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In theory, there is no difference between theory and practice.
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ABSTRACT OF THE DISSERTATION

Computational Tools for Analysis of Mass Spectrometry Imaging Data

by

Jocelyne Bruand

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2012

Professor Vineet Bafna, Chair
Professor Eduardo Macagno, Co-Chair

Imaging to assess the presence and localization of specific molecules in tissues

and cells is central to the study of biological systems. However, most imaging tech-

nologies focus on specific molecules of interest. An exciting recent advance is the

development of Mass Spectrometry Imaging (MSI), which allows for the generation

of topographic 2D maps for various endogenous and some exogenous molecules (e.g.,

drugs and their metabolites) without prior specification. Advances in MSI have trans-

formative potential, allowing us to answer questions about the localization of proteins,

peptides, lipids, metabolites and other molecules. To help MSI realize its potential, we

describe several algorithms for the analysis of MSI data from different angles.

xv



In a first problem, we start with the premise that we are given a pre-defined re-

gion of interest (ROI) based on the morphology of the tissue or organism. We aim to find

and identify molecules that are specifically expressed in the ROI. We solve this problem

by using a statistics for localization specificity and a novel pipeline for identification.

Next, we extend the approach above to segment the MSI dataset into consistent

regions of interest, and for each segment, we identify a molecular signature: a collection

of peaks that are preferentially expressed in that segment. Our implementation, called

AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation), relies on the

discriminating power of a molecular signal instead of its intensity as a key feature, uses

an internal consistency measure for validation, and allows significant user interaction

and supervision as options.

A third problem examines the comparative analysis of many MSI datasets. We

describe a new method which, given a set of pertinent query molecules, finds, in each

dataset, all molecules that have a similar spatial distribution and clusters the datasets

based on the resulting molecular signatures. The approach has the potential to identify

unknown relationships between multiple data acquisitions.

Finally, we briefly touch on the peptide identification from on-tissue MS/MS

data using a spectral library specific to MALDI imaging peptide identification. Our

preliminary results highlight the potential of this approach.
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Chapter 1

Introduction

Imaging to assess the presence and localization of specific molecules in tis-

sues and cells is central to the study of biological systems. Historically, successful

approaches usually involved labeling one/few proteins at a time either by attaching a

fluorescent domain genetically or by treating a biological sample with labeled antibod-

ies, and then recording two-dimensional (2D) micrographs of the sample, possibly also

reconstructing them into a three-dimensional (3D) object or movie. Such imaging tech-

niques are low-to-medium throughput approaches and give the biologist insight into just

a small number of biological samples, limited to known proteins for which antibodies

or tagged forms are available. By contrast, there is an increasing number of imaging

technologies (transcriptomic or proteomic) that allow for the sampling and exploration

of the entire complement of active molecules in the cell.

An exciting and innovative recent advance in mass spectrometry is the devel-

opment of Mass Spectrometry Imaging (MSI). By applying mass spectrometry directly

on tissue, MSI allows for the generation of topographic 2D and 3D maps for various

endogenous and some exogenous molecules (e.g., drugs and their metabolites).

In this introduction, we will give a quick overview of mass spectrometry imag-

ing, its potentials and its shortcomings.

1
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1.1 What is Mass Spectrometry Imaging?

As mentioned above, mass spectrometry imaging is an imaging technique which

allows us to visualize the spatial distribution of all detected molecules in a label-free

manner. In Figure 1.1, we give an overview of the mass spectrometry imaging tech-

nique. Basically, we acquire a spectrum at each location of a pre-defined raster. By

taking the intensity at each spectrum/location for specific m/z value, we create an inten-

sity image which reflects the localization of the molecule (or set of molecules) having a

mass corresponding to that m/z value. Thus, an MSI dataset can be visualized as a set of

intensity image, one for each m/z value. By aligning the spectra as rows in a matrix, we

can also represent an MSI dataset as a spot-by-m/z matrix containing the intensity value

for the corresponding m/z value and the spot location. Three main techniques have been

developed to acquire such datasets: Secondary Ion Mass Spectrometry (SIMS), Matrix-

Assisted Laser Desorption/Ionization (MALDI) and Desorption Electrospray Ionization

(DESI). SIMS typically allows for the detection of molecules up to m/z 1000-1500 with

a spatial resolution of 400nm to 1− 2µm [1]. Thus, it renders high spatial resolution

images of small molecules, such as lipids or drugs. On the other hand, MALDI imaging

can detect molecules for m/z values exceeding 100000, with some trade-off in spatial

resolution (25µm) [2]. Thus, MALDI imaging has been the technique of choice for the

study of peptides and proteins. Finally, DESI imaging has the capability of acquiring

MSI data from ambient samples, eliminating the labor intensive sample preparation re-

quired in MALDI imaging. While the m/z detection range is higher than SIMS (up to

66000) [3], it has mostly been used for the study of lipids. The spatial resolution is

lower than that of SIMS or MALDI imaging (∼ 100µm) [4], though the development of

nano-DESI should allow for resolutions as low as 12µm [5].

1.2 Potentials of Mass Spectrometry Imaging

Mass spectrometry imaging has shown great success in a variety of areas. In the

study of diseases, MSI has been applied to study of various types of cancer [6, 7, 8] and

different neurodegenerative diseases [9, 10, 11] to define molecular pattern differences

between healthy and unhealthy tissues, characterizing tissue types molecular profiles



3

120.1 231.5 154.3 987.6 589.3 ...

............

......

............

........................

........................

........................

........................

m/z

sp
ot
s

inte
nsit

ies

m/z

in
te
n
si
ty

m/z

in
te
n
si
ty

m/z

in
te
n
si
ty

laser

intensity matrix

Figure 1.1: Mass Spectrometry Imaging (MSI) overview. Given an object of study
(here, a leech) a spectrum is acquired for each point of pre-defined raster. Here, we show
a laser hitting the sample across the raster, as would be the case in MALDI imaging.
However, other MSI techniques may employ other acquisition methods (e.g., capillaries
for DESI imaging). By taking the intensity at each spectrum/location for specific m/z
value, we create an intensity image which reflects the localization of the molecule (or
set of molecules) having a mass corresponding to that m/z value. Thus, an MSI dataset
can be seen either as a set of intensity images, or as a spot-by-m/z matrix containing the
intensities.
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and identify biomarkers. Mass spectrometry imaging has also seen uses in drug devel-

opment due to its ability to detect and localize both the parent drug and its metabolites

throughout tissues or whole organisms [12].

MSI can also been used to further our understanding of biological systems. Stud-

ies have been done on various tissue types such as brain [13, 14], prostate [15, 16], ocular

lens [17, 18], and whole organisms [11, 19, 20]. It allows us to create molecular pro-

files for different tissue types and monitor molecular changes changes across different

conditions. Another interesting approach has been to use MSI to study the interaction

between bacterial colonies Yang2009, Liu2010, Watrous2010.

Many new developments in MSI open doors to further biological investiga-

tions. Three-dimensional MSI allows for the visualization of molecules in the entire

sample [21], instead of just a slice. The combination of quantitation and MSI en-

ables us to know the concentration of a drug, peptide or protein across different tissue

types [22, 23].

1.3 Shortcomings of Mass Spectrometry Imaging

There are various shortcomings to the mass spectrometry imaging technique.

Currently, MALDI imaging requires very precise and labor-intensive sample prepara-

tion. Lack of homogeneity in matrix deposition and crystal formation creates biases

in the spatial distribution of the molecules, though the development of robotic matrix

deposition has helped reduce this effect [24, 25] . Second, MALDI imaging spatial res-

olution (∼ 25µm) is still inferior to optical resolution ( < 1µm) and does not allow for

cell-level imaging. In order to increase spatial resolution, it is necessary to form smaller

matrix crystal and improve instrument acquisition speed [?].

Another major limitation is the ion suppression effect [26]. One molecule can

completely suppress the signal of other equally abundant molecules. Moreover, inten-

sities may not directly reflect molecules abundance as there are disparities in ionization

efficiency.

Finally, one of the major current challenges is the identification of the com-

pounds [27, 2, 28]. Two main approaches are used. In a top-down approach, proteins
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of interest are extracted from tissue and identified. This process is labor-intensive and

loses the spatial localization of the protein. In a bottom-up approach, trypsin is spotted

on-tissue and MS/MS spectra are acquired directly on tissue. In this case, the sample

is very complex and abundant molecules dominate the spectra, making identification

challenging.



Chapter 2

Automated querying and identification

of novel peptides using MALDI mass

spectrometric imaging

MSI is a molecular imaging technique which allows the generation of topo-

graphic 2D maps for various endogenous and some exogenous molecules, without prior

specification of the molecule.

In this chapter, we start with the premise that a region of interest (ROI) is given

to us based on pre-selected morphological criteria. Given an ROI, we develop a pipeline,

first, to determine m/z values with distinct expression signatures, localized to the ROI

and, second, to identify the peptides corresponding to these m/z values.

To identify spatially differentiated m/z values, we implement a statistic that al-

lows us to estimate, for each spectral peak, the probability that it is over-, or under-

expressed within the ROI versus outside. To identify peptides corresponding to these

masses, we apply LC-MS/MS to fragment endogenous (non-protease digested) peptides.

A novel pipeline based on constructing sequence tags de novo from both original and

de-charged spectra, and subsequent database search is used to identify peptides. As the

MSI signal and the identified peptide are only related by a single mass value, we isolate

the corresponding transcript, and perform a second validation via in situ hybridization

of the transcript.

We tested our approach on a number of ROIs in the medicinal leech, Hirudo

6
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medicinalis, including the central nervous system (CNS). The Hirudo CNS is capable of

regenerating itself after injury, thus forming an important model system for neuropep-

tide identification. The pipeline helps identify a novel gene, HmIF4 , a member of the

intermediate filament family involved in neural development, and second novel, unchar-

acterized peptide. A third peptide, derived from the histone H2B, is also identified, in

agreement with the previously suggested role of histone H2B in axon targeting.

2.1 Introduction

The use of multiple imaging techniques to assess the presence and location of

specific proteins in tissues and cells is central to the study of biological systems. The

prevailing approach is to label one or several proteins at a time either by attaching a flu-

orescent domain genetically or by treating a biological sample with labeled antibodies,

and then to record two-dimensional (2D) micrographs of the sample, possibly recon-

structing them into a three-dimensional (3D) object or movie. Such imaging techniques

are low-to-medium throughput approaches and give the biologist insight into just a small

number of biological samples, limited to known proteins for which antibodies or tagged

forms exist.

In contrast to the low throughput of imaging technologies, some available ge-

nomic, transcriptomic, and proteomic (particularly via mass spectrometry) technologies

allow for the sampling and exploration of the entire complement of active molecules in

the cell.

An exciting and innovative recent advance in mass spectrometry is the devel-

opment of Mass Spectrometry Imaging (MSI). MSI is a molecular imaging technique

which allows the generation of topographic 2D maps for various endogenous and some

exogenous molecules (e.g., drugs and their metabolites) involving the application of

mass spectrometry directly on tissue.

In the Matrix-Assisted Laser Desorption/Ionization (MALDI) MSI workflow,

thin tissue sections (10-15µm) from organs or even whole body animals are mounted

onto a conductive glass slide allowing microscopic observation of the tissue prior to

MS analysis. Important preparative steps include appropriate tissue treatments [29] and
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ionic matrix deposition which must be optimized to reach highest analytical perfor-

mance [30]. By incorporating a target scanning capability within the mass spectrometer

itself, it is then possible to obtain mass spectra at a series of specified locations on the

target. A major advantage of direct MALDI MSI analysis is to avoid time-consuming

extraction, purification or separation steps, which have the potential for producing arte-

facts. After its introduction by Spengler et al. in 1994 [31], direct MALDI analysis

of tissue sections was developed by various groups [32, 33, 34, 35, 36]. The studies

performed by these groups demonstrated that acquisition of tissue expression profiles

while maintaining cellular and molecular integrity was feasible. With automation and

new analysis software, it also became possible to produce multiplex imaging maps of

selected bio-molecules within tissue sections [37, 38, 39].

While the true abundance of a molecule cannot be measured using this approach,

the intensity of its corresponding spectral peak (or, its expression level) often correlates

with its abundance, albeit in a complicated manner (e.g., compounds with poorer ion-

ization efficiency display lower intensity peaks than would be expected purely on their

abundance). Molecules that are preferentially expressed in a region of the sample will

show higher intensity in the image corresponding to a specific m/z value when rep-

resented with the intensity encoded by a color map. It is also important to note that

when looking at these m/z images, it is possible to be looking at the combined inten-

sity of several compounds with similar m/z values. Most bioinformatics approaches

have focused on using MALDI MSI as a tool for the discovery of signature markers

of particular physiological stages. One approach is to distinguish regions of the tissue

presenting very different mass spectral signatures. This has been addressed by a num-

ber of researchers, who use unsupervised clustering methods to characterize a region of

interest (ROI) [40, 41].

While unsupervised clustering is essential to the analysis of large datasets with-

out user input, it ignores prior knowledge about tissue morphology. In many cases, a

more targeted, or supervised, approach is desirable, allowing the user to pull out the

molecular signature for a specific area of interest. In this chapter, we start with the

premise that a region of interest (ROI) is given to us based on pre-selected morpholog-

ical criteria. As an example of an ROI, consider the central nervous system (CNS) of
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the medicinal leech, Hirudo medicinalis, one of the best-studied representatives of the

phylum Annelida (segmented worms). Given a particular ROI, we ask (a) which masses

have a distinct expression signature, localized to the ROI; and, (b) to which peptides do

these masses correspond? The answer to these questions, in the context of, for exam-

ple, several embryonic stages, can help us identify key peptides and proteins in leech

neuronal development. As the leech CNS has a demonstrated capacity to repair itself

after injury and to restore function [42, 43, 44], the discovery of peptides involved in

neuronal development and regeneration could have therapeutic implications.

To answer our first question, i.e., what are the masses that are specifically ex-

pressed in a region of interest, we developed a statistical method that operates on

MALDI MSI data. While some recently published methods seek to differentiate

molecules between two regions (eg. cancerous vs. non-cancerous) [45, 46, 47, 7],

we provide a publicly available tool which allows for the analysis of non-contiguous

regions, using various methods. We also validate our method using simulations. An

interactive tool allows the user to define the ROI on a histological image of a leech

embryo. We defined several different ROI corresponding to CNS, the lateral/ventral

regions, and the nephridia. We implemented a statistic that allows us to estimate, for

each spectral peak, the probability that it is more highly or less highly expressed within

the ROI versus outside. The m/z values that we find include some whose expression

is very low relative to other peaks but strongly localized to the region of interest. The

method was validated, using both simulated perturbations of the original intensities, as

well as visual inspection of MALDI images restricted to the peaks of interest. All se-

lected peak images displayed localization in the area of interest and the signal became

visually weaker and less localized to the ROI as the score decreases. The statistic was

used to identify peak masses specifically, expressed in the different ROIs.

The second question we pursued is the identification of the peptides associated

with those mass values. In fact, identification of the species showing interesting spatial

distributions remains one of the most challenging problems in MSI. Many recent studies

have focused on this problem and some of these approaches obtained sequence infor-

mation by performing MS/MS directly from the tissue. In the case of identifying larger

peptides or proteins, these approaches have favored a bottom-up method comprising of



10

in situ tissue digestion by applying a proteolytic enzyme with a spotter or sprayer, fol-

lowed by MS/MS on tissue [48, 49, 50]. While these methods are powerful in that they

give us a broader overview of the proteome while combining imaging and identification

in one step, they have several limitations. First, identification from on-tissue MS/MS

has been restricted to high-abundance molecules and remains a challenge for low abun-

dance molecules [48, 51]. Moreover, digestion greatly increases the complexity of the

spectrum, especially for lower masses, although one proposed solution is to couple an

ion mobility mass spectrometer to the MALDI-TOF instrument thus using drift time

as an additional separating dimension [52]. Finally, enzymatic product diffusion [51],

variation in peptide intensities [53], and the fact that many parent masses will have sim-

ilar distributions, all increase uncertainties in the correlation between parent image and

trypsin product images. It is worth noting that Chen et al. [54] opted for another bottom-

up approach from the sample in the identification of neuropeptides in the lobster. While

they successfully sequenced many neuropeptides from extracts, MALDI imaging was

used independently only as a second step to visualize the localization of these identi-

fied neuropeptides, using mass value to correlate the images to the peptides. Thus, the

approach does not necessarily identify specific molecules of interest.

In contrast, we focus on LC-MS/MS identification of endogenously processed

peptides (2000-5000 Da). By not using a protease digestion step, we maintain the link

between the observed mass and the identified peptide. The identification is challeng-

ing, as the fragmentation patterns of high-charge, non-tryptic peptides are poorly under-

stood [55]. Currently, while top-down mass spectrometry allows for the identification

of spectra of larger proteins, it requires either a) labor-intensive sample purification to

isolate the protein of interest or b) a highly abundant protein in order to obtain spec-

tra with good isotope resolution which is necessary for identification. In order to use

complex sample and identify less abundant peptides, we limit the identification here to

intermediate sized peptides despite a larger range of interesting m/z values. We devel-

oped a custom peptide identification pipeline based on constructing sequence tags de

novo from both original and de-charged spectra, and performing a database search in-

cluding modifications (see Figure 2.1). As the MSI signal and the identified peptide are

only related by a single mass value, we isolate the corresponding transcript, and per-
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form a second validation via in situ hybridization of the transcript. Using this method,

we successfully identified a number of peptides (see Table A.3). One of these peptides

belongs to a novel gene that we call HmIF4 ; it is a member of the family of inter-

mediate filaments (IF), with strong sequence similarity to gliarin, macrolin and filarin,

three previously characterized IFs in Hirudo medicinalis, which were known to be ex-

pressed in the CNS. Whole mount in situ hybridization (see Methods) with a probe to

the corresponding RNA matched well with MALDI imaging data, supporting the iden-

tification. A second identified peptide corresponds to a segment of histone H2B, and

showed consistent localization via in situ hybridization as well. A third identified pep-

tide is completely novel, and not currently represented in the leech genomic databases

(NCBI nr, Helobdella proteins and Hirudo EST, see Methods).

2.2 Methods

Figure 2.1 provides an overview of the method, which has two subprocesses:

MSI based peptide/protein localization and MS/MS based peptide/protein identification.

2.2.1 MALDI Imaging Data Acquisition

In brief, the MSI data used to test the computational methods reported here

were acquired from two 12-day old leech embryo specimens, herein referred to as

LEECHE12A and LEECHE12B to reflect their embryonic age (12 days at 24◦C). The

specimens were opened along the dorsal midline, pinned flat and the yolk sack and en-

doderm removed to expose the central nervous system. Next they were exposed briefly

(1-2 min) to methanol in order to lightly fix and permeabilize the tissues, then placed on

glass slides coated with indium tin oxide (ITO) and immediately dried. Methanol was

selected because it provided a quick, one-step fixation (non-cross-linking) and perme-

abilization that works well with leech embryos. We also found that it aids efficient pep-

tide extraction following matrix application, though this was not assayed against other

possible lipid solvents, as this was not the principal goal of the work reported here. The

embryos were mounted so the internal surface of the body wall faced the laser beam.

After recording optical images of the mounted embryos, they were coated with several
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layers of special solid ionic matrices (CHCA/Aniline), using a manual pneumatic TLC

sprayer (VWR, Strasbourg, France). Such matrices have proved to be quite efficient

for peptide/protein analysis directly from tissue sections (increased signal intensity, in-

creased number of detected peptides/proteins, higher stability under vacuum conditions,

lower ablation rate) [29]. MALDI Imaging was performed on a MALDI-TOF/TOF in-

strument (Ultraflex II, Bruker Daltonics, Germany) at the University of Lille. While only

MS1 spectra were acquired in the mass spectrometric imaging stage, it is worth noting

that a TOF/TOF acquisition could be useful to help correlate the sequenced peptides

with the original imaging data by using the TOF/TOF partial fragmentation. However,

because many of the interesting molecules are of lower abundance (see Figure A.9), it

is likely that even partial fragmentation may be hard to obtain straight on tissue with-

out protein concentration. Spectra were acquired over 38837 m/z values from 12115

locations in a rectangular raster of points 60µm apart on LeechE12a and 37199 m/z

values from 22230 locations at raster in a rectangular raster of points 35µm apart on

LEECHE12B . Data was acquired on a wide range of m/z values to ensure that our soft-

ware could detect spatially localized molecules on a large scale of values with different

noise levels. Because the data was acquired on a wide m/z range, the m/z resolution

did not allow us to detect isotopic patterns on the imaging data. However, peaks were

well matched across spectra and across samples. The complete data-set is a collection

of spectra, each associated with a ‘spot’ on the leech surface. Conceptually, the data can

be represented as a collection of triplets 〈m,s, Im,s〉 describing the spectral intensity Im,s

at each spot s, and m/z value m.

2.2.2 MALDI Imaging Data Normalization

Each spectrum was normalized to correct for systematic biases, including an m/z

dependent bias, and a region specific bias. The spatial bias is clearly seen in Figure A.1,

with an order of magnitude difference in total intensity across different regions. A me-

dian baseline correction (flexAnalysis) was employed to correct for the m/z bias. Note

that baseline correction causes some intensity values to become negative. To correct for

spatial bias, we performed normalization after baseline correction. The average intensity
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for positive intensities after baseline correction at each spot was computed as

A(s) =
∑m Im,s

#{m|Im,s > 0}
.

The data was normalized by recomputing the intensities as

Im,s⇐
Im,s

A(s) ∑
s,m

A(s).

This data was written into a custom compressed lossless format in order to facilitate data

analysis.

2.2.3 Query Definition

We defined an ROI by manually creating a mask, which is an image that can be

superposed onto the histological image. Formally, a mask mask M maps each high-

resolution pixel to a binary value Mp ∈ {0,1}, indicating whether or not the pixel is

part of the ROI. These masks are easily created by adding layers onto the image using

any standard editing tool with layer capabilities. These layers can then be exported as

separate images. We developed a plug-in that extends the open-source GNU Image Ma-

nipulation Program (GIMP, http://www.gimp.org/) to facilitate the exportation process,

allowing the user to export any combination of layers into new images.

Because the MALDI spots are at much lower resolution than the mask, they can

be partially inside and partially outside the ROI. Thus, we define our query to designate

how much of each MALDI spot belongs to the ROI. Thus, the query Q maps each low-

resolution laser spots s onto a real value Qs ∈ [0;1]. For each low-resolution laser spot s,

we can define the collection of pixels p ∈ s on the light-transmitted image which belong

to the laser spot. We assign the following value to each spot:

Qs =
∑p∈s Mp

#{p ∈ s}
.

Figure A.2 shows the user-defined mask for the leech CNS, and the resulting grey-image

query Qs for all spots s.

2.2.4 Query Shift

Mapping of the MALDI spots to the histological image is done here by manually

defining teaching points, which are a set of spots with coordinates on both images, in

http://www.gimp.org/
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flexImaging software (Bruker Daltonics) prior to acquisition. By using these matching

sets of coordinates, it is possible to calculate the relative scale ratios and establish a cor-

respondence between the coordinates of both images. However, because of the lack of

precision in the definition of the teaching points, the mapping and/or scaling of MALDI

images to the histological image may be slightly off. Because the ROI is defined on

the optical image, which shows the morphological features, it is important to minimize

mapping errors between the two types of images. In order to correct for imprecision in

defining the teaching points, we introduced the possibility of manually setting shifts by

translation and/or scaling of the mapping from the MALDI image to the optical image.

Both shifts are done independently on the x-axis and y-axis, as teaching points can have

lack of precision on either axis.

2.2.5 Testing for Localization of Protein Expression

The input to this process is the set of normalized intensities Im,s and one or two

query(ies). If only one query is specified, the given ROI is compared to the rest of the

spots, as done in Figure 2.2. If two queries are specified, then the intensities from the

first ROI are compared to the intensities from the second ROI, ignoring the rest of the

data, as done in Figure 2.3. Depending on the statistical test, it may be necessary to

define two sets of spots from the query: those in the ROI and those outside the ROI. For

a query Q, we can define two thresholds t1 and t2, such that t1 ≥ t2. Then, the set of

spots such that Qs ≥ t1 are within the ROI and the set of spots such that Qs ≤ t2 and

Qs > t1 are outside the ROI. Note that there is no overlap between the two sets but that

there may be spots not belonging to either set. If the input is two queries, one threshold

t1 is given for each query and spots belonging to both query are arbitrarily assigned to

the first ROI. While the user has the option to define those query thresholds, all values

are defaulted to 0.5.

A set of intensities for all spots exhibits the same pattern as the given ROI if

the intensities are distributed such that there is a separation between those within the

ROI and those outside the ROI. While our software allows the user to choose between

several statistics, we use the ρ statistic, which is the Mann-Whitney U statistic, which

ranges between 0 and nROInbg, normalized by its maximum possible value. In the case of
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ties, we assign the average rank to all corresponding values. For each m/z, we calculate

the Mann-Whitney U statistic for the average intensity over a range of ±2Da as U =

RROI− nROI(nROI+1)
2 where nROI is the number of spots in the ROI and RROI is the sum of

the ranks of the intensities in the ROI. The ρ statistic is calculate as ρ = U
nROInbg

, where

nbg is the number of spots outside the ROI. High-scoring peaks for m/z < 2200 were

discarded because many spectra did not have any peaks in that region causing a bias in

the localization.

2.2.6 Simulations

In order to assess the performance of our method, we generate some simulated

data. The first simulated data aims to see how our method performs when the ROI sig-

nal decreases in terms of area, that is we want to see how the statistic behaves as less

spots in the ROI show higher expression. Let n1 and n2 be the number of spots inside

and outside the ROI respectively, and let IROI(r1, ...,rn1) and Ibg(b1, ...,bn2) be the corre-

sponding sets of intensities. We sort the ROI spots by location and the background spots

by intensities. In order to generate a random background intensity, we randomly select

a background spot bi such that 1≤ i≤ (n2−1) and we generate a random intensity Irand

sampled uniformly in [Ibg(bi), Ibg(bi+1)]. To generate the simulated data, we incremen-

tally set k ROI spots r1, ...,rk to a random background intensity. Thus, the ROI spots

now have intensities Isim assigned to them such that Isim(r1, ...,rk) are random background

intensities, and Isim(ri) = IROI(ri) for k+1≤ i≤ n1). In the case of re-balancing the total

intensities, we distribute the subtracted intensity by setting

Isim(ri) = IROI(ri)+
∑(IROI(r1, ...,rk))−∑(Isim(r1, ...,rk))

n1− k

for k+1≤ i≤ n1.

Our second simulation aims to see how our method performs when the ROI

signal decreases over the entire region. In this case, we simply decrease the intensities

of each ROI spots by a certain percentage until the average intensity inside the ROI is the

same as the non-ROI (or background) intensities. This means that for each spot ri within

the ROI, we assign the intensity Isim(ri) = x∗ IROI(ri) where x ∈ [mean(Ibg)/mean(IROI),1].



17

2.2.7 MS/MS Sample Preparation and Data Acquisition

Identification of the molecules with particular m/z values selected from the

MALDI-TOF imaging required the acquisition of high-resolution MS/MS spectra. We

therefore tested several extraction procedures for obtaining intact proteins/peptides with-

out enzymatic digestion that yielded good MS and MS/MS results with either MALDI

or ESI methods.These included extraction with 1N acetic acid, 1N HCL, TCA, basic

extraction with ammonia, 50:50:1 Methanol:water:FA, and PBS. For the purposes of

the work described here, the most consistent results were obtained with a simple PBS

extraction (a comparative study of these methods will be published elsewhere). Pep-

tides were extracted from leech embryos of embryonic ages between 6 and 12 days old.

Forty embryos with or without yolk were snap frozen in liquid nitrogen and then pul-

verized in a Dounce homogenizer. The homogenized tissue was stored at −80◦C after

thorough lyophilization. The homogenized tissue was then dissolved in 200µL of ice

cold 100mM PBS (pH 7.4) containing protease inhibitor cocktail and 0.1M PMSF and

vortexed. Tissue was dissolved by stirring at 4◦C for another 4 hours. Samples were

sonicated for 5 mins with 10 second pulses at constant voltage. The extract was then

centrifugated at 12000 rpm for 30 mins at 4◦C. The supernatant was separated from the

pellet and was reextracted using PBS. Supernatants from all the extractions were pooled

and samples were desalted and then dried using a Speedvac before proceeding to mass

spectral identification.

The samples were analyzed by liquid chromatography (LC) coupled with tandem

mass spectrometry with electrospray ionization. All nanospray ionization experiments

were performed by using a QSTAR-Elite hybrid mass spectrometer (AB/MDS Sciex)

interfaced to a nanoscale reversed-phase high-pressure liquid chromatograph (Tempo)

using a 10cm-180 ID glass capillary column packed with 5-µm C18 ZorbaxTM beads

(Agilent). The buffer compositions were as follows: buffer A was composed of 98%

H2O, 2% ACN, 0.2% formic acid, and 0.005% TFA; buffer B was composed of 100%

ACN, 0.2% formic acid, and 0.005% TFA. Peptides were eluted from the C-18 column

into the mass spectrometer using a linear gradient of 5-80% buffer B over 140 min at 400

µL/min. Time-of-flight MS were acquired at m/z 400 to 2000 Da for 0.5 s with 12 time

bins to sum. MS/MS data were acquired from m/z 50 to 2000 Da by using “enhance
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all” and 24 time bins to sum, dynamic background subtract, automatic collision energy,

and automatic MS/MS accumulation with the fragment intensity multiplier set to 6 and

maximum accumulation set to 2s before returning to the survey scan. LC-MS/MS data

were acquired in a data-dependent fashion by selecting the 5 most intense peaks with

charge state of 2 to 5 that exceeds 20 counts, with exclusion of former target ions set

to “360 seconds” and the mass tolerance for exclusion set to 100 ppm. The data depen-

dent acquisition was also operated with inclusion and exclusion lists to include an ion

selection list for MS/MS analysis and exclusion of ions already analyzed.

2.2.8 MS/MS Identification

The Hirudo genome has not been sequenced, so we create a custom database,

LeechProtsDB , comprised of Hirudo EST sequences [56] (http://genomes.sdsc.edu/

leechmaster/database/), the predicted Helobdella robusta proteins (JGI, v1.0,

http://genome.jgi-psf.org/Helro1/Helro1.download.ftp.html) and all Hirudo protein se-

quences from the NCBI nr database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). We cluster

and de-charge the raw MS/MS spectra and predict peptide tags on both the original and

the de-charged spectra using PepNovo[57] version 20090907. Peptide tags were pre-

dicted using with no enzyme, fragment tolerance of 0.5 Da, parent mass tolerance of 2.5

Da, considering the post-translational modifications M+16, Q+1 and N+1. A peptide

tag is a string of residues with flanking masses on the C-terminus and the N-terminus

(Figure 2.1, Database Search). The fragment-ions comprising the top scoring tags were

manually investigated for charge confirmation. Tags that passed this validation were

searched against our custom database. A database peptide was considered a candidate if

it matched the tag perfectly, and the residues on either end had masses that matched the

tag masses. All candidate peptides were scored according to the fraction of explained

intensity, which is the proportion of the total spectrum intensity which can be explained

by annotated peaks.

http://genomes.sdsc.edu/leechmaster/database/
http://genomes.sdsc.edu/leechmaster/database/
http://genome.jgi-psf.org/Helro1/Helro1.download.ftp.html
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
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2.2.9 In situ hybridization

A complementary coding strand probe was obtained by in vitro transcription of

the PCR product using T3 polymerase (Invitrogen), and subsequently hydrolyzed into

shorter fragments. In situ hybridization was then performed with a digoxigenin-labeled

RNA probe as described previously [58]. In brief, embryos of various ages were fixed in

paraformaldehyde and further by Pronase E digestion. Day 6-8 embryos were digested

for 20-25 minutes, older embryos for longer times. Digested embryos were then hy-

bridized overnight at 59◦C in 50% formamide with approximately 1 ng/mL digoxigenin

labeled RNA. Washed embryos were treated with RNAase A (Sigma) to degrade unhy-

bridized probe. Hybridized probe was visualized immunohistologically with an alka-

line phosphatase (AP)- conjugated anti-digoxigenin (Roche) reacted for periods ranging

from 15 hours to 3 days, using NBT and X-phosphate color reagents (Roche). Intact

embryos were cleared in 80% glycerol, mounted under a coverslip and photographed.

2.3 Results and Discussion

2.3.1 An overview of the pipeline

In Figure 2.1, we show our customized pipeline for detecting and identifying

masses specifically expressed in a given morphological feature. It consists of two major

subprocesses: protein localization (top) and peptide identification (bottom). The first

subprocess allows us to detect peptides or proteins that are preferentially expressed in a

given ROI using MALDI imaging data and consists of 3 parts: 1) data acquisition and

processing, 2) query definition and 3) analysis. First, we acquire spectra across a raster

of locations across the entire tissue or specimen, obtaining a list of spectra associated

with specific spatial coordinates. A histological image of the specimen taken prior to

matrix deposition serves to localize raster points, or MALDI spots, on the specimen.

We use the histological image to manually define a mask of the ROI, which is stored

as a transparent layer with black pixels only within the ROI. Because MALDI spots are

generally at lower resolution than the mask, the mask must be converted into a query

as described in Methods. The query defines which MALDI spots are in the ROI, or
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more precisely, how much of each MALDI spot belongs to the ROI. Queries can also be

searched against each other in order to find molecules that are differentially expressed

from one ROI to another. An example of a mask and query for the central nervous

system of a leech embryo specimen (LEECHE12A ) is shown in Figure A.2. For each

m/z, we apply a statistical test to decide if it is preferentially expressed in the ROI.

The critical performance issue is to rank results correctly. We use the ρ statis-

tic, which is the Mann-Whitney U statistic normalized by its maximum possible value.

Conceptually, it represents the probability that, given two random spots, one in ROI and

one outside the ROI (or in the second ROI), the intensity of the spot inside the ROI is

higher than that of the spot outside the ROI. Thus, a ρ statistic value of 0.5 indicates

that the expression is not specific to the ROI. As the statistic approaches 1, it becomes

increasingly likely that the intensity of a random ROI spot is greater than that of a ran-

dom non-ROI spot. This means that the expression becomes more localized to the ROI.

Conversely, as the statistics approaches 0, it becomes increasingly likely that the ex-

pression is inversely localized to the ROI. There is no hard line between “good” and

“bad” localizations, but rather gradual decrease in specificifity of the localization to the

ROI. Therefore, we leave it up to the user to decide a probability threshold based on

the desired quality of results. For our purpose, we often used a threshold of 0.65. The

performance of the statistic for simulated, and actual leech data is discussed in detail in

the following sections.

The second stage of the pipeline is aimed at identifying the peptides specifically

expressed in our ROI. MS/MS spectra are acquired by specifically targeting the list of

masses detected by the first stage (Figure 2.1). This is done in a data-dependent or

semi-data-dependent manner (see Methods). To maintain the connection with the m/z

values, the MS/MS spectra are acquired using a non-proteolytically digested sample.

We use a high-accuracy QTOF instrument (sub-3ppm), with multiple collision energies

to provide a high-quality fragmentation. Multiply charged fragment ions are de-charged

using isotopic peaks. Next, we generate peptide sequence tags on both the original and

the de-charged spectra. We define a tag as a short string of amino-acids flanked by

mass values (see Figure 2.1 : Database Search). We search all tags in a modification-

tolerant manner against a custom protein database and annotate and score the resulting
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candidate peptides from the search. At this stage, we have a top-scoring candidate

peptide identified through MS/MS, with a parent mass value that shows preferential

expression in the ROI. As a test of this identification, we synthesize a probe from the

corresponding mRNA with embryonic cDNA as a template, which is then used in in

situ hybridization assays to verify that mRNA and peptide co-localize to our ROI. We

would expect peptide co-localization to the mRNA, but in some instances the mRNA

could have a wider distribution, suggesting post-translational regulation. Conversely, it

is also possible that the peptide is transported to a sub-cellular location, that is different

from the region of synthesis. Hence, co-localization is supportive of identification, but

lack of it cannot be taken as proof of mis-identification.

2.3.2 Data Normalization

Similar to other studies [59], we observe significant and systematic bias in the

distribution of the intensities, both on the m/z axis and spatially. Reasons for the spatial

bias include differing tissue composition or thickness and heterogeneity of ionic matrix

crystallization [29]. In order to eliminate this bias, we must first do a baseline correction

on all spectra (m/z-dependent bias), then we must normalize the intensities across all

spectra (see Methods). In Figure A.1a, we see that there is large variation in the average

spot intensities. In panel b, we see the distributions of the average spot intensities across

the leech surface before (top) and after (bottom) normalization. After normalization, all

spot spectra have the same average peak intensity. Not correcting the bias can lead to

erroneous conclusions on the localization of expression for many molecular species. As

an example, the leech brain appears to have overall significantly lower total intensity

compared to other regions. In panel c, correcting for this bias reveals the species m/z =

10357.1 (right) as being higher in the brain (top vs. bottom panels). On the other hand,

the species at m/z = 8563.04 (left) appears to have significantly localized expression

initially. However, the significance is diminished after correction.
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Figure 2.2: Results of the rho-statistical test for the CNS query in the leech. We iden-
tified 43 m/z values that were significantly present in the CNS of LEECHE12A (score
≥ 0.65), which are listed in Table A.1. Visual inspection clearly demonstrates the power
of the method as illustrated by the images for the top 12 most significant m/z values.
Score decreases along with quality of CNS localization.
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2.3.3 Defining Regions of Interest

As described in Methods, MSI-Query was applied to two samples denoted as

LEECHE12A and LEECHE12B . A total of 12115 and 22230 MALDI MS spectra were

acquired on LEECHE12A and LEECHE12B respectively. We created masks for three

distinct ROIs (CNS, lateral-ventral, and nephridia) onto the histological images and

converted them into queries (see Methods). These masks correspond to the following

embryonic tissues.

CNS: The leech segmental ganglia are very similar to each other and comprise of

about 400 neurons, ' 180−190 pairs and ' 30 unpaired [60], many of which are very

well characterized developmentally, anatomically, physiologically and

neurochemically [61, 62]. Furthermore, unlike the mammalian CNS, the leech CNS has

a demonstrated capacity to repair itself after injury and to restore function [42, 43, 44].

We defined the central nervous system (CNS) as the segmental ganglia, the head gan-

glion and the tail ganglion in each specimen.

Lateral-Ventral: As in other animals, mechanosensory neurons in the leech innervate

the skin in a regular pattern of domains also known as tiles. One example of these

types of cells are those that respond to light touch on the skin surface (TV, TL and TD

cells). These cells have an interesting difference in how they set up their sensory arbors,

subdividing each segment: the TV cells innervate left and right ventral tiles, the TL cells

innervate left and right lateral tiles, and the TD cells innervate left and right dorsal tiles.

A very interesting problem is to identify what peptides/proteins (or other molecules)

might mark the boundaries or areas of each tile and signal to the sensory cells where

to locate their arbors. We defined the lateral domains as those extending from head

to tail between two lines drawn along the ventral-most and dorsal-most boundaries of

the laterally positioned nephridia (see Figure 2.3 top left). The ventral domains were

then defined as lying between the lateral domains and the ventral mid-line. The area of

the CNS was subtracted from the ventral domains in order to examine ventral domain

information without the CNS contribution and in order to reduce noise.
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Nephridia: The nephridia are the segmentally-iterated excretory organs of the leech

and as such serve the purposes of ridding the animal of waste products and maintaining

water and electrolyte balance. Both the structure and transport mechanisms of the leech

nephridia have been studied in some detail [63, 64]. Because the nephridia connect to

the outside of the animal (through the nephridiopores), they can serve as pathways for

bacterial or other microbial invasion, and some preliminary data suggests that cells in

the nephridia may be expressing and releasing antibacterial peptides. We created a mask

of the nephridia as shown in Figure 2.3 (top right).

2.3.4 Simulations

Currently, there are no standard datasets to assess performance, or standards to

generate simulated data. To assess performance, we chose a mass value (m/z= 5574.15)

that was significantly localized in the leech CNS. Our first simulation tests the perfor-

mance of our method when the ROI signal decreases over the entire region. In this case,

we simply decrease the intensities in the ROI spots by a certain percentage until the

average intensity inside the ROI is the same as the non-ROI (or background) intensities.

In Figure A.4, we see that the score decreases slowly at first, and starts dropping dras-

tically once the average ROI intensity is less than about twice the average background

intensity. Visually, we can see that the signal also starts dropping more rapidly around

the same point. In the original image, the average ROI intensity is about 6.8 times the

non-ROI average intensity, and the signal is very clear. In the second image, the ratio of

average ROI intensity to average background intensity are approximately 2.74. While

the signal is visually not as pronounced as in the original image, especially in the poste-

rior ganglia, we can still see clear CNS expression and the score is still high (s = 0.75).

However, in the third and fourth images (intensity ratios 1.87 and 1.58, scores 0.66 and

0.62), we observe a lower signal. We can also see a decrease of signal in the anterior

ganglia between the two images. Finally, the last two images (ratios 1.29 and 1.0, scores

0.57 and 0.5) show almost no CNS localization. Again, similar intensities in the ROI

and in the background lead to a score close to 0.5 as expected.

Our second simulation tests our method when degrading the signal in the ROI. In

this case, we set a proportion of the ROI spots to have random non-ROI (or background)
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intensities (see Methods). It is then possible to balance the total ROI intensities by

distributing the subtracted intensity to the remaining spots; that way, the total intensities

in ROI and outside ROI remain the same throughout the simulation. In Figure A.5, we

show the results for two simulated runs for the two cases described above: with and

without balancing the ROI intensities. In both cases, the score linearly decreases as

more ROI spots are set to background intensity. In the balancing case, the intensities of

the remaining spots increase to compensate for the other spots; consequently, the score

remains higher in the balanced case than in the unbalanced case, as expected. Note that

because the background intensities are set in a random manner, the results differ slightly

for each run. This explains why the ending scores are different in the two runs. Visually,

we can see that around s = 0.65, which indicates a 65% chance that a random ROI spot

has higher intensity than a random non-ROI spot, the signal is still CNS-specific, but is

targeted to a sub-region. When all spots are set to background intensities, the signal is

lost and the probability score decreases to 0.5 as expected. The results show that the ρ

statistic provides a direct interpretation of the strength of the ROI signal.

2.3.5 Over-expressed molecules in the leech

CNS: Any MALDI spot partially hitting the CNS is considered in the ROI. Even so,

only 2.66% and 3.28% of the spots in LEECHE12A and LEECHE12B respectively were

in our ROIs, and each ganglion had at most 2-3 laser spots 50% or more coverage by

the ROI (see Figure A.2). Despite this challenge, we find that our method performs

extremely well. We identified 43 m/z values that were significantly present in the CNS

of LEECHE12A (score ≥ 0.65), which are listed in Table A.1. Visual inspection clearly

demonstrates the power of the method as illustrated by the images for the top 12 most

significant m/z values shown in Figure 2.2. We can see from these images that the

ions corresponding to these m/z values are clearly more highly represented in the CNS

and that specific expression can be detected even in the presence of other signal. For

example, mass 8428.45 (case c) is detected as having significantly higher expression

in the CNS even though it is expressed in another area in a dorsal posterior region.

Likewise, we can see signal in other areas for cases e, f , g, h (m/z = 2474.11, 2524.06,

9240.11, 3299.11). Panels i-k are marked by lower (albeit significant) scores which
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Figure 2.3: Mask and top results for LEECHE12A with other ROIs: (left) ventral vs.
lateral query and (right) nephridia vs. lateral. For ventral vs. lateral query, top 5
high scoring images (v1-v5) and top 5 low scoring images (l1-l5) are shown. A high
score indicates strong expression in the ventral region against the lateral region, while
a low score indicates the inverse. In all images, there is a clear division between the
two sections (ventral and lateral). For nephridia vs. lateral, top 10 results are shown.
Scores are lower than for the other queries. The expression pattern is noisier and non-
homogeneous.
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corresponds to the decrease in CNS specificity. In those cases, not only is the noise

higher in the rest of the leech, but the uniformity of the expression inside the CNS

decreases. Specifically, we can see that fewer spots within the ganglia display strong

expression while expression in the head ganglion increases compared to the rest of the

ganglia. However, even in those cases, the CNS intensities are uniformly higher than

non-CNS intensities.

The correlation between decreasing score and decreasing quality of CNS local-

ization is also evident in the lower ranked masses. In Figure A.3, we show the expres-

sion pattern for 3 representative m/z values. The first image is taken for m/z = 2797.28

which was assigned a score of s = 0.62, just below our cut-off of 0.65. It still shows re-

gional distribution specific to the CNS, but signal in other regions significantly impairs

the ROI signal compared to the top-scoring images in Figure 2.2. In the second panel,

the intensities outside the nervous system almost perfectly balance out the intensities

within the CNS, and thus we get a score of 0.51, which represents no CNS localization.

Finally, at the other end of the range, we can detect ions which have specific expression

to outside the ROI. In the third image, at score s= 0.23, the molecule is highly expressed

in the ventral region of the leech but shows distinct under-expression in the ganglia and

the brain, displaying the inversed CNS expression pattern expected by such a low score.

Lateral-Ventral: In order to detect some of the potential signaling peptides that might

be involved in the development of mechano-sensory arbors, we looked for m/z values

expressed differentially between the ventral and the lateral regions by using our algo-

rithm. Given that there are more spots in these ROIs than in the CNS ROI, and that they

are more evenly distributed, we expected the algorithm to perform well for these masks.

Indeed, we had many high-scored results for both ventral and lateral regions. Figure 2.3

shows the images for the top 5 highest scores (v1-v5) and for the top 5 lowest scores (l1-

l5) when running the algorithm for the ventral region against the lateral region. A high

score indicates strong expression in the ventral region against the lateral region, while a

low score indicates the inverse. In all images, there is a clear division between the two

sections (ventral and lateral) on the left side of the leech. The right side of the leech

seems to have more noise, but the demarcation between the two sections is maintained
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throughout the results. Interestingly, we pick out a nervous system signal at m/z= 3505.

However, when looking at the image we can see that there is also a clear separation in

signal between the ventral and lateral regions. This signal could be from a molecule that

is expressed in both the ventral region and the CNS yielding a higher intensity in the

CNS, possibly due to higher abundance there. Alternatively, the different signal inten-

sities might reflect a mixture of two molecules with similar m/z values, one molecule

producing a high intensity signal in the CNS and the other a lower intensity signal in the

ventral region. When looking at the localization of the lower signal molecule, we can

see the same intensity separation between the ventral and lateral regions.

Nephridia: When querying the nephridia against the rest of the leech, the top results

were clearly in the nephridia alone; however, the fact that many masses are expressed

more strongly in the lateral section than the ventral section caused some of the lower

scoring results to be noisy. As a consequence, we queried the nephridia against the lat-

eral section of the leech. The top 10 results are shown in Figure 2.3. It is important

to note that the scores for nephridia are much lower than for the previous queries. In

fact, only the top score s = 0.67 is above our threshold of s = 0.65. When looking at

the images, we can see that even though there is nephridia localization, the expression

pattern is noisy and non-homogeneous. For example, m/z = 5557 and m/z = 10875.6

are expressed more in the anterior and posterior sections of the leech, respectively. In-

terestingly, several masses show a co-localization with the nervous system (m/z = 8429,

7663, 6535) (data not shown), reflecting perhaps the accumulation of strongly expressed

and secreted neuropeptides in the CNS and the secretory organs [65]. Besides detecting

interesting masses for the ROI, we can also see regional differences in the expression of

the molecules. Corresponding molecules may represent segmental functional differen-

tiation.

Comparative analysis and reproducibility: To address the reproducibility of CNS

specific mass values, we repeated the experiment in another leech. LEECHE12B , like

LEECHE12A , is a 12 day embryo and expected to show similar distribution of pep-

tides. It is worth noting that while the two samples were prepared using the same meth-

ods on comparable samples, spectra were acquired on a slightly greater m/z range and
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Figure 2.4: Annotated MS/MS spectrum for HmIF4 , a novel peptide in the family of
glial intermediate filament. The annotation explains 78.41% of the total peak intensity,
with strong b and a fragment-ion series. Corresponding MALDI and in situ hybridiza-
tion images both show CNS localization. MS1 (top right) has good isotope resolution.
Charges for all fragments were manually verified by examining isotope patterns. Text
annotation is available by request.

on a much tighter raster for LEECHE12B . In Figure A.2, we display the top scoring

masses for the two samples. All high-scoring masses in LEECHE12B were found in

LEECHE12A , but the inverse is not true. This is attributed to a lower overall intensity of

the data in LEECHE12B , as can be seen by the high-scoring images from LEECHE12B .

This difference in data quality is attributed to the difference in data acquisition parame-

ters as mentioned above. Notwithstanding the low overall quality of LEECHE12B , the

scores between the samples are comparable and reflect the true quality of the localiza-

tion.
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Figure 2.5: Annotated MS/MS spectrum for novel peptide with parent mass ' 3666
Da, targeted for being specifically expressed in the lateral/dorsal region. The entire
annotation explains 78.92% of the total intensity, including a very strong 7-residue
tag, [1089.62]VTSDVLV[1863.22], with a complete doubly-charged b ion series b8-
b15 and a complete y ion series y8-y15. A degenerate database search that matched
Leucines with Isoleucine, and Aspartate against deaminated Asparagine did not find a
match in our database. This suggests that this is a novel peptide, not represented in the
LeechProtsDB database.
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2.3.6 Peptide identification

Initial experiments were performed on extracts from 39 whole embryos. The

samples were subjected to nano-LC-ESI-QTOF MS. We selected peaks corresponding

to interesting imaging masses from the MS1 data and acquired MS-MS spectra in a

data-dependent manner or semi-data-dependent manner (see Methods). We increased

acquisition time in order to acquire high-quality spectra of lower abundance peptides.

In Figure A.9, we can see that two of the identified spectra had lower MS1 intensity

counts than many of the other molecules present in the sample. No trypsin digestion

was performed so we could use the peptides’ parent masses to link the MS/MS data to

the MALDI imaging data which captures endogenously processed peptides. Identifica-

tion of intermediate sized endogenous peptides is difficult due to a limited understanding

of fragmentation chemistry and high charge on fragment ions. To overcome these issues,

we developed a novel peptide identification pipeline, based on construction of sequence

tags from both original and deconvoluted spectra, and a database search including mod-

ifications. We identified a number of peptides (see Table A.3). A few are described

below.

We first identified a candidate sequence for parent mass ' 2474 Da that was

specifically expressed in the CNS. In Figure 2.4, we present the annotated spectrum

for the peptide that was derived from an EST transcript in our LeechProtsDB database,

as well as the corresponding MALDI image showing CNS specific expression. The

annotation explains 78.41% of the total peak intensity, with strong b and a fragment-ion

series. As expected, we observe a very strong peak for fragments at the N-terminus of

the prolines. It is also worth noting that a large part of the b ion series, namely b15-b22,

is built on validated charge 3 fragment ions, which makes identification of this peptide

difficult using standard tools.

A BLAST search of the EST sequence against the NCBI nr database established

that the peptide came from a previously unreported protein. The strongest similarities

(but not identity) are all to intermediate filament proteins, and specifically to gliarin,

macrolin and filarin, the three known intermediate filaments in Hirudo medicinalis [66],

which have been described as important in neuronal development in leech. Thus, we

believe to have found a novel member of the family of intermediate filaments, which
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we call HmIF4 . We aligned the four protein sequences using ClustalW 2.0.12 [67],

as shown in Figure A.6. The EST open reading frame aligned particularly well in the

conserved rod domain, and has more variability outside of that domain. The peptide

we identified is located in a variable region in the 5’ end of the rod domain where the

sequences are quite dissimilar, thus confirming the discovery of a novel protein. Finally,

we examined the distribution of the HmIF4 transcript using in situ hybridization (see

Methods). In Figure 2.4c, we can clearly see that the mRNA is indeed preferentially

expressed in the CNS. The concordance of the spatial distributions at the peptide and

corresponding mRNA strongly support the specificity of expression, and also suggests

that differential gene expression, not protein targeting, is the reason for the spatial dis-

tribution.

A second peptide, with parent mass ' 3666 Da, was targeted for being specifi-

cally expressed in the lateral/dorsal region. The identified sequence, is noted as

[201.13]TLTVV[277.15]VVTSDVLV[258.18]VLDTTD[976.55]

and explains 78.92% of the total intensity. The annotated spectrum is shown in Fig-

ure 2.5. Moreover, most of the rest of the intensity can be explained by internal ions

from breaks at the dominant peaks. Out of this long annotation, we have a very strong

7-residue tag, [1089.62]VTSDVLV[1863.22], with a complete doubly-charged b ion

series b10-b17 and a complete y ion series y17-y24. There is also a partial a-ion ladder

supporting the direction of this tag. On its own, the tag explains 67.3% of the spectral

intensity. A BLAST search of the protein sequence did not get any good hits suggesting

that this is a novel peptide. Another spectrum of the same peptide, unmodified and 2

amino acids longer confirms the identification. The parent mass of this peptide, ' 3841

Da, also shows dorsal localization (see Figure A.8).

A third molecule (parent mass ' 2500 Da) was shown to have a CNS specific

expression. A database search identified the peptide LPGELAKHAVSEGTKAVK-

TYTSSK, which is part of the histone H2B in a related species, Helobdella robusta

(Figure A.7). Histones, which are part of the DNA packaging complex, are highly

conserved. Indeed, a BLAST search [68] of the translated EST sequence against the

NCBI nr database, returned complete perfect matches to 179 sequences in many dif-

ferent species. Therefore, it is is very likely that the peptide is conserved between the
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sequences in Helobdella robusta and Hirudo medicinalis. Regarding CNS localization,

it is worth noting that Shimma et al. [50] have previously identified a histone H2B ex-

pressed in the mouse brain using MALDI imaging. In situ hybridization of the mRNA

again shows a preferential location in the CNS, but with a relatively weaker signal (see

Figure A.7).

2.4 Conclusions

Recent years have seen a tremendous improvement in instrumentation for mass

spectrometric imaging employing MALDI, DESI and SIMS techniques [69]. MALDI

MSI is particularly useful for the study of the tissue distribution of biologically inter-

esting molecules because it affords both access to large range of intact molecules and a

relatively higher spatial resolution when compared to other ion sources. MALDI MSI is

therefore the approach of choice when studying tissue distributions of larger molecules,

such as peptides or proteins.

While MALDI imaging offers great advantages for detecting and mapping un-

known molecules in their native, processed state, it does have some important physical

limitations. For example, despite recent and potential further improvements, MSI cannot

achieve either the level of detectability, single or a few molecules, or the spatial reso-

lution of conventional light microscopic cell imaging techniques. The pixel resolution

obtained with MSI, as reported in most published studies, is∼ 50-300µm, though a pos-

sible lower limit of ∼ 5µm for morte abundant species has been reported [69]. In com-

parison, resolution of 200nm is achievable using laser scanning confocal microscopy of

cells immunostained with fluorescent tags [70].

The advantages of MSI, then, are twofold: first, a pixel is not simply a pixel,

but a complex array of mass values that can be resolved to high-accuracy. Second,

MSI allows for an unsupervised (label-free) interrogation of the sample, allowing for

the discovery of previously unknown species that are active in specific spatio-temporal

contexts. The approach we report, referred as MSI-query, addresses and exploits these

two facets, developing a novel analysis methodology.

As noted above, a hurdle in the assessment and analysis of the large amounts of
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data inherent in MSI is to determine which of the many masses represented in the spec-

tra are worth pursuing, given that the identification of the corresponding protein requires

a great investment in time and effort. In our approach, we have started with the premise

that the topographic distribution of a particular m/z value can be a first order filter for

selecting those molecules of particular interest. Thus, we first developed a statistical

technique to identify mass values that are specifically expressed in a morphological re-

gion specified by the user. Using this constraint, we then obtained a collection of mass

values (presumably endogenously processed peptides or proteins) that are specifically

expressed in the CNS, nephridia, and ventral/dorsal segments of the medicinal leech

embryo, the model system we used to test our technique. In order to obtain amino acid

sequence information for less abundant species, we decided to use a procedure for iden-

tifying the peptides/proteins corresponding to these interesting masses from secondary

fragmentation (MS/MS) data that required decoupling the imaging and MS/MS [71]

performed with LC-MS separation of non-digested proteome extracts. While other ap-

proaches obtain sequence information by performing MS/MS directly from the tissue

while maintaining spatial information, our method allows for the concentration of pep-

tides, helping identify peptides and proteins with intermediate abundance [55].

Our approach does have some shortcomings that should be noted. The identi-

fication of endogenous peptides based on fragmentation of intermediate sized, highly

charged precursors is challenging given available tools. We developed a customized

pipeline for identification. As a second issue, the link between MS/MS and MSI parent

masses is tenuous due to the lower accuracy of mass resolution in MSI. However, we

test our results by using a second independent validation through in situ hybridization

of the identified mRNA. While co-localization of the ISH and MSI signals can provide

only a measure of consistency, it may also lead us to interesting differences between

mRNA and protein localization that can be further explored.

Initial tests of our methods on the leech embryo MSI data have thus far resulted

in the identification of a few novel proteins, including a member of the intermediate

filament (IF) family and a completely novel peptide sequence. The discovery of a new

IF expressed by neurons in the leech CNS is also of significant biological interest. IFs

form a diverse family of proteins important for cytoskeletal architecture. Invertebrate IF
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proteins are relatively less analyzed and might be evolutionarily and functionally distinct

from their vertebrate counterparts. The three known IFs in leech have distinct patterns

of expression. The expression of macrolin is limited to macroglias, gliarin is expressed

in both glial, and macroglial cells, and filarin is selectively expressed in neurons [72,

66]. While their function is poorly understood, the neuronal IFs are suggested to be

developmentally regulated, and may be involved in stabilizing the neural cytoskeleton.

Our discovery of a novel IF protein adds to the diversity of invertebrate neuronal IFs.

Our results also include the detection of CNS expression of a fragment of histone

H2B in early leech development. Interestingly, although histones are mainly known for

their essential roles in chromosome packaging, histone H2B has been reported previ-

ously to be localized to the mouse brain [50]. Moreover, recent studies in Drosophila

have suggested that the specific targeting of some axons (R1-R6) in the optic ganglia is

mediated by the selective deubiquitination of the fly ortholog of histone H2B [73, 74].

Further, the deubiquitination is mediated by the SAGA complex, which has analogs

from yeast to human [73, 74]. The discovery of these and other peptides using MSI

shows the power of mass spectrometric imaging in a label-free identification of spatially

differentiated proteins.

2.5 Acknowledgements

This chapter, in full, was published as “Automated querying and identification of

novel peptides using MALDI mass spectrometric imaging”. Bruand J, Sistla S, Mériaux

C, Dorrestein PC, Gaasterland T, Ghassemian M, Wisztorski M, Fournier I, Salzet M,

Macagno E, Bafna V. J Proteome Res 10(4):1915-28 2011. The dissertation author was

the primary author of this paper.



Chapter 3

AMASS: Algorithm for MSI Analysis

by Semi-supervised Segmentation

Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows

the generation of 2D ion density maps for a large complement of the active molecules

present in cells and sectioned tissues. Automatic segmentation of such maps according

to patterns of co-expression of individual molecules can be used for discovery of novel

molecular signatures (molecules that are specifically expressed in particular spatial re-

gions). However, current segmentation techniques are biased towards the discovery of

higher abundance molecules and large segments; they allow limited opportunity for user

interaction and validation is usually performed by similarity to known anatomical fea-

tures.

We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-

supervised Segmentation). AMASS relies on the discriminating power of a molecular

signal instead of its intensity as a key feature, uses an internal consistency measure

for validation, and allows significant user interaction and supervision as options. An

automated segmentation of entire leech embryo data images resulted in segmentation

domains congruent with many known organs, including heart, CNS ganglia, nephridia,

nephridiopores, and lateral and ventral regions, each with a distinct molecular signa-

ture. Likewise, segmentation of a rat brain MSI slice dataset yielded known brain fea-

tures, and provided interesting examples of co-expression between distinct brain re-

gions. AMASS represents a new approach for the discovery of peptide masses with

36
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distinct spatial features of expression.

Software source code and installation and usage guide are available at

http://bix.ucsd.edu/AMASS/.

3.1 Introduction

The use of multiple imaging techniques to assess the presence and location of

specific proteins in tissues and cells is central to the study of biological systems. Histor-

ically, successful approaches usually involved labeling one/few proteins at a time either

by attaching a fluorescent domain genetically or by treating a biological sample with la-

beled antibodies, and then recording two-dimensional (2D) micrographs of the sample,

possibly also reconstructing them into a three-dimensional (3D) object or movie. Such

imaging techniques are low-to-medium throughput approaches and give the biologist

insight into just a small number of biological samples, limited to known proteins for

which antibodies or tagged forms are available. By contrast, there is an increasing num-

ber of imaging technologies (transcriptomic or proteomic) that allow for the sampling

and exploration of the entire complement of active molecules in the cell.

Mass Spectrometric Imaging (MSI) is a molecular imaging technique which al-

lows the generation of 2D ion density maps for a large complement of the molecules

present in the tissue under study [37]. In the Matrix-Assisted Laser Desorption / Ion-

ization (MALDI) MSI workflow, thin tissue sections (10-15µm) from organs, or even

whole dissected specimens, are mounted onto a transparent glass slide, allowing micro-

scopic observation of the material prior to MS analysis. After deposition of the MALDI

matrix, automated direct MALDI analysis of tissue sections provides information on

masses of the desorbed molecules in a 2D raster defined by the selected positions of

the laser beam [38]. The studies performed by various groups [32, 33, 34, 35, 36]

have demonstrated that acquisition of tissue expression profiles while maintaining cel-

lular and molecular integrity is feasible. With automation and new analysis software, it

has also become possible to produce multiplex imaging maps of selected bio-molecules

within tissue sections [37, 38, 39]. Molecules that are preferentially expressed in a re-

gion of the sample will show higher intensities in that region when looking at the image
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corresponding to the specific m/z value associated with the molecule. Discovery of

these molecules often involved observing the images for each mass value sequentially

in a movie, to short-list ones with interesting patterns.

Most bioinformatics approaches have focused on making the discovery process

easier by allowing computational queries of MSI data-sets. In previous work [75], we

started with a supervised approach in which we assumed that the region of interest (ROI)

is specified based on pre-selected morphological criteria. As an example of an ROI, con-

sider the central nervous system (CNS) of the medicinal leech, Hirudo medicinalis, one

of the best-studied representatives of the phylum Annelida (segmented worms). Given

a particular ROI, we asked if (a) there were specific molecular signatures or collections

of peptide mass values that are specific to the ROI; and, (b) which peptides correspond

to these masses. We identified molecular signatures for many ROIs, including 43 m/z

values in the CNS, and identified 35 peptides, one of which was a novel member of the

intermediate filament family (which we named HmIF4), which appears to be involved

in neural development.

By contrast, unsupervised approaches (no pre-specified ROI) seek to computa-

tionally segment (or partition) MALDI spots into regions, each characterized by a spe-

cific molecular signature or profile. In most cases, the idea is to treat each MALDI spot

as a vector of expressed masses, and to apply unsupervised clustering techniques for

segmentation. Principal Component Analysis (PCA) and hierarchical clustering (HC)

are classic non-parametric clustering techniques, and have been used successfully for

MSI [40, 41, 76, 16]. Alexandrov et al. argue that these methods do not take advantage

of the spatial clustering of MSI spots and develop a technique based on edge detection

and smoothing [77]. While these clustering-based methods show promising results, they

need to be optimized both in memory and runtime to be able to process the full MSI

datasets which are typically large. For example a dataset acquired on 20000 MALDI

spots with 40000 m/z values for each spectrum yields a dataset of 800 million values

(3.2GB). Typically, MSI datasets are reduced for processing by decreasing mass reso-

lution [40, 78], by applying a discrete wavelet transform [79] to each spectrum, or by

explicit peak selection on each spectrum [78, 77]. Normally, the peak-picking is per-

formed at a pre-processing stage in a spectrum-wide manner based only on the intensity
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and the shape of a potential peak. If a region of interest is characterized by a single

(or a few) peaks that are not among the most intense peaks in a region, these peaks

may be omitted during peak-picking, making the region indistinguishable from others.

The standard clustering approaches also does not rely on any a priori knowledge about

tissue morphology. Finally, unsupervised clustering-based segmentation methods are

useful but limited in providing a user an opportunity to go deeper into the data analy-

sis. Most significantly, we find in our investigations that segments overlap because they

share peaks so it is important to allow the user to make a reasoned choice.

In this paper, we address these issues explicitly. We start with the difficult ques-

tion of what constitutes a ‘good’ segmentation. Prevailing methods implicitly equate

good segmentation to ones that match known morphological features of tissues observed

through optical methods [40, 76, 77]. While this validation is natural and provides di-

rect visual feedback – indeed we use it as one technique in this report (see Figures 3.4

and 3.5) – it has problems. Often, molecules are expressed in multiple, morphologically

distinct, regions. Segmenting images so as to conform to known morphology will inhibit

the discovery of novel molecular signatures. Second, MSI resolution (20-70µm) is still

inferior to optical resolution ( < 1µm). The potential of MSI is not as a replacement of

optical methods, but to help identify the molecular basis of morphological differentia-

tion. Therefore, we judge image-segmentation quality with alternative criteria based on

molecular signatures.

A key finding of our previous work [75] was that, given a region of interest (ROI)

defined by an image-segment (or collection of MSI spots) I, we usually obtain a strong

molecular signature for I, a collection of mass values that are preferentially expressed

in spots in I. Then, the spectrum of each spot s can be compared to the molecular

signature associated with I. We use this idea to judge the quality of segmentation. Infor-

mally, a segmentation is consistent if each segment I has a unique molecular signature

that is shared with all spots in I and not with other spots. This consistency measure

is independent of morphology, and allows us to discover signatures that cross known

morphological boundaries.

Using the molecular signature defined by I as a ‘query’, we can recruit other

spots to the segment, refining the segmentation. Our method is reminiscent of iterative
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unsupervised clustering methods, like a K-means clustering. It starts by choosing an ini-

tial segmentation, each with a molecular signature (or ‘center’). Subsequent iterations

repeat two steps: (a) each spot is assigned to the nearest of the K signatures (based on a

query) and, (b) K new signatures are described from the recruited spots. Earlier methods

consider each MALDI spot as a vector of intensities over mass-bins, causing the clus-

tering is dominated by high intensity peaks. This has been typically circumvented by

using scaling techniques, such as autoscaling, which have their own problems. We pro-

pose a different representation of each spot. Starting with a current image-segmentation

I , each spot is represented as an |I |-dimensional vector of query-scores to each of the

segments in |I |, where |I | is the number of clusters in the segmentation. Thus two

spots are similar if they have similar scores against all clusters. To start the algorithm we

need an initial segmentation. In our case, the initial segments can be chosen at random,

or by partial user-input (semi-supervised). The initial segments are chosen to be small

groups (only a few) of contiguous spots, but otherwise no spatial correlation is assumed.

In summary, three ideas describe AMASS (Algorithm for MSI Analysis by Semi-

supervised Segmentation). (a) Rank based statistics are a useful discriminator for any

current cluster, and this allows us to query. (b) Query-result consistency is a valid score

for the validity of a cluster. (c) The scores of a spot against existing clusters can be used

to compare and re-partition spots. In addition, we make available a computational tool

implementing the algorithm which allows many other controls for user intervention.

We applied AMASS on multiple datasets, including a leech embryo dataset ob-

tained from a 12-day (E12) specimen that was dissected and prepared flat before mount-

ing on the MALDI target, and a dataset of a rat brain coronal section of 4.16 mm from

Bregma with known anatomical structures. We show in the detailed results below that,

in each case, a completely automated run provided fine-grained, biologically meaning-

ful segmentations and their molecular signatures. The leech dataset was segmented into

regions corresponding to head, tail and segmental ganglia of the central nervous system,

nephridia, heart, and lateral and ventral regions. The rat brain dataset was segmented

into many domains corresponding to well-defined anatomical regions, with some signa-

tures corresponding to co-expression of molecules in distinct morphological regions.
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3.2 Results

3.2.1 AMASS: Algorithm for MSI Analysis by Semi-supervised Seg-

mentation
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Figure 3.1: Main workflow overview. First, we need an initial image- segmentation,
which can either be defined randomly or by the user. In the querying component, each of
the segment from the image-segmentation is used as a query and top-scoring m/z peaks
are retained. A log-odds score is calculated for each spot and each query; this score
represents the likelihood of a spot belonging to that query. The resulting set of scores
per query forms a set of query-results. These are used as input to the spot partitioning
component. In this component, the highly similar query-results are clustered together.
We then obtain binary signatures for each of the spots and retain the dominating ones
as cluster centroids. Clustering the all spots to the closest centroid results in a new
image-segmentation. The whole process can be run iteratively until the quality of the
segmentation is satisfactory.

The input to AMASS is a set of MSI spots S. Each spot in S is defined by a spec-

trum: a collection of m/z values and associated intensities. Define an image-segment I

simply as a collection of spots. An image-segmentation I (= ∪I) of an MSI data-set is

an incomplete partitioning of the spots into image-segments. By incomplete, we mean

that each spot is assigned to at most one image-segment, but could be assigned to none.

The output of AMASS is a segmentation I =∪I into consistent segments such that most

spots are assigned. AMASS works with an iterative refinement of segments.
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procedure AMASS(S, spectra)→ I , A, molecular signatures

1. Select an initial image-segmentation I , chosen either by the user, or via random

spot selection.

2. Repeat until (|S|< ε)

(a) Calculate A = Query(I ).

(* A[I,s] denotes the score for spot s against each segment I ∈I *)

(b) For all consistent segments I ∈I

(* see Methods 3.4.4, equation 3.10 for definition of consistency *)

• Output I; Set S = S\ I.

(* A consistent spot is fixed and output *)

(c) Set I ← Spot-partition(I ,A).

(* Recompute non-consistent segments based on scores in A *)

In practice, we iterate for a small number of rounds before terminating. The three main

steps are a choice of Initial segmentation, the Query procedure, and the Spot-partition,

and these are described below, along with results.

3.2.2 Initial Segmentation

The initial segmentation can be done in either a guided mode or in a blind mode.

In a guided mode, the user provides the initial clustering. Typically, it is a list of re-

gions of interest (ROIs) for which he/she would like to get additional information with

spots outside the ROIs unassigned. Examples of guided initial segments are shown in

Figure 3.2. The semi-supervised component of the algorithm will then return additional

information about the segments or ROIs, specifically which areas have similar molecular

signatures as well as the actual molecular signatures. In a blind approach, the algorithm

automatically generates a large set of small random seed clusters. Subsequently, it merge

and expand the appropriate seeds. An example of such random segmentation is shown

in Figure B.2a.
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3.2.3 Querying

The goal of querying is to compute A[I,s], a log-odds measure of similarity

between the spectrum at a spot s and the molecular signature of spots in segment I.

Denote the MALDI spectrum (m/z values and intensities) associated with spot s by a

vector of intensities vs; vs[m] is the intensity at m/z value m (Methods 3.4.2). We use

the following steps.

1. For each m/z value m and segment I, compute weight wI , with wI[m] describing

the ‘importance’ of m in discriminating I from S\ I (Methods 3.4.2, equation 3.6).

2. Compute a weighted-intensity Z (I,s) = wI ·vs.

3. Optionally, smooth the weighted intensities image.

4. Compute Pr(s ∈ I), and Pr(s 6∈ I) using the distribution of Z (I,s) over spots in I

and S\ I, respectively (see Methods 3.4.2, equations 3.2 and 3.3).

5. Set A[I,s] = log
(

Pr(s∈I)
Pr(s 6∈I)

)
To showcase AMASS’s ability to work with user defined queries (initial seg-

ments), we prepared queries informed by our knowledge of morphology. However,

the queries were not precisely defined, as seen in Figure 3.2a. For example, ventral and

lateral regions were defined by simple lines (for anterior, central and posterior) across

the corresponding sections, while three of the ganglia were queried independently.

For each query I, we show three consecutive images in Figure 3.2a. The first

two panels correspond to weighted-intensities Z (I,s) (before and after smoothing) and

the third panel corresponding to the log-odds score A[I,s] computed as above. In every

case, the scored images all highlight exactly the areas we would expect to see, illustrat-

ing the power of querying. Queries that are fairly complete, such as the skin, essentially

recapture the region of the original query. Partial queries, such as the three single gan-

glia, each recover the entire central nervous system.

Figure 3.2b shows the advantages and costs of smoothing. The granularity in-

herent in MALDI imaging data is reduced by smoothing allowing for evenness in spot to

spot weighted-intensities. Larger regions, such as the ventral central region, benefit by

coalescing disjointed spots. This allows us to define unified regions in different section

of the leech. However, very small and finely defined regions, such as the nephridiopores,
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Figure 3.2: (a) List of queries and their associated results. Shown are on each row the
original query, the corresponding weighted intensities image, the smoothed weighted in-
tensities image and the log-odds scores image. Querying with specific image-segments
results in the recruitment of other spots with similar molecular signatures. For example,
querying with one ganglion or a few pores recruits the whole CNS or the rest of the
pores respectively. (b) Detailed images for 3 different queries. We can see that while
smoothing helps in cleaning noise on larger queries such as the ventral query, it can also
cause the loss of some MALDI spots in the case of smaller regions, such as the pores.
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lose in accuracy and localization. While we can see higher intensities in almost all the

pores throughout the leech in the non-smoothed image, only the highest intensity pores

are detectable in the smoothed image. We can also notice some diffusion of the signal

in the CNS after smoothing. Spatial smoothing is an important part of some MALDI

imaging analysis tools [77]. While AMASS provides smoothing as an option to reduce

granularity, it is not used in our final segmentation results.

In the log-odds score images, we contrast the negative scores and the positive

scores by showing them in green and red respectively (see scale in Figure 3.2). Thus,

dark red spots in these images represents spots with molecular signatures very similar

to that of the original query, and thus are recruited by the query, while dark green spots

represent spots that are very unrelated. Partially related spots typically obtain scores

closer to 0 (shown in pale yellow to light orange). For example, querying with the ventral

posterior region (Figure 3.2b), expectedly results in partial recruitment across the entire

ventral region including the ventral anterior region, with the highest scores in the ventral

posterior regions. Thus, while the automated segmentation chooses a score threshold

based on the distribution of the scores in the original query (see Methods 3.4.3), we

make this an adjustable parameter.

Random Queries: While the algorithm is designed to let the user guide the study

by choosing initial segments, choosing random spots as initial queries also results in

a remarkably high quality segmentation. In Figure B.1, we show several examples of

random seed-segments and the corresponding query-results, which are very similar to

user-defined queries from the same morphological region (such as the CNS). In addi-

tion, query-results gain specificity in the next iteration as the new queries are based on

molecular signatures found from each current iteration. Regions that are only defined

by a few spots, such as the pores, are less likely to show on every random run; however,

in general, several runs of the algorithm on a random seeding eventually find that region

(data not shown).

Molecular signatures: In Figure 3.2a, one can observe that while a query consisting

only of ganglion 4 recruits the entire CNS, more or less evenly, the query-results asso-

ciated with ganglion 14 show stronger association in the more posterior ganglia. Thus,
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there are some differences in the molecular signatures associated with these queries in

different regions from the same gross morphological feature (i.e., CNS). This specific

case can be attributed to the rostrocaudal gradient in leech embryo development [80].

The head of the embryo is ∼ 3 days older than the tail, and thus the ganglia may show

different protein expression depending on their relative “age”. It is also possible that the

differences reflect the innervation of different organs along the rostrocaudal axis.

As AMASS is a query/molecular-signature based segmentation, we can easily

extract the molecular signatures associated with the query. As a test, we chose ante-

rior ganglia 2-4, and posterior ganglia 13-15, and extracted differentiating score peaks

from the querying module. In Table B.1, we show the score peaks with weight greater

than 0.7. Note that these are the weight associated to the m/z value, and not the rank

statistics. While many of the m/z values show expression throughout the entire CNS,

such as m/z ' 2524 and m/z ' 5418, some m/z values show a bias in intensities be-

tween the anterior and posterior regions. For example, at m/z' 3299 and m/z' 5273,

high intensities values are present in ganglia 1-10 and 1-12 respectively but not in the

rest of the CNS. On the other hand, at m/z ' 4377, high intensities are prevalent in

posterior ganglia (8−14), but not anterior ganglia. These molecules will be prime can-

didates for targeted identification of peptides involved in specific stages of the leech

neuronal development. In previous work [75], we identified one of the molecule in the

table (mz ' 2474) which shows expression in both the anterior and posterior ganglia

as a peptide from a novel gene, HmIF4, in the family of neurofilaments. Similar tar-

geted identification can be done to target peptides for m/z values specific to anterior or

posterior ganglia.

AMASS iteratively improves segmentation in a way that will create distinct

molecular signatures for each segment. To test the signature strength of specific mol-

ecules, we observed the top 20 score peaks at least 10 Daltons apart for segments at

successive iterations in leech and rat respectively (Figures B.3 and B.4). In both cases,

we can see that the peaks are overall conserved throughout the iterations. However, there

are some changes from one iteration to the next. For peaks m/z' 3508, 5417, 5570, we

find that the weights increase with number of iterations while in peaks at m/z ' 3295

and 4007, the weight is high for the ganglia 5-6 initial segment, much lower in iterations
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1 and 2, and not even in the top peaks for the ganglion 14 initial segment. These changes

happen as the entire CNS is recruited to a segment starting with a single ganglion, and

can be explained by observing the intensity images in Table B.1. Peaks m/z ' 3508,

5417, 5570 show high intensity throughout the CNS; peaks at m/z' 3653, 4377, 8564

show up in posterior ganglia, but not in the anterior ones. While m/z ' 8526 shows

up as expressed in both, its intensities are high in ganglia 2-4 but lower in ganglia 5-6.

Thus the contribution of individual peaks to the molecular signature, rises and falls with

its expression in the segment, and allows for a fine grained exploration.

Molecular signatures for different regions of the rat brain also show interesting

patterns (Tables B.2, B.2, B.3, B.4, B.5, B.6, B.7) as well as the corresponding m/z

images in Tables B.3 and B.4). We observe that several of the m/z values specifically

expressed in the piriform cortex also show expression in the CA1-CA3 cell bodies, the

CA3 cell bodies and the dentate gyrus (m/z ∼ 3454,6223,6272,6646 in Table B.3).

Reciprocally, when querying the CA3 cell bodies, we find many of the same m/z values

that also show expression in the piriform cortex (m/z∼ 6226,6275,6648). However, the

two queries do not share all peaks. There are many peaks from the piriform cortex query

which do not show expression in the CA3 cell bodies, and there is peak which shows

very strong signal in the CA cell bodies (m/z ∼ 8447) but no signal in the piriform

cortex. The molecular relation between the two areas may be due to both containing

apical dendrites of pyramidal neurons which are located in these regions. These shared

peaks, illustrate the need for a tool that allows exploration of different segments, instead

of a ‘black box’ approach to segmentation.

3.2.4 Spot Partitioning

Hierarchical clustering of query-results: The result of the querying component is

a matrix A[I,s] which contains the log-odds score of each spot s against each segment-

query I. Each row of the matrix represents the result of querying a segment I, while each

column is a vector of scores against each segment for a spot s. In Figure 3.3, we show

the resulting matrix from querying the previous initial segments on the leech dataset,

with scores encoded in a green-red color map. Spots are sorted by (x,y) coordinates;

thus they are ordered from the top-left spot to the bottom-right spot, scanning vertically
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Figure 3.3: Log-odds score matrix and hierarchical clustering. Each row of the matrix
represents a query-result, with some of the corresponding log-odds images shown on the
left-hand side. Spots are sorted by (x,y) coordinates; thus they are ordered from the top-
left spot to the bottom-right spot, scanning vertically from left to right. When looking
at the columns of the matrix, we can see high-scoring columns throughout several rows
corresponding to specific morphological features, such as the ganglia in rows 2-5. Cer-
tain rows of the matrix also show very high similarity. These rows are clustered together
and the result clustered query-result image is shown on the right-hand side. Rows (or
query-results) that do not show high similarity to other rows end up in singleton clusters.
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from left to right. When looking at the columns of the matrix, we can find columns with

high scores throughout the same query-results, corresponding to certain morphological

features. For example, the first four score images in the left column show higher log-

odds scores in the CNS. The corresponding rows (2-5) show several bundles of vertical

red lines (highlighted in the figure) which are consistent throughout the 4 rows and

represent some of the ganglia. Some of the anterior ganglia do not show as strong

scores in row 5, consistent with the image.

When looking at either the log-odds score images or the corresponding rows,

we can see that the query-results from different segments are often very similar. This

is expected as disjoint segments from the same morphological feature will have similar

molecular signatures and thus MALDI spots will have similar scores against these seg-

ments. To merge these query-results, we perform hierarchical clustering on the matrix

rows, or query-result vectors A[I,∗] (Methods 3.4.3, equation 3.7), using the Tanimoto

coefficient as a distance measure [81]. Here, we cluster to a Tanimoto coefficient of

0.65, but empirically AMASS is robust to a large range of thresholds. The left-side of

Figure 3.3 shows images for query-results, while the right-hand side shows the clus-

tered results (with mean scores). Regions that covered the same morphological features,

such as CNS or lateral, ended up as one cluster, while regions that are only partially sim-

ilar, such as full-lateral vs. posterior-lateral, remain separate. Some rows, such as the

pores or the ventral regions, do not cluster with any other query-results and are shown

as clusters of size 1 on the right-hand side.

Binary Signatures and Spot-partitioning: While the query-results clustering is ro-

bust, we expectedly find overlapping regions in the clustered query-results (Figure 3.3).

For example, while some query-results cover the entire lateral region (last image on

right-hand side), others cover only the posterior lateral region (7th image on right-hand

side). This means that most spots in the posterior lateral region have high scores against

two clustered query-results. Recomputing the segmentation involves clustering the spots

that have similar pattern of scores across the current set of segments I. We do the fol-

lowing (also see Methods 3.4.3):

1. Set B = Binarize(A). Each distinct binary column bs is a binary signature. (See
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Figure 3.4: Binary spot signatures and leech segmentation maps. a) The dominating
binary signatures. Each row represents a clustered query-result and each column rep-
resents a selected binary signature. Regions of interest may show some overlap. For
example, the centroid for the heart (columns 18 and 19) also shows expression in the
lateral region (row 7) thus resulting in binary signatures containing 1’s in both rows
7 and 12. b) Spots corresponding to each of these binary signatures. These are used
as centroid for clustering. These centers already reveal the major segments. c) New
image-segmentation resulting from the reassignment of spots to the closest centroids. d)
Refinement of the segmentation over subsequent iterations. e) The segmentation at the
end of 4 iterations (run without any user intervention).
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Methods 3.4.3, equation 3.8.)

2. Choose a subset H ⊆ G of dominating signatures: signatures that are common

to many spots.

3. For each dominating signature b∈H , calculate the center cb as the mean of spots

that binarize to b. (See Methods 3.4.3, equation 3.9.)

4. Reassign each spot s to the center argminb ‖ as− cb ‖2.

While the user has some ability to choose which binary signatures are to be maintained

in the interactive mode, the algorithm can automatically determine which binary sig-

natures are ‘dominating’ (see Methods). Figure 3.4a describes the dominating binary

signatures from the first iteration. For example, column 4 of the matrix (dark green)

describes the binary signature for spots in the CNS ganglia (1 in rows 3,4, and 0 else-

where). Also, the last 3 columns (yellow, gold, orange) describe the ventral region (rows

15, 16). However, the figure reveals the complexity of segmentation. These 3 binary

signatures specify molecules in the anterior ventral region only, in both the anterior and

posterior ventral region, and the posterior ventral region only, respectively. The ‘cor-

rect’ segmentation could be obtained by any combination of these 3 binary signatures.

Moreover, if we look at the anterior ventral region (row 15), we see representation from

multiple signatures, including those from the heart (column 19), and an undefined re-

gion (column 8), illustrating spatial distribution of molecules that would not be apparent

in a final segmentation. It is worth noting that there are few spots in the heart only, thus

resulting in binary signatures that cover both the heart and the lateral region (columns 18

and 19). Similarly, there are two query-results covering the head (row 1 and 2). Thus, in

the resulting segmentation, the spots are divided between those in the ”inner” part of the

head, present in both query-results (columns 2 and 3) and those present in the ”outer”

part of the head, i.e., only in row 2 (column 14).

These dominating binary signatures are used to compute new centers. Fig-

ure 3.4b illustrates the spots that matched exactly to a center signature. We can see

that these centers already reveal the major segments. The reassignment of spots to the

center creates a new segmentation (Figure 3.4c). In the next iteration, we use each of

the segments of this new segmentation as queries in the semi-supervised component,

thus re-iterating through the process described above. Subsequent iterations result in a
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Figure 3.5: Results for the rat brain slice dataset. The results show clear demarcations of
the morphology. At the top, on the left-hand and right-hand sides, weighted intensities
and log-odd scores images are shown for each of the original queries. In the center, we
show the log-odds and binary images resulting from clustering of the query-results. At
the bottom, we show the image-segmentation resulting from subsequent iterations.

refinement of the segmentation (Figure 3.4d). The segmentation at the end of 4 itera-

tions (run without any user intervention) is highlighted (Figure 3.4e), and reveals the

power of AMASS. Unlike other clustering methods, the final segmentation clearly re-

veals small and large morphological regions including ganglia, pores, brain, lateral, and

ventral regions along with their molecular signatures.

Similar results were obtained for the rat brain segmentation (Figure 3.5), with

clear demarcations of the morphology. Basic anatomy is provided for reference in Fig-

ure B.6b. Specific initial queries behave as expected with a few surprises. In Figure 3.5,



53

we have separated the queries based on the brain the substructure to which they be-

long (cortex, thalamus, hippocampus, etc). The triplet of images associated with each

query is composed of the corresponding original query, the weighted intensity image

and the log-odds score image (outward towards the middle). When looking at the cortex

queries, we can see that the different upper cortex queries (retrospenial, parietal, pri-

mary somatosensory) all result in the larger upper cortex region. However, the region

demarcated as the auditory cortex interestingly recruits a portion of the thalamus. The

piriform cortex and amygdala, which are related to the neocortex, show some signal in

the cortex with the majority of the signal in their respective regions. Interestingly, the

paraventricular thalamic nucleus also shares a similar molecular signature to that of the

amygdala and the piriform cortex. Other parts of the thalamus seem to split between two

different regions; the lateral posterior thalamic nucleus and the ventral posteromedial

thalamic nucleus recruit one shared reqion, while the ventral posteriolateral thalamic

nucleus and the lateral geniculate nucleus recruit white matter. The internal capsule,

mamillothalamic tract and corpus callosum, which are part of the white matter of brain,

which consists mostly of myelated axons, also recruit all white matter regions of the

brain. This suggests that there is a distinct molecular signature for white matter, possi-

bly due to myelin. As expected, all ventricles share the same molecular signature, which

in this case should correspond to that of the matrix, explaning the signal at the edge of

the sample. It is worth noting that some regions, such as the medial habenular nucleus

and posterior hypothalamic area, have very particular molecular signatures, resulting in

the recruitment of very specific regions. The middle panels describe the result of hier-

archical clustering after the first iteration. The two images in each cluster represent the

resulting average log-odd scores and the binary image after votes. The clustering step

behaves as expected, with the different cortex query-results ending up in one cluster

and all white matter query-results ending up in another. The bottom panels show the

image-segmentation results after subsequent iterations. The rat brain is segmented in

the different anatomical regions.

Finally, in Figure B.2, we show results for a completely random run on the leech

embryo dataset. The algorithm automatically generated an initial random segmentation

(shown in panel a), composed of 100 seed-segments each consisting of a 1 to 3 adjacent
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MALDI spots. We ran 10 automatic iterations of the algorithm, once using 3x3 median

smoothing, and once without any smoothing (panels b and c respectively). Segments

resulting from the random segmentation also show the major morphological features of

the leech and does not differ much from the guided approach. A few things to note

are that the distinction between the anterior ventral and posterior ventral regions of the

leech is not as well defined as in the guided approach, although it is still present. Also,

in this specific run, a part of the top body margin clustered with the ventral region of the

leech. Moreover, the nephridia, which have a weak signal, are not shown in this specific

run, while the anterior ones are maintained in the guided analysis. This is due to the

fact that small regions of interest do not show on every random run as there is a chance

that no seed-segment is generated in the region. However, we do see the nephridiopores

in the non-smoothed version of this specific run, signaling that a random segment must

have been generated in one the nephridiopore. Finally, it is worth noting that the smooth

segmentation provides much cleaner and more unified segments, but at the cost of some

of the smaller segments, such as the pores or some of the anterior ganglia, which are

completely lost by the final segmentation.

3.3 Discussion

MALDI imaging is rapidly becoming a technique of choice for surveying and

discovering proteins and peptides that have spatially distinct signatures of expression.

The large multi-dimensional nature of the datasets (expression of ∼ 103 molecular

species in ∼ 104 spots) makes the mining for knowledge difficult. Unsupervised ap-

proaches seek to segment the tissue section into regions, each with a distinct molecular

signature. However, classical segmentation techniques are often based on clustering

molecules that have similar expression patterns. The quality of segmentation is often

judged by its congruence with known morphology.

Here, we argue that these approaches do not work as well if there are small

segments with low to medium abundance mass values. Instead, we propose a semi-

supervised approach that ranks mass values by their spatial discrimination. Our results

lead to consistent discovery of very fine segments (organs with 2− 3 spots at 50µm
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resolution). Also, our query based techniques often reveal novel relationships, such as

co-expression of molecules in the auditory cortex and portions of the thalamus in rat

brain.

The next step in the process, is the actual identification of peptides corresponding

to the molecular signatures. This remains a challenge even with progress in in situ

trypsinization and other MS/MS fragmentation techniques. Further refinement of the

discover of molecular signatures, and the identification of peptides will contribute to a

novel tool for exploring the role of molecules in specific cellular phenotypes.

3.4 Methods

We first acquire MS Imaging data on the animal/section. We convert the data

into our own lossless format and normalize it. As shown on Figure 3.1, the algorithm

consists of two main components: a semi-supervised component and a partitioning com-

ponent. The semi-supervised component performs a query for each of the original seg-

ments. It returns the molecular signature specific to the segment, as well as all areas

sharing similar molecular signatures. The partitioning component assigns each spot to

0 or 1 cluster creating a (potentially partial) segmentation map. After selection of initial

clusters, the algorithm iteratively runs these approaches fixing high-accuracy clusters

along the way. While the algorithm can be run in a completely automatic mode, the

main goal is to provide the user with easy control at each step of the way. Thus, it is

possible for the user to choose which clusters to fix, keep or discard at each iterations.

This allows the user to fine tune the results without “tweaking” parameters. The final

output is a segmentation map with associated areas and molecular signatures for each

cluster.

3.4.1 Data Acquisition

Leech embryo: For the leech embryo analysis, we selected a specimen at stage E12

(12 days of development at room temperature), when the segmented nervous system and

other organs like the nephridia, have clearly defined boundaries and are in a sufficiently

advanced degree of molecular differentiation that specific signatures can be expected.
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The embryo was opened along the dorsal mid-line and the yolk removed, then pinned

flat, exposed for 1− 2 min to methanol to harden the tissues, finally placed on metal-

coated (ITO) glass slides with the internal surface exposed and immediately dried. After

recording transmitted light images to document the gross morphology of the speciment,

it was coated with several layers of special solid ionic matrices (CHCA/Aniline), using

a manual pneumatic TLC sprayer (VWR, Strasbourg, France). Such matrices that have

proven to be very efficient for peptide/protein analysis directly from tissue sections.

MALDI direct analyses of tissues and MALDI Imaging were performed on a MALDI-

TOF/TOF instrument (Ultraflex II, Bruker Daltonics, Germany) over 38837 m/z values

from 12115 locations, generally sampling the embryo completely in a rectangular raster

of points 60µm apart. We refer to previous work [75] for a more detailed description of

the sample preparation. The complete data-set is a collection of spectra, each associated

with a ‘spot’ on the leech surface. Conceptually, the data can be represented as a col-

lection of triples 〈m,s, Im,s〉 describing the spectral intensity Im,s at each spot s, and m/z

value m. The spectral intensity depends upon the abundance of the molecular species

among other factors. While the intensities of different molecules cannot be compared

directly, the relative intensity of the same molecule (mass value m) at different spots is

a measure of the relative abundance of the molecule.

Rat brain slice: Cryosections of 10µm thickness were cut on a cryostat (CM 1900

UV, Leica Microsystems GmbH, Weltzar, Germany) and transferred to a precooled,

conductive indium-tin-oxide (ITO) coated glass slide (Bruker Daltonik GmbH, Bremen,

Germany). The sections were washed twice for 1 min in 70% ethanol, and once for 1

min in 96% ethanol and then dried in a vacuum desiccator. The matrix (Sinapinic acid

at 10 mg/mL in 60% acetonitrile and 40% water with 0.2% trifluoroacetic acid) was

applied using the ImagePrep device (Bruker Daltonik GmbH) following a standard pro-

tocol. Mass spectra were acquired on a MALDI-TOF instrument (Autoflex III; Bruker

Daltonik GmbH) equipped with a 200 Hz smartbeam II laser. MALDI measurements

were performed in linear positive mode at a mass range of 2.5 kDa to 25 kDa. The lat-

eral resolution for the MALDI image was set to 80µm. A total of 200 laser shots were

summed up per position.
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3.4.2 Query

We compute A : S×2S→ℜ, where

A[I,s] = log
Pr(s ∈ I)
Pr(s 6∈ I)

. (3.1)

The probability estimates are computed empirically. Consider a score function Z :

S×2S→ℜ where Z (I,s) denotes the ‘score’ of spot s against the segment I. The only

requirement on Z (see next subsection) is that the scores in I are higher than S \ I, and

well separated. We estimate Pr(s ∈ I) by empirically computing the probability that a

randomly chosen spot in I would score lower than Z (I,s)

Pr(s ∈ I)' Pr(Z (I, t)≤Z (I,s)|t ∈ I). (3.2)

Likewise,

Pr(s 6∈ I)' Pr(Z (I, t)≥Z (I,s)|t ∈ S\ I). (3.3)

Weighted intensity scores: The spectrum acquired on spot s is a collection of m/z

values and intensities. We do a simplified peak selection, choosing the top 5 scoring

m/z values (averaged over a 1 Da window) in a scrolling window of 50 Daltons. The

selected peaks are represented by a vector vs, where vs[m] is the intensity at m/z value

m. Second, we compute a vector of weights wI , where wI[m] describes the ‘importance’

of a peak at m in separating spots in I from S \ I. Intuitively a spot s belongs to I if wI

and vs are correlated. Therefore, we choose the weighted-intensity score function

Z (I,s) = wI ·vs. (3.4)

In earlier work [75], we computed the Wilcoxon-Mann-Whitney ρ-statistic.

ρI[m] is a measure of how well the peak at m separates spots in I from those in S \ I.

Formally, for randomly chosen spots s ∈ I, t ∈ S\ I

ρI(m)' Pr(s[m]≥ t[m]). (3.5)

While we could use ρI[m] directly as the weighting function, we choose

wI[m] =

{
2||wI||−1(ρI[m]−0.5))p for ρI[m]≥ 0.5

0 for ρI[m]< 0.5
. (3.6)



58

Here, ||wI||−1 is a normalizing constant. For p > 1, wI[m] increases sub-linearly, stay-

ing close to 0 for intermediate values of ρI[m], and then increasing sharply to 1, thus

allowing the strongly discriminative m/z values to be sharply upweighted versus multi-

ple low-discriminating mass-values. As p increases, so does the weight of the top m/z

discriminative values, causing the query-result to be more specific to the original query.

Smoothing: Optionally, image smoothing may be applied on the weighted intensity

images in order to suppress the pixel-to-pixel variability. As shown in Alexandrov et

al. [77], the advanced image smoothing methods applied to mass intensity images sig-

nificantly improve the segmentation results. In contrast to Alexandrov et al. [77], we

use simple median smoothing (3x3 window).

3.4.3 Spot Partitioning

Hierarchical clustering Since highly related queries return very similar results, we

cluster the rows of matrix A. We use hierarchical clustering with the Tanimoto coeffi-

cient as a distance function between segments I1, I2, computing distance to the average

log-odds image in the case of clustered-segment.

We denote the clustered-segments as I′, and let I → I′ if and only segment I is

clustered into I′. We compute cluster-scores for spots as

A′[I′,s] = mean{I→I′}(A[I,s]). (3.7)

.

Spot-vector binarization: We select a threshold score tI for each I based on the dis-

tribution of scores in I and S \ I. Intuitively spot s belongs to I if A[I,s] ≥ tI . Next we

merge the segments in C by taking a majority vote. Denote matrix B as a binary matrix

with rows corresponding to segment-clusters.

B[I′,s] =

{
1 if #{I→ I′ : A[I,s]≥ tI}/#{I→ I′} ≥ 1

2

0 otherwise
. (3.8)



59

Dominating signatures as centers: The columns of B corresponding to spot s de-

scribe a ‘binary-signature’ for spot s. In the ideal case, strong segment-clusters should

have a unique signature and all spots contained in the cluster have the corresponding

signature. For each cluster, denote the most frequent signatures as dominating, if it has

sufficient frequency.

Spot partitioning: In the final step of the iteration, we use the dominating signatures

to determine cluster centroids and partition spots by assigning the remaining spots to

these clusters. Let a′s denote the cluster-scores (A′[∗,s]) for spot s. For each dominating

signature b, we define the associated set of spots Sb = {s : bs = b}. We then define a

centroid cb for each dominating signatures as the mean of the cluster-scores of spots

cb = mean{s∈Sb}(a
′
s). (3.9)

We also add a zero centroid to the set, which is either the centroid of all spots not

belonging to any query-result if such spots exists, or a zero vector if there are no such

spots. Each spot s is reassigned to the closest centroid argminb ‖ a′s− cb ‖2. Overall,

spot partitioning corresponds to a single pass of K-means clustering, and provides the

segmentation for the next iteration.

3.4.4 Query consistency

We measure segmentation based on consistency of query (see Figure B.5). For

segment I, denote SI as the set of all spots such that A[I,s] ≥ tI . In the ideal scenario,

querying a segment will return all the spots in that cluster and only those spots (I =SI).

We use the Jaccard similarity coefficient to measure consistency of I as

consistency(I) = J(I,SI) =
|I∩SI|
|I∪SI|

. (3.10)
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Chapter 4

Comparative Analysis of Mass

Spectrometry Imaging Data

4.1 Introduction

Due to the nature of biological data, noise is inherent and signal in a single

dataset may not always reflect a true phenomenon. Confidence in results is typically

boosted by replicating an experiment and using statistics to measure the likelihood of a

signal reflecting a true event. Moreover, large scale studies require many experiments

across several organisms and/or conditions.

However, comparative analysis is rarely done in mass spectrometry imaging.

The time and cost associated with sample preparation and running the instruments have

prohibited the generation of many replicates in the past. However, as the technology im-

proves, not only does the data quality increases, but the time and cost of data generation

decreases. Thus, it is essential to apply automated comparative analysis to the field of

mass spectrometry imaging.

In this chapter, we introduce a new method for large scale comparative analysis

of MSI datasets. Given a set of pertinent query molecules, our tool finds, in each dataset,

all molecules that have a similar spatial distribution and clusters the datasets based on the

resulting molecular signatures. By comparing the molecular signatures in the clusters,

we can confirm the existence of signal across replicates and identify signal changes for

61
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different conditions. This approach has the potential to identify unknown relationships

between multiple data acquisitions.

We apply our method to a large number of bacterial interaction MSI datasets

which have been acquired over previous years. Querying with known natural products

results in clusters of datasets from organisms are known to produce these molecules. In-

depth analysis of the corresponding molecular signatures shows many known products,

as well as some yet uncharacterized molecules.

4.2 Methods

Figure 4.1 gives an overview of the workflow. First, we collect an assortment

of MSI datasets and preprocess each in a lossless manner. Each dataset can be viewed

as a series of m/z images, one for each possible m/z values. To compare the datasets,

we select a query m/z value, corresponding to a known molecule. It is also possible to

give a set of query m/z values as input. For each dataset a query region is defined from

the corresponding m/z image. The query region is used to define a molecular signature

of m/z values with similar spatial distribution than our query m/z. The molecular sig-

natures are clustered using hierarchical clustering. A filtering step allows to reduce the

number of datasets in the final clustering.

4.2.1 Data Acquisition and Preprocessing

We collect a medley of existing MSI datasets which were previously acquired

for different purposes. Current data was acquired on a Bruker Microflex (Bremen, Ger-

many) but additional data from a Bruker Autoflex (Bremen, Germany) is available and

soon to be added to our collection. Each dataset is converted into a in-house lossless for-

mat for efficient data processing. When an experiment consists of data acquisition over

several separate regions, the data is split and each region is considered an independent

dataset. In Figure 4.1, we show each dataset as a series of m/z images, for all possible

m/z values. Currently, our collection consists of 898 datasets from 345 experiments.
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Figure 4.1: Overview of the comparative analysis workflow. First, we collect an as-
sortment of MSI datasets and preprocess each in a lossless manner. Each dataset can
be viewed as a series of m/z images, one for each possible m/z values. To compare
the datasets, we select a query m/z value. Here, we select the cyan m/z value. For each
dataset a query region is defined from the corresponding m/z image. The query region is
used to define a molecular signature of m/z values with similar spatial distribution than
our query m/z. The molecular signatures are clustered using hierarchical clustering.



64

4.2.2 Defining the Query

To compare the datasets, we define a query for each dataset based on the intensity

image for one or several query m/z value(s). When several query m/z values are given,

the query intensity image is generated by averaging intensities at the given m/z values.

From this intensity image, we define a query region in following manner. Intensities are

clustered using 1D k-means clustering with 2 clusters (high-intensity vs. low-intensity).

We choose as original centroids the maximum and median intensity values for the high-

intensity and low-intensity clusters respectively. We define the query region as the set

of spots having intensity at least 3 times closer to the final high-intensity centroid than

the final low-intensity centroid.

4.2.3 Obtaining the Molecular Signatures

Molecular signatures were acquired using the AMASS library [82]. We calculate

the previously described weight for the average intensities in each 1 Da bins. We also

obtain the weighted intensities image and the log-odds images as previously described.

Since the molecular signatures are binned in the same manner for all dataset, we have

a score for each dataset and each m/z bin. This can be represented as a matrix where

each row has the molecular signature for a dataset and each column is a m/z value. A

score of 0 is assigned if there is no intensity image (data not acquired) for a dataset at

an m/z value. If the full m/z range is used, molecular signatures will be defined of over

the range of m/z values from the minimum m/z value of all datasets to the maximum

m/z value of all datasets. It is also possible to define the minimum and maximum m/z

values, in which case all data beyond these boundaries is ignored when calculating the

molecular signatures and weighted intensities images.

4.2.4 Filtering the datasets

Since we have a medley of datasets, the query molecule will not be expressed

in all datasets, and thus the query intensity image is unlikely to show an “interesting”

distribution for all datasets. For each dataset, we aim to distinguish whether it is of

interest by employing several filters. This allows us to reduce the number of datasets in
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the final clustering.

Consistency filtering: We previously describe a consistency score for clusters [82].

The premise is the image resulting from the molecular signature should be similar to

the original query. If they differ, then the molecular signature does not reflect the query,

and thus should be discarded. This typically happens when the query m/z image cap-

tures noise. While some m/z values may show somewhat similar distribution, they all

differ from the original query by a certain extent and greatly from each other. We of-

fer two types of consistency filter: a query consistency filter and a weighted intensity

consistency filter. The query consistency score is calculated exactly as described previ-

ously [82]. The weighted intensity consistency score is the cosine distance between the

weighted intensity image and the original query m/z image.

Number of peaks filtering: We aim here to filter two different cases. In the first case,

the query m/z image shows a unique spatial distribution which is not reflected by any

other m/z values. This is typical if the original m/z image captures noise. Thus we filter

out any datasets which have less than 10 m/z bins with score s≥ 0.5. In a second case,

the query m/z value shows a distribution which is reflected by most other m/z values.

This is typical when the query m/z value is a matrix element for that dataset. We filter

out any datasets which have more than 1000 m/z bins with a score s≥ 0.5.

4.2.5 Clustering the datasets

We create a dendrogram of the datasets by clustering the molecular signatures

using hierarchical clustering with the correlation distance and UPGMA linkage. Other

distances and linkage options are made available to the user, but we find this setting

to perform better (data not shown). All clustering is done via the SciPy python pack-

age [83].



66

query m/z = 1075 query m/z = 1045
1000 2000 3000 4000 5000 6000 7000 2000 4000 6000 8000

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Clustering results with query m/z = 1045 and m/z = 1075 (surfactins).
The top two panels show the full dendrogram with molecular signatures when query
with m/z = 1045 and m/z = 1075, which correspond to two surfactins. The trees are
very similar as expected since the two molecules have similar spatial distribution. When
looking at the magenta sub-cluster, which consists mostly of Bacillus subtilis datasets,
we find that the subtrees between the two queries are almost identical. The yellow sub-
tree in the m/z = 1075 query consists of pks knockout Bacillus subtilis datasets.
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Figure 4.3: Bacillus subtilis cluster for query m/z = 1075. We use the intensity images
at m/z = 1075 (surfactin) to create our query region (right hand size). The top matrix
shows the molecular signatures for each dataset, a well as the resulting clustering (left
of matrix). Several specific m/z values (columns) were selected from the matrix for
more thorough examination, and corresponding m/z images were pulled for each dataset
(bottom). Numbered datasets indicate separate replicate experiments.
Str - Streptomyces.
Bsubt - Bacillus subtilis.
ES - environmental strain.
WT - wild type.
pks - polyketide synthase knockout.
bacB - bacB knockout.
sfp - sfp knockout.
ppsb - plipastatin knockout.
skf - skf knockout.
srf - surfactin knockout.
ymft - ymfT knockout.
ymf1 - YMF1 strain.
Mg1 - Mg1 strain.
ALB553 and ALB727 - marine environmental isolates.
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4.3 Results

While we are still incrementing our collection of datasets, we show here some

preliminary results for two clusters: a cluster consisting of Bacillus subtilis datasets

from querying surfactin and a cluster consisting of Streptomyces coelicolor datasets

from querying sapB.

4.3.1 Surfactins and Bacillus subtilis

We query our datasets with m/z = 1045 and m/z = 1075, which is are mass

value of different forms of surfactin in Bacillus subtilis. Figure 4.2 shows the full den-

drograms (with filtering) resulting from the clustering of the molecular signatures. The

trees are very similar as expected since the two molecules have similar spatial distri-

bution. When looking at the magenta sub-cluster, which consists mostly of Bacillus

subtilis datasets, we find that the subtrees between the two queries are almost identical.

The yellow sub-tree in the m/z = 1075 query consists of pks knockout Bacillus subtilis

datasets.

In Figure 4.3, we focus on the magenta sub-tree from the m/z = 1075 query.

Some of these datasets have been published elsewhere [84, 85].

In most cases, replicate datasets have similar molecular signatures and form sub-

clusters. For example, datasets for Bacillus subtilis colony by itself for a sub-cluster on

rows d, e, f , and datasets for wild-type Bacillus subtilis interacting with sfp knock-

out Bacillus subtilis forms a sub-cluster on rows g, h. These replicates originate from

different acquisitions showing consistency of results across multiple experiments. How-

ever, some replicates do not cluster together. It is more often the case for replicates

originating from different acquisitions, most likely due to experimental and data quality

differences. For example, if we look at the replicates for interaction between Strepto-

myces Mg1 strain and Bacillus subtilis srf knockout, rows w and x, which originate from

the same experiment, form a cluster, but rows a f and ah, which originate from different

experiments are separated from that cluster and from each other. When looking at the

molecular signatures, we can see that the signal is much stronger in rows w and x.
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Figure 4.4: Streptomyces coelicolor cluster for query m/z = 2026. We use intensity
images at m/z = 2026 (sapB) as query. The top matrix shows the molecular signature
for each dataset for all m/z values. The datasets share many of the m/z values with high
scores. Dendrogram on the left shows the clustering. datasets originating for the 3 mass
spectrometry imaging experiment form 3 sub-clusters. The second matrix is a reduced
matrix. We only show columns from the original matrix which have at least 5 rows of
score s≥ 0.7. For each dataset, images on the right-hand side correspond to the intensity
distribution at m/z = 2026 (left column) and log-odds image resulting from the query
(right column). At the bottom, we show the m/z images for all datasets for specific m/z
values selected from the reduced matrix. As expected, higher scores are given when the
intensity distribution for that m/z value matches that of m/z = 2026.
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In the molecular signature matrix, we can see a set of m/z values in the 1020-

1140 range which have high scores for almost all datasets. We pull some of these high

scoring m/z columns (m/z = 1022-1023, 1036-1037, 1045-1046, 1059-1061) and gen-

erate the corresponding m/z intensity image for each dataset. These high-scoring m/z

values correspond to the mass of different forms of surfactin. This is to be expected

since we queried with a surfactin, thus other forms of surfactin should show similar spa-

tial distribution. The intensity images for these m/z values indeed show similar spatial

distribution to that of the query intensity image (m/z = 1075, right).

Another set of m/z values in the range of 1440-1560 show high scores for the

sub-cluster in rows d-t. These values correspond to the masses of several forms of

plipastatin, which is also known to be expressed by Bacillus subtilis.

Additionally, a few rows show high 3440-3443, which corresponds to subtilosin.

It is likely that we only see a clear expression in few datasets because it is a lower

abundance molecule and because detection tends to be more challenging in higher m/z

range. MS1 spectra show much lower signal for subtilosin [86].

Finally, we find a few still uncharacterized m/z values which show similar spatial

distribution for several datasets. For example, m/z = 655-656 has mid-range scores for

rows j-v and the corresponding intensity images are similar to the query intensity image.

Many other m/z values show an interesting distribution in this cluster and warrant further

investigation.

4.3.2 SapB and Streptomyces coelicolor

We query our datasets with m/z = 2026, which is the mass of sapB in in Strep-

tomyces coelicolor [84, 87]. Figure 4.4 shows the resulting molecular signature and

clustering. The clustering consists of three Streptomyces coelicolor datasets which were

acquired for 3D reconstruction [88].

On the top matrix, we show the full molecular signatures for these datasets.

For better visualization, we reduced the columns of the molecular signature and form

a reduced matrix (middle). We only retain m/z columns with at least 5 rows of score

s≥ 0.7. Because of the strictness of these thresholds, the reduced matrix does not reflect

all interesting values, but it makes visualization much more manageable.
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The strongest signal is in the m/z range of 2020-2050 which correspond to sapB,

the query molecule. While there are many other strong signals in rows a-n, the signal

is much fainter in rows o-t, which correspond to datasets from a different experiment.

When looking at the the query intensity images and resulting log-odds images (right-

hand side), we can see that is less uniform and overall lower in these last rows. Most

likely, the datasets from experiment rows o-t are of lower quality than those of rows a- f

and g-n.

As in the previous case, we see signal for m/z values corresponding to vari-

ous molecules known to be expressed by Streptomyces coelicolor. These include ferri-

coelichelin at m/z = 619 [89], γ-actinorhodin in the mz range 630-660, and CDA in the

mz range 1490-1600 (top matrix only). Some other m/z values (m/z = 431, 808, 867,

887) are yet to be characterized. If we look at the individual images for mz = 808, we

can see clear signal in the colony in rows b-n, as reflected by the scores in that column,

indicating that there is indeed a signal there.

4.4 Discussion

We describe here a computational tool for large-scale comparative analysis of

MSI data. We use our tool to compare ∼ 900 datasets of bacterial interactions and pull

out interesting clusters with pertinent molecular signatures. We find strong signals for

various expected natural products, as well as for a few uncharacterized molecules.

Many simple extensions can be added to this method to make it more powerful.

For example, a region of interest can be defined on a single dataset and the resulting

molecular signature can used as the set of query m/z values to search the rest of the

data. This would prevent the bias introduced by selecting the query m/z values.

Taking this idea further, we could segment one single dataset into different re-

gions, each with its own molecular signature, use the different molecular signatures as

queries for the other datasets and build the final clustering based on the concatenated

molecular signatures. This would allow for the search and clustering of several compo-

nent simultaneously.

Finally, while the tool has an interactive python interface, we would like to make
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available a web interface which would allow users across the world to browse all the

current data in an interactive manner.
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Chapter 5

On-Tissue Peptide Identification using

Spectral Libraries

5.1 Introduction

Developments in instrumentation and experimental techniques have allowed for

the acquisition of MS/MS spectra of on-tissue trypsinized peptides. However, these

spectra are generally of lower quality than those acquired from protein extract, due to

several factors. First, the MSI samples are acquired at a single spot instead of a whole

organelle, resulting in less molecules present in the sample. Second, typical protein

extraction process involves steps such as centrifugation to increase protein concentration

which are eliminated in the case of direct on-tissue acquisition. Finally, the lack of

a nano-LC column before analysis by the mass spectrometer results in poor protein

separation and mixture peptides.

Most identification approaches have focused on using database search tools.

However, for complex spectra or spectra of low quality, spectral library search tools

have shown to greatly increase the number of identification [90, 91]. Moreover, exist-

ing tools allow for the search of mixture peptides against spectral libraries [92], which

would be essential in the case of spectra acquired directly on-tissue. We describe here

the preliminary work on the development of spectral libraries for MALDI imaging pep-

tide identification and the corresponding search tools.

75
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5.2 Methods

5.2.1 Data Acquisition

We obtained tissue sections from a 4-month old frozen rat half-brain. Tissue

were placed on glass slide, washed and subjected to on-tissue trypsin digestion using a

piezoelectric microspotter.

For protein extract spectra acquisition, off-line Liquid Extraction Surface Analy-

sis (LESA) was performed. Samples were subjected to nano-LC separation and directly

spotted on MALDI target. We acquire MS/MS spectra on a MALDI-orbitrap platform.

Currently, we have two datasets containing 580 and 980 MS/MS spectra. We also ac-

quired a set of 50415 MS/MS spectra from an ESI-orbitrap platform with a similar

protocol.

For MALDI imaging acquisition, we obtained MS and MS/MS spectra directly

from tissue from a MALDI-orbitrap instrument. At each MALDI spot, the top 5 most

intense peaks were selected for MS/MS. No exclusion window was specified. We ac-

quired 2118 MS/MS spectra from tissue.

5.2.2 Spectral Library Creation

We perform noise filtering, baseline filtering and peak detection on the resulting

spectra using the OpenMS suite.

MS/MS data is stored and organized in a a MySQL database. This database

allows for the creation of custom spectral libraries by organism, tissue type, mass spec-

trometer, enzyme and other parameters. The database schema is shown in Figure 5.1.

All acquired MS/MS spectra from protein extract samples, both raw and processed, are

referenced in the database with their experimental information.

Peptide identification is done using Mascot [93] and MS-GFDB [94]. Identifi-

cations are stored in the database if the top hit had a Mascot E-value ≤ 0.1 or MS-GF

spectral probability ≤ 10×10−6. The reason for such permissive thresholds is that the

database is filtered in an on-line manner.
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data_filenames

FILE_ID MEDIUMINT UN NN AI

EXP_ID SMALLINT UN NN

rawdata_filename VARCHAR(200)

procdata_filename VARCHAR(200)

Indexes

PRIMARY
EXP_ID

rawdata_filename_UNIQUE

procdata_filename_UNIQUE

f\k_data_filename\s_1

experiments

EXP_ID SMALLINT UN NN AI

date DATE NN

organi\sm VARCHAR(100) NN

ti\s\sue_type VARCHAR(100) NN

in\strument ENUM(...) NN

cy\steine_pro SMALLINT NN

protea\se ENUM(...) NN

comment\s TEXT

Indexes

PRIMARY

data_filepos

FILEPOS_ID INT UN NN AI

FILE_ID MEDIUMINT UN NN

rawdata_filebytepo\s BIGINT UN NN

procdata_filebytepo\s BIGINT UN NN

Indexes

PRIMARY

f\k_data_filepo\s_1

proteins

PROT_ID INT UN NN AI

prot_header VARCHAR(200) NN

prot_acce\s\sion VARCHAR(40) NN

prot_name VARCHAR(100) NN

organi\sm VARCHAR(100) NN

Indexes

PRIMARY

mod_peptides

MPEP_ID INT UN NN AI

PEP_ID INT UN NN

mpep_\string VARCHAR(60)

Indexes

PRIMARY

mpep_\string_UNIQUE

PEP_ID

f\k_mod_peptide\s_1

peptides

PEP_ID INT UN NN AI

pep_\string VARCHAR(45) NN

Indexes

PRIMARY

pep_\string_UNIQUE

pep_prot_matches

MATCH_ID INT UN NN AI

PEP_ID INT UN NN

PROT_ID INT UN NN

Indexes

PRIMARY

f\k_pep_id

f\k_prot_id

peptide_ids

IDENT_ID INT UN NN AI

MPEP_ID INT UN NN

SPEC_ID INT UN NN

charge SMALLINT UN NN

m\sgfdb_\specprob FLOAT

ma\scot_\score FLOAT

ma\scot_e-val FLOAT

Indexes

PRIMARY

IDENT_ID_UNIQUE

f\k_peptide_id\s_1

f\k_peptide_id\s_2

spectra

SPEC_ID INT UN NN AI

FILEPOS_ID INT UN NN

precur\sor FLOAT NN

repre\sentative BOOL NN

Indexes

PRIMARY

f\k_filepo\s_id

f\k_data_filename\s_1 f\k_data_filepos_1

f\k_mod_peptide\s_1
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Figure 5.1: Database model for spectral library. All spectra were inserted in the
database, allowing user to search against both identified and unidentified spectra.
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a) b)

Figure 5.2: AMASS results for MSI data. a) optical image with MALDI spots. b) (left)
segments resulting from an AMASS run with random seeds after 3 iterations. (right)
log-odds images for the AMASS segments. We can see the different regions of the
cerebellum.

5.2.3 Spectral Library Search

MS/MS spectra obtained directly from tissue are pre-processed using the same

method as those acquired from protein extract. They are searched against a subset of

database which is filtered in an on-line manner. The database can be filtered by organ-

ism, instrument type, and/or identification score threshold.

Similarity is measured using the cosine distance of the squared intensities. Top-

similarity spectra are reported, as well as corresponding identifications. Due to the

nature of the database, we can pull other interesting spectra corresponding to each hit

for comparison purposes. These could be spectra having the same peptide identification,

modified or unmodified, potentially from different organisms or acquired by different

instruments.

5.3 Results

5.3.1 AMASS Run

As a first pass, we run AMASS on the imaging data. We show the results in

Figure 5.2. The cerebellum is divided into 3 segments (first row) corresponding to

morphological regions: the arbor vitae (left) which is white matter, and the granular

layer (middle) and molecular layer (right) which consists of gray matter. We also find 2

clusters for matrix signal (second row).
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Figure 5.3: Spectral library hit for peptide from myelin basic protein. On the top we
show the match for the MSI spectrum (on-tissue) and the database spectrum (extract).
The peaks of the two spectra match well. The identification for the extract spectrum
(bottom left) has a mascot e-value of 0.02 and MS-GF spectral probability of 7.85×
10−15. The MSI data shows localization in the arbor vitae (bottom right) which is white
matter and thus rich in myelin, congruent with the identification.
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5.3.2 Peptide Identifications

From the first MALDI dataset, we obtain 112 unique peptide identifications with

MS-GF spectral probability ≤ 10× 10−10 or mascot score > 30. From the second

MALDI dataset, we obtain 132 unique peptide identifications with the same thresh-

olds. While we have many identifications from the ESI-orbitrap dataset, we had no MSI

data to compare it with. Searching the MALDI imaging MS/MS spectra against both

the MALDI and ESI datasets in the database only yielded to MALDI vs. MALDI hits,

emphasizing the need for a MALDI-specific spectral library.

5.3.3 Spectral Library Matches with Good Peptide Identification

Due to the small size of our database, owe only identified 3 proteins with spectral

library matches to peptides with “good” identifications (MS-GF spectral probability ≤
10×10−10).

A first hit is to a peptide from myelin basic protein MBP. In Figure 5.3, we show

the match between the on-tissue and the extract MS/MS spectra. The peaks between the

two spectra match well. However, while the parent ion has the highest intensity in the

extract spectrum, it is completely fragmented in the tissue spectrum. We also gener-

ated the MS/MS fragment localization images for those spots at which the precursor ion

m/z = 1800± 1 was selected for MS/MS. The localization is almost identical for all

fragment ions, except for the parent ion which is missing in the imaging spectrum. The

extract spectrum was identified to be a fragment of myelin basic protein with mascot

e-value of 0.02 and MS-GF spectral probability of 7.85×10−15. The MSI shows local-

ization in the arbor vitae which is white matter and thus rich in myelin, congruent with

the identification.

Another hit is to a peptide from beta-globin, a protein from hemoglobin, which is

known to be expressed in the rat brain [95, 96]. We show the match and the identification

in Figure 5.4. Again, the peaks match well. The identification has a MS-GF spectral

probability of 3.57×10−10. The MSI data shows localization in the gray matter of the

cerebellum, probably due to the fact that the gray matter is more cellular than the white

matter and thus has more blood vessels.
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Figure 5.4: Spectral library hit for peptide from beta-globin. On the top, we show the
match for the on-tissue and extract spectra. The peaks match well. The identification
has a MS-GF spectral probability of 3.57×10−10. The MSI data shows localization in
the gray matter of the cerebellum.
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Figure 5.5: Other Spectral Library Matches. (top) Spectral library match to a spectrum
identified as a peptide from a multiple PDZ domain protein. The identification got a MS-
GF spectral probability of 4.35× 10−7. (bottom) Spectral library match to a spectrum
identified as a peptide from the integrator complex subunit 3. The identification got a
MS-GF spectral probability of 1.64×10−8.

Finally, we found hits to two peptides from trypsin with MSI localization outside

the sample. Because most of the signal should be matrix in that area, it makes sense for

trypsin to be one of the highest peaks.

5.3.4 Other Spectral Library Matches

We had other hits to spectra with poor or no identifications. We show two such

examples in Figure 5.5. One spectrum is identified as a peptide from a multiple PDZ

domain protein with a MS-GF spectral probability of 4.35× 10−7 (top). The other

spectrum is identified as a peptide from the integrator complex subunit 3 with a MS-GF

spectral probability of 1.64×10−8. These results are preliminary and a more complete

spectral library would yield in a better and more hits.
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5.4 Discussion

We present here preliminary results for using spectral libraries as a mean to

identify peptides from on-tissue MS/MS. Despite the fact that our current database is

small, we still obtained some interesting hits. Several improvements on this database

would greatly increase the number of hits and their quality. First, the current extract

spectra were acquired via LESA. A whole rat brain sample would contain more mate-

rial and yield to higher quality spectra, increasing the number of identifications in the

database. Second, the number of spectra in the database is small, and needs to be in-

creased. However, we are confident that the development of a complete high-quality

MALDI-orbitrap spectral library would greatly increase the number of identifications

from on-tissue MS/MS spectra, as most on-tissue MS/MS spectra do not have a high-

quality enough for database search.

The development of an imaging spectral library would open many other possi-

bilities. One interesting use of spectral libraries is the identification of mixture peptides.

This would be particularly relevant to spectra acquired directly from tissue as there is

no separation from an LC column. Wang et al. show that on average they can identify

15% more mixture spectra using a spectral library instead of a protein database [92, 97].

It is also possible to create other molecules to this database, as not all MSI focuses on

peptides and proteins.

It is worth noting that there are other strategies for MSI identification. Recently,

the development of nano-DESI [5] allows which uses an electrospray ionization source,

and thus the acquisition of multiple-charge spectra. While DESI has low spatial resolu-

tion (150µm), it should theoretically be possible to acquire images in as high resolution

as 12µm using nano-DESI. However, the lack of material in the sample and the peptide

mixture problems will still be present, making spectral libraries a great asset. One great

benefit is that there currently exists spectral libraries from ESI-orbitrap sources, thus

reducing the need to acquire new data to build the library. However, the spectral search

tools would still need to be modified to compare tissue versus extract spectra, and it will

be crucial to consider mixture spectra.

Another approach is to use micro-dissection to identify spectra from a specific

location on the tissue slice or organism. Peptides are extracted from a 300µm region
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of the tissue and sent for identification through a high resolution ESI-orbitrap plat-

form [98]. Because the peptide are extracted and a nano-LC column is used, the number

of identification greatly increases. However, the process is labor-intensive and only pep-

tides a few pre-selected areas are identified.

Finally, we should note that the information in the images could help to validate

on-tissue identifications. Peptides from the same protein are likely to show the same

distribution. While this is not enough to give an identification on its own, it should be

incorporated in a search tool for MSI peptide identification.



Chapter 6

Conclusions

We first started to explore mass spectrometry imaging data in a supervised man-

ner, asking if we could find and identify peptides or proteins specifically expressed in

a pre-defined region of interest. In Chapter 2, we acquired a list of many mass val-

ues present in different regions of the leech by means of a statistical analysis. Using

a middle-down approach and a novel identification pipeline, we identified several in-

teresting peptides, including one encoded by a novel gene, HmIF4 , a member of the

intermediate filament family involved in neural development. We also performed a sec-

ond validation via in situ hybridization of the corresponding mRNA transcripts.

We extended this approach in Chapter 3, in which we described a novel method,

AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation), that automat-

ically segments the MSI dataset into consistent regions of interest, and determines for

each segment a molecular signature, or collection of peaks that are preferentially ex-

pressed in the segment. AMASS relies on the discriminating power of a molecular signal

instead of its intensity as a key feature, uses an internal consistency measure for valida-

tion, and allows significant user interaction and supervision as options. We show that

automated segmentation of a whole leech embryo dataset and or a rat brain dataset yield

to segments congruent to known morphological features.

In Chapter 4, we take a step back and consider the case of many mass spectrom-

etry imaging datasets, across different organisms, conditions, time scales, etc. We de-

scribe a method for automated large scale comparative analysis of these datasets. Given

a set of pertinent query molecules, we find in each dataset all molecules that have a
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similar spatial distribution to these molecules. We then cluster the datasets based on

the resulting molecular signatures. By comparing the molecular signatures in specific

clusters, we can confirm the existence of signal across replicates and identify signal

changes for different conditions. This approach has the potential to identify unknown

relationships between multiple data acquisitions.

Finally, in Chapter 5, we briefly touched the problem of peptide identification

in mass spectrometry imaging. In Chapter 2, we employed a middle-down approach

to identify several peptides with interesting distribution. Here, we take a bottom-up ap-

proach and show how using spectral libraries can greatly improve peptide identification

from on-tissue MS/MS data. We presented some preliminary results to highlight the

potential of this approach and discussed its other benefits.

The use of these different approaches constitute a preliminary set of tools for the

analysis of mass spectrometry imaging data to enable us to further our understanding

of biological systems and discover new biomarkers to known diseases. However, the

presented algorithms are just the tip of the iceberg and much work still has to be done

to mine MSI data to its fullest.

Mass spectrometry imaging could make great use of a centralized repository for

the data. Currently, there is no repository for MSI data and it is kept on the hard drives

of the various labs that generated it. A centralized repository would allow for the MSI

field to become a more collaborative effort. It would allow for labs to compare their data

to other experiments without needing to repeat them. Integration of a repository with

web-based analysis tool kit would allow users to analyze and possibly share their data

simultaneously. Integrating a comparative analysis tool would also allow automated

comparison to all shared datasets, allowing the community to explore all available data.

There are several barriers to establishing such a repository. First, the datasets are typi-

cally very large, and thus great bandwidth and great storage space is required. Second,

a universal data format must be adopted. Rompp et al. have developed the imzML

format [99], but tools to convert from vendor format into this format are still lacking,

though will hopefully soon be incorporated into vendor software.

Another interesting challenge is the co-registration of MSI datasets to optical im-

ages and to each other. Co-registration to the optical image is currently done manually
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by the definition of several teaching points on the optical image and in laser coordinates.

Human error causes small shifts in registration. It becomes particularly challenging in

the case of very high definition optical images, where a most minor error will greatly

offset the MSI images from the optical image. Because the MSI data follows the bound-

aries of the optical image, co-registration can and should be done automatically. This

can be taken a step further, in which MSI datasets can be co-registered to optical images

from other related datasets and to other MSI datasets. This would greatly increase the

power of comparative analysis, as each region of interest could be mapped to that of

other datasets based on not only the mass spectrometry data, but also the optical data.

Similarity and differences in molecular signatures could then be spotted as previously

described.

Finally, new approaches to mass spectrometry imaging, such as three-dimen-

sional and quantitative mass spectrometry imaging, have allowed for a surge in new

types of datasets with additional information. New methods need to be developed to

automatically visualize and analyze this data.

This dissertation provides a set of computational tools to analyze mass spectrom-

etry imaging data, but it is only a first pass to a much greater set of methods yet to be

developed.



Appendix A

Supplemental: Automated querying

and identification of novel peptides

using MALDI mass spectrometric

imaging

Note: The quality of some figures was reduced from the original publication.

Original supplemental material is available free of charge at http://pubs.acs.org.
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normalized

unnormalized unnormalized

normalized

mz=8563.04 mz=10357.1

mz=8563.04 mz=10357.1

mean: 31.9218std:  30.3585min:   1.2462max: 122.3050

a) b)

c)

Figure A.1: Effects of normalization on data. a) Average peak intensity for spots before
and after normalization. There is a spatial bias for the posterior region in the original
data. Spatial bias is removed by normalization. b) Distribution of spot average peak in-
tensities. The average intensity for each laser spots differ greatly. Lack of homogeneity
in crystallization can cause this spatial bias. c) Resulting changes in spatial distribu-
tions. In both unnormalized images, we see the same bias as in a). At m/z = 8563.04,
the intensities are more evenly distributed throughout the nervous system are distributed
after normalization. At m/z = 10357.1, normalizing the data allowed us to see a signal
in the head of the leech.
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Table A.1: Over-expressed masses at threshold 0.65 for the CNS ROI in LEECHE12A .

m/z-range peak score

2470.68-2481.44 2474.34 0.80

2505.32-2508.31 2506.7 0.69

2521.69-2527.93 2524.69 0.78

3090.6-3096.75 3093.93 0.71

3157.97-3165.99 3160.3 0.71

3295.94-3303.86 3299.64 0.76

3485.31-3496.45 3491.01 0.80

3496.45-3531.63 3511.43 0.90

3536.01-3542.31 3540.11 0.71

3651.01-3651.57 3651.29 0.65

3652.4-3652.4 3652.4 0.65

4211.19-4214.18 4211.79 0.67

4371.25-4383.43 4378.86 0.69

4523.78-4529.97 4526.88 0.69

4539.58-4547.64 4542.06 0.70

5268.46-5278.82 5273.47 0.76

5279.83-5280.16 5279.83 0.66

5410.4-5429.38 5417.85 0.81

5430.06-5432.43 5431.41 0.68

5434.81-5436.5 5435.48 0.68

5560.06-5606.15 5574.15 0.90

6024.92-6024.92 6024.92 0.65

6025.63-6026.7 6026.7 0.66

m/z-range peak score

6186.44-6186.8 6186.44 0.65

6187.53-6200.57 6196.95 0.68

6212.91-6212.91 6212.91 0.65

6216.54-6220.89 6217.99 0.66

6223.8-6223.8 6223.8 0.65

6593.09-6593.46 6593.09 0.65

6594.58-6595.33 6595.33 0.66

8205.81-8205.81 8205.81 0.65

8207.89-8216.66 8213.32 0.66

8217.49-8218.33 8218.33 0.65

8220-8220 8220 0.65

8223.76-8223.76 8223.76 0.65

8399.29-8400.14 8399.72 0.66

8400.98-8447.91 8428.45 0.88

8448.76-8449.61 8449.18 0.66

9032.26-9041.02 9038.39 0.74

9224.17-9249.86 9240.11 0.70

9250.74-9257.83 9253.4 0.67

9779.68-9779.68 9779.68 0.65

9780.59-9781.05 9780.59 0.65

10868.4-10869.8 10869.4 0.67



91

a)

b)

Figure A.2: Mask (top) and query (bottom) for the CNS in the LEECHE12A . We
can see in the query that a MALDI spot covers about a 10x10 pixels square on the
histological image; thus, the query is a set of gray squares instead of the binary black
and transparent pixels of the mask.

a

b

c

m/z=2797.28

m/z=3307.3

m/z=3363.9

s=0.62

s=0.51

s=0.23
Figure A.3: MALDI images for CNS localization at different scores. a) At score
s = 0.62, just below our cut-off of 0.65, we still see localization to CNS, but noise
signicantly impairs the signal compared to the top-ranked images. b) At score s = 0.51
we expect no localization. Indeed, the intensities outside the nervous system almost
perfectly balance out the intensities within the CNS. c) At score s = 0.23, we are at
the other end of the spectrum. We detect a molecule which have inversed expression to
the CNS; the molecule is highly expressed in the ventral region of the leech but shows
distinct under-expression in the ganglia and the brain.
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Table A.2: Over-expressed masses in the leech CNS across different samples. We dis-
played all m/z values in LEECHE12B with score s ≥ 0.65, and all m/z values with
score s ≥ 0.70 in LEECHE12A . We only showed m/z values with score s ≥ 0.65 in
LEECHE12A if it corresponded to a hit in LEECHE12B as the full table is quite exten-
sive (Table A.1). Results for m/z < 2200 were discarded because spectra were still in
the noise area.

a

b

c

d

e

m/z=2474.34

m/z=3511.43

m/z=3540.11

m/z=4378.86

m/z=5431.41

s=0.80

s=0.90

s=0.71

s=0.69

s=0.68

LEECHE12A LEECHE12B

m/z peak score m/z peak score

2474.34 0.797 2474.34 0.653

2479.6 0.727

2524.69 0.78

3093.93 0.705

3160.3 0.708

3299.64 0.76

3491.01 0.797

3511.43 0.896 3507.89 0.882

3523.98 0.713

3540.11 0.71 3539.84 0.654

4378.86 0.691 4377.95 0.697

4542.06 0.702

5273.47 0.758

5417.85 0.814

5426.66 0.708

5431.41 0.675 5433.79 0.681

5574.15 0.899

5586.87 0.805

5601.33 0.717

8428.45 0.899

9038.39 0.736

9240.11 0.701

f

g

h

j

i

m/z=2474

m/z=3507

m/z=3539

m/z=4378

m/z=5433

s=0.65

s=0.88

s=0.65

s=0.70

s=0.68
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sco
re

ROI avg intensity / non-ROI avg intensity

Figure A.4: Simulation results decreasing ROI signal over the entire region. Intensities
are decreased in the ROI spots by a certain percentage until the average intensity inside
the ROI is the same as the average intensity outside the ROI. Score and signal decrease
in a similar fashion. Similar intensities in the ROI and in the background lead to a score
close to 0.5 as expected.
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sco
re

proportion of ROI spots set to background intensity

Figure A.5: Simulation results when degrading the signal in the ROI. We set a propor-
tion of the ROI spots to have random non-ROI (or background) intensities (see Meth-
ods). It is then possible to balance the total ROI intensities by distributing the subtracted
intensity to the remaining spots; that way, the total intensities in ROI and outside ROI
remain the same throughout the simulation. Results are shown for two simulated runs:
with and without balancing the ROI intensities. In both cases, the score linearly de-
creases as more ROI spots are set to background intensity. In the balancing case, the
intensities of the remaining spots increase to compensate for the other spots; conse-
quently, the score remains higher in the balanced case than in the unbalanced case, as
expected. When all spots are are set to background intensities, the signal is lost and the
probability score decreases to 0.5 as expected.
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CLUSTAL 2.0.12 multiple sequence alignment

leech_EST      --TFTEMERTRTVRNTTYTTSSGVDGNVDGGASTFRES--SYGAGGPITG 46
gliarin        ---MAEEVITKTTRRVYKTEVSGGEGGSSILATTYR----------PSVT 37
filarin        ------MESGNFVAEYERTIRSN-------------------------IQ 19
macrolin       ARQIEPLGMDTRIDKSSYNVSQSGDKVVSTKSMVDLDTGSTYSTYKATVV 50
                             .   .  ..                           

leech_EST      GRTLVISRTIGSTGSPGMGSIGLGGTRTMERSVRTSSQYASGGPMPNYSV 96
gliarin        PRNVIIHRSIQAPLGSSMSSS----TIRREKTIQYGNAYAISP--SSYAP 81
filarin        PRNILIQRATPGAFTNVSSRS--------VVTRSVGNVYGAGG------- 54
macrolin       PHQLIIQRTLTGGLSSGGGSLS------RSTADRFRSVMVPGVH------ 88
                : ::* *:  .      .            :    .    .        
                              ⊳rod domain
leech_EST      ITATGVSGIKESRDQEKKDMQDLNERFANYIDKVRNLEAQNRKLAEDLSR 146
gliarin        LASSGVSSVKNSREREKKDMQDLNERFASYIEKVRFLEAQNKRLTDELDK 131
filarin        VAGGAATSVTDQRKNEKREMQDLNERFAGYIEKVRFLEAQNKKLADELDA 104
macrolin       LATKEVDSARFTRDREKKDMQDLNLRLTRYIETVRFLEAQNKQLDNEIKT 138
               ::   . .    *..**::***** *:: **:.** *****::* :::. 

leech_EST      LKEKWGKDTVQVKAMFQVDLDECRHQLDEAEKEKARLEIRLASLEEELED 196
gliarin        LKSRWGKDTTQIKAMFQVELDEARRLLDDGEKEKARLEIKIASLEEINEE 181
filarin        LKSRWGKQTTVIKTMYQTDLDQVKRLLDDCEKETQRLQIQVASMEEKVDD 154
macrolin       LKAKWGKETSQVRAMFEADLEEARRIKDDLEKDTAKLEIRISSVIEALDV 188
               ** :***:*  :::*::.:*:: ::  *: **:. :*:*:::*: *  : 

leech_EST      LRQELALAAQQLSENQAFISKNNQLLIDYESEIQGLRKRIEQLENEKERD 246
gliarin        LAVKLNEALQTNEEQRQKIDRQNQQLSDYEGEISLLRRRVEGLEADKDKD 231
filarin        LRRKLDEANAAVDESRDKLEKQIQQIAEIQSEVHLLRLRSDLLDGDKRYN 204
macrolin       EKRRNATSEKTIIEYREKIENQNRQLVDLQANNDLLQRRLELLEGDRDRD 238
                  .   :     * :  :..: : : : :.:   *: * : *: ::  :

leech_EST      KKNIAQLKELLAKARQDLDNETLEHIHAENRCQTLQEEIDFLKSIHEQEM 296
gliarin        RKTIATLNAALNTARANLDDETLRHIDAENRRQTLEEELEFLKSVHEQEL 281
filarin        KAILSKLQENLNRARTDFDAQAVEHDAAEAKRLALEEELAFIKELHEQEL 254
macrolin       KKLVGELKEAVTRYRTDLDSQTLLYVDADNRRQSLEEELDFLKQVHEQEM 288
               :  :. *:  :   * ::* ::: :  *: :  :*:**: *:*.:****:

leech_EST      KELAALAYRDTAPE-RDYWKNEMAQALREIQEMYDDKFDSIRTELETHYT 345
gliarin        KELAALAYRDTTTENRDFWKNEMGNALREIQEMYDEKLDLMRTEIESSYT 331
filarin        RELAAKAYFDSTASNREYWKSEMSMELKKLQEHYGEKIDELQNEMSLNYS 304
macrolin       KELNILILKDYSIVNRQYWKTEMERALKEIQDLYDDELDSMRDETETFYQ 338
               :**      * :   *::**.**   *:::*: *.:::* :: * .  * 

leech_EST      TKVQEYKTGVARAVTETQRIKEDTTKLRQDLTDLRDKLNELTSQNTSLTR 395
gliarin        LKLQEFRTGATKQNLESTHTKEETKRLKIQVTDLRDKLSDLEGKNLQLVR 381
filarin        MQVQSLN--LPRPAIVST-TKEESVRIRMQTNEIRTKVLEFEGRNDMMLR 351
macrolin       LKIQEIRNSSQRSALEVDQAKDTAKKHKSNVIELRDRVTILEGQNTNLQN 388
                ::*. .    :        *: : : : :  ::* ::  : .:*  : .

leech_EST      EFEALRRKKEDQERDLEYQRTQLHAEASTLRFELERILSDLQRIMDTKLG 445
gliarin        ELENLRRSKEELEREFEHENGELKAEIARLRAELESIIQELQNIMDTKLG 431
filarin        EIEEMRRDMEEREIEVMKDIDATKSEIITMKAEMDAITKELEALLDAKLS 401
macrolin       ELDFFKLESEHRERDLEVENDTLRLEACKYKAELESLWIEIDKIRSAKDG 438
               *:: :: . *. * :.  :    : *    : *:: :  ::: : .:* .
                    rod domain ⊲
leech_EST      LELEIAAYRKLLEGEENRLKQISMQSGGSGFAYGGGAGAGGSGGAGG--A 493
gliarin        LELEIAAYRKLLEGEESRVGLKQLVEMYSG---GGGGGVAISGGLSGGLG 478
filarin        LELEIATYKKLLEGEADGEGLRQVVDNMFD------SYASATASAAAAYA 445
macrolin       LELEIAAYRKLLEAEEGRFGMEKIIEKLRL------DKHDCSQHVKYRVT 482
               ******:*:****.* .     .: .               :        

leech_EST      GGAGGAGSYGYSS----YGSASGFASGGGNAATSVVGQMSAKTTYHKSAL 539
gliarin        GGSSYNESYSYSSSNAASASAGGLAGGAFSSGVLSKGEISARTTFQKSAK 528
filarin        DGIYGEGYNGSAAG---FSSSTSLSRKITGSSSLVGG----RTSYQRNAR 488
macrolin       ENYSGD-------------SQSTINQSVKKETTS-------KTSVQKSSK 512
                .                 *   :                 :*: ::.: 

leech_EST      GPISISNCTPDGKLVELENTGTREENIEGWKIVRVVDGKDQPEFKLDGRF 589
gliarin        GTTSIAETSPDGKYVLIENSGRKTESLGGWRLNRVVDDVEVVNFVFPSDL 578
filarin        GPVSISECSPDGKFIVLENTGKRREELGGFTLKRKVDGKDVPVYTFKADA 538
macrolin       GPVAIAECSMDGKFIVLENTGRKDEQLGGYKIRRNINGLDKVEFNFDRNF 562
               *. :*:: : *** : :**:* : *.: *: : * ::. :   : :    

leech_EST      SSLKRGQKIGIYARGAKPRTAGARDIEANFESWGIGAQATTKLINPEGEE 639
gliarin        K-LNAGEKFKVWGAGQKPINASSNDVEANVDNFGIGSNILTRLYNTLGEE 627
filarin        G-VDPHMKIKLWVKGAKPSNATASDIEVDIIDWGTGQNITTQLFNSSGQD 587
macrolin       V-LRAGAKIKIWANKLRPLSAFSSDLEADFPSWGVGERIVTGLINQSGEE 611
                 :    *: ::    :* .* : *:*.:. .:* * .  * * *  *::

leech_EST      KATHTQKTVYTS-------------------------- 651
gliarin        RATHVQKTVYG--------------------------- 638
filarin        RATHIQKTLA---------------------------- 597
macrolin       RASYMQIVPRTVLEPCPRPALEGPTDHPLRHFFLDPQI 649
               :*:: * . 

Figure A.6: ClustalW alignment of the HmIF4 protein sequence with those of three
other known intermediate filaments in Hirudo medicinalis. The EST open reading frame
aligned particularly well in the conserved rod domain, and has more variability outside
of that domain. The peptide we identified is located in a variable region in the 5’ end of
the rod domain where the sequences are quite dissimilar, thus confirming the discovery
of a novel protein.
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MH
+3

Figure A.7: Annotated spectrum for a peptide from the histone H2B. Parent mass '
2500 Da was shown to have a CNS specific expression. In situ hybridization of the
mRNA shows a preferential location in the CNS, but with a relatively weaker signal.



97

Figure A.8: Annotated spectrum for uncharacterized peptide. Parent mass ' 3841 Da
was shown to have a dorsal specific expression similar to another fragment 2 amino
acids shorter showing in Figure 2.5.
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Figure A.9: Distribution of the MS1 raw data peaks for 2 experiments. Intensity of top
peaks (162.2 and 1526.5) for annotated spectra are indicated by red line.
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Table A.3: Identification of several other peptides. Peptides were identified using In-
spect with an FDR cut-off of 0.01. Biological annotations were achieved by doing a
Blast search of the protein sequence against NCBI nr and keeping the top hit if the
E-value was less than or equal to 1e-5.
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Appendix B

Supplemental: AMASS – Algorithm

for MSI Analysis by Semi-supervised

Segmentation

Note: The quality of some figures was reduced from the original publication.

Original supplemental material is available free of charge at http://pubs.acs.org.
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Figure B.1: Querying with small random seeds results in meaningful regions. Unlike
the case of user-defined queries, many of the queries lead to similar results and some
queries lead to lower quality results. Shown here are a few hand-selected random results.
While the resulting log-odds images are in general not as specific as their user-defined
counterpart, they still highlight different regions with specific molecular signatures. We
can also expect the regions to gain specificity on the next iteration of the algorithm.
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Table B.1: Molecular signatures for anterior and posterior ganglia. Specific molecules
from the same morphological segment sometimes have slightly different signatures. We
look at the molecular signatures of two queries: anterior and posterior ganglia. While
many molecules are expressed throughout the CNS, some m/z values (3299, 4377,
5293) have differentiated signatures, consistent with the rostricaudal gradient of leech.
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a)

b)

c)

Figure B.2: Segmentation results with and without smoothing after 10 iterations for
random initial random segmentation in leech. a) Initial random segmentation. b) Re-
sulting segmentation map without smoothing. c) Resulting segmentation map with 3x3
median smoothing.
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3295

4007

3508
5417
5572

3653

4377 8526
8564

Figure B.3: Top 20 score peaks at least 10 Daltons apart for segments in leech at suc-
cessive iterations.
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Figure B.4: Top 20 score peaks at least 10 Daltons apart for segments in rat at successive
iterations.
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Table B.2: Molecules expressed in different regions of the rat brain cortex.

retrospenial parietal primary auditory
cortex association somatosensory cortex

cortex cortex

m/z weight m/z weight m/z weight m/z weight

3765.5 0.32
3767.5 0.33

6720.5 0.34
6722.5 0.33
6725.0 0.34
6728.5 0.34
6731.0 0.34

7529.0 0.33
7532.5 0.42 7532.5 0.33

7534.5 0.33 7534.5 0.42
7537.5 0.34
7541.0 0.34
7543.0 0.33
7546.5 0.31

7568.5 0.33
7571.5 0.36
7574.0 0.35
7580.0 0.31

7611.5 0.51
7614.0 0.53
7617.0 0.51
7619.5 0.46

7747.5 0.31

7840.0 0.31
7842.5 0.32
7845.5 0.32

9559.5 0.39
9563.0 0.39

9981.0 0.32

1
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Table B.3: Molecules expressed in the amygdala and piriform cortex of the rat brain.
piriform amygdala image
cortex

m/z weight m/z weight

3321.0 0.40
3322.5 0.47 3322.5 0.52
3325.0 0.45 3324.5 0.45
3326.5 0.35 3327.0 0.33

3451.0 0.33
3453.5 0.53
3455.0 0.52 3455.0 0.33
3457.0 0.50 3457.5 0.30
3459.0 0.35

4270.5 0.47
4273.0 0.45
4275.0 0.37

4276.5 0.39
4279.0 0.42
4281.0 0.44 4281.5 0.42
4283.0 0.40 4283.5 0.41
4285.5 0.36

4383.5 0.42
4385.5 0.53
4388.0 0.50
4390.5 0.41

4931.5 0.32 4931.0 0.44
4933.5 0.37 4932.0 0.54
4936.0 0.38 4936.0 0.59
4938.0 0.34 4938.0 0.57

4940.5 0.52

5141.5 0.32
5143.5 0.42

5146.0 0.38 5146.5 0.52
5148.5 0.38 5148.0 0.55
5151.0 0.33 5151.0 0.49

5434.5 0.36
5436.5 0.31 5436.5 0.47

5439.0 0.46
5442.0 0.32

6218.0 0.47
6221.0 0.50
6223.5 0.54
6225.5 0.50
6228.0 0.48

6270.0 0.39
6272.5 0.48
6275.0 0.47
6277.5 0.42
6279.5 0.35

piriform amygdala image
cortex

m/z weight m/z weight

6643.0 0.60 6643.0 0.35
6646.0 0.65 6646.0 0.41
6647.5 0.62 6648.5 0.43
6651.0 0.61 6650.5 0.39
6653.5 0.61 6654.0 0.33

6854.0 0.33

6972.5 0.39 6972.5 0.34
6975.5 0.48 6976.0 0.48
6978.0 0.46 6978.5 0.49
6981.0 0.33 6981.0 0.42

8558.0 0.34
8561.0 0.37 8560.5 0.40
8564.0 0.37 8563.0 0.46
8566.5 0.34 8567.0 0.47

8569.5 0.41

8581.5 0.33 8582.0 0.39

8660.0 0.40
8663.0 0.30 8663.0 0.46
8666.5 0.37 8666.0 0.46
8669.0 0.35 8669.5 0.47
8672.5 0.32 8672.5 0.41

8767.0 0.31 8766.5 0.38
8770.0 0.33 8769.5 0.38

8772.5 0.37
8776.0 0.32 8776.0 0.38

8778.5 0.37

10942.0 0.33
10944.5 0.40
10948.0 0.38
10951.5 0.30

21860.5 0.46
21870.5 0.48
21875.5 0.47
21880.0 0.46
21885.0 0.44

21918.0 0.31

1
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Table B.4: Molecules expressed in different regions of the rat brain hippocampus.

dentate CA1-CA3 CA1-CA3 CA3 images
gyrus axons cell bodies cell bodies

m/z weight m/z weight m/z weight m/z weight

4958.5 0.44
4961.5 0.47
4963.0 0.46
4966.0 0.44

5000.0 0.32 5000.5 0.43 5000.5 0.23
5002.5 0.32 5003.0 0.22

5021.0 0.38
5023.5 0.38

5037.5 0.41 5037.0 0.21
5039.0 0.33 5039.5 0.41 5039.0 0.21
5042.0 0.31

5057.5 0.33

5080.5 0.32

5102.0 0.33
5104.5 0.34

5113.5 0.33

5165.0 0.43
5167.5 0.46
5169.5 0.47
5171.5 0.46
5174.0 0.44

5762.5 0.37
5765.0 0.34

6221.0 0.61
6223.5 0.62
6226.0 0.64
6228.5 0.60
6233.5 0.55

6272.5 0.58
6275.0 0.63
6277.0 0.59
6280.0 0.55
6282.5 0.53

6643.5 0.34
6645.5 0.36
6648.0 0.39
6650.5 0.37
6654.0 0.32

8444.0 0.32
8446.5 0.60
8449.5 0.54
8452.5 0.53
8456.0 0.36

1
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Table B.5: Molecules expressed in different regions of the rat brain thalamus and
epithalamus.

paraventricular
thal. nucleus

m/z weight

3953.5 0.50
3956.0 0.61
4273.0 0.32
4383.5 0.61
4385.5 0.50
4388.0 0.56
4390.0 0.40
4392.0 0.38
4934.0 0.32
4936.5 0.34
4938.5 0.32
5765.0 0.39
6221.0 0.33
6223.0 0.35
6225.5 0.30
6228.5 0.30
6275.0 0.34
6277.0 0.36
6279.5 0.32
9537.5 0.47
9560.0 0.46
9563.0 0.62
9569.5 0.47
9573.0 0.46

lateral post.
thal. nucleus

m/z weight

3356.5 0.32
3359.0 0.41
6717.5 0.68
6752.5 0.68
6755.0 0.72
6757.0 0.71
6760.0 0.69
6773.0 0.50
6924.5 0.31

ventral
posteromedial
thal. nucleus

m/z weight

3355.0 0.33
3356.5 0.62
3359.0 0.72
3360.5 0.54
5341.5 0.41
5343.5 0.48
5346.5 0.44
6739.0 0.88
6752.5 0.88
6754.5 0.89
6757.5 0.90
6760.5 0.89
6795.0 0.83
6802.5 0.59
6810.5 0.48
6813.5 0.57
6816.0 0.55
6911.0 0.44
6921.5 0.65
6924.5 0.75
6926.5 0.70
6929.5 0.53

ventral
posteromedial
thal. nucleus

m/z weight

6739.0 0.59
6744.5 0.57
6754.5 0.61
6757.5 0.57
6760.0 0.59
6792.5 0.41
6795.0 0.43
6926.5 0.31

lateral
habenular
nucleus

m/z weight

3530.5 0.34
3544.0 0.38
5562.5 0.43
5564.5 0.47
5567.0 0.59
5569.5 0.33

10600.50 0.41
10604.00 0.40
10607.50 0.54
10611.00 0.36
10614.50 0.41
12121.50 0.31

medial
habenular
nucleus

m/z weight

5346.0 0.39
5567.5 0.33
6215.5 0.30
6223.5 0.32
6270.0 0.30
6272.0 0.33
6277.0 0.36
6545.5 0.33
6595.5 0.35
6741.5 0.71
6747.0 0.74
6754.5 0.73
6760.0 0.78
6762.5 0.75
6794.5 0.53
6798.0 0.54
6889.5 0.46
6891.5 0.42
6924.0 0.59
6926.5 0.44
6929.5 0.54
6951.5 0.30
6986.0 0.40

medial
habenular
nucleus
(cont’d)

m/z weight

7003.0 0.43
7014.0 0.64
7016.5 0.62
7025.0 0.40
8450.0 0.35
9563.5 0.38
9938.5 0.35

10607.00 0.40
10614.00 0.38
11256.50 0.37
11277.50 0.42
11301.00 0.49
11322.00 0.54
11336.50 0.50
11340.00 0.52
11342.50 0.51
11356.50 0.43
11378.00 0.55
11388.50 0.51
11409.00 0.34
11481.50 0.30
13758.00 0.40
13769.50 0.49
13773.50 0.51
13777.50 0.42
13781.50 0.57
13812.00 0.38
13823.50 0.41
13831.00 0.41
13862.00 0.47
13869.50 0.41
13873.00 0.42
13895.50 0.42
13900.00 0.45
13911.00 0.30
13934.00 0.36
13938.00 0.37
13957.00 0.35
13988.00 0.38
14000.00 0.36
14007.00 0.39
14011.00 0.36
14022.50 0.35
15281.50 0.32
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Table B.6: Molecules expressed in different regions of the rat brain hypothalamus.

posterior
hypothal. area

m/z weight

3066.0 0.40
3526.0 0.38
3528.0 0.45
3530.5 0.38
3542.0 0.39
3543.5 0.39
5564.5 0.43
5567.0 0.44
9557.0 0.30
10607.0 0.30

lateral
hypothal. area

m/z weight

3528.0 0.31
3530.0 0.36
3532.0 0.38
3534.5 0.36
3536.0 0.32
3670.5 0.33
3826.0 0.32
3828.0 0.34
5562.0 0.33
5565.0 0.45
5567.0 0.47
5569.5 0.37
7057.0 0.33
7060.0 0.37
7063.0 0.38
7065.5 0.36
7068.0 0.34
9195.0 0.30
9197.5 0.34
9207.0 0.30
10597.5 0.44
10600.5 0.51
10604.5 0.54
10607.0 0.59
10611.0 0.53

lateral
hypothal. area

(cont’d)

m/z weight

13965.5 0.31
14108.0 0.39
14111.5 0.40
14115.0 0.39
14119.0 0.39
14123.5 0.39
14165.5 0.32
14177.0 0.32
14181.5 0.32
14189.0 0.32
14192.5 0.32
14215.5 0.32
14231.5 0.30
14277.5 0.33
14282.0 0.34
14286.0 0.34
14294.0 0.34
14313.0 0.34
14328.5 0.34
14332.0 0.36
14340.5 0.34
18347.0 0.31
18382.5 0.32
18386.5 0.31
18396.0 0.32
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Table B.7: Molecules expressed in other various regions of the rat brain.

zona incerta

m/z weight

3668.5 0.32
3670.5 0.32
5564.5 0.35
7046.0 0.34
7051.5 0.34
7055.0 0.33
7057.0 0.36
7060.0 0.34
7137.0 0.30
9195.0 0.33
9198.0 0.31
9201.5 0.31
10597.0 0.30
10600.5 0.38
10604.0 0.39
10607.0 0.40
10611.0 0.34
14088.5 0.35
14099.5 0.35
14104.0 0.35
14107.5 0.35
14119.5 0.35
14142.0 0.31
14154.0 0.31
14161.5 0.32
14165.5 0.31
14177.5 0.30
18342.5 0.36
18360.5 0.35
18373.5 0.36
18382.5 0.33
18387.0 0.34
18404.0 0.32

internal capsule

m/z weight

3165.5 0.42
3167.5 0.41
3169.0 0.34
3669.0 0.33
3671.0 0.44
3672.5 0.41
3823.5 0.43
3826.0 0.55
3827.5 0.49
3829.5 0.52
3834.0 0.32
4042.0 0.35
4044.5 0.32
4322.0 0.33
4324.0 0.36
4326.0 0.37
4699.5 0.36
5291.5 0.34
7044.0 0.52
7098.5 0.55
7101.5 0.61
7103.5 0.56
7123.5 0.55
7142.5 0.61
7153.5 0.51
7159.0 0.52
7161.5 0.52
7178.0 0.50
7197.0 0.36
7202.5 0.30
9191.5 0.43
9195.0 0.60
9198.0 0.49
9201.0 0.46
9204.5 0.50

internal capsule
(cont’d)

m/z weight

11960.5 0.37
11964.5 0.35
11968.0 0.30
13850.0 0.32
13907.0 0.41
13961.5 0.46
13980.5 0.50
13991.5 0.48
14007.5 0.49
14050.0 0.53
14061.0 0.53
14072.5 0.55
14088.5 0.53
14095.5 0.52
14100.0 0.52
14177.0 0.61
14184.5 0.58
14189.0 0.57
14200.0 0.59
14208.0 0.57
14227.5 0.57
14239.0 0.61
14247.0 0.56
14258.5 0.62
14266.5 0.57
14285.5 0.59
14290.0 0.52
14305.5 0.58
14312.5 0.52
14321.0 0.52
14348.0 0.52
14351.5 0.53
14356.0 0.54
14363.5 0.66
14391.0 0.55

internal capsule
(cont’d)

m/z weight

14403.0 0.38
14406.5 0.37
14414.5 0.38
14418.0 0.40
14441.5 0.34
14453.0 0.37
14461.0 0.45
14563.0 0.31
18303.0 0.64
18308.0 0.65
18316.0 0.64
18321.0 0.63
18352.0 0.67
18360.0 0.72
18374.0 0.66
18378.0 0.63
18382.0 0.67
18404.5 0.58
18409.0 0.58
18427.0 0.66
18431.0 0.63
18435.5 0.65
18457.0 0.57
18461.5 0.52
18483.5 0.54
18493.0 0.47
18502.0 0.50
18510.0 0.51
18528.5 0.41
18550.5 0.41
18554.5 0.54
18563.5 0.38
18576.5 0.45
18581.5 0.38
18607.5 0.36
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S  = 0.740t

S  = 0.113t

Figure B.5: Query consistency scores. In the top panel, the original query (left) recruits
may other spots (right) sharing a similar molecular signature, thus resulting in a low
consistency score (0.113). In the bottom panel, the query and query-result are very
similar indicating that all spots within the query have similar molecular signatures and
spots outside the query have different molecular signatures. This results in a much
higher consistency score (0.74).
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a)

b) 3V - third ventricle
D3V - dorsal third ventricle
LV - lateral ventricle
dg - dentate gyrus
MHb - medial habenular nucleus
LHb - lateral habenular nucleus
PVP - paraventricular thalamic nucleus
     posterior part
LPMR/LPLR - lateral posterior thalamic
     nucleus, mediorostral/laterorostral part
VPM - ventral posterolateral thalamic
     nucleus
VPL - ventral posteromedial thalamic
      nucleus
DLG - dorsal lateral geniculate nucleus
VLG - ventral lateral geniculate nucleus
ic/cp - internal capsule / cerebral peduncle
ZI - zona incerta
mt - mammilothalamic tract
cc - corpus callosum

Figure B.6: Basic anatomy for the a) the leech embryo and b) the rat brain slice.
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