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ABSTRACT
Dark Energy Spectroscopic Instrument (DESI) will construct a large and precise three-dimensional map of our Universe. The
survey effective volume reaches ∼ 20 ℎ−3Gpc3. It is a great challenge to prepare high-resolution simulations with a much larger
volume for validating the DESI analysis pipelines. AbacusSummit is a suite of high-resolution dark-matter-only simulations
designed for this purpose, with 200 ℎ−3Gpc3 (10 times DESI volume) for the base cosmology. However, further efforts need
to be done to provide a more precise analysis of the data and to cover also other cosmologies. Recently, the CARPool method
was proposed to use paired accurate and approximate simulations to achieve high statistical precision with a limited number of
high-resolution simulations. Relying on this technique, we propose to use fast quasi-𝑁-body solvers combined with accurate
simulations to produce accurate summary statistics. This enables us to obtain 100 times smaller variance than the expected
DESI statistical variance at the scales we are interested in, e.g. 𝑘 < 0.3 ℎMpc−1 for the halo power spectrum. In addition, it can
significantly suppress the sample variance of the halo bispectrum. We further generalize the method for other cosmologies with
only one realization in AbacusSummit suite to extend the effective volume ∼ 20 times. In summary, our proposed strategy of
combining high-fidelity simulations with fast approximate gravity solvers and a series of variance suppression techniques sets
the path for a robust cosmological analysis of galaxy survey data.

Key words: methods: statistical – galaxies: haloes – cosmology: theory – large-scale structure of Universe
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1 INTRODUCTION

Dark Energy Spectroscopic Instrument (DESI) will collect more
than 30 million galaxy spectra within 5 yr (DESI Collaboration et al.

© 2022 The Authors
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2 Ding et al.

2016), constructing four main target catalogues, including bright
galaxy sample, luminous red galaxies (LRGs), emission line galax-
ies (ELGs), and quasi-stellar objects. We will use them to determine
the distances of the galaxies and construct a three-dimensional map
of the large-scale structure of our Universe. A wealth of valuable in-
formation about our Universe is hidden in the statistics of the matter
distribution, for example: the nature of dark energy (Copeland et al.
2006), modified theories of gravity (Huterer et al. 2015; Alam et al.
2021), and neutrino mass (Lesgourgues & Pastor 2006; Font-Ribera
et al. 2014; Allison et al. 2015; Hahn & Villaescusa-Navarro 2021;
Kreisch et al. 2021; Massara et al. 2021; Bayer et al. 2021a,b). To
extract the cosmological information from observation, we need to
build theoretical models that allow comparison to data. While the
non-linear effect is difficult to model analytically, one alternative
approach is running 𝑁-body simulations and thus building the mod-
els numerically. To this end, we want to generate simulations with
huge volumes and high resolutions that are unfortunately limited by
computing resources.
Grove et al. (2021) (the first paper of the DESI 𝑁-body simulation

projects) compared multiple 𝑁-body codes and found good agree-
ment which showed their robustness. Also, they compared the simu-
lations with different mass resolutions and identified that the errors
introduced by simulations with particle mass of 2.11 × 109 ℎ−1M�
are well below the DESI statistical uncertainties. However, it is a
challenge to generate simulations with sufficient volume for DESI
with such a mass resolution. The physical survey volume of DESI
is about 60 ℎ−3Gpc3 but the effective volume is about 20 ℎ−3Gpc3
if we take into account the observed galaxy densities at different
redshifts (DESI Collaboration et al. 2016). Thus, for the given mass
resolution and volume, the simulation will need more than 800 bil-
lion particles. If we want to have the theoretical uncertainty below
1/10 of DESI statistical error, the simulation volume should be 100
times larger, thus requiring 80 trillion particles. While it is not an
impossible mission, we do not consider that it is a practical approach
since it will cost a tremendous amount of computing resources.
The initial conditions (ICs) of cosmological simulations are con-

structed based on the Gaussian realizations that naturally introduce
noise into the simulations. Although the introduced noises are phys-
ically motivated (i.e. due to inflation), we want to minimize them to
provide a noiseless theoretical prediction to compare with observed
data. Otherwise, we will waste the constraining power from the ob-
servation. A brutal way to reduce the noise would be generating
simulations with larger volumes until the noise is well below the
statistical error of the survey. However, this strategy will not be prac-
tical when the survey volume increases dramatically as DESI. Some
techniques have been developed to reduce the noise without running
massive volume simulations. Angulo & Pontzen (2016) proposed the
fixed-amplitude technique to suppress the variance at large scales by
modifying the ICs of simulations. In addition, it can further suppress
sample variance using pairs of the fixed-amplitude simulations with
initial phases differed by 𝜋 rad (Pontzen et al. 2016). The so-called
paired-and-fixed method has been studied by a series of work (e.g.
Villaescusa-Navarro et al. 2018; Chuang et al. 2019; Klypin et al.
2020; Avila & Gutierrez Adame 2022; Maion et al. 2022).
Recently, the CARPoolmethod, proposed by Chartier et al. (2021),

takes a different approach. It reduces the noise by learning the cal-
ibrations from a large set of quasi-𝑁-body simulations. While the
fixed-amplitude method has only small improvement or no improve-
ment in the precision at small scales, e.g. 𝑘 > 0.2 ℎMpc−1, the
CARPool method still has a significant gain at even smaller scales.
In this work, we apply the CARPoolmethod to theAbacusSummit

simulations, an extensive simulation suite generated on the Summit

supercomputer1. To do so, we prepare a set of FastPM simulations
matching the configuration, including the ICs of AbacusSummit
simulations. While the CARPool method has been validated for the
statistics of dark matter particles (Chartier et al. 2021), we focus
on dark matter haloes that are expected to host DESI-like galaxy
samples, e.g. ELGs (Gonzalez-Perez et al. 2018; Avila et al. 2020)
and LRGs (Hernández-Aguayo et al. 2021; Zhou et al. 2021). The
AbacusSummit suite includes various cosmology models, but only
the base cosmology has the largest volumewhich is 200 ℎ−3Gpc3 (i.e.
10 times DESI volume). In this work, we also extend the CARPool
method to increase the effective volume of simulations other than
the base cosmology as well. Our work paves the way for providing
the most precise and accurate galaxy clustering predictions based on
𝑁-body simulations for DESI or future surveys.
This paper is organized as follows. In Section 2 we describe the

simulations used in this study. We briefly describe the CARPool
method in Section 3. We show the CARPool performance for the
halo two-point and three-point clustering statistics in Section 4. We
show the results of extending the method to different cosmologies
in Section 5. Finally, in Section 6, we present the conclusions and
discussions.

2 SIMULATIONS

We describe the 𝑁-body simulations and quasi-𝑁-body simulations
we use or prepare for this study.

2.1 AbacusSummit Simulations

AbacusSummit2 (Maksimova et al. 2021) is a suite of high-fidelity
𝑁-body simulations based on the Abacus 𝑁-body code (Metchnik
2009; Garrison et al. 2016, 2018, 2019, 2021). They were generated
on the Summit supercomputer at the Oak Ridge Leadership Comput-
ing Facility for the scientific goals of DESI survey. AbacusSummit
consists of simulations that span different cosmologies, box sizes and
mass resolutions. The base cosmology, denoted as c000, is the flat
Λ cold dark matter (ΛCDM) model constrained from Planck 2018
(Planck Collaboration et al. 2020). In c000, there are 25 base boxes,
each of which is a 2 ℎ−1Gpc box with 69123 particles and particle
mass resolution 2.11 × 109 ℎ−1M� . There are four secondary cos-
mologies (c001–c004) and each cosmology has six base boxes that
share the ICs of the first six boxes (ph000–ph005) in c000. We show
the parameters of cosmologies c000, c002, and c004 in Table 1.
AbacusSummit uses the highly efficient on-the-fly Competitive

Assignment to Spherical Overdensities (CompaSO) group finder
(Hadzhiyska et al. 2022) and outputs halo catalogues at 12 primary
redshifts, 𝑧 = 3.0, 2.5, 2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0.4, 0.3, 0.2,
and 0.1, as well as at 21 secondary redshifts. Due to the large amount
of data, we only focus on the halo catalogues at 𝑧 = 1.1 which is the
median redshift where the primary targets (ELGs) of DESI will be
observed (𝑧 = 0.6–1.6). We do not use the "cleaned" version of the
CompaSO catalogues, which are not available when we started this
work. The details of the cleaning method are described in Bose et al.
(2022); Hadzhiyska et al. (2022). In summary, based on halo merger
trees, the cleaningmethod can remove unphysical haloes identified by
CompaSO. The misidentification is mainly caused by two sides. One

1 https://www.olcf.ornl.gov/summit/
2 https://abacussummit.readthedocs.io/en/latest/
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Table 1. Parameters of the AbacusSummit cosmologies. c000 is the flat ΛCDM based on Planck 2018; c002 and c004 are two of the secondary cosmologies
with some parameters different from c000’s. c002 is a thawing dark energy model with 𝑤0 = −0.7 and 𝑤𝑎 = −0.5. c004 has lower clustering amplitude, i.e.
smaller 𝐴𝑠 and 𝜎8 than those of c000. More details of the AbacusSummit cosmological models can be found in Maksimova et al. (2021).

Cosmology Ω𝑏ℎ
2 Ωcdmℎ

2 ℎ 𝐴𝑠 𝑛𝑠 𝛼𝑠 𝑁ur 𝑁ncdm Ωncdmℎ
2 𝑤0, fld 𝑤a, fld 𝜎8𝑚 𝜎8𝑐𝑏

c000 0.02237 0.1200 0.6736 2.0830e-9 0.9649 0.0 2.0328 1 0.00064420 -1.0 0.0 0.807952 0.811355

c002 0.02237 0.1200 0.6278 2.3140e-9 0.9649 0.0 2.0328 1 0.00064420 -0.7 -0.5 0.808189 0.811577

c004 0.02237 0.1200 0.6736 1.7949e-9 0.9649 0.0 2.0328 1 0.00064420 -1.0 0.0 0.749999 0.753159

is due to the halo dynamical processes such as fly-bys, partial merg-
ers, and splits, and the other is from the strict spherical overdensity
criterion that can overly deblend single haloes into two or more com-
ponents. After cleaning, the number of haloes will be decreased by a
few per cent and mainly for low-mass haloes (𝑀halo ∼ 1011 ℎ−1M�).
We believe that whether using the cleaned or uncleaned version of
the halo catalogues should not affect our main conclusions, though
the cleaned version will cause some difference on halo correlation
function or power spectrum around the scale of one-halo to two-halo
transition and small difference on the overall halo bias. For example,
the halo bias from the cleaned cataloguewith𝑀halo ∼ 1011.5 ℎ−1M�
will be ∼ 6 per cent lower (fig. 10 in Bose et al. 2022) compared with
that of the uncleaned one. In this work, we analyse the AbacusSum-
mit halo statistics with the assistance of the package abacusutils3.

2.2 DESI-FastPM Simulation

We choose FastPM4 (Feng et al. 2016) as the surrogate to pair with
AbacusSummit. FastPM is a fast simulation method to approximate
clustering from 𝑁-body solvers. It implements the particle mesh
(PM) scheme (Quinn et al. 1997) with modified kick and drift factors
to guarantee the accuracy of the linear displacement at large scales.
The accuracy of FastPM is mainly determined by the particle mass
resolution 𝑚0, the initial redshift 𝑧0, the number of time-steps 𝑇 ,
and the force resolution which is parametrized as the ratio of the
force mesh size over the number of particles along one axis of the
simulation box, denoted as B.

2.2.1 Configuration of DESI-FastPM Simulations

Apart from the accuracy, we need to consider the computational cost
since a large number of FastPM simulations are required to con-
struct covariance matrices and to do cosmological analysis. There-
fore, we first need to determine the configuration parameters to bal-
ance its accuracy and computational cost. In order to pair FastPM
with AbacusSummit, we set the FastPM box size the same as the
AbacusSummit base runs, i.e. 𝐿box = 2 ℎ−1Gpc. Given a FastPM
simulation with some certain configuration parameters, we compare
its matter power spectrum with that of AbacusSummit at redshift
0.2. We set the number of particles in FastPM as 𝑁𝑝 = 5184 per
side; hence, the particle mass is 𝑚0 = 5 × 109 ℎ−1M� , about 2.4
times larger than that of AbacusSummit for the base cosmology.
While the default version of FastPM uses an extra particle species

to simulate massive neutrinos (Bayer et al. 2021c), which are labelled
as ncdm (not-cold dark matter), we use a modified version to treat
ncdm the same as that in AbacusSummit, i.e. the effect of massive

3 https://abacusutils.readthedocs.io/en/latest/
4 https://github.com/fastpm/fastpm

neutrinos only contributes to the Hubble expansion rate but not to
the gravitational forces from clustering.
In the end, we find a reasonable set of configuration parameters

for the massive production of FastPM simulations. We run FastPM
from the initial redshift 𝑧0 = 19 with the second-order Lagrangian
perturbation theory (2LPT) IC to the final redshift 𝑧 = 0.1, with 40
time-steps linearly separated in scale 𝑎. We set the PM size parameter
𝐵 = 2. We validate such choice of the configuration parameters in
Appendix A.

2.2.2 ICs and Cosmologies

Using theAbacusSummit base cosmology (c000), we have produced
a bunch of FastPM simulations including

• 25 boxes with the AbacusSummit ICs;
• 201 boxes with independent ICs;
• 237 boxes with the fixed-amplitude ICs.

The technique of fixed amplitude of the initial density field (Angulo
& Pontzen 2016) is a method to effectively suppress the sample
variance, and hence the number of realizations is greatly reduced to
reach a certain precision at large scales. Different from the Rayleigh
distributed amplitude in the Gaussian density field, the amplitude of
the density fluctuation is fixed to be the square root of the input linear
power spectrum, i.e.

𝛿𝐿 (k) =
√︁
𝑃(𝑘) exp(𝑖𝜃 (k)), (1)

and 𝜃 (k) is the phase uniformly distributed in (0, 2𝜋]. There have
been multiple studies (e.g. Villaescusa-Navarro et al. 2018; Chuang
et al. 2019) showing the unbiasedness of several statistics from the
fixed-amplitude method, compared with the results simulated from
the Gaussian initial density field.
In terms of AbacusSummit secondary cosmologies, we have pro-

duced

• 25 boxes for both c002 and c004 (50 boxes in total) with the
same white noises as the base cosmology c000.

2.2.3 Running DESI-FastPM on NERSC

As a project in the DESI collaboration, we run all the FastPM simu-
lations on Cori supercomputer at the National Energy Research Sci-
entific Computing Center (NERSC)5. NERSC is one of the largest
facilities in the world devoted to basic scientific research. We use
KNL computing nodes for the computation. Each KNL node has 68
CPU cores and 96 GB memory. We assign 1152 nodes and 36 MPI
tasks per node for each FastPM simulation. Each simulation takes

5 https://www.nersc.gov/

MNRAS 000, 1–20 (2022)
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about 50 min of wall-clock time. We down-sample dark matter par-
ticles and compress particle information into integers. Such process
uses the same amount of nodes and about 7 min of wall-clock time.
The total cost of the simulations is about 24 million NERSC hours.
For each simulation, we utilize about 55000 GB temporary space
from the Burst Buffer6 to store the output. Once the simulation is
finished, the output is transported from the Burst Buffer to the disk
automatically in the backend.

2.2.4 Products and Storage

We output 12 snapshots of FastPM dark matter catalogues and halo
catalogues at the same primary redshifts of AbacusSummit. Find-
ing haloes from the dark matter field, we use the FastPM internal
Friends-of-Friends algorithm with the linking length equal to 0.2
times of the mean separation of particles. We store haloes with mass
larger than 𝑀halo = 5× 1010 ℎ−1M� . Since we need to run hundreds
of simulations, the total output data will take too much storage. To
save disk space, we down-sample dark matter particles by 1/27 and
store their positions and velocities in 1-byte integer for future usage,
e.g. matter density field and weak lensing light-cone construction.
Specifically, the position is stored in the form of displacement from
Lagrangian lattice. The float displacement and velocity are converted
into bits by the error function erf (𝑠𝑥). We minimize the loss in the
conversion by choosing the optimal scaling factor 𝑠 in the error
function for each redshift. We store information of halo catalogues,
including positions, velocities, masses, inertial tensors, velocity dis-
persion and angular momenta, using 4-byte floating points. For each
simulation, the total data size is about 810 GB with 350 GB for dark
matter particles and 460 GB for haloes.

3 CARPOOL METHOD

Based on the principle of control variates (Rubinstein & Marcus
1985; Avramidis & Wilson 1993; Porta Nova & Wilson 1993),
Chartier et al. (2021) applied it to construct variance-reduced ob-
servables of large-scale structure clustering based on simulations.
The approach is named as Convergence Acceleration by Regression
and Pooling, short for CARPool. It pairs a few 𝑁-body simulations
and surrogates which approximate 𝑁-body simulations and share the
ICs from the 𝑁-body simulations. The method of CARPool can be
summarized by the equation as

𝑥 = 𝑦 − 𝛽(𝑐 − 𝜇𝑐), (2)

where 𝑥 is constructed as a representative of 𝑦 which is some observ-
able from an 𝑁-body simulation, e.g. AbacusSummit in our case, 𝑐
is the same observable from the paired surrogate, e.g. FastPM, 𝛽 is
the control variate, and 𝜇𝑐 is the mean of 𝑐. If 𝜇𝑐 is unknown, we
can estimate it from a separate set of surrogates that do not share the
ICs from the 𝑁-body simulations, i.e.

𝜇̂𝑐 =
1
𝑀

𝑀∑︁
𝑗=1

𝑐 𝑗 , (3)

where 𝑀 is the number of surrogates. In our case, we have 201
independent normal boxes and 237 boxes using the fixed-amplitude
ICs (see Sec. 2.2.2), both of which can be used to estimate 𝜇𝑐 .
The computational cost of CARPool can be much cheaper than the

6 It uses flash or SSD (solid-state drive) array to achieve high speed on I/O.

traditional method which usually needs to run a large number of
𝑁-body simulations.
First, by design, 𝑥 is unbiased relative to 𝑦, as the ensemble average

of equation (2) gives the expectation of 𝑥 equal to that of 𝑦, i.e. 𝑥 = 𝑦.
In the following we use overbars to denote means. Secondly, we can
find the best 𝛽 to minimize the variance of 𝑥. If y is a vector, e.g.
halo power spectrum, we have

𝛽★ = Σ𝑦𝑐Σ
−1
𝑐𝑐 , (4)

where Σ𝑦𝑐 is the cross-covariance matrix between 𝑦 and 𝑐, and Σ𝑐𝑐

is the covariance matrix of 𝑐, i.e.

Σ𝑦𝑐 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦) (𝑐𝑖 − 𝑐)𝑇 , (5)

Σ𝑐𝑐 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑐𝑖 − 𝑐) (𝑐𝑖 − 𝑐)𝑇 , (6)

where 𝑁 is the number of paired simulations, and 𝑦 and 𝑐 denote the
mean of the paired 𝑁-body simulations and surrogates, respectively.
As suggested by Chartier et al. (2021), if there are not many paired

simulations, which is our case, it is better to choose the diagonal
form of 𝛽★ to give better performance of CARPool, i.e.

𝛽diag = Diag(𝛽★) =
𝜎2𝑦𝑐

𝜎2𝑐
, (7)

where 𝜎2𝑦𝑐 is the cross-correlation between 𝑦 and 𝑐 from the same
bins, and 𝜎2𝑐 is the variance of 𝑐. Our following results are all based
on the diagonal form of 𝛽; hence, we ignore the superscript of 𝛽diag
hereafter.
The variance of the calibrated variable 𝑥 is

𝜎2𝑥 = 𝜎2𝑦 − 2𝛽𝜎2𝑦𝑐 + 𝛽2𝜎2𝑐 + 𝛽2𝜎2
𝜇̂𝑐
, (8)

where we account for the variance of 𝜇̂𝑐 estimated from surrogates,

𝜎2
𝜇̂𝑐

=
1

𝑀 (𝑀 − 1)

𝑀∑︁
𝑗=1

(𝑐 𝑗 − 𝜇̂𝑐)2. (9)

Note that there is no cross-correlation between 𝑦 and 𝜇̂𝑐 in equation
(8), since they are generated from different ICs. Once substituting 𝛽
in equation (8), we obtain

𝜎2𝑥 =

(
1 − 𝜌2𝑦𝑐

)
𝜎2𝑦 +

𝜎4𝑦𝑐

𝜎4𝑐
𝜎2
𝜇̂𝑐
, (10)

where 𝜌𝑦𝑐 is the Pearson correlation coefficient between y and c, i.e.

𝜌𝑦𝑐 =
𝜎2𝑦𝑐
𝜎𝑦𝜎𝑐

. One can see that 𝜎𝑥 could be very small if 𝑦 and 𝑐
are highly correlated (𝜌𝑦𝑐 close to 1.0), and if 𝜎𝜇̂𝑐 is small too. In
addition, we can derive the variance of 𝑥 by

𝜎2
𝑥
=
1
𝑁

(
1 − 𝜌2𝑦𝑐

)
𝜎2𝑦 +

𝜎4𝑦𝑐

𝜎4𝑐
𝜎2
𝜇̂𝑐
. (11)

where the scaling factor 1/𝑁 should not be applied to the term with
𝜎2
𝜇̂𝑐
. This is because we use the same set of surrogates to estimate

𝜇̂𝑐 when we calculate 𝑥 for each paired simulation. Taking the mean
of the CARPool result 𝑥 can only suppress the sample variances of
the 𝑁-body simulations, but not that of the surrogate mean 𝜇̂𝑐 .
One can also derive the effective volume by comparing 𝜎𝑥 and

𝜎𝑦 , where 𝜎2𝑦 = 𝜎2𝑦/𝑁 and 𝑁 = 25 in this study. Note that the com-
bination of 25 AbacusSummit base simulations has a total volume
of 200 ℎ−3Gpc3 which is about 10 times the effective volume of

MNRAS 000, 1–20 (2022)
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DESI survey. Thus, the effective volume gained from CARPool can
be given by

𝑉eff =
𝜎2
𝑦

𝜎2
𝑥

200 ℎ−3Gpc3 =
𝜎2
𝑦

𝜎2
𝑥

10 𝑉DESI (12)

4 APPLICATION ON HALO CLUSTERING

Chartier et al. (2021) have applied the CARPool method on the
clustering statistics of dark matter in real space. In our study, we
extend their analysis to halo clustering with two-point statistics in
redshift space and three-point statistics in real space.

4.1 Halo power spectrum

We study halo catalogues at redshift 𝑧 = 1.1 which is a typical
redshift since DESI will observe 10 million ELGs at redshift 0.6 <
𝑧 < 1.6. We apply a mass cut and select haloes with mass larger
than 1011 ℎ−1M� which is the expected minimum halo mass hosting
ELGs. Apart from the differences on the dark matter simulations, the
halo finders from AbacusSummit and FastPM are different as well.
Therefore, we do expect some difference on the halo clustering even
on large scales. We first study the halo power spectrum 𝑃(𝒌) defined
as

〈𝛿(𝒌)𝛿(𝒌 ′)〉 ≡ (2𝜋)3𝛿𝐷 (𝒌 + 𝒌 ′)𝑃(𝒌), (13)

where 𝛿(𝒌) is the halo number density fluctuation as a function of
wavevector 𝒌 in Fourier space and 𝛿𝐷 is the Dirac delta function. In
redshift space, power spectrum is not isotropic due to the peculiar
velocity along the line of sight, hence, it can be decomposed into
multipoles

𝑃ℓ (𝑘) = (2ℓ + 1)
∫ 1

0
𝑃(𝑘, 𝜇)𝐿ℓ (𝜇)𝑑𝜇, (14)

where 𝐿ℓ (𝜇) is the Legendre polynomial of order ℓ, and 𝜇 is the
cosine of the angle between 𝒌 and the line of sight, i.e.

𝜇 = 𝑘 ‖/𝑘, 𝑘 =

√︃
𝑘2⊥ + 𝑘2‖ , (15)

with 𝑘⊥ and 𝑘 ‖ being the components of 𝒌 perpendicular and parallel
to the line of sight, respectively. In our study, we present the results of
monopole and quadrupole that are widely analysed in galaxy surveys.
We calculate the halo power spectrum multipoles via nbodykit7

(Hand et al. 2018). For the calculation, we paint haloes in a mesh
with 10243 cells using the triangular-shaped cloud mass assignment
window. We eliminate the aliasing effect with the interlacing tech-
nique which can compensate the window function effect. We set
120 linear 𝜇 bins in the range [0, 1] and integrate the anisotropic
power spectrum over 𝜇 (based on equation 14) to obtain the power
spectrum multipoles. We study the multipoles in the 𝑘 range from
0.0038 to 0.8025 ℎMpc−1 which is half of the Nyquist frequency.
The total number of 𝑘 bins is 161 with the interval 0.005 ℎMpc−1.
To be compact, for the following, we show only the CARPool results
from the power spectrum monopole (ℓ = 0) and quadrupole (ℓ = 2)
while ignoring the hexadecapole which has larger statistical noise.
Fig. 1 shows the mean halo power spectrum multipoles calcu-

lated from 25 pairs of AbacusSummit and FastPM catalogues,
respectively. In the upper panels, we compare the overall shapes
of monopoles (left-hand panel) and quadrupoles (right-hand panel)

7 https://nbodykit.readthedocs.io

with the standard deviations of the mean from the paired simulations.
In the lower panels, we show the ratio of the mean from Abacus-
Summit and FastPM. For the monopole, there is a constant bias
about 4.2% at large scales. Although there is noticeable difference
on the halo number densities from the two simulations8, we have
checked that using abundance matching can only reduce the bias
to 3.7%. Instead, if we use the cleaned AbacusSummit halo cata-
logues, the bias decreases to 1.2%. Thus, we argue that the constant
bias at large scales is mainly due to different halo finders in the two
simulations. As a supplement, we show the power spectrum of the
cleaned haloes in Appendix B. At small scales, the power spectrum
of AbacusSummit is smaller than that of FastPM. This is caused
by the underestimation of the small-scale damping of redshift-space
distortions (RSDs; i.e. the Fingers-of-God effect) in FastPM, since
it is not able to trace the velocity field of particles precisely at small
scales.

4.1.1 Performance of CARPool method

Based on the power spectrum multipoles from the paired Abacus-
Summit and FastPM halo catalogues, we can calculate their cross-
correlation, as well as the variance from each simulation. From equa-
tion (7), we obtain 𝛽diag for the monopole and quadrupole, as shown
in Fig. 2. We find that the overall shapes of 𝛽diag for the monopole
and quadrupole are similar, i.e. it is close to 1.0 on large scales (small
𝑘), which is due to the high cross-correlation between the multipoles
from the paired AbacusSummit and FastPM simulations. This is
guaranteed since the paired simulations share the same ICs and have
similar information of the large scale structures. As the scale becomes
smaller, the cross-correlation decreases, due to the differences from
the non-linear evolution, the halo finders, etc., between the two sim-
ulations. The noises in the curves are due to the fact that we are using
only 25 pairs of simulations to determine the variances.
We compare the influence on 𝛽diag from mass cut, abundance

matching, as well as the halo cleaning of AbacusSummit in Ap-
pendix B. There is negligible improvement from abundance match-
ing, whereas using the cleaned AbacusSummit catalogues improves
𝛽diag closer to 1.0 by a few per cent in the range 𝑘 < 0.2 ℎMpc−1.We
believe that neither using abundance matching nor cleaned haloes of
AbacusSummit will influence our results much.
For given paired power spectrummultipoles fromAbacusSummit

and FastPM, we construct the new power spectrum multipoles 𝑃𝑥, ℓ

via CARPool,

𝑃𝑥, ℓ = 𝑃AbacusSummit, ℓ − 𝛽(𝑃FastPM, ℓ − 𝑃
′
FastPM, ℓ ), (16)

where 𝑃
′
FastPM, ℓ with an overline denotes the mean halo power

spectrummultipoles calculated from a separate set of FastPM simu-
lations, e.g. 201 FastPM simulations with random ICs. As discussed
in Section 3, the mean 𝑃𝑥, ℓ should be unbiased compared with the
mean 𝑃AbacusSummit, ℓ , and the statistical error of 𝑃𝑥, ℓ should be
smaller than that of 𝑃AbacusSummit, ℓ . We check these by calculating
the mean of 𝑃𝑥, ℓ over 25 realizations and the standard deviation,

𝑃𝑥, ℓ =
1
𝑁

𝑁∑︁
𝑖

𝑃𝑖
𝑥, ℓ

, (17)

𝜎2𝑃𝑥, ℓ
=

1
𝑁 − 1

𝑁∑︁
𝑖

(𝑃𝑖
𝑥, ℓ

− 𝑃𝑥, ℓ )2. (18)

8 With mass cut 1011 ℎ−1M� , AbacusSummit has halo number density
0.036 ℎ3Mpc−3, 36% higher than that of FastPM.

MNRAS 000, 1–20 (2022)



6 Ding et al.

Figure 1. Upper panels: the mean halo power spectrum monopole (left-hand panel) and quadrupole (right-hand panel) from 25 halo catalogues of the paired
AbacusSummit and FastPM simulations. The halo catalogues are at redshift 1.1 and contain haloes with mass larger than 1011 ℎ−1M� . The blue lines are for
AbacusSummit and the orange lines are for FastPM. Lower panels: the ratio of the mean between AbacusSummit and FastPM. The error bars represent the
standard deviations of the mean multipoles.

Figure 2. 𝛽diag of the halo power spectrum multipoles, i.e. monopole ℓ = 0
and quadrupole ℓ = 2, from the paired AbacusSummit and FastPM halo
catalogues with mass cutoff 1011 ℎ−1M� . The cross-correlation between the
multipoles of AbacusSummit and FastPM is high on large scales, as 𝛽diag
is close to 1.0, and it decreases as the scale becomes smaller. The shape of
𝛽diag is similar between the monopole and quadrupole.

Since we estimate the mean of FastPM multipoles from a limited
number of realizations, the standard deviation of 𝑃𝑥, ℓ (equation 18)
is underestimated. Considering the error of 𝑃′

FastPM, ℓ , we have

𝜎2
𝑃′
𝑥, ℓ

= 𝜎2𝑃𝑥, ℓ
+ 𝛽2𝜎2

𝑃
′
FastPM, ℓ

. (19)

And for the standard deviation of the mean of 𝑃′
𝑥, ℓ
, it is

𝜎2
𝑃
′
𝑥, ℓ

=
1
𝑁
𝜎2𝑃𝑥, ℓ

+ 𝛽2𝜎2
𝑃
′
FastPM, ℓ

, (20)

From now on, we ignore the subscript ℓ of multipoles for simplicity.
In the upper panels of Fig. 3, we show the mean multipoles with

the standard deviations from CARPool as the orange lines. To avoid
crowdedness of data points at small scales, we redo 𝑘 binning for
the power spectrum multipoles using a larger 𝑘 interval. The left-
hand panel is for the monopole and the right-hand panel is for the
quadrupole. In the standard deviation of the CARPool mean, we take
account of the error of the FastPM mean, which is calculated from
201 sets of regular FastPM simulations. We compare the results
with the mean multipoles from 25 AbacusSummit halo catalogues
shown as the blue points. We see that they agree well with each other
in 1𝜎 error over all the scales except for some points at large scales,
which is just due to cosmic variance. In the lower panels, we show
the ratio of the mean between AbacusSummit and CARPool, shown
as the blue points. The orange shaded region denotes the noise-to-
signal ratio, i.e. 𝜎

𝑃𝑥
/𝑃𝑥 from CARPool. The blue points fluctuate

near unity over all the scales, illustrating the unbiasedness of 𝑃𝑥 .
In addition, the standard deviation of 𝑃𝑥 from CARPool is much
smaller than the original standard deviation of 𝑃AbacusSummit.
To quantify the reduction on the sample variance from CARPool,

we compute the ratio of the standard deviation of 𝑃𝑥 over that of
𝑃AbacusSummit, and show the results in Fig. 4. The left-hand panel is
for the monopole and the right-hand panel is for the quadrupole. In
each panel, the blue line is the optimal case where we assume that
the surrogate mean, i.e. 𝑃′

FastPM, is known. The red dashed line is
a realistic case once we consider the standard deviation of 𝑃′

FastPM
from 201 regular FastPM simulations. On large scales, the reduction
of statistical error from CARPool is very significant, even after in-
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Figure 3. Upper panels: the mean of the halo power spectrummonopole (left-hand panel) and quadrupole (right-hand panel) from 25AbacusSummit simulations
compared with the mean of 𝑃𝑥 from CARPool. Error bars have been scaled to represent the standard deviation of the mean. Lower panels: the ratio of the mean
from AbacusSummit and CARPool, shown as the blue points, compared with the 1𝜎 error of the mean 𝑃𝑥 , shown as the orange shades. There is no bias on
the mean power spectrum multipoles from CARPool, and the sample variance is reduced significantly.

Figure 4. The reduction of the sample variance on the halo power spectrum multipoles from CARPool and the method of the fixed-amplitude IC. The left-hand
panel is for the monopole and the right-hand panel is for the quadrupole. In each panel, the blue solid line shows the optimal gain expected from CARPool if
the mean of the FastPM multipole in (16) is known. The red dashed line is one realistic case considering the sample variance of the surrogate mean estimated
from 201 nonfixed-amplitude FastPM realizations. The fixed-amplitude method can also effectively reduce the sample variance, especially on large scales. We
calculate the standard deviation of 237 fixed-amplitude FastPM realizations and compare it with that of the non-fixed-amplitude ones, shown as the green dotted
lines. Using CARPool with the surrogate mean from the fixed-amplitude FastPM, we can further increase the error reduction from the red dashed lines to the
orange dot–dashed lines which almost overlap with the blue lines. The performance of CARPool on the monopole and quadrupole is similar, which is expected
since the cross-correlation between AbacusSummit and FastPM is similar for the monopole and quadrupole, shown as 𝛽diag in Fig. 2.
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cluding the error of the surrogate mean. In our conservative case (red
dashed line), CARPool can reduce the standard deviation to be 10
times smaller, for both monopole and quadrupole on large scales. As
the scale goes smaller (𝑘 > 0.1 ℎMpc−1), the gain from CARPool
gradually decreases; however, it still has 50% error suppression up
to 𝑘 = 0.8 ℎMpc−1.
Since the fixed-amplitude technique can also reduce statistical er-

rors especially on large scales, it would be interesting to compare the
performance with CARPool. In our project, we have run 237 real-
izations of FastPM with the fixed-amplitude ICs. We compare the
standard deviation of the fixed-amplitude FastPM simulations with
that of the FastPM simulations using the AbacusSummit ICs. The
results are shown as the green dotted lines in Fig. 4. For the power
spectrum multipoles, the error reduction from the fixed-amplitude
method has a similar trend as the CARPool result, but is less signifi-
cant than that of CARPool, and it quickly reduces to zero on smaller
scales, in our case, 𝑘 > 0.2 ℎMpc−1. Because the error reduction
from CARPool is limited by the error of surrogate mean, we confirm
that if we replace the surrogate mean by the mean from the fixed-
amplitude FastPM simulations, we can further reduce the error of
the CARPool result. As a result, we obtain the gain close to the opti-
mal case, shown as the orange dot–dashed lines, which nearly overlap
with the blue lines.
The reduction on the sample variance corresponds to the increase

of the effective volume. Based on equation (12), we estimate the
effective volume from the combination of 25 AbacusSummit boxes
withCARPool and compare it with the totalDESI 5 yr survey volume.
We summarize our results in Fig. 5 with the left-hand panel for
the monopole and the right-hand panel for the quadrupole. In each
panel, the blue line is the optimal case from CARPool assuming
that the surrogate mean is known. The red dashed line is a realistic
case considering the error of 𝑃′

FastPM from the non-fixed-amplitude
FastPM,where we can increase the effective volume about 100 times
over all the 𝑘 range. Different from the optimal case that has a larger
increase of the effective volume on larger scales, in the realistic case
the error of the surrogate mean suppresses such increase as the error
of the surrogate mean dominates in equation (20). The green dotted
line represents the effective volume from 25 fixed-amplitude FastPM
boxes. On large scales, it is higher than the red dashed line but drops
quickly as the scale goes smaller and turns to no gain on scales of 𝑘
larger than 0.2 ℎMpc−1. If we replace the surrogate mean from the
non-fixed-amplitude FastPM by that of the fixed-amplitude ones, the
error of the surrogate mean is dramatically suppressed.We obtain the
result shown as the orange dot–dashed line which can be understood
as the combination of the red and green lines. With CARPool and
the fixed-amplitude FastPM simulations, we can extend the effective
volume of 25 AbacusSummit simulations to 102 ∼ 103 times the
DESI volume with the dependence on scales.
We further study the CARPool performance on the halo catalogues

with higher mass cut 1013 ℎ−1M� , which is about the mass bound-
ary of host haloes of LRGs. Such catalogues are just the subsam-
ples with high-mass haloes from the halo catalogues with mass cut
1011 ℎ−1M� . Fig. 6 shows the gain of effective volumes from CAR-
Pool for the monopole and quadrupole. Compared with the results
from the halo catalogues with lower mass cut, the performance of
CARPool is worse based on the increased effective volume.We think
that it can be caused by shot noise, as the number of haloes decreases
dramatically with higher mass cut. At lower redshifts (𝑧 < 1.1), the
number of LRG-host haloes is larger. For DESI, the number den-
sity of LRGs peaks around 𝑧 = 0.6–0.8. We check the CARPool
performance at 𝑧 = 0.8 in Appendix C. Indeed, when the number
density increases by 40% from 𝑧 = 1.1 to 0.8, the effective volume

obtained from CARPool increases by 35%. Apart from that, the dif-
ferences on the halo populations from the different halo finders, the
non-linear structure growth and halo bias may affect the CARPool
performance as well. We compare the Pearson correlation coeffi-
cients of the halo power spectrum multipoles from AbacusSummit
and FastPM in Appendix D. The diagonal terms of the Pearson coef-
ficients are closer to 1.0 for the lower halo mass cut, which indicates
better performance from CARPool.

4.2 Halo correlation function

Since a correlation function is just the Fourier transform of power
spectrum, we expect that the performance of CARPool on the halo
correlation function is similar to the power spectrum. Chartier et al.
(2021) mainly studied the performance of CARPool on the clustering
statistics in Fourier space, hence, it is worth investigating on the im-
provement in configuration space. For a cubic box, we can calculate
the halo correlation function based on Peebles & Hauser (1974), i.e.

𝜉 (𝑠, 𝜇) = 𝐷𝐷 (𝑠, 𝜇)
𝑅𝑅(𝑠, 𝜇) − 1, (21)

where 𝐷𝐷 (𝑠, 𝜇) and 𝑅𝑅(𝑠, 𝜇) are respectively the normalized num-
ber of pairs of haloes and randompoints as a function of the separation
distance 𝑠 =

√︃
𝑠2⊥ + 𝑠2‖ and the cosine angle between the separation

vector 𝒔 and the line of sight, i.e. 𝜇 = 𝑠 ‖/𝑠. We calculate the number
of halo pairs using Corrfunc9 (Sinha & Garrison 2019, 2020) and
FCFC10 (Zhao et al. 2021), and have checked that the results from
the two codes are consistent. For a cubic box, the number of random
pairs can be predicted theoretically. In our calculation, we set 40 lin-
ear radial bins in the range 5 ≤ 𝑠 ≤ 200 ℎ−1Mpc and 60 linear 𝜇 bins
in the range 0 ≤ 𝜇 ≤ 1.0. Similar to the power spectrum multipoles,
we calculate the correlation function multipoles from the anisotropic
correlation function, i.e.

𝜉ℓ (𝑠) = (2ℓ + 1)
𝑁𝜇∑︁
𝑖=1

𝜉 (𝑠, 𝜇𝑖)𝐿ℓ (𝜇𝑖)Δ𝜇, (22)

where 𝑁𝜇 is the total number of 𝜇 bins.
Fig. 7 shows the mean of the halo correlation function multipoles

from 25 paired AbacusSummit and FastPM simulations, respec-
tively. Same as Fig. 1, we study the halo catalogues at 𝑧 = 1.1 with
mass cutoff 1011 ℎ−1M� . For the monopole, the difference from the
two simulations is within 5% over all the scales. For the quadrupole,
the difference is less than that of the monopole, except for scales
smaller than 10 ℎ−1Mpc.

4.2.1 Performance of CARPool method

We show the halo correlation function multipoles from CARPool in
Fig. 8. Same as Fig. 3, we compare the mean of the monopoles (in
the left-hand panels) and quadrupoles (in the right-hand panels) from
AbacusSummit and CARPool. The upper panels show the overall
shapes. The lower panels show the ratio of the mean multipoles of
AbacusSummit over those of CARPool, given by the blue points.
The shaded regions denote the standard deviations of the meanmulti-
poles fromCARPool. For the monopole, the relative difference of the
mean iswithin 1𝜎 error of AbacusSummit,while for the quadrupole,

9 https://github.com/manodeep/Corrfunc
10 https://github.com/cheng-zhao/FCFC
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Figure 5. The increase of the effective volume from the combination of 25 AbacusSummit simulations with CARPool compared with the result from the
fixed-amplitude method. The left-hand (right-hand) panel is for the monopole (quadrupole). In each panel, the blue line represents the optimal case assuming
no sample variance from the surrogate mean. The red dashed line takes account of the sample variance of the surrogate mean based on the non-fixed-amplitude
FastPM catalogues. The orange dot–dashed line is the case if we reduce the sample variance of the surrogate mean using the fixed-amplitude FastPM catalogues.
For comparison, we also show the effective volume from 25 fixed-amplitude FastPM catalogues as the green dotted line.

Figure 6. Same as Fig. 5 but for the halo catalogues with haloes massive than 1013 ℎ−1M� .

around scales 50 ℎ−1Mpc, the difference is about 3𝜎 error of Aba-
cusSummit. However, it does not indicate that the CARPool result
has bias; instead, it is just due to the sample variance from the paired
FastPM catalogues, which we demonstrate in Appendix E.

Fig. 9 shows the reduction of the sample variance of the correlation
function multipoles from CARPool. Similar to Fig. 4, we compare
the cases whether the surrogate mean in CARPool is assumed as
known or not. As shown in equation (11), the uncertainty of the
surrogate mean will propagate to that of CARPool result. For the red
lines, we include the uncertainty of the mean correlation function
multipoles that are calculated from the non-fixed-amplitude FastPM
catalogues. Comparing Fig. 9 and 4, we see that the reduction of
the sample variance from CARPool is consistent for the halo power
spectrum and correlation function at large scales.

We also show the gain of the effective volume fromCARPool based
on the suppressed variance of the correlation function multipoles in

Fig. 10. Themeaning of each line is the same as thatwith the same line
type in Fig. 5. The upper and lower panels show the results from the
halo catalogues with mass cut 1011 and 1013 ℎ−1M� , respectively.
We do not see the increase of 𝑉eff from small scales to large scales
as what we observe in the case of the power spectrum multipoles.
It is mainly due to the high cross-correlation between correlation
function bins.

4.3 Halo Bispectrum

Chartier et al. (2021) have studied the performance of CARPool
on matter bispectrum in real space and found similar significance
as that of matter power spectrum. Chuang et al. (2019) studied the
sample variance reduction from the fixed-amplitude method on real-
space halo bispectrum and found no improvement. Therefore, it is
interesting to check the CARPool performance on higher-order halo
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Figure 7. Upper panels: the mean of the halo correlation function monopole (left-hand panel) and quadrupole (right-hand panel) from 25 paired AbacusSummit
and FastPM catalogues with halo mass larger than 1011 ℎ−1M� and at redshift 1.1. The error bars have been scaled for the mean. The blue lines are the results
of AbacusSummit and the orange lines are from FastPM. Lower panels: the ratio of the mean between AbacusSummit and FastPM. The orange horizontal
lines denote the results of FastPM. For the monopole ratio, the error bars have a sudden peak around 125 ℎ−1Mpc, which is simply due to the zero crossing of
the denominator.

clustering statistics. We study the halo bispectrum defined as

〈𝛿(𝒌1)𝛿(𝒌2)𝛿(𝒌3)〉 ≡ 𝛿𝐷 (𝒌1 + 𝒌2 + 𝒌3)𝐵(𝑘1, 𝑘2, 𝑘3), (23)

where 𝛿(𝒌) is the halo number density contrast in Fourier space and
𝛿𝐷 is the Dirac delta function which ensures that the wavevectors
𝒌1, 𝒌2 and 𝒌3 form a closed triangle.
We use Pylians311 (Villaescusa-Navarro et al. 2020) to calculate

the bispectra for the halo catalogues with mass cut 1011 ℎ−1M� .
The package implements a fast Fourier transform-based estimator
(Sefusatti & Scoccimarro 2005; Scoccimarro 2015; Sefusatti et al.
2016) for the bispectrum calculation. The output bispectrum has
been subtracted by the Poisson shot noise. Same as in Chuang et al.
(2019), we choose the triangle configuration of 𝑘1 = 0.1 ℎMpc−1
and 𝑘2 = 0.2 ℎMpc−1, which are the scales related to the baryon
acoustic oscillations (BAO) and RSD analysis. We study the reduced
bispectrum defined as

𝑄(𝑘1, 𝑘2, 𝑘3) =
𝐵(𝑘1, 𝑘2, 𝑘3)

𝑃(𝑘1)𝑃(𝑘2) + 𝑃(𝑘1)𝑃(𝑘3) + 𝑃(𝑘2)𝑃(𝑘3)
, (24)

where 𝑃(𝑘) is the halo power spectrum. Given the amplitude of 𝒌1
and 𝒌2, by varying 𝒌3, the reduced bispectrum is a function of 𝜃,
which is the angle between 𝒌1 and 𝒌2. We use 𝑄(𝜃) to represent it.

4.3.1 Performance of CARPool method

To compare the results in Chuang et al. (2019), we show our results
in real space, but we have checked that the results in redshift space
are similar too. Same as the analysis in halo power spectrum, we first

11 https://pylians3.readthedocs.io/en/master/index.html

compare the mean of the reduced bispectra from 25 paired Abacus-
Summit and FastPM halo catalogues, shown in the first row of Fig.
11. We see that the bispectra from the two sets of halo catalogues
agree relatively well with each other. The difference is within 10%.
We also check the 𝛽diag which is based on equation (7) and find it
close to 1.0, shown as the middle row. We calculate the mean of
the bispectra from the non-fixed-amplitude FastPM catalogues. We
implement all the necessary elements into the equation of CARPool
and obtain the final result. We compare the mean of CARPool and
that of AbacusSummit and show the ratio between the two in the
bottom row of the figure. The error bars denote the standard deviation
of the mean of AbacusSummit, and the shaded region is the stan-
dard deviation of the CARPool mean with the consideration of the
error of the surrogate mean from the non-fixed-amplitude FastPM
catalogues. The agreement between the mean 𝑄(𝜃) from CARPool
and AbacusSummit is within 3𝜎 error of AbacusSummit.
Comparing the standard deviation of the reduced bispectrum from

CARPool and AbacusSummit, we can obtain the increased effective
volume due to CARPool. Similar to Fig. 5, we show the effective
volume from 25 AbacusSummit boxes before and after CARPool
in Fig. 12. Again, the volume of 25 AbacusSummit base boxes
corresponds to 10 times the DESI volume, shown as the horizontal
dotted line. CARPool can also significantly increase the effective
volume for the halo bispectrum. The blue line shows the optimal case
without considering the error of the surrogate mean. The red dashed
line denotes a realistic case considering the error of the surrogate
mean from the non-fixed-amplitude FastPM catalogues. It is about
five times larger than the default volume.
We also check the improvement from the fixed-amplitude method,

based on the standard deviation of the reduced bispectrum from
the fixed-amplitude FastPM catalogues. The result is shown as the
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Figure 8. Upper panels: the mean of the halo correlation function multipoles from 25 AbacusSummit simulations compared with the mean of 𝜉𝑥 from
CARPool. The error bars have been scaled for the standard deviation of the mean multipoles. Lower panels: the ratio of the mean before and after CARPool,
shown as the blue points, along with 1𝜎 error of the mean 𝜉𝑥 , shown as the orange shaded regions. For the monopole ratio, the error bars have a sudden
peak around 125 ℎ−1Mpc, which is simply due to the zero crossing of the denominator. For the quadrupole, the discrepancy between the AbacusSummit and
CARPool mean on scales around 50 ℎ−1Mpc is due to the statistical fluctuation of the mean from the paired FastPM, which we demonstrate in Fig. E1.

Figure 9. Similar to Fig. 4 but for the correlation function multipoles. The blue lines stand for the optimal gains from CARPool assuming that the surrogate mean
is known. The red dashed (orange dot–dashed) lines are the cases while considering the sample variance of the surrogate mean which are estimated from the
non-fixed (fixed)-amplitude FastPM, respectively. The green dotted lines are obtained from the ratio of the standard deviation of the fixed-amplitude FastPM
over that of AbacusSummit.
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Figure 10. The effective volume derived from the halo correlation function multipoles using CARPool. We consider the effective volume from the combination
of 25 AbacusSummit boxes. The upper (lower) panels show the results from the halo catalogues with halo mass larger than 1011 ℎ−1M� (1013 ℎ−1M�). The
blue lines denote the optimal cases assuming that the surrogate mean is known, i.e. without considering the uncertainty of the surrogate mean. The red dashed
(orange dot–dashed) lines take account of the statistical error of the surrogate mean estimated from the non-fixed (fixed)-amplitude FastPM catalogues. We also
include the results if we only use 25 fixed-amplitude FastPM boxes, shown as the green dotted lines.

green dotted line, matching with the black dotted line, indicating
no improvement, which is consistent with the finding of Chuang
et al. (2019). Therefore, even if we use the surrogate mean from
the fixed-amplitude catalogues instead of the non-fixed-amplitude
ones in CARPool, there will be little improvement, shown as the
orange dot–dashed line. Angulo & Pontzen (2016) found that the
paired-and-fixed method can suppress the sample variance of the
matter bispectrumwith the triangle configuration 𝑘1 = 0.02 ℎMpc−1
and 𝑘2 = 0.04 ℎMpc−1 which is at a larger scale than the one we
study here. But the variance suppression mainly comes from pairing
instead of fixing. Klypin et al. (2020) further checked that as the scale
becomes smaller, around the scales of BAO, the reduction from the
paired-and-fixed method quickly vanishes. We believe that it should
be true for the halo bispectrum too. At least, we have checked that
the fixed-amplitude method does not reduce the sample variance of
the halo bispectrum at the configuration of 𝑘1 = 0.02 ℎMpc−1 and
𝑘2 = 0.04 ℎMpc−1.

The failure of variance suppression from the fixed-amplitude
method can be understood from the theoretical investigations on

the bispectrum in literature. Matsubara (2007) and Qin et al. (2022)
found that the phases of the non-Gaussian density field are vital to the
bispectrum. The late-time evolution induced phase autocorrelation
and phase-modulus cross-correlation contribute almost equally to the
bispectrum, whereas the modulus autocorrelation contributes little.
Therefore, fixing the amplitude (modulus) of the initial density field
should not affect the sample variance of the bispectrum. Adding pair-
ing with the inverse phases may help reducing the sample variance
from the phase-modulus cross-correlation at very large scales, but the
reduction quickly vanishes as the scale becomes smaller. On the con-
trary, CARPool shows significant advantage in reducing the sample
variance of bispectrum. For more detailed study on the bispectrum
from the fixed-amplitude method (with pairing) and CARPool, we
leave it for future work.
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Figure 11. Top row: the comparison of the real-space halo reduced bispec-
tra from the AbacusSummit and FastPM halo catalogues with mass cut
1011 ℎ−1M� . The triangle configuration of the bispectrum is chosen with
𝑘1 = 0.1 ℎMpc−1 and 𝑘2 = 0.2 ℎMpc−1. The upper panel shows the mean
of themonopoles averaged over 25 paired AbacusSummit and FastPM simu-
lations, respectively. The lower panel shows the ratio between the two.Middle
row: the diagonal 𝛽 for the reduced bispectra calculated from equation (7). It
is close to 1.0, indicating strong correlation between the bispectra from the
AbacusSummit and FastPM catalogues. Bottom row: the ratio between the
mean of the reduced bispectra from AbacusSummit and CARPool, shown
as the blue points. The shaded region shows the standard deviation of the
CARPool result.

5 APPLICATION ON SIMULATIONS WITH DIFFERENT
COSMOLOGIES

We extend the CARPool method to different cosmologies, even if
there is only one AbacusSummit simulation for a given cosmology.
For secondary cosmologies, AbacusSummit hasmuch fewer number
of simulations compared with that of the base cosmology. For the
base box size, there are only six simulations for some of the secondary
cosmologies (i.e. c00[2−4]), and only one simulation for each of the
other secondary cosmologies. If we use the same CARPool method
as that in the base cosmology, there are two bottlenecks. One is that
we do not have enough AbacusSummit simulations to pair with
FastPM in order to calculate the cross-correlation between the two.
The other is that we need to generate a large number of FastPM
simulations to estimate the mean of clustering statistics, which takes

Figure 12. Similar to Fig. 5, we show the increased effective volume for the
reduced bispectrum from CARPool. The blue line is the optimal case. The
red dashed line and the orange dot–dashed line represent the cases taking
account of the uncertainty of the mean bispectra estimated from the non-
fixed-amplitude and the fixed-amplitude FastPM catalogues, respectively.
The green dotted line represents the result if we only use the fixed-amplitude
FastPM catalogues.

a larger amount of efforts as well. To resolve these, we modify the
CARPool method by using the products in the base cosmology.
Since for the base cosmology we have the initial white noise of

the 25 AbacusSummit boxes, we can use them to generate the same
number of FastPM simulations for a given secondary cosmology.
We can pair these FastPM simulationswith theAbacusSummit ones
in the base cosmology. Since they share the same initial white noise,
there is non-zero cross-correlation between the halo statistics from
the two sets of simulations even though with different cosmologies.
We calculate the cross-correlation between the AbacusSummit from
the base cosmology and the FastPM from a second cosmology. We
assume that it is close to the cross-correlation between the Abacus-
Summit from the secondary cosmology and the FastPM from the
base cosmology, i.e.

Cov(𝐴c002, 𝐹c000) ≈ Cov(𝐴c000, 𝐹c002). (25)

where 𝐴 and 𝐹 are short for AbacusSummit and FastPM, respec-
tively. The subscript c002 represents a secondary cosmology as an
example. We roughly examine the viability of the above relation in
Appendix F, but a better validation can be conducted if we have 25
sets of AbacusSummit simulations with the secondary cosmology
c002. In the end, we construct the CARPool result for a secondary
cosmology via

𝑋c002 = 𝐴c002 − 𝛽(𝐹c000 − 𝐹
′
c000), (26)

where

𝛽 = Diag[Cov(𝐴c000, 𝐹c002)]/Var(𝐹c000). (27)

Note that in the denominator of 𝛽 we still use the variance of the
FastPM statistics from c000 instead of c002, so that we only mod-
ify the cross-correlation term (numerator) compared with the exact
definition of 𝛽. Another approach we are developing to estimate the
cross-correlation is using the jackknife method (see Zhang et al., in
preparation).
We apply our method for the secondary cosmology c002. We first

compare the mean of the halo power spectrum multipoles from the
AbacusSummit halo catalogues with c002 and from the FastPM
halo catalogues with c000 in Fig. 13. The halo catalogues are at 𝑧 =
1.1 with halo mass larger than 1011 ℎ−1M� . The left-hand panels are
for the monopoles and the right-hand panels are for the quadrupoles.
For the AbacusSummit with c002, there are only 6 boxes, while
for the FastPM we include all the 25 boxes with the same white

MNRAS 000, 1–20 (2022)



14 Ding et al.

Figure 13. The comparison of the mean power spectrum multipoles from the AbacusSummit with the secondary cosmology c002 and from the FastPM with
the base cosmology c000. For the AbacusSummit with c002, there are only 6 boxes, while for the FastPMwith c000, there are 25 boxes. The standard deviations
of the FastPM multipoles are smaller than those of the AbacusSummit.

Figure 14. Similar as Fig. 2, but the 𝛽diag is calculated from the cross-
correlation between the halo power spectrum multipoles from the paired
AbacusSummit in c000 and the FastPM in c002.

noise from the AbacusSummit in c000, so that the statistical noise
of the AbacusSummit mean is larger than that of the FastPM. In
the left-hand panels, we show the ratio of the mean multipoles from
the two simulations, denoted as the blue lines. For the monopole,
there is BAO residual (with wiggles) caused by the shifting of 𝑘
coordinates due to the difference of the dark energy parameters 𝑤0
and 𝑤𝑎 between the two cosmologies.
We show the diagonal terms of 𝛽 for the halo power spectrum

monopole and quadrupole calculated from equation (27) in Fig. 14.
The general shapes are similar to the ones in Fig. 2. We show the
results of themultipoles fromCARPool in Fig. 15. Same as Fig. 3, the
blue points are the mean from six AbacusSummit halo catalogues.

The orange lines and shaded regions represent the CARPool results.
From the ratio between the mean, on the one hand, we do not see
any bias of the CARPool result compared with the AbacusSummit;
on the other hand the variance reduction from CARPool is also
significant. Therefore, the method of CARPool also applies for the
clustering from a different cosmology.
To see the gain of the effective volume from CARPool compared

with the default volume of one AbacusSummit box, we study the
situations from one box and from the combination of six boxes, re-
spectively, as shown in Fig. 16. In each panel, the blue line represents
the effective volume of one AbacusSummit box from CARPool with
the assumption that the surrogatemean is known. For the realistic case
where we estimate the surrogate mean from the non-fixed-amplitude
FastPM catalogues with c000, the effective volume decreases by
about half on large scales shown as the orange dashed line. On scales
up to 𝑘 = 0.3 ℎMpc−1, the gain of the effective volume is above
20 times. For the effective volume from the fixed-amplitude method
shown as the green dotted line, it has similar but lower gain compared
with the CARPool results, and it quickly decreases to zero at smaller
scales 𝑘 > 0.1 ℎMpc−1. We also check the effective volume from
the combination of six boxes with CARPool shown as the red dashed
line, which has noticeable increase over all the scales compared to
the one box case.
We perform the same analysis for the secondary cosmology c004

and find similar results. We show the results in Appendix G.

6 CONCLUSIONS AND DISCUSSIONS

We have prepared a set of FastPM simulations including 25 boxes
with the AbacusSummit ICs, >200 boxes with independent ICs, 237
boxes with the fixed-amplitude ICs, and 2 sets of 25 boxes with
different cosmologies.
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Figure 15. Same as Fig. 3 but for the halo power spectrum multipoles from the secondary cosmology c002. We have also rebinned 𝑘 to have better clarity for
the data points.

Figure 16. The gain on the effective volume for the halo power spectrum multipoles with the secondary cosmology c002 from CARPool. The left-hand panel is
for the monopole and the right-hand panel is for the quadrupole. We show the increase of effective volume in terms of the volume of one AbacusSummit box. In
each panel, the blue line denotes the effective volume of one AbacusSummit box with CARPool assuming that the surrogate mean is known. The orange dashed
line is the same as the blue line but includes the statistical error of the surrogate mean estimated from the non-fixed-amplitude FastPM catalogues. Similar to
the orange dashed line, the red dashed line is the effective volume if we combine six AbacusSummit boxes with CARPool. The green dotted line denotes the
effective volume from one fixed-amplitude FastPM box.
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We use the FastPM simulations to improve the precision of
AbacusSummit simulations by adopting the CARPool method. We
study the clustering of two halo catalogues at 𝑧 = 1.1, (i) halo
mass > 1011 ℎ−1M� (i.e. hosts of DESI ELGs) and (ii) halo mass
> 1013 ℎ−1M� (i.e. hosts of DESI LRGs). We present the sample
variance reduction and the increased effective volume from CAR-
Pool. For the ELG-host-halo catalogues, the effective volume is larger
than 100 times DESI volume, i.e. 2000 ℎ−3Gpc3 at 𝑘 < 0.3 ℎMpc−1
for the power spectrum measurements. We confirm that the fixed-
amplitude variance suppressing method can be very effective at
smaller 𝑘 (e.g. 𝑘 < 0.1 ℎMpc−1) but the performance drops quickly
while 𝑘 increases (e.g. no improvement at 𝑘 > 0.2 ℎMpc−1). CAR-
Pool performs better than the fixed-amplitude method at smaller
scales. We also check the effective volume for the correlation func-
tion. It is larger than 30 times DESI volume at 𝑟 > 10 ℎ−1Mpc from
CARPool. Similarly, for the LRG-host-halo catalogues, the effective
volume is larger than 20 times DESI volume (i.e. 400 ℎ−3Gpc3)
at 𝑘 < 0.2 ℎMpc−1 and larger than 20 times DESI volume at
𝑟 > 10 ℎ−1Mpc.
Furthermore, CARPool can effectively suppress the sample vari-

ance of the halo bispectrum at the region of BAO scales, whereas the
fixed-amplitude method cannot, which is consistent with the findings
in Chuang et al. (2019); Klypin et al. (2020). Using CARPool, we
can obtain larger than 50 times DESI volume for the ELG-host-halo
bispectrum with the triangle configuration 𝑘1 = 0.1 ℎMpc−1 and
𝑘2 = 0.2 ℎMpc−1. The trivial gain from the fixed-amplitude method
is probably due to the fact that the bispectrum is not mainly con-
tributed from the modulus correlation of the density field, but the
phase correlation and phase-modulus cross-correlation (Matsubara
2007; Qin et al. 2022).
We further generalize the method to increase the effective volume

of simulations with different cosmologies. These simulations have
only one or a few simulations for each cosmology while there are 25
simulations for the primary cosmology. Even with one simulation,
we find that the effective volume can be increased by more than 20
times. This finding can be usefulwhenwewant to understand howour
data analysis pipeline responds to different cosmologies.We can then
avoid the systematic bias introduced by a fixed fiducial cosmology
model. On the other hand, a tricky step for the generalized method is
to estimate the cross-covariance between an AbacusSummit simu-
lation and the paired FastPM simulation with different cosmologies.
We have used an approximation in this paper but we are developing
another approach based on an internal sample evaluation (Zhang et
al., in preparation).
The performance of this technique depends on the cross-

correlation between the paired 𝑁-body and approximate simulations.
There aremanymethods producing approximate simulations, e.g. see
Chuang et al. (2015) and Lippich et al. (2019) for various methods,
but we do not expect that the other methods can perform better than
quasi-𝑁-body codes, e.g. FastPM, COLA (Tassev et al. 2013), etc.
On the other hand, the computing time for generating quasi-𝑁-body
simulations is still not negligible; thus, it could be interesting to try
other more efficient methods generating approximate simulations.
We have shown that massive approximate gravity calculations

combined with a limited number of accurate 𝑁-body simulations can
be exploited with the CARPool and variance suppression techniques
to obtain accurate error estimates on the two-point and three-point
statistics of halo clustering. For future work, we can extend CARPool
to AbacusSummit galaxy mocks constructed for DESI observables.
CARPool can help to improve the constraints on galaxy clustering
models which are related with cosmological parameters and galaxy–
halo connection. Since we do not expect a good one-to-one match

between the low-mass haloes in AbacusSummit and FastPM runs,
the galaxy assignment on FastPM side may not provide much gains
on the cross-correlation. We are expecting that the stochasticity in
the galaxy–halo connection might reduce the performance of CAR-
Pool at small scales. On the other hand, we expect that CARPool is
likely to perform better on the constraints of galaxy–halo connec-
tion than the fixed-amplitude method (with pairing), since the latter
one fails to reduce the sample variance of halo power spectrum at
𝑘 > 0.2 ℎMpc−1 (also see Avila & Gutierrez Adame 2022) and halo
bispectrum. All in all, it is worth investigating on CARPool with
galaxy clustering in the next step. This work sets the path for a robust
cosmological analysis of galaxy surveys.
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power spectra and bispectra from the AbacusSummit and FastPM
simulations, is available at https://doi.org/10.5281/zenodo.5993283.
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APPENDIX A: CONFIGURATION PARAMETERS OF THE
FASTPM SIMULATION

Before the massive production of the FastPM simulations, we run
some tests on the main configuration parameters, i.e. the force reso-
lution parameter B, the time-steps T, as well as the redshift of the IC.
We would like to find a set of configuration parameters that can make
the FastPM simulation as close to the AbacusSummit simulation
as possible, based on their matter power spectra. Meanwhile, such
configuration should not be expensive to run, since even for FastPM,
running a 2 ℎ−1Gpc box with mass resolution 5 × 109 ℎ−1M� still
takes considerable computational resources.
In fact, AbacusSummit has generated many simulations with box

size 500 ℎ−1Mpc, which can be used to check the FastPM perfor-
mance. Using the IC from one suchAbacusSummit box, we generate
different FastPM simulations by varying the configuration param-
eters. To reduce the sample variance, we fix the amplitude of the
IC in the FastPM simulations. We set the same particle mass res-
olution as that of the FastPM base box (2 ℎ−1Gpc). Thanks to the
small box size, it is relatively cheap and convenient to generate many
realizations for the test purpose. We believe that a set of reasonable
configuration parameters we find for a small box still holds for a
larger box with the same particle mass resolution. To determine the
FastPM performance from a given set of configuration parameters,
we compare the real-space matter power spectrum with that of Aba-
cusSummit at redshift 𝑧 = 0.2. We show the comparison in Fig.
A1–A3. In each figure, we vary one parameter and fix the other two.
In Fig. A1, we show the impact from B while fixing 𝑇 = 40 and

the initial redshift 𝑧0 = 19, i.e. the initial scale 𝑎0 = 0.05. Note that
in our case T is always counted as the number of time-steps from a
given initial redshift to the finial redshift 0.1 with the linear step size
in scale 𝑎. Different coloured lines represent the results from different
𝐵s. The black dotted line denotes the result from AbacusSummit,
which we take as the standard. In the upper panel, we show the
matter power spectra at 𝑧 = 0.2 from AbacusSummit as well as
from FastPM with different 𝐵s. In the lower panel, we show the
ratio between the power spectra from FastPM and AbacusSummit.
Since the embedded routines for calculating matter power spectra in
FastPM and AbacusSummit are not exactly the same, the number
of modes from some 𝑘 bins varies a bit due to different counting
schemes for the 𝑘 modes on the bin boundaries, hence, it can cause
some fluctuation at very large scales where the number of modes is
small. We can ignore such fluctuation from numerical issues. Based
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Figure A1.The comparison between thematter power spectra at 𝑧 = 0.2 from
the AbacusSummit (black dotted line) and the FastPM (coloured lines) with
different force resolution parameters 𝐵s but the same 𝑇 = 40 and 𝑎0 = 0.05.
The upper panel shows the overall shapes up to 𝑘 = 1.0 ℎMpc−1. The lower
panel shows the ratio between the FastPM and the AbacusSummit which we
take as the standard. Different 𝐵s cause the deviations of FastPM on small
scales differently. In this case, 𝐵 = 2 performs the best.

on the ratio, we see the deviation of the FastPM power spectra from
the AbacusSummit on small scales. The deviation from 𝐵 = 1 is the
largest, about 2.5%, as it has the lowest force resolution. Interestingly,
𝐵 = 2 gives the lowest deviation (about 1% at 𝑘 = 1.0 ℎMpc−1) than
the cases with 𝐵 = 3 or 4. The reason is beyond our knowledge,
which we leave it for future study.
In Fig. A2, we vary 𝑇 = 20, 40, 80, but fix 𝐵 = 2 and 𝑎0 = 0.05.

The performance from 𝑇 = 40 is comparable with that from 𝑇 = 80,
but with about half of the computational time of𝑇 = 80.𝑇 = 20 gives
relatively large deviation at scales smaller than 𝑘 = 0.5 ℎMpc−1. In
Fig. A3, we vary the initial redshift from 99, 19 and 9, respectively,
while fixing 𝐵 = 2 and 𝑇 = 40. A larger initial redshift gives a
more accurate IC from 2LPT, but results in a larger step size given
a fixed number of time-steps. It turns out that 𝑎0 = 0.05 gives better
performance compared with the other two.
Based on the above tests, we choose our configuration parameters

as 𝐵 = 2,𝑇 = 40, and 𝑎0 = 0.05. In fact, given a set of parameters, the
performance would vary depending on redshifts. It is not guaranteed
that the parameters we choose give better performance at some low
redshifts than other choices. However, we do not strictly examine
which set of parameters are the best, but try to find a reasonable one
based on our goals.

APPENDIX B: THE EFFECT FROM MASS CUT,
ABUNDANCE MATCHING, AND HALO CLEANING

Given a halo mass cut, e.g. 1011 ℎ−1M� , the halo number density
of FastPM is about 36% lower than that of AbacusSummit (un-
cleaned). To check whether the difference of number densities will
reduce the CARPool performance or not, we select high-mass haloes
from the paired FastPM catalogues to match with the number of
haloes from AbacusSummit with mass cut. We compare the control
variant 𝛽diag of the power spectrum monopoles from mass cut and
abundance matching, and show the result in Fig. B1. The improved
performance of abundance matching (orange dashed line) is not very
significant compared with that of mass cut (blue solid line). We have
checked the conclusion is true for the quadrupole too. Furthermore,

Figure A2. Similar to Fig. A1 but for the test of the number of time-steps
𝑇 . We fix 𝐵 = 2 and 𝑎0 = 0.05. Considering the accuracy and computation
time, 𝑇 = 40 performs better than 𝑇 = 20 and 80.

Figure A3. Similar to Fig. A1 but for the test of the initial scale 𝑎0. We fix
𝐵 = 2 and 𝑇 = 40. The initial scale 𝑎0 = 0.05, i.e. 𝑧0 = 19, performs better
than the other two.

in the case of mass cut, we replace the uncleaned AbacusSummit
halo catalogues by the cleaned ones and obtain the black dotted line.
On large scales 𝑘 < 0.2 ℎ−1Mpc, 𝛽diag seems performing better than
that from the uncleaned haloes as it is closer to 1.0. We expect that
using the cleaned AbacusSummit haloes will benefit the CARPool
performance on large scales.
In Fig. B2, we show the ratio of the power spectrum multipoles

between the cleaned AbacusSummit and FastPM catalogues with
mass cut 1011 ℎ−1M� . Compared with Fig. 1, the difference of halo
biases at large scales between AbacusSummit and FastPM reduces
significantly from 4.2% to 1.2% after the halo cleaning in Abacus-
Summit.

APPENDIX C: CARPOOL PERFORMANCE OF
LRG-HOST HALOES AT REDSHIFT 0.8

For DESI LRGs, the number density peaks around redshift 0.6–0.8
(Zhou et al. 2021).We simply check the performance of CARPool for
the LRG-host haloes (with mass larger than 1013 ℎ−1M�) at 𝑧 = 0.8

MNRAS 000, 1–20 (2022)
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Figure B1. The comparison of 𝛽diag of the power spectrum monopoles cal-
culated from the case of mass cut equal to 1011 ℎ−1M� versus the case of
abundance matching. For the abundance matching, we match the number of
FastPM haloes close to that of AbacusSummit with mass cut. In addition,
we overplot the result (black dotted line) from the case if we use the cleaned
version of AbacusSummit halo catalogues.

Figure B2. The ratio of the mean power spectrum monopoles (ℓ = 0) and
quadrupoles (ℓ = 2) between the cleaned AbacusSummit and FastPM cata-
logues with mass cut 1011 ℎ−1M� . We slightly shift the 𝑘 coordinates of the
quadrupole for clarity.

compared with that from 𝑧 = 1.1. The number density of Abacus-
Summit haloes increases from1.7×10−4 to 2.4×10−4 ℎ3Mpc−3 from
𝑧 = 1.1 to 0.8. We compare the effective volumes from CARPool at
the two redshifts in Fig. C1. We show the results with the surrogate
mean from the fixed-amplitude FastPM catalogues. Overall there
is an average of ∼ 35% increase on 𝑉eff at 𝑧 = 0.8, thanks to the
increase of the halo number density. Here we use the surrogate mean
from the fixed-amplitude FastPM catalogues. The increase is similar
for the case using the surrogate mean from the non-fixed-amplitude
catalogues.

APPENDIX D: THE PEARSON CORRELATION
COEFFICIENTS OF THE HALO POWER SPECTRUM
MULTIPOLES BETWEEN ABACUSSUMMIT AND FASTPM

To compare the performance ofCARPool for the halo power spectrum
multipoles with different halo mass cuts (1011 and 1013 ℎ−1M�) at
𝑧 = 1.1, we check the Pearson correlation coefficients between Aba-
cusSummit and FastPM. For each mass cut, we calculate the power

Figure C1. The comparison of the effective volumes obtained from CARPool
for the halo power spectrum monopoles at redshifts 0.8 and 1.1. The haloes
are massive than 1013 ℎ−1M� .

spectrum multipoles and the covariance matrices for AbacusSum-
mit and FastPM with the matched AbacusSummit ICs. We also
calculate the cross-covariance matrix of the multipoles from the two
simulations, and obtain the Pearson correlation coefficients via

𝜌A, F (𝑘𝑖 , 𝑘 𝑗 ) =
CovA, F (𝑘𝑖 , 𝑘 𝑗 )√︁

CovA (𝑘𝑖 , 𝑘𝑖)CovF (𝑘 𝑗 , 𝑘 𝑗 )
, (D1)

where the subscripts A and F denote AbacusSummit and FastPM,
respectively. In Fig. D1, we show the diagonal terms of 𝜌𝑖 𝑗 for
the monopole (left-hand panel) and quadrupole (right-hand panel)
with two mass cuts. For both monopole and quadrupole, the Pearson
coefficients are closer to 1.0 from the halo mass cut 1011 ℎ−1M� ,
which indicates better performance from CARPool.

APPENDIX E: STATISTIC NOISE OF THE CORRELATION
FUNCTION QUADRUPOLE

We investigate the reason why there is about 2 ∼ 3𝜎 bias between the
mean of the correlation function quadrupoles from the AbacusSum-
mit halo catalogues and that from CARPool around 𝑠 = 50 ℎ−1Mpc
in Fig. 8.
We find that it is due to the statistical noise of the mean of the

paired FastPM catalogues. In the upper panel of Fig. E1, we show
the mean of the quadrupoles from 200 FastPM halo catalogues with
random ICs as the black dotted line. We divide these 200 catalogues
into 8 groups, each of which has 25 catalogues. We calculate the
mean for each group and plot it as a gray line. We also plot the mean
of the paired FastPM catalogues with the AbacusSummit ICs as the
red dashed line with error bars. In the lower panel, we divide all the
results by the mean of 200 catalogues. We see that the fluctuation
amplitude of the red dashed line is comparable with that of the gray
lines. The deviation of the red dashed line from the black dotted line
around 𝑠 = 50 ℎ−1Mpc is about 2 ∼ 3𝜎. Based on CARPool, we
have the ratio of the mean between the AbacusSummit catalogues
and that from CARPool as
𝑦

𝑥
= 1 + 𝛽

𝑐 − 𝜇̂𝑐

𝑥
, (E1)

where 𝑐 and 𝜇̂𝑐 correspond to the red dashed line and black dotted
line, respectively. Since we have checked that 𝛽 is close to 1.0 for

MNRAS 000, 1–20 (2022)
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Figure D1. The diagonal terms of the Pearson correlation coefficients of the halo power spectrum multipoles between AbacusSummit and FastPM. The
left-hand (right-hand) panel is for the monopole (quadrupole). The solid (dotted) lines are from the halo mass cut 1011 ℎ−1M� (1013 ℎ−1M�).

Figure E1. Upper panel: we compare the correlation function quadrupoles
from the FastPM halo catalogues with different cases. The dotted line shows
the mean of the quadrupoles from 200 FastPM catalogues with random ICs.
Each gray line represents the mean of every 25 out of 200 catalogues. The red
dashed line is the mean of 25 FastPM catalogues with the AbacusSummit
ICs. Lower panel: we show the ratio of the result from each case by the
mean of 200 FastPM catalogues. The red dashed line fluctuates around the
horizontal dotted line and the fluctuation amplitude is similar to that of gray
lines. At around 50 ℎ−1Mpc, there is about 2 ∼ 3 𝜎 deviation from 1.0,
which is just due to the statistical noise.

𝑠 > 20 ℎ−1Mpc, the statistical bias between 𝑐 and 𝜇̂𝑐 directly relates
to the bias between the mean of AbacusSummit and CARPool.

APPENDIX F: CROSS-CORRELATION BETWEEN THE
CLUSTERING FROM DIFFERENT COSMOLOGIES

To test the validity of equation (25), we use the halo catalogues of
25 paired FastPM simulations which are from the two cosmologies
c000 and c002. Each paired simulation shares the same IC. We use
the halo catalogues at 𝑧 = 1.1 with mass larger than 1011 ℎ−1M� .
We divide haloes into three groups based on halo mass, i.e. 1011 <
𝑀halo < 1012 ℎ−1M� , 1012 < 𝑀halo < 1013 ℎ−1M� , and 𝑀halo >

1013 ℎ−1M� . We use cat1, cat2 and cat3 to represent them. As is

known that the number of haloes decreases as the halomass increases.
We conduct subsampling for cat1 and cat2 with the percentage 2.85%
and 28%, respectively. The number of haloes after subsampling is
about 7.2 million for cat2. At the end, we reach two goals: one is that
after subsampling, the number of the haloes from the combined cat1
and cat3, denoted as cat13, is close to that of cat2; the other is that
the halo clustering statistics is similar between cat2 and cat13. Doing
such process, we can mimic cat2 as a catalogue from an 𝑁-body
simulation and cat13 as a catalogue from a paired surrogate, since
cat13 is constructed to mimic cat2 in terms of the shot noise and
two-point clustering signal and it shares the same IC with cat2. We
obtain cat2 and cat13 from 25 halo catalogues in each cosmology.We
calculate the halo power spectrum multipoles from cat2 and cat13,
and compare 𝛽1 and 𝛽2 calculated from the cross-correlation and
variance of the multipoles over 25 realizations, i.e.

𝛽1 =
Diag[Cov(cat2c002, cat13c000)]

Var(cat13c000)
, (F1)

𝛽2 =
Diag[Cov(cat2c000, cat13c002)]

Var(cat13c000)
. (F2)

We show the results in Fig. F1, in which the blue lines denote 𝛽1 and
the orange dotted lines denote 𝛽2. They have a similar shape for both
monopole and quadrupole.

APPENDIX G: CARPOOL RESULTS OF THE
SECONDARY COSMOLOGY C004

Similar to Section 5, we apply CARPool on the halo catalogues with
the secondary cosmology c004.We compare the halo power spectrum
multipoles from c004 and c000 in Fig. G2. Compared with Fig. 13,
we can see that the difference of the power spectrum monopoles
between c004 and c000 is smaller than that between c002 and c000,
which is expected as c004 is different from c000 only on𝜎8.We show
the 𝛽 in Fig. G1, and the effective volume increased from CARPool
in Fig. G3.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure F1. The shape of 𝛽diag which is calculated from the cross-correlation of the halo power spectrum multipoles between the cat2 and cat13 sharing the same
ICs but with different cosmologies. 𝛽1 is calculated from the cross-correlation between the cat2 with the cosmology c002 and the cat13 with the cosmology
c000, while 𝛽2 is calculated from the cat2 with c000 and the cat13 with c002. They agree well on the general shape for both monopole and quadrupole.

Figure G1. 𝛽diag is calculated from the cross-correlation between the halo
power spectrum multipoles from the paired AbacusSummit in c000 and the
FastPM in c004. ℓ = 0 (2) is for the monopole (quadrupole).
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Figure G2. Same as Fig. 13 but for the secondary cosmology c004.

Figure G3. Same as Fig. 16 but for the secondary cosmology c004.
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