numerical algorithm challenging.
Thus, we focus on nonlinear switched dynamical systems. These represent a class of hybrid
systems in which the continuous state does not exhibit jumps during discrete mode switches.
We assume the switches between discrete modes are controlled, that is, a control input can
choose the mode of operation. In our optimal control framework we include constraints on
inputs and states which may arise due to the physical limitations or requirements on the
system. Given that we account for constraints and nonlinear dynamics, our formulation is
general enough to apply to several engineering problems. We develop a computationally
feasible algorithm for addressing the optimal control of this class of problems. We illustrate
the applicability of the algorithm with a trajectory planning problem motivated by the TBO
concept. In our approach, different flight modes and operational procedures are combined
with the continuous dynamics of a realistic aircraft model of Airbus 320 in order to design
fuel optimal safe trajectories. The theoretical material in this chapter was presented in
[48, 49, 50, 51], while the aircraft trajectory planning case study appeared in [52].

In Chapter 3 we consider a more general hybrid modeling framework in which we account for
stochastic disturbances in the evolution of the continuous and discrete states. In addition,
we account for deterministic disturbances in the model. The motivation is that while some
classes of uncertainties, such as those by nature, are best modeled stochastically, some other
classes of uncertainties, such as those due to presence of agents with competing objectives,
are best modeled in the deterministic worst-case approach. For example, in a collision avoid-
ance scenario between two aircraft, on the one hand, wind affects the dynamics of aircraft
and the uncertainties in wind may be best accounted for through a stochastic framework.
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On the other hand, in the absence of communication between the aircraft, from the per-
spective of each aircraft the trajectory must be safe in the worst-case performance of the
other aircraft. Hence, a robust approach should be considered. We formulate a stochastic
hybrid dynamic zero-sum game between the control and the disturbance to address both
classes of uncertainties. To alleviate measurability difficulties, we consider our formulation
in discrete time. We develop an algorithm for synthesizing a control law that maximizes the
probability of safety and target attainability subject to worst-case deterministic disturbance
performance. We then address the collision prediction and resolution between two aircraft
using this proposed algorithm. The result is characterization of the maximum probability
of safety for any initial relative state of the two aircraft and a control policy for each air-
craft which achieves this probability under any physically realizable trajectory of the other
aircraft. The material in this chapter appeared partially in [53] and is in preparation for
submission [54].

In Chapter 4 we consider several extensions of the stochastic hybrid dynamic game frame-
work. First, we account for uncertain obstacles, such as those arising from forecasts of
hazardous weather, by modeling them as stochastic sets. We show how the verification
and control synthesis methodology for stochastic hybrid systems can be generalized to ad-
dress this problem. This theory is used to solve an aircraft trajectory planning problem in
which the objective is maximizing the probability of reaching a waypoint in the airspace
while avoiding hazardous weather. Next, we consider reachability in infinite horizon and
develop theoretical conditions under which the algorithm proposed in the previous chapter
converges. We apply this analysis to a pursuit-evasion game between a quadrotor helicopter
and a ground vehicle in which the objective of the helicopter is target attainability while
maintaining its position and velocity within certain safety bounds. The material in this
chapter is based on the papers presented in [55, 56] and a paper in preparation [57].

In Chapter 5 we visit the problem of runway configuration management in super dense
terminal airspaces. Here, our objective is determination of optimal runway configuration
sequences and switching times to ensure safety of landing aircraft and to minimize delays and
holding patterns. We develop an accurate model for the arrival traffic dynamics in terminal
airspace that takes into account weather uncertainties and runway configuration changes. We
model the air traffic control problem as an optimal control of a constrained hybrid system.
Then, we introduce a hierarchical algorithm for solving this particular problem which can
reduce complexity. We apply our results to a runway scheduling problem in the JFK airspace.
The material in this chapter was presented in [58, 59].

Finally, in Chapter 6 we outline some of our future work on the algorithm developments
based on the needs of realistic air traffic management scenarios.
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Chapter 2

Optimal Control of Deterministic
Constrained Switched Systems

We develop a numerical method for addressing the optimal control problem for constrained
switched nonlinear systems. First, we describe the problem and review the related work.
Then, we present our solution approach and an application of our resulting algorithm in
an aircraft trajectory planning problem. The material in this chapter was presented in
[48, 49, 50, 51, 52].

2.1 Background

Switched systems consist of a finite number of dynamical subsystems and a switching law that
describes which subsystem is active at a given time. In each subsystem, also referred to as a
mode, the evolution of the state is described by a set of differential or difference equations.
Switched systems usually refer to the class of hybrid systems in which the discrete mode
transitions are either triggered by an external input, or by the continuous states reaching
certain thresholds, and in which there are no discontinuities (jumps) in the state at the switch
times. Many hybrid models encountered in practice, such as automobiles and locomotives
with different gears [12, 60, 61, 62], DC-DC converters [63, 64], and biological systems [16, 65]
may be modeled as switched systems. In addition, complex nonlinear dynamics can be
decomposed into modes of operation, hence giving rise to switched systems, so that analysis
and controller design is simplified [11, 10].

In the most general form, optimal control of a switched system involves finding a mode
sequence, switch times between the modes and an input for each mode such that a cost
function is optimized while certain constraints on states and inputs are satisfied. Existence
of solutions to the optimal control problem has been addressed for various formulations of
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cost functions [66, 26]. Branicky’s seminal work, which presented many of the theoretical
underpinnings of hybrid systems in their most general form, also included a set of sufficient
conditions for the optimal control of such systems under an infinite horizon discounted cost
formulation [26]. However, computation of an optimal control based on these sufficient con-
ditions is difficult because it requires solving for a continuously differentiable value function
which satisfies a set of quasi-variational inequalities. Due to computational complexity, other
approaches that are based on the dynamic programming principle are applied to switched
systems either through approximations [67] or by making assumptions, such as linear or
affine continuous-state dynamics in each discrete mode [68, 69, 70].

Several researchers developed necessary optimality conditions for various classes of switched
systems based on variational analysis such as the Maximum Principle [71, 72, 25]. However,
numerical computation of the optimal control based on these necessary conditions is difficult.
For a fixed mode sequence, the determination of optimal switch times and input to each mode
can be addressed with classical Maximum Principle tools [27], or through extension of the
state to include switch times as part of an extended state [73]. Thus, one can formulate an
iterative two-stage algorithm in which at one stage, the optimal control problem for a fixed
mode sequence is solved and then at the other stage, the mode sequence is varied. The process
would be repeated until some desired convergence is met. The challenge then would be in
defining variation of the mode sequence in a computationally feasible way. While variations
based on Hamming distance [27] or enumeration of mode sequences [74] are proposed, the
trajectories generated from modification of a given mode sequence with such approaches
are not analytically comparable unless the optimal control problem is solved for each of the
candidate mode sequences; a task that is computationally complex. In [75], a method is
proposed to alleviate this problem for autonomous unconstrained switched systems. Here,
instead of resorting to brute force search, the sequence is updated by inserting a single
mode and computing the variation of the cost function as the duration of the inserted mode
approaches zero. This work inspired the development of our algorithm.

We consider a constrained nonlinear switched system with controlled switches, that is,
switches which are determined by a control input rather than by the state reaching pre-
scribed regions of state space. We develop a two-stage algorithm that divides the problem
into two nonlinear constrained optimization problems. Given a fixed mode sequence at one
stage, the mode duration and the input in each mode is optimized, through formulating
a conventional optimal control problem. At another stage, the mode sequence is varied
through inserting a single mode. We analytically characterize the variation of the cost and
the constraint functions due to this mode insertion. Consequently we are able to analytically
compare the cost resulted from the new mode sequence to that of the original one, through
solving an optimization problem, rather than solving the optimal control problem associated
with each mode sequence. The algorithm is used for realistic trajectory planning for an
Airbus 320 aircraft. Here, the discrete modes represent maneuvers and the constraints are
due to airspace safety requirements.
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2.2 Problem Statement and Solution Approach

We consider a switched dynamical system consisting of a set of subsystems, indexed by
Q = {1, 2, . . . ,M}, such that for each q ∈ Q, fq : Rn × Rm → Rn is a vector field that
describes the system dynamics in mode q. The system undergoes N switches in the time
interval [0, tf ] at switch times s1, s2, . . . , sN . The evolution of the state x ∈ Rn is given by

ẋ(t) = fσi(x(t), u(t)), t ∈ [si, si+1)

x(0) = x0. (2.1)

In the above, σi ∈ Q, i = 0, 1, . . . , N , and we have defined s0 = 0, sN+1 = tf . We denote the
feasible switch times, also referred to as the switch time vector, as

S = {s ∈ RN : 0 ≤ s1 ≤ s2 · · · ≤ sN ≤ tf}. (2.2)

We assume no jump in the state during a switch, that is, limt↑si x(t) = limt↓si x(t) for
i = 1, 2, . . . , N . Let U be a compact subset of Rm. The input u belongs to set U defined as

U = {µ : [0, tf ]→ U |µ is measurable}.

In contrast to the mode sequence σ = (σ0, σ1, . . . , σN) which is a discrete input, µ is usually
referred to as a continuous input. To avoid confusion on continuity requirements of µ, we
refer to µ as a non-discrete or modal input.

The hybrid optimal control problem of our interest is stated as follows.

Problem 2.1. Given the switched system (2.1) whose state and inputs are subject to a set
of Nc constraints for t ∈ [0, tf ] defined by

hj(x(t)) ≤ 0, j = 1, 2, . . . , Nc. (2.3)

Find the number of modes N , the sequence of modes σ, the switch time vector s ∈ S and
the input µ ∈ U in order to minimize the cost function defined as

J(σ, s, µ) =
N∑
i=0

∫ si+1

si

lσi(x(τ), µ(τ)) dτ + g(x(tf )). (2.4)

In the above, lσi : Rn × Rm → R, i = 0, 1, . . . , N are mode-dependent running costs and
g : Rn → R is the final cost. We assume that fq, hj, lq, and g are Lipschitz for all q ∈ Q,
j = 1, 2, . . . , Nc. This assumption is sufficient to ensure existence and uniqueness of solutions
to the differential equations. In addition, we assume these functions are differentiable and
their derivatives are also Lipschitz in their arguments. This assumption is sufficient for
deriving necessary optimality conditions.
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Optimality Criteria

We show that the two main analytical approaches for solving the optimal control problem, the
Maximum Principle and the Hamilton-Jacobi-Bellman Partial Differential Equation, apply
to the optimal control of unconstrained switched nonlinear systems formulated above. In
order to apply these results in our problem setting, we combine the discrete and non-discrete
inputs by introducing the input α = (β, µ), in which the function β : [0, tf ]→ Q returns the
mode of the system at a given time, that is, β(t) = σi for t ∈ [si, si+1). Let A = Q× U and
denote the admissible input space as A = {α : [0, tf ]→ A|α is measurable}. The dynamics
in Equation (2.1) can be written as

ẋ(t) = f(x(t), α(t)),

x(0) = x0. (2.5)

Here, f : Rn × A→ Rn. The cost in the new control variable can be written as

J(α) =

∫ tf

0

l(x(τ), α(τ)) dτ + g(x(tf )). (2.6)

For expressing the optimality conditions, to simplify notation, we consider a non-constrained
optimal control problem with the objective of minimizing (2.6) subject to dynamics (2.5).

Maximum Principle

The Maximum Principle provides necessary conditions that control variables and the result-
ing optimal state trajectory must satisfy. The proof is based on the idea of needle-type
variation of the input (as opposed to a first-order variation) and hence is applicable to input
spaces with finitely many elements such as the space Q considered here. The optimality
conditions are described by first defining the control Hamiltonian H(x, p, a), for x, p ∈ Rn

and a ∈ A, as follows:
H(x, p, a) = pTf(x, a) + l(x, a). (2.7)

Theorem 2.1 (Pontryagin Maximum Principle). Assume α(t) is an optimal input for prob-
lem (2.6), subject to dynamics (2.5), and that x(t) is the corresponding optimal state trajec-
tory. Then, there exists a function p : [0, tf ] → Rn that satisfies the following dynamics for
almost all t ∈ [0, tf ]:

ṗ(t) = −∂H
∂x

T

(x(t), p(t), α(t))p(t),

p(tf ) =
∂g

∂x

T

(x(tf )). (2.8)

In addition, the optimal input satisfies

α(t) = arg min
a∈A

H(x(t), p(t), a). (2.9)
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The proof of the above result appears in [28, 76]. For a survey on historical development of the
Maximum Principle and extensions to state constraints please see [77] and [78], respectively.
Equations (2.5) and (2.8) form a two point boundary value problem which must be satisfied
by the optimal input and the optimal state trajectory. Equation (2.9) reduces the problem
of functional minimization for finding α : [0, tf ]→ A to a pointwise minimization for finding
α(t) at each instant of time. In certain problems, these necessary conditions are sufficient
to uniquely define the input. In some other cases, they can be used as an a posteriori check
on optimality of a candidate solution.

Computationally, if the discrete mode sequence is absent, then an iterative method can be
employed in which a candidate input is used to solve the forward differential equation (2.5)
and then the backward differential equation (2.8) is solved. Alternatively, (2.5) and (2.8)
may be solved simultaneously by taking an initial guess on final or initial value of the state or
costate, respectively. The input is updated either based on the gradient of the cost function
(gradient methods), or through pointwise minimization of (2.9) (shooting methods) [79]. In
general, for convergence, the gradient methods are slow while the shooting methods are very
sensitive to initial guess. Although numerical tools have been proposed to take into account
discrete modes [71], such methods must a priori assign the mode switch times to discretized
time points. In addition, in the absence of gradient of cost function with respect to the
mode sequence, only shooting methods can be used in this case. Additionally, similar to the
non-hybrid case, accounting for state constraints is numerically difficult.

Hamilton-Jacobi-Bellman equation

The idea here is to transform the optimal control problem into a larger class of problems
in which the initial state x0 and the initial time t0 are also optimization variables. Then,
if there exists a function v : Rn × R → R, referred to as the value function, which satisfies
the so-called Hamilton-Jacobi-Bellman (HJB) partial differential equation, this function is
the optimal cost for the more general optimal control problem starting at time t ∈ [t0, tf ]
with x(t) = x ∈ Rn. For t ≥ t0, define At = {α : [t, tf ]→ A|α is measurable} and the value
function as

v(x, t) := inf
α∈At

∫ tf

t

l(x(τ), α(τ)) dτ + g(x(tf )).

Theorem 2.2 (Hamilton-Jacobi-Bellman optimality condition). Assume that v is a con-
tinuously differentiable function of the variables (x, t). Then v solves the nonlinear partial
differential equation

∂v

∂t
(x, t) + min

a∈A
{∂v
∂x

(x, t)f(x, a) + l(x, a)} =0, (2.10)
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initialized with v(x, tf ) = g(x). In addition, if α(x, t) achieves the minimum above, then α
is an optimal input.

Several books derive these sufficient conditions for various classes of optimal control prob-
lems, see for example, [29, 30]. In contrast to the Maximum Principle which results in open
loop inputs, the input obtained from solving the above optimization problem is in feedback
form. In addition, the costate found from the Maximum Principle is identified with the
partial derivative of the value function along the optimal trajectory: ∂v

∂x
(x, t) = p(t).

In general, it is very difficult to solve for the value function v, analytically. In addition,
there may not exists a continuously differentiable function that satisfies the HJB equations.
In these cases, a relaxed solution to the partial differential equations above, referred to as
a viscosity solution, is defined [80, 81] and shown to be the appropriate notion of solution
for the optimal control problem. Although for certain classes of problems such as the Linear
Quadratic Regulator (LQR), analytical results for the value function and the optimal input
exist, once the discrete input variables are introduced, it is no longer easy to characterize
the value function or the optimal input even for the switched LQR models. Hence, approx-
imations of the HJB sufficient conditions are derived [82]. In addition, accounting for state
constraints remains a challenge in numerical application of the HJB methods.

Two-Stage Solution Approach

The challenge with determining the discrete modes in the hybrid optimal control problem
is that the trajectories obtained from variations of a given mode sequence may be far from
the nominal one and not comparable in a computationally efficient manner. However, if one
considers a variation in which the modified sequence differs from the original one by modes
whose durations are sufficiently small, one can then analyze the differences between the
resulting trajectory and the original trajectory and consequently their associated cost and
constraint functions. Thus, starting with a nominal sequence of modes, additional modes
may be added in such way that we can prove every additional mode will reduce the cost
while maintaining feasibility. This defines our two-stage solution approach as stated below:

Stage 1. Given a mode sequence, σ = (σ0, σ1, . . . , σN), find the optimal input µ and the
optimal switch time vector s = (s1, . . . , sN).

Stbge 2. Form a new sequence σ̂ as a result of insertion of a mode q ∈ Q into the original
sequence σ, which would decrease the cost while maintaining feasibility. If such a
mode cannot be found, stop. Else, repeat Stage a using σ̂.

The above procedure leads to suboptimal solutions since only certain variations of the discrete
mode sequence, that is, mode insertions, are considered. However, it provides a systematic
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and computationally efficient manner of examining candidate mode sequences without solv-
ing the optimal control problem for each candidate mode sequence. In the next two sections,
we describe how to address each of the above two stages of the algorithm.

2.3 Stage 1 - Fixed Mode Sequence

In many switched systems the sequence of modes is either fixed a priori or is determined from
knowledge of the dynamical system and the cost function. Moreover, as described previously,
in many approaches for solving the optimal control problem for switched systems, first a fixed
mode sequence is assumed and then methods for varying this mode sequence to decrease the
cost are used. With a fixed mode sequence, Problem 2.1 is simplified as follows:

Problem 2.2. Given the switched system (2.1) subject to constraints (2.3) for t ∈ [0, tf ],
and a nominal mode sequence σ = (σ1, σ2, . . . , σN), find the switch time vector s ∈ S and
the input µ ∈ U in order to minimize the cost function

J(s, µ) =
N∑
i=0

∫ si+1

si

lσi(x(τ), µ(τ)) dτ + g(x(tf )). (2.11)

Developing analytical or numerical solutions for the optimal control of switched systems
with a fixed mode sequence has been explored in several previous research projects [83,
84, 85, 86, 87]. We present two of the main approaches for solving the above optimal
control problem. First, we briefly review the approach for transforming the problem into a
conventional optimal control problem as proposed in [88, 73]. Next, we present our approach,
which is based on characterizing the variation of the cost function with respect to variation
of the switch times. This latter approach serves as a starting point for Stage 2 of the hybrid
optimal control procedure described above, in which variation of the cost function with
respect to a mode insertion is derived.

Transformation Method

The idea here is to convert the optimal control problem with unknown switch times into
an equivalent optimal control problem with an extended state and known switch times. As
in [88], we describe the general case in which the final time may also be an optimization
variable.

The first step is to introduce the new states, xn+1, . . . , xn+N+1, corresponding to the switch
times si for i = 1, 2, . . . , N , and the final time sN+1 = tf . Then, xn+i = si, and ẋn+i = 0, for
i = 1, 2, . . . , N+1. We also introduce a new independent variable τ ∈ [0, N+1]. The relation
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between τ and t is as follows: t = xn+1τ for τ ∈ [0, 1], and t = xn+i+1(τ − i)−xn+i(τ − i− 1)
for τ ∈ [i, i+ 1], 1 ≤ i ≤ N .

For a function f(t), let f ′ denote the derivative with respect to the new independent variable,
τ . Next, define f̂σ0 = xn+1fσ0 , and f̂σi = (xn+i+1 − xn+i)fσi for i = 1, . . . , N .

The equivalent optimal control problem in the extended state space is as follows:

min
N∑
i=0

∫ i+1

i

lσi(x(τ), µ(τ)) dτ + g(x(N + 1)) (2.12)

s.t. x′(τ) = f̂σi(x(τ), µ(τ)), τ ∈ [i, i+ 1]

x′n+1+i(τ) = 0, i = 0, . . . , N

hj(x(τ)) ≤ 0, j = 1, . . . , Nc

Define x̂ := (x1, . . . , xn, xn+1, . . . , xn+1+N) as the extended state. In the optimal solution of
the above problem, (x̂∗, u∗), the last N + 1 components of the state x̂∗, are the N optimal
switch times and the final time. Since the duration of each mode is constant in the introduced
transformation, the new equivalent problem is a conventional optimal control problem, that
is, an optimal control problem without varying switch times.

In order to numerically solve the conventional optimal control problem, the Maximum Prin-
ciple may be used to formulate necessary optimality conditions resulting in a two point
boundary value problem (indirect method) [79]. Alternatively, by appropriate discretization
of control input and constraints, the optimal control problem may be approximated as a fi-
nite dimensional nonlinear program (direct method) [89, 90, 91, 88, 79]. Even though direct
methods only ensure local optimality, due to their computational efficiency they have been
widely used for solving optimal control engineering problems, such as aircraft and aerospace
trajectory planning [92].

First-order Method

An alternative method for finding the switch times and the modal input is through formulat-
ing first-order necessary optimality conditions for the switch times by finding the derivative
of the cost function with respect to the switch times. As such, here we develop an analytic
formula for this derivative.

The problem of finding the derivative with respect to switch times was considered for au-
tonomous switched systems in [86]. Approximations of the derivative were derived by as-
suming certain variations of input [83] or formulating differential algebraic equations [85].

Let DsJ(s, µ) denote the derivative of the cost function with respect to the switch times.
Since in many switched systems, µ may not be continuous at switch times, we allow for
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the discontinuity of input in deriving the formula. As such, for any w : R → Rn we define
w(t−) = limτ↑tw(τ) and w(t+) = limτ↓tw(τ) as the limits, from the left and the right
respectively, of the signal w at time t. In addition, at a switch time si we define

∆f(s−i ) = fσi−1
(x(si), µ(s−i ))− fσi(x(si), µ(s−i )),

∆f(s+
i ) = fσi−1

(x(si), µ(s+
i ))− fσi(x(si), µ(s+

i )). (2.13)

Similarly, we define ∆l(s−i ) and ∆l(s+
i ).

To proceed with the derivative formula, we first assume variation of only one switch time,
si, in the switch time vector s = (s1, s2, . . . , sN). We denote ∇eiJ(s, µ) as the directional
derivative of J(s, µ) in the direction of unit vector ei ∈ RN :

∇eiJ(s, µ) = lim
λ↓0

J(s+ λei, µ)− J(s, µ)

λ
.

The main result is that the directional derivative is characterized as follows:

Proposition 2.1. The directional derivative of the cost function in direction ei for i =
1, 2, . . . , N exists when si < si+1 and is given as

∇eiJ(s, u) = pT (si)∆f(s+
i ) + ∆l(s+

i ),

where the costate p(t), t ∈ [0, tf ] satisfies the following switched system dynamics:

ṗ(t) = −∂fσi
∂x

T

(x(t), µ(t))p(t)− ∂lσi
∂x

T

(x(t), µ(t)), t ∈ [si+1, si)

p(tf ) =
∂gT (x(tf ))

∂x
, (2.14)

for i = 0, 1, . . . , Nand at the switch times p(s−i ) = p(s+
i ).

Proof. The proof proceeds by first considering only a final cost, J(s, µ) = g(x(tf )), and then
generalizing the result for the running cost and the final cost.

The directional derivative of the final cost in direction ei is found using the Chain Rule as

∇eig(x(tf )) =
∂gT (x(tf ))

∂x
∇eix(tf ). In order to find ∇eix(tf ), we make the dependence of the

state on s explicit by introducing the flow ψ(t, s) : R × RN → Rn as the solution of the
differential equation at time t ∈ [0, tf ] for a switch time vector s ∈ S. As such, ψ(t, s+ λei)
denotes the solution of the differential equation with the same initial condition, however,
with the switch from mode σi−1 to mode σi occurring at time si + λ ≤ si+1 instead of
si, where λ > 0 is sufficiently small. Now, since ψ(t, s) and ψ(t, s + λei) satisfy the same
initial condition and the same differential equation for t ∈ [0, si), they are equal on [0, si) by
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uniqueness of the solution. For t ∈ [si, si + λ), ψ(t, s) is governed by fσi while ψ(t, s + λei)
is governed by fσi−1

. Hence,

ψ(si + λ, s+ λei) = ψ(si + λ, s) +

∫ si+λ

si

(
fσi−1

(x(τ), µ(τ))− fσi(x(τ), µ(τ))
)
dτ. (2.15)

For t ∈ [si + λ, tf ], ψ(t, s) and ψ(t, s + λei) satisfy the same differential equation again.
Define ∆x0 = ψ(si + λ, s + λei) − ψ(si + λ, s). For a fixed u the vector field fq(x(t), µ(t))
can be considered as an autonomous vector field fq(x(t), t). As such, we apply the theorem
on perturbation analysis of differential equations in Appendix B.2 of [93] to find variation of
the flow for t ∈ [si + λ, tf ] with respect to variation in the initial condition as

ψ(t, s+ λei)− ψ(t, s) = φ(t, si + λ)∆x0 + o(∆x0),

where o(∆x0) denotes the higher order term:

lim
‖∆x0‖→0

o(∆x0)

‖∆x0‖
= 0, (2.16)

and φ(t, si + λ) ∈ Rn×n satisfies the following matrix differential equation for t ∈ [t0, tf ]:

φ̇(t, t0) =
∂fσi
∂x

(x(t), µ(t))φ(t, t0), t ∈ [si, si+1)

φ(t0, t0) = In×n,

with t0 = si + λ. We compute the directional derivative of ψ(t, s):

∇eiψ(t, s) = lim
λ↓0

ψ(t, s+ λei)− ψ(t, s)

λ
= lim

λ↓0

φ(t, si + λ)∆x0

λ
+ lim

λ↓0

o(∆x0)

λ
. (2.17)

The term φ(t, si + λ) approaches φ(t, si) as λ ↓ 0 from continuous dependence of φ(t, t0) on
the initial time t0 [93]. From the definition of ∆x0, we have,

∆x0

λ
=

∫ si+λ
si

(
fσi−1

(x(τ), µ(τ))− fσi(x(τ), µ(τ))
)
dτ

λ
,

which approaches ∆f(s+
i ) = fσi−1

(x(si), µ(s+
i ))− fσi(x(si), µ(s+

i )) as λ ↓ 0. Next, we have

lim
λ↓0

o(∆x0)

λ
= lim

λ↓0

o(∆x0)

‖∆x0‖
lim
λ↓0

‖∆x0‖
λ

.

The first limit in the right hand side equals 0 since limλ↓0 ∆x0 = 0 and due to (2.16),
while the second equals ∆f(s+

i ). Hence, the above expression is 0, and from (2.17) we have
∇eiψ(t, s) = φ(t, si)∆f(s+

i ). Let y(t) = φ(t, si)∆f(s+
i ). We can verify that

ẏ(t) =
∂fσi
∂x

(x(t), µ(t))y(t), t ∈ [si, si+1)

y(si) = ∆f(s+
i ). (2.18)
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Also, ∇eiψ(tf , s) = φ(tf , si)∆f(s+
i ) = y(tf ). Hence,

∇eig(x(tf )) =
∂g(x(tf ))

∂x
y(tf ). (2.19)

Let p ∈ Rn be the adjoint of the linear system (2.18), whose dynamics would satisfy

ṗ(t) = −∂fσi
∂x

T

(x(t), µ(t))p(t), t ∈ [si, si+1)

p(tf ) =
∂gT (x(tf ))

∂x
.

We can verify that for all t ∈ [0, tf ], Dt(p
T (t)y(t)) = 0. Hence, pT (tf )y(tf ) = pT (si)y(si) and

we use this result in (2.19) and the boundary values of y and p to get

∇eig(x(tf )) = pT (si)∆f(s+
i ). (2.20)

To account for the running cost we introduce a new state xn+1 ∈ R whose dynamics are
given by

ẋn+1(t) =lσi(x(t), µ(t)), t ∈ [si, si+1)

xn+1(0) =0.

Let x̄ = (x1, . . . , xn, xn+1) ∈ Rn+1 be an extended state. The cost J(s, u) in (2.4) is equivalent
to a new final cost defined as ḡ(x̄(tf )) = g(x(tf ))+xn+1(tf ). Let the extended costate be p̄ =
(p1, . . . , pn, pn+1) ∈ Rn+1. It is easy to verify that (p1, p2, . . . , pn) now satisfies the dynamics
given in (2.14), while ṗn+1(t) = 0 for t ∈ [0, tf ]. In addition, pn+1(tf ) = Dxn+1 ḡ(x̄(tf )) = 1,
and hence pn+1(si) = 1. Using this and applying (2.20) to the extended state we have:
∇eiJ(s, µ) = ∇ei ḡ(x̄(tf )) = pT (si)∆f(s+

i ) + ∆l(s+
i ) as desired.

The partial derivative of J(s, µ) with respect to si,
∂J
∂si

, exists if and only if ∇−eiJ(s, µ) =

−∇eiJ(s, µ). It is easy to verify that ∇−eiJ(s, µ) is given as ∇−eiJ(s, µ) = −pT (si)∆f(s−i )−
∆l(s−i ), for si−1 < si. Based on the above, we can show that if

pT (si)∆f(s+
i ) + ∆l(s+

i ) = pT (si)∆f(s−i ) + ∆l(s−i ), (2.21)

then the partial derivative of the cost function exists and is given as ∂J
∂s

(s, µ) = ( ∂J
∂s1
, . . . , ∂J

∂sN
).

A sufficient condition for the equality above and thus for the existence of this derivative
is that the subsystems are autonomous or that the input µ is continuous at t = si for
i = 1, 2, . . . , N . In addition, we have the following first-order optimality condition when the
derivative is well-defined:

Corollary 2.1. If s = (s1, s2, . . . , sN) is locally optimal, then pT (si)∆f(si) + ∆l(si) = 0.
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We next provide two examples to illustrate the use of the variational analysis.

Example 2.1 (Car with two gears). Optimal switching of automobile gears is a classic
control problem and has been addressed in numerous previous works. The particular formu-
lation of this example is motivated by [82]. Consider a car with two gears whose dynamics
is modeled as

ẋ1(t) = x2(t)

ẋ2(t) = hq(x2(t))µ(t) (2.22)

In the above x1 and x2 denote the position and velocity of the car respectively, hq : R→ R+

represents the effect of being in gear q, q ∈ {1, 2}, with h1 being a decreasing function and
h2 being an increasing function. The throttle input is µ : t 7→ [−1, 1]. The problem is to
choose the input µ and the switching strategy so that the car moves from point (x0, 0) to
(xf , 0), while minimizing the cost J(s, µ) =

∫ tf
0
l(x2(τ)) dτ , where l : R → R penalizes the

speed. The final time tf is free.

The mode dependent Hamiltonian as per Equation (2.7) in this case is given as

H(x, p, q, µ) = l(x2) + p1x2 + p2hq(x2)µ

From the Maximum Principle and the convexity of the Hamiltonian in input µ, we find
that the optimal input is bang-bang: µ(t) = −sgn(p2(t)), for any mode of operation. The
derivative of the cost function with respect to a switch time from mode 1 to mode 2 is
then given by −|p2|

(
h1(x2) − h2(x2)

)
from the variational analysis of this section. Thus,

the necessary optimality condition for a switch between the gears, based on Corollary 2.1,
is h1(x2(t)) = h2(x2(t)) or p2(t) = 0. The first case corresponds to the speed at which the
gears reach the same efficiency and hence is the correct solution for switching the gears.
Note that this result is independent of the cost function, initial and final desired point. In
addition, the result is consistent with that given in [82] based on a numerical simulation of
an approximate dynamic programming algorithm developed for hybrid systems.

Example 2.2 (Switched Linear Quadratic Regulator). Consider a switched Linear Quadratic
Regulator (LQR) in which the dynamics for mode q ∈ {1, 2} is ẋ(t) = Aqx(t) + Bqµ(t),
Aq ∈ Rn×n and Bq ∈ Rn×m. We assume a single switch at s ∈ [0, tf ]. The cost function is

J(s, µ) =

∫ s

0

(
xT (τ)Q1x(τ) + µT (τ)Rµ(τ)

)
dτ+∫ tf

s

(
xT (τ)Q2x(τ) + µT (τ)Rµ(τ)

)
dτ + xT (tf )Qx(tf ).

In the above, Q1, Q2, Q ∈ Rn×n are positive semidefinite and R ∈ Rm×m is positive definite.
From the solution to the LQR problem with time-varying dynamics [93], it is known that
for a given switch time s, the optimal input µs is a linear state-feedback law

µs(t) = −R−1BT (t)K(t)x(t), (2.23)
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where K(t) ∈ Rn×n is positive semi-definite and is governed by a differential Riccati equation

−K̇(t) = K(t)A(t) + AT (t)K(t)−K(t)BT (t)R−1B(t)K(t) +Q(t),

with boundary condition K(tf ) = Q, and A(t) = A2, Q(t) = Q2 for t ∈ [s, tf ], A(t) = A1,
Q(t) = Q1 for t ∈ [0, s). It follows from (2.23) that for any problem in which B1 = B2 the
input µs is continuous. Thus, the derivative of the cost function with respect to the switch
time is well-defined. Also the costate satisfies p(t) = K(t)x(t) [93]. Using Corollary 2.1, we
find the first-order necessary optimality condition for the switch time s ∈ [0, tf ] as

xT (s)
(
K(s)(A1 − A2) +Q1 −Q2

)
x(s) = 0.

Note that although we considered switched LQR with two modes and one switch time, the
results can easily be extended to multiple modes and switch times.

In the next section, we use similar variational analysis methods to define the variation of the
cost and constraint functions with respect to a mode insertion.

2.4 Stage 2 - Variable Mode Sequence

The approach in optimization with respect to the mode sequence is based on considering a
specific variation of the mode sequence for which we can derive analytic expressions for the
resulting variation in the cost and the constraint functions. Using this variational analysis,
we can derive necessary conditions for optimality of a given mode sequence and design
an algorithm based on these optimality conditions. First, we conceptually describe the
optimality conditions without discussing the mathematical details, and next we go into
details on deriving the analytic expressions for implementing the algorithm.

Optimality Condition

Consider the hybrid optimal control problem described in Section 2.2. We compactly denote
the control input, which is the optimization variable consisting of the mode sequence, switch
times and model input, by a tuple ξ := (σ, s, µ). The cost as a function of this tuple is J(ξ).
We also define a function ζ : ξ 7→ R to compactly denote the constraints as follows:

ζ(ξ) = max
j∈{1,...,Nc}

max
t∈[0,tf ]

hj(x(t)). (2.24)

The constraints hj(x(t)) ≤ 0, ∀t ∈ [0, tf ], j = 1, 2, . . . , Nc can be represented by ζ(ξ) ≤ 0.

Define insertion of mode q̂ ∈ Q at a time t̂ ∈ (t0, tf ) to be a modification to ξ such that
the subsystem fq̂(x, û), û ∈ U , would be active in the interval (t̂ − λ

2
, t̂ + λ

2
) ⊂ [0, tf ] for
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λ sufficiently small. If t̂ = 0, we insert the mode q̂ in the interval [0, λ] and if t̂ = tf we
insert this mode in the interval [tf − λ, tf ]. The mode insertion can be characterized by
three parameters (q̂, t̂, û) ∈ Q × [0, tf ] × U and compactly denoted by η := (q̂, t̂, û). The

resulting modified input to the system is denoted as ξ̂ := (σ̂, ŝ, µ̂). We define ρ(ξ,η) to be a
function that describes this insertion, that is, ρ(ξ,η) : λ 7→ ξ̂. In the discussion below, a fixed
control input ξ and insertion η is considered. Hence, for simplicity in notation, we drop the
dependence of ρ on ξ and η and simply write ρ(λ).

If an input ξ is optimal then there would not be any mode insertion η into ξ such that
the cost would be reduced while the constraints remain feasible. Thus, let us study effects
of the mode insertion on the cost and the constraint functions. The variation of the cost
function with respect to the mode insertion η can be analytically quantified by considering
the directional derivative

∇ηJ(ξ) := lim
λ↓0

J(ρ(λ))− J(ξ)

λ
. (2.25)

Since modes of zero duration do not change the trajectory, we have J(ρ(0)) = J(ξ). As such,
for small λ > 0, we have the following first-order approximation:

J(ρ(λ)) ≈ J(ξ) +∇ηJ(ξ)λ. (2.26)

Intuitively, if∇ηJ(ξ) < 0 it would be possible to decrease the cost function through the mode
insertion. Additionally, we need to ensure that after the mode insertion the constraints will
not be violated. For this, we need to consider the directional derivative of the constraint
function with respect to the mode insertion defined as

∇ηζ(ξ) := lim
λ↓0

ζ(ρ(λ))− ζ(ξ)

λ
. (2.27)

Consider a strictly feasible point, that is, ζ(ξ) < 0. Due to continuous dependence of
ζ(ρ(λ)) on λ > 0 (follows from the fact that (2.27) is well-defined), for sufficiently small
λ > 0, we have ζ(ρ(λ) ≤ 0 and hence the constraints remain feasible. On the other hand,
if ζ(ξ) = 0 then a similar first-order approximation as in Equation (2.26) holds for the
constraint function and hence a sufficient condition for constraint feasibility after the mode
insertion is ∇ηζ(ξ) < 0.

Based on the above variational analysis, we can define a set of necessary conditions for
optimality of a control input ξ = (σ, s, u).

Proposition 2.2. If ξ is feasible and optimal then the following conditions hold:

If ζ(ξ) < 0 then ∀η, ∇ηJ(ξ) ≥ 0. (2.28)

If ζ(ξ) = 0 then ∀η, ∇ηJ(ξ) ≥ 0 or ∇ηζ(ξ) ≥ 0. (2.29)
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Proof. By contradiction. Let ξ be feasible and optimal. Suppose that the first condition does
not hold. That is, ζ(ξ) < 0 and there exists an insertion η such that ∇ηJ(ξ) < 0. Then,
by definition of ∇ηJ(ξ), there exists λ̄ > 0 such that for all 0 < λ ≤ λ̄, J(ρ(λ)) − J(ξ) ≤
λ̄
2
∇ηJ(ξ) < 0, while ζ(ρ(λ))−ζ(ξ) ≤ 1

2
ζ(ξ) < 0. Hence, for all λ ≤ λ̄, the new mode sequence

ξ̂ = ρ(λ) has a lower cost while the constraints remain feasible. This contradicts that ξ is
an optimal input. Now, suppose the second condition does not hold. That is, ζ(ξ) = 0 and
there exists an insertion η such that ∇ηJ(ξ) < 0 and ∇ηζ(ξ) < 0. Similarly, we can find λ̄

such that for all 0 < λ < λ̄, ξ̂ = ρ(λ) has a lower cost while ζ(ξ̂) − ζ(ξ) ≤ λ̄
2
∇ηζ(ξ) < 0.

Thus, ξ cannot be feasible and optimal.

Once we have an optimality condition for the hybrid optimal control problem, we have to
determine a computationally feasible method for verification of the optimality condition. Let
γ > 0 and consider the function θ : ξ 7→ R defined as a solution of the following optimization
problem:

θ(ξ) = min
η

max {∇ηJ(ξ), ζ(ξ) + γ∇ηζ(ξ)} . (2.30)

First we can show that θ is a non-positive function as follows: Given a feasible ξ = (σ, s, u),
if for any time t̂ we insert the mode in the sequence σ that is active at t̂ and keep the input
µ(t) during the insertion, then ξ remains unchanged and hence ∇ηJ(ξ) = 0 and ∇ηζ(ξ) = 0
for this insertion. Consequently, there exists an η such that the function θ0 defined as

θ0(ξ, η) := max {∇ηJ(ξ), ζ(ξ) + γ∇ηζ(ξ)} (2.31)

is zero. It follows that θ(ξ) = minη θ0(ξ, η) is a non-positive function. Another important
property of θ is that its zeros include inputs ξ which are feasible and optimal.

Proposition 2.3. If ξ is feasible and optimal then θ(ξ) = 0.

Proof. By contradiction. Suppose ξ is feasible and optimal but θ(ξ) is not zero. Since θ is
non-positive, then θ(ξ) < 0. Thus, there exists η such that ∇ηJ(ξ) < 0 and ζ(ξ)+γ∇ηζ(ξ) <
0. Now, if ζ(ξ) < 0, then by first-order analysis we can insert η for sufficiently small λ and
reduce the cost while remaining feasible. On the other hand, if ζ(ξ) = 0, then we can ensure
feasibility due to ζ(ξ) + γ∇ηζ(ξ) < 0 and reduce cost due to ∇ηJ(ξ) < 0 for sufficiently
small λ. This contradicts optimality of ξ.

Verifying optimality of ξ by formulating an optimization problem of (2.30) is constructive
because if θ(ξ) < 0 we can use the insertion η for which θ0(ξ, η) < 0, to reduce the cost
function while maintaining feasibility.

Intuitively, similar to the finite-dimensional optimization terminology, the mode insertion η
for which θ0(ξ, η) < 0 defines a descent direction for the hybrid optimal control problem in
the discrete mode sequence space, and λ defines the step size. In addition, θ(ξ) = 0 could
be used as a stopping criteria for the two-stage hybrid optimal control solution approach.
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Algorithm Implementation

In order to implement Stage 2 of the hybrid optimal control algorithm, we derive analytic
expressions for the directional derivative terms (2.25) and (2.27).

First, we need to introduce some notation. Let t̂ ∈ (0, tf ) be an insertion time so that we
insert the mode q̂ in the interval [t̂ − λ

2
, t̂ + λ

2
], λ > 0. Let σ− be the mode immediately

before t̂, that is σ− is the mode active at t− = limλ→0 t̂−λ and σ+ be the mode immediately
after t̂, that is the mode at t+ = limλ→0 t̂ + λ. In addition, let µ(t̂−) and µ(t̂+) denote the
inputs immediately before and after the insertion time, respectively. If t̂ = 0, we insert the
new mode q̂ in the interval [0, λ] and we define σ+ = σ− = σ0. If t̂ = tf we insert the new
mode q̂ in the interval [tf − λ, tf ] and define σ− = σ+ = σN . We define ∆ηf and ∆ηl as

∆ηf = fq̂(x(t̂), û)− 1

2
fσ−(x(t̂), µ(t̂−))− 1

2
fσ+(x(t̂), µ(t̂+)), (2.32)

∆ηl = lq̂(x(t̂), û)− 1

2
lσ−(x(t̂), µ(t̂−))− 1

2
lσ+(x(t̂), µ(t̂+)). (2.33)

To make the dependence of state x(t) on the input ξ = (σ, s, u) clear, we denote ψ(t, ξ) as
the solution of the differential equation evaluated at time t for a given control input ξ. We
then define the directional derivative of the state with respect to the mode insertion as:

∇ηψ(t, ξ) := lim
λ↓0

ψ(t, ρ(λ))− ψ(t, ξ)

λ
. (2.34)

Proposition 2.4. Consider an insertion η = (q̂, t̂, û) into a given control input ξ = (σ, s, u).

(a) The directional derivative of the state is given as

∇ηψ(t, ξ) = 0, if t ≤ t̂
∇ηψ(t, ξ) = φ(t, t̂)∆ηf, if t > t̂

In the above, φ(t, t̂) ∈ Rn×n satisfies the following matrix differential equation:

φ(t, t̂) =
∂fσi
∂x

(x(t), µ(t))φ(t, t̂), t ∈ [si, si+1)

φ(t̂, t̂) = In×n. (2.35)

(b) The directional derivative of the cost function is given as

∇ηJ(ξ) = pT (t̂)∆ηf + ∆ηl, (2.36)

where p(t) ∈ Rn satisfies the following backward differential equation for t ∈ [t̂, tf ]:

ṗ(t) = −∂fσi
∂x

T

(x(t), µ(t))p(t)− ∂lσi
∂x

T

(x(t), µ(t)), t ∈ [si, si+1)

p(tf ) =
∂g

∂x

T

(x(tf )).
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(c) Let H := {(j, t) | hj(x(t)) = ζ(ξ)}. The directional derivative of the constraint function
is given as

∇ηζ(ξ) = max
(j,t)∈H

∂hj
∂x

(x(t))∇ηψ(t, ξ). (2.37)

Proof. (a) First, the mode insertion does not affect the state trajectory before the insertion
time t̂ and hence ∇ηψ(t, ξ) = 0. For the state variation after the insertion time, consider

t̂ ∈ (0, tf ). Define ψ(t, ξ̂) as the solution to the differential equation with control variable

ξ̂ = ρ(λ). In addition, let ξ̃ be the control input for which we make the mode insertion
during the interval [t̂− λ

2
, t̂] and define ψ(t, ξ̃) as the trajectory corresponding to this mode

insertion. We can write

ψ(t, ξ̂)− ψ(t, ξ) = ψ(t, ξ̂)− ψ(t, ξ̃) + ψ(t, ξ̃)− ψ(t, ξ). (2.38)

Similar to the method of proof in Proposition 2.1 of Section 2.3 it can be shown that

lim
λ↓0

ψ(t, ξ̃)− ψ(t, ξ)

λ
=

1

2
φ(t, t̂)

(
fq̂(x(t̂), û)− fσ−(x(t̂), µ(t̂−))

)
,

lim
λ↓0

ψ(t, ξ̂)− ψ(t, ξ̃)

λ
=

1

2
φ(t, t̂)

(
fq̂(x(t̂), û)− fσ+(x(t̂), µ(t̂+))

)
,

where φ(t, t̂) is the state-transition matrix and satisfies (2.35). Hence, using Equations (2.32),
(2.33) and (2.38) we conclude that

∇ηψ(t, ξ) := lim
λ↓0

ψ(t, ξ̂)− ψ(t, ξ)

λ
= φ(t, t̂)∆ηf.

The cases for which the insertion is at t̂ = 0 or t̂ = tf can also be shown similarly.

(b) The result on directional derivative of the cost function then follows from the application
of the Chain Rule and defining the adjoint dynamics as was done in proof of Proposition 2.1.

(c) From Corollary 5.4.6 and proof of Theorem 5.4.7 in [88] we conclude that

∇ηζ(ξ) = max
(j,t)∈H

∇ηhj(x(tj)).

Now, for a given constraint function hj(x(t)), by the Chain Rule

∇ηhj(x(t)) =
∂hj
∂x

(x(t))∇ηψ(t, ξ).

Hence, we have the desired result.
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Given the analytical expressions for the directional derivatives of the cost and the constraint
functions, we can compute θ0(ξ, η) for every η. Once a mode insertion η with θ0(ξ, η) < 0
is found, we need to determine the insertion duration λ such that the cost is reduced. In
analogy to finite-dimensional optimization problems the insertion η is a descent direction
but we need to determine the step size to move along the descent direction. For this, we
define the Armijo step size rule [94] for our problem as follows: Choose α, β ∈ (0, 1) and let
the step size λ(ξ,η) be defined as

λ(ξ,η) = max
k∈N

{
βk | ζ(ρ(βk)) ≤ 0, J(ρ(βk))− J(ξ) ≤ αβkθ0(ξ, η)

}
. (2.39)

Lemma 2.1. If θ0(ξ, η) < 0, then λ(ξ,η) defined in Equation (2.39) is strictly positive.

Proof. By definition of the directional derivative, we have that as k →∞,

1

βk
(
J(ρ(βk))− J(ξ)

)
→ ∇ηJ(ξ).

Since ∇ηJ(ξ) ≤ θ0(ξ, η) and θ0(ξ, η) < 0, it follows that ∇ηJ(ξ) < αθ0(ξ, η). Hence, there
exists k1 such that for k ≥ k1 we have

1

βk
(
J(ρ(βk))− J(ξ)

)
< αθ0(ξ, η).

Also, if ζ(ξ) < 0 then there exists k2 > 0 such that for k > k2, ζ(ρ(βk)) < 0 since ζ(ρ(βk))→
ζ(ξ). On the other hand, ζ(ξ) = 0 and θ0(ξ, η) < 0 imply that ∇ηζ(ξ) < 0. Hence,
there exists k2 such that for k ≥ k2 we have ζ(ρ(βk)) ≤ 0. Consequently, βk0 with k0 :=
max{k1, k2} is a lower bound for the maximum in Equation (2.39) and λ(ξ,η) is strictly
positive.

Numerical implementation

Algorithm 2.1 details the two-stage solution approach of Section 2.2. In the algorithm, N̄ is
a parameter denoting the desired maximum number of modes.

To solve Stage 1 (Seps 0.a and 2.c of the algorithm), the methods discussed in Section 2.3
may be used. To find the mode insertion (Step 2.a of the algorithm), for every candidate
mode q̂ ∈ Q, let η = (q̂, t, u). Then, the following optimization problem needs to be solved:

min
t∈[0,tf ],u∈U

max {∇ηJ(ξ), ζ(ξ) + γ∇ηζ(ξ)} . (2.40)

Problem (2.40) can be implemented by employing the epigraph transformation to obtain
a standard constrained minimization problem. Since this optimization problem is not nec-
essarily convex, the resulting solution for a given q̂, denoted as (t̂, û), may only be locally
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Algorithm 2.1 Optimization Algorithm for the Hybrid Optimal Control Problem

Step 0. (Initialization) Let ξ0 := (σ0, s0, µ0).

a. Let (s1, µ1) be solution to Stage 1 with initial condition ξ0.

b. Set σ1 = σ0, define ξ1 = (σ1, s1, µ1) and set j = 1.

Step 1. If θ(ξj) = 0 or N = N̄ then stop.
Step 2. Define ξj+1 as follows:

a. (Stage 2) η̂ = arg minη θ(ξ
j, η).

b. Find insertion duration λ from Armijo rule (2.39), and set ξ̂ = (σ̂, ŝ, µ̂) = ρ(ξj ,η̂)(λ).

c. (Stage 1) Let (sj+1, µj+1) be solution to (2.11) with initial condition ξ̂.

d. Define σj+1 = σ̂, ξj+1 = (σj+1, sj+1, µj+1).

Step 3. Replace j by j + 1 and go to step 1.

optimal. However, if the objective function θ0(ξ, η) is negative for some η̂ = (q̂, t̂, û), then η̂
is a mode insertion which decreases the cost while maintaining constraint feasibility. Hence,
it is not necessary to find a global minimum of (2.40), rather any η̂ which would result in
θ0(ξ, η) < 0 would be sufficient. Analogous to the finite-dimensional optimization problems,
while a global minimum would give a steepest descent direction, any η̂ for which θ0(ξ, η̂) < 0
would give a valid descent direction. In addition, note that γ is a parameter chosen to be
small to ensure that if ζ(ξ) < 0 for some ξ, then as desired by condition (2.28) in Proposition
2.2, the algorithm would return η̂ with ∇η̂J(ξ) < 0 as a feasible mode insertion, regardless
of the value of ∇η̂ζ(ξ).

We have implemented Algorithm 2.1 on Matlab. In our implementation, Stage 1 is solved
through first transforming the problem into a conventional optimal control problem and
then into a nonlinear program, as described in Chapter 4 of [88] and reviewed in Section
2.3. Both Stage 1 and Stage 2 optimizations are solved using SNOPT1, a sparse nonlinear
programming solver, provided by the TOMLAB optimization package. The algorithm has
been employed in trajectory planning for several dynamical systems including quadrotor
helicopter and bevel-tip surgical needle [49].

2.5 Aircraft Trajectory Design

The flight dynamics of an aircraft intrinsically has the characteristics of a switched hybrid
system due to the coupling of the discrete flight modes with the continuous aircraft dynamics

1SNOPT: an SQP algorithm for Large-Scale Constrained Optimization, www.sbsi-sol-optimize.com
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[5, 6, 7]. Switches between flight modes can be autonomous or controlled. Autonomous
switches take place when the continuous state hits prescribed regions of the state space. For
example, when the aircraft reaches a prescribed altitude, a switch from climb mode to cruise
mode of flight would occur, while controlled switches occur due to a control command.

One of the NextGen concepts of operation, referred to as Trajectory Based Operations
(TBO), envisions optimization of individual aircraft trajectories while ensuring safety and
efficiency of air traffic. The TBO concept can be studied by formulating and solving the
trajectory design using a hybrid optimal control framework.

In aerospace engineering, hybrid optimal control problems with a fixed mode sequence have
been frequently formulated as multi-phase problems, in which, a phase refers to a mode of
the hybrid dynamics [95]. The multi-phase problems are usually solved using pseudospectral
methods and some have been applied to spacecraft missions [96]. However, none of the
above research has focused on commercial aircraft. Recently, optimization with respect
to fuel consumption of vertical profiles [97] and 3D profiles [98] of a commercial aircraft
were formulated as hybrid optimal control problems. The solution method was based on
assuming a fixed mode sequence and transforming the problem into a conventional optimal
control problem as discussed in Section 2.3.

Although the sequence of modes in the current paradigm of flight is fixed a priori by the
pilots or the air traffic controllers, variation of this sequence may improve the objective
defined by the pilots or the airlines, which is for instance minimization of fuel consumption.
In addition, given some unanticipated phenomenon such as storms, there may be a need to
update the original sequence of flight modes in order to tackle the uncertainties in a safe and
optimal way. Motivated by the possible gains of varying the flight mode sequence, this study
applies the hybrid optimal control algorithm described in the previous sections to address
commercial aircraft trajectory optimization. In our framework, we consider the Airbus 320
dynamic model, include effects of wind in the aircraft dynamics and model locations of storm
obtained from forecast as constraints in airspace.

Hybrid Dynamics

In order to design fuel optimal aircraft trajectories, it is common to consider a 3 Degree
Of Freedom (DOF) dynamic model that describes the point variable-mass motion of the
aircraft over a flat earth model. To support a 3 DOF model, the translational equations
are uncoupled from the rotational equations by assuming that the airplane rotational rates
are small and that control surface deflections do not affect forces. Let the states of aircraft
be denoted by V , χ, γ, referring to the true airspeed, heading angle, and flight path angle
respectively, as shown in Figure 2.1; x, y, h, referring to the aircraft 3D position; and m,
referring to the aircraft mass. We further assume symmetric flight so that there is no sideslip,
and disregard earth rotation and curvature to obtain the equations of motion as follows:
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(b) Horizontal view

Figure 2.1: Illustration of aircraft states

Aircraft equations of motion

mV̇ = T −D −mg sin γ (2.41)

mV (χ̇ cos γ cosµ− γ̇) = mg sinµ cos γ

mV (χ̇ cos γ sinµ+ γ̇) = L−mg cosµ cos γ

ẋ = V cos γ cosχ+ Vwindxh
ẏ = V cos γ sinχ+ Vwindyh

ḣ = V sin γ + Vwindzh
ṁ = −Tη

In the above the three dynamic equations are expressed in an aircraft-attached reference
frame, while the three kinematic equations are expressed in a ground based reference frame.
Wind is included due to its considerable effects on fuel consumption. Vwindxh , Vwindyh , Vwindzh
are components of the wind, T is the thrust, and µ is the bank angle. Lift L = CLSp̂ and
drag D = CDSp̂ are the components of the aerodynamic force, where S is the reference wing
surface area, p̂ = 1

2
ρV 2 is the dynamic pressure and ρ is the air density. A parabolic drag

polar CD = CD0 +KC2
L and a standard atmosphere are assumed.

In our model, the bank angle µ, the engine thrust T , and the coefficient of lift CL are the
inputs. The coefficient of lift CL is a known function of the angle of attack α and the Mach
number. The path constraints are based on the aircraft’s flight envelope and can be found
in the BADA manual [99]. For further details on aircraft dynamics see, for instance [100].
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Flight modes

A 3D flight plan can be subdivided into a sequence of modes pertaining to flight in a vertical
or horizontal plane. In both cases, we consider symmetric flight, that is, we assume there is
no sideslip and all forces lie in the plane of symmetry of the aircraft. Also, we neglect the
vertical component of the wind Vwindzh due to its low influence.

Horizontal 2D flight

In horizontal flight, ḣ and γ are set to zero. Consequently, the following algebraic constraint
is present: L = mg cosµ. We consider two modes in the horizontal flight. In mode 1, control
speed, it is assumed that the aircraft flies with constant heading but with variable speed.
The engine thrust T is the input and the bank angle µ is set to zero. In mode 2, control
heading, the speed is set to a constant value and the input is µ.

Climb/Descent flight

In this mode the bank angle µ is set to zero. Without loss of generality, we consider χ = 0,
ẏ = 0. The engine thrust T , and the coefficient of lift CL are the inputs of the aircraft. We
refer to this mode as mode 3, the control altitude mode.

Trajectory Optimization

We consider en-route portion of the aircraft flight. In general, in this portion of the flight
aircraft fly straight line segments connecting waypoints. In order to avoid hazardous weather,
the aircraft may be required to deviate from their nominal paths. In terms of air traffic
control, these deviations are characterized by maneuvers which may consist of heading,
speed, or altitude changes. In our analysis, we consider flight maneuvers as modes of the
switched system and consider maneuvers characterized by the three modes of control speed,
control heading, and control altitude as introduced above. These types of maneuvers are
routinely used in the air traffic control practice since they are easily communicated to the
pilots and are easily implemented by auto-pilots [5].

We assume a region of airspace is unsafe to fly through due to weather storms. In the
weather forecast data, storms may be characterized as regions with high values of Vertically
Integrated Liquid (VIL) [101]. Although the VIL forecast are provided for a gridded airspace,
a minimum-volume bounding ellipsoid can be used to capture these no-fly zones as obstacles,
so that they can be used as constraints in an optimization algorithm [102].
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To include wind in aircraft dynamics, we use the wind forecast data of July 6th, 2010, from
the Rapid Update Cycle (RUC) by National Oceanic Atmospheric Administration (NOAA)2.
A 4th degree polynomial, with the appropriate study of the residual and the regression
coefficient statistics was fitted to the wind data.

Given a nominal path for the aircraft and an obstacle along the path which represents a
storm, we formulate the problem of obstacle avoidance while minimizing fuel consumption
as an optimal control problem for a constrained switched nonlinear system. In this set-up,
a mode (or equivalently a maneuver) needs to be inserted in the original flight plan in order
to avoid the obstacle while minimizing the cost function.

For the following two case studies, we solved the trajectory optimization problem using
Algorithm 2.1. To solve Stage 1, a nonlinear program was formulated with a fixed number of
sample points, Ns = 40, for each mode. The discretization scheme was chosen to be Euler for
case study 1 and Simpson for case study 2. The equations of motion were enforced at each
sample point for each mode. For example, for Euler discretization, the nonlinear equality
constraint x(k + 1)− x(k)− δifqi(x(k), µ(k)) = 0 was enforced at the sampling points. The
step size δi was scaled based on duration of mode i, that is, δi = si+1−si

Ns
. The resulting sparse

nonlinear programming problem was solved using TOMLAB SNOPT optimization software.
To solve Stage 2, the optimization problem expressed in (2.40) was converted to epigraph
form and was solved using SNOPT optimization software. The stopping criteria in Step 1
of Algorithm 2.1 was set to θ(ξj) < 10−3.

Case study 1 - Obstacle avoidance in horizontal 2D flight

We assume the aircraft is cruising at a constant altitude of 11000 meters. The equations
of motion are presented in (2.41) with the horizontal 2D flight hypothesis. There are two
modes for the horizontal flight. In mode 1, control speed mode, the aircraft is flying with
constant heading angle and hence the input µ is set to zero and the control input is the
thrust T . For this mode the states with dynamics are V , x, y, and m. In mode 2, control
heading, the speed is held constant by setting the thrust equal to the drag, T = D, and the
control input is µ. The states with dynamics are χ, x, y, m. The aircraft needs to reach a
target point xd ∈ R2 while avoiding the hazardous weather obstacle.

Let xpos be the 2D position of the aircraft. The objective is formulated as a final cost function
which is a weighted sum of the distance from the target point, the cost of fuel consumption,
and the final time to reach the target point. The cost function is given as:

J(σ, s, u) = Kd||xpos(tf )− xd||22 −Kmm(tf ) +Kttf .

The weights were Kd = 10, Km = 0.5, and Kt = 0.1. The obstacle was an ellipse centered at
(−3054 km, 5018 km) with major and minor axis lengths of 42.2 and 14.4 km, respectively.

2http://www.noaa.gov/
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Figure 2.2: Optimal 2D aircraft trajectory and states

Iteration 1 Iteration 2
Mode sequence (2) (2,1,2)
Switch times (1622) (29.52, 379.68, 1504.2)
Cost 214.23 202.97

Table 2.1: Optimization results for 2D flight

The aircraft path was initialized as a straight line segment connecting the initial position
of (−3154 km, 5018 km) to the final desired position of (−2754 km, 5018 km) and the mode
sequence was initialized in mode 2. In the first iteration, Stage 1 of the algorithm returned
an optimal path in which the obstacle was avoided by flying around it. Next, Stage 2 of
the algorithm determined that an insertion of mode 1 at time 121 seconds would result in
reduction of cost while ensuring feasibility of the path. The second iteration of Stage 1 of
the algorithm, now initialized with mode sequence (2, 1, 2) resulted in a reduced cost and
a modified path. Figure 2.2 shows the aircraft path, its speed and heading angle after this
iteration. The numerical results are summarized in Table 2.1.

This case study indicates that given a pre-defined aircraft path that is designed to avoid
the obstacle using only a turn maneuver, the cost function can be reduced by including a
straight flight maneuver, through the application of speed maneuver at an appropriate time,
and by increasing the speed to an optimal value for an optimal duration of time.
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Case study 2 - Obstacle avoidance in variable altitude flight

In this case study, it is assumed that the aircraft can be in three possible modes of control
speed, control heading, control altitude as defined previously. In the first two modes where
the altitude is held constant the horizontal 2D flight hypothesis hold. In control altitude
mode, the inputs and equations of motion are modified based on the climb/descent flight
hypothesis. In this case study, for simplicity in numerical optimization, wind is not taken
into account.

Let xpos = (x, y, h) denote the aircraft position in 3D and xd ∈ R3 denote the desired aircraft
position. The cost function is defined similar to the previous case study:

J(σ, s, u) = Kd||xpos(tf )− xd||22 −Kmm(tf ) +Kttf .

The weights in the cost function and the initial and final state of the aircraft were set to that
of the previous case study. The weather obstacle was an ellipsoid in 3 dimensions, centered
at (−2854 km, 5018 km, 11 km), with an axis length of 20 km in the horizontal plane and
100 meters in the vertical plane.

Due to nonlinearities in the climb/descent flight dynamics, Euler integration did not provide
good results. Consequently, a Simpson collocation method, as described in [90], was used
to formulate the nonlinear program in Stage 1. The aircraft path and the mode sequence
were initialized as the previous case study. In the first iteration of Stage 1, the algorithm
resulted in an optimal solution in which the aircraft avoided the obstacle by flying around
it in the horizontal plane, similar to the maneuver in the previous case study. Stage 2 of
the algorithm found that an insertion of mode 3 at time index of 36 seconds would reduce
the cost while maintaining feasibility. In the second iteration of Stage 1, initialized with
mode sequence (2, 3, 2), the aircraft gradually climbed to the maximum allowable altitude of
11500 meters to avoid the obstacle. At the very last portion of flight, it quickly descended
to the desired final point. Figure 2.3 shows the aircraft path and the inputs. The inputs for
mode 2 are not shown due to the small duration of this mode. The numerical results are
summarized in Table 2.2.

The results here are consistent with the knowledge that there is less drag at higher altitudes
due to reduced air density and hence it is optimal to avoid the obstacle by a climb maneuver.
In addition, the gradual climb to the maximum altitude is in agreement with the concept of
cruise climb in which the aircraft, ideally, would increase its altitude steadily as its weight is
decreased. This concept, however, is not currently implemented due to Air Traffic Control
safety requirements.

The running time for both case studies were below 2 minutes on a 2.56 GHz laptop with 4
GB RAM. Thus, both examples could be computed onboard.
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Figure 2.3: Optimal 3D aircraft trajectory

Iteration 1 Iteration 2
Mode sequence (2) (3,2)
Switch times (1828) (1705, 1728)
Cost 241.61 227.09

Table 2.2: Optimization results for 3D flight

2.6 Conclusions

We described the problem of hybrid optimal control for a general class of hybrid systems re-
ferred to as switched nonlinear systems. For such systems, the control parameter has both a
discrete component, the sequence of modes, and two continuous components, the duration of
each mode and the input to each mode. We discussed the challenges in application of neces-
sary and sufficient optimality conditions for solving such problems and reviewed the pertinent
research on addressing these challenges. We developed a two-stage numerical algorithm to
determine locally optimal control parameters for constrained nonlinear switched systems.
The proposed algorithm divides the problem into two nonlinear constrained optimization
problems; one associated with the continuous input components and the other associated
with the discrete input component. During the continuous optimization, the mode sequence
is fixed and the optimal mode duration and non-discrete input are constructed. During the
discrete optimization, the mode sequence is varied by inserting a single mode. Through
analytically characterizing the variation of the cost and the constraint functions due to this
variation, we were able to analytically compare the optimality and feasibility of the mode
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insertion, without needing to solve the optimal control problem associated with the new
mode sequence.

We formulated the problem of fuel-efficient aircraft trajectory design subject to hazardous
weather constraints as an optimal control problem for a constrained switched nonlinear sys-
tem. Two applications on aircraft trajectory optimization were formulated in this framework
and successfully solved. Based on the case studies, we propose several possible air traffic
management applications for the hybrid optimal control formulation and the two-stage al-
gorithm. At the strategic level, given a predefined sequence of modes that define the flight
plan, the algorithm can be utilized to provide modifications to the mode sequence such that
the gate to gate 4D trajectory is optimized. At the operational level, the modification of
planned trajectories due to appearance of hazardous storms, potential collision, or the ap-
propriate sequencing of aircraft at top of descent for starting a continuous descent approach,
is currently addressed by an ad-hoc redefinition of the flight plans. Conceptually, the hybrid
optimal control algorithm will be able to tackle such modifications through optimal maneu-
ver insertions. However, to address the complexity in such realistic scenarios which include
presence of multiple aircraft, it is necessary to improve the efficiency of the algorithm through
further exploring different integration schemes, Non Linear Programming (NLP) solvers, and
programing languages.
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Chapter 3

Robust Control Synthesis for
Stochastic Hybrid Systems

We develop a framework for analysis and control synthesis for safety and reachability of
stochastic hybrid systems. In order to account for the presence of agents with uncertain
influence on system dynamics, we formulate the reachability and safety objectives as a zero-
sum stochastic game between two players, the control and the adversary. It will be shown
that the maximum probability of the control reaching a target set while remaining inside the
safe set, subject to the worst-case adversary behavior, can be computed through a suitable
dynamic programming algorithm. The algorithm is applied to aircraft conflict detection in
the presence of stochastic wind. The material in this chapter is based on our work in [53, 54].

3.1 Background

While mathematical models may in certain cases exactly describe the system under study,
in most engineering and physical systems, such as air traffic or biological gene networks,
models are abstractions of the behavior of the system, hopefully to an extent that makes
analysis, prediction and control possible. Hence, it is natural to expect some discrepancy
between the behavior of the system and that of the model representing it. In addition,
even if the model truly represents the system, the interactions of the environment in which
the system operates, such as wind effects on aircraft motion, may not be well-understood.
Usually this discrepancy is acknowledged by including uncertainties in the model class or
parameters. There are several methods for dealing with this uncertainty in the control
design. Control under the so-called robust framework assumes the uncertain parameters
belong to a bounded set around a nominal value and the objective should be satisfied under
the worst-case performance of the uncertainty. As such, a control law that satisfies the
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performance may be overly conservative or may not even exist. At a more fundamental
level, no information about the uncertainty is used in the design process. For example, it
may be known that the uncertain parameter often lies near a nominal value. As such, an
alternative approach, based on assuming a probabilistic model of uncertainty, could be more
appropriate. The control specification then may be given on the average rather than the
worst-case performance of the system. The Stochastic Hybrid System (SHS) [32] framework
is a powerful modeling technique that generalizes the hybrid dynamical models to include
uncertainty in evolution of both the discrete and the continuous states.

For a controlled SHS, the performance of the closed-loop system can be evaluated in terms
of the probability that the system trajectory obeys certain desired specifications. Of interest
to safety-critical applications are probabilistic safety and reachability in which the control
objective is to maximize the probability of remaining within a certain safe set or reaching
a desired target set. When these two objectives are coupled the problem is referred to as
reach-avoid. Early contributions in this domain for continuous-time SHS include [32, 103]. In
[104] it is shown that the reach-avoid probability is the solution of an appropriate Hamilton-
Jacobi-Bellman equation. To address the computational issues associated with probabilistic
reachability analysis, the authors in [105, 106] propose a Markov chain approximation of
the SHS, and apply the results to air traffic control studies. The safety probability for
autonomous SHS has also been analyzed using a Lyapunov-like technique, referred to as
the barrier certificates method [107] and a lower bound for probability of safety, albeit a
very conservative one, is derived. For Discrete-Time Stochastic Hybrid Systems (DTSHS),
a theoretical framework for the study of probabilistic safety problem is established in [46].
These results are generalized in [47] to address the reach-avoid problem, with considerations
for time-varying and stochastic target sets and safe sets given in [56].

In this chapter, we extend the results on probabilistic safety and reachability of DTSHS
[46, 47], to a zero-sum stochastic game setting. In particular, we consider a scenario where
the evolution of the system state is affected not only by the actions of the control, as in
previous work [47], but also by the actions of a rational adversary, whose objectives are
opposed to that of the control. This consideration is motivated by practical applications
such as conflict resolution between pairs of aircraft and control of networked systems subject
to external attacks, in which the uncertainty in the decisions of the external agent may not
obey any a priori known probability distribution, and the decisions may rather depend in
a rational fashion on the current state of the system and possibly also on the actions of the
control. Thus, we combine the previous modeling frameworks to account for two sources of
uncertainty: one affects the system with a probabilistic model, and the other, in the absence
of any additional knowledge, affects the system in a worst-case model. We call this modeling
framework a Discrete-Time Stochastic Hybrid Game (DTSHG).

This Chapter is organized as follows: The DTSHG is described mathematically in Section
3.2. Then, we develop a stochastic game formulation of the reach-avoid problem in Section
3.3 and show that under certain standard continuity/compactness assumptions [108, 109]
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on the underlying stochastic kernels and player action spaces, there exists: (a) a dynamic
programming algorithm for determining the maximal probability of satisfying the reach-
avoid objective, subject to the worst-case adversary behavior, called the maxmin reach-avoid
probability; (b) a maxmin control policy which achieves the maxmin reach-avoid probability
under the worst-case adversary strategy. Throughout, in order to explain the terminology
developed and the solution methodology, we provide a tutorial example in which both the
maxmin reach-avoid probability and the maxmin control policy can be calculated in an
analytic fashion. We conclude with an application of pairwise aircraft conflict detection
from air traffic management. We consider the possibility of lack of communication between
the two aircraft, and include uncertainty in wind as a stochastic disturbance.

3.2 Discrete-Time Stochastic Hybrid Game Model

The model we propose for a Discrete-Time Stochastic Hybrid Dynamic Game (DTSHG) is
an extension of the Discrete-Time Stochastic Hybrid System (DTSHS) model [46, 47] to
a two-player stochastic game setting. Following standard conventions, we will refer to the
control as player 1 and to the adversary as player 2. First, let us recall the definition of a
Borel σ-algebra and Borel space.

Definition 3.1. Let X be a topological space. The Borel σ-algebra of X, denoted as B(X),
is the smallest set of subsets of X which contains all the open sets of X and satisfies the
three axioms of σ-algebra: it is (a) non-empty, (b) closed under complementation and (c)
closed under countable union.

A space equipped with the Borel σ-algebra is called a Borel space and the memebers of the
Borel σ-algebra are referred to as Borel subsets.

Definition 3.2. A Discrete-Time Stochastic Hybrid Game (DTSHG) between two players
is a tuple H = (Q, n,A,D, τv, τq, τr) as described below.

• Discrete state space Q := {1, 2, . . . ,M}, with M ∈ N;

• Dimension of continuous state space n : Q→ N: a map which assigns to each discrete
state q ∈ Q the dimension of the continuous state space Rn(q). The hybrid state space
is given by X :=

⋃
q∈Q{q} × Rn(q);

• Player 1 control space A: a nonempty, compact Borel space;

• Player 2 control space D: a nonempty, compact Borel space;

• Continuous state stochastic kernel τv : B(Rn(·)) × X × A × D → [0, 1]: a Borel-
measurable stochastic kernel on Rn(·) given X × A × D which assigns to each x =
(q, v) ∈ X, a ∈ A and d ∈ D a probability measure τv(·|x, a, d) on the Borel space
(Rn(q),B(Rn(q)));
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• Discrete state stochastic kernel τq : Q×X×A×D → [0, 1]: a discrete stochastic kernel
on Q given X × A ×D which assigns to each x ∈ X, a ∈ A and d ∈ D a probability
distribution τq(·|x, a, d) over Q;

• Reset stochastic kernel τr : B(Rn(·)) × X × A × D × Q → [0, 1]: a Borel-measurable
stochastic kernel on Rn(·) givenX×A×D×Q which assigns to each x ∈ X, a ∈ A, d ∈ D
and q′ ∈ Q a probability measure τr(·|x, a, d, q′) on the Borel space (Rn(q′),B(Rn(q′))).

Few remarks about the model above are described below.

In this chapter and the subsequent chapter, the hybrid state is represented by x = (q, v), in
which q denotes the discrete state and v denotes the continuous state. This is in contrast
with the deterministic formulation of Chapter 2, in which, due to absence of discrete state
dynamics, the only dynamic state was the continuous state and was represented by x.

Note that the discrete stochastic kernel τq(.|x, a, d) can capture a very general class of hy-
brid systems as it allows for both state dependent (autonomous) and control dependent
(controlled) switches. This includes piecewise deterministic Markov processes [35, 36] and
discretized version of switching diffusions considered in [37].

The Borel subsets represent the events of our interest in X which we would like to assign a
measure. For example, one can assign a probability measure to a Borel set S ⊂ X in order
to find the probability of the state being inside this set. The measurability requirements on
the stochastic kernels are thus needed for the formal characterization of the probability that
the state remains within or reaches desired subsets of the state space as will be shown in the
next section. On the other hand, the input spaces are considered to be Borel in the model
above so that randomized inputs can be defined on the space. Although in this thesis we do
not consider randomized inputs, this is a topic that we would like to explore in future.

Within a non-cooperative dynamic game setting it is important to define the information
pattern, namely the knowledge that each player has about the state of the system and the
actions of the other player. With different information patterns, one may arrive at different
formulations of the stochastic game, along with correspondingly different algorithms for
computing the payoff functions for each player [110]. We consider here an information
pattern which gives an advantage to player 2: at each time step, player 1 is allowed to
select inputs based upon the current state of the system, while player 2 is allowed to select
inputs based upon both the system state and the control input of player 1. This information
pattern is common in robust control problems where the intentions of the adversarial agents
are not known, and the control selects inputs in anticipation of the worst-case behavior of the
adversary. For example in a network security application the network administrator (acting
as player 1) implements certain security measures at each time step, while an external agent
(acting as player 2) initiates network attacks after observing these security measures [111].
A mathematical description of this information pattern is given below.
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Definition 3.3. A Markov policy for player 1 is a sequence µ = (µ0, µ1, . . . , µN−1) of Borel
measurable maps µk : X → A, k = 0, 1, . . . , N − 1. The set of all admissible Markov policies
for player 1 is denoted by Ma.

Definition 3.4. A Markov strategy for player 2 is a sequence γ = (γ0, γ1, . . . , γN−1) of Borel
measurable maps γk : X × A → D, k = 0, 1, . . . , N − 1. The set of all admissible Markov
strategies for player 2 is denoted by Γd.

For a given initial condition x0 = (q0, v0) ∈ X, player 1 policy µ ∈Ma, and player 2 strategy
γ ∈ Γd, the evolution of a DTSHG can be described as follows: At the beginning of each time
step k, each player obtains a measurement of the current system state xk = (qk, vk) ∈ X.
Using this information, player 1 selects his/her controls as ak = µk(xk). Following this, player
2 selects his/her controls as dk = γk(xk, ak). The discrete state is then updated according
to the discrete stochastic kernel as qk+1 ∼ τq(·|xk, ak, dk). If the discrete state remains the
same, namely qk+1 = qk, then the continuous state is updated according to the continuous
state stochastic kernel as vk+1 ∼ τv(·|xk, ak, dk). On the other hand, if there is a discrete
jump, the continuous state is instead updated according to the reset stochastic kernel as
vk+1 ∼ τr(·|xk, ak, dk, qk+1).

Following this description, we can use a similar approach as in [46] to compose the stochastic
kernels τv, τq, and τr and form a hybrid state stochastic kernel τ : B(X)×X×A×D → [0, 1]
which describes the evolution of the hybrid state under the influence of player 1 and player 2
inputs and can be used to define the system execution compactly. Let x = (q, v) ∈ X, then

τ
(
(q′, dv′)|(q, v), a, d, q′

)
:=

{
τv(dv

′|(q, v), a, d)τq(q|(q, v), a, d), if q′ = q
τr(dv

′|(q, v), a, d, q′)τq(q
′|(q, v), a, d), if q′ 6= q.

We can now define the execution of the DTSHG based on the hybrid stochastic kernel.

Definition 3.5. Let H be a DTSHG and N ∈ N be a finite time horizon. A stochastic
process {xk, k = 0, . . . , N} with values in X is an execution of H associated with a Markov
policy µ ∈ Ma, a Markov strategy γ ∈ Γd, and an initial condition x0 ∈ X if its sample
paths are obtained according to Algorithm 3.1.

As the player 1 policy µ and player 2 strategy γ are in general time-varying, the execution
{xk, k = 0, . . . , N} of the DTSHG is a time inhomogeneous stochastic process on the sample
space Ω = XN+1, endowed with the canonical product topology B(Ω) :=

∏N+1
k=1 B(X). In

particular, the evolution of the closed-loop hybrid state trajectory can be described in terms
of the stochastic kernels τµk,γk(·|x) := τ

(
· |x, µk(x), γk(x, µk(x))

)
, k = 0, 1, . . . , N . By

Proposition 7.28 of [112], for a given x0 ∈ X, µ ∈ Ma, γ ∈ Γd, these stochastic kernels
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Algorithm 3.1 DTSHG Execution

Input Initial hybrid state x0 ∈ X, Markov policy µ = (µ0, µ1, . . . , µN−1) ∈ Ma, Markov
strategy γ = (γ0, γ1, . . . , γN−1) ∈ Γd

Output Sample Path {xk, k = 0, . . . , N}
Set k = 0;
while k < N do

Set ak = µk(xk);
Set dk = γk(xk, ak);
Extract from X a value xk+1 according to τ(·|xk, ak, dk);
Increment k;

end while

induce a unique probability measure P µ,γ
x0

on Ω as defined by

P µ,γ
x0

(X0 ×X1 × · · · ×XN) =

∫
X0

∫
X1

· · ·
∫
XN

τµN−1,γN−1(dxN |xN−1) (3.1)

× · · · × τµ0,γ0(dx1|x′0)δx0(dx
′
0),

where X0, X1 . . . , XN ∈ B(X) are Borel subsets and δx0 denotes the probability measure on
X which assigns mass one to the point x0 ∈ X.

Example 3.1 (2-mode DTSHG). In order to illustrate the definitions given so far, we
provide a simple example. Consider a discrete-time stochastic hybrid system with two modes
of operation Q = {q1, q2}, as shown in Figure 3.1(a). The transitions between the discrete
modes are modeled probabilistically, with the probability of dwelling in mode qi given by pi,
i = 1, 2. In mode qi, the continuous state v ∈ R evolves according to a stochastic difference
equation vk+1 = fq(vk, ak, dk, ηk), defined as

vk+1 =f1(vk, ak, dk, ηk) = 2vk + ak + dk + ηk,

vk+1 =f2(vk, ak, dk, ηk) =
1

2
vk + ak + dk + ηk, (3.2)

where ak and dk are the inputs of player 1 and player 2, respectively, and ηk is a random
variable modeling the effect of noise upon the system dynamics. It is assumed that the
players have identical capabilities, with ak and dk taking values in [−1, 1]. The noise is
modeled by a uniform distribution ηk ∼ U(−1,+1). A sample execution for initial condition
x0 = (q0, v0) = (1, 1), µk = −sgn(vk) and γk = vkak

|2vkak|
is shown in Figure 3.1(b).

Under the formal modeling framework defined previously, the hybrid state space is X =
{q1, q2} × R, and the player input spaces are A = D = [−1, 1]. The discrete stochastic
kernel τq is derived from the mode transition diagram of Figure 3.1(a) as τq(q

1|(q1, v), a, d) =
p1, τq(q

2|(q1, v), a, d) = 1 − p1, τq(q
1|(q2, v), a, d) = 1 − p2, τq(q

2|(q2, v), a, d) = p2. The
continuous stochastic kernel τv can be derived from the continuous state dynamics (3.2) as
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(a) Discrete modes and transitions (b) An execution of the DTSHG

Figure 3.1: Discrete-time stochastic hybrid game with two modes

τv(dv
′|(q1, v), a, d) ∼ U(2v + a+ d− 1, 2v + a+ d+ 1), τv(dv

′|(q2, v), a, d) ∼ U(1
2
v + a+ d−

1, 1
2
v + a + d + 1). With the assumption that the continuous state v is not reset during a

discrete mode transition, the reset kernel is given by τr(dv
′|(q, v), a, d, q′) = τv(dv

′|(q, v), a, d).
It is easy to see that the stochastic kernels are all Borel measurable.

3.3 Reach-Avoid Problem and Solution Approach

In the setting of the DTSHG, the reach-avoid problem becomes a stochastic game in which
the objective of player 1 (the control) is to steer the hybrid system state into a desired target
set while avoiding a set of unsafe states, as shown in Figure 3.2(a). On the other hand, the
objective of player 2 (the adversary) is to either steer the state into the unsafe set or prevent
it from reaching the target set.

Our reach-avoid problem formulation follows closely the formulation in [47]. Suppose that
Borel sets K,K ′ ∈ B(X) are given as the desired target set and safe set, respectively, with
K ⊆ K ′. Then the probability that the state trajectory (x0, x1, . . . , xN) reaches K while
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target 
set 

unsafe set X
x0

(a) An execution of the stochastic trajectory

target 
set 

unsafe set X

X!

(b) Probabilistic backward reach-avoid set

Figure 3.2: Reach-avoid problem for stochastic hybrid systems

staying inside K ′ under fixed choices of µ ∈Ma and γ ∈ Γd is given by

rµ,γx0 (K,K ′) := P µ,γ
x0

(
N⋃
j=0

(K ′ \K)j ×K ×XN−j

)

=
N∑
j=0

P µ,γ
x0

(
(K ′ \K)j ×K ×XN−j), (3.3)

where the second equality in (3.3) follows by the fact that the union is disjoint. By Equality
(3.1) this probability can be computed as

rµ,γx0 (K,K ′) = Eµ,γ
x0

[
1K(x0) +

N∑
j=1

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

]
, (3.4)

where Eµ,γ
x0

denotes the expectation with respect to the probability measure P µ,γ
x0

. Now define
the worst-case reach-avoid probability under a choice of Markov policy µ as

rµx0(K,K
′) = inf

γ∈Γd
rµ,γx0 (K,K ′). (3.5)

Our control objective is to maximize this worst-case probability over the set of Markov
policies. The precise problem statement is as follows:

Problem 3.1. Given a DTSHGH, target and safe sets K,K ′ ∈ B(X), K ⊆ K ′, and x0 ∈ X:

(a) Compute the maxmin reach-avoid probability r∗x0(K,K
′) := supµ∈Ma

rµx0(K,K
′);

(b) Find a maxmin policy µ∗ ∈Ma such that r∗x0(K,K
′) = rµ

∗
x0

(K,K ′).
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We show that the maxmin reach-avoid probability and the maximin control policy can be
computed using an appropriate dynamic programming algorithm. For our theoretical deriva-
tions, we require the following assumptions on the stochastic kernels.

Assumption 3.1.

(a) For each x = (q, v) ∈ X and q′ ∈ Q, the function τq(q
′|x, a, d) is continuous on A×D;

(b) For each x ∈ X and E1 ∈ B(Rn(q)), the function τv(E1|x, a, d) is continuous on A×D;

(c) For each x ∈ X, q′ ∈ Q, and E2 ∈ B(Rn(q′)), the function τr(E2|x, a, d, q′) is continuous
on A×D.

Note that we only assume continuity of the stochastic kernels in the actions of player 1
and player 2, but not necessarily in the system state. Thus, our Borel-measurable model
still allows for stochastic hybrid systems where transition probabilities change abruptly with
changes in the system state. Furthermore, if the action spacesA andD are finite or countable,
then the above assumptions are clearly satisfied under the discrete topology on A and D.
Also, if τv(·|(q, v), a, d) has a density function fv(v

′|(q, v), a, d), v′ ∈ Rn(q) for every q ∈ Q,
and fv(v

′|(q, v), a, d) is continuous in a and d, it can be checked that the assumption for τv
is satisfied. A similar condition can also be stated for the reset kernel τr.

The compactness of the players’ input spaces and the continuity assumptions on the stochas-
tic kernels are sufficient to ensure that optimal policies and strategies exist at each step of
the dynamic programming algorithm as will be shown. If optimal or ε-optimal policies do
not exist, then the dynamic programming recursion may not hold in general. Please see
Examples 1 and 3 in Chapter 8 of [112] for counter examples.

Let F denote the set of Borel measurable functions from X to [0, 1]. For the statement of
the algorithm, define H : X × A×D ×F → [0, 1] as

H(x, a, d, J) =

∫
X

J(y)τ(dy|x, a, d). (3.6)

Next, define the dynamic programming operator T : F → F :

T [J ](x) = sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J) x ∈ X. (3.7)

Our main result is as follows:

Theorem 3.1. Let H be a DTSHG satisfying Assumption 3.1. Let K,K ′ ∈ B(X) be Borel
sets such that K ⊆ K ′. Let the operator T be defined as in (3.7). Then the composition
TN = T ◦ T ◦ · · · ◦ T (N times) is well-defined and

(a) r∗x0(K,K
′) = TN [1K ](x0),∀x0 ∈ X;
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(b) There exists a player 1 policy µ∗ ∈Ma and player 2 strategy γ∗ ∈ Γd satisfying

rµ,γ
∗

x0
(K,K ′) ≤ r∗x0(K,K

′) ≤ rµ
∗,γ
x0

(K,K ′), (3.8)

for all x0 ∈ X, µ ∈Ma, and γ ∈ Γd. In particular, µ∗ is a maxmin policy for player 1.

(c) If µ∗ = (µ∗0, µ
∗
1, . . . , µ

∗
N−1) ∈Ma is a Markov policy which satisfies

µ∗k(x) ∈ arg sup
a∈A

inf
d∈D

H(x, a, d, Jk+1), x ∈ K ′ \K, (3.9)

where Jk = TN−k[1K ], k = 0, 1, . . . , N , then µ∗ is a maxmin policy for player 1.
In addition, if γ∗ = (γ∗0 , γ

∗
1 , . . . , γ

∗
N−1) ∈ Γd is a Markov strategy which satisfies

γ∗k(x, a) ∈ arg inf
d∈D

H(x, a, d, Jk+1), x ∈ K ′ \K, a ∈ A, (3.10)

then γ∗ is a worst-case strategy for player 2.

Although there is a large number of previous results in the field of non-cooperative stochastic
games [113, 108, 109, 114, 115], the direct application of these results to our formulation is
difficult, for several reasons. First, the pay-off functions for the safety and reach-avoid
problems are sum-multiplicative, which prevents the use of results from the more common
additive cost problems [108, 114]. In addition, although there is previous work on more
general utility functions which depend on the entire history of the game [109, 115], the
results are primarily for the existence of randomized policies under a symmetric information
pattern. Due to practical implementation and robustness concerns, we are more interested in
the existence of nonrandomized policies under a non-symmetric information pattern. Finally,
an important feature of hybrid systems is that the dynamics in the continuous state space
can change abruptly across switching boundaries. This requires a relaxation of the continuity
assumptions in the continuous state space such as those given in [113].

The proof of this theorem proceeds through a sequence of lemmas and propositions which
generalize the dynamic programming algorithms given in [47] and [46] for the single player
case. First, it is shown that the operator T preserve measurability properties, and so the se-
quential composition of T is well-defined. Furthermore, using the continuity properties given
in Assumption 3.1, it is shown that there exist Borel measurable functions which achieve
the supremum and infimum in (3.7) at each step of the dynamic programming recursion.
Next, it is shown that for fixed µ ∈Ma and γ ∈ Γd, the reach-avoid probability rµ,γx0 (K,K ′),
can be computed using a recursive formula. Finally, it is shown that the function TN [1K ]
simultaneously upper bounds and lower bounds r∗x0(K,K

′) and hence is equal to r∗x0(K,K
′).

In the course of proving this last result, the existence of a maxmin policy for player 1 and a
worst-case strategy for player 2 is also established.
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Properties of the dynamic programming operator T

Here, we will prove some properties of T . First, we state a special case of Corollary 1 given
in [116]. This result allows us to show that the operator T preserves Borel measurability
and that it is sufficient to consider Borel measurable selectors.

Lemma 3.1. Let X, Y be complete separable metric spaces such that Y is compact, and
f be a real-valued Borel measurable function defined on X × Y such that f(x, ·) is lower
semicontinuous with respect to the topology on Y . Define f ∗ : X → R ∪ {±∞} by

f ∗(x) = inf
y∈Y

f(x, y).

(a) The set I := {x ∈ X : for some y ∈ Y, f(x, y) = f ∗(x)} is Borel measurable.

(b) For every ε > 0, there exists a Borel measurable function φ : X → Y , satisfying

f(x, φ(x)) = f ∗(x), if x ∈ I,

f(x, φ(x)) ≤
{
f ∗(x) + ε, if x /∈ I, f ∗(x) > −∞,
−1/ε, if x /∈ I, f ∗(x) = −∞.

In order to prove that the supremum and infimum in the expression for T is achieved, we
will need the operator H to produce functions continuous in A and D. For this purpose, we
state the following technical result from [108].

Lemma 3.2. Let f be a bounded real-valued Borel measurable function on a Borel space Y ,
and τ be a Borel measurable transition probability from a Borel space X into Y such that
τ(B|·) is continuous on X for each B ∈ B(Y ). Then the function x →

∫
f(y)τ(dy|x) is

continuous on X.

We are now ready to prove that the operator T preserves Borel measurability, and that the
infimum and supremum in (3.7) can be achieved by Borel measurable selectors. For nota-
tional convenience, we introduce an operator G which takes a real-valued Borel measurable
function on X and produces a real-valued function on X × A:

G[J ](x, a) = inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J). (3.11)

Proposition 3.1.

(a) ∀J ∈ F , T [J ] ∈ F .

(b) For any J ∈ F , there exists a Borel measurable function λ∗ : X × A → D such that,
∀(x, a) ∈ X × A,

λ∗(x, a) ∈ arg inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J). (3.12)
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(c) For any J ∈ F , there exists a Borel measurable function π∗ : X → A, such that ∀x ∈ X,

π∗(x) ∈ arg sup
a∈A
{ inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J)}. (3.13)

Proof. For any J ∈ F , define a function fJ : X × A×D → R as

fJ(x, a, d) = H(x, a, d, J).

From the definition of H in Equation (3.6), it follows that the range of fJ lies in [0, 1]. By the
Borel measurability of J and τ , Proposition 7.29 of [112] implies that fJ is Borel measurable.
Furthermore, for each x ∈ X, Lemma 3.2 implies that fJ(x, a, d) is continuous in a and d.
Now consider f̃J : X × A×D → R,

f̃J(x, a, d) = 1K(x) + 1K′\K(x)fJ(x, a, d).

Clearly, 0 ≤ f̃J ≤ 1. Furthermore, given that Borel measurability is preserved under summa-
tion and multiplication (see for example Proposition 2.6 of [117]), f̃J is also Borel measurable.
Finally, it is clear that f̃J(x, a, d) is continuous in a and d for each x ∈ X. We observe that

G[J ](x, a) = inf
d∈D

f̃J(x, a, d). (3.14)

Since the range of f̃J is [0, 1], the range of G[J ] is also [0, 1]. By assumption, A and D are
Borel spaces and hence metrizable. Thus, A can be endowed with a metric d1 consistent with
the topology on A, while D can be endowed with a metric d2 consistent with the topology
on D. Furthermore, as shown in [118], the hybrid state space X can be endowed with
a metric equivalent to the standard Euclidean metric when restricted to each continuous
domain Rn(q), q ∈ Q. Under the assumptions on the DTSHG model, the spaces X, A,
and D are also complete and separable. Now for each (x, a) ∈ X × A, we have by the
previous derivations that f̃J(x, a, ·) is continuous on D. By the compactness of D, the
infimum in Equation (3.14) is achieved for each fixed (x, a) (see for example Theorem 4.16
in [119]). Thus, applying Lemma 3.1, we have that there exists a Borel measurable function
λ∗ : X × A→ D for which (3.12) holds.

For the outer supremum, note that the composition of Borel measurable functions remains
Borel measurable and thus, G[J ] is a Borel measurable function. Since the infimum in Equa-
tion (3.14) is achieved and f̃J is continuous on A, we conclude that G[J ] is also continuous
on A. Observe that

T [J ](x) = − inf
a∈A
−G[J ](x, a), x ∈ X. (3.15)

By the compactness of A, the infimum in (3.15) is achieved for each x ∈ X. Thus, a repeated
application of Lemma 3.1 shows that there exists a Borel measurable function π∗ : X → A
such that −T [J ](x) = −G[J ](x, π∗(x)), ∀x ∈ X. Hence, T [J ] is composition of Borel
measurable functions and is Borel measurable. Finally, clearly, range of T [J ] lies in [0, 1],
and so T [J ] ∈ F .
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Next, motivated by the expression for rµ,γx0 (K,K ′) in (3.3), for fixed µ ∈Ma and γ ∈ Γd, we
define the functions V µ,γ

k : X → [0, 1], k = 0, . . . , N

V µ,γ
N (x) =1K(x),

V µ,γ
k (x) =1K(x) + 1K′\K(x)

∫
XN−k

N∑
j=k+1

j−1∏
i=k+1

1K′\K(xi)1K(xj)

N−1∏
j=k+1

τµj ,γj(dxj+1|xj)τµk,γk(dxk+1|x). (3.16)

In the above, we use the convention that
∏j

i=k(.) = 1 for k > j. From the definition above
and expanding the expectation in (3.3), it is clear that V µ,γ

0 (x0) = rµ,γx0 (K,K ′), ∀x0 ∈ X.

The task of computation of reach-avoid probability for a given policy and strategy becomes
equivalent to finding a method for computing V µ,γ

k (x). Consider a recursion operator Tπ,λ :
F → F , parameterized by Borel measurable functions π : X → A and λ : X × A→ D:

Tπ,λ[J ](x) = 1K(x) + 1K′\K(x)H(x, π(x), λ(x, π(x)), J), x ∈ X (3.17)

where H is defined in (3.6). The following result shows that the functions V µ,γ
k can be

computed using backwards recursion under the operator Tπ,λ.

Lemma 3.3. Let µ ∈Ma and γ ∈ Γd. For k = 0, 1, . . . , N − 1, the following identity holds:

V µ,γ
k = Tµk,γk [V

µ,γ
k+1]. (3.18)

Proof. For k = N − 1, the definition of V µ,γ
N implies that for any x ∈ X,

V µ,γ
N−1(x) = 1K(x) + 1K′\K(x)

∫
X

1K(xN)τµN−1,γN−1(dxN |x)

= TµN−1,γN−1
[V µ,γ
N ].

For 0 ≤ k < N − 1, we have by the expression for V µ,γ
k in (3.16) that for any x ∈ X,

V µ,γ
k (x) =1K(x) + 1K′\K(x)

∫
X

1K(xk+1) + 1K′\K(xk+1)(∫
XN−k−1

N∑
j=k+2

j−1∏
i=k+2

1K′\K(xi)1K(xj)

)
N−1∏
j=k+1

τµj ,γj(dxj+1|xj)τµk,γk(dxk+1|x)

=1K(x) + 1K′\K(x)

∫
X

V µ,γ
k+1(xk+1)τµk,γk(dxk+1|x).

It follows from the definition of Tπ,λ that the last expression above is Tµk,γk [V
µ,γ
k+1] as desired.
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For the proofs of the next two propositions, we use the fact the operator Tπ,λ satisfies a
monotone property: for any Borel measurable functions J, J ′ from X to [0, 1] such that
J(x) ≤ J ′(x),∀x ∈ X, Tπ,λ[J ](x) ≤ Tπ,λ(J

′)(x),∀x ∈ X. It is straightforward to check this
property using the definition of H in Equation (3.6) and the properties of integrals.

Proposition 3.2.

(a) ∀x0 ∈ X, TN [1K ](x0) ≤ r∗x0(K,K
′).

(b) There exists µ∗ ∈Ma such that, for any γ ∈ Γd, T
N [1K ](x0) ≤ rµ

∗,γ
x0

(K,K ′), ∀x0 ∈ X.

Proof. For notational convenience, for k = 0, 1, . . . , N we define JN−k := T k[1K ].

First, we prove the following claim: There exists µ∗N−k→N := (µ∗N−k, µ
∗
N−k+1, . . . , µ

∗
N−1) such

that, for any γN−k→N := (γN−k, γN−k+1, . . . , γN−1), JN−k(x) ≤ V
µ∗N−k→N ,γ

N−k (x), ∀x ∈ X.

Let γ = (γ0, γ1, . . . , γN−1) ∈ Γ be arbitrary. The case of k = 0 is trivial. For the
inductive step, assume that this holds for k = h. By the induction hypothesis, there
exists a policy µ∗N−h→N = (µ∗N−h, µ

∗
N−h+1, . . . , µ

∗
N−1) ∈ Ma such that, for any γ ∈ Γd,

JN−h(x) ≤ V
µ∗N−h→N ,γ

N−h (x),∀x ∈ X. Furthermore, by Proposition 3.1(c), there exists a Borel
measurable function π∗ : X → A such that G[JN−h](x, π

∗(x)) = T [JN−h](x),∀x ∈ X.
Choose a policy µ∗N−h−1→N = (π∗, µ∗N−h, µ

∗
N−h+1, . . . , µ

∗
N−1). Then by the monotonicity of

the operator Tπ,λ and Lemma 3.3 we have:

V
µ∗N−h−1→N ,γ

N−h−1 (x) = Tπ∗,γN−h−1
[V

µ∗N−h→N ,γ

N−h ](x)

≥ Tπ∗,γN−h−1
[JN−h](x)

= 1K(x) + 1K′\K(x)H(x, π∗(x), γN−h−1(x, π∗(x)), JN−h)

≥ inf
d∈D

1K(x) + 1K′\K(x)H(x, π∗(x), d, JN−h)

= G[JN−h](x, π
∗(x))

= T [JN−h](x) = JN−h−1(x),

which holds for each x ∈ X and thus concludes the proof of the claim.

This result implies that there exists µ∗0→N = (µ∗0, µ
∗
1, . . . , µ

∗
N−1) ∈ Ma such that, for any

γ = (γ0, γ1, . . . , γN−1) ∈ Γd, T
N [1K ](x0) = J0(x0) ≤ V

µ∗0→N ,γ
0 (x0) = r

µ∗0→N ,γ
x0 (K,K ′), ∀x0 ∈ X.

Hence, µ∗0→N is the Markov policy satisfying statement (b) of the propsoition. Also, since γ is

arbitrary, TN [1K ](x0) ≤ infγ∈Γd r
µ∗0→N ,γ
x0 (K,K ′), ∀x0 ∈ X. Thus, TN [1K ](x0) ≤ r∗x0(K,K

′),
∀x0 ∈ X as desired.

Proposition 3.3.

(a) ∀x0 ∈ X, r∗x0(K,K
′) ≤ TN [1K ](x0).
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(b) There exists γ∗ ∈ Γd such that, for any µ ∈Ma, r
µ,γ∗
x0

(K,K ′) ≤ TN [1K ](x0), ∀x0 ∈ X.

Proof. As in the proof of Proposition 3.2, we first prove the following claim by induc-
tion on k: There exists γ∗N−k→N = (γ∗N−k, γ

∗
N−k+1, . . . , γ

∗
N−1) ∈ Γd such that, for any

µ = (µN−k, µN−k+1, . . . , µN−1) ∈Ma, V
µ,γ∗N−k→N
N−k (x) ≤ JN−k(x), ∀x ∈ X.

Let µ = (µ0, µ1, . . . , µN−1) ∈Ma be arbitrary. The case of k = 0 is trivial. For the inductive
step, assume that this holds for k = h. By the induction hypothesis, there exists a strategy

γ∗N−h→N = (γ∗N−h, γ
∗
N−h+1, . . . , γ

∗
N−1) ∈ Γd such that, for any µ ∈ Ma, V

µ,γ∗N−h→N
N−h (x) ≤

JN−h(x), ∀x ∈ X. Furthermore, by Proposition 3.1(b), there exists a Borel measurable
function λ∗ : X × A→ D such that for all (x, a) ∈ X × A the following holds:

1K(x) + 1K′\K(x)H(x, a, λ∗(x, a), JN−h) = G[JN−h](x, a).

Choose a Markov strategy, γ∗N−h−1→N = (λ∗, γ∗N−h, γ
∗
N−h+1, . . . , γ

∗
N−1). Then by the mono-

tonicity of the operator Tπ,λ and Lemma 3.3, we have for each x ∈ X:

V
µ,γ∗N−h−1→N
N−h−1 (x) = TµN−h−1,λ∗ [V

µ,γ∗N−h→N
N−h ](x)

≤ TµN−h−1,λ∗ [JN−h](x)

= 1K(x) + 1K′\K(x)H(x, µN−h−1(x), λ∗(x, µN−h−1(x)), JN−h)

= G[JN−h](x, µN−h−1(x))

≤ sup
a∈A

G[JN−h](x, a)

= T [JN−h](x) = JN−h−1(x),

which concludes the proof of the claim.

This result implies that there exists γ∗0→N = (γ∗0 , γ
∗
1 , . . . , γ

∗
N−1) ∈ Γd such that, for any

µ = (µ0, µ1, . . . , µN−1) ∈ Ma, r
µ,γ∗0→N
x0 (K,K ′) = V

µ,γ∗0→N
0 (x0) ≤ J0(x0) = TN [1K ](x0),

∀x0 ∈ X. Thus, γ∗0→N is the Markov strategy satisfying statement (b) and rµx0(K,K
′) =

infγ∈Γd r
µ,γ
x0

(K,K ′) ≤ TN [1K ](x0), for any µ ∈ Ma and x0 ∈ X. Since µ is arbitrary,
r∗x0(K,K

′) ≤ TN [1K ](x0), ∀x0 ∈ X, proving statement (a).

Combining the results of Proposition 3.2 and 3.3, we can now prove Theorem 3.1.

Proof. Statement (a) of Theorem 3.1 follows directly from the inequalities in Proposition 3.2(a)
and Proposition 3.3(a). By Proposition 3.2(b) and statement (a) of the theorem, there exists
a Markov policy µ∗ ∈ Ma such that, for any γ ∈ Γd, r

∗
x0

(K,K ′) ≤ rµ
∗,γ
x0

(K,K ′), ∀x0 ∈ X.
This implies that r∗x0(K,K

′) ≤ rµ
∗
x0

(K,K ′), ∀x0 ∈ X. On the other hand, the reverse inequal-
ity always holds: rµ

∗
x0

(K,K ′) ≤ r∗x0(K,K
′), ∀x0 ∈ X. This shows that µ∗ is a maxmin policy.

Similarly, by Proposition 3.3(b) and statement (a) of the theorem, there exists a Markov
strategy γ∗ ∈ Γd such that, for any µ ∈ Ma, r

µ,γ∗
x0

(K,K ′) ≤ r∗x0(K,K
′),∀x0 ∈ X. Thus, we
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have statement (b). Finally, statement (c) follows directly from the proof of Proposition 3.2
and Proposition 3.3.

Implications of the theorem

(a) Robust optimal policy: By statement (b) of Theorem 3.1, if the control were to choose µ∗

and the adversary were to deviate from γ∗, then the reach-avoid probability will be at least
r∗x0(K,K

′). On the other hand, if the control were to deviate from the maxmin policy and the
adversary were to choose the worst-case Markov strategy, then the reach-avoid probability
will be at most r∗x0(K,K

′). Thus, µ∗ can be interpreted as a robust control policy which
optimizes the worst-case probability for achieving the reach-avoid objective.

(b) Control synthesis: Equations (3.9) and (3.10) provide us with sufficient conditions for
optimality of the players’ policies and strategies. In particular, Equation (3.9) can be used to
synthesize a maxmin control policy for player 1 from the value functions computed through
the dynamic programming recursion. To illustrate, suppose that the input ranges A and D
along with the state space X have been appropriately discretized, for example according to
the method suggested in [120]. Then for each system state x ∈ K ′ \ K in the grid, at the
k-th iteration of the dynamic programming algorithm, we can compute and store an optimal
control input

a∗ ∈ arg sup
a∈A

inf
d∈D

H(x, a, d, Jk+1).

This provides us with a discretized representation of the one-step maxmin control policy µ∗N−k
on a grid of the continuous state space within each mode. Storing these values as lookup
tables then allows us to select control inputs in an optimal fashion as state measurements
are received.

(c) Probabilistic reach-avoid set: Consider the case in which it is required from the system
design perspective to have a reach-avoid probability greater than some threshold (1− ε), for
ε ∈ [0, 1). The set of initial conditions Xε for which this specification is feasible, under the
worst-case adversary behavior, can be derived from the maxmin reach-avoid probability as

Xε = {x0 ∈ X : r∗x0(K,K
′) ≥ (1− ε)}.

In other words, Xε is the (1− ε)-sublevel set of the reach-avoid probability map r∗x0(K,K
′),

x0 ∈ X. A conceptual illustration of such a set is shown in Figure 3.2(b).

(d) Numerical computation: For a few problems, such as the example in the next section,
analytic computation of r∗x0(K,K

′) may be possible. In general, there may not be a closed-
form expression for the operator T . The computation of the dynamic programming can be
done on a discretized grid of the continuous state and input spaces for each mode. For a
given grid point xg, inputs ag and dg in the discretized input spaces A and D respectively, the
hybrid transition probability τ(x′g|xg, ag, dg) for each x′g in the grid can be approximated by
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integration of τ(dx|xg, ag, dg) over the grid volume. Alternatively, Monte Carlo simulation
may be used to approximate these transition probabilities. Regardless of the method for
evaluating the transition probabilities, it can be observed that the computational cost of
a discretization approach scales exponentially with the dimensions of the continuous state
space and player input spaces, which currently limits the application of our approach to
problems with continuous state dimensions of n ≤ 4.

Example 3.2 (A reach-avoid example with analytic solution). In order to illustrate the
procedure for computing the reach-avoid probability, the maxmin player 1 policy and the
worst-case player 2 strategy, we describe a simple reach-avoid problem for which an analytic
solution can be obtained. Specifically, consider the system dynamics given in Example 3.1,
and a regulation problem where the objective of player 1 is to drive the continuous state into
a neighborhood of the origin, while staying within some safe operating region. In this case,
the target set and safe set are chosen to be K = {q1, q2}× [−1

4
, 1

4
] and K ′ = {q1, q2}× [−2, 2],

respectively. The time horizon is chosen to be N = 1.

First, we observe that the stochastic kernels τv and τr are continuous in a and d, while τq is
independent of the players’ inputs. Thus, Assumption 3.1 is satisfied. For a given a function
J : X → R, the value of the map H(x, a, d, J) for a hybrid state x, in discrete mode 1, that
is, x = (q1, v), is derived as

H
(
(q1, v), a, d, J

)
=

∫
X

J(x′)τ(dx′|(q1, v), a, d) (3.19)

= τq(q
1|(q1, v), a, d)

∫
R
J(q1, v′)τv(dv

′|(q1, v), a, d)

+ τq(q
2|(q1, v), a, d)

∫
R
J(q2, v′)τr(dv

′|(q1, v), a, d, q2)

= p1

∫ 1

−1

J(q1, 2v + a+ d+ η)dη + (1− p1)

∫ 1

−1

J(q2, 2v + a+ d+ η)dη.

Similarly, we can derive H(x, a, d, J) for x = (q2, v). Given the form of the target set K, the
dynamic programming recursion is initialized by the function

1K(q, v) =

{
1, |v| ≤ 1

4
, q = q1, q2

0, |v| > 1
4
, q = q1, q2

By Theorem 3.1, the maxmin reach-avoid probability r∗x0(K,K
′) for an initial condition

x0 = (q0, v0) can be computed as

T [1K ](q0, v0) =


1, |v0| ≤ 1

4
, q0 = q1, q2

0, |v0| > 2, q0 = q1, q2

supa∈A infd∈DH
(
(q0, v0

)
, a, d,1K), 1

4
< |v0| ≤ 2, q0 = q1, q2

(3.20)
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From the above, we see that the dynamic programming step only needs to be carried out on
the set K ′ \K = {q1, q2} × [−2,−1

4
) ∪ (1

4
, 2]. From equation (3.19), it can be verified that

for q0 = q1

H
(
(q1, v0), a, d,1K

)
=


1
4
, 0 ≤ |2v0 + a+ d| ≤ 3

4
5
8
− 1

2
|2v0 + a+ d| 3

4
< |2v0 + a+ d| ≤ 5

4

0, |2v0 + a+ d| > 5
4

(3.21)

Combining equations (3.20) and (3.21), the maxmin reach-avoid probability for the initial
condition x0 = (q1, v0) can be derived as

r∗x0(K,K
′) = T [1K ](q1, v0) =


1 |v0| ≤ 1

4
1
8

1
4
< |v0| ≤ 1

2
5
8
− |v0| 1

2
< |v0| ≤ 5

8

0 |v0| > 5
8

In the process of performing the dynamic programming step in (3.20), we also obtain a
maxmin player 1 policy µ∗0, and a worst-case player 2 strategy γ∗0 , in mode q1 satisfying the
sufficient conditions for optimality in (3.9) and (3.10) as follows:

µ∗0(q1, v0) =

{
1, |v0| > 1

2

−2v0, |v0| ≤ 1
2

γ∗0((q1, v0), a) =

{
−1, 2v0 + a < 0

1, 2v0 + a ≥ 0

Similarly, we can compute the maxmin reach-avoid probability for x0 = (q2, v0) as

r∗x0(K,K
′) = T [1K ](q2, v0) =


1, |v0| ≤ 1

4
1
8
, 1

4
≤ |v0| ≤ 2

0, |v0| > 2

Furthermore, a maxmin player 1 policy and a worst-case player 2 strategy satisfying the
sufficient conditions for optimality in mode q2 can be derived and are given as

µ∗0(q2, v0) =

{
1, |v0| > 2

−1
2
v0, |v0| ≤ 2

γ∗0((q2, v0), a) =

{
−1, 1

2
v0 + a < 0

1, 1
2
v0 + a ≥ 0

Specialization to Stochastic Safety Problem

Consider the probabilistic safety problem described in [46], in which the objective of player
1 is to keep the system state within a given safe set S ∈ B(X) over some finite time horizon
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[0, N ], while the objective of player 2 is again opposed to that of player 1. Similar to the
reach-avoid derivation, it can be shown that the probability that the hybrid state trajectory
(x0, x1, . . . , xN) remains in S under fixed choices of µ ∈ Ma and γ ∈ Γd can be formulated
as a sum-multiplicative cost

pµ,γx0 (S) := P µ,γ
x0

(SN+1) = Eµ,γ
x0

[
N∏
k=0

1S(xk)

]
.

The connection between the safety problem and reach-avoid problem is established by the
observation that the hybrid state remains inside a set S for all k = 0, 1, . . . , N if and only if
it does not reach X\S for any k = 0, 1, . . . , N . Mathematically speaking, for any µ ∈ Ma

and γ ∈ Γd
pµ,γx0 (S) = 1− rµ,γx0 (X\S,X). (3.22)

The solution to the probabilistic safety problem can be obtained from a complementary
reach-avoid problem. In particular, consider a reach-avoid problem with the value function

r̄∗x0(X \ S,X) = inf
µ∈Ma

sup
γ∈Γd

rµ,γx0 (X\S,X), x0 ∈ X.

Then the maxmin probability of safety is given by

p∗x0(S) = sup
µ∈Ma

inf
γ∈Γd

pµ,γx0 (S) = 1− r̄∗x0(X \ S,X), x0 ∈ X. (3.23)

By minor modifications of the proof for Theorem 3.1, it is not difficult to see that r̄∗x0(X\S,X)
can be computed by the dynamic programming recursion

r̄∗x0(X \ S,X) = TNS [1X\S](x0), x0 ∈ X,

where the operator TS is defined as

TS[J ](x) = inf
a∈A

sup
d∈D

1X\S(x) + 1S(x)H(x, a, d, J), x ∈ X. (3.24)

The corresponding maxmin probability of safety can then be obtained through (3.23).

For completeness, we note that there exists an equivalent dynamic programming recursion
to compute the safety probability, similar to the one given in [46] for the single player case.
Specifically, consider an operator T̃S defined as

T̃S[J ](x) = sup
a∈A

inf
d∈D

1S(x)H(x, a, d, J), x ∈ X. (3.25)

The relation between T̃S and TS is established through the following lemma.
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Lemma 3.4. For every x ∈ X and k = 0, 1, . . . , N , T̃ kS [1S](x) = 1− T kS [1X\S](x).

Proof. We prove this result by induction on k. The case of k = 0 is established by the fact
that 1S = 1− 1X\S. Now suppose the identity holds for k = h, then ∀x ∈ X,

T̃ h+1
S [1S](x) = T̃S(T̃ hS (1S))(x) = T̃S[1− T hS [1X\S]](x)

= sup
a∈A

inf
d∈D

1S(x)H(x, a, d, 1− T hS [1X\S])

= sup
a∈A

inf
d∈D

1S(x)(1−H(x, a, d, T hS [1X\S]))

= 1S(x) + sup
a∈A

inf
d∈D
−1S(x)H(x, a, d, T hS [1X\S]).

It then follows that for every x ∈ X, we have:

1− T̃ h+1
S (1S)(x) = 1− 1S(x)− sup

a∈A
inf
d∈D
−1A(x)H(x, a, d, T hS [1X\S])

= 1X\S(x) + inf
a∈A

sup
d∈D

1S(x)H(x, a, d, T hS [1X\S])

= TS[T hS (1X\S])(x) = T h+1
S [1X\S](x),

which completes the proof.

Thus, an equivalent recursion for computing the maxmin safety probability is given by

p∗x0(S) = T̃NS [1S](x0), x0 ∈ X. (3.26)

Using either the operator TS or the operator T̃S, we can also derive sufficient conditions of
optimality for player 1 and player 2, similar to those given in Equations (3.9) and (3.10).

Consideration of Alternative Information Patterns

In the previous sections, we considered a non-symmetric information pattern which gives an
advantage to player 2, namely the intent of player 1 is available to player 2 at each time step.
For the discussions in this section, we refer to this as Scenario I. Suppose instead that the
actions of the adversary are observed. For example in a patrol and surveillance application
the actions of an intruder are assumed to be captured by a surveillance system. Then one
can reasonably consider an alternative information pattern in which player 1 selects Markov
strategies and player 2 selects Markov policies. We refer to such cases as Scenario II.

In Scenario II, player 1 chooses a Borel measurable Markov strategy at each step, µk :
X ×D → A, k = 0, 1, ..., N − 1. The set of such strategies is denoted by Γa. Player 2 on the
other hand, chooses a Borel measurable Markov policy γk : X → D, k = 0, 1, ..., N − 1. The
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set of such policies is denoted byMd. We briefly note that Markov policies are a subclass of
Markov strategies, namely they consist of the set of Markov strategies which do not explicitly
depend on the input of the other player. Thus, we have that Ma ⊂ Γa and Md ⊂ Γd.

Using a similar construction as in Section 3.2, we can define for a given Markov strategy
µ ∈ Γa and a given Markov policy γ ∈Md, a closed-loop stochastic kernel at time step k by
τ̃µk,γk(·|xk) := τ̃(·|xk, µk(xk, γk(xk)), γk(xk)). As before, this induces a probability measure,
denoted by P̃ γ,µ

x0
, on the sample space Ω. Note that if µ1 ∈ Ma and µ2 ∈ Md are Markov

policies for both players, then the probability measures in Scenario I and II are equivalent:
P̃ µ1,µ2

x0
≡ P µ1,µ2

x0
.

Let Ẽµ,γ
x0

denote the expectation with respect to the probability measure P̃ µ,γ
x0

on the sample
space Ω. Under Scenario II, the reach-avoid probability for a given Markov strategy µ, and
Markov policy γ, is

r̃µ,γx0 (K,K ′) = Ẽµ,γ
x0

[
1K(x0) +

N∑
j=1

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

]
. (3.27)

In this scenario, we are interested in computing the minmax value function defined as

r̃∗x0(K,K
′) := inf

γ∈Md

sup
µ∈Γa

r̃µ,γx0 (K,K ′), ∀x0 ∈ X.

In addition, we are interested in finding the minmax strategy µ∗ ∈ Γa, if it exists, such that
r̃∗x0(K,K

′) = infγ∈Md
r̃µ
∗,γ
x0

(K,K ′), ∀x0 ∈ X.

By a proof analogous to that of Theorem 3.1, the minmax value function can be computed by
a suitable dynamic programming recursion. More precisely, consider a dynamic programming
operator T̃ acting on F , the Borel measurable functions from X to [0, 1]:

T̃ [J ](x) = inf
d∈D

sup
a∈A

1K(x) + 1K′\K(x)H(x, a, d, J), x ∈ X. (3.28)

Then main result for Scenario II is then as follows:

Theorem 3.2. Let H = (Q, n,A,D, τv, τq, τr) be a DTSHG satisfying Assumption 3.1, with
the information pattern for Scenario II. Let K,K ′ ∈ B(X) be Borel subsets such that K ⊆ K ′.
Then the composition T̃N = T̃ ◦ T̃ ◦ · · · ◦ T̃ is well-defined and ∀x0 ∈ X:

(a) r̃∗x0(K,K
′) = T̃N(1K)(x0);

(b) There exists a Markov strategy µ∗ ∈ Γa such that r̃∗x0(K,K
′) = infγ∈Md

r̃µ
∗,γ
x0

(K,K ′);

(c) There exists a Markov policy γ∗ ∈Md such that r̃∗x0(K,K
′) = r̃µ

∗,γ∗
x0

(K,K ′).
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Given the forms of the recursions in (3.7) and (3.28), it is easy to verify that

TN [1K ] ≤ T̃N [1K ],

which agrees with the intuition that player 1 should do better under the information pattern
in Scenario II as compared with Scenario I.

In certain applications, one may be more interested in a symmetric information pattern in
which both players make decisions based only upon the state of the system at each time step
and the intent of neither player is available to the opposing player. More formally, player 1 is
constrained to choose policies µ1 ∈Ma, while player 2 is constrained to choose policies µ2 ∈
Md. By the fact that the set of Markov policies is a subset of the set of Markov strategies,
this case can be viewed as a subset of either Scenario I or Scenario II. In addition, in this case,
we have by the equivalence of P̃ µ1,µ2

x0
and P µ1,µ2

x0
that r̃µ

1,µ2

x0
(K,K ′) = rµ

1,µ2

x0
(K,K ′), ∀x0 ∈ X.

For this symmetric information pattern, the value functions infµ1∈Ma
supµ2∈Md

rµ
1,µ2

x0
(K,K ′)

and supµ2∈Md
infµ1∈Ma

rµ
1,µ2

x0
(K,K ′) are referred to as the upper and lower value functions

respectively. It is not too difficult to show that the lower value function is less than or equal
to the upper value function (as consistent with the naming). In general, conditions under
which these value functions are equal are of interest but difficult to obtain.

3.4 Pairwise Aircraft Conflict Detection

The collision detection scenario considered here involves two aircraft with possibly intersect-
ing nominal trajectories. From the perspective of the first aircraft, the task is to detect the
possibility of conflict given the current position of another aircraft, and design a collision
avoidance trajectory in case a potential conflict is detected. This problem has been studied
with significant detail in [5] within a deterministic setting. Motivated by practical concerns
of wind influence on aircraft trajectories and consequently, on accuracy of conflict detection
[121], we consider the stochastic wind model proposed in [106]. Conflict detection becomes
a probabilistic safety problem involving two players (aircraft 1 and 2), in which the unsafe
set is all aircraft states closer than an allowable distance.

Let (x1, x2, x3) ∈ R2 × [0, 2π] denote, respectively, the 2D position and the heading angle
of aircraft 2 in the reference frame of aircraft 1. We model each aircraft as a unicycle and
discretize the dynamics in relative coordinates [5] to obtain the deterministic part of the
dynamics as follows: x1

k+1

x2
k+1

x3
k+1

 = f(xk, ak, dk) :=

 x1
k + ∆t(−s1 + s2 cos(x3

k) + akx
2
k)

x2
k + ∆t(s2 sin(x3

k)− akx1
k)

x3
k + ∆t(dk − ak)

 . (3.29)
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In the above, ∆t is the discretization step, si is the speed of aircraft i, which is assumed to be
constant in this case study, a and d are the angular velocities of aircraft 1 and 2 respectively
and are the inputs of each aircraft.

In order to develop a realistic model for the effects of wind in relative coordinates, we consider
the stochastic model of the wind as described in [106]. In this work, wind is modeled as
having a deterministic known component and a stochastic component. In this scenario, for
simplicity, we ignore the deterministic known component of the wind. The stochastic wind
component is modeled, in continuous time, as a time dependent random field over the 2D
space. In particular, at each planar position (x1, x2) ∈ R2, the stochastic wind component
has the distribution σdB(x1, x2, t) in which B is a position dependent Brownian motion and
σ is a positive constant. As such, the aircraft positions are correlated due to the presence of
wind. It is then shown in [106] that the wind in relative coordinates has the distribution

ω1(t) = σ
√

2(1− h(x1, x2))W 1(t),

ω2(t) = σ
√

2(1− h(x1, x2))W 2(t),

where W (t) = (W 1(t),W 2(t)) is a standard Brownian motion and h : R2 → R is referred to
as the spatial correlation function. A choice for h which is suitable for air traffic applications
is h(x1, x2) = exp(−β‖(x1, x2)‖), where β is a positive constant. Consequently, the random
variable modeling wind in discrete-time relative coordinates has a Gaussian distribution with
zero mean and position dependent covariance matrix Σ(x1, x2) = 2(∆tσ)2(1− h(x1, x2))I2,

(ω1
k, ω

2
k) ∼ N

(
0,Σ(x1, x2)

)
. (3.30)

Whereas in [106] conflict was predicted assuming a nominal aircraft trajectory perturbed by
wind, here, we consider detection and resolution of conflict by including aircraft inputs in
the model. Thus, for any initial relative position of aircraft, we associate both the minimum
probability of conflict, under appropriate communication and coordination schemes, and also
an optimal policy for the aircraft that achieves this minimum. In addition, we capture the
effects of actuator noise on the angular velocity of either aircraft through introducing the
random variable ω3, with a Gaussian distribution ω3

k ∼ N (0, σa).

Let ωk ∼ N (0,Σ(x)) ∈ R3 denote the stochastic uncertainty due to wind and actuator
noise, where Σ(x) = diag(Σ(x1, x2), σa) ∈ R3×3 is a block diagonal covariance matrix. The
stochastic equations of motion are then given as xk+1 = f(xk, ak, dk) + ωk.

In air traffic management, a conflict between two aircraft is defined if the aircraft get closer
than a critical distance, Rc. Hence, the safe set in 2D can be defined as

S = {(x1, x2) ∈ R2 s.t. ‖(x1, x2)‖2 ≥ Rc}.

In a collision detection and resolution, the choice of communication protocol becomes an
important parameter. Here, we assume that the position of each aircraft is available to both
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aircraft 1 and 2, for example through Automatic Dependent Surveillance-Broadcast (ADS-
B) network at each time step. For the conflict resolution scenario, we consider two control
models as described below.

Model 1: We assume that the control of the two aircraft is decentralized. Namely, there
are no air traffic controllers coordinating the choice of input of each aircraft. Furthermore,
in the absence of further information on the decision algorithms, each aircraft assumes that
the other aircraft could potentially make choices of inputs that endanger safety. Thus, the
conflict resolution problem is also non-cooperative. Conflict detection and resolution from
perspective of aircraft 1 then becomes probabilistic safety under the worst-case aircraft 2
input. Hence, the maxmin probability of safety, p∗x0(S), and aircraft 1’s maxmin control
policy, µ∗ ∈ Ma, which achieves this probability must be computed. Based on Section 3.3,
the solution to this problem can be obtained either through the specialized recursion (3.26)
for the safety problem or from an equivalent reach-avoid problem and the resulting recursion
defined in Theorem 3.1.

Model 2: In the second model, we assume that the control of the two aircraft is centralized.
This can be either due to the presence of an air traffic controller or direct communication
via the ADS-B communication network between the aircraft. Then we can assume that
the aircraft are cooperating to avoid collision. As such, both aircraft want to maximize
probability of safety. The problem is then to compute the maxmax probability of safety,
as well as optimal control policies for the two aircraft which achieve this probability. Since
both players are optimizing the same objective, maximizing probability of safety can be
formulated using the single-player verification formulation of [47].

Motivated by discrete maneuvers currently used in air traffic management, we consider a
scenario in which at any given time, each aircraft can choose to be in one of the three flight
maneuvers: straight, right turn, or left turn, corresponding to the angular velocity of ā ∈ R.
As such, we consider the input sets A = D = {0,−ā, ā} for the aircraft.

For the numerical results included here, the parameters of the problem are chosen as follows:
The sampling time is set to ∆t = 0.1 minute, the time horizon to 2.5 minutes, Rc = 5 km,
the aircraft speed to s1 = s2 = 5 km per minute and the angular velocity to ā = 1 radians
per minute. The covariance parameters are set to σ = 0.73 and σa = 0.26. The constant β
in the function h is chosen as 0.1. Computation is performed over a subset of the state space
given by [−7, 20]× [−10, 10]× [0, 2π], on a grid size of 90× 67× 65.

For this problem, the minmax probability of collision, r̄∗x0(X \ S,X), which is equivalent to
1− p∗x0(S), with p∗x0(S) being the maxmin probability of safety, is computed. Figure 3.3(a)
shows r̄∗x0(X \ S,X) for the set of initial conditions with relative heading of 3π

4
radians.

The interpretation of this probability map is as follows: Consider an initial condition of
(6.79 km, 2.55 km, 3π

4
rad). From the value function we obtain r̄∗x0(X \ S,X) ≈ 0.013. This

means that if aircraft 1 selects flight maneuvers according to the minmax policy µ∗ and
aircraft 2 selects maneuvers according to the worst-case strategy γ∗, then the probability of
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Figure 3.3: Minmax probability of collision

collision within a 2.5 minute time horizon is approximately 1.3%. Furthermore, if aircraft 2
were to deviate from the worst-case strategy γ∗, while aircraft 1 selected maneuvers according
to µ∗, then the probability of collision would remain at most 1.3%. On the other hand, if
aircraft 1 were to deviate from the minmax policy µ∗, while aircraft 2 selected headings
according to γ∗, then the probability of collision may be greater than 1%. Thus, aircraft 1
has an incentive for choosing the minmax policy as a robust control policy to counter the
worst-case behavior by aircraft 2.

In Figure 3.3(b) an execution of the aircraft trajectories, with aircraft 1 initial condition at
(1 km, 0 km, π

4
rad) and aircraft 2 initial condition at (4 km, 6.6 km, π rad), based on the

maxmin control policy and worst-case strategy is shown. The contours of the probability
map r̄∗x0(X \ S,X), at the initial condition are also drawn. In addition, the boundary of
the unsafe set is shown as a circle, centered at aircraft 1 initial and final positions. In this
particular execution, aircraft 1 is able to avoid collision due to its choice of policy.

In contrast, the minmin probability of collision, equivalent to the maxmax probability of
safety, associated with Model 2 is shown in Figure 3.4(a). Notice that, as expected, when
the aircraft are cooperating, the probability of safety is greater than the previous case in
which the worst-case aircraft 2 behavior was assumed.

For comparison, we computed the maxmin backward reachable sets under the assumption of
no stochastic noise in the dynamics. This deterministic backward reachable set for the set
of initial conditions with relative heading of 3π

4
rad is shown in Figure 3.4(b). In this figure,

we see the set of initial conditions such that for any control policy for aircraft 1, there exists
a control strategy for aircraft 2 that leads to a conflict.



59

−5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1
 (km)

x
2
 (

k
m

)

(a) Minmin probability of collision

−5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1
 (km)

x
2
 (

k
m

)

(b) Deterministic reachable set

Figure 3.4: Cooperative and deterministic collision avoidance

3.5 Conclusions

In this chapter, we motivated and formulated the probabilistic safety and reach-avoid prob-
lem for discrete-time stochastic hybrid systems as a zero-sum stochastic game between a
control (player 1) and an adversary (player 2). Under certain assumptions on the input
spaces of the two players, it was shown that there always exists a Markov control policy
which guarantees a maxmin probability of achieving the reach-avoid objectives, regardless
of the adversarial strategy. Furthermore, this worst-case probability can be computed via
an appropriate dynamic programming recursion. We discussed how various information pat-
terns related to players’ knowledge of the game and their communication abilities can be
accounted for in the formulation and solution approach.

A practical example from the air traffic collision detection and resolution domain was pro-
vided to illustrate the application of the proposed approach in the current air traffic practice,
under two communication and coordination models. A stochastic model of the wind influ-
ence on aircraft dynamics based on [106] was considered. In order to consider more realistic
air traffic management scenarios, a good model of nominal and stochastic wind components
obtained from the forecast data must be included in aircraft dynamics. The NextGen vi-
sion of improved operations requires ADS-B equipped aircraft to be able to operate with
the non-equipped aircraft so that transitions to improved air traffic management system
occur smoothly and gradually. As such, our proposed algorithm for conflict detection and
resolution needs to be tested under various communication protocols between the aircraft
and the ground station. Additionally, the algorithm needs to account for the cases in which
measurements of aircraft state may not be available due to possible failures of sensing or com-
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munication. To address such failures, formulations of the safety and reach-avoid problems
with imperfect state information must be considered.

It is important to apply the algorithm to collision detection and resolution in multiple aircraft
scenarios which may arise in en-route air traffic centers, with inclusion of altitude, heading
and speed change maneuvers. However, as stated previously, current implementation of
the algorithm is restricted to dimensions of less than 4, due to exponential scaling of the
dynamic programming with respect to state dimensions. As such, first, it is required to
establish convergence results on the approximation of the maxmin reach-avoid probability
and optimal strategies through the state space discretization approach employed here, similar
to those given in [122]. Second, numerical techniques need to be explored for speeding up
the computation or breaking down large problems into a sequence of smaller sized problems
which can be solved with the currently available numerical tools.

Finally, in many scenarios, there may be performance specifications on the system state,
in addition to safety and reachability. For example, one may be interested in designing a
collision avoidance maneuver while fuel consumption is minimized. We are currently working
on extension of our methods to account for such cases through chance constrained and multi
objective optimization frameworks.
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Chapter 4

Extensions of Control Synthesis for
Stochastic Hybrid Systems

We extend the reach-avoid problem of the previous chapter in two directions. First, moti-
vated by the presence of uncertainty in weather forecast data for aircraft trajectory planning,
we consider probabilistic models of the target and unsafe sets. We develop tools for verifi-
cation and control synthesis for this class of problems. Next, motivated by applications in
which the target set must be reached at any time prior to entering the unsafe set, we consider
the reach-avoid problem in infinite horizon and prove convergence of the dynamic program-
ming algorithm under appropriate assumptions. The material in this chapter is based on the
papers presented in [55, 56] and a paper in preparation [57].

4.1 Random Sets in Reachability and Safety problems

In many applications, such as aircraft trajectory planning through hazardous weather, ma-
neuvering a vehicle over an unknown terrain for exploration and disaster response, or steering
a needle in a tissue for surgical procedures, the environment is only partially known. As such,
the locations of the obstacles as well as the target sets are known with uncertainty and may
change as more information is gathered about the environment. One method for ensuring
obstacle avoidance and target acquisition constraints is by considering a robust approach
in which the constraints need to be satisfied for any instance of uncertainty ranging over
a specified domain. This worst-case approach, in general, may lead to overly conservative
plans. In addition, the resulting robust optimization problems are difficult to solve unless
assumptions are made about the robot dynamics and the environment uncertainty. Another
method is to formulate a probabilistic model of the environment and then require that the
constraints are satisfied with a desired probability.
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The problem of chance-constrained programming was introduced as a general framework for
decision making under probabilistic uncertainty [123]. Research has addressed this class of
problems by making assumptions on the uncertainty model and the objective function or
employing randomized algorithms [124]. Linear objective functions with probabilistic lin-
ear matrix inequality constraints are formulated as a convex optimization problem through
sampling the constraints [125]. It is then shown that these probabilistic constraints can be
converted to convex second order cone constraints for a wide class of probability distribu-
tions and hence solved efficiently [126]. Given that non-Gaussian distributions, in general,
do not lead to an analytic constraint formulation, they may be approximated using a par-
ticle filter approach, and in certain instances, the resulting optimal control problem may
be formulated as a Mixed Integer Linear Program (MILP) [127]. Since this approach is in-
tractable with increasing the number of samples, various conservative approximations of the
chance constraints, for example, using Boole’s inequality [127, 128, 129] or ellipsoidal relax-
ations [130], have been introduced. Additionally, for certain classes of models randomized
algorithms have been applied [131, 132]. Other methods include variations of the Probabilis-
tic Roadmap and Rapidly-exploring Random Tree (RRT) to account for the probabilistic
obstacles in the environment [133, 134, 135].

To account for the presence of uncertainty in the environment, we formulate the reach-
avoid problem from the previous chapter with consideration of stochastic safe and target
sets. We assume the sets can be modeled by a stochastic parameter together with a set-
valued map. Based on certain assumptions for the set-valued stochastic process, we derive
a dynamic programming algorithm for maximizing the reach-avoid probability which has a
computational complexity independent of the dimensions of the parameters of the set.

Stochastic Set Model with Stochastic Hybrid System

As in the previous chapter, we let the system state space be represented by a hybrid set
X :=

⋃
q∈Q{q} × Rn(q), where the discrete state space is Q := {1, 2, . . . ,M}, M ∈ N and

the map n : Q → N assigns to each discrete state q ∈ Q the dimension of the continuous
state space Rn(q). Let d be a metric on X. Let K denote the set of all closed subsets of the
hybrid state space X and dH denote the Hausdorff metric. It follows that (K, dH) is also
a complete separable metric space and the open subsets corresponding to dH generate the
Borel σ-algebra B(K).

To account for set uncertainty we introduce the random closed set model. This model was
introduced for applications in which the shape of the uncertain set is important in analyzing
the properties of the set, for example in tumor characterization through medical imaging
[136]. Please refer to [136, 137] for further details.

Definition 4.1. A random closed set is a measurable function Ξ : Ω→ K from a probability
space (Ω,F , P ) into the measure space (K,B(K)).
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The distribution of a random closed set Ξ is specified by P {ω | F ∩ Ξ(ω) 6= ∅}, ∀F ∈ K.
For F = {x} ∈ X, the probability P {ω | x ∩ Ξ(ω) 6= ∅} is equivalent to P{x ∈ Ξ} :=
P {ω | x ∈ Ξ(ω)}. We refer to pΞ(x) := P {ω | x ∈ Ξ(ω)} as the covering function. It follows
that, pX\Ξ(x) = 1− pΞ(x).

It has been shown that the set of random closed sets has several desirable properties, for
example, closure with respect to certain set transformations, such as convexification, dilation
and erosion [136]. However, in general, the characterization of a random closed set and the
computation of associated functions, such as the covering function, are difficult due to the
size of K. As such, methods have been suggested in the literature that alleviate these
complexities [136, 138]. For example, random closed sets are often characterized by families
of closed subsets of K which are parametrized [137]. For computational purposes, in the
remainder of this section, we consider parameterized random closed sets and their associated
covering functions.

In our work, we define a parameterized stochastic set-valued process as follows: Let Y ⊂ Ro

for o ∈ N denote a parameter space. For k = 0, 1, 2, . . . , N , let ζk be a Borel-measurable
stochastic kernel on Y given Y , ζk : B(Y )×Y → [0, 1], which assigns to each y ∈ Y a probabil-
ity measure ζk(·|y) on the Borel space (Y,B(Y )). Then, a discrete-time time-inhomogeneous
Markov process {yk, k = 0, 1, . . . , N}, yk ∈ Y can be described by the stochastic kernels ζk.

Definition 4.2. A parameterized stochastic set process is a Borel measurable function φ :
Y → K together with a Markov process {yk, k = 0, 1, . . . , N} in the parameter space Y , with
transition probability functions ζk : B(Y )× Y → [0, 1], for k = 0, 1, . . . , N − 1.

As in Chapter 3, let A be a compact Borel set representing the control space and define
the controlled transition probability function τ : B(X) × X × A → [0, 1], that is, τ(·|x, a)
assigns a probability measure on B(X) for each x ∈ X, a ∈ A. Note that in this chapter,
for notational simplicity, we do not consider presence of an adversary. Let x̄ = (x, y) be
the augmented state in X̄ = X × Y , the augmented state space. Further, let us define the
stochastic stochastic kernels τ̄k : B(X̄)× X̄ × A→ [0, 1] as

τ̄k(dx̄
′|x̄, a) = τ(dx′|x, a)ζk(dy

′|y). (4.1)

We call the resulting stochastic process an Augmented Discrete-Time Stochastic Hybrid
System (ADTSHS) H̄.

Note that the stochastic kernels associated with the stochastic set parameters are indepen-
dent of the control. On the other hand, the control may, in general, depend on the stochastic
set parameters. For this general case, we define a Markov policy as follows:

Definition 4.3. A Markov policy for H̄ is a sequence µ = (µ0, µ1, ..., µN−1) of universally
measurable maps µk : X̄ → A, k = 0, 1, ..., N − 1. The set of all admissible Markov policies
is denoted by M̄.
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Remark: In the previous chapter, we defined policies as Borel measurable maps. The Borel
measurability property, together with the assumption on the continuity of the stochastic
kernels in the input spaces, were sufficient conditions for proving existence of the optimal
policies and strategies for the control and the adversary, respectively. In the single player
case considered here, we enlarge the set of controls to universally measurable maps and relax
the continuity assumptions on the stochastic kernels. While we can still prove the dynamic
programming result, we only guarantee existence of ε suboptimal policies. Additionally, due
to these alternative assumptions, we present the proof of the main theorem, Theorem 4.1,
with a different method from that of Theorem 3.1, which is instructive.

Given a Markov policy µ ∈ M̄ and initial state (x0, y0) ∈ X × Y , the execution of the
augmented process denoted by {(xk, yk), k = 0, 1, . . . , N} is a stochastic process defined on
the canonical sample space Ω := X̄N+1, endowed with its product σ−algebra B(Ω). The
probability measure P µ

(x0,y0) on Ω is uniquely defined by the stochastic kernels τ̄k, the Markov

policy µ ∈ M̄, and the initial state (x0, y0) ∈ X̄ [112].

In the following example, we illustrate the terminology developed and the application of the
stochastic set-valued process with the problem of safe aircraft trajectory planning using the
uncertain hazardous weather forecast data.

Example 4.1 (Stochastic forecast for aircraft trajectory planning). In aircraft trajectory
planning, the ability to identify and characterize regions of hazardous weather is vitally
important. One factor to determine the safety of a region of the airspace for an aircraft to
fly through is the Vertically Integrated Liquid (VIL) water content measurement [139, 140]
which represents the level of precipitation in a column of the airspace. This measurement has
proven useful in the detection of severe storms and short-term rainfall forecasting [140], and
hence can be used as an indicator for establishing a no-fly zone for aircraft. The Corridor
Integrated Weather System (CIWS) product [141] provides actual and forecast VIL numbers
for a 1 km by 1 km grid of the United States airspace and with a 5-minute resolution in
time. These measurements can be quantized into 6 levels, with levels 3 and higher indicating
a recommended no-fly zone. The forecast horizon is 2 hours and the forecast is updated at
5 minute intervals. Figure 4.1(a) shows the VIL measurements for a 300 km ×200 km grid.

Clearly, there is uncertainty associated with the forecast data, and the uncertainty increases
with the forecast horizon. One of the early works that accounted for uncertainty in no-fly
zones due to hazardous weather was that of [142]. Although a stochastic Markov chain model
was proposed to describe evolution of the storms, this model was not verified with any real
forecast data.

To account for the uncertainty in CIWS forecast data, one can introduce a random set Ξ,
for a no-fly zone and describe the covering function pΞ(x), for every x in the airspace region
of interest. This will then indicate the probability of hazard at every location of interest.
However, the CIWS forecast data is deterministic and the covering function is not available.
Thus, we propose a method for describing the stochastic no-fly zones through parametrizing
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(a) VIL measurements (b) Enclosing no-fly zones by geometric shapes

Figure 4.1: Hazardous weather regions from CIWS forecast product

the regions with high VIL levels as follows. First, for a given deterministic forecast, we
enclose the regions with VIL values greater than the safety threshold with a minimum-
volume bounding polygon or ellipsoid [102]. The uncertainty in the no-fly zone can then be
associated with the randomness in the parameters of the polygon or the ellipsoid. Figure
4.1(b) shows minimum-volume bounding ellipses and polygons for regions with high VIL
levels in 2D. In Figure 4.2(a) we compare the ellipses enclosing the no-fly zones extracted
from the forecast and actual VIL measurements, for every 5 minutes in a 15-minute horizon.

For simplicity in representation, here we focus on minimum-volume bounding ellipsoidal
enclosure of the no-fly zones. Each ellipse E is parameterized by its center m ∈ R2 and its
positive definite eccentricity matrix M ∈ Rn×n:

x ∈ E(m,M) ⇐⇒ (x−m)TM(x−m) ≤ 1.

For a given ellipse, let m(t) and m(t + δt) be the center of the ellipse at time t and t + δt
respectively, where δt = 5 minutes indicates the forecast time resolution. Define bt ∈ R2

as bt = m(t+δt)−m(t)
δt

to capture the incremental motion of the center per minute. To model
the uncertainty in the forecast, we assume that the true center is a random variable ck with
dynamics:

ck+1 = ck + bk + ηk, (4.2)

where ηk ∼ N(0,Ση), Ση ∈ R2×2 is the covariance matrix of the noise associated with the
forecast, bk = bt for k = t, t+ ∆t, . . . , t+ δt, ∆t = 1 minute indicates the discretization time
for trajectory planning, and ct = mt since we have the true weather data at time t.
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(a) Forecast (dashed lines) and actual (b) Forecast and an execution of obstacle process

Figure 4.2: Trajectory of the no-fly zones

Let M(t) and M(t+ δt) be the eccentricities obtained from the forecast at times t and t+ δt
respectively. We model the randomness in the eccentricity through introducing Ck:

Ck = R(θk)
(
(1− k − t

δt
)M(t) +

k − t
δt

M(t+ δt)
)
R(θk)

T , (4.3)

where R is a rotation matrix, and the angle of rotation, θk, is zero for k = t and is a random
variable with uniform distribution over an interval [−a, a] for k = t+ ∆t, . . . , t+ δt.

The random ellipse at time k is hence given by E(ck, Ck). The stochastic parameters Ση and
a are determined from the comparison of forecast and actual weather data as well as the
rate of movement of the storms. For the data associated with Figure 4.2(a) these parameters
were set to Ση = I2×2 and a = π

6
. A realization of the random ellipses for a 15 horizon is

compared with the ellipses obtained from the forecast data in Figure 4.2(b).

The no-fly zone stochastic set process is parameterized by ck ∈ R2, Ck ∈ R2×2, together with
the set-valued map φ : R2 × Rn×n → K, with K being the set of closed subsets of R2:

φ(ck, Ck) := {x ∈ R2 | (x− [c1, c2])TCk(x− [c1, c2]) ≤ 1}.

For an aircraft position, xk ∈ R2, the probability of being in the hazardous region Ξk is

PΞk(xk) = P (ω | (xk − [c1
k(ω), c2

k(ω)])TCk(ω)(c3
k(ω))(xk − [c1

k(ω), c2
k(ω)]) ≤ 1).

Unfortunately, an analytic formula for computing the above covering function does not ex-
ist. If the eccentricity of the ellipse is assumed to be deterministic, the above probability
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(a) Probability distribution of the random set (b) Contours of the probability distribution

Figure 4.3: Monte Carlo simulation of the covering function

obeys a Chi-squared distribution and can be approximated using statistical computational
tools. For the more general case, one can use Monte Carlo simulations to approximate the
probability. For the forecast data with mk = (3675 km, 775 km), bk = (7.1 km, 6.4 km), and
Mk = (0.0028, 0; 0, 0.0278), the covering function pΞk+1

(xk+1) at time k + 1 is approximated
over the region [3640, 3720]×[765, 800] using 104 Monte Carlo samples and 101 × 101 grid
discretization. The results are displayed in Figure 4.3.

Reach-Avoid with Stochastic Set Processes

Consider the stochastic kernels ζk : B(Y ) × Y → [0, 1] and the parameter process {yk},
for k = 0, 1, . . . , N distributed according to these kernels, along with two Borel measurable
functions φ : Y → K and φ′ : Y → K, such that φ(y) ⊆ φ′(y), ∀y ∈ Y . Define Kk := φ(yk)
and K ′k := φ′(yk) as stochastic target and safe sets, respectively. We assume that the
initial parameter state y0, and hybrid state x0, are known. Our goal is to evaluate and
subsequently maximize the probability that the execution of the Markov control process
{xk}, for k = 0, 1, . . . , N will reach the target set at some time in the horizon while remaining
safe at all prior times.

The probability that the system initialized at x0 ∈ X, y0 ∈ Y , with control policy µ ∈ M̄
reaches Kk while avoiding X \K ′k using our mathematical notation is:

rµ(x0,y0)(φ, φ
′) := P µ

(x0,y0){∃j ∈ [0, N ] | xj ∈ φ(yj) ∧ ∀i ∈ [0, j − 1] xi ∈ φ′(yi) \ φ(yi)}. (4.4)
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Note that while we assume knowledge of the initial state and parameters of the sets, the
consideration of a probabilistic initial condition for each is straightforward.

Let K̄ = {(x, y) ∈ X × Y | x ∈ φ(y)} and K̄ ′ = {(x, y) ∈ X × Y | x ∈ φ′(y)}. From Borel
measurability of φ and φ′, it follows that K̄ and K̄ ′ are graphs of Borel measurable functions
and are thus Borel measurable [143]. The reach-avoid probability in Equation (4.4) can be
characterized based on the probability measure on Ω = X̄N+1, that is P(x0,y0), as

rµ(x0,y0)(K̄, K̄
′) = P µ

(x0,y0)

(
N⋃
j=0

(K̄ ′ \ K̄)j × K̄ ×XN−j

)

=
N∑
j=0

P µ
(x0,y0)

(
(K̄ ′ \ K̄)j × K̄ ×XN−j),

where the second equality follows by the fact that the union is disjoint. Let x̄k = (xk, yk).
By definition of expectation on this probability measure, rµ(x0,y0)(K̄, K̄

′) can be computed as

rµ(x0,y0)(K̄, K̄
′) = Eµ

(x0,y0)

[
1K̄(x̄0) +

N∑
j=1

(
j−1∏
i=0

1K̄′\K̄(x̄i)

)
1K̄(x̄j)

]
. (4.5)

In the above, Eµ
(x0,y0) denotes the expectation with respect to the probability measure P µ

(x0,y0).

Our objective is to design an efficient algorithm for evaluating the reach-avoid probability
rµ(x0,y0)(K̄, K̄

′) for a given Markov policy and for optimizing this probability over the set of
Markov policies. The precise problem statement is as follows:

Problem 4.1. Given an ADTSHS H̄, with stochastic set parameters y ∈ Y , and set-valued
maps φ and φ′, φ′(y) ⊆ φ(y) for all y ∈ Y , representing the target and safe sets respectively:

(a) Compute the optimal value function r∗x̄0(K̄, K̄
′) := supµ∈M̄ rµx̄0(K̄, K̄

′), ∀x̄0 ∈ X̄;

(b) Find an optimal Markov policy µ∗ ∈ M̄, if it exists, such that r∗x̄0(K̄, K̄
′) = rµ

∗

x̄0 (K̄, K̄ ′),
∀x̄0 ∈ X̄.

From Equation (4.5), we observe that the probabilistic reach-avoid problem with stochastic
sets is transformed into a probabilistic reach-avoid problem with deterministic sets in an
extended state space. Hence, reach-avoid methods for deterministic safe and target sets
as described in the previous chapter for two players and in [47] for a single player can be
applied to the problem at hand. As discussed in the previous chapter, this method becomes
computationally intractable for any hybrid and parameter spaces with combined dimensions
above 4 or 5, due to the Curse of Dimensionality [29]. In the remainder of this section, we
introduce an approximation which greatly reduces the computational burden and has also
been successfully applied in our work [56].
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Tractable Solution of the Reach-Avoid Problem

To simplify evaluation and maximization of rµ(x0,y0)(K̄, K̄
′) we make the following assumption:

Assumption 4.1. The Markov parameters describing the stochastic sets are given as or
can be fairly approximated by independent time-varying probability distributions. That is,
ζk+1(dyk+1|yk) = ζk+1(dyk+1), k = 0, 1, . . . , N .

Recall that the Markov policy for the ADTSHS H̄, was given in Definition 4.3 as a sequence
of maps µk : X × Y → A. Due to the independence of the probability distribution ζk+1

from the parameter yk, without loss of generality, we consider the Markov policy also being
independent from the parameter yk. Thus, we define the Markov policy as sequence of
universally measurable maps µk : X → A, k = 0, 1 . . . , N . Let M denote the set of all such
policies. Note that due to this assumption, the closed loop stochastic kernels τ̄k(.|x̄k, µk(x̄k)
become equivalent to product of two decoupled stochastic kernels τ(.|xk, µk(xk)) and ζk(yk).

Based on the set-valued maps φ and φ′, representing the target and safe sets, we define the
following covering functions:

pKk(x) =

∫
Y

1K̄(x, yk)ζk(dyk) =

∫
Y

1φ(yk)(x)ζk(dyk) = E
[
1φ(yk)(x)

]
, (4.6)

pK′k(x) =

∫
Y

1K̄′(x, yk)ζk(dyk) =

∫
Y

1φ′(yk)(x)ζk(dyk) = E
[
1φ′(yk)(x)

]
.

Since φ(y) ⊆ φ′(y), ∀y ∈ Y , we get pK′k\Kk(x) = pK′k(x)− pKk(x). In addition, since K̄ and
K̄ ′ are Borel measurable sets and 1K̄ , 1K̄′ are indicator functions of Borel measurable sets,
they are Borel measurable. From Borel measurability of ζk and Proposition 7.29 of [112], it
follows that the covering functions pKk and pK′k , are also Borel measurable.

The main consequence of the independent assumption is an equivalent expression of the
reach-avoid probability based on the above covering functions as stated below.

Lemma 4.1. For an ADTSHS H̄ with independent stochastic set process, the reach-avoid
probability in Equation (4.5) can be expressed as

rµ(x0,y0)(K̄, K̄
′) = Eµ

x0

[
N∑
j=0

(
j−1∏
i=0

pK′i\Ki(xi)

)
pKj(xj)

]
, (4.7)

where Eµ
x0

is the expectation with respect to the canonical probability measure on XN+1, and

we use the convention that
∏j

i=k(.) = 1 for k > j. .

Proof. A proof by Fubini’s Theorem [119] is as follows:
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rµ(x0,y0)(K̄, K̄
′) = Eµ

(x0,y0)

[
N∑
j=0

(
j−1∏
i=0

1K̄′\K̄(x̄i)

)
1K̄(x̄j)

]

=

∫
XN

∫
Y N+1

[
N∑
j=0

(
j−1∏
i=0

1φ′(yi)\φ(yi)(xi)

)
1φ(yj)(xj)

]
N∏
j=0

ζj(dyj)
N−1∏
j=0

τµj(dxj+1|xj)

= Eµ
x0

[
N∑
j=0

(∫
Y j

j−1∏
i=0

(1φ′(yi)(xi)− 1φ(yi)(xi))1φ(yj)(xj)

j∏
i=0

ζi(dyi)

)]

= Eµ
x0

[
N∑
j=0

(
j−1∏
i=0

∫
Y

((1φ′(yi)(xi)− 1φ(yi)(xi))ζi(dyi))

)∫
Y

1φ(yj)(xj)ζj(dyj)

]

= Eµ
x0

[
N∑
j=0

(
j−1∏
i=0

pK′i\Ki(xi)

)
pKj(xj)

]
.

Now, we derive a recursion for computing the reach-avoid probability expressed in Equation
(4.7) for a given Markov policy µ ∈ M. Let us define the functions V µ

k : X → [0, 1],
k = 0, . . . , N , with a backwards recursion as

V µ
N (x) = pKN (x),

V µ
k (x) = pKk(x)+

pK′k\Kk(x)

∫
XN−k

N∑
j=k+1

(
j−1∏
i=k+1

pK′i\Ki(xi)

)
pKj(xj)

N−1∏
j=k+1

τµj(dxj+1|xj)τµk(dxk+1|x).

From the definition above and Equation (4.7), it is clear that V µ
0 (x0) = rµ(x0,y0)(K̄, K̄

′),
∀x0 ∈ X.

Let F denote the set of universally measurable functions from X to R. Define the operator
H : X × A×F → R as

H(x, a, J) :=

∫
X

J(y)τ(dy|x, a). (4.8)

The following lemma shows that V µ
k (x) can be computed via a backwards recursion.

Lemma 4.2. Fix a Markov policy µ = (µ0, µ1, ...µN−1) ∈M. The functions V µ
k : X → [0, 1],

k = 0, 1, . . . , N − 1 can be computed by the backward recursion:

V µ
k (x) = pKk(x) + pK′k\Kk(x)H(x, µk(x), V µ

k+1), (4.9)

initialized with V µ
N (x) = pKN (x), x ∈ X.
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Proof. The proof is by induction. First, due to the definition of V µ
k we have that

V µ
N−1(x) = pKN−1

(x) + pK′N−1\KN−1
(x)

∫
X

V µ
N (xN)τµN−1(dxN |x),

so that (4.9) is proven for k = N − 1. For k < N − 1 we can separate the terms associated
with xk+1 from those associated with k + 2, . . . , N as follows:

V µ
k (x) =pKk(x)+

pK′k\Kk(x)

∫
X

pKk+1
(xk+1) + pK′k+1\Kk+1

(xk+1)

(∫
XN−k−1

N∑
j=k+2

j−1∏
i=k+2

pK′i\Ki(xi)

pKj(xj)
N−1∏
j=k+2

τµj(dxj+1|xj)τµk+1(dxk+2|xk+1)

)
τµk(dxk+1|x)

=pKk(x) + pK′k\Kk(x)

∫
X

V µ
k+1(xk+1)τµk(dxk+1|x),

which concludes the proof.

The above two lemmas show that given a Markov policy µ ∈ M, we can evaluate the
reach-avoid probability with a recursion which scales exponentially with respect to only the
hybrid state space and is independent of dimensions of the stochastic sets’ parameters. In
the following theorem, we prove that the same conclusion can be drawn for maximizing
the reach-avoid probability. In addition, in the process of maximizing the probability, the
optimal Markov policy can be synthesized.

Theorem 4.1. Let H̄ be an ADTSHG with independent stochastic set process. Define
V ∗N(x) = pKN (x) and V ∗k : X → [0, 1], k = 0, 1, ..., N − 1, by the backward recursion

V ∗k (x) = sup
a∈A
{pKk(x) + pK′k\Kk(x)H(x, a, V ∗k+1)}, (4.10)

(a) The optimal reach-avoid probability is given as r∗x̄0(K̄, K̄
′) = V ∗0 (x0), ∀x0 ∈ X;

(b) If µ∗ ∈M is a Markov policy which satisfies

µ∗k(x) ∈ arg sup
a∈A

H(x, a, V ∗k+1), (4.11)

∀x ∈ X, for k = 0, 1, . . . , N − 1, then µ∗ is an optimal Markov policy.

The proof follows the results used in Proposition 8.2 of [112] for discrete-time stochastic
optimal control problems. The main steps are as follows: First, we show that the iterative
procedure in Equation (4.9) can be written with a dynamic programming operator Tk,π :
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F → F , where π : X → A is a universally measurable map. Since this operator preserves
measurability properties (Lemma 4.3), the sequential composition of Tk,π is well-defined.
From the fact that the operator Tk : F → F , formed after optimizing Tk,π with respect to
policies, preserves lower semi-analyticity of functions (Lemma 4.5), existence of ε suboptimal
policies follows from Proposition 7.50 of [112]. Finally, the proof is completed by showing
that Tk preserves monotone property (Lemma 4.4).

To facilitate application of the theoretical results in [112] we first define an equivalent mini-
mization problem. Given a Markov policy µ ∈ M, define the value function Jµk := −V µ

N−k,
k = 0, 1, . . . , N . Further, for notational convenience, define the functions pk(x) = pKN−k(x)
and p′k(x) = pK′N−k\KN−k(x) for x ∈ X and k = 0, 1, . . . , N . It follows that Jµk may be written
with a forward recursion as:

Jµk (x) = −pk(x) + p′k(x)H(x, µN−k(x), Jµk−1), (4.12)

initialized with Jµ0 (x) = −p0(x), x ∈ X. Consequently, from Lemma 4.1

JµN(x0) = Eµ
x0

[
−

N∑
j=0

(
j−1∏
i=0

p′N−i(xi)

)
pN−j(xj)

]
= −rµ(x0,y0)(K̄, K̄

′).

We next define optimal one-step cost and input as

J∗k (x) = inf
a∈A
{−pk(x) + p′k(x)H(x, a, J∗k−1)}, (4.13)

µ∗k(x) = arg inf
a∈A
{−pN−k(x) + p′N−k(x)H(x, a, J∗N−k−1)}, (4.14)

whenever the infimum is attained, with J∗0 (x) = −p0(x), x ∈ X. Next, define the function
Gk : X × A×F → R, and the map Tk,π : F → F for π : X → A as

Gk(x, a, J) =− pk(x) + p′k(x)H(x, a, J),

Tk,π[J ](x) =Gk(x, π(x), J).

Lemma 4.3. The map Tk,π preserves universal measurability, that is, if J ∈ F , then,
Tk,π[J ] ∈ F .

Proof. Due to Borel measurability of the stochastic kernel τ and since J ∈ F , we can apply
Proposition 7.46 of [112] to conclude that H(x, a, J) is universally measurable. As discussed
before, the covering functions pKk and pK′k , are Borel measurable and thus pk and p′k are
also Borel measurable for k = 0, 1, . . . , N . The result follows since universal measurability
property is preserved through multiplication and addition of Borel measurable functions.

Given that the recursion (4.12) can be rewritten as Jµk = Tk,µN−k [J
µ
k−1] and Jµ0 ∈ F , by

Lemma 4.3 we conclude Jµk ∈ F , for k = 1, 2, ..., N .
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Lemma 4.4. The map Tk,π satisfies the following properties:

(a) ∀J, J ′ ∈ F if J(x) ≤ J ′(x), ∀x ∈ X, then Tk,π[J ](x) ≤ Tk,π[J ′](x), ∀x ∈ X, k ∈ N.

(b) For any J ∈ F , x ∈ X, k ∈ N, and any real number r > 0,

Tk,π[J ](x) ≤ Tk,π[J + r](x) ≤ Tk,π[J ](x) + r. (4.15)

Proof. Part (a) immediately follows from the definition of Tk,π. For Part (b), note that

Gk(x, a, J + r) = −pk(x) + p′k(x)H(x, a, J + r)

= −pk(x) + p′k(x)H(x, a, J) + rp′k(x)

∫
X

τ(dy|x, a).

Since p′k(x)
∫
X
τ(dy|x, a) = p′k(x) is bounded between 0 and 1, we conclude that

Gk(x, a, J) ≤ Gk(x, a, J + r) ≤ Gk(x, a, J) + r,

for x ∈ X, k ∈ N, a ∈ A. Thus, the result for Tk,π then follows.

We now define the map Tk : F → F as Tk[J ](x) = infa∈AGk(x, a, J), x ∈ X, k ∈ N.
The recursion in (4.13) can be re-expressed as J∗k = Tk[J

∗
k−1]. It follows that J∗k = T k[J∗0 ],

k = 0, 1, . . . , N , where T 0[J ] = J and T k[J ] = Tk ◦ T k−1[J ].

Let F∗ ⊂ F denote the set of lower semi-analytic functions.

Lemma 4.5. The map Tk preserves the lower semi-analyticity, that is, if J ∈ F∗, then
Tk[J ] ∈ F∗.

Proof. From Propositions 7.48 in [112], for any k = 0, 1, . . . , N , a ∈ A and J ∈ F∗,
Gk(x, a, J) is lower semi-analytic. It follows from Proposition 7.47 in [112] that Tk[J ] =
infa∈AGk(x, a, J) is lower semi-analytic as desired.

Since J∗k = Tk[J
∗
k−1] and J∗0 ∈ F∗, by the above lemma, we conclude that J∗k ∈ F∗, for k =

1, 2, . . . , N . In addition, due to the lower semi-analytic property, we can apply Proposition
7.50 in [112] to show existence of ε suboptimal policies at every stage of the minimization in
recursion (4.14). This property is used to show our first dynamic programming result:

Proposition 4.1. The optimal cost J∗N(x), can be defined in terms of the operator TN :

inf
µ
Eµ
x

[
−

N∑
j=0

(
j−1∏
i=0

p′N−i(xi)

)
pN−j(xj)

]
= TN [J∗0 ](x).
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Proof. We show that TN [J∗0 ](x) simultaneously upper bounds and lower bounds the optimal
cost. Due to lower semi-analyticity of Gk(x, a, J

∗
k ) for k = 0, 1, . . . , N , Proposition 7.50 in

[112] implies that for any ε > 0 and k = 0, 1, . . . , N , there exists a universally measurable
function πεN−k : X → A such that Gk(x, π

ε
N−k, J

∗
k−1) ≤ infa∈AGk(x, a, J

∗
k−1) + ε

N
. This in

turn implies that Tk,πεN−k ◦ T
k−1[J∗0 ] ≤ T k[J∗0 ] + ε

N
. If we consider µε = (πε0, π

ε
1, . . . , π

ε
N−1), by

Lemma 4.4, we obtain

Jµ
ε

N = TN,πε0 ◦ TN−1,πε1
◦ · · · ◦ T1,πεN−1

[J∗0 ] ≤ TN,πε0 ◦ TN−1,πε1
◦ · · · ◦ T 1[J∗0 ] +

ε

N

≤ TN,πε0 ◦ TN−1,πε1
◦ · · · ◦ T 2[J∗0 ] + 2

ε

N

≤ . . . ≤ TN [J∗0 ] +N
ε

N
.

We conclude that TN [J∗0 ] upper bounds the infimum:

J∗N(x) = inf
µ
Eµ
x

[
−

N∑
j=0

(
j−1∏
i=0

p′N−i(xi)

)
pN−j(xj)

]
≤ TN [J∗0 ](x).

On the other hand, for any µ ∈M

JµN =TN,µ0 · · ·T1,µN−1
[Jµ0 ] ≥ TN,µ0 · · ·T2,µN−1

T 1[Jµ0 ] ≥ . . . ≥ TN [Jµ0 ].

Taking the infimum over µ ∈M, and since Jµ0 = J∗0 we obtain

TN [J∗0 ](x) ≤ inf
µ
Eµ
x

[
−

N∑
j=0

(
j−1∏
i=0

p′N−i(xi)

)
pN−j(xj)

]
.

Since TN upper bounds and lower bounds the optimal cost, we get the desired result.

Finally, with the lemmas and proposition above, we can prove Theorem 4.1.

Proof. It directly follows from the definition of the functions V ∗k (4.10), J∗k (4.13), and Propo-
sition 4.1 that the dynamic programming algorithm holds, that is, for any x0 ∈ X

V ∗0 (x0) = −J∗N(x0) = −TN [J∗0 ](x0) = sup
µ∈M

rµ(x0,y0)(K̄, K̄
′).

Thus, Part (a) of the theorem is proven.

For part (b), we show that a control policy defined by µ∗ = (µ∗0, µ
∗
1, . . . , µ

∗
N) satisfying (4.14)

is Markov and optimal. Suppose µ∗k satisfies (4.14). Then, using the introduced notations:

TN−k,µ∗k [J
∗
N−k−1](x) = inf

a∈A
GN−k(x, a, J

∗
N−k−1) = J∗N−k(x),
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for x ∈ X. Since GN−k(x, a, J
∗
N−k) is lower-semianalytic by Lemma 4.5, if its infimum

with respect to a ∈ A is attained for x ∈ X, the resulting function µ∗k : X → A,
is universally measurable by part (b) of Proposition 7.50 in [112]. By Proposition 4.1,

infµE
µ
x

[
−
∑N

j=0

(∏j−1
i=0 p

′
N−i(xi)

)
pN−j(xj)

]
= J∗N(x), for all x ∈ X. Also,

J∗N(x) =TN,µ∗0 [J∗N−1](x)

=TN,µ∗0 ◦ TN−1,µ∗1
[J∗N−2](x) = . . . = TN,µ∗0 ◦ TN−1,µ∗1

◦ · · · ◦ T ∗1,µN−1
[J∗0 ](x)

=Jµ
∗

N (x) = Eµ∗

x

[
−

N∑
j=0

(
j−1∏
i=0

p′N−i(xi)

)
pN−j(xj)

]
.

Now, since J∗N−k−1 = −V ∗k+1, we have

GN−k(x, a, J
∗
N−k−1) =− pN−k(x) + p′N−k(x)H(x, a, J∗N−k−1)

=− pN−k(x)− p′N−k(x)H(x, a, V ∗k+1).

Thus, the optimizers in (4.14) are the same as those in (4.11). Consequently, µ∗ =
(µ∗0, µ

∗
1, . . . , µ

∗
N−1) is an optimal reach-avoid Markov policy.

We end the theoretical development noting that although in the course of the proof, we are
only able to guarantee existence of ε suboptimal policies, a sufficient condition for existence
of an optimal policy µ∗ is that the level sets {a ∈ A|H(x, a, V ∗k+1) ≥ λ} are compact ∀x ∈ X,
λ ∈ R, k ∈ [0, N − 1]. In addition, it would be interesting to explore whether optimal
randomized policies always exist.

Remark: While the computation of the reach-avoid probability with this result is indepen-
dent of the dimension of the set parameters, in contrast to the state extension method, we
now need to have a model of the stochastic sets over the time horizon a priori in order to
compute pKk(x) and pK′k(x) in the backward recursion for all x in the hybrid state space.

4.2 Aircraft Trajectory Planning through Stochastic

Hazardous Weather

We consider maximization of aircraft safety and reachability given hazardous weather fore-
cast obtained for a section of airspace centered at latitude 30o and longitude 86.5o, near the
gulf coast of Florida, on 01/07/2009, a day in which storms were observed in the region
under consideration. We extracted a thirty minute forecast comprising VIL levels, resulting
in no-fly zones represented as bounding ellipses, at 5 minute increments from the CIWS
forecast data [141]. Figure 4.4(a) represents the forecast over a thirty minute period. It is
interesting to note that the forecasts at time steps 5, 10, . . . , 30 appear to be translations of
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(a) No-fly zones from 30 minute forecast (b) Aircraft trajectory

Figure 4.4: Forecasted no-fly zones and an aircraft trajectory

the forecast at time step 0. Figure 4.4(b) shows an aircraft path over a 10 minute period
which avoids the forecast but it intersects the hazardous region obtained from the actual
weather data of the same day.

For the objective of trajectory planning, we model the aircraft as a unicycle with three modes
of operation; straight flight, right turn, and left turn. Let (x1, x2) denote the aircraft position
in 2D, x3 ∈ [−π, π] denote its heading angle, s denote the speed, a denote the heading angle
command and ∆t denote the sampling time. The equations of motion of the aircraft are

x1
k+1 =x1

k + ∆tsk cos(x3
k) + ω1

k, (4.16)

x2
k+1 =x2

k + ∆tsk sin(x3
k) + ω2

k,

x1
k+1 =x3

k + ∆tak + ω3
k.

In the above, ω = (ω1, ω2, ω3) ∼ N (0,Σω) denotes the stochastic disturbance due to presence
of wind and actuator noise. The linear velocity of the aircraft is assumed to be constant and
its angular velocity takes three values based on the mode of the system, that is, a ∈ {0,−ā, ā},
where ā ∈ R is the angular velocity of the aircraft when in turning mode.

In the following examples, we model the motion of the no-fly zones based on the stochastic
ellipse representation described in Example 4.1. In the first case study, we augment the
state of the aircraft with stochastic parameters of the ellipse and maximize the probability
of safety of the aircraft trajectory. In the second case study, we model the stochastic ellipse
motion as an independent stochastic set process. We maximize the probability of the aircraft
attaining a target region while avoiding the uncertain unsafe locations.
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For numerical results, we consider a sampling time of ∆t = 1 minute, aircraft speed of
sk = 7.1 km per minute, angular speed of ā = 0.3 radians per minute, and disturbance
variances defined by Σω(1, 1) = Σω(2, 2) = 0.25, Σω(3, 3) = 0.05, and Σω(i, j) = 0 if i 6= j.

Case study 1 - Reach-avoid on extended state space

Recall that the parameters describing the stochastic ellipse were ck ∈ R2, denoting the ellipse
center and Ck ∈ Rn×n, denoting its eccentricity. Augmenting the 3D state of the aircraft
with these parameters would prevent us from doing any numerical computation due to the
high dimensions. Hence, we consider the following simplifications. First, we assume that
θk = 0 and Mk = M for all k, thereby removing the eccentricity Ck as a state. Additionally,
we form a new state corresponding to the relative coordinate of the aircraft and the obstacle
process location (x1, x2)−(c1, c2) ∈ R2. The resulting state of the coupled process is denoted
by x̄ := (x1 − c1, x2 − c2, x3) ∈ R2 × [−π, π].

Combining equations of the ellipse movement (4.2) with aircraft equations of motion (4.16),
the equations of motion of the augmented state are given as

x̄1
k+1 =x̄1

k + ∆tsk cos(x̄3
k) + ω1

k − b1
k − η1

k,

x̄2
k+1 =x̄2

k + ∆tsk cos(x̄3
k) + ω2

k − b2
k − η2

k,

x̄3
k+1 =x̄3

k + ∆tak + ω3
k.

The reach-avoid objective now has to be expressed in relative coordinates. For this, consider
K1 = [−90, 90] × [−40, 60] × [−π, π] and K2 = [−69, 89] × [−24, 40] × [−π, π]. We set the
target region to K = K1\K2, that is, a region that has sufficient distance from the hazardous
weather, and the safe set to K ′ = K1 \ E, with E being:

E = E(0,M)⊕ C(0, 8)× [−π, π].

Here, C(c, r) represents a circle with center c ∈ R2 and radius r. This circle denotes the
protected zone of the aircraft and ⊕ represent the Minkowski sum. The reach-avoid objective
is to maximize the probability that the aircraft attains K while staying inside the safe set
over a horizon of thirty minutes.

Let V ∗0 be the optimal value function, which represents the maximum probability of attaining
the target region safely at some time during the thirty minute horizon. In Figure 4.5(a)
1− V ∗0 (for better visualization) is shown for initial heading angle of x3 = −0.1571 over the
2D relative coordinate space. The interpretation of the figure is as follows: For the relative
state initialized at x̄ = (−60 km,−10 km,−0.1571 rad) the maximum probability of success
is 83.08 percent. The set of states with the optimal value function satisfying V ∗0 ≥ 0.95
is shown in Figure 4.5(b). All initial conditions which start outside this level set have a
success probability greater than 95 percent. The numerical computations were performed
on a 161× 67× 20 grid.
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(a) Probability map for x30 = −0.1571 (b) Set of states with V ∗
0 ≥ 0.95

Figure 4.5: Optimal probability of reach-avoid in relative coordinates

Case study 2 - Independent stochastic set process

In the previous model of the stochastic set process in the augmented state space, several
problem specific simplifying assumptions had to be introduced, in order to reduce the prob-
lem dimensionality and to use the nominal numerical methods for probabilistic reach-avoid
with deterministic sets. Here, we consider the independence set process assumptions and
use the result of Theorem 4.1 to design optimally safe aircraft trajectories.

We model the unsafe regions as random ellipses E(ck, Ck) where the motion models for
the center ck and eccentricity Ck were described in Equations (4.2) and (4.3) respectively.
The target is a squared rectangular region around a waypoint at 3700× 800km, defined by
K = [3742, 3768]× [752, 778]× [−π, π]. The safe set is set to K ′k = [3600, 3800]× [750, 850]×
[−π, π] \ Ξk, where Ξk denotes the following random closed set:

Ξk = E(ck, Ck)⊕ C(0, 8)× [−π, π]. (4.17)

For a given initial condition of the ellipse center and eccentricity, and the forecast data
available at 5-minute increments, we pre-computed the covering function pK′k\K(x) over the
thirty minute horizon using Monte Carlo simulations as described in Example 4.1. We used
the dynamic programming algorithm defined by Theorem 4.1 to optimize the probability
that the aircraft attains the target set while avoiding the unsafe set over the 30 minute
horizon and to synthesize an optimal Markov policy that achieves this probability.

The optimal value function, V ∗0 , is shown in Figure 4.6(a) for an initial heading angle of
x3 = −0.785 radians. For example, according to this value function, the aircraft initial
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(a) Probability map for x30 = −0.785 (b) Maximally safe trajectory

Figure 4.6: Maximal reach-avoid probability and an execution of stochastic processes

position of x0 = (3620 km, 830 km,−0.0785 rad), has a maximum probability of success of
93.3 percent. An example execution of the process from this initial condition is shown in
Figure 4.6(b). The numerical computations were performed on a 201× 101× 40 grid.

Conclusions

We introduced the model of parameterized stochastic set-valued process to address uncer-
tainty arising in locations of the target and safe sets. We showed that evaluating and maxi-
mizing the reach-avoid probability for this formulation of the problem can be addressed with
the tools developed in the previous chapter for deterministic sets, through extending the
state space appropriately. Due to computational limitations in an extended state dimension,
we introduced an approximation of the stochastic set process which allowed for an efficient
dynamic programming algorithm.

Throughout, we applied our formulation and solution approaches with a practical aircraft
trajectory planning problem. In particular, we modeled hazardous weather regions obtained
from forecast as stochastic obstacles for the trajectory planning. We then designed maximally
safe trajectories, first using the state extension method and then under the Assumption 4.1.
As an objective of the NextGen, in the near future, the aircraft would be equipped with
sensing and communication technologies such that they could receive information about
local weather forecasts. Thus, there are several potential directions for application of this
framework to realistic air traffic scenarios.
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4.3 Reach-Avoid Problem in Infinite Horizon

In this section, we extend the finite horizon reach-avoid problem for the Discrete-Time Hybrid
Dynamic Game (DTSHG) described in Chapter 3 to the case where the time horizon N tends
toward infinity. The problem becomes one of characterizing the probability that the system
trajectory (x0, x1, . . . ) enters the target set K at some time k ≥ 0 before exiting the safe set
K ′.

Let µ = (µ0, µ1, . . . ) ∈ Ma be an infinite horizon Markov policy for player 1 and let γ =
(γ0, γ1, . . . ) ∈ Γd be an infinite horizon Markov strategy for player 2. Then by Proposition
7.28 of [112], the stochastic kernels τµk,γk , k = 0, 1, .. induce a unique probability measure
P µ,γ
x0

on the sample space Ω =
⋃∞
k=0X. Under a given player 1 policy µ and a player 2

strategy γ, the infinite horizon reach-avoid probability is defined as

rµ,γx0 (K,K ′) := P µ,γ
x0
{∃j ≥ 0 : xj ∈ K ∧ ∀i ∈ [0, j − 1] xi ∈ K ′ \K}.

The above expression can be equivalently written as

rµ,γx0 (K,K ′) = P µ,γ
x0

(
∞⋃
j=0

(K ′ \K)j ×K

)
=
∞∑
j=0

P µ,γ
x0

((K ′ \K)j ×K)

= lim
N→∞

N∑
j=0

Eµ,γ
x0

[(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

]
= lim

N→∞
rµ0→N ,γ0→Nx0

(K,K ′),

where µ0→N = (µ0, . . . , µN−1) and γ0→N = (γ0, . . . , γN−1) denote the player 1 policy and
player 2 strategy, respectively, over time horizon [0, N ]. In other words, under a fixed
infinite horizon policy µ, and a fixed infinite horizon strategy γ, the infinite horizon reach-
avoid probability is the limit of the finite horizon reach-avoid probability as N →∞. In the
following, it will be shown that this identity is preserved even as we optimize over player 1
policies and player 2 strategies. Specifically, consider the following definitions of the maxmin
reach-avoid probability:

rNx0(K,K
′) := sup

µ0→N∈Ma

inf
γ0→N∈Γd

rµ0→N ,γ0→Nx0
(K,K ′), N ∈ N (4.18)

r∞x0(K,K
′) := sup

µ∈Ma

inf
γ∈Γd

rµ,γx0 (K,K ′). (4.19)

The main result of this section is that the infinite horizon maxmin probability can be com-
puted by the limit of the finite horizon maxmin probability:

r∞x0(K,K
′) = lim

N→∞
rNx0(K,K

′), ∀x0 ∈ X. (4.20)
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By the conclusion of Theorem 3.1 of Chapter 3, it then follows that

r∞x0(K,K
′) = lim

N→∞
TN [1K ](x0), ∀x0 ∈ X,

where T is the dynamic programming operator defined in Chapter 3 as

T [J ](x) = sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J), (4.21)

H(x, a, d, J) =

∫
X

J(y)τ(dy|x, a, d).

Furthermore, it will be shown that the function V ∗ : X → [0, 1] defined by V ∗(x0) :=
r∞x0(K,K

′), ∀x0 ∈ X, is the fixed point of the operator T , that is, V ∗ = T [V ∗].

We begin by showing that the limit on the right hand side in Equation (4.20) in fact exists.

Lemma 4.6. For each x0 ∈ X, the sequence
{
rNx0(K,K

′)
}∞
N=1

converges.

Proof. For each N ≥ 1, rNx0(K,K
′) is the finite horizon maxmin reach-avoid probability over

[0, N ] as defined in the previous chapter and computed in Theorem 3.1. Thus, for every
x0 ∈ X and N ≥ 1, rNx0(K,K

′) ∈ [0, 1]. In addition, by Theorem 3.1, for each N ≥ 1 we
have that rNx0(K,K

′) = TN [1K ](x0). From the definition of T in equation (3.7), it is clear
that 1K ≤ T [1K ]. Furthermore, by the properties of integrals, it follows directly that the
operator T satisfies a monotonicity property: if J, J ′ are Borel-measurable functions such
that J ≤ J ′, then T [J ] ≤ T [J ′]. Thus, T k[1K ] ≤ T k+1[1K ] for every k ≥ 0. We conclude
that, ∀x0 ∈ X, the sequence

{
rNx0(K,K

′)
}∞
N=1

is bounded and monotonically increasing, and
hence converges (see for example Theorem 3.14 of [119]).

From Theorem 3.1, it follows that limN→∞ r
N
x0

(K,K ′) is the limit of a sequence of Borel-
measurable functions, and hence is also Borel-measurable (see for example Proposition 2.7
of [117]).

In order to establish the equality in (4.20) we prove that the following two equalities hold:

sup
µ∈Ma

lim
N→∞

inf
γ∈Γd

rµ0→N ,γ0→Nx0
(K,K ′) = lim

N→∞
sup
µ∈Ma

inf
γ∈Γd

rµ0→N ,γ0→Nx0
(K,K ′) (4.22)

sup
µ∈Ma

lim
N→∞

inf
γ∈Γd

rµ0→N ,γ0→Nx0
(K,K ′) = sup

µ∈Ma

inf
γ∈Γd

lim
N→∞

rµ,γx0 (K,K ′) = r∞x0(K,K
′) (4.23)

The derivation of the above two equalities is based on [112] which establishes conditions under
which the limit and minimization commute. Let us define Jµ,γN (x) := −rµ0→N ,γ0→Nx (K,K ′)
and J∗∗, J∞ and define J∗ associated with the three limits in Equations (4.22) and (4.23) as

J∗∗(x) := inf
µ∈Ma

lim
N→∞

sup
γ∈Γd

Jµ,γN (x),

J∞(x) := − lim
N→∞

rNx (K,K ′),

J∗(x) := −r∞x0(K,K
′).
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We proceed by proving that J∞ = J∗∗ and hence conclude the equality (4.22). To show this,
first define the operator T̃π,λ : F → F for π : X → A and λ : X × A→ D as:

T̃π,λ[J ](x) = −1K(x) + 1K′\K(x)H(x, π(x), λ(x, π(x)), J).

In addition, define the map G̃ : X × A × F → R, and the operator T̃π : F → F , for
π : X → A as

G̃(x, a, J) = sup
d∈D
−1K(x) + 1K′\K(x)H(x, a, d, J),

T̃π(J) = G̃(x, π(x), J).

From Theorem 3.1 of Chapter 3, for a fixed Markov policy µ,

sup
γ∈Γd

Jµ,γN = T̃µ0T̃µ1 . . . T̃µN−1
[−1K ]. (4.24)

Proposition 4.2. Define J0(x) = −1K(x). The map G̃ satisfies the following properties:

(a) G̃(x, a, J0) ≤ J0, ∀a ∈ A
(b) If (Jk) ∈ F is a sequence satisfying Jk+1 ≤ Jk ≤ J0, then ∀a ∈ A

lim
k→∞

G̃(x, a, Jk) = G̃(x, a, lim
k→∞

Jk).

(c) There exists a scalar α > 0 such that for all scalars r > 0 and functions J ∈ F with
J ≤ J0 we have the following inequalities ∀a ∈ A:

G̃(x, a, J)− αr ≤ G̃(x, a, J − r) ≤ G̃(x, a, J)

Proof. (a) Since τ is a stochastic kernel we get that −1 ≤ H(x, a, d,−1K) ≤ 0, and as such
−1 ≤ 1K′\K supd∈DH(x, a, d,−1K) ≤ 0. The result on G̃ follows by adding −1K(x) to both
sides of the right hand side inequality.

(b) Since Jk+1 ≤ Jk ≤ 0, by the Monotone Convergence Theorem, limk→∞ Jk(x) exists.
Then,

sup
d∈D

∫
X

lim
k→∞

Jk(y)τ(dy|x, a, d) = sup
d∈D

lim
k→∞

∫
X

Jk(y)τ(dy|x, a, d)

= lim
k→∞

sup
d∈D

∫
X

Jk(y)τ(dy|x, a, d) = lim
k→∞

sup
d∈D

H(x, a, d, Jk)

In the above, the first equality follows from the Monotone Convergence Theorem. For the
next equality, note that

∫
X
Jk(y)τ(dy|x, a, d) is continuous on D by Assumption 3.1 and D

is compact. Hence, an application of Proposition 10.1 of [144] gives the desired result. Since
G̃(x, a, Jk) = −1K(x) + 1K′\K supd∈DH(x, a, Jk) the desired result follows.

(c) It is easy to verify that the inequalities hold for α = 1.
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By the above proposition, the assumptions of Proposition 5.3 in [112] hold. Thus, from
(4.24) and definition of J∗∗ it follows that

J∗∗ = inf
µ∈Ma

lim
k→∞

(T̃µ0T̃µ1 . . . T̃µk−1
)[−1K ],

is a fixed point of the dynamic programming operator T̃ : F → [0, 1], defined as

T̃ [J ](x) = inf
a∈A

G̃(x, a, J) = inf
a∈A

sup
d∈D
−1K(x) + 1K′\K(x)H(x, a, d, J).

That is, J∗∗ = T̃ [J∗∗]. In addition, by the result in [112], J∗∗ can be computed by the
infinite horizon dynamic programming recursion. That is, J∗∗ = J∞ as desired. It follows
that equality (4.22) hold. Let V∞ = limN→∞ r

N
x (K,K ′) = −J∞. From the definitions of T̃

and T , it also follows that T [V∞] = V∞.

Now, we proceed by showing the equality (4.23). In order to use the result of [112] which
considers a single player minimization problem, we show that for a stationary policy µ =
(π, π, . . . ), infγ∈Γd limN→∞ V

µ,γ
0 = limN→∞ infγ∈Γd V

µ,γ
0 , where V µ,γ

k = −Jµ,γN−k, as was also
defined in Chapter 3 through a backwards recursion. First, we need to make an assumption
on existence of optimal stationary policies:

Assumption 4.2. There exists a Borel measurable stationary policy µ∗, such that

sup
µ∈Ma

lim
k→∞

inf
γ∈Γd

V µ,γ
k = lim

k→∞
inf
γ∈Γd

V µ∗,γ
k .

For the stationary policy µ = (π, π, . . . ), define the map G : X × D × F → R and the
operator Tµ : F → F as:

G(x, d, J) = 1K(x) + 1K′\K(x)H(x, µ(x), d, J),

Tµ[J ] = inf
d∈D

1K(x) + 1K′\K(x)H(x, π(x), d, J).

Let J0(x) = 1K(x). Similar to Proposition 4.2, the following properties for G can be verified:

(a) G(x, d, J0) ≥ J0, ∀d ∈ D
(b) If (Jk) ∈ F is a sequence satisfying Jk+1 ≥ Jk ≥ J0 then for all d ∈ D

lim
k→∞

G(x, d, Jk) = G(x, d, lim
k→∞

Jk)

(c) There exists a scalar α > 0 such that for all scalars r > 0 and functions J ∈ F with
J ≤ J0 we have the following inequalities for all d ∈ D, G(x, d, J) ≤ G(x, d, J + r) ≤
G(x, d, J) + αr.
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Next, for k > 0, consider the level-set Ωx,k := {d ∈ D | G(x, d, T kµ [J0]) ≤ b}. Since the
stochastic kernel τ is continuous in players’ inputs, G(x, d, J) is continuous in d for any
J ∈ F . As such, Ωx,k is pre-image of [0, b] under a continuous map and is closed. From the
fact that Ωx,k is closed and properties (a), (b), (c) above we conclude that the assumptions of
Proposition 5.10 of [112] hold and it follows that infγ∈Γd limN→∞ V

µ,γ
0 = limN→∞ infγ∈Γd V

µ,γ
0 .

In particular, this equality holds when the maximizing stationary policy of Assumption 4.2
is used and we obtain:

inf
γ∈Γd

lim
N→∞

V µ∗,γ
0 = sup

µ∈Ma

inf
γ∈Γd

lim
N→∞

V µ,γ
0 = sup

µ∈Ma

lim
N→∞

inf
γ∈Γd

V µ,γ
0 .

Thus, equality (4.23) holds. Finally, since both Equations (4.22) and (4.23) hold we conclude
the desired result:

V∞ := lim
N→∞

rNx0(K,K
′) = r∞x0(K,K

′) = V ∗.

In addition, by the fact that V∞ = T [V∞], it follows that T [V ∗] = V ∗ as desired.

Remark: Admittedly, Assumption 4.2 may seem strong. Thus, we are working on providing
conditions under which this assumption holds. Additionally, we are working towards an
alternate proof of the convergence of the infinite horizon dynamic programming algorithm
which does not require this assumption.

In the following section, we describe a target tracking game between an aerial and a ground
vehicle. The finite horizon target tracking game was illustrated in [53]. Here, the objective
of the aerial vehicle is to gain coverage of the ground vehicle at some time k ≥ 0 before
violating its velocity bounds.

Target Coverage Game

The scenario is as follows: An autonomous quadrotor helicopter, considered as player 1,
wants to achieve coverage of a moving ground vehicle, considered as player 2. The experi-
mental set up is based on the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC), an unmanned aerial vehicle platform consisting of six quadrotor he-
licopters each equipped with onboard computation, sensing, and control capabilities [145].
The quadrotor helicopter is shown in Figure 4.7(a) and the target coverage experiment is
shown in Figure 4.7(b).

In many aerial robotic platforms, there are unmodeled high order dynamics, aerodynamic
effects, and actuator and measurement noise. For example, at high speeds several aerody-
namic effects impact the flight characteristics of the STARMAC quadrotors and these effects
are difficult to model [146]. In order to account for these uncertainties, the authors in [147]
addressed the target coverage problem with a deterministic robust approach. Accounting for
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(a) STARMAC quadrotor (b) STARMAC tracking a ground vehicle

Figure 4.7: STARMAC quadrotor helicopter hardware and experiment

all of the uncertainties deterministically, using a robust control approach may lead to very
conservative control laws, or even to the lack of a control law that can achieve the reach-
avoid objective. As such, we introduce a stochastic framework to capture the modeling
uncertainties and formulate a probabilistic reach-avoid problem.

Let x1, x2, y1, y2 denote the position and velocity of the quadrotor relative to the ground
vehicle in the x axis and y axis respectively. Under a previously designed inner control
loop, the position-velocity dynamics in the planar x and y directions can be assumed to be
decoupled, with pitch θ and roll φ angles as the respective control inputs. Then from the
point of view of the high level controller the dynamics of the vehicle under pitch and roll
commands can be approximated as

x1
k+1 = x1

k + ∆tx2
k +

∆t2

2
(g sin(θk) + dxk) + η1

k

x2
k+1 = x2

k + ∆t(g sin(θk) + dxk) + η2
k

y1
k+1 = y1

k + ∆ty2
k +

∆t2

2
(g sin(−φk) + dyk) + η3

k

y2
k+1 = y2

k + ∆t(g sin(−φk) + dyk) + η4
k

In the above, ∆t is the discretization time step, g is the gravitational acceleration constant,
and dx and dy are the unknown terms corresponding to the acceleration of the ground
vehicle. The terms ηik, for i = 1, . . . , 4, represent noise arising from measurement and

actuation. The noise is assumed to have a Gaussian distribution, with ηi ∼ N (0, σi
2
∆t2).

Based upon experimental trials, the bounds for the accelerations, dx and dy, of the ground
vehicle are chosen to be [−.4, .4] m/s2 corresponding to about 30% of the maximum allowable
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(a) Maxmin probability of reach-avoid (b) Maxmin policy for the quadrotor

Figure 4.8: Infinite horizon reach-avoid target coverage game

acceleration of the ground vehicle [147]. The roll and pitch commands are assumed to be in
the range [−10, 10] degrees. The variances of the noise are set to σi = 0.4, for i = 1, 2, . . . , 4.

The target set is chosen to be a square centered on the ground vehicle, with some tolerance
on the relative velocity. In the x1, x2 coordinates this set is specified by

K = [−0.2, 0.2]m× [−0.2, 0.2]m/s.

The unsafe set is the set of all positions in which the quadrotor would be too far from
the ground vehicle to maintain observation, and the set of velocities violating the velocity
bounds. Hence, the safe set in the x1, x2 coordinates is given as

K ′ = [−1.2, 1.2]m× [−1, 1]m/s.

The target set and the safe set in the y axis are the same as those in the x axis. The infinite
horizon reach-avoid objective is then defined as maximizing the probability of reaching the
coverage region at some time while remaining inside the safe set at all prior times. That is,
we need to find r∞x0(K,K

′).

Given that the dynamics, the target and safe sets in the x and y axis are decoupled, we
can perform the reach-avoid analysis for each axis separately and reduce the problem di-
mension from four to two. By the conclusions of the previous section, under Assumption
4.2, r∞x0(K,K

′) = limN→∞ T
N [1K ](x0). Thus, based on the dynamic programming algorithm

given in Theorem 3.1, we performed the recursion TN [1K ](x0) to find the infinite horizon
maxmin reach-avoid probability.
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The computation was performed on a discretized grid of the state space. The grid size was
61× 41 in position-velocity plane for each axis. The input spaces for both players were also
discretized. On the one hand, the discretization was required for the numerical computation
of the algorithm. On the other hand, quantization of the input levels also results from
the fact that the quadrotor helicopter is controlled digitally by an on-board computer. As
such, the continuous range for the roll and pitch commands were discretized at a 2.5 degree
discretization step. For numerical computation, the disturbance range was discretized at 0.1
m/s2 intervals.

After N = 60 iterations, the maxmin reach-avoid probability converged to a stationary value.
Convergence was defined by the fact that ‖V ∗N −V ∗N+1‖∞ ≤ e−8. Similarly, it was found that
the maxmin optimal quadrotor policy converged to a stationary policy µ∗ : X → A. The
maxmin reach-avoid probability for the set of initial conditions insie the safe set K ′, is shown
in Figure 4.8(a). The optimal stationary feedback quadrotor policy that achieves the maxmin
probability is shown in Figure 4.8(b).

Conclusions

We considered the probabilistic reach-avoid problem in infinite horizon. Under an assumption
on the existence of stationary optimal policies, we showed that the infinite horizon maxmin
reach-avoid probability can be computed as limit of a finite horizon reach-avoid probability.
In addition, this optimal value function is a fixed point of the dynamic programming operator.
It is interesting to explore how can one solve for the fixed point of the dynamic programming
operator, in a method that is computationally more efficient than doing a large number
of iteration of the dynamic programming algorithm. In addition, it is important to find
conditions under which stationary optimal policies and strategies exist.

We applied the result to a target tracking application by a quadrotor helicopter in which the
objective was to obtain coverage of a ground vehicle at some point in the horizon. In future,
we would like to test the optimal maxmin policy obtained from the dynamic programming
algorithm on the experimental platform and to compare the performance of the probabilistic
method used here with that of the deterministic one presented in [147].
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Chapter 5

Air Traffic Optimization During
Runway Configuration Switch

We develop a hybrid dynamical model as a detailed abstraction of runway configuration
modes and arrival traffic in a terminal airspace. The problem of optimization of arrival
traffic together with runway configuration planning is posed as a hybrid optimal control
problem. Probabilistic constraints due to the presence of hazardous weather and wind are
posed. We develop a hierarchical algorithm in which, at the top stage runway configuration
and aircraft paths are determined such that safety with respect to weather conditions is
addressed and at the bottom stage the optimization of arrival traffic is addressed. The
material in this chapter was presented in [58, 59].

5.1 Background

Air transportation in the United States is regulated in a hierarchical and distributed manner,
in which the airspace is divided into subregions, such as air route traffic centers, sectors, and
terminal areas. The different subregions are controlled by different groups of air traffic
controllers so that the overall responsibility is decoupled. A terminal area refers to a region
of airspace that is within approximately a 50 nautical mile (nmi) radius of an airport and
its control is divided between the Terminal Radar Approach Control (TRACON) and the
Tower Control. It is the most crowded portion of the airspace and is often the throughput
bottleneck of the airspace system. Due to its importance in safety and capacity of the
airspace, a concept of operations for the NextGen terminal airspace, referred to as Super-
Density Operations, has been proposed.

Super-Density Operations envision the use of advanced ground and flight deck automation,
efficient Area Navigation (RNAV) and Required Navigation Performance (RNP) routes,
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optimized vertical profiles and delegated interval management to maintain efficient utilization
of terminal airspace even in adverse weather conditions. The main challenge in achieving
highly efficient operations lies in weather and traffic uncertainties as well as configuration
changes in runways or airways necessitated by adverse weather conditions.

The problem of runway configuration management introduced in Chapter 1 is as follows: In
airports with multiple intersecting runways a set of active runways, referred to as a runway
configuration, for arrival or departure are chosen based on factors including the crosswind
and tailwind magnitudes, visibility, traffic flow and noise abatement laws. The choice of
runway configuration in a major airport affects the arrival routes of incoming traffic to the
airport, as well as to other nearby airports in the same TRACON airspace. Conversations
with air traffic controllers in New York and Boston TRACON1 indicate that unanticipated
runway switching, usually due to weather conditions, increases the workload of the air traffic
controllers and pilots. In order to deal with the changes in the airspace route structure
during these unanticipated switches, several incoming aircraft are put in holding patterns.
As such, there is a lost capacity during the transitional periods of configuration switches
which can result in large delays, specifically in super dense airspaces.

This chapter is motivated by the vision of Super-Density Operations in better planning of
runway configuration switching and the arrival traffic management during switching.

Previous Work

The previous work on terminal airspace air traffic management falls into three categories de-
pending on whether air traffic control, airspace management or runway configuration man-
agement is addressed. In the first category, optimization of aircraft landing times given
fixed arrival routes and runways is addressed [148, 149, 150]. Bayen et al. [148] formulate a
Mixed Integer Linear Program (MILP) to minimize aircraft delay given fixed arrival routes
and approximate the MILP with a polynomial-time algorithm. Balakrishnan et al. [150]
determine aircraft arrival sequence using Constrained Position Shifting in order to reduce
delays while satisfying the arrival spacing requirements. These works do not consider the
complexity arising due to switching of the runway configuration nor the weather effects on
the arrival route availability.

Next, research has studied effects of hazardous weather on the availability of predefined routes
in the terminal area. The Route Availability Planning Tool (RAPT) has been developed
based on the Corridor Integrated Weather System (CIWS) product [141] to help air traffic
controllers assess the availability of departure routes in adverse weather [151]. Michalek et
al. [152] use machine learning algorithms to determine routes that are robustly safe to fly
through under weather uncertainties. Reconfiguration of airspace by designing routes that

1JFK TRACON visit, 2007; Boston Logan airport visit, 2010
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are safe with respect to hazardous weather is considered by Krozel et al. and Michalek et al.
[153, 154]. These works do not consider control of the arrival traffic or runway configuration
management in adverse weather.

Recently, research has begun to consider the problem of runway configuration planning.
Roach [155] discusses configuration planning based on wind data and analyzes air traffic
delays caused by non-prevailing wind conditions at Dallas/Fort Worth airport. In the work
of Leihong et al. [156] wind forecast data is used in order to determine feasibility of run-
way configurations in a given future time horizon. The authors then formulate a dynamic
programming algorithm to address runway configuration selection in order to maximize the
throughput of the landing aircraft. Ramanujam et al. [157] determine a set of factors that
are used in choosing a runway configuration and then apply machine learning in order to
model the air traffic controllers’ decisions in choosing runway configurations. These works do
not consider the determination of the optimal switch times between the configurations and
the control of the arrival traffic during the switching. In reality, in many instances the con-
figuration sequence may be known to the air traffic controllers, due to availability of weather
forecasts and previously established procedures, while the switch times between configura-
tion changes and the management of arrival traffic need to be determined optimally in order
to minimize delays resulting from the transitional periods of the configuration switches.

Current work

Our goal here is to develop (a) an accurate model for the arrival traffic dynamics in terminal
airspace that takes into account weather uncertainties and runway configuration changes;
(b) a traffic control algorithm based on the model that can reduce delays or other desired
cost factors. In Section 5.2, we mathematically define the problem of runway configuration
and aircraft scheduling and develop a hybrid system model to describe the dynamics of the
arrival traffic. In this model, the discrete modes represent the runway configurations and
the continuous states represent the locations of the aircraft in the terminal airspace. The
runway switching problem is formulated as an optimal control problem of a hybrid system
that requires minimization of the total delay subject to the separation constraints between
the aircraft as well as configuration and path constraints due to weather. In Section 5.3, we
define our solution approach for addressing the problem. Even though the hybrid optimal
control problem has a large scale, simplified dynamics of aircraft as well as existence of
certain hard constraints facilitate a simplified hierarchical solution approach. In Section 5.4,
we apply the model and solution approach to an instance of configuration planning at JFK
airport. Finally, we summarize our results and directions for future work in Section 5.5.
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Figure 5.1: JFK airport diagram

5.2 Problem Model

Figure 5.1 shows JFK Airport diagram obtained from the Federal Aviation Administration
(FAA) website2. The main purpose of these Airport Diagrams is information about the
runways. A runway is labeled based on its direction relative to the magnetic North. For
example, an arrival on 22L indicates that aircraft will be landing with a heading of approx-
imately 220 degrees measured from the magnetic North along this runway. JFK airport has
two pairs of parallel, labeled as L for left and R for right, runways. This leads to arrivals from
four possible directions and to several possible arrival runway configurations. For example,
a common configuration in periods of high traffic is {22L, 22R, 31L}.

The set of runways that are selected for landing at any airport is referred to as the arrival
runway configuration and will simply be referred to as the runway configuration in the rest
of this paper. The configuration may change several times in a day because it is selected by
considering various factors such as wind direction and magnitude, noise level, visibility and
air traffic patterns. The choice of configuration affects the air traffic routes in the terminal
airspace. The airspace model developed here captures the air traffic routes and the runway
configurations, while the hybrid dynamic model of the aircraft captures the motion of aircraft
on these arrival routes.

2http://www.faa.gov/airports/runway_safety/diagrams
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Hybrid Model of Arrival Traffic

Airspace model

Aircraft are often required to enter and leave the terminal airspace through certain fixed
locations in airspace called meter fixes. For each meter fix, there are usually several pre-
defined paths leading to different runways in the airport. This pathway structure within
the terminal area can be easily described by a directed graph G = (V,E), where each node
v ∈ V in this graph represents a waypoint, including runways, in the terminal airspace, and
each edge e = (v1, v2) ∈ E ⊂ V ×V represents a directed aircraft route from node v1 to node
v2. Each edge is associated with a length le as well as a set of neighbors N (e) consisting of
the edges that share a common node with e. A node is called an entry node if it connects
the terminal airspace to the en-route airspace and is called a sink node if it corresponds
to a runway. The set of entry and sink nodes are denoted by Ve and Vs, respectively. For
example, in JFK, Vs = {22L/R, 31L/R, 4L/R, 13L/R} as shown in Figure 5.1. A path is
a connected set of edges that starts at an entry node and ends at a sink node. The set of
edges e = (v1, v2) with v2 ∈ Vs is denoted by Es, referred to as the set of final edges.

A mode of the graph is characterized by a set of sink nodes σ ⊂ Vs. There is a one-to-one
correspondence between the graph modes and the runway configurations. We will use the
terms mode and runway configuration interchangeably in the rest of this chapter. If the
graph is in mode σ then the configuration includes runways which are represented by nodes
in σ. In this case, the edge e = (v1, v2) ∈ Es is available as a route if and only if v2 ∈ σ.

The control input for the graph is the choice of graph mode over a time horizon. This choice
over an interval of time [t0, tf ] is represented as:

[(ts0 , σ0), (ts1 , σ1), . . . , (tsN , σN)], (5.1)

where 0 < N <∞, ts0 ≤ ts1 · · · ≤ tsN ≤ tf and σk ⊂ Vs for k = 0, 1, . . . , N . In this sequence,
the pair (ts0 , σ0) is the initial condition and the pair (tsk , σk), k ≥ 1, indicates that at time tsk
the graph mode changes from βk−1 to βk. As a consequence, in the time interval [tsk , tsk+1

)
the graph mode is given by σk. Thus, during this time interval, all arrival aircraft must use
a runway v ∈ σk.

Aircraft dynamics

Let [t0, tf ] be a time interval of interest for optimizing arrival traffic. Suppose there are Na

scheduled arrivals during this interval with the i-th aircraft crossing one of the entry nodes
at time ti0. Once aircraft enter the terminal airspace, they should travel along the pathways
defined by graph G. For aircraft i, let qi(t) ∈ E be the edge it is on at time t, xi(t) ∈ R+ be
its current distance from the first node of edge qi(t), yi(t) ∈ R+ be the total distance it has
traveled since time ti0 and zi(t) = (qi(t), xi(t), yi(t)) be its hybrid state.
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The evolution of the hybrid state zi(t) is controlled by air traffic controllers through speed
adjustment, edge selection and holding pattern assignment. We assume speed changes and
holding patterns occur only when the aircraft is at one of the nodes in the graph. We denote
a generic air traffic control command as u = (s, η) where s ∈ R+ is the speed magnitude
assignment and η ∈ E ∪ {hold} is the discrete control command specifying whether the
aircraft needs to travel along the new edge specified by η (when η ∈ E) with speed s or enter
a holding pattern (when η = hold) with speed s at the current node.

Suppose that aircraft i is at node v ∈ V at some time t̂ ≥ ti0 and receives a control u = (s, η).
If η = hold, then evolution of the hybrid state is given by: qi(t)

ẋi(t)
ẏi(t)

 =

 qi(t̂)
0
s

 .
On the other hand, if η ∈ N (qi(t̂)), then the hybrid state first undergoes an instantaneous
reset to zi(t̂+) = (η, 0, yi(t̂)), where t̂+ denotes the time immediately after t̂. The dynamics
after time t̂+ is:  qi(t)

ẋi(t)
ẏi(t)

 =

 η
s
s

 .
The above two evolutions continue until the aircraft finishes the number of holding patterns
assigned or reaches the next node, at which time it will receive a new control command and
the process repeats. The evolution stops once the aircraft reaches one of the sink nodes,
which can be determined through the hybrid state by checking whether the edge qi(t) is a
final edge and xi(t) = lqi(t). The time aircraft i reaches a sink node is denoted by tif .

Let ni denote the number of edges in the aircraft path from the source to the sink node.
The set of all controls for aircraft i is given by ui = (si, ηi), where the continuous control is
si = (si1, . . . , s

i
ni) and the discrete control is ηi = (ηi1, . . . , η

i
ni).

Constraints

There are constraints on the airspace due to weather conditions and on the aircraft due to
separation requirements between the aircraft.

Airspace constraints

The weather can affect the dynamics of the graph by affecting availability of the edges. If a
significant portion of an edge is blocked by a storm or hazardous weather, then no aircraft
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can be assigned to that edge. In addition, if a runway is prohibited from landing due to
strong wind or other environmental conditions, then no aircraft can be assigned to any of
the final edges leading to the sink node corresponding to the runway.

First, we discuss runway feasibility. We focus on the effects of wind on runway selection and
do not consider other factors such as noise abatement which are dependent on the particular
airport and procedures. The wind direction and magnitude is a major factor in determining
whether a runway is safe for landing because aircraft cannot safely land if the component of
the wind perpendicular to the landing direction, referred to as the crosswind, or parallel to
the landing direction, referred to as the tailwind, are above certain thresholds.

The wind forecast data is provided in terms of wind magnitude and direction at regular
intervals. Comparison of the historical forecast data with actual wind data could provide
reasonable models for the probabilities of the wind magnitude and direction being within
certain bounds of the predicted values. Thus, from forecast data, we assume the probabilities
that the crosswind and tailwind to runway v are below the required thresholds are estimated.
Denote these probabilities by pv,cw and pv,tw respectively. We define a configuration or graph
mode feasible if the probabilities of crosswind and tailwind threshold satisfaction are above
a desired level λw ∈ (0, 1] for each runway in the configuration. The constraint for the graph
mode sequence of Equation (5.1) over the time horizon t ∈ [tsk , tsk+1

] can then be written as

σk ∈ {c ⊂ Vs | ∀v ∈ c, pv,cw(t) ≥ λw ∧ pv,tw(t) ≥ λw}. (5.2)

Next, we discuss the edge feasibility. Research in the past has used the weather forecast data
in order to identify routes that will remain open in the forecast horizon and has provided
the uncertainty associated with this prediction [152]. Thus, we assume that we have the
probability pe(t) of edge e = (v1, v2) being open at time t in the planning horizon. In order
to assign aircraft to edge e, we require that the edge is open with high enough probability,
that is, pe(t) ≥ λe, where λe ∈ (0, 1] is a parameter determined by the safety requirements.
Consequently, the discrete aircraft control η at time t and at node v1 has to satisfy

η ∈ {e ∈ E | pe(t) ≥ λe} ∪ {0, 1, . . . , H}. (5.3)

In the above, the maximum number of allowable holding patterns at a node is denoted by H.
A final edge e = (v1, v2) ∈ Es, must additionally satisfy v2 ∈ c where c is a feasible runway
according to (5.2).

State constraints

For safety requirements the aircraft on the same edge or neighboring edges must be separated
by a given distance d. In addition, for safety due to wake vortex of aircraft, there are runway
separation distance requirements based on leading and trailing aircraft types. Let the type
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of aircraft i be denoted by ai. The runway separation distance between aircraft i and j is
denoted by D(ai, aj). Let matrix D ∈ Rnt×nt

+ represent the runway separation requirement
between all pairs of aircraft, in which nt denotes the number of different aircraft types. In
general, the separation requirement and hence the matrixD would also depend on the landing
runway of each pair of aircraft. For simplicity in notation, we drop this dependence here.
The separation constraints along the edges and runways are encoded with the constraint
h(zi, zj, t) ≤ 0, where the function h is defined as:

h(zi, zj, t) =


xj(t)− xi(t) + d, if qj(t) = qi(t),
xj(t)− xi(t) + d, if qj(t) ∈ N (qi(t)) ∧ xi(t) = lqi(t),
xj(t) +D(ai, aj)− lqj(t), if qi(t), qj(t) ∈ Es ∧ xi(t) = lqi(t).

(5.4)

The first constraint denotes the separation requirement for two aircraft on the same edge,
the second denotes the separation requirement for aircraft on neighboring edges and the
third denotes the separation requirement for landing aircraft. In all cases, it is assumed
that aircraft j precedes aircraft i. The constraint on the final state is the requirement that
aircraft land at a runway by some time t ∈ [t0, tf ] in the planning horizon:

zi(t) ∈ {(q, x, y) | q ∈ Es ∧ x(t) = lq}. (5.5)

Optimization

For each aircraft, we penalize a function of the aircraft state by defining a running cost
function L(zi). This function could for example denote the total distance or travel time
of the aircraft and hence in general is a function of the discrete state representing edges
and holding patterns in aircraft path and the continuous state representing the distance
travelled. We associate a cost due to switching from graph mode σi to mode σj, S(σi, σj),
due to overhead associated with switching runway configuration. Let u = (u1, u2, . . . , uNa)
denote the sequence of inputs to all the aircraft. The cost function to be minimized is
formulated as:

J(σ, u) =
Na∑
i=1

∫ tif

ti0

L(zi(t))dt+
N−1∑
k=1

S(σk, σk+1). (5.6)

The constraints of the optimization are those on the graph mode sequence (5.2), the aircraft
edges (5.3), the aircraft state (5.4), (5.5) and the range of allowable aircraft speed. The
optimization problem formulated above is a constrained hybrid optimal control problem.
There are discrete control inputs consisting of the runway sequence selection, aircraft path
and holding pattern assignments, and continuous inputs including the switch times between
the runway configurations and the speed assignment along the edge for each aircraft.

In such a general formulation, it is very difficult to encode the state constraints (5.4) and the
discrete optimization variables into an optimization solver. Hence, we describe a hierarchical
solution approach to simplify the optimization.
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5.3 Hierarchical Solution Approach

The hierarchical approach consists of two stages: In the first stage, the optimal runway
sequence and the aircraft paths are determined. In the second stage, the optimal switch
times and the speed and holding pattern control inputs along the paths for each aircraft
are determined. The hierarchical approach is motivated by the fact that weather and wind
conditions pose hard constraints on the feasibility of the runway, while this feasibility is not
affected by individual aircraft behavior. On the other hand the choice of runway configuration
does affects the arrival paths and hence the control of the individual aircraft.

Stage 1

Here, the optimization variables are the runway mode sequence and the sequence of edges
that describe the path of each aircraft. These variables are determined by taking into account
weather forecast data and established arrival procedures as described below.

Mode sequence determination

Given that it is not feasible to switch configurations frequently, we can always choose the
planning horizon small enough, such as one to two hours, so that there is one runway
configuration switch. Consequently, we assume there are only two graph modes during
the planning horizon [t0, tf ]. The initial condition for the mode is σ0. Due to wind or
traffic demand, the initial mode becomes infeasible and hence a switch to another mode σ1

is required. The new mode is chosen such that it is feasible with respect to wind, that is,
σ1 satisfies (5.2) for all t ∈ [ts, tf ], where ts is the switch time to be determined. If there are
multiple modes that are feasible with respect to wind, the configuration that accommodates
the traffic demand is selected. While in this stage the graph mode sequence is determined,
the switch time ts will be determined in Stage 2.

Aircraft path determination

In most airports, the path the aircraft travels prior to landing is chosen based on predefined
arrival routes, such as those prescribed in established Standard Arrival Routes (STARs). We
use the established procedures to determine the edges that need to be selected for the aircraft
path. If with high probability an edge is infeasible due to weather as described in Equation
(5.3) the aircraft will be assigned to a new edge which is not blocked due to weather. These
new edges could be determined or designed from the forecast data [152, 153]. The remaining
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control inputs for the aircraft are the speed and holding patterns along each edge which are
determined in Stage 2.

Stage 2

The wind magnitude and direction from the forecast data are uncertain and have low res-
olution in time, for example, hourly predictions. As such we do not have an exact time at
which infeasibility of a runway configuration occurs and there is some flexibility in choosing
the switch time between the configurations in order to minimize the overhead in the configu-
ration switch. Let λ denote the first time the infeasibility due to wind based on the forecast
is encountered. If the forecast interval is δw minutes, we define λ1 = λ− δw and λ2 = λ+ δw.
We assume that the configuration switch must occur at ts ∈ [λ1, λ2] ⊂ [t0, tf ]. Since ts
affects arrival paths of aircraft and hence individual aircraft control inputs, our objective
is to determine ts along with the aircraft inputs such that the cost of interest is optimized
while aircraft separation constraints are satisfied.

In order to impose the state constraints (5.4) and (5.5) we formulate an equivalent char-
acterization of these constraints based on conversion of a separation constraint in terms
of distance to a separation constraint in terms of time by integrating aircraft equations of
motion.

Separation constraints along edges

Consider the first separation constraint in Equation (5.4). Suppose aircraft i and j fly on an
edge e = (v1, v2), with aircraft i preceding aircraft j. The aircraft fly with constant speeds of
si and sj respectively along the edge. Let x = xi−xj and ti1, tj1 be the time at which aircraft
i, j depart from node v1 respectively. Suppose x(tj1) ≥ d, that is, the distance between the
two aircraft at the time aircraft j crosses node v1 is greater than the minimum required
distance. Then, in order to ensure separation constraint along the edge, due to constant
aircraft speed along the edge it is sufficient to impose x(ti2) ≥ d, where tj2 denotes the time
aircraft j crosses node v2. By integrating equations of motion of the aircraft, this constraint
can be converted to a constraint on the time of crossing node v2 as tj2 ≥ ti2 + le

sj
. For aircraft

on neighboring edges, the second constraint in Equation (5.4) must hold. Similar argument
shows that separation distance in this case can be converted to a separation requirement for
time of crossing the common node of the neighboring edges.

Next, we find bounds on feasible times of arriving at the nodes along the path of each
aircraft. Consider aircraft i flying through edge e = (v1, v2) with constant speed si ∈ [sil, s

i
u].

Let ti1 and ti2 denote the time of arrival of aircraft at nodes v1 and v2, respectively. Then,
ti2 ∈ I i0 = [τ il , τ

i
u], where τ il = ti1 + le

siu
and τ iu = ti1 + le

sil
. In addition, if the aircraft is to
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perform a number nH ≥ 0 of holding patterns at node v1, each for a duration of thp, then
ti2 ∈ I = ∪nHk=0I

i
k, where I ik = kthp + [τ il , τ

i
u]. Based on this analysis, we find upper and

lower bounds on the arrival time of aircraft at each node along the path of the aircraft. In
addition, given an arrival time ti2 ∈ I we can uniquely determine the minimum number of
holding patterns required at node v1 and the speed of aircraft along the edge e. Hence, the
assignment of speed along edge e = (v1, v2) and holding pattern at node v1 can be converted
to the assignment of time of arrival of aircraft at node v2.

Let the arrival time at a non sink node v /∈ Vs, for aircraft i be written as tiv ∈ I iv, where
I iv may be a union of disjoint intervals due to presence of holding patterns as discussed
above. Let dt = le

sl
, where sl is the minimum aircraft speed through node v. For aircraft i

and j flying through the same edge or neighboring edges, the separation constraint can be
written as tjv ≥ tiv + dt, where tv is the time of crossing the common node v of the aircrafts’
corresponding edges. Let Nv denote the number of aircraft that fly through node v in the
planning horizon. We assume aircraft are ordered according to the nominal time of arrival at
node v. To account for the first two separation constraints in (5.4) we minimize deviation of
arrival time of each aircraft from its nominal arrival time t̄iv at this node through formulating
the constrained optimization problem:

min
Nv∑
i=1

tiv − t̄iv (5.7)

s.t. tiv ∈ I iv, i = 1, . . . , Nv,

tiv − ti+1
v + dt ≤ 0, i = 1, . . . , Nv − 1.

Optimal switch time and separation constraints at runways

Consider the last constraint in Equation (5.4) which is the runway spacing requirement
for aircraft i and j landing at times tif and tjf respectively with tjf > tif . Let sj0 be the

minimum arrival speed of aircraft j and Dt(a
i, aj) = D(ai,aj)

sj0
denote the runway separation

requirement in units of time. This separation requirement can be written as a constraint
on the landing times of the two aircraft: tjf ≥ tif + Dt(a

i, aj). The switch time between
the configurations, ts, affects the landing runway and consequently the path of the aircraft.
Here, we assume that if aircraft i’s time of arrival at TRACON entry node is before the
configuration switch time then the aircraft takes the final edge e0 ∈ Es to a runway in
the first configuration σ0, and else it takes the final edge e1 ∈ Es to a runway in the new
mode σ1. Since the length of the edges are different, the feasible landing time interval
becomes dependent on the switch time. That is, landing time of aircraft i must be inside
the set of feasible intervals: tif ∈ I i(ts) = ∪Hk=0kthp + [τ il (ts), τ

i
u(ts)]. In order to determine

the optimal switch time and aircraft landing times, we formulate the cost function as the
total differences between the nominal landing time t̄if and the actual landing time tif for all
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aircraft, that is, J(ts, uf ) =
∑Na

i=1 t
i
f − t̄if . Here, uf denotes the vector of speed and holding

pattern assignments for all aircraft along the final edge of their paths. We assume aircraft
are ordered according to their nominal landing times. For a given switch time, to determine
optimal aircraft input we formulate:

min
Na∑
i=1

tif − t̄if (5.8)

s.t. tif ∈ I i(ts), i = 1, . . . , Na,

tif − ti+1
f +Dt(a

i, ai+1) ≤ 0, i = 1, . . . , Na − 1.

Note that it is easy to formulate a cost function which would penalize both early and late
landing times using J(ts, uf ) =

∑Na
i=1 |tif − t̄if |. Let uf (ts) denote the optimal input for

a given switch time and define J(ts) = J(ts, uf (ts)). Then, the optimal switch time is
t∗s = arg mints∈[λ1,λ2] J(ts) and the optimal speed and number of holding patterns on the last
edge of the aircraft is given by uf (t

∗
s).

Numerical solution of the optimization problems

The hybrid optimal control problem has been reduced to a set of optimization problems;
Problem (5.7) at each node that is not a runway and Problem (5.8) at the runway nodes.
In order to solve these optimization problems, we can formulate a Mixed Integer Linear
Program (MILP) as follows [148]: Let δk ∈ {0, 1} for k = 0, 1, . . . , H denote binary variables
for each discrete interval Ik. Then, the constraint t ∈ ∪Hk=0Ik can be equivalently written
as t ∈

∑H
k=0 δkIk with

∑H
k=0 δk = 1. If for any aircraft, the upper and lower bounds on

arrival time at a node satisfy τu − τl ≥ thp, then, the intervals Ik overlap. In this case, the
feasible arrival time becomes one connected interval and this constraint can simply be cast
as a Linear Program (LP) without the need for binary variables.

In summary, a MILP, or at best a LP, for each node needs to be solved to find optimal arrival
times that satisfy separation constraints. As for landing times, Problem (5.8) is a MILP for
a given switch time ts. Since the allowable range of ts, [λ1, λ2], is usually small (less than
one or two hours) and precisions to order of minutes for determination of the switch time
is sufficient, we can discretize [λ1, λ2] and solve a MILP at each discrete value to determine
optimal switch time, aircraft landing times and aircraft control inputs along their final edges.

The number of binary variables would be at most Na ×H × Va where Na is the number of
aircraft in the planning horizon and Va is the maximum number of nodes along each aircraft
path. For a typical problem horizon of 2 hours, the number of binary variables would be of
order 103 which is manageable by current numerical optimization solvers.
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5.4 Case Study for JFK Arrival

We consider an instance of optimally planning the John F. Kennedy (JFK) airport runway
configurations and aircraft arrival schedules. The airspace graph is derived based on ab-
straction of the airspace structure of the JFK airport. The aircraft arrival rates and aircraft
types are generated according to the counts and probabilities observed in practice.

LGA	  

JFK	  

EWR	  

(a) JFK TRACON with arrival and departure paths (b) JFK airspace graph

Figure 5.2: Airspace graph model abstraction

Airspace Graph

The JFK TRACON consists of a region of approximately 60 nmi radius centered on the JFK
airport and includes many airports in the region, the major ones being LaGuardia (LGA)
and Newark (EWR). A representation of the arrival and departure paths and the runway
directions for these airports is shown in Figure 5.2(a).

There are a number of Standard Arrival Routes (STARs) leading to the JFK airport. An
example of such route from the West direction, referred to as LENDY FIVE Arrival, ob-
tained from the FAA website, is shown in the Figure 5.33. These diagrams describe the
routes aircraft take for arrival and locations for assigning holding patterns. For example,

3http://aeronav.faa.gov/index.asp?xml=aeronav/applications/d_tpp
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Figure 5.3: JFK Standard Arrival Route LENDY FIVE.

in LENDY FIVE STAR we see that aircraft may enter a holding pattern at JENNO or
LENDY meter fixes. Once the aircraft reach the last meter fix in the arrival path, they may
follow verbal commands from the air traffic controllers or follow an Instrument Approach
Plate (IAP) to make their final descent to a JFK runway as shown in Figure 5.1. There are
several possibilities for arrival runway configurations. For this case study, we consider the
configuration σ0 = {22L, 22R}, which is a common arrival configuration in low traffic, and
σ1 = {31L, 31R}, which may be used if landing in σ0 is not possible due to wind. Based
on studying JFK runway configurations, STAR files and our discussions with the air traffic
controllers at the JFK airport, we identify three main arrival directions to JFK and create
a graph which models the arrival airspace structure. This graph is shown in Figure 5.2(b).
In this figure we superimposed the left and right runways in each set of parallel runways
for simplicity, that is, the runway set {22L, 22R} is shown as one runway and the runway
set {31L, 31R} is shown as one runway. The entry nodes are {v1, v2, v3} corresponding to
three major entry meter fixes. Two of the sink nodes v7 and v8, corresponding to runways
{22L, 22R} and {31L, 31R} respectively, are shown. The paths from each entry meter fix to
each of the two runway configurations are depicted.

Data for Scenario Set-up

We use the ASPM4 database in order to instantiate wind forecast data and aircraft arrival
times. The day under consideration is 07/01/2009 and the time interval is [19.00, 24.00]

4Aviation Systems Performance Metric: http://www.aspm.faa.gov
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during which high wind magnitudes were recorded. The data in ASPM is recorded at 15-
minute intervals. Although the wind data is the recordings of actual wind magnitude and
direction, we treat this as an uncertain wind forecast for our problem. Note that the data is
used as a guideline for setting up the simulation rather than for comparison of performance
of our algorithm with current procedures.

The aircraft arrival times at the entry meter fixes are generated randomly but with the
number of arrivals in each 15-minute interval set according to the ASPM arrival counts. The
probability of arrival of aircraft types {Heavy,B757,Large, Small} and the landing speed
of these aircraft types were set to {0.390, 0.066, 0.179, 0.365} and {150, 130, 130, 90} knots
respectively [156]. The aircraft were assigned an entry node randomly, with equal probability
for each entry node. The required runway separation distance in minutes is shown in Table
5.1 and is derived based on the data on required separation distance in nautical miles and
the average landing speed of aircraft [156]. In this table, the leading/trailing aircraft are
represented by rows/columns respectively.

Heavy B757 Large Small
Heavy 1.60 2.31 2.31 4.00
B757 1.60 1.85 1.85 3.33
Large 1.00 1.15 1.15 2.67
Small 1.00 1.15 1.15 1.67

Table 5.1: Runway separation requirement in minutes

Stage 1 optimization

We computed the crosswind and tailwind for the two modes, σ0 = {22L, 22R} and σ1 =
{31L, 31R} as shown in Figure 5.4. The crosswind and tailwind thresholds were set to 20
and 8 knots respectively. The initial mode is σ0. This mode becomes infeasible due to large
tailwind at approximately hour 21.00, while runway configuration σ1 remains feasible. Due
to consideration of uncertainty in wind data, we choose the range of allowable switch time
as [λ1, λ2] = [20.30, 21.30]. We aim to choose the switch time in this interval so that aircraft
delay is minimized. We consider all aircraft in the JFK airspace in a two-hour planning
horizon of [20.00, 22.00] hour.

Aircraft paths were set based on the airspace graph and the entry nodes of the aircraft. The
paths to the two runway configurations under study from each entry node are shown in Figure
5.2(b). For example, an aircraft arriving at entry node v1 would take {(v1, v4), (v4, v7)} to
land on either 22L or 22R, and would take {(v1, v4), (v4, v8)} to land on either 31L or 31R.
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Figure 5.4: Wind impact on runway configurations

In order to determine the speed and holding pattern on the edges along the path for each
aircraft and the optimal switch time we used Stage 2 solution approach.

Stage 2 optimization

Problems (5.7) was solved for each of the nodes v4, v5, v6, to determine arrival times at
these nodes such that aircraft separation constraint is maintained along the first three edges
(v1, v4), (v2, v5), (v3, v6). The spacing requirement at these nodes was set to 2 minutes which
results in a separation distance greater than 5 nmi in the 2D plane. Then, Problem (5.8) was
solved for each switch time in the interval [20.30, 21.30] in order to find the optimal switch
time and to determine the optimal speed and holding pattern assignment for each aircraft
along its final edge.

The parameters were set as follows: The upper and lower bounds on speed of each aircraft
were set to 12% above and below the nominal speed of the aircraft along an edge, respectively.
The nominal speed was determined based on aircraft type and its distance from the runway.
Each holding pattern had a duration of 3 minutes [148] and the maximum number of holding
patterns at each node for each aircraft was set to H = 2. Hence, for aircraft i at each of
the two nodes along its path (excluding the runway node), there were 3 binary variables δik,
k = 0, 1, 2 associated with zero, one and two holding patterns. Additionally, to minimize
the number of holding patterns, we penalized each holding pattern by including a cost term
w(δi1 + δi2), with w > 0 a weight which was set to 10 in the following simulation.
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Figure 5.5: Optimal cost function and its sensitivity

Simulation Results

The result of Stage 2 optimization for an instance of randomly generated arrival data is
summarized as follows: In the 2-hour planning horizon there were 85 aircraft in the JFK
airspace. We used CPLEX optimization software package to solve Problem (5.7) for the
arrival times at nodes v4, v5, v6 and then used CPLEX to solve Problem (5.8) by discretizing
the time interval [20.30, 21.30] into 60 minutes and solving a MILP for each of the 60 possible
switch times to determine the one with the lowest cost function.

The optimized cost J(ts), which is the total deviations from the nominal landing time
summed with the cost of holding patterns, as a function of the switch time ts (shown here in
the interval [0, 60], with 0 indicating 20.30) is plotted in Figure 5.5(a). From this computa-
tion, we find the optimal switch time to be t∗s = 20.37. For this optimal solution 5 aircraft are
put on hold at node v4, each for one holding pattern. The large variations of the cost with
respect to switch time indicates that by properly choosing the switch time and optimizing
aircraft inputs based on the anticipated switch time, delays can be reduced significantly.

We note that the ASPM database had recorded a switch time of 23.00 hour. However, the
actual configuration switch may have occurred earlier, as the ASPM runway configuration
data is written manually and is known to have delays or errors. In addition, given that
different aircraft types can operate under slightly different tailwind thresholds, it is possible
that during the time horizon of interest, the tailwind threshold used in practice was larger
than the one we determined.

Given that in practice the aircraft may deviate from their nominal arrival times at a meter fix,
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Figure 5.6: Aircraft optimized control inputs and arrival times

we did a sensitivity analysis of our results. We computed the optimal switch time associated
with perturbing the initial arrival times of the aircraft at the entry meter fixes by a uniform
random distribution of U [−0.5, 0.5] minutes. 81% of the experiments had an optimal switch
time in the interval [20.35, 20.38]. There were a few experiments in which the switch time
was significantly different. This could be due to the particular separation of the arrival times
of the aircraft. Despite the differences in the optimal switch time, the total savings at the
optimal switch time remained at least 10 minutes in all experiments. The histogram of the
number of holding patterns for these experiments is shown in Figure 5.5(b) and indicates
that the number of holding patterns remained less than 6 in all experiments.

For the optimal switch time in the nominal experiment, the fraction of decrease or increase of
the speed of each aircraft from its nominal value along the first and second edges of aircraft
path are shown in Figure 5.6(a). As can be seen, most speed control commands are assigned
on the last edges of the aircraft path. This is due to the aircraft spacing requirements at the
landing runways. The histogram of the changes of landing times from the nominal landing
times is shown in Figure 5.6(b). At the optimal switch time, 9 out of 83 aircraft were delayed
with a maximum delay of less than 2.25 minutes.

In terms of computation complexity, the number of binary variables in the CPLEX problem
was equal to Na×H×Va where Na = 85 was the number of aircraft, H = 3 and Va = 2 were
three possibilities for holding pattern at each of the 2 nodes along the path of the aircraft.
The average running time for the CPLEX solver was 0.99 seconds on a processor with 2.66
GHz processing speed and 4 GB memory and running with MATLAB interface.
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5.5 Conclusions

We developed a hierarchical approach to plan a runway configuration which is safe with
respect to wind, and to optimize the switch time between the runway configurations as well
as the traffic control strategies during the transitional period of a configuration switch in
order to minimize the overall traffic delays. The framework is based on deriving an accurate
model of arrival airspace structure and is consistent with the TRACON and Tower Control
procedures commonly used. We illustrated our modeling and solution approach with a case
study inspired by the JFK airspace geometry, arrival and wind data. The case study shows
the use of the framework in real scenarios and the benefits gained by optimizing aircraft
arrival during transitional periods of a configuration switch.

In our formulation, for simplicity, various control strategies, such as path stretching or Vector
For Spacing, were not considered. We expect the number of holding patterns to decrease if
additional control strategies are taken into account. In addition, currently the optimization
problems solved at different nodes along the aircraft path are decoupled and hence aircraft
cannot anticipate large separation requirements that may arise in the downstream edges of
their path. We are currently extending the solution approach to account for all the nodes
along the path simultaneously. There are several other considerations we have to address
before implementing the proposed modeling and solution approach. First, we need to test
our approach with more realistic air traffic scenarios, with the use of historical data for
aircraft arrival times and the consideration of more complex airspaces which include multiple
airports. In addition, we need to formulate and solve the algorithm within a receding horizon
optimization framework, such that the optimization is repeated as aircraft or weather forecast
data is updated.

Finally, we note that the problem of configuration planning combines interesting aspects of
human and automation. While in theory it is not too difficult to determine the set of runways
that are safe with respect to wind conditions and switch runways to best accommodate traffic
conditions, there are considerations in configuration switch due to human operators. For
example, the air traffic controllers at the airport tower have a mental model of the arrival
traffic routes. As a runway switch occurs, the normal traffic patterns get disturbed. Usually
the air traffic controllers require all traffic in the old routes to land before they start the
operation in the new runways. Although an automation would not face this problem, if this
automation is to be an aid for humans, and for transition to automated system to occur
smoothly, such problems should be considered.
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Chapter 6

Conclusions and Future Work

In this thesis, we developed algorithms for optimal control of deterministic and stochastic
hybrid systems. We also developed a framework for optimizing arrival traffic and runway
configuration planning. In the deterministic setting, our algorithm was used to plan aircraft
trajectories that are safe with respect to hazardous weather, while minimizing fuel consump-
tion and flight time by considering wind as a deterministic known disturbance acting on the
system. Due to the presence of various sources of uncertainty in air traffic operations, we
introduced a stochastic hybrid game model. This model allowed for the presence of both
stochastic uncertainties arising from nature, such as wind and hazardous storms, and de-
terministic uncertainty arising due to the presence of other agents, such as nearby aircraft.
Constraint satisfaction and target reachability in this formulation became probabilistic prob-
lems. Our proposed algorithm addressed maximizing the probability of target attainability
while satisfying constraints. This algorithm was applied to aircraft conflict detection in
the presence of stochastic wind and maximally safe trajectory planning in the presence of
stochastic hazardous weather. The case studies in this thesis illustrated the potential of our
algorithms for addressing the TBO concept of the NextGen air transportation system, which
consists of taking into account individual aircraft objectives while ensuring safety.

As illustrated in Chapter 5, one of the main challenges in implementing the TBO concept
in realistic air traffic scenarios is the large-scale nature of the air traffic system. Individual
aircraft behavior must take into account global objectives such as capacity and spacing
requirements in various airspaces. For example, while it is known that a continuous descent
is the most fuel efficient aircraft trajectory, implementation of a continuous descent in dense
arrival regions is not possible due to the need to maneuver aircraft for collision avoidance
and landing separation [158]. This challenge motivates several directions of future work.

In the deterministic setting, while our proposed two-stage algorithm can improve individual
aircraft operations, the computation time of the nonlinear programming optimization prob-
lems formulated in the algorithm do not scale well as the state dimension increases. Thus,
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to address realistic air traffic scenarios we are exploring efficient numerical implementations
of our algorithm through various discretization schemes, such as pseudo-spectral methods,
as well as various nonlinear programming solvers. Additionally, given advances in the field
of mixed integer nonlinear programming, we are working on formulating the hybrid optimal
control problem as a mixed integer optimal control problem and combining Branch & Bound
techniques with nonlinear programming to find the discrete and continuous components of
the hybrid optimal control input.

In the stochastic setting, our proposed dynamic programming algorithm enables quantifying
and maximizing safety probability of aircraft trajectories in the presence of uncertain forecast
data. This algorithm suffers from the curse of dimensionality and thus it requires an efficient
implementation in order to apply the algorithm online to realistic air traffic settings. We are
exploring how to adapt fast numerical methods in solving the deterministic Hamilton-Jacobi
equations such as Fast Marching methods [159].

To apply our algorithms in a realistic setting, a receding horizon implementation would be
required so that the safety verification and trajectory planning are repeated as updates about
the forecast and nearby aircraft states are provided. Thus, analysis of constraint satisfaction
in a moving horizon and proper choice of the look-ahead horizon become important so that
dangerous events can be accounted for early enough to be able to plan a safe maneuver. While
in the deterministic case the constraint satisfaction (persistent feasibility) could potentially
be addressed by introducing final state constraints, in the stochastic case the receding horizon
formulation and solution are open problems that we would like to explore.

The implementation of the ADS-B inter aircraft communication networks and System Wide
Information Management for sharing information amongst aircraft would enable semi decen-
tralized control of aircraft, such that air traffic controllers would only need to intervene if a
safety critical scenario occurs. Thus, we aim to develop a decentralized implementation of
our algorithms. However, as technological changes occur gradually, our optimization frame-
work needs to account for aircraft not equipped with new technologies and it must be safe
with respect to failures in communication or control. Another area of work is the inclusion of
multi-objective optimization methods in order to plan safe aircraft trajectories while taking
into account efficiency objectives or objectives of a number of different aircraft [160].

Finally, the techniques developed in this thesis are important and useful for other safety- and
efficiency-critical application domains. For example, in smart grid applications, the energy
input of various power sources such as wind and solar energy, as well as the demand on the
grid, are predicted and have uncertainty. Our stochastic verification and control methods
have the potential to provide a systematic way of ensuring safety and optimal performance.
To address such important problems, the next steps would be defining a mathematical model
abstraction of the application which would be amenable to our analysis tools, and extending
our tools to account for large scale operations of realistic applications.
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[15] R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G. Pappas, H. Rubin, and J. Schug,
“Hybrid modeling and simulation of biomolecular networks,” in Hybrid Systems: Com-
putation and Control, ser. Lecture Notes in Computer Science, M. Di Benedetto and
A. Sangiovanni-Vincentelli, Eds. Springer, 2001, vol. 2034, pp. 19–32.

[16] R. Ghosh and C. Tomlin, “Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modelling: Delta-Notch protein sig-
nalling,” Systems Biology, vol. 1, no. 1, pp. 170–183, 2004.

[17] P. Lincoln and A. Tiwari, “Symbolic systems biology: Hybrid modeling and analysis of
biological networks,” in Hybrid Systems: Computation and Control, ser. Lecture Notes
in Computer Science, R. Alur and G. Pappas, Eds. Springer, 2004, pp. 147–165.

[18] A. Ames, R. Sinnet, and E. Wendel, “Three-dimensional kneed bipedal walking: A hy-
brid geometric approach,” in Hybrid Systems: Computation and Control, ser. Lecture
Notes in Computer Science, R. Majumdar and P. Tabuada, Eds. Springer, 2009, pp.
16–30.

[19] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems,” in Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer Science, R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, Eds. Springer-Verlag, 1993, pp. 209–229.

[20] T. Henzinger, “The Theory of Hybrid Automata,” in Annual Symposium on Logic in
Computer Science, jul 1996, pp. 278 –292.

[21] A. Puri and P. Varaiya, “Decidability of hybrid systems with rectangular differential
inclusions,” in Computer Aided Verification, ser. Lecture Notes in Computer Science.
Springer, 1994, vol. 818, pp. 95–104.



111

[22] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers for timed
systems,” in Annual Symposium on Theoretical Aspects of Computer Science, ser. Lec-
ture Notes in Computer Science, 1995, pp. 229–242.

[23] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer-
Verlag New York Inc, 2009.

[24] M. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475–482,
1998.

[25] H. J. Sussmann, “A maximum principle for hybrid optimal control problems,” in IEEE
Conference on Decision and Control, 1999, pp. 425–430.

[26] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for hybrid control:
model and optimal control theory,” IEEE Transactions on Automatic Control, vol. 43,
no. 1, pp. 31–45, 1998.

[27] M. S. Shaikh and P. E. Caines, “On the optimal control of hybrid systems: Opti-
mization of trajectories, switching times, and location schedules,” Lecture Notes in
Computer Science, vol. 2623, pp. 466–481, 2003.

[28] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. Mishchenko, The
mathematical theory of optimal processes (International series of monographs in pure
and applied mathematics). Interscience Publishers, 1962.

[29] R. E. Bellman, Dynamic Programming. Princeton University Press, 1957.

[30] R. Kalman, in Mathematical optimization techniques, R. Bellman, Ed. University of
California Press, 1963, ch. The theory of optimal control and the calculus of variations,
pp. 309–331.

[31] R. Isaacs, Differential games: A mathematical theory with applications to warfare and
pursuit, control and optimization. Wiley (New York), 1965.

[32] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hybrid systems,” in
Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science,
N. A. Lynch and B. H. Krogh, Eds. Springer, 2000, vol. 1790, pp. 160–173.

[33] J. P. Hespanha, “Stochastic hybrid systems: Application to communication networks,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science,
R. Alur and G. J. Pappas, Eds. Springer, 2004, vol. 2993, pp. 47–56.

[34] J. Hespanha and A. Singh, “Stochastic models for chemically reacting systems using
polynomial stochastic hybrid systems,” International Journal of Robust and nonlinear
control, vol. 15, no. 15, pp. 669–689, 2005.



112

[35] M. Davis, “Piecewise-deterministic Markov processes: A general class of non-diffusion
stochastic models,” Journal of the Royal Statistical Society. Series B (Methodological),
pp. 353–388, 1984.

[36] O. V. Costa, M. D. Fragoso, and R. Marques, Discrete-time Markov jump linear sys-
tems. Springer Verlag, 2005.

[37] M. Ghosh, A. Arapostathis, and S. Marcus, “Ergodic control of switching diffusions,”
SIAM Journal on Control and Optimization, vol. 35, no. 6, pp. 1952–1988, 1997.

[38] M. Bujorianu, “Extended stochastic hybrid systems and their reachability problem,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science,
R. Alur and G. J. Pappas, Eds. Springer, 2004, pp. 234–249.

[39] M. Bujorianu and J. Lygeros, “General stochastic hybrid systems: Modelling and
optimal control,” in IEEE Conference on Decision and Control, vol. 2, 2004, pp. 1872–
1877.

[40] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability specifications for
hybrid systems,” Automatica, vol. 35, pp. 349–370, 1999.

[41] J. Lygeros, “On reachability and minimum cost optimal control,” Automatica, vol. 40,
no. 6, pp. 917–927, 2004.

[42] C. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational techniques for the
verification of hybrid systems,” in Proceedings of the IEEE, no. 7, Jul. 2002, pp. 986–
1001.

[43] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for Reach-Avoid Differen-
tial Games,” IEEE Transactions on Automatic Control, sep 2011, to appear.

[44] J. Katoen, “Stochastic model checking,” in Stochastic Hybrid Systems, ser. 24, C. Cas-
sandras and J. Lygeros, Eds. CRC Press, 2006, pp. 79–106.

[45] M. Prandini and J. Hu, “A stochastic approximation method for reachability compu-
tations,” in Stochastic Hybrid Systems, H. A. Blom and J. Lygeros, Eds. Springer,
2006, pp. 107–139.

[46] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety
for controlled discrete time stochastic hybrid systems,” Automatica, vol. 44, no. 11, pp.
2724 – 2734, 2008.

[47] S. Summers and J. Lygeros, “Verification of discrete time stochastic hybrid systems:
A stochastic reach-avoid decision problem,” Automatica, vol. 46, no. 12, pp. 1951 –
1961, 2010.



113

[48] M. Kamgarpour and C. Tomlin, “Optimal control of switched systems,” in SIAM
Conference on Optimization and Control, Denver, Colorado, 2009.
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