
UCLA
UCLA Electronic Theses and Dissertations

Title
Primal-dual decomposition by operator splitting and applications to image deblurring

Permalink
https://escholarship.org/uc/item/4z1126w3

Author
O'Connor, Daniel Verity

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4z1126w3
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Primal-dual decomposition by operator splitting and

applications to image deblurring

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Daniel Verity O’Connor

2015

c© Copyright by

Daniel Verity O’Connor

2015

Abstract of the Dissertation

Primal-dual decomposition by operator splitting and

applications to image deblurring

by

Daniel Verity O’Connor

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Lieven Vandenberghe, Chair

We present primal-dual decomposition algorithms for convex optimization problems with cost

functions f(x)+g(Ax), where f and g have inexpensive proximal operators and A can be de-

composed as a sum of structured matrices. The methods are based on the Douglas-Rachford

splitting algorithm applied to various splittings of the primal-dual optimality conditions. We

discuss applications to image deblurring problems with non-quadratic data fidelity terms,

different types of convex regularization, and simple convex constraints. In these applica-

tions, the primal-dual splitting approach allows us to handle general boundary conditions

for the blurring operator. We also give a domain decomposition approach to image deblur-

ring, where the blur operator may use a different blur kernel for each image patch, and

at each iteration all patches are processed in parallel. Numerical results indicate that the

primal-dual splitting methods compare favorably with the alternating direction method of

multipliers, the Douglas-Rachford algorithm applied to a reformulated primal problem, and

the Chambolle-Pock primal-dual algorithm.

A key property exploited in most image deblurring methods is spatial invariance of the

blurring operator, which makes it possible to use the fast Fourier transform (FFT) when

solving linear equations involving the operator. In this thesis we extend this approach to

two popular models for space-varying blurring operators, the Nagy-O’Leary model and the

Efficient Filter Flow model. We show how splitting methods derived from the Douglas-

ii

Rachford algorithm can be implemented with a low complexity per iteration, dominated by

a small number of FFTs.

iii

The dissertation of Daniel Verity O’Connor is approved.

Christopher R. Anderson

Stanley J. Osher

Yingnian Wu

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2015

iv

To Seririthanar

v

Table of Contents

1 Introduction . 1

1.1 Composite convex optimization . 1

1.2 Image deblurring by convex optimization . 4

1.3 Proximal algorithms . 6

1.4 Decomposition in convex optimization . 9

1.5 Contributions . 11

2 Convex Optimization Background . 13

2.1 Elements of convex analysis . 13

2.1.1 The subdifferential . 13

2.1.2 The convex conjugate . 14

2.2 The dual problem and optimality conditions 17

2.3 Monotone operators and resolvents . 19

2.3.1 Resolvent . 19

2.3.2 Proximal operator . 20

2.4 Douglas-Rachford splitting algorithm . 23

2.4.1 Douglas-Rachford splitting . 23

2.4.2 Spingarn’s method . 27

2.4.3 Alternating minimization . 28

3 Primal-dual operator splitting . 32

3.1 Introduction . 32

3.2 Primal-dual splitting strategies . 34

vi

3.2.1 Optimality conditions . 34

3.2.2 Simple splitting . 35

3.2.3 Mixed splitting . 39

3.2.4 Mixed splitting with partially quadratic functions 42

3.2.5 Example . 45

3.3 Image deblurring by convex optimization . 46

3.4 Total variation deblurring . 49

3.4.1 Periodic boundary conditions . 49

3.4.2 Non-periodic boundary conditions . 53

3.5 Tight frame regularized deblurring . 55

3.5.1 Periodic boundary conditions . 55

3.5.2 Non-periodic boundary conditions . 57

3.6 Primal-dual decomposition . 61

3.7 Conclusions . 64

4 Total variation image deblurring with space-varying kernel 67

4.1 Introduction . 67

4.2 The Nagy-O’Leary model . 70

4.3 The Efficient Filter Flow model . 73

4.4 Experiments . 75

4.4.1 Spatially variant Gaussian blur . 75

4.4.2 Motion deblurring . 79

4.5 Conclusion . 80

5 Consensus Douglas-Rachford for monotone inclusion problems 83

vii

5.1 Consensus Douglas-Rachford . 83

5.1.1 Derivation based on consensus trick 84

5.1.2 Alternate derivation . 86

5.1.3 Proof that S and T are nonexpansive 88

5.1.4 Equivalent form of extended Douglas-Rachford 89

5.1.5 Primal-dual operator splitting revisited 90

5.2 Extensions of ADMM . 90

5.2.1 Derivation of ADMM iteration . 91

5.2.2 Extending ADMM via consensus Douglas-Rachford 93

5.3 Experiment . 94

5.4 A domain decomposition approach to image deblurring 96

5.4.1 “Free” boundary conditions for image deblurring 96

5.4.2 Domain decomposition approach . 98

5.4.3 Experiment . 100

6 Conclusions . 102

References . 105

viii

List of Figures

3.1 Relative error versus iteration number for the experiment in section 3.2.5. . 46

3.2 Relative optimality gap versus iteration number for the experiment in sec-

tion 3.4.1. 50

3.3 Result for the experiment in section 3.4.1. 51

3.4 Close-ups of the results for the experiment in section 3.4.1. 51

3.5 Result of using L2 data fidelity term for salt and pepper noise. 52

3.6 Relative optimality gap vs. iteration for the experiment in section 3.4.2. . . 54

3.7 Result for the experiment in section 3.4.2. 54

3.8 Relative optimality gap vs. iteration for the experiment in section 3.5.1. . . . 56

3.9 Result for the experiment in section 3.5.1. 57

3.10 Relative optimality gap vs. iteration for the experiment in section 3.5.2. . . . 60

3.11 Result for the experiment in section 3.5.2. 60

3.12 Relative optimality gap versus iteration number for the experiment in section 3.6. 63

3.13 Result for the experiment in section 3.6. 63

4.1 Visualization of the matrices Up in section 4.4.1. Red corresponds to a value

of 1, and blue corresponds to a value of 0. The numerical values transition

smoothly from 0 to 1. 76

4.2 Result for the experiment in section 4.4.1. 77

4.3 Relative error vs. iteration and relative optimality gap vs. iteration for the ex-

periment in section 4.4.1. The solid line shows the convergence of the primal-

dual Douglas-Rachford method, and the dashed line shows the convergence of

the Chambolle-Pock method. 78

4.4 Result for the experiment in section 4.4.2. 79

ix

4.5 The segmentation computed using the code from [CZF10]. 79

5.1 Relative optimality gap versus iteration number for the experiment in sec-

tion 5.3. Compare this figure with figure 3.4.2. 96

x

List of Tables

3.1 Relation between various methods. 64

xi

Acknowledgments

I’d like to thank first of all Lieven Vandenberghe, who provided outstanding research guid-

ance and also truly cares about mentoring his students. I couldn’t have asked for a better

PhD advisor.

I’d also like to thank my committee members, Chris Anderson, Stan Osher, and Ying

Nian Wu, who have been extremely supportive and who have played a key role in making

my PhD possible.

I am very fortunate to have the opportunity to be a part of the UCLA math community,

where everyone has always been welcoming and accessible. Wotao Yin, Olga Radko, Stefano

Soatto, Zhuowen Tu, Alan Yuille, Luminita Vese, and Andrea Bertozzi were all immensely

helpful throughout my PhD. I’d especially like to thank Maggie Albert who made all the

difference during my time at UCLA. I’m very grateful for collaborations with Dan Nguyen,

Ke Sheng, Nick Dwork, and Genna Smith.

I’d like to thank Eric Shrader for his invaluable mentorship at Arete Associates.

Finally I’d like to thank my parents for their heroic levels of support and encouragement.

xii

Vita

2001 B.S. (Mathematics), University of Texas at Austin

2003 M.A. (Mathematics), University of California, Los Angeles

2004-2005 Actuarial Trainee, Health Net, Inc.

2006–2009 Research Analyst, Arete Associates.

2009-2015 Graduate Student Researcher, University of California, Los Angeles

Publications

Journal papers

• D. O’Connor and L. Vandenberghe, Primal-dual decomposition by operator splitting

and applications to image deblurring, SIAM J. Imaging Sci., 7(3),1724-1754,2014.

• D. Nguyen, D. O’Connor, V. Yu, D. Ruan, M. Cao, D. Low, K. Sheng, Dose domain

regularization of MLC leaf patterns for highly complex IMRT plans, Medical Physics,

42(4),2015.

• D. O’Connor and L. Vandenberghe, Total variation image deblurring with space-varying

kernel. To be submitted.

xiii

Conference abstracts and presentations

• D. O’Connor, L. Vandenberghe, Total variation image deblurring with space-varying

kernel via Douglas-Rachford splitting. Presentation to be given at ISMP 2015.

• N. Dwork, D. O’Connor, N. Addy, R. Ingle, J. Pauly, D. Nishimura, Using optical flow

to estimate displacement between 3D navigators in coronary angiography. Abstract

accepted to ISMRM 2015.

• D. Nguyen, D. O’Connor, V. Yu, D. Ruan, M. Cao, D. Low, K. Sheng, A new intensity

modulation radiation therapy (IMRT) optimizer solution with robust fluence maps for

MLC segmentation. Abstract accepted as a talk at AAPM 2015.

• D. Nguyen, D. Ruan, D. O’Connor, D. Low, S. Boucher, K. Sheng, A novel Haar

wavelet based approach to deliver non-coplanar intensity modulated radiotherapy using

sparse orthogonal collimators. Abstract accepted as a talk at AAPM 2015.

• D. Nguyen, V. Yu, D. Ruan, H. Semwal, D. O’Connor, M. Cao, D. Low, K. Sheng,

Dose domain optimization of MLC Leaf Patterns for highly complicated 4π IMRT plans.

Abstract accepted as a talk at AAPM 2014.

• N. Dwork, G. Smith, D. O’Connor, U. Sikora, K. Lurie, J. Pauly, A. Ellerbee, Ex-

traction of the Attenuation Coefficient from OCT Data. Poster presented at the 2014

National Training Meeting of the NIBIB.

xiv

CHAPTER 1

Introduction

1.1 Composite convex optimization

In this thesis we focus on solving convex optimization problems of the canonical form

minimize
x∈Rn

f(x) + g(Ax) (1.1)

where f and g are closed (i.e., lower semicontinuous) convex functions and A is a matrix. This

problem form (sometimes known as a “composite convex optimization problem”) has been

widely studied in the convex optimization literature [Roc74, Gab83, CP11a]; for example,

the Fenchel-Rockafellar approach to duality is based on this problem form [Roc67]. Problem

(1.1) is simple enough that its analysis is clean and elegant, and yet expressive enough that

many important practical problems arising in application areas such as image processing,

medical imaging, machine learning, and signal processing can be expressed in this form with

simple choices of f, g and structured matrices A. By “simple”, we mean that f and g have

“proximal operators” [Mor65] that can be evaluated efficiently. The proximal operator (with

parameter t > 0) of a proper closed convex function f is denoted by proxtf , and is defined

by

proxtf (x) = argmin
u

f(u) +
1

2t
‖u− x‖2

2. (1.2)

For example, if f is the indicator function of a closed convex set Ω, so that

f(x) =


0 if x ∈ Ω

∞ otherwise,

1

then proxtf (x) = PΩ(x), the projection of x onto Ω. This projection can be computed

inexpensively in many important cases. Another important example is the case where f(x) =

‖x‖ for some norm ‖ · ‖. In this case,

proxtf (x) = x− PtC(x),

where C is the dual norm unit ball. Proximal operators will be discussed in more detail in

section 2.3. The algorithms presented in this thesis are “proximal algorithms”, in that they

are based on or make use of proximal operators.

One basic type of structure in A that we will consider is simply that the matrix-vector

products Ax and AT z can be computed efficiently, for any vectors x and z. This is the

structure exploited by forward-backward methods [Tse00, CW05] and semi-implicit primal-

dual methods [EZC09, Ess10, BC11b, HY12, Con13], of which the Chambolle-Pock algorithm

is the best known example. Any sparse matrix has this structure, for example. The type of

structure that we will focus on mainly in this thesis is that of a matrix A which is a sum

of matrices Ai such that linear systems with coefficient I + tATi Ai can be solved efficiently.

Linear systems of this form are encountered frequently in proximal algorithms, and this type

of structured matrix appears in many applications. For example, if Ai is a discrete Fourier

transform matrix, then linear systems with coefficient I+ tATi Ai can be solved efficiently via

the fast Fourier transform.

Here we list some examples to show the expressive power of problem (1.1).

Linear equality constraints The problem

minimize
x

f(x)

subject to Ax = b

can be expressed in the form (1.1) if we choose g to be the the indicator function of the

set {b}.

2

Convex set constraints Problems with convex set constraints, such as

minimize
x

f(x)

subject to Ax− b ∈ C

where C is a convex set, have the form (1.1) where g is the indicator function of C. By

taking f to be linear and taking C to be a Cartesian product of convex cones, we see that

cone programming problems including linear programs, second-order cone programs and

semidefinite programs can be expressed in the form (1.1). By taking C to be the indicator

function for a norm ball, we can express constraints of the form ‖Ax− b‖ ≤ ε.

Norm regularization Regularization terms that penalize a norm of x can be expressed

via the function f . If f(x) = ‖x‖1, then problem (1.1) becomes

minimize
x

g(Ax) + ‖x‖1.

An important special case is where g(y) = (ρ/2)‖y − b‖2
2, in which case (1.1) is the LASSO

problem:

minimize
x

ρ

2
‖Ax− b‖2

2 + ‖x‖1.

Another important special case is where g is the indicator function of {b}. In this case, we

get the basis pursuit problem [CDS01]

minimize
x

‖x‖1

subject to Ax = b.

In the next section, we will discuss image deblurring problems and show how they can

be expressed in the canonical form (1.1) with simple functions f, g and structured A. We

will see that the canonical problem form (1.1) is particularly well-suited for image deblurring

problems.

3

1.2 Image deblurring by convex optimization

We first discuss the blurring model and express the deblurring problem in a general opti-

mization problem of the form (1.1). Let b be a vector containing the pixel intensities of an

N × N blurry, noisy image, stored in column-major order as a vector of length n = N2.

Assume b is generated by a linear blurring operation with additive noise, i.e.,

b = Kxt + w, (1.3)

where K is the blurring operator, xt ∈ Rn is the unknown true image, and w is noise. The

deblurring problem is to estimate xt from b. Since blurring operators are often very ill-

conditioned the solution x = K−1b is a poor estimate of xt and regularization or constraints

must be applied to obtain better estimates [HNO06]. We will formulate the deblurring

problem as an optimization problem of the following general form:

minimize φf(Kx− b) + φr(x) + φs(Dx), (1.4)

with φf , φs, and φr convex penalty or indicator functions. This optimization problem is a

special case of (1.1) with

f(x) = φr(x), g(u, v) = φf(u− b) + φs(v), A =

 K

D

 .
We now discuss the three terms in (1.4) in more detail.

The first term in (1.4) is called the data fidelity term, and penalizes or limits the deviation

between the observed image and the model output for the reconstructed image. Typical

choices for φf include a quadratic penalty φf(u) = (1/2)‖u‖2 with ‖ · ‖ the Euclidean norm,

the 1-norm penalty φf(u) = ‖u‖1, or the Huber penalty

φf(u) =
n∑
k=1

hη(uk), hη(v) =

 v2/(2η) |v| ≤ η

|v| − η/2 |v| ≥ η.

One can also consider an indicator function φf(u) = δS(u) of a closed convex set S. For

example, if S is a Euclidean norm ball S = {u | ‖u‖ ≤ σ} and we take φf = δS, the problem

4

is equivalent to

minimize φs(Dx) + φr(x)

subject to ‖Kx− b‖ ≤ σ.

More generally, φf can be a penalty function with a non-trivial domain, such as φf(u) =

−
∑

i log(1− u2
i) with domφf = {u | ‖u‖∞ < 1}.

Practical algorithms must exploit the fact that the blurring matrix K is highly structured.

For example, if K represents convolution with a spatially invariant point spread function

and periodic boundary conditions are used, then it is block-circulant with circulant blocks.

It therefore has a spectral decomposition K = QH diag(λ)Q, where Q = W ⊗ W is the

Kronecker product of the length-N DFT matrix with itself, and λ is the 2-dimensional DFT

of the convolution kernel [HNO06]. If the point spread function is also doubly symmetric

and reflexive boundary conditions are used, then K can be diagonalized in a similar way by

multiplication with orthogonal two-dimensional discrete cosine transform matrices [HNO06,

NCT99]. For other types of boundary conditions (for example, zero or replicate boundary

conditions) K can be expressed as a sum K = Kc +Ks where Kc is the blurring operator for

periodic or reflexive boundary conditions, and Ks is a sparse term that corrects the values

near the boundary.

The second term in (1.4) represents a regularization term or a constraint on x. Typical

choices for φr are a quadratic penalty φr(x) = γ‖x‖2/2, or the indicator function of a convex

set (for example, box constraints x ∈ [0, 1]n, added to limit the range of the pixel intensities).

As pointed out in [Vog02, BT09, CTY13] the explicit addition of box or nonnegativity

constraints on x can improve the quality of the restoration substantially.

The last term in (1.4) can be used to add a smoothing penalty. In that case the matrix

D ∈ R2n×n is defined as concatenated vertical and horizontal discretized derivative operators.

5

With periodic boundary conditions, D is given by

D =

 I ⊗D1

D1 ⊗ I

 , D1 =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

1 0 0 · · · 0 −1


∈ Rn×n.

If we choose for φs : Rn × Rn → R the norm

φs(u, v) = γ‖(u, v)‖iso = γ
n∑
k=1

√
u2
k + v2

k

then φs(Dx) = γ TV(x) is the total variation penalty introduced by Rudin, Osher, and

Fatemi [ROF92]. For quadratic φf and zero φr the general problem (1.4) then reduces to the

classic TV-regularized deblurring problem

minimize
1

2
‖Kx− b‖2 + γ TV(x). (1.5)

Another interesting choice for the third term in (1.4) is φs(Dx) = ‖Dx‖1 where D represents

a wavelet or shearlet transform matrix.

In summary, the problem format (1.4) includes a variety of useful formulations of the

image deblurring problem. In all these examples the functions φf , φr, and φs are convex

and relatively simple (i.e., have inexpensive prox-operators), but they are not necessarily

quadratic or differentiable, and they can have a restricted domain. Another challenging

aspect of these image deblurring problems is that they are typically very large scale.

1.3 Proximal algorithms

Beginning with the discovery of Karmarkar’s algorithm in 1984 [Kar84], a class of algorithms

known as interior point methods [NN94, Wri97, BN01] was studied intensely by convex

optimization researchers for a period of about 20 years (and much research still goes on in

6

this area). (“A lot was predicted for that year [1984], but I doubt that Orwell expected much

of a revolution in linear programming.” – Gilbert Strang [Str87]) Interior point methods are

currently in a very mature state – they are applicable to a wide range of problems, can handle

problems involving thousands of variables (or more, depending on problem structure), have

nice theoretical convergence guarantees, and perform very well in practice. Additionally,

high quality software implementations of interior point methods are available.

However, interior point methods have the disadvantage that they require solving a large

linear system of equations at each iteration. For very large scale problems, involving hundreds

of thousands or millions of variables, solving these linear systems at each iteration becomes

prohibitively expensive. Hence, in the past several years, much research activity in convex

optimization has focused on developing “first-order methods,” including so-called “proximal

algorithms” [PB13, CP10, CP11b], for solving very large scale, constrained, nondifferentiable

convex optimization problems arising in areas such as image processing, medical imaging,

compressed sensing, machine learning, and control theory. A prototypical first-order method

is gradient descent, which notably does not require solving a linear system at each iteration

(unlike another classical method, Newton’s method).

Proximal algorithms make use of proximal operators, defined in equation (1.2). The most

basic proximal algorithm is the “proximal point method” [Roc76b], which minimizes a (lower

semicontinuous) convex function f via the iteration

xk+1 = proxtf (x
k).

This method is useful in situations where evaluating the proximal operator of f is significantly

less expensive than minimizing f . While such situations are very uncommon, the proximal

point method can be adapted to give a practical algorithm by allowing inexact proximal

operator evaluations. The augmented Lagrangian method can be interpreted as solving the

dual problem via the proximal point method. The proximal point method also serves as a

prototype for other more sophisticated and more useful proximal algorithms.

An extremely useful proximal algorithm is the Douglas-Rachford method [LM79, Gab83,

7

EB92, CP07, BC11a, BPC11, PB13], which minimizes f(x) + g(x) (where f, g are proper

closed convex functions) via the iteration

xk+1 = proxtf (z
k) (1.6)

yk+1 = proxtg(2x
k+1 − zk) (1.7)

zk+1 = zk + ρ(yk+1 − xk+1). (1.8)

Under mild assumptions, the variable xk is guaranteed to converge to a minimizer of f + g

(assuming a minimizer exists), for any choice of the parameters t > 0 and ρ ∈ (0, 2) [EB92].

Notice that the Douglas-Rachford iteration requires us to evaluate the proximal operators

of f and g separately, but we are never required to evaluate the proximal operator of f + g.

Thus, the Douglas-Rachford method is useful for minimizing a function that is a sum of two

“simple” functions.

The Douglas-Rachford method is closely related to the Alternating Direction Method

of Multipliers (ADMM) / Split Bregman method [GM75, GM76, GO09, BPC11, Eck12].

ADMM solves the problem

minimize
x,y

f(x) + g(y) (1.9)

subject to Ax+By = c

via the iteration

xk+1 = argmin
x

L(x, yk, zk)

yk+1 = argmin
y

L(xk+1, y, zk)

zk+1 = zk + t(Axk+1 +Byk+1 − c),

where L is the “augmented Lagrangian”

L(x, y, z) = f(x) + g(y) + 〈Ax+By − c, z〉+
t

2
‖Ax+By − c‖2

2.

Under mild assumptions, the iterates xk and yk are guaranteed to converge to optimal values

of x and y (assuming optimal values exist) for any choice of the parameter t > 0. As shown in

8

[Gab83, EB92], ADMM / Split Bregman can be interpreted as using the Douglas-Rachford

method to solve the dual of problem (5.9). Conversely, the Douglas-Rachford method is

equivalent to minimizing f + g by applying ADMM to the reformulated problem

minimize
x,y

f(x) + g(y)

subject to x− y = 0.

As we will see in chapter 2, the iteration (1.6) is in fact a special case of a more general

Douglas-Rachford method that is able to solve monotone inclusion problems (a class of

problems that includes convex optimization problems). Most of the algorithms presented in

this thesis are based on the Douglas-Rachford method.

1.4 Decomposition in convex optimization

In this section we explain how algorithms for solving problems of the canonical form (1.1),

in the case where A is a sum of structured matrices, can be viewed as extensions of the

classical ideas of primal and dual decomposition [Las70, BT89]. Classically, the terms “primal

decomposition”, “dual decomposition”, and “primal-dual decomposition” refer to special

techniques for solving “almost separable” convex optimization problems – that is, problems

which would separate nicely into independent subproblems if not for the presence of some

coupling variables, some coupling constraints, or a combination of both coupling variables

and coupling constraints. For example, in the problem

minimize
x1,...,xm,xm+1

m+1∑
i=1

fi(xi) (1.10)

subject to Aiixi + Ai,m+1xm+1 = bi, i = 1, . . . ,m

m+1∑
i=1

Am+1,ixi = bm+1,

the variable xm+1 is a coupling variable, and the constraint
∑m+1

i=1 Am+1,ixi = bm+1 is a

coupling constraint.

9

Problem (1.10) can be expressed in the form (1.1), if we take

x =



x1

x2

...

xm

xm+1


, A =



A11 A1,m+1

A22 A2,m+1

. . .
...

Am,m Am,m+1

Am+1,1 Am+1,2 · · · Am+1,m Am+1,m+1


, (1.11)

and

f(x) =
m+1∑
i=1

fi(xi), g(y) =
m+1∑
i=1

δ{bi}(yi),

where δ{bi} is the indicator function for the set {bi} and y is the concatenation of vectors

y1, . . . , ym+1. Expressing problem (1.10) in the canonical form (1.1) suggests some ways to

generalize the classical notion of primal-dual decomposition. The matrix A can be decom-

posed as A = B + C, where

B =



A11

A22

. . .

Am,m

Am+1,m+1


, C =



A1,m+1

A2,m+1

...

Am,m+1

Am+1,1 Am+1,2 · · · Am+1,m


.

The essential structure here (in our approach, at least) is that the matrix B is block diagonal,

the matrix C is sparse, and the functions f and g are block separable (conformably with B).

A first generalization is to allow C to be any sparse matrix, so that B+C is “block diagonal

+ sparse” but does not necessarily have the arrow structure seen in equation (1.11). We

can also allow the functions gi(yi) to be any “simple” functions, not necessarily indicator

functions. A further generalization is to consider problems where B and C each have some

structure that can be exploited, though not necessarily block diagonal or sparse structure,

and f and g are “simple” but not necessarily block separable. Algorithms for solving convex

optimization problems with this structure will be presented in chapter 3.

10

1.5 Contributions

In chapter 3, we present methods based on the Douglas-Rachford splitting algorithm for

handling additive structure in A when solving problem (1.1). The key idea is to express

the KKT conditions as a particular monotone inclusion problem, and note that the relevant

monotone operator splits nicely. We apply these methods to the problem of image deblurring

by decomposing a blur operator K as K = Kc + Ks, where Kc is a convolution operator

(using periodic boundary conditions) and Ks is a sparse operator that only affects pixel

values near the image boundary. We also show how a simple type of spatially variant blur

operator can be handled in this framework by decomposing the blur operator as a sum of a

block diagonal term and a sparse term.

When applied to problems with the structure (1.10), the methods presented in chapter

3 overcome many of the difficulties of the classical approach to primal-dual decomposition,

namely, that the dual function might be nondifferentiable and might have a nontrivial domain

(so that subproblems we are required to solve might be unbounded below), and also that

the projected subgradient method converges very slowly.

In chapter 4 we consider the problem of non-blind image deblurring with a spatially

variant model of blur. We show that for two fundamental models of spatially variant blur

– the Nagy-O’Leary model and the related Efficient Filter Flow model – it is possible to

express the image deblurring in the form (1.1), in such a way that the proximal operators

of f and g can be evaluated efficiently. For both blur models, the key point will be the

evaluation of the proximal operator of g. This approach yields algorithms that, despite the

use of spatially variant blur models, are able to make use of the Fast Fourier Transform to

solve total variation regularized image deblurring problems with an efficiency comparable to

that of algorithms that assume a spatially invariant model of blur.

In chapter 5 we present a different method for handling additive structure in A, based

on using consensus Douglas-Rachford methods for monotone inclusion problems to solve

the primal-dual optimality conditions. This approach has the advantage that it naturally

11

handles the case where A is a sum of N structured matrices. We show an experiment

where this approach compares favorably with the methods of chapter 3, and we derive a

domain decomposition approach to non-blind image deblurring that uses consensus Douglas-

Rachford to solve the primal-dual optimality conditions, which in this case involve a sum

of 5 monotone operators. We also derive consensus versions of ADMM, by solving the dual

problem with consensus Douglas-Rachford methods.

12

CHAPTER 2

Convex Optimization Background

2.1 Elements of convex analysis

2.1.1 The subdifferential

Let V be a finite-dimensional inner product space over R and let f : V → R ∪ {∞}. To say

that g ∈ V is a subgradient of f at a point x ∈ V means that

f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ V. (2.1)

The set of all subgradients of f at x is denoted ∂f(x). Subgradients can be viewed as

a substitute for gradients (when working with nondifferentiable functions), and inequality

(2.1) can be viewed as a substitute for the approximation f(y) ≈ f(x) + 〈∇f(x), y − x〉

(when y is near x) which is fundamental for studying differentiable functions. Although the

definition of a subgradient does not require f to be convex, subgradients are most useful

when studying convex functions. This is partly due to the fact that a convex function is

guaranteed to have a subgradient at any point in the relative interior of its effective domain.

The subdifferential ∂f is a set-valued mapping: it takes a vector x ∈ V as input, and

returns the set of vectors ∂f(x) as output. When f is convex, the set-valued mapping ∂f is

a “monotone,” meaning that

〈g − h, x− y〉 ≥ 0 whenever x, y ∈ V and g ∈ ∂f(x), h ∈ ∂f(y). (2.2)

This fact turns out to be of fundamental importance.

If f is convex and differentiable at a point x in the interior of the domain of f , then it

can be shown that ∂f(x) = {∇f(x)}. When f is differentiable on the entire space V , the

13

condition (2.2) reduces to the statement that 〈∇f(x) −∇f(y), x − y〉 ≥ 0 for all x, y ∈ V .

When f : R→ R is convex and differentiable, condition (2.2) reduces to the statement that

(f ′(x) − f ′(y))(x − y) ≥ 0 for all x, y ∈ R. This is equivalent to the statement that f ′ is

monotone increasing: if x ≤ y, then f ′(x) ≤ f ′(y).

Property (2.2) suggests a way to generalize much of the theory of convex functions: rather

than studying convex functions, we can study set-valued mappings F : V → 2V that satisfy

the property

〈g − h, x− y〉 ≥ 0 whenever x, y ∈ V and g ∈ F (x), h ∈ F (y). (2.3)

A set-valued mapping F that satisfies this property is called “monotone.” Rather than re-

stricting our attention to the problem of finding x such that 0 ∈ ∂f(x), we can develop algo-

rithms for solving more general “monotone inclusion problems” 0 ∈ F (x), where F : V → 2V

is monotone. Monotone mappings turn out to be quite well-behaved and have a rich theory.

We make use of this theory throughout this thesis.

2.1.2 The convex conjugate

The basic idea behind duality in convex analysis is to view a closed convex set Ω as the

intersection of all half spaces containing Ω. Applying this idea to epigraphs leads us to view

a closed convex function as a supremum of affine functions.

Let V be a finite-dimensional inner product space over R. A function f : V → R ∪

{∞} might have many affine minorants with a given slope y ∈ V , but for the purpose of

representing f we only need to consider the largest or “best” affine minorant with slope y.

Note that

f(x) ≥ 〈y, x〉 − β ∀x ∈ V ⇐⇒ β ≥ 〈y, x〉 − f(x) ∀x ∈ V

⇐⇒ β ≥ sup
x∈V
〈y, x〉 − f(x).

We see that the “best” choice of the constant β is

β = f ∗(y) = sup
x∈V
〈y, x〉 − f(x). (2.4)

14

The largest or “best” affine minorant of f with slope y is the function g(x) = 〈y, x〉 − f ∗(y).

The function f ∗ defined in equation (2.4) is called the “convex conjugate” of f .

The inequality f(x) ≥ 〈y, x〉 − f ∗(y), when it is written as

f(x) + f ∗(y) ≥ 〈y, x〉 ∀x, y ∈ V, (2.5)

is known as Fenchel’s inequality.

The fact that a closed convex set Ω ⊂ V is the intersection of all half spaces containing

Ω, leads us to expect or to guess that a proper closed convex function f : V → R ∪ {∞} is

equal to the supremum of all affine minorants of f . In other words, we expect that

f(x) = sup
y∈V
〈y, x〉 − f ∗(y)

= f ∗∗(x)

for all x ∈ V . This turns out to be true (see [Roc70] for example). This formula tells us

how to recover f from its “dual representation” f ∗. The fact that the inversion formula is so

simple – you simply take the conjugate again – is surprising and mathematically beautiful.

Because f ∗ is a supremum of affine functions, we see that f ∗ is closed and convex (for

any function f : V → R ∪ {∞}, not necessarily convex). If f is proper, then f ∗ is proper.

Combining the above observations, we conclude that if f : V → R ∪ {∞} is proper, then

f = f ∗∗ if and only if f is closed and convex.

Suppose y ∈ ∂f(x). Then the “best” affine minorant of f with slope y is the one which

is exact at x. Thus,

f(x) = 〈y, x〉 − f ∗(y). (2.6)

On the other hand, if equation (2.6) is satisfied, then the affine minorant 〈y, ·〉 − f ∗(y) is

exact at x, and so y ∈ ∂f(x). It follows that

y ∈ ∂f(x) ⇐⇒ f(x) = 〈y, x〉 − f ∗(y).

In other words, y ∈ ∂f(x) if and only if we have equality in the Fenchel inequality.

15

The Fenchel inequality (2.5), when written as f ∗(y) ≥ 〈y, x〉 − f(x), tells us that for any

x the function 〈·, x〉−f(x) is an affine minorant of f ∗. If y ∈ ∂f(x), then this affine minorant

is exact at y. Hence,

y ∈ ∂f(x) =⇒ x ∈ ∂f ∗(y).

This result does not assume f is convex. If we have the additional assumption that f is

proper closed convex, then

x ∈ ∂f ∗(y) =⇒ y ∈ ∂f ∗∗(x) = ∂f(x).

Therefore, if f is proper closed convex, then

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y).

The following calculus rules are also useful when working with convex conjugates.

Conjugate of indicator function Let f be the indicator function of a set Ω ⊂ V . Then

f ∗(z) = supx∈Ω 〈z, x〉 is the support function of f .

Conjugate of a norm Let f(x) = ‖x‖, where ‖ · ‖ is any norm on V . Then f ∗ is the

indicator function of the dual norm unit ball.

Multiplication by scalar Let f(x) = λg(x). Then

f ∗(z) = sup
x∈V
〈z, x〉 − λg(x)

= λ

(
sup
x∈V
〈z/λ, x〉 − g(x)

)
= λg∗(z/λ).

The function z 7→ λg∗(z/λ) is sometimes denoted g∗λ, and is called the “right scalar multi-

plication” of g∗ by λ [Roc70, page 35]. With this notation, we have the elegant formula

(λg)∗ = g∗λ. (2.7)

16

2.2 The dual problem and optimality conditions

To derive a dual problem for the canonical problem (1.1), we can first reformulate problem

(1.1) as

minimize
x,y

f(x) + g(y) (2.8)

subject to Ax− y = 0.

The Lagrangian for this reformulated problem is

L(x, y, z) = f(x) + g(y) + 〈z, Ax− y〉. (2.9)

The dual function is

G(z) = inf
x,y

L(x, y, z)

= inf
x,y

f(x)− 〈−AT z, x〉+ g(y)− 〈z, y〉

= − inf
x,y
〈−AT z, x〉 − f(x) + 〈z, y〉 − g(y)

= −f ∗(−AT z)− g∗(z).

The dual problem is to maximize G(z). Expressed as a minimization problem, the dual

problem is

minimize
z

f ∗(−AT z) + g∗(z). (2.10)

The KKT optimality conditions for the canonical problem (1.1), which hold under a mild

assumption on f, g and A, can be expressed concisely as a monotone inclusion problem. If

x, y are optimal for the reformulated problem (2.8) and z is optimal for the dual problem

(2.10), then the KKT conditions tell us that x and y are minimizers of the function L(·, ·, z).

In other words, 0 ∈ ∂f(x) + AT z and 0 ∈ ∂g(y) − z. The second condition is equivalent to

y ∈ ∂g∗(z), which (using y = Ax) is equivalent to 0 ∈ −Ax+ ∂g∗(z). In summary, we have

0 ∈ AT z + ∂f(x), 0 ∈ −Ax+ ∂g∗(z).

17

Using block notation, these conditions can be combined into the single inclusion

0 ∈

 0 AT

−A 0

x
z

+

∂f(x)

∂g∗(z)

 . (2.11)

The second term on the right denotes the Cartesian product ∂f(x)× ∂g∗(z). The vector on

the left is added to the set on the right in the standard way. Note that this inclusion is a

monotone inclusion, involving a sum of a skew-symmetric linear operator and a subdifferen-

tial operator. We will use these optimality conditions throughout this thesis.

Here is another way to derive the optimality condition (2.11). A vector x is optimal for

problem (1.1) if and only if

0 ∈ ∂f(x) + AT∂g(Ax).

(Technically, a mild assumption is needed here to guarantee that ∂(f + g ◦A)(x) = ∂f(x) +

AT∂g(Ax).) In other words, x is optimal if and only if there exists z ∈ ∂g(Ax) such that

0 ∈ ∂f(x) + AT z. But this is equivalent to the existence of z such that Ax ∈ ∂g∗(z) and

0 ∈ AT z + ∂f(x). In summary, x is optimal for problem (1.1) if and only if there exists z

such that the inclusion (2.11) is satisfied.

We can also derive (2.11) by noting that finding primal and dual optimal variables (x, y)

and z for (2.8) is equivalent to finding a saddle point of the Lagrangian (2.9). The variable

y can be eliminated:

inf
x,y
L(x, y, z) = inf

x
(f(x)− g∗(z) + 〈z, Ax〉) .

Thus our saddle point problem is reduced to finding a saddle point (x, z) of the convex-

concave function

`(x, z) = f(x)− g∗(z) + 〈z, Ax〉.

The optimality conditions for this saddle point problem are

0 ∈ ∂f(x) + AT z, 0 ∈ −Ax+ ∂g∗(z). (2.12)

The first condition in (2.12) states that x is a minimizer of `(·, z) ; the second condition in

(2.12) states that z is a maximizer of `(x, ·). As before, the optimality conditions (2.12) can

be combined into the single condition (2.11) using block notation.

18

2.3 Monotone operators and resolvents

A multivalued or set-valued operator F : Rn → Rn maps points x ∈ Rn to sets F(x) ⊂ Rn.

The domain of the operator is domF = {x | F(x) 6= ∅} and its graph is the set {(x, y) |

x ∈ domF , y ∈ F(x)}. The operator is monotone if

(y − ŷ)T (x− x̂) ≥ 0 ∀x, x̂, y ∈ F(x), ŷ ∈ F(x̂).

A monotone operator is maximal monotone if its graph is not a strict subset of the graph

of another monotone operator. The theory of monotone operators is discussed in depth in

[BC11a].

2.3.1 Resolvent

The operator (I + λF)−1, where λ > 0, is called the resolvent of the operator F . A funda-

mental result states that if F is maximal monotone, then (I +λF)−1(x) exists and is unique

for all x ∈ Rn [Bre73, proposition 2.2]. The value u = (I + λF)−1(x) of the resolvent is the

unique solution of the monotone inclusion

x ∈ u+ λF(u). (2.13)

The operators we will encounter in this thesis are combinations of two elementary types of

maximal monotone operators. The first is the subdifferential ∂f of a closed convex function

f with nonempty domain. The second type is a skew-symmetric linear operator of the form

F(x, z) =

 0 CT

−C 0

 x

z

 . (2.14)

Other examples of monotone operators include saddle point operators

F(x, y) =

 ∂xf(x, y)

∂y(−f)(x, y)

 ,
where f is a convex-concave function of x, y, and positive semidefinite linear operators

F(x) = Ax

19

where A satisfies 〈x,Ax〉 ≥ 0 for all x (but A is not required to be symmetric).

The resolvent of a monotone (i.e., positive semidefinite) linear operator F(x) = Ax is

the matrix inverse (I + λA)−1. We note the following useful expressions for the resolvent of

the skew-symmetric linear operator (2.14): I λCT

−λC I

−1

=

 0 0

0 I

+

 I

λC

 (I + λ2CTC)−1

 I

−λC

T (2.15)

=

 I 0

0 0

+

 −λCT

I

 (I + λ2CCT)−1

 λCT

I

T . (2.16)

This can be given a regularized least-squares interpretation. Let (x, z) be the value of the

resolvent of F ,  x

z

 =

 I λCT

−λC I

−1  x̂

ẑ

 .
Then, from (2.15), we see that z = ẑ+λCx and x is the solution of the least-squares problem

minimize ‖λCx+ ẑ‖2 + ‖x− x̂‖2.

Alternatively, from the second expression, x = x̂− λCT z and z is the solution of

minimize ‖λCT z − x̂‖2 + ‖z − ẑ‖2.

We now discuss the resolvents of subdifferential operators in more detail.

2.3.2 Proximal operator

If F = ∂f , with f a closed convex function, the resolvent is also called the proximal operator

or prox-operator of f and written proxλf = (I + λ∂f)−1. The prox-operator proxλf maps x

to the unique solution of the optimization problem

minimize f(u) +
1

2λ
‖u− x‖2 (2.17)

20

with variable u. (Here ‖ · ‖ denotes Euclidean norm.) This can be seen by noting that the

optimality condition for problem (2.17) is

0 ∈ 1

λ
(u− x) + ∂f(u) ⇐⇒ x ∈ u+ λ∂f(u)

⇐⇒ u = (I + ∂f)−1(x).

For example, the prox-operator of the indicator function of a nonempty closed convex set is

the Euclidean projection on the set.

The following facts about proximal operators will be useful to us [CW05, CP07, BPC11].

Separable functions If f is separable, so that

f(x) =
k∑
i=1

fi(xi),

where xi are subvectors of x = (x1, . . . , xk), then

proxf (x) =


proxf1(x1)

...

proxfk(xk)

 . (2.18)

Scaling of argument Suppose f(x) = g(ax), where a ∈ R, a 6= 0. Then

proxf (x) =
1

a
proxa2g(ax). (2.19)

Moreau decomposition If λ > 0, then

x = proxλf (x) + λproxλ−1f∗(x/λ) = proxλf (x) + proxf∗λ(x). (2.20)

Here, f ∗λ denotes the right scalar multiplication of f ∗ with λ, defined as (f ∗λ)(x) = λf ∗(x/λ)

[Roc70, page 35]. (Right scalar multiplication was previously introduced in section 2.1.2.)

It is easily verified that (f ∗λ) = (λf)∗ and proxf∗λ(x) = λproxλ−1f∗(x/λ). This rule, known

as the Moreau decomposition [Mor65], shows that the proximal operator of f ∗ (the convex

conjugate of f) can be computed as easily as the proximal operator of f .

21

Here is a derivation of the Moreau decomposition: First let u = proxf∗(x). Then

x− u ∈ ∂f ∗(u) =⇒ u ∈ ∂f(x− u)

=⇒ x ∈ x− u+ ∂f(x− u)

=⇒ x− u = proxf (x)

=⇒ x = proxf (x) + proxf∗(x).

Equation (2.20) now follows by replacing f with λf and using the scaling rules (2.7) and

(2.19).

In the case where f is the indicator function for a subspace W , it can be shown that f ∗

is the indicator function for W⊥, the orthogonal complement of W . In this case, the Moreau

decomposition reduces to the familiar fact that x = PW (x) + PW⊥(x).

Composition with affine mapping In general, computing the prox-operator of f(x) =

g(Ax + b) is not easy, even if the prox-operator of g can be evaluated efficiently. A notable

exception, however, is the case where A is a matrix that satisfies AAT = (1/α)I for some

α > 0. In this case we have

proxf (x) =(I − αATA)x+ αAT (proxα−1g(Ax+ b)− b). (2.21)

For future reference we also mention a few common examples, that can be proved directly

from the definition or by using the properties listed above.

Quadratic function Suppose f(x) = (1/2)‖Ax − b‖2
2, where A ∈ Rm×n, b ∈ Rm, and

λ > 0. Then

proxλf (x) = (I + λATA)−1(x+ λAT b)

= (I − λAT (I + λAAT)−1A)(x+ λAT b). (2.22)

The second equality follows from the first by the matrix inversion lemma.

22

Indicator function Suppose f(x) is the indicator function of a closed convex set C and

λ > 0. Then proxλf (x) is the Euclidean projection PC(x) of x on C.

Norm Suppose f(x) is a norm and t > 0. Then

proxλf (x) = x− PλC(x) (2.23)

where C is the unit ball of the dual norm. For f(x) = ‖x‖1, we have λC = {x | −λ1 ≤ x ≤

λ1} and (2.23) reduces to soft-thresholding:

proxλf (x)k =


xk − λ xk > λ

0 −λ ≤ xk ≤ λ

xk + λ xk ≤ −λ.

If f(x) = ‖x‖ is the Euclidean norm, then PλC is projection on a ball with radius λ. We will

also encounter the following pair of dual norms: for (x, y) ∈ Rn × Rn,

‖(x, y)‖iso =
n∑
k=1

(x2
k + y2

k)
1/2, ‖(x, y)‖iso∗ = max

k=1,...,n
(x2

k + y2
k)

1/2. (2.24)

(The subscript refers to the use of this norm to express isotropic 2D total variation; see

section 3.3.) Here, the dual norm ball is a product of n two-dimensional Euclidean norm

balls. Using (2.23) the prox-operator (u, v) = proxλf (x, y) of f(x, y) = ‖(x, y)‖iso can be

computed as (uk, vk) = αk(xk, yk) for k = 1, . . . , n with

αk = 1− λ

(x2
k + y2

k)
1/2

if (x2
k + y2

k)
1/2 > λ, αk = 0 otherwise.

2.4 Douglas-Rachford splitting algorithm

In this section we provide a brief review of monotone operators and the Douglas-Rachford

splitting algorithm. More details can be found in [EB92, BC11a, BPC11, PB13].

2.4.1 Douglas-Rachford splitting

The problem of finding a zero of a monotone operator F , i.e., solving 0 ∈ F(x), is called a

monotone inclusion problem. It is easily seen, for example from (2.13), that the zeros of a

23

maximal monotone operator F are the fixed points of the resolvent of F . The fixed point

iteration

xk = (I + tF)−1xk−1, k = 1, 2, . . . ,

is called the proximal point algorithm for solving the inclusion problem 0 ∈ F(x) [Roc76b].

The proximal point algorithm converges under weak conditions (namely, F−1(0) 6= ∅ and

maximal monotonicity of F ; see for example [EB92, theorem 3]), but is useful in practice

only when the resolvent evaluations are inexpensive. Often this is not the case and one has

to resort to algorithms based on operator splitting. A splitting algorithm decomposes the

operator F as a sum F = A+ B of two maximal monotone operators and requires only the

resolvents of A or B, or both.

A simple algorithm for solving 0 ∈ A(x) + B(x) is the Douglas-Rachford algorithm

[LM79, Gab83, EB92, CP07]. The algorithm can be written in a number of equivalent

forms, including

xk = (I + tA)−1(zk−1) (2.25)

yk = (I + tB)−1(2xk − zk−1) (2.26)

zk = zk−1 + ρ(yk − xk). (2.27)

There are two algorithm parameters: a positive step size t and a relaxation parameter ρ ∈

(0, 2). It can be shown that if A+B has a zero, then zk converges to a limit of the form x+tv,

with 0 ∈ A(x)+B(x) and v ∈ A(x)∩(−B(x)). Therefore xk = (I+tA)−1(zk−1) converges to a

solution x [EB92, BC11a]. Note that if B is linear, then the vector rk = (1/t)(I+tB)(xk−yk)

satisfies

rk =
1

t
((I + tB)(xk)− 2xk + zk−1)

= B(xk) +
1

t
(zk−1 − xk)

∈ B(xk) +A(xk)

and rk → 0 because xk−yk → 0. We can therefore use a stopping criterion of the form ‖rk‖ ≤

ε. The Douglas-Rachford method is useful if the resolvents of A and B are inexpensive,

24

compared to the resolvent of the sum A+ B.

There is an equivalent form of the Douglas-Rachford algorithm that will be useful later

when we derive the ADMM iteration. Let’s take ρ = 1 for simplicity. We interchange A and

B and start with the y-update (equation (2.26)):

yk = (I + tA)−1(2xk−1 − zk−1), zk = zk−1 + yk − xk−1, xk = (I + tB)−1(zk).

We then switch the z and x updates:

yk = (I + tA)−1(2xk−1− zk−1), xk = (I + tB)−1(zk−1 + yk−xk−1), zk = zk−1 + yk−xk−1.

Finally, we make a change of variables w = z − x:

yk = (I + tA)−1(xk−1 − wk−1) (2.28)

xk = (I + tB)−1(yk + wk−1) (2.29)

wk = wk−1 + yk − xk. (2.30)

We now give a derivation of the Douglas-Rachford method. Our goal is to solve the

monotone inclusion problem

0 ∈ A(x) + B(x), (2.31)

where A and B are maximal monotone operators. We’ll use the notation RA and RB to

denote the resolvents of A and B, respectively. In an attempt to make use of the resolvents

of A and B, let’s write the inclusion (2.31) as

2x ∈ x+ tA(x) + x+ tB(x).

The vector x satisfies this inclusion if and only if there exists z ∈ (I + tB)(x) such that

2x− z ∈ (I + tA)(x). (2.32)

Noting that x = (I + tB)−1(z), we see that (2.32) implies that

2RB(z)− z ∈ (I + tA)(x). (2.33)

25

On the left we recognize the Cayley operator of B, denoted by CB. Inclusion (2.33) implies

that

RA(CB(z)) = x = RB(z),

which implies that

2RA(CB(z))− CB(z) = 2RB(z)− CB(z) = z,

which is equivalent to the fixed point equation

CA(CB(z)) = z. (2.34)

(CA is the Cayley operator of A.) The Douglas-Rachford method solves this fixed point

equation using damped fixed point iteration. In other words, we solve the equivalent equation(
1

2
I +

1

2
CA ◦ CB

)
(z) = z (2.35)

using fixed point iteration. The Cayley operators CA and CB are nonexpansive, which implies

that the operator (1/2)I + (1/2)CA ◦ CB is firmly nonexpansive, which guarantees that the

fixed point iteration

zk =

(
1

2
I +

1

2
CA ◦ CB

)
(zk−1)

will converge to a solution of (2.35) (assuming a solution exists).

(To say that an operator T is firmly nonexpansive means that 〈T (x) − T (y), x − y〉 ≥

‖T (x) − T (y)‖2 for all x, y. For more details on monotone operator theory, including a

convergence proof for fixed point iteration with a firmly nonexpansive operator, see [BC11a,

EB92, DY14].)

Let’s examine the steps needed to carry out this fixed point iteration. Given zk−1, we

first compute xk = RB(zk−1). We then compute yk = RA(2xk − zk−1). Finally we compute

zk =
zk−1

2
+

2yk − (2xk − zk−1)

2

= zk−1 + yk − xk.

These are the steps of the Douglas-Rachford iteration.

26

2.4.2 Spingarn’s method

The Douglas-Rachford splitting method can be used to minimize a sum f(x) + g(x) of

two convex functions by taking A = ∂f and B = ∂g. In this case, the resolvents in the

algorithm (2.25)–(2.27) are prox-operators, (I+tA)−1 = proxtf and (I+tB)−1 = proxtg, and

the method can be viewed as alternating between the two minimization problems that define

these prox-operators. Two well-known algorithms, Spingarn’s method of partial inverses

[Spi83, Spi85] and the alternating direction method of multipliers (ADMM) [GM75, GM76],

can be interpreted as applications of this idea.

Spingarn’s method of partial inverses [Spi83, Spi85] is a method for minimizing a convex

function f over a subspace V ,

minimize f(x)

subject to x ∈ V .

Eckstein and Bertsekas [EB92] have shown that the method is equivalent to the Douglas-

Rachford method for minimizing f(x) + δV(x), where δV is the indicator function of V . Each

iteration in the algorithm requires an evaluation of the prox-operator of f and a Euclidean

projection on the subspace V .

Spingarn’s method can be used to solve the canonical problem (1.1) by reformulating the

problem as

minimize
x,y

f(x) + g(y)

subject to (x, y) ∈ V ,

where V = {(x, y) | Ax − y = 0}. Evaluating the prox-operator of the objective function

f(x) + g(y) reduces to evaluating the prox-operators of f and g separately, and projecting

onto V is equivalent to projecting onto the null space of the matrix
[
A −I

]
, which requires

solving a linear system with coefficient I + ATA.

27

2.4.3 Alternating minimization

The alternating direction method of multipliers [GM75, GM76] is a dual decomposition

method for problems of the form

minimize f(x) + g(y)

subject to Ax+By = c.

The method is also known as the split Bregman method [GO09]. As shown in [Gab83,

EB92], the algorithm can be interpreted as the Douglas-Rachford method applied to the

dual problem

minimize cT z + f ∗(−AT z) + g∗(−BT z), (2.36)

with the dual objective split as a sum of two convex functions cT z+f ∗(−AT z) and g∗(−BT z).

After a series of simplifications, the Douglas-Rachford iteration (with ρ = 1) can be written

as

xk = argmin
x

L(x, yk−1, zk−1)

yk = argmin
y

L(xk, y, zk−1) (2.37)

zk = zk−1 + t(Axk +Byk − c) (2.38)

where L is the augmented Lagrangian

L(x, y, z) = f(x) + g(y) + zT (Ax+By − c) +
t

2
‖Ax+By − c‖2.

To improve convergence one can modify the basic ADMM algorithm to include overrelaxation

[EB92, BPC11]. In the overrelaxed version of ADMM, we replace the expression Axk in (2.37)

and (2.38) with ρAxk − (1 − ρ)(Byk−1 − c) where ρ ∈ (0, 2) [BPC11, page 21]. For more

details on ADMM we refer the reader to the recent surveys [BPC11, Eck12].

Here we will derive the ADMM iteration by applying Douglas-Rachford to the dual

problem (2.36). Solving (2.36) is equivalent to solving the monotone inclusion problem

0 ∈ A(z) + B(z), where A is the subdifferential of F (z) = f ∗(−AT z) + 〈z, c〉 and B is the

28

subdifferential of G(z) = g∗(−BT z). We will use the version (2.28)-(2.30) of the Douglas-

Rachford iteration, rewritten here with different variable names (because the vector we want

to solve for is now called z, not x):

pk = (I + tA)−1(zk−1 − wk−1)

zk = (I + tB)−1(pk + wk−1)

wk = wk−1 + pk − zk.

Under mild assumptions, the iterates zk are guaranteed to converge to a solution of the dual

problem (2.36) (assuming a solution exists).

In the first step we evaluate the resolvent of A, which is the proximal operator of F . We

will now show that

proxtF (ẑ) = ẑ + t(Ax− c) (2.39)

where

x = argmin
u

f(u) +
t

2

∥∥∥∥Au− c+
ẑ

t

∥∥∥∥2

. (2.40)

(Any choice of x ∈ argminu f(u) + (t/2)‖Au− c+ ẑ/t‖2 gives the same value of proxtF (ẑ).)

To see this, observe that

z = proxtF (ẑ) =⇒ ẑ − z
t
∈ ∂F (z)

=⇒ z ∈ ẑ + t(A∂f ∗(−AT z)− c)

=⇒ z = ẑ + t(Ax− c)

for some x such that

x ∈ ∂f ∗(−AT z) =⇒ −AT z ∈ ∂f(x)

=⇒ 0 ∈ ∂f(x) + AT z

=⇒ 0 ∈ ∂f(x) + AT (ẑ + t(Ax− c))

=⇒ x ∈ argmin
u

f(u) +
t

2

∥∥∥∥Ax− c+
ẑ

t

∥∥∥∥2

.

29

We can reverse these steps to show that if x ∈ argminu f(u) + (t/2)‖Au − c + ẑ/t‖2, then

proxtF (ẑ) = ẑ + t(Ax− c). A similar calculation allows us to evaluate the resolvent of B.

Note that F is the dual function for the problem

minimize
x

f(x)

subject to Ax = c,

and in equation (2.40) we are minimizing the augmented Lagrangian for this problem. For-

mulas (2.39) – (2.40) for the prox-operator of F show that the augmented Lagrangian method

is equivalent to solving the dual problem via the proximal point method.

Using (2.39) to evaluate prox-operators, the Douglas-Rachford iteration becomes

xk = argmin
u

f(u) +
t

2

∥∥∥∥Au− c+
zk−1 − wk−1

t

∥∥∥∥2

(2.41)

pk = zk−1 − wk−1 + t(Axk − c) (2.42)

yk = argmin
u

g(u) +
t

2

∥∥∥∥Bu+
zk−1

t
− wk−1

t
+ Axk − c+

wk−1

t

∥∥∥∥2

= argmin
u

g(u) +
t

2

∥∥∥∥Axk +Bu− c+
zk−1

t

∥∥∥∥2

zk = zk−1 − wk−1 + t(Axk − c) + wk−1 + tByk

= zk−1 + t(Axk +Byk − c)

wk = wk−1 + pk − zk

= zk−1 + t(Axk − c)− zk−1 − t(Axk +Byk − c)

= −tByk. (2.43)

Notice that the equation (2.42) can be omitted. From equation (2.43), we have−wk/t = Byk.

Replacing −wk−1/t with Byk−1 in equation (2.41), the Douglas-Rachford iteration reduces

30

to

xk = argmin
u

f(u) +
t

2

∥∥∥∥Au+Byk−1 − c+
zk−1

t

∥∥∥∥2

yk = argmin
u

g(u) +
t

2

∥∥∥∥Axk +Bu− c+
zk−1

t

∥∥∥∥2

zk = zk−1 + t(Axk +Byk − c).

This is the ADMM iteration.

It’s also possible to derive the Douglas-Rachford iteration for minimizing f(x) + g(x)

(where f, g are proper closed convex) by applying ADMM to the equivalent problem

minimize
x,y

f(x) + g(y) (2.44)

subject to x− y = 0.

The augmented Lagrangian for problem (2.44) is

L(x, y, z) = f(x) + g(y) + 〈z, x− y〉+
t

2
‖x− y‖2 .

Upon completing the square in the augmented Lagrangian, we see that the ADMM iteration

for this problem is

xk = argmin
x

f(x) +
t

2

∥∥∥∥x− yk−1 +
zk−1

t

∥∥∥∥2

= prox(1/t)f

(
yk−1 − zk−1

t

)
,

yk = argmin
y

g(y) +
t

2

∥∥∥∥xk − y +
zk−1

t

∥∥∥∥2

= prox(1/t)g

(
xk +

zk−1

t

)
,

zk = zk−1 + t(xk − yk).

The last equation can be written as zk/t = zk−1/t + xk − yk. Making a change of variable

wk = zk/t, this ADMM iteration is seen to be equivalent to the Douglas-Rachford iteration

(2.28) - (2.30) with step size 1/t.

31

CHAPTER 3

Primal-dual operator splitting1

3.1 Introduction

We discuss primal-dual splitting methods for convex optimization problems of the form

minimize f(x) + g(Ax), (3.1)

where f and g are closed convex functions with inexpensive proximal operators and A is a

structured matrix. Specifically, we distinguish two types of matrix structure. In the simplest

case, structure in A makes it possible to solve equations with a coefficient matrix I +λATA,

where λ > 0, efficiently. In the second and more general case, A can be decomposed as a sum

A = B+C of two structured matrices, with the same meaning of ‘structure’: linear equations

with coefficients I + λBTB and I + λCTC can be solved efficiently. These assumptions are

motivated by applications in image processing. A variety of image deblurring problems

can be formulated as large convex optimization problems of the form (3.1), with f and g

simple convex penalty functions or indicator functions of simple convex sets. The matrix A

represents the blurring operation and the linear transformations used in regularization terms

(see section 3.3). The first of the two types of structure mentioned above arises when periodic

boundary conditions are used. In this case ATA can be diagonalized by multiplication

with discrete Fourier transform matrices, so equations with coefficient matrix I + λATA

are solved efficiently via fast Fourier transforms. The second type of structure arises when

more realistic boundary conditions (for example, replicate boundary conditions) are used.

In the sum A = B+C the first term then represents the model assuming periodic boundary

1This chapter is based on the paper [OV14].

32

conditions; the second term is a sparse term added to correct for the non-periodic boundary

conditions. Linear equations with coefficients I + λBTB and I + λCTC can therefore be

solved efficiently, via the fast Fourier transform and sparse matrix factorization methods,

respectively. However, these techniques are not easily combined in an efficient method for

inverting I + λATA.

The algorithms we propose use the Douglas-Rachford splitting method applied to systems

of primal-dual optimality conditions. This primal-dual approach is interesting for several

reasons. In contrast to purely primal or dual applications of the Douglas-Rachford method

(such as the alternating direction method of multipliers or ADMM) it does not require a

reformulation of the problem and the introduction of a potentially large number of auxiliary

variables or constraints. An advantage over forward-backward splitting algorithms or semi-

implicit primal-dual methods (such as the Chambolle-Pock algorithm) is that the selection of

suitable step sizes is easier and is not limited by the norms of the linear operators. We test the

performance of the primal-dual splitting method on a set of image deblurring examples. In

each experiment the primal-dual method is compared with three other methods: ADMM, the

Douglas-Rachford method applied to a reformulated primal problem, and the Chambolle-

Pock method. The results indicate that the convergence of the primal-dual approach is

comparable or better than the other methods, although all perform well with properly chosen

algorithm parameters.

This chapter is organized as follows. In section 3.2 we derive several primal-dual split-

ting strategies for the optimality conditions of (3.1), under the different assumptions on the

structure in A. In the second half of this chapter the results are applied to image deblurring

problems with various types of convex regularization and constraints. In section 3.3 we first

describe the image deblurring problem and formulate it as a convex optimization problem

of the form (3.1). We then present five examples. In section 3.4 the primal-dual splitting

method is applied to constrained total variation deblurring problems with a non-quadratic

fidelity term. In section 3.5 we discuss image restoration problems with a tight frame reg-

ularization. In section 3.6 we consider an application to image deblurring with a spatially

33

varying, piecewise-constant blurring operator. This chapter concludes with a summary of

the main points in section 3.7.

3.2 Primal-dual splitting strategies

We now apply the Douglas-Rachford splitting method to develop decomposition algorithms

for the optimization problem (3.1). This problem format is widely used as a standard form

in the literature on multiplier and splitting methods (see, for example, [GM76, Gab83]). Its

popularity derives from the fact that large-scale problems in practical applications can often

be expressed in this form with relatively simple choices for f , g, and A.

Note that there is flexibility in the choice of g and A. Replacing the problem with

minimize f(x) + g̃(Ãx), (3.2)

where Ã = βA and g̃(y) = g(y/β) does not change the optimal solution x or the optimal

value of the problem. This observation will allow us to introduce an additional algorithm

parameter that can be adjusted to improve convergence.

3.2.1 Optimality conditions

The optimality conditions for (3.1) can be written as

0 ∈


0 0 AT I

0 0 −I 0

−A I 0 0

−I 0 0 0




x

y

z

w

+


0

∂g(y)

0

∂f ∗(w)

 . (3.3)

(The second term on the right denotes the set {0} × ∂g(y)× {0} × ∂f ∗(w).) The variable y

is an auxilary variable in the reformulated primal problem

minimize f(x) + g(y)

subject to Ax− y = 0.
(3.4)

34

The variable z is the dual multiplier for the constraint Ax = y. The variable w is a variable

in the dual problem, written as

maximize −f ∗(w)− g∗(z)

subject to AT z + w = 0.

Several equivalent reduced forms of the optimality conditions can be obtained by eliminating

y (using the relation (∂g)−1 = ∂g∗ between the subdifferential of a function and its conju-

gate), by eliminating w (using (∂f ∗)−1 = ∂f), or eliminating y and w. The first two of these

options lead to 3× 3 block systems

0 ∈


0 AT I

−A 0 0

−I 0 0



x

z

w

+


0

∂g∗(z)

∂f ∗(w)

 (3.5)

0 ∈


0 0 AT

0 0 −I

−A I 0



x

y

z

+


∂f(x)

∂g(y)

0

 . (3.6)

Eliminating y and w results in a 2× 2 system

0 ∈

 0 AT

−A 0

 x

z

+

 ∂f(x)

∂g∗(z)

 . (3.7)

3.2.2 Simple splitting

The most straightforward primal-dual splitting approach is to write the right-hand side of

the 2× 2 system (3.7) as a sum of the two monotone operators

A(x, z) =

 ∂f(x)

∂g∗(z)

 , B(x, z) =

 0 AT

−A 0

 x

z

 .
The resolvents of the two operators were given in section 2.3. The value (x, z) = (I +

tA)−1(x̂, ẑ) of the resolvent of A is given by

x = proxtf (x̂), z = proxtg∗(ẑ).

35

Using the Moreau decomposition the second proximal operator can be written in alternate

form as

z = ẑ − tproxt−1g(ẑ/t) = ẑ − proxgt(ẑ)

(where gt denotes right scalar multiplication of g). The resolvent of B is a linear mapping

(I + tB)−1 =

 I tAT

−tA I

−1

=

 0 0

0 I

+

 I

tA

 (I + t2ATA)−1

 I

−tA

T .
An iteration of the Douglas-Rachford algorithm applied to A+ B is therefore as follows:

xk = proxtf (p
k−1) (3.8)

zk = proxtg∗(q
k−1) (3.9) uk

vk

 =

 I tAT

−tA I

−1  2xk − pk−1

2zk − qk−1

 (3.10)

pk = pk−1 + ρ(uk − xk) (3.11)

qk = qk−1 + ρ(vk − zk). (3.12)

The simple splitting strategy is useful when the prox-operators of f and g are inexpensive,

and the structure in A allows us to solve linear equations with coefficient I+t2ATA efficiently.

It is interesting to work out the differences when the same method is applied to the scaled

problem (3.2), i.e., when g is replaced with g̃(y) = g(y/β) and A with Ã = βA. After a

few simplifications in notation, the Douglas-Rachford iteration for the scaled problem can

36

be written in terms of the original g and A as follows:

xk = proxtf (p
k−1)

z̃k = proxsg∗(q̃
k−1) uk

ṽk

 =

 I tAT

−sA I

−1  2xk − pk−1

2z̃k − q̃k−1


pk = pk−1 + ρ(uk − xk)

q̃k = q̃k−1 + ρ(ṽk − z̃k).

The parameter s is given by s = β2t, and can be interpreted as a dual step size, which can

be chosen arbitrarily and independently of the (primal) step size t.

Primal Douglas-Rachford splitting (Spingarn’s method) The type of structure ex-

ploited in the primal-dual ‘simple splitting’ method is also easily handled by the Douglas-

Rachford method applied to the primal or the dual problem. In the primal application, we

approach the reformulated problem (3.4) as one of minimizing a separable function f(x)+g(y)

over a subspace V = {(x, y) | y = Ax}. The primal Douglas-Rachford method (or Spin-

garn’s method) applied to this problem therefore involves evaluations of the prox-operator

of f(x) + g(y), i.e., the prox-operators of f and g, and Euclidean projection on V . The

projection (x, y) of a vector (x̂, ŷ) on V can be expressed as

x = (I + ATA)−1(x̂+ AT ŷ), y = Ax.

The steps in the primal Douglas-Rachford method are therefore very similar (but not equiv-

alent) to (3.8)–(3.12). In particular, the complexity per iteration is the same.

Dual Douglas-Rachford splitting (ADMM) In the dual application of the Douglas-

Rachford method, better known as ADMM, one first reformulates the problem by introducing

37

a ‘dummy’ variable u and adding a constraint u = x:

minimize f(u) + g(y)

subject to

 I

A

x−
 I 0

0 I

 u

y

 = 0.
(3.13)

The augmented Lagrangian of this problem is

f(u) + g(y) + wT (x− u) + zT (Ax− y) +
t

2

(
‖x− u‖2 + ‖Ax− y‖2

)
.

In ADMM, one alternates between minimization of the augmented Lagrangian over x and

over (u, y). Minimization over x is a least-squares problem with Hessian matrix I + ATA.

Minimization over u, y requires evaluations of the prox-operators of f and g. One iteration

can be written as follows:

xk = (I + ATA)−1

(
uk−1 + ATyk−1 − 1

t
(wk−1 + AT zk−1)

)
uk = proxt−1f (x

k + wk−1/t)

yk = proxt−1g(Ax
k + zk−1/t)

wk = wk−1 + t(xk − uk)

zk = zk−1 + t(Axk − yk).

As can be seen, the per-iteration complexity is the same as in the primal-dual and primal

methods. One difference is that ADMM requires the introduction of an additional variable

u. If the residual in the equality constraint x = u is slow to decrease to zero, this can be

expected to impact the convergence of x. We will return to this issue in section 3.2.5.

Chambolle-Pock method Another interesting method for (3.1) is the Chambolle-Pock

algorithm [CP11a]. One iteration of the Chambolle-Pock method consists of the following

steps:

xk = proxtf (x
k−1 − tAT zk−1)

zk = proxtg∗(z
k−1 + tA(2xk − xk−1)).

38

This algorithm has the important advantage that it does not require the solution of linear

equations, but only multiplications with A and AT . However, convergence of the algorithm

depends on the step size t, which must be chosen in (0, 1/‖A‖), where ‖A‖ is the maximum

singular value of A. As shown in [CP11a] the method can be interpreted as a preconditioned

ADMM. When one of the functions f or g∗ is strongly convex, an accelerated version of

Chambolle-Pock can be used. Since the strong convexity assumption does not hold for the

applications studied in this chapter, we omit the details.

Different primal and dual step sizes t and s can be used in the Chambolle-Pock method.

With different step sizes the iteration is

xk = proxtf (x
k−1 − tAT zk−1)

zk = proxsg∗(z
k−1 + sA(2xk − xk−1)).

Convergence is guaranteed if
√
st < 1/‖A‖. This variation of the Chambolle-Pock method

can also be interpreted as the basic version of the method (with a single step size t), applied

to the scaled problem (3.2). The dual step size s and the scale factor β are related by

s = β2t. As a further improvement, one can apply overrelaxation (see [Con13] for details).

The iteration for the overrelaxed version is

x̄k = proxtf (x
k−1 − tAT zk−1)

z̄k = proxsg∗(z
k−1 + sA(2x̄k − xk−1))

(xk, zk) = ρ(x̄k, z̄k) + (1− ρ)(xk−1, zk−1)

where ρ ∈ (0, 2).

3.2.3 Mixed splitting

We now consider problem (3.1) under weaker assumptions on the problem structure. As

before, we assume that f and g have inexpensive prox-operators. In addition we assume A

can be decomposed as A = B + C where B and C have the property that equations with

coefficients I + λBTB and I + λCTC, with λ > 0, are easy to solve (but not necessarily

39

equations with coefficient I+λATA). We apply the Douglas-Rachford method to the primal-

dual optimality condition (3.3), with the right-hand side decomposed as the sum of two

monotone operators

A(x, y, z, w) =


0 0 BT 0

0 0 0 0

−B 0 0 0

0 0 0 0




x

y

z

w

+


0

∂g(y)

0

∂f ∗(w)



B(x, y, z, w) =


0 0 CT I

0 0 −I 0

−C I 0 0

−I 0 0 0




x

y

z

w

 .

The resolvents of A and B can be evaluated as follows. The value (x, y, z, w) = (I +

tA)−1(x̂, ŷ, ẑ, ŵ) of the resolvent of A is the solution of the inclusion problem
x̂

ŷ

ẑ

ŵ

 ∈


I 0 tBT 0

0 I 0 0

−tB 0 I 0

0 0 0 I




x

y

z

w

+ t


0

∂g(y)

0

∂f ∗(w)

 .

The computation of y, w, and (x, z) can be separated. The solution for y and w is

y = proxtg(ŷ), w = proxtf∗(w).

The solution x, z follows from x

z

 =

 I tBT

−tB I

−1  x̂

ŷ

 =

 0

ŷ

+

 I

tB

 (I + t2BTB)−1(x̂− tBŷ)

40

(using the expression (2.15)). The resolvent of B is a linear operator. It can be verified that

(I + tB)−1 =


0 0 0 0

0 1
1+t2

I t
1+t2

I 0

0 − t
1+t2

I 1
1+t2

I 0

0 0 0 I



+


I

t2

1+t2
C

t
1+t2

C

tI


(

(1 + t2)I +
t2

1 + t2
CTC

)−1


I

t2

1+t2
C

− t
1+t2

C

−tI



T

.

From these expressions, we see that the resolvents of A and B require proximal operators of

f and g, and linear equations with coefficients of the form I + λBTB and I + λCTC. These

operations are inexpensive, under our assumptions on the problem structure, and therefore

each iteration of the Douglas-Rachford method is relatively cheap.

Primal Douglas-Rachford splitting (Spingarn’s method) As one of the referees

pointed out, the additive structure in A = B + C can be handled in the primal Douglas-

Rachford method, at the cost of doubling the number of variables, via the reformulation

minimize f(x1) + g(y1 + y2) + δ(x1 − x2)

subject to Bx1 − y1 = 0

Cx2 − y2 = 0

(3.14)

where δ is the indicator function of {0}. The variables in the reformulated problem are x1,

x2, y1, y2. The cost function and its proximal-operator are separable in two sets of variables

(x1, x2) and (y1, y2). The proximal operator of f(x1) + δ(x1 − x2), as a function of x1 and

x2, reduces to an evaluation of the prox-operator of f . The prox-operator of g(y1 + y2)

as a function of y1 and y2 can be related to the prox-operator of g via the formula (2.21).

The Euclidean projection (x1, x2, y1, y2) of (x̂1, x̂2, ŷ1, ŷ2) on the subspace defined by the

constraints is given by

x1 = (I +BTB)−1(x̂1 +BT ŷ1), x2 = (I + CTC)−1(x̂2 + CT ŷ2),

41

and y1 = Bx1, y2 = Cx2.

Dual Douglas-Rachford splitting (ADMM) A similar reformulation, with an extra

dummy variable u, brings the problem in a form amenable to ADMM:

minimize f(u) + g(y1 + y2)

subject to


I 0

0 I

B 0

0 C


 x1

x2

−

I 0 0

I 0 0

0 I 0

0 0 I



u

y1

y2

 = 0.

One iteration of ADMM involves an alternating minimization of the augmented Lagrangian

over (x1, x2), and (u, y1, y2). This requires evaluations of the prox-operators of f and g, and

the solution of least-squares problems with Hessian matrices I +BTB and I + CTC.

Chambolle-Pock method The Chambolle-Pock method described in section 3.2.2 only

involves multiplications with A and AT and therefore applies without modification when A

can be decomposed as A = B + C with structured B and C.

3.2.4 Mixed splitting with partially quadratic functions

The mixed splitting strategy can be simplified if f or g are simple quadratic functions, or

separable functions that include quadratic terms. We illustrate this with two examples.

Quadratic f Supppose f in (3.1) is quadratic, of the form f(x) = (µ/2)xTx + aTx with

µ ≥ 0. In that case we can start from the optimality conditions in the simpler 3×3 form (3.6).

42

Since ∂f(x) = {µx+ a}, we can use the splitting

A(x, y, z) =


µI 0 BT

0 0 0

−B 0 0



x

y

z

+


a

∂g(y)

0



B(x, y, z) =


0 0 CT

0 0 −I

−C I 0



x

y

z

 .
The resolvent of A maps (x̂, ŷ, ẑ) to the solution (x, y, z) of the inclusion

x̂

ŷ

ẑ

 ∈


(1 + µt)I 0 tBT

0 I 0

−tB 0 I



x

y

z

+ t


a

∂g(y)

0

 .
The solution is y = proxtg(ŷ) and x

z

 =

 (1 + µt)I tBT

−tB I

−1  x̂− ta

ẑ


=


 0 0

0 I

+

 I

tB

((1 + µt)I + t2BTB
)−1

 I

−tB

T

 x̂− ta

ẑ

 .
The operator B is linear so its resolvent is a matrix inverse

(I + tB)−1 =
1

1 + t2


0 0 0

0 I tI

0 −tI I



+


I

t2

1+t2
C

t
1+t2

C


(
I +

t2

1 + t2
CTC

)−1


I

t2

1+t2
C

− t
1+t2

C


T

.

The Douglas-Rachford method applied to A + B is therefore of interest under the same

assumptions as in the general mixed splitting case of section 3.2.3: the function g has an

43

inexpensive proximal operator, and the matrices B and C possess structure that allow us to

solve linear equations with coefficients of the form I + λBTB and I + λCTC fast. However,

since the number of variables in the 3 × 3 system (3.6) is smaller, one can expect the

Douglas-Rachford method to converge faster than for the general mixed splitting described

in section 3.2.3.

Quadratic g A similar simplification is possible when g is quadratic, of the form g(y) =

‖y− a‖2/(2µ), for µ > 0. In this case we start from the optimality conditions (3.5) and note

that g∗(z) = (µ/2)zT z + aT z and ∂g∗(z) = {µz + a}. We choose the splitting

A(x, z, w) =


0 BT 0

−B µI 0

0 0 0



x

z

w

+


0

a

∂f ∗(w)



B(x, z, w) =


0 CT I

−C 0 0

−I 0 0



x

z

w

 .
The resolvent of A maps (x̂, ẑ, ŵ) to the solution of

x̂

ẑ

ŵ

 ∈


I tBT 0

−tB (1 + µt)I 0

0 0 I



x

z

w

+ t


0

a

∂f ∗(w)

 .
The solution is w = proxtf∗(ŵ) and x

z

 =

 I tBT

−tB (1 + µt)I

−1  x̂

ẑ − ta


=

 1

1 + µt

 0 0

0 I

+

 I

t
1+µt

B

(I +
t2

1 + µt
BTB

)−1
 I

− t
1+µt

B

T

 x̂

ẑ − ta

 .

44

The resolvent of B is

(I + tB)−1 =


0 0 0

0 I 0

0 0 I

+


I

tC

tI

((1 + t2)I + t2CTC
)−1


I

−tC

−tI


T

.

Evaluating the two resolvents requires an evaluation of the proximal operator of f ∗, a linear

equation with coefficient of the form I + λBTB, and a linear equation I + λCTC.

Partially quadratic functions More generally, one can simplify the general mixed split-

ting method whenever f is separable, of the form f(x1, x2) = f1(x1)+f2(x2) with f1 a simple

quadratic term, or g is separable, g(y1, y2) = g1(y1) + g2(y2) with g1 quadratic. The details

are straightforward and the idea will be illustrated with an example in section 3.5.2.

3.2.5 Example

The main advantage of the primal-dual splitting method is that it exploits the problem

structure without introducing extra variables and constraints. This can be expected to

benefit the speed of convergence and accuracy attained. The primal and dual Douglas-

Rachford methods on the other hand have the same complexity per iteration as the primal-

dual method, but only after a reformulation of the problem which requires extra variables

and constraints. We also note that the increase in problem dimensions is greater in the dual

than in the primal approach. Unfortunately a theoretical analysis of this effect is lacking

and it is not clear how important it is in practice. To conclude this section we therefore give

a small experiment that illustrates the difference.

We compare the mixed splitting approaches of section 3.2.3 on the test problem

minimize ‖x‖+ γ‖(B + C)x− b‖1

with n = 500 variables and square matrices B, C. This problem has the form (3.1) with

f(x) = ‖x‖ and g(y) = γ‖y − b‖1, so the algorithms of section 3.2.3 can be applied. The

problem data are generated randomly, with the components of A, B, b drawn independently

45

0 50 100 150

10
−4

10
−3

10
−2

10
−1

10
0

iteration number k

‖xk
− x⋆‖/‖x⋆‖

ADMM

primal DR

primal−dual DR

Figure 3.1: Relative error versus iteration number for the experiment in section 3.2.5.

from a standard normal distribution, C = A− B, and γ = 1/100. In figure 3.1 we compare

the convergence of the primal-dual mixed splitting method, the primal Douglas-Rachford

method, and ADMM (dual Douglas-Rachford method). The relative error ‖xk − x?‖/‖x?‖

is with respect to the solution x? computed using CVX [GB12, GB08]. For each method,

the three algorithm parameters (primal and dual step sizes, and overrelaxation parameter)

were tuned by trial and error to give fastest convergence. As can be seen, the primal-dual

splitting method shows a clear advantage on this problem class. We also note that ADMM

is slightly slower than the primal Douglas-Rachford method, which is consistent with the

intuition that fewer auxiliary variables and constraints is better.

3.3 Image deblurring by convex optimization

In the second half of this chapter we apply the primal-dual splitting methods to image

deblurring. The blurring model, and how to express the deblurring problem in the canonical

form (1.1), are discussed in section 1.2.

When the functions φf , φr, φs introduced in section 1.2 are quadratic (squared Euclidean

46

norms), the deblurring problem (1.4) reduces to a linear equation of the form

(KTK + ρI + σDTD)x = KT b.

If the matrices K and D can be diagonalized by multiplication with DFT or DCT matrices,

fast Fourier transform methods can be used to solve the equation in O(N2 logN) operations

[Vog02, HNO06].

When one or more of the terms in the objective for problem (1.4) is not quadratic, the

problem must be solved by an iterative optimization algorithm, customized to exploit the

structure in K and D. Second-order methods, such as Newton’s method or interior-point

methods [CGM99] [Vog02, chapter 8] are limited because they require the solution of linear

equations KTHfK+Hr+D
THsD where the matrices Hf , Hr, Hs are multiples of the Hessians

of φf , φr, φs (if these functions are twice differentiable) or positive definite matrices that result

from block-elimination of the Newton equations in an interior-point method. The presence

of these matrices makes it difficult to exploit structure in K and D. Iterative linear equation

solvers can be applied, using the FFT for matrix-vector multiplications, but the reduced

accuracy of iterative equation solvers often impairs the fast convergence of Newton’s method

or the interior-point method.

Most published deblurring algorithms were developed for special cases of problem (1.4),

such as the TV-regularized deblurring problem (1.5). Several of the existing algorithms of

TV-regularized deblurring can be generalized in a straightforward manner to the general

problem. Two such classes of methods are the ADMM and Chambolle-Pock algorithms

introduced in the previous section. The ADMM or split Bregman method described in

section 3.2.2 is a popular dual decomposition algorithm for large-scale convex optimization

[GM75, GM76, Gab83, GO09, BPC11, CTY13]. As illustrated in [BPC11] it can be used

to derive simple, efficient algorithms for a range of applications. To apply ADMM to prob-

lem (1.4) (in its most general case, with non-quadratic φf , φr, φs), one first rewrites the

problem in a form suited for dual decomposition, i.e., with a separable objective and linear

47

equality constraints,

minimize φf(v) + φr(u) + φs(w)

subject to u = x

v = Kx− b

w = Dx,

where u, v, w are auxiliary variables. The main step in each ADMM iteration is an alternating

minimization of the augmented Lagrangian for this problem,

L(x, u, v, w) = φf(v) + φr(u) + φs(w)

+
t

2

(
‖u− x+

1

t
p‖2 + ‖v −Kx+ b+

1

t
q‖2 + ‖w −Dx+

1

t
r‖2

)
.

In this expression t is a positive step size, and p, q, and r denote multipliers for the three

constraints. The first of the two alternating minimization steps is over x, keeping u, v, w

constant; the second is over (u, v, w) with fixed x. Since L is separable in u, v, w, the

second step involves three independent minimizations. The minimizations over u, v, w are

straightforward (often with complexity O(N2)) if the functions φf , φf , and φs are simple,

as will be the case in the applications considered here. The minimization over x involves a

linear equation with coefficient matrix I +KTK +DTD. If K and D are diagonalizable by

multiplication with DFT or DCT matrices, this can be reduced to a diagonal equation and

solved in O(N2 logN) operations. The total cost of one iteration of the ADMM method is

therefore O(N2 logN).

A second important and versatile class of first-order algorithms contains the Chambolle-

Pock algorithm and the related primal-dual methods developed in [EZC09, Ess10, BC11b,

HY12, Con13]. These methods solve the primal-dual optimality conditions

0 ∈


0 KT DT

−K 0 0

−D 0 0



x

y

z

+


∂φr(x)

b+ ∂φ∗f (y)

∂φ∗s (z)

 . (3.15)

by a semi-implicit forward-backward iteration which requires matrix-vector multiplications

with K and D and their transposes, but not the solution of any linear equations. Several

48

other types of modified forward-backward splitting algorithms can be applied to the primal-

dual optimality conditions, with a similar complexity per iteration as the Chambolle-Pock

method [CP12, Tse00].

3.4 Total variation deblurring

In this section we present two applications of the primal-dual splitting methods to a con-

strained L1 TV deblurring problem

minimize ‖Kx− b‖1 + γ‖Dx‖iso

subject to 0 ≤ x ≤ 1
(3.16)

where b is a blurry, noisy image with n pixels stored as a vector, K represents a convolution

operator and D represents a discrete gradient operator. The variable is an n-vector x. This

problem can be written in the canonical form (3.1) with

f(x) = δS(x), g(y1, y2) = ‖y1 − b‖1 + γ‖y2‖iso, A =

K
D

 , (3.17)

where S = {x | 0 ≤ x ≤ 1}.

All the experiments were performed on a computer with a 3.00 GHz AMD Phenom(tm)

II X4 945 processor with 4 cores and 8 GB of RAM. The code was written in MATLAB

using MATLAB version 8.1.0.604 (R2013a).

3.4.1 Periodic boundary conditions

In the first experiment, periodic boundary conditions are used in the definitions of K and

D. The matrices KTK and DTD can therefore be diagonalized by the discrete Fourier basis

matrix, and equations with coefficient

I + t2ATA = I + t2KTK + t2DTD

are solved very efficiently via fast Fourier transforms. We can therefore apply the algorithms

given in section 3.2.2.

49

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number k

(f (xk)− f ⋆)/f ⋆

CP

ADMM

primal DR

primal−dual DR

Figure 3.2: Relative optimality gap versus iteration number for the experiment in sec-

tion 3.4.1.

Figure 3.2 compares the performances of the Chambolle-Pock, ADMM, primal Douglas-

Rachford, and primal-dual Douglas-Rachford algorithms. The test image b is a degraded

version of the 1024 by 1024 “Man” image from the USC-SIPI Image Database2. The original

image (scaled so that intensity values are between 0 and 1) was blurred with a 15 by 15

truncated Gaussian kernel with standard deviation σ = 7. Then salt and pepper noise was

added to a random selection of 50% of the pixels. The parameter γ was chosen to give a

visually appealing image reconstruction. A nearly optimal primal objective value f ? was

computed by running the primal-dual Douglas-Rachford algorithm for 10, 000 iterations. In

figure 3.2 the quantity (fk − f ?)/f ? is plotted against the iteration number k, where fk

is the primal objective value at iteration k. The original, blurry/noisy, and restored (by

primal-dual DR) images are shown in figures 3.3 and 3.4.

For each method, close to optimal fixed primal and dual step sizes (and overrelaxation

parameters) were selected by trial and error. The Chambolle-Pock step sizes s and t were

2http://sipi.usc.edu/database/

50

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 3.3: Result for the experiment in section 3.4.1.

(a) Close-up on original image. (b) Close-up on degraded image. (c) Close-up on restored image.

Figure 3.4: Close-ups of the results for the experiment in section 3.4.1.

51

(a) Deblurred using L2 data fi-

delity term.

(b) Close-up on restoration using

L2 data fidelity term.

Figure 3.5: Result of using L2 data fidelity term for salt and pepper noise.

chosen to satisfy tsL2 = 1, where L = (‖K‖2 + ‖D‖2)1/2 is an upper bound on ‖A‖. Note

that the norms of K and D can be computed analytically because KTK and DTD are

diagonalized by the discrete Fourier basis matrix. The average elapsed time per iteration

was 1.37 seconds for Chambolle-Pock, 1.33 seconds for ADMM, 1.33 seconds for primal DR,

and 1.46 seconds for primal-dual DR.

As can be seen from the convergence plots, the four methods reach a modest accuracy

quickly. After a few hundred iterations, progress slows down considerably. In this example

the algorithms based on Douglas-Rachford converge faster than the Chambolle-Pock algo-

rithm. The time per iteration is roughly the same for each method and is dominated by 2D

fast Fourier transforms.

The quality of the restored image is good because the L1 data fidelity is very well suited

to deal with salt and pepper noise. Using an L2 data fidelity term and omitting the interval

constraints leads to a much poorer result. To illustrate this, figure 3.5 shows the result

of minimizing ‖Kx − b‖2 + γ‖Dx‖iso, with γ chosen to give the most visually appealing

reconstruction.

52

3.4.2 Non-periodic boundary conditions

To illustrate the methods of section 3.2.3, we consider the same problem (3.16) with non-

periodic boundary conditions [CYP05, Sor12]. Now K represents a convolution operator that

uses replicate boundary conditions and D represents a discrete gradient operator that uses

symmetric boundary conditions. The matrices K and D can be decomposed as K = Kp +Ks

and D = Dp + Ds where Kp and Dp represent convolution operators that use periodic

boundary conditions, and Ks and Ds are sparse matrices that correct the values near the

boundary. Correspondingly, the matrix A in (3.17) can be decomposed as A = B+C, where

B =

Kp

Dp

 , C =

Ks

Ds

 .
The two resolvents needed in the mixed splitting algorithm of section 3.2.3 are inexpensive

to evaluate: in the resolvent of A one exploits the fact that BTB = KT
p Kp + DT

pDp can

be diagonalized by the discrete Fourier transform basis; the resolvent of B involves a linear

equation with a sparse matrix CTC = KT
s Ks +DT

s Ds.

Figure 3.6 compares the performances of the Chambolle-Pock, ADMM, primal Douglas-

Rachford, and primal-dual Douglas-Rachford algorithms when b is a degraded version of

the 256 by 256 “cameraman” image. The original image (scaled so that intensity values

are between 0 and 1) was blurred with a 9 by 9 truncated Gaussian kernel with standard

deviation σ = 4. Then salt and pepper noise was added to a random selection of 10% of the

pixels. The parameter γ was chosen to give a visually appealing image reconstruction. A

nearly optimal primal objective value f ? was computed by running the primal-dual Douglas-

Rachford algorithm for 10, 000 iterations. In figure 3.6 the quantity (fk − f ?)/f ? is plotted

against the iteration number k. (fk is the primal objective value at iteration k.) The

blurry/noisy and restored (by primal-dual DR) images are shown in figure 3.7.

Also shown in figure 3.7 is a restoration (by primal-dual DR) using periodic boundary

conditions (and all other parameters unchanged). In this example we see the value of us-

ing correct boundary conditions, as the quality of the restoration with incorrect boundary

53

0 500 1000 1500 2000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number k

(f (xk)− f ⋆)/f ⋆

CP

ADMM

primal DR

primal−dual DR

Figure 3.6: Relative optimality gap vs. iteration for the experiment in section 3.4.2.

(a) Blurred with 9 by 9 kernel,

10% salt and pepper noise.

(b) Restored using periodic

boundary conditions.

(c) Restored using replicate

boundary conditions.

Figure 3.7: Result for the experiment in section 3.4.2.

54

conditions is poor.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation

parameters) were selected by trial and error. Primal and dual step sizes were implemented

in the algorithms based on Douglas-Rachford by modifying g and A as in equation (3.2).

The Chambolle-Pock step sizes s and t were chosen to satisfy tsL2 = 1, where L = (‖Kp‖2 +

‖Dp‖2)1/2 ≈ ‖A‖. The norms of Kp and Dp can be computed analytically because KT
p Kp and

DT
pDp are diagonalized by the discrete Fourier basis. The average elapsed time per iteration

was 0.08 seconds for Chambolle-Pock, 0.12 seconds for ADMM, 0.10 seconds for primal

Douglas-Rachford, and 0.10 seconds for primal-dual Douglas-Rachford. In this example,

the modification to Chambolle-Pock (incorporating an overrelaxation step) mentioned in

section 3.2 allows Chambolle-Pock to be competitive with the algorithms based on Douglas-

Rachford.

3.5 Tight frame regularized deblurring

In the next two experiments, we use tight frame regularization rather than TV regularization

in the deblurring model (1.4). We take φs(Dx) = γ‖Dx‖1, with D a tight frame analysis

operator, i.e., DTD = αI for some positive α [Mal99, chapter 5] [KL12].

3.5.1 Periodic boundary conditions

We first consider

minimize ‖Kx− b‖1 + γ‖Dx‖1

subject to 0 ≤ x ≤ 1
(3.18)

where, as before, b is a blurry, noisy image stored as an n-vector and K represents a convolu-

tion operator constructed using periodic boundary conditions. The matrix D is the analysis

operator for a (shearlet) tight frame [KL12]. The MATLAB package Shearlab-1.1 is used to

evaluate the tight operator [KSZ11].

55

0 500 1000 1500 2000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number k

(f (xk)− f ⋆)/f ⋆

CP

ADMM

primal DR

primal−dual DR

Figure 3.8: Relative optimality gap vs. iteration for the experiment in section 3.5.1.

The problem (3.18) is a special case of problem (3.1) with

f(x) = δS(x), g(y1, y2) = ‖y1 − b‖1 + γ‖y2‖1 A =

K
D

 ,
and S = {x | 0 ≤ x ≤ 1}. Because KTK and DTD = αI are both diagonalized by the

discrete Fourier basis, we can use the simple splitting algorithm given in section 3.2.2.

Figure 3.8 compares the Chambolle-Pock, primal Douglas-Rachford, ADMM, and primal-

dual Douglas-Rachford algorithms. The test image b is a degraded version of the 256 by 256

“cameraman” image. The original image (scaled so that intensity values are between 0 and

1) was blurred with a 7 by 7 truncated Gaussian kernel with standard deviation σ = 5. Then

salt and pepper noise was added to a random selection of 30% of the pixels. The parameter

γ was chosen to give a visually appealing image reconstruction. A nearly optimal primal

objective value f ? was computed by running the primal-dual Douglas-Rachford algorithm

for 10, 000 iterations. In figure 3.8 the quantity (fk − f ?)/f ? is plotted against the iteration

number k, where fk is the primal objective value at iteration k. The original, blurry/noisy,

and restored (by primal-dual splitting) images are shown in figure 3.9.

56

(a) Original image (b) Blurry, noisy image (c) Restored image

Figure 3.9: Result for the experiment in section 3.5.1.

For each method, close to optimal fixed primal and dual step sizes (and overrelaxation

parameters) were selected by trial and error. The Chambolle-Pock step sizes s and t were

chosen to satisfy tsL2 = 1, where L = (‖K‖2+‖D‖2)1/2 is an upper bound on ‖A‖. Note that

the norm of K can be computed analytically because KTK is diagonalized by the discrete

Fourier basis matrix. The norm of D is
√
α because DTD = αI. The average elapsed time

per iteration was 0.54 seconds for Chambolle-Pock, 0.51 seconds for ADMM, 0.51 seconds

for primal DR, and 0.50 seconds for primal-dual DR.

The convergence plots are similar to the previous experiment (in section 3.4.1). As is

typical for first-order methods, a modest accuracy is reached quickly but progress slows down

after the first few hundred iterations. In this example the algorithms based on Douglas-

Rachford converge faster than the Chambolle-Pock algorithm. The time per iteration is

roughly the same for each method and is dominated by 2D fast Fourier Transforms and

shearlet transforms.

3.5.2 Non-periodic boundary conditions

We solve a problem similar to (3.18), but with a quadratic fidelity term and without the

constraints on x:

minimize
1

2
‖Kx− b‖2 + γ‖Dx‖1. (3.19)

57

We will use replicate boundary conditions for K. As in the previous experiment, D represents

the analysis operator for a (shearlet) tight frame, constructed as in the previous example.

The matrix K can be decomposed as K = Kp + Ks, where Kp represents a convolution

operator that uses periodic boundary conditions. Therefore KT
p Kp and DTD = αI are both

diagonalized by the discrete Fourier basis matrix. The matrix Ks is a sparse matrix that

modifies the values near the boundary to satisfy the replicate boundary conditions.

This problem has the canonical form (3.1) with

f(x) = 0, g(y1, y2) =
1

2
‖y1 − b‖2 + γ‖y2‖1, A =

K
D

 .
Since f is quadratic, the simplified mixed splitting algorithm of section 3.2.4 can be applied.

However, as indicated at the end of section 3.2.4, additional simplifications are possible

because g is a separable sum of a quadratic term and a non-quadratic term.

Define g1(y1) = ‖y1 − b‖2/2 and g2(y2) = γ‖y2‖1. The primal-dual optimality conditions

for (3.19) can be written as

0 ∈


0 KT DT

−K 0 0

−D 0 0



x

z1

z2

+


0

∇g∗1(z1)

∂g∗2(z2)

 .
(Note that g∗1(z1) = ‖z1‖2/2 + bT z1 and ∂g∗1(z1) = {∇g∗1(z1)} = {z1 + b}.) We use the

splitting

A(x, z) =


0 KT

s 0

−Ks 0 0

0 0 0



x

z1

z2

+


0

0

∂g∗2(z2)


and

B(x, z) =


0 KT

p DT

−Kp I 0

−D 0 0



x

z1

z2

+


0

b

0

 .

58

Evaluating (x, z1, z2) = (I+ tA)−1(x̂, ẑ1, ẑ2) separates into two independent calculations: the

solution of the linear equation  I tKT
s

−tKs I

x
z1

 =

 x̂
ẑ1


and the evaluation of a prox-operator z2 = proxtg∗2 (ẑ2). Evaluating the resolvent of B requires

only solving a linear system. This system can be reduced to a system with a coefficient

consisting of positive weighted sum of three terms: I+λKT
p Kp +νDTD. Hence the resolvent

of B can be evaluated efficiently via fast Fourier transforms. Notice that we removed the

variable y which appeared in the method of section 3.2.4 for quadratic f . This reduces the

size of the monotone inclusion problem significantly.

Figure 3.10 compares the performances of the Chambolle-Pock, ADMM, primal Douglas-

Rachford, and primal-dual Douglas-Rachford algorithms. The image b is a degraded version

of the “Barbara” image, resized to have size 256 by 256. The original image (scaled so that

intensity values are between 0 and 1) was blurred with a 9 by 9 truncated Gaussian kernel

with standard deviation σ = 4. Then Gaussian noise with zero mean and standard deviation

10−3 was added to each pixel of the blurred image. The parameter γ was chosen to give

a visually appealing image reconstruction. A nearly optimal primal objective value f ? was

computed by running the primal-dual Douglas-Rachford algorithm for 10, 000 iterations. In

figure 3.10 the quantity (fk − f ?)/f ? is plotted against the iteration number k, where fk

is the primal objective value at iteration k. The original, blurry/noisy, and restored (by

primal-dual DR) images are shown in figure 3.11.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation

parameters) were selected by trial and error. Primal and dual step sizes were implemented

in the algorithms based on Douglas-Rachford by modifying g and A as in equation (3.2).

The Chambolle-Pock step sizes s and t were chosen to satisfy tsL2 = 1 where L = (‖Kp‖2 +

‖D‖2)1/2 ≈ ‖A‖. The norm of Kp can be computed analytically because KT
p Kp is diagonal-

ized by the discrete Fourier basis. The norm of D is
√
α because DTD = αI.

The average elapsed time per iteration was 0.55 seconds for Chambolle-Pock, 0.78 seconds

59

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

iteration number k

(f (xk)− f ⋆)/f ⋆

CP

ADMM

primal DR

primal−dual DR

Figure 3.10: Relative optimality gap vs. iteration for the experiment in section 3.5.2.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 3.11: Result for the experiment in section 3.5.2.

60

for ADMM, 0.60 seconds for primal Douglas-Rachford, and 0.52 seconds for primal-dual

Douglas-Rachford.

3.6 Primal-dual decomposition

The mixed splitting algorithm applies to problems in many areas beyond image reconstruc-

tion. For example, one often encounters optimization problems that are ‘almost’ separable:

the functions f and g in (3.1) are block-separable and A = B+C with B block-diagonal and

C sparse. In this situation, evaluating the resolvents of f and g decomposes into indepen-

dent subproblems which can be solved in parallel. A linear system with coefficient matrix

I + λBTB is also separable and can be solved by solving independent smaller equations.

Systems with coefficient matrix I + λCTC may be solved efficiently by exploiting spar-

sity. The mixed splitting algorithm therefore leads to primal-dual decomposition schemes

for almost separable problems. This type of structure generalizes angular and dual-angular

structure [Las70] found in problems that are separable except for a small number of cou-

pling constraints (‘dual decomposition’) or coupling variables (‘primal decomposition’); see

also [CLC07, PC06]. The splitting methods discussed in this chapter can therefore be viewed

as generalized primal-dual decomposition methods.

To illustrate this with an image deblurring application, we consider a spatially varying

blurring model with a piecewise constant kernel. We assume the image can be partitioned

into rectangular regions such that the blurring kernel is constant on each region (variations on

this basic model are discussed in [NO98]). If pixels are ordered appropriately (one subimage

after another), then the blurring operator can be represented by a matrix K = Kbd + Ks,

where Kbd is block diagonal and Ks is sparse, and moreover each block of Kbd represents

a spatially invariant convolution (applied to the corresponding subimage) using periodic

boundary conditions. Linear systems involving the blocks of Kbd can be solved efficiently via

the FFT. Similarly, a discrete gradient operator can be represented by a sum D = Dbd +Ds

of a block-diagonal and a sparse matrix, where each block of Dbd represents a spatially

61

invariant convolution (applied to a subimage), using periodic boundary conditions.

We consider again the deblurring model (3.16), where now the blurring kernel is only

assumed to be piecewise constant (and replicate boundary conditions are used for the entire

image). The matrix A in (3.17) can be decomposed as A = B + C with

B =

Kbd

Dbd

 . C =

Ks

Ds

 . (3.20)

Equations with coefficient I+λBTB (for a given λ > 0) are easy to solve because I+λBTB is

block diagonal, with blocks that can be diagonalized by the DFT. Equations with coefficient

I+λCTC can be solved efficiently by exploiting sparsity. We solve (3.16) using the methods

discussed in section 3.2.3, with the decomposition (3.20).

Figure 3.12 compares the performances of the Chambolle-Pock, ADMM, primal Douglas-

Rachford, and primal-dual Douglas-Rachford algorithms. The noisy, blurry image b is a

degraded version of the 256 by 256 “cameraman” image. The original image (scaled so that

intensity values are between 0 and 1) was partitioned into four subimages, each of which was

blurred with a 9 by 9 truncated Gaussian kernel. (The standard deviations were 4, 3.5, 3, and

2 for the upper-left, upper-right,lower-left, and lower-right subimages, respectively.) Then

salt and pepper noise was added to a random selection of 10% of the pixels. The parameter

γ was chosen to give a visually appealing image reconstruction. A nearly optimal primal

objective value f ? was computed by running the primal-dual Douglas-Rachford algorithm

for 10, 000 iterations. In figure 3.12 the quantity (fk−f ?)/f ? is plotted against the iteration

number k. (fk is the primal objective value at iteration k.) The blurry/noisy and the

restored (by primal-dual Douglas-Rachford) images are shown in figure 3.12. The figure

also shows the image after five iterations of the primal-dual DR method. In this partially

restored image the artifacts due to the spatially varying blurring operator are still visible.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation

parameters) were selected by trial and error. Primal and dual step sizes (for the Douglas-

Rachford methods) were implemented by modifying g and A as in equation (3.2). The

Chambolle-Pock step sizes s and t were chosen to satisfy tsL2 = 1, where L = (‖Kbd‖2 +

62

0 500 1000 1500 2000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number k

(f (xk)− f ⋆)/f ⋆

CP

ADMM

primal DR

primal−dual DR

Figure 3.12: Relative optimality gap versus iteration number for the experiment in sec-

tion 3.6.

(a) Blurry, noisy image. (b) After 5 iterations. (c) Restored image.

Figure 3.13: Result for the experiment in section 3.6.

63

primal-dual dual

PPA proximal method of multipliers method of multipliers

DR splitting primal-dual DR splitting ADMM

Table 3.1: Relation between various methods.

8)1/2 ≈ ‖A‖. (It can be shown that ‖D‖2 ≤ 8.) The norm of Kbd can be computed

analytically because the blocks of Kbd are diagonalized by the discrete Fourier basis. The

average elapsed time per iteration was 0.086 seconds for Chambolle-Pock, 0.15 seconds for

ADMM, and 0.12 seconds for both primal DR and primal-dual DR.

3.7 Conclusions

We have presented primal-dual operator splitting algorithms for solving convex optimization

problems

minimize f(x) + g(Ax)

where f and g are closed, convex functions with inexpensive proximal operators, and the

matrix A can be split as a sum A = B + C of two structured matrices. Our approach is

to apply the Douglas-Rachford splitting method to the primal-dual optimality conditions

(Karush-Kuhn-Tucker conditions), expressed as a monotone inclusion. The relationship of

this approach to other well known methods is illustrated in table 3.1. The method of mul-

tipliers (or augmented Lagrangian method) [Roc76a] and the Bregman iteration [YOG08])

can be interpreted as solving the dual optimality condition

0 ∈ ∂g∗(z)− A∂f ∗(−AT z) (3.21)

using the proximal point algorithm (PPA). The ADMM and split-Bregman methods can

be interpreted as solving the dual optimality condition using the Douglas-Rachford (DR)

algorithm [Gab83]. The proximal method of multipliers [Roc76a] uses the proximal point

algorithm to solve the primal-dual optimality conditions. We complete this picture by using

the Douglas-Rachford method to solve the primal-dual optimality conditions. This method

64

can therefore be viewed as a primal-dual version of the ADMM or split-Bregman methods,

or as an alternating direction version of the proximal method of multipliers. The primal-dual

approach has the advantage that it lends itself to several interesting splitting strategies. In

particular, the ‘mixed splitting’ strategy exploits additive structure A = B+C in the linear

term, where B and C have useful, but different types of matrix structure. We have illustrated

this with applications in image deblurring, in which the matrix B can be diagonalized by a

DFT and C is a sparse matrix.

In the numerical experiments we compared the primal-dual Douglas-Rachford splitting

method with three other methods: the Douglas-Rachford method applied to a reformu-

lated primal problem (also known as Spingarn’s method), the ADMM algorithm (Douglas-

Rachford applied to the dual), and the Chambolle-Pock algorithm. All methods depend

on three algorithm parameters: a primal step size, a dual step size, and an overrelaxation

parameter. Using different primal and dual step sizes can also be interpreted as first scaling

the matrix A and g and then using a single step size. We observed that with a careful tuning

of the algorithm parameters the four methods performed similarly. In all experiments, the

primal-dual Douglas-Rachford approach is consistently one of the fastest methods. Com-

pared with the primal and dual Douglas-Rachford approaches it has the advantage that it

avoids the introduction of large numbers of auxiliary variables and constraints. An advantage

over the Chambolle-Pock algorithm is that the step size selection does not require estimates

or bounds on the norm of A. This is particularly important in large-scale applications where

the norm of the linear operators is difficult to estimate (unlike the norms of the convolu-

tion operators encountered in image deblurring). As in ADMM and other applications of

the Douglas-Rachford method, it is difficult to provide general guidelines about the choice of

step sizes. When comparing algorithms we used constant step sizes, tuned by trial and error.

More practical adaptive strategies for step size selection in the Douglas-Rachford method

have been proposed in [HYW00, HLW03].

The approach to primal-dual operator splitting discussed in this chapter does not obvi-

65

ously generalize to the case where A is a sum of N structured matrices. A different approach,

based on the consensus trick for monotone inclusion problems, will be discussed in chapter 5.

66

CHAPTER 4

Total variation image deblurring with space-varying

kernel1

4.1 Introduction

In many popular approaches to non-blind image deblurring, a deblurred image is computed

by solving an optimization problem of the form

minimize
x

φf(Kx− b) + φr(Dx) + φc(x) (4.1)

where φf, φr, and φc are convex penalty or indicator functions [HNO06, Vog02]. Here b

is a vector containing the pixel intensities of an M × N blurry, noisy image, stored as a

vector of length n = MN , for example, in column-major order. The optimization variable

x ∈ Rn is the deblurred image. The matrix K models the blurring process, and is assumed

to be known. The first term in (4.1) is often called the “data fidelity” term and encourages

Kx ≈ b. Typical choices for the penalty function φf in the data fidelity term include the

squared L2 norm, the L1 norm, and the Huber penalty. The second term in the cost function

is a regularization term. In total-variation (TV) deblurring [ROF92, RO94], the matrix D

represents a discrete gradient operator, and φr is an L1 norm or the isotropic norm∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
iso

=
n∑
i=1

√
u2
i + v2

i . (4.2)

In tight frame regularized deblurring [Mal99, KSZ11], D represents the analysis operator for

a tight frame and φr is the L1 norm. The last term φc(x) can be added to enforce constraints

on x such as 0 ≤ x ≤ 1 by choosing φc to be the indicator function of the constraint set.

1This chapter is based on the paper [OV].

67

When devising efficient methods for solving (4.1), a key requirement is to exploit structure

in K. Most work on image deblurring has modeled the blur as being spatially invariant, in

which case K represents a convolution with a spatially invariant point spread function.

This allows efficient multiplication by K and KT by means of the fast Fourier transform.

Additionally, linear systems involving K can be solved efficiently because K can be expressed

as a product of the 2-dimensional DFT matrix, a diagonal matrix, and the inverse of the 2-

dimensional DFT matrix. In combination with fast Fourier transform techniques, methods

such as the Chambolle-Pock algorithm [CP11a], the Douglas-Rachford algorithm [LM79,

CP07, OV14], and the alternating direction method of multipliers (ADMM) or split Bregman

method [GO09, CTY13, AF13] are very effective for solving (4.1). By exploiting the space-

invariant convolution structure, these methods achieve a very low per-iteration complexity,

equal to the cost of a small number of FFTs.

In this chapter we address the problem of solving (4.1) under the assumption of spatially

variant blur. We consider two models of spatially variant blur: the classical model of Nagy

and O’Leary [NO98] and the related “Efficient Filter Flow” (EFF) model [HSS10]. The

Nagy-O’Leary model expresses a spatially variant blur operator as a sum

K =
P∑
p=1

UpKp, (4.3)

where each Kp represents a spatially invariant convolution operator, and the matrices Up are

nonnegative diagonal matrices that add up to the identity. The EFF model uses a model of

the form

K =
P∑
p=1

KpUp, (4.4)

with similar assumptions on Kp and Up. Unlike the space-invariant convolution operator, the

space-varying models (4.3) and (4.4) cannot be diagonalized using the DFT. The contribution

of this chapter is to present Douglas-Rachford splitting methods for solving (4.1), for the

two spatially variant blur models, with an efficiency that is comparable with FFT-based

methods for spatially invariant blurring operators. Specifically, for many common types of

fidelity and regularization terms, the cost per iteration is O(PN2 logN) for N by N images.

68

Our approach is to use the structure of the blur operator to write deblurring problems

in the canonical form

minimize
x

f(x) + g(Ax) (4.5)

in such a way that the convex functions f and g have inexpensive proximal operators, and

linear systems involving A can be solved efficiently. Problem (4.5) can then be solved by

methods based on the Douglas-Rachford splitting algorithm, yielding algorithms whose costs

are dominated by the calculation of order P fast Fourier transforms at each iteration. The

key step, for both models, is the evaluation of the proximal operator of g. Our method for

the Nagy-O’Leary model requires that φf be a separable sum of functions with inexpensive

proximal operators; hence, it is able to handle most of the standard convex data fidelity

terms, such as those using an L1 or squared L2 norm or the Huber penalty. For the Efficient

Filter Flow model, our method requires that φf is the squared L2 norm. Both methods can

handle TV and tight frame regularization.

While much of the literature on image deblurring has assumed a spatially invariant

blur, recent work has increasingly focused on restoring images degraded by spatially variant

blur [NO98, BJN06, HSS10, HHS10, HSH11, Lev06, BB11, BBA12, BB12, JKZ10, DTS11,

WSZ12]. Most of the effort has gone towards modeling and estimating spatially variant

blur. In contrast, the problem of TV or tight frame regularized deblurring with a known

spatially variant blur operator has not received much attention. In the original Nagy and

O’Leary paper [NO98], non-blind deblurring is achieved by solving Kx = b by the precon-

ditioned conjugate gradient method, stopping the iteration early to mitigate the effects of

noise. The same approach is taken in [BJN06], where the Nagy-O’Leary model is used in a

blind deblurring algorithm. The paper [HSS10], which introduced the Efficient Filter Flow

model, recovers x given K and b by finding a nonnegative least squares solution to Kx = b.

(Note that [PC04] independently introduced a similar model.) A Bayesian framework with

a hyper-Laplacian prior is used in [JKZ10] and [WSZ12], leading to non-convex optimiza-

tion problems which are solved by iteratively re-weighted least squares or by adapting the

method of [CL09]. [Lev06] performs the non-blind deblurring step using the Richardson-

69

Lucy algorithm. Most relevant to us, [BB11] uses the Nagy-O’Leary model and solves a

TV deblurring problem using a method based on the domain decomposition approach given

in [FLS10], and [BB12] takes a similar domain decomposition approach to TV deblurring

using the Efficient Filter Flow model. However, [BB11] requires that φf be the squared L2

norm, whereas our treatment of the Nagy-O’Leary model is able to handle other important

data fidelity penalties such as the L1 norm and the Huber penalty. Moreover, the papers

[BB11, BB12] consider only total variation regularization, whereas our approach is able to

handle tight frame regularization as well as total variation regularization. Our approach

allows for constraints on x, enforced by the term φc(x); such constraints are not considered

in [BB11, BB12]. An additional difference between our approach and that of [BB11, BB12]

is that at each iteration of the methods in [BB11, BB12], there are subproblems which must

themselves be solved by an iterative method; thus [BB11, BB12] present multi-level iterative

algorithms, with both inner and outer iterations. In our approach all subproblems at each

iteration have simple closed form solutions.

This chapter is organized as follows. In section 4.2 we present the Nagy-O’Leary model

of spatially variant blur and derive a method for solving (4.1) using this model, under the

assumption that φf is separable. In section 4.3 we discuss the Efficient Filter Flow model

of spatially variant blur, and derive a method for solving (4.1) using this model, in the case

where φf is the squared L2 norm. Section 4.4 demonstrates the effectiveness of these methods

with some numerical experiments. The chapter concludes with a summary of main points

in section 4.5.

4.2 The Nagy-O’Leary model

The Nagy-O’Leary model of spatially variant blur [NO98] assumes that the blur operator K

has the form

K =
P∑
p=1

UpKp. (4.6)

where

70

• each Kp, for p = 1, . . . , P , performs a convolution with a space-invariant kernel,

• each Up is diagonal with nonnegative diagonal entries,

• the matrices Up sum to the identity matrix:
∑P

p=1 Up = I.

Intuitively, Up determines how much Kp contributes to each pixel in the blurry image.

We now present a method for solving problem (4.1) when K has the form (4.6). The

method requires the special assumption that φf is a separable sum of functions with inex-

pensive proximal operators:

φf(x) =
∑
i

φif(xi).

This is the case in most applications, for example if φf is a squared L2 norm (φif(u) = u2/2),

an L1 norm (φif(u) = |u|), or the Huber penalty

φif(u) =

 u2/(2η) |u| ≤ η

|u| − η/2 |u| ≥ η,

where η is a positive parameter. We make no assumptions on φr and φc, except that they

have inexpensive proximal operators. The method also requires that DTD is diagonalized

by the discrete Fourier basis, which is true for both TV and tight frame regularization.

Assuming K satisfies (4.6), we write problem (4.1) in the generic form (4.5) by defining

f(x) = φc(x),

g(y1, . . . , yP , w) = φf(U1y1 + · · ·+ UPyP − b) + φr(w),

A =
[
KT

1 · · · KT
P DT

]T
.

We can apply the primal-dual splitting method of section 3.2.2 to this problem, once we first

check that the prox-operators of f and g are inexpensive and that the linear system in step

(3.10) can be solved efficiently.

We first examine the prox-operators of f and g. The proximal operator of f is the

proximal operator of φc, which is assumed to be inexpensive. The function g is separable in

71

the variables y = (y1, . . . , yP) and w, and can be written as g(y, w) = g1(y) + g2(w) where

g1(y) = φf(U1y1 + · · ·+ UPyP − b), g2(w) = φr(w).

Therefore the proximal operator of g at (ŷ, ŵ) is of the form proxtg(ŷ, ŵ) = (proxtg1(ŷ), proxtg2(ŵ)).

The proximal operator of g2 is the proximal operator of φr, which is assumed to be inexpen-

sive.

The only non-obvious question is how to calculate the proximal operator of g1. Let U =[
U1 · · · UP

]
and letM = (UUT)1/2. Then we can express g1 as g1(y) = h(M−1Uy−M−1b),

where

h(u) = φf(Mu) =
∑
i

φif(Miiui).

The invertibility of M follows from
∑P

p=1 Up = I. Noting that (M−1U)(M−1U)T = I, we can

now use the composition rule (2.21) to express the proximal operator of g1 in terms of the

proximal operator of h. Moreover, the proximal operator of h can be evaluated efficiently

using the separable sum rule (2.18) together with the rule (2.19). The resulting formula for

the proximal operator of g1 is

proxtg1(ŷ) = (I − UTM−2U)ŷ + UTM−2(v + b), (4.7)

where v is the vector whose ith component is

vi = proxtM2
iiφ

i
f
((Uŷ − b)i). (4.8)

Regarding the linear system in step (3.10), note that

ATA = KT
1 K1 + · · ·+KT

PKP +DTD.

If D represents a discrete gradient operator using periodic boundary conditions, or if D

represents a tight frame analysis operator (i.e., DTD = αI) then DTD is diagonalized by

the discrete Fourier basis. In this case, ATA is also diagonalized by the discrete Fourier

basis, and linear systems with coefficient I + λATA can be solved efficiently via the FFT.

72

It’s physically unrealistic to assume periodic boundary conditions when modeling the

blurring process. On the other hand, we want the operators Kp to use periodic boundary

conditions for computational efficiency. We can deal with this issue by using an “unknown

boundary conditions” approach as in [AF13]. Recall that we’re assuming φf is a separable

sum:

φf(x) =
∑
i

φif(xi).

If pixel i is a border pixel (close enough to the edge of the image that boundary conditions

are relevant), then we simply redefine the function φif to be identically zero. We then solve

the same optimization problem as before. The fact that the operators Kp use periodic

boundary conditions is no longer a problem. In this approach, it is as if we are “inpainting”

the border of the recovered image x. Once we’ve computed x, we can then discard the

inpainted border. (Discarding the border also removes any artifacts introduced by using

periodic boundary conditions for D.)

4.3 The Efficient Filter Flow model

A popular variant of the Nagy-O’Leary model for spatially variant blur is the Efficient

filter flow (EFF) model introduced in [HSS10]. This model is used in the recent papers

[HHS10, HSH11, BBA12]. In the EFF model the blur operator K has the form

K =
P∑
p=1

KpUp (4.9)

where the matrices Kp and Up satisfy the same properties as in the Nagy-O’Leary model of

section 4.2. In this section, we present a method for solving

minimize
x

1

2
‖Kx− b‖2 + φr(Dx) + φc(x) (4.10)

in the case where K is given by (4.9). Problem (4.10) is the special case of problem (4.1)

where φf(x) = 1
2
‖x‖2. We assume, as before, that φr and φc are proper closed convex

functions with inexpensive proximal operators. Additionally, we assume that D is a tight

73

frame operator (DTD = αI), but the method can also be used when DTD is very sparse (as

in TV regularization).

Problem (4.10) can be expressed in the generic form (4.5) by defining

f(x) = φc(x),

g(y1, . . . , yP , w) =
1

2
‖

P∑
p=1

Kpyp − b‖2
2 + φr(w),

A =
[
UT

1 · · · UT
P DT

]T
.

We can solve this problem using the primal-dual splitting method of section 3.2.2, but we

first must check that the prox-operators of f and g are inexpensive and that the linear system

of equations in step (3.10) can be solved efficiently.

Again we first examine the prox-operators of f and g. The proximal operator of f is the

proximal operator of φc, which is assumed to be inexpensive. The function g is separable in

the variables y = (y1, . . . , yP) and w, and can be written as g(y, w) = g1(y) + g2(w) where

g1(y) =
1

2
‖K1y1 + · · ·+KPyP − b‖2

2, g2(w) = φr(w).

Therefore the proximal operator of g at (ŷ, ŵ) is of the form proxtg(ŷ, ŵ) = (proxtg1(ŷ), proxtg2(ŵ)).

The proximal operator of g2 is the proximal operator of φr, which is assumed to be inexpen-

sive. The key point of this section is that g1 also has an inexpensive proximal operator.

We can express g1 as g1(y) = (1/2)‖By − b‖2
2, where B =

[
K1 · · · KP

]
. From rule

(2.22) for the proximal operator of a quadratic function, the proximal operator of g1 is given

by

proxtg1(ŷ) = (I − tBT (I + tBBT)−1B)(ŷ +BT b). (4.11)

Because the matrix

I + tBBT = I + t
P∑
p=1

KpK
T
p

is diagonalized by the discrete Fourier basis, expression (4.11) for the proximal operator of

g1 can be evaluated efficiently using the FFT.

74

Regarding the linear system in step (3.10), note that the linear equation in each iteration

has coefficient matrix

I + stATA = I + st(U2
1 + · · ·+ U2

P +DTD).

This matrix is diagonal when D represents the analysis operator of a tight frame, and very

sparse when D represents a discrete gradient operator.

4.4 Experiments

All experiments were performed on a computer with a 3.70 GHz Intel Xeon(R) E5-1620

v2 processor with 8 cores and 7.7 GB of RAM. The code was written in MATLAB using

MATLAB version 8.1.0.604 (R2013a).

4.4.1 Spatially variant Gaussian blur

We demonstrate the method of section 4.2 by restoring an image which has been blurred by

an operator K that is described by the Nagy-O’Leary model (4.6). The image used is the

512 by 512 “Barbara” image, scaled to have intensity values between 0 and 1. We set P = 4,

corresponding to the four quadrants of the image. For p = 1, . . . , 4, the matrix Kp performs

a convolution with a 17 by 17 truncated Gaussian kernel, with standard deviation σp = p

pixels. The matrix Up zeros out components away from the pth quadrant, as visualized in

figure 4.1 (where red corresponds to a value of 1 and blue corresponds to a value of 0).

When creating the blurry image, “replicate” boundary conditions were used – meaning that

an intensity value at a location outside the image is assumed to be equal to the intensity

at the nearest pixel in the image. Gaussian noise with zero mean and standard deviation

10−3 was added to each pixel of the blurred image. After Gaussian noise was added to each

pixel, 10% of the pixels (chosen at random) were corrupted by “salt and pepper” noise. (The

intensity value at each corrupted pixel was randomly set to either 0 or 1.)

We handle boundary conditions as described in section 4.2, using the “unknown boundary

75

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) U1.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) U2

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) U3

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(d) U4

Figure 4.1: Visualization of the matrices Up in section 4.4.1. Red corresponds to a value

of 1, and blue corresponds to a value of 0. The numerical values transition smoothly from

0 to 1.

conditions” approach. First the blurry image is zero padded to have size 528 by 528, then a

restored image is computed by solving

minimize
x

φf(Kx− b) + γ‖Dx‖iso. (4.12)

We take φf(x) =
∑

i φ
i
f(xi), where φif is the Huber penalty (with parameter η = 10−3) if pixel

i is not a border pixel, and φif is identically zero if pixel i is a border pixel. The optimization

variable is x ∈ R5282 , and D is the matrix representation of a discrete gradient operator

D̃ : R528×528 → R528×528×2, defined by:

(D̃x)i,j,1 = xi+1,j − xij, (D̃x)i,j,2 = xi,j+1 − xij.

(D̃ uses periodic boundary conditions.) Once a deblurred image is computed by solving

(4.12), the inpainted boundary is discarded, yielding a restored image of size 512 by 512.

The parameter γ is chosen to give a visually appealing image reconstruction. The original,

blurry, and restored images are shown in figure 4.2. Notice that the lower right quadrant

is blurred the most. It’s interesting to look closely and see that more detail is recovered in

the upper right quadrant, where the blurring was less severe.

In figure 4.3a, the quantity ‖xk−x?‖/‖x?‖ is plotted against the iteration number k. Here

xk is the estimate of the solution to (4.12) at iteration k, and x? is a nearly optimal primal

variable which was computed by running the method of section 4.2 for 10, 000 iterations.

In figure 4.3b, the quantity (F k − F ?)/F ? is plotted against the iteration number k. Here

76

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 4.2: Result for the experiment in section 4.4.1.

F k is the primal objective function value at iteration k, and F ? is a nearly optimal primal

objective function value, which was computed by running the method of section 4.2 for

10, 000 iterations. To illustrate the convergence properties of the algorithm, we show the

error for the first 500 iterations. However we observed that after about 180 iterations the

estimate xk was visually indistinguishable from x?.

Figure 4.3 compares the performance of the method of section 4.2 (labeled “DR”) with the

performance of the well known Chambolle-Pock method [CP11a] (labeled “CP”). Chambolle-

Pock minimizes f(x) + g(Ax), where f and g are proper closed convex functions, via the

iteration

x̄k = proxtf (x
k−1 − tAT zk−1),

z̄k = proxsg∗(z
k−1 + sA(2x̄k − xk−1)),

(xk, zk) = ρ(x̄k, z̄k) + (1− ρ)(xk−1, zk−1).

Here s and t are step sizes, and ρ ∈ (0, 2) is an overrelaxation parameter. (This overrelaxed

version of Chambolle-Pock is presented in [Con13].) The step sizes s and t are required by

convergence proofs to satisfy st‖A‖2 ≤ 1 [Con13], and we choose them so that st‖A‖2 = 1.

We precompute ‖A‖ using power iteration. When solving (4.12) by Chambolle-Pock, we

77

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

10
1

iteration number k

‖xk −x⋆‖/‖x⋆‖

CP

DR

(a) Relative error vs. iteration.

0 100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number k

(F k
−F ⋆)/F ⋆

CP

DR

(b) Relative optimality gap vs. iteration.

Figure 4.3: Relative error vs. iteration and relative optimality gap vs. iteration for the

experiment in section 4.4.1. The solid line shows the convergence of the primal-dual Dou-

glas-Rachford method, and the dashed line shows the convergence of the Chambolle-Pock

method.

take

A =

K
D


and

f(x) = 0, g(y1, y2) = φf(y1 − b) + γ‖y2‖iso

for all x, y1, y2. One of the main advantages of Chambolle-Pock is that it requires only

applying A and AT (at each iteration), and never requires solving a linear system involving

A. It is therefore very well suited to exploit the structure in the Nagy-O’Leary model.

As shown in figure 4.3, in this example the method of section 4.2 converges in fewer

iterations than the Chambolle-Pock method. Moreover, the time per iteration is nearly

the same for both methods: 0.19 seconds for Chambolle-Pock compared to 0.20 seconds

for the method of section 4.2. In this experiment, close to optimal fixed step sizes and

overrelaxation parameters for both methods were chosen by trial and error. (In particular,

the Chambolle-Pock step sizes were not taken to be equal.)

78

(a) Blurry image. (b) Restored image.

Figure 4.4: Result for the experiment in section 4.4.2.

Figure 4.5: The segmentation computed using the code from [CZF10].

4.4.2 Motion deblurring

In this section we combine our approach to spatially variant deblurring with the motion

segmentation algorithm of [CZF10]. The algorithm presented in [CZF10] segments out a

motion-blurred region from an otherwise sharp input image and estimates a motion blur

kernel for this region, but does not compute a deblurred image.

A blurry image (of size 367 by 600) is shown in figure 4.4a, and a segmentation of this

image computed using the code provided by [CZF10] is shown in figure 4.5. The algorithm

of [CZF10] estimated a horizontal motion of 6 pixels during the time the camera shutter was

open, but a slightly better image reconstruction was obtained using the motion blur kernel

79

(1/7)
[
1 1 1 1 1 1 1

]
, which corresponds to a horizontal motion of 7 pixels.

We use the Nagy-O’Leary model (4.6) with P = 2. The matrix K1 performs a convolution

with the 7 pixel motion blur kernel given above, and K2 is the identity matrix (we assume

negligible blur for the background region). The matrix U1 zeros out background pixels

without altering foreground intensity values, while the matrix U2 zeros out foreground pixels

without altering background intensity values. We first zero pad the blurry image to have size

373 by 606, then compute a deblurred image by solving (4.12) using the method of section

4.2. (We deblur each color channel of the blurry image separately, to obtain a restored

color image.) We use a quadratic data fidelity function φf. The discrete gradient operator

D is defined as in section 4.4.1. The parameter γ is chosen to give a visually appealing

image reconstruction. Once a deblurred image is computed by solving (4.12), the inpainted

boundary is discarded, yielding a restored image of size 367 by 600. (Because K2 is the

identity, this effort to handle boundary conditions correctly is actually unnecessary in this

example.)

When solving (4.12), we ran the primal-dual Douglas-Rachford method discussed in sec-

tion 3.2.2 for 250 iterations. The step sizes and overrelaxation parameter were set to the

same values as in section 4.4.1. The total run time was 79 seconds to compute a segmenta-

tion and estimate a motion blur kernel (using the code from [CZF10]), and then 164 seconds

to compute a restored color image.

The deblurred image is shown in figure 4.4b. When we zoom in, the letters on the

motorcycle in the restored image are nearly legible now, and appear to say “racing”.

4.5 Conclusion

Beginning with [ROF92] over 20 years ago, a substantial literature has been devoted to

non-blind TV image deblurring under the assumption of spatially invariant blur. In this

chapter, we have extended this line of research by presenting efficient methods for TV or

tight frame regularized deblurring using two fundamental models of spatially variant blur:

80

the classical Nagy-O’Leary model and the related Efficient Filter Flow model. In the case of

the Nagy-O’Leary model, our method requires that the data fidelity function φf in problem

(4.1) is a separable sum of functions with inexpensive proximal operators. This includes

most standard data fidelity functions such as the squared L2 norm, the L1 norm, and the

Huber penalty. In the case of the Efficient Filter Flow model, our method requires that φf is

the squared L2 norm. Both methods can handle TV and tight frame regularization, as well

as constraints such as box constraints on the recovered image x.

The Nagy-O’Leary model and the Efficient Filter Flow model both express a spatially

variant blur operator as a sum of P terms, each term involving a spatially invariant blur

operator. For the non-blind deblurring algorithms presented in this chapter, the computa-

tional cost is dominated by the cost of computing order P fast Fourier transforms at each

iteration. The cost per iteration is O(PN2 logN) for N by N images. Thus, we can solve

(4.1), for the two spatially variant blur models, with an efficiency that is comparable with

the efficiency of FFT-based methods that assume a spatially invariant blur model. In the

case where P = 1, the methods presented in this chapter reduce to state of the art proximal

algorithms for spatially invariant TV or tight frame regularized deblurring (see [OV14] for

example).

The experiment in section 4.4.2 gives an example where the methods of this chapter can

be combined with a motion segmentation algorithm to obtain a blind motion deblurring algo-

rithm. In future work, it would be interesting to explore combining the non-blind algorithms

presented here with successful approaches to blind deblurring, such as recent algorithms that

restore images degraded by camera shake. Along these lines, the paper [HSH11] presents a

blind deblurring algorithm that combines the structural constraints of a Projective Motion

Path Blur (PMPB) model with the efficiency of the Efficient Filter Flow model, reaping

the benefits of both frameworks. This demonstrates that PMPB models, a subject of much

current interest, can be usefully combined with classical models of spatially variant blur,

where our methods are applicable. Another goal would be to develop proximal algorithms

that work with PMPB models directly.

81

Many blind deblurring algorithms, including [HSH11], use a non-convex regularizer based

on the statistics of natural images, rather than using TV regularization. Another future

research direction is to adapt the proximal algorithms given in this chapter, to handle these

non-convex regularizers.

82

CHAPTER 5

Consensus Douglas-Rachford for monotone inclusion

problems

5.1 Consensus Douglas-Rachford

In this chapter we discuss two “consensus” versions of the Douglas-Rachford method, which

are able to solve monotone inclusion problems that involve a sum of more than two monotone

operators. These methods give us a new method for handling additive structure in A for

the canonical problem (1.1): when A is a sum of N structured matrices, the primal-dual

optimality conditions (2.11) involve a sum of N + 1 monotone operators, and consensus

Douglas-Rachford methods can be applied. (And there is no difficulty when N > 2, a

case which can’t obviously be handled by the primal-dual operator splitting approach of

chapter 3.) In section 5.3 we revisit an experiment from chapter 3, and show that we can

improve on the earlier results.

The consensus Douglas-Rachford method for minimizing a sum of N closed convex func-

tions [CP07, BC11a] is seen to be a special case of these methods. Because ADMM can

be interpreted as Douglas-Rachford applied to the dual problem, the consensus Douglas-

Rachford methods lead to N -operator “consensus” versions of ADMM.

83

5.1.1 Derivation based on consensus trick

Let f0, . . . , fN−1 be proper closed convex functions. The consensus Douglas-Rachford method

for convex optimization [CP07, BC11a] solves

minimize
N−1∑
i=0

fi(u) (5.1)

by applying Douglas-Rachford to the equivalent problem

minimize
N−1∑
i=0

fi(xi)︸ ︷︷ ︸
g(x)

+ δC(x0, . . . , xN−1)︸ ︷︷ ︸
h(x)

,

where the optimization variable is x = (x0, . . . , xN−1) and δC is the indicator function of

C = {(x0, . . . , xN−1) | x0 = · · · = xN−1}.

Another method for solving (5.1) can be derived by applying Douglas-Rachford to the

equivalent problem

minimize
N−1∑
i=1

fi(xi)︸ ︷︷ ︸
g(x)

+ f0(x1) + δC(x1, . . . , xN−1)︸ ︷︷ ︸
h(x)

where the optimization variable is now x = (x1, . . . , xN−1). In this approach the reformulated

problem has fewer variables, but the prox-operator of f0 is not computed in parallel with

the prox-operators of fi, i = 1, . . . , N − 1. The resulting algorithm is a true extension of the

Douglas-Rachford method, in the sense that it reduces to the Douglas-Rachford method in

the case where N = 2.

Similar tricks can be applied to the monotone inclusion problem

0 ∈
N−1∑
i=0

Fi(u) (5.2)

where each Fi is a maximal monotone operator. A consensus Douglas-Rachford method for

the monotone inclusion problem (5.2) can be derived by applying Douglas-Rachford to the

84

equivalent problem

0 ∈


F0(x0)

...

FN−1(xN−1)


︸ ︷︷ ︸

G(x)

+ ∂δC(x0, . . . , xN−1)︸ ︷︷ ︸
H(x)

(5.3)

with variable x = (x0, . . . , xN−1). The equivalence of (5.2) and (5.3) follows from the fact

that

∂δC(x0, . . . , xN−1) =


C⊥ =

{
(g0, . . . , gN−1) |

∑N−1
i=0 gi = 0

}
if x0 = · · · = xN−1,

∅ otherwise.

We will refer to the resulting algorithm as the standard consensus Douglas-Rachford method,

or just as the consensus Douglas-Rachford method.

A different (and in some cases advantageous) algorithm for solving problem (5.2) can be

derived by applying Douglas-Rachford to the equivalent problem

0 ∈


F1(x1)

...

FN−1(xN−1)


︸ ︷︷ ︸

G(x)

+


F0(x1)

0
...

0

+ ∂δC(x1, . . . , xN−1)

︸ ︷︷ ︸
H(x)

(5.4)

where the variable is now x = (x1, . . . , xN−1). In this version, the reformulated problem has

fewer variables, but the resolvent of F0 is not computed in parallel with the resolvents of

Fi, i = 1, . . . , N − 1. We’ll refer to the resulting algorithm as “extended Douglas-Rachford”

to distinguish it from the consensus Douglas-Rachford algorithm derived above (using equa-

tion (5.3)), and also because it reduces to the Douglas-Rachford method in the case N = 2.

To evaluate the resolvent of H, let u = (I + tH)−1(x). Then


x1

...

xN−1

 ∈

u1 + tF0(u1)

u2

...

uN−1

+ ∂δC(u1, . . . , uN−1). (5.5)

85

This implies that u1 = · · · = uN−1 (otherwise ∂δC(u1, . . . , uN−1) would be empty). Note

that (g1, . . . , gN−1) ∈ ∂δC(u1, . . . , u1) ⇐⇒ g1 + · · · + gN−1 = 0. Summing all components

on each side of (5.5), we obtain

N−1∑
i=1

xi = ((N − 1)I + tF0)(u1)

which implies that

u1 = ((N − 1)I + tF0)−1

(
N−1∑
i=1

xi

)

=

(
I +

t

N − 1
F0

)−1
(

1

N − 1

N−1∑
i=1

xi

)
.

Note that when F0 = 0, the extended Douglas-Rachford algorithm reduces to the consen-

sus Douglas-Rachford algorithm for solving 0 ∈
∑N−1

i=1 Fi(x). Hence, the consensus Douglas-

Rachford algorithm is a special case of the extended Douglas-Rachford algorithm.

5.1.2 Alternate derivation

As mentioned in section 5.1.1, the extended Douglas-Rachford method reduces to the Douglas-

Rachford method in the case where N = 2. It’s interesting to note that the extended

Douglas-Rachford method can also be derived by directly generalizing the derivation of the

Douglas-Rachford method which was presented in section 2.4.

Our goal is to solve the problem

0 ∈
N−1∑
i=0

Fi(x)

where each Fi is maximal monotone. Let t > 0. Then

0 ∈
N−1∑
i=0

Fi(x) ⇐⇒ 2(N − 2)x ∈ ((N − 1)I + tF0)(x) +
N−1∑
i=1

(I + tFi)(x). (5.6)

Introducing new variables zi ∈ (I + tFi)(x) for i = 1, . . . , N − 1, we see that the inclusion

86

(5.6) is equivalent to

x = (I + tFi)
−1(zi) for i = 1, . . . , N − 1

x = ((N − 1)I + tF0)−1

(
N−1∑
i=1

2x− zi

)

=

(
I +

t

N − 1
F0

)−1
(

1

N − 1

N−1∑
i=1

2x− zi

)

= RF0

(
1

N − 1

N−1∑
i=1

refFi
(zi)

)
.

(We are using the notation RF0 =
(
I + t

N−1
F0

)−1
, RFi

= (I + tFi)
−1 for i = 1, . . . , N − 1,

and refFi
(zi) = 2RFi

(zi)− zi for i = 1, . . . , N − 1.) Combining these equations, we see that

RFi
(zi) = RF0

(
1

N − 1

N−1∑
i=1

refFi
(zi)

)

=⇒ 2RFi
(zi)− refFi

(zi) = 2RF0

(
1

N − 1

N−1∑
i=1

refFi
(zi)

)
− refFi

(zi)

=⇒ zi = 2RF0

(
1

N − 1

N−1∑
i=1

refFi
(zi)

)
− refFi

(zi)

for i = 1, . . . , N − 1. These equations together give us a fixed point equation for z =

(z1, . . . , zN−1):

z = S(T (z))

where

T (z1, . . . , zN−1) = (refF1(z1), . . . , refFN−1
(zN−1)) (5.7)

and

S(u1, . . . , uN−1) = (2RF0(ū)− u1, . . . , 2RF0(ū)− uN−1)

where

ū =
1

N − 1

N−1∑
i=1

ui.

The operators S and T can be viewed as “generalized” reflection operators, and we will show

that (like ordinary reflection operators) S and T are nonexpansive. It follows that we can

87

solve for z via the fixed point iteration

z+ =
1

2
z +

1

2
S(T (z)).

By introducing some intermediate variables, this iteration can be written as

xki = (I + tFi)
−1(zk−1

i) for i = 1, . . . , N − 1

yk =

(
I +

t

N − 1
F0

)−1 (
2x̄k − z̄k−1

)
zki = zk−1

i + yk − xki for i = 1, . . . , N − 1.

(We use the notation x̄ = 1
N−1

∑N−1
i=1 xi and z̄ = 1

N−1

∑N−1
i=1 zi.) This iteration is the same

as the iteration for the extended Douglas-Rachford algorithm derived in section 5.1.1.

5.1.3 Proof that S and T are nonexpansive

The nonexpansiveness of T follows immediately from equation (5.7) and the nonexpansive-

ness of the reflection operators refFi
. Moreover, showing that S is nonexpansive is no more

difficult than showing that a reflection operator is nonexpansive. We give the details here.

The ith block of S(u1, . . . , uN−1)− S(v1, . . . , vN−1) is

Bi = 2RF0(ū)− 2RF0(v̄)− (ui − vi)

where

ū =
1

N − 1

N−1∑
i=1

ui and v̄ =
1

N − 1

N−1∑
i=1

vi.

Note that

‖Bi‖2 = 4‖RF0(ū)−RF0(v̄)‖2 − 4 〈RF0(ū)−RF0(v̄), ui − vi〉+ ‖ui − vi‖2.

88

Hence

‖S(u1, . . . , uN−1)− S(v1, . . . , vN−1)‖2

=
∑
‖Bi‖2

=
∑

4‖RF0(ū)−RF0(v̄)‖2 − 4
〈
RF0(ū)−RF0(v̄),

∑
ui −

∑
vi

〉
+
∑
‖ui − vi‖2

= 4(N − 1)‖RF0(ū)−RF0(v̄)‖2 − 4(N − 1) 〈RF0(ū)−RF0(v̄), ū− v̄〉+
∑
‖ui − vi‖2

≤
∑
‖ui − vi‖2.

This shows that S is nonexpansive. In the last step we used the inequality

‖RF0(a)−RF0(b)‖2 ≤ 〈RF0(a)−RF0(b), a− b〉

which expresses the fact that RF0 is firmly nonexpansive.

5.1.4 Equivalent form of extended Douglas-Rachford

We now derive an equivalent form of the extended Douglas-Rachford algorithm, which will

be useful when deriving an extended version of ADMM. By starting with the y update, the

extended Douglas-Rachford iteration can be written as

yk =

(
I +

t

N − 1
F0

)−1
(

1

N − 1

N−1∑
i=1

2xk−1
i − zk−1

i

)
zki = zk−1

i + yk − xk−1
i for i = 1, . . . , N − 1

xki = (I + tFi)
−1(zk−1

i + yk − xk−1
i) for i = 1, . . . , N − 1.

The way this is written, we can put the zi update at the end. Making a change of variable

wi = zi − xi, the iteration becomes

yk =

(
I +

t

N − 1
F0

)−1

(x̄k−1 − w̄k−1)

xki = (I + tFi)
−1(yk + wk−1

i) for i = 1, . . . , N − 1

wki = wk−1
i + yk − xki for i = 1, . . . , N − 1.

89

This iteration can be compared with the equivalent version of the Douglas-Rachford iteration

given in equations (2.28) – (2.30).

5.1.5 Primal-dual operator splitting revisited

In chapter 3, we presented a primal-dual operator splitting approach to solving the canonical

problem (1.1). However, the approach of chapter 3 doesn’t obviously extend to the case where

A is a sum of N operators, with N > 2.

A different way to handle additive structure in A is to use a consensus Douglas-Rachford

method. In the case where A =
∑N

i=1Ai, the primal-dual optimality conditions (2.11) can

be written as

0 ∈

∂f(x)

∂g∗(z)

+
N∑
i=1

 0 ATi

−Ai 0

x
z

 . (5.8)

The monotone operator on the right is a sum of N+1 “easy” monotone operators (assuming

each Ai has structure we can exploit). Thus this monotone inclusion problem can be solved by

either the consensus Douglas-Rachford method or the extended Douglas-Rachford method.

In section 5.3, we’ll see an experiment where this approach compares favorably with the

methods of chapter 3.

5.2 Extensions of ADMM

Because ADMM can be interpreted as solving the dual problem with Douglas-Rachford, the

extended Douglas-Rachford algorithm can be used to derive an extended version of ADMM.

A different consensus version of ADMM can be derived by applying the standard consensus

Douglas-Rachford method to the dual problem.

90

Let f0, f1, . . . , fN−1 be proper, closed, convex functions. We’ll consider the problem

minimize
n−1∑
i=0

fi(xi) (5.9)

subject to
N−1∑
i=0

Aixi = b

with variables xi, i = 0, . . . , N − 1. Each Ai is a linear transformation (or matrix) and b is a

vector. The dual problem (expressed as a minimization problem) is

minimize 〈z, b〉+
N−1∑
i=0

f ∗i (−ATi z) (5.10)

with variable z. The dual problem has the form

minimize
N−1∑
i=0

Fi(z)

where F0(z) = 〈z, b〉 + f ∗0 (−AT0 z) and Fi(z) = f ∗i (−ATi z) for i = 1, . . . , N − 1. We’ll solve

(5.10) by the extended Douglas-Rachford method. Intermediate steps will require us to

evaluate the prox-operator of each function Fi, which is achieved using equations (2.39) –

(2.40).

5.2.1 Derivation of ADMM iteration

Because the variable we’re solving for is called z, we’ll rewrite the extended Douglas-Rachford

iteration using different letters:

pk =

(
I +

t

N − 1
F0

)−1

(z̄k−1 − w̄k−1)

zki = (I + tFi)
−1(pk + wk−1

i) for i = 1, . . . , N − 1

wki = wk−1
i + pk − zki for i = 1, . . . , N − 1.

91

Using (2.39)–(2.40) to evaluate prox-operators, the p update becomes

xk0 = argmin
u

f0(u) +
t

2(N − 1)

∥∥∥∥∥A0u− b+
N−1∑
j=1

(zk−1
j − wk−1

j)

t

∥∥∥∥∥
2

pk = z̄k−1 − w̄k−1 +
t

N − 1
(A0x

k
0 − b)

and the z and w updates become

xki = argmin
u

fi(u) +
t

2

∥∥∥∥Aiu+
z̄k−1

t
− w̄k−1

t
+

1

N − 1
(A0x

k
0 − b) +

wk−1
i

t

∥∥∥∥2

zki = pk + wk−1
i + tAix

k
i

= z̄k−1 − w̄k−1 +
t

N − 1
(A0x

k
0 − b) + t

(
Aix

k
i +

wk−1
i

t

)
wki = wk−1

i + pk − zki = −tAixki ,

for i = 1, . . . , N − 1. Notice that the equation for pk can be omitted. Using the relationship

wk
i

t
= −Aixki we can rewrite this iteration as

xk0 = argmin
u

f0(u) +
t

2(N − 1)

∥∥∥∥∥A0u+
N−1∑
j=1

Ajx
k−1
j − b+

N−1∑
j=1

zk−1
j

t

∥∥∥∥∥
2

= argmin
u

f0(u) +
〈
A0u, z̄

k−1
〉

+
t

2(N − 1)

∥∥∥∥∥A0u+
N−1∑
j=1

Ajx
k−1
j − b

∥∥∥∥∥
2

For i = 1, . . . , N − 1 :

xki = argmin
u

fi(u) +
t

2

∥∥∥∥∥Ai(u− xk−1
i) +

1

N − 1

(
A0x

k
0 +

N−1∑
j=1

Ajx
k−1
j − b

)
+
z̄k−1

t

∥∥∥∥∥
2

= argmin
u

fi(u) + 〈Aiu, z̄k−1〉+
t

2

∥∥∥∥∥Ai(u− xk−1
i) +

1

N − 1

(
A0x

k
0 +

N−1∑
j=1

Ajx
k−1
j − b

)∥∥∥∥∥
2

zki = z̄k−1 +
t

N − 1

(
A0x

k
0 +

N−1∑
j=1

Ajx
k−1
j − b

)
+ tAi(x

k
i − xk−1

i).

This is the extended ADMM iteration. Note that it reduces to the standard ADMM iteration

in the case N = 2.

92

5.2.2 Extending ADMM via consensus Douglas-Rachford

Another way to derive an ADMM-like algorithm is to solve (5.9) with the standard con-

sensus Douglas-Rachford. (A similar approach leading to an equivalent iteration is given in

[DLP13].) We reformulate (5.9) as

minimize δC(z0, . . . , zN−1)︸ ︷︷ ︸
F (z)

+
N−1∑
i=0

f ∗i (−ATi zi) + 〈zi, bi〉︸ ︷︷ ︸
G(z)

(5.11)

with optimization variable z = (z0, . . . , zN−1). Here C = {(z0, . . . , zN−1) | z0 = z1 =

· · · = zN−1}, and δC is the indicator function for C. (We have arbitrarily decomposed b

as b =
∑N−1

i=0 bi in order to make the calculation a little cleaner.) We’ll solve (5.11) by

Douglas-Rachford.

The Douglas-Rachford iteration for (5.11) is

pk = proxtF (zk−1 − wk−1)

zk = proxtG(pk + wk−1)

wk = wk−1 + pk − zk.

The ith block of pk is pki = z̄k−1−w̄k−1, where z̄k−1 = 1
N

∑N−1
i=0 zk−1

i and w̄k−1 = 1
N

∑N−1
i=0 wk−1

i .

The ith block of zk is

zki = pki + wk−1
i + t(Aix

k
i − bi)

= z̄k−1 − w̄k−1 + wk−1
i + t(Aix

k
i − bi)

= z̄k−1 + t

(
−w̄

k−1

t
+
wk−1
i

t
+ Aix

k
i − bi

)
,

where

xki = argmin
u

fi(u) +
t

2

∥∥∥∥Aiu− bi +
z̄k−1

t
− w̄k−1

t
+
wk−1
i

t

∥∥∥∥2

.

The ith block of wk is

wki = wk−1
i + pki − zki = −t(Aixki − bi).

93

The equation
wki
t

= −(Aix
k
i − bi)

can be used to remove w from the iteration. p can also be omitted. The resulting iteration

is

For i = 0, . . . , N − 1 :

xki = argmin
u

fi(u) +
t

2

∥∥∥∥∥Ai(u− xk−1
i) +

1

N

(
N−1∑
j=0

Aix
k−1
i − b

)
+
z̄k−1

t

∥∥∥∥∥
2

= argmin
u

fi(u) + 〈Aiu, z̄k−1〉+
t

2

∥∥∥∥∥Ai(u− xk−1
i) +

1

N

(
N−1∑
j=0

Aix
k−1
i − b

)∥∥∥∥∥
2

zki = z̄k−1 + t

(
Ai(x

k
i − xk−1

i) +
1

N

(
N−1∑
j=0

Aix
k−1
i − b

))

= z̄k−1 +
t

N

(
N−1∑
j=0

Aix
k−1
i − b

)
+ tAi(x

k
i − xk−1

i).

This is the consensus ADMM iteration. Compared with the extended ADMM iteration

derived previously, this approach requires more variables, but has the benefit that all xi

updated are performed in parallel. The consensus ADMM iteration does not reduce to the

ADMM iteration in the case N = 2. An equivalent iteration is given in [DLP13].

5.3 Experiment

We revisit the L1 TV deblurring problem of section 3.4.2:

minimize ‖Kx− b‖1 + γ‖Dx‖iso (5.12)

subject to 0 ≤ x ≤ 1

where b is a blurry, noisy image (stored as a column vector), K represents a convolution

operator using replicate boundary conditions and D represents a discrete gradient operator

that uses symmetric boundary conditions. Problem (5.12) has the form

minimize f(x) + g(Ax) (5.13)

94

where f is the indicator function of the set {x | 0 ≤ x ≤ 1} and g(y1, y2) = ‖y1−b‖1+γ‖y2‖iso,

and

A =

K
D

 .
The matrices K and D can be decomposed as K = Kp+Ks and D = Dp+Ds where Kp and

Dp represent convolution operators that use periodic boundary conditions, and Ks and Ds

are sparse matrices that correct the values near the boundary. Correspondingly, the matrix

A can be decomposed as A = B + C, where

B =

Kp

Dp

 , C =

Ks

Ds

 .
The KKT conditions for problem (5.13), with A = B + C, can be expressed as the

monotone inclusion problem

0 ∈

 0 BT

−B 0

x
z

+

 0 CT

−C 0

x
z

+

∂f(x)

∂g∗(z)

 . (5.14)

We can solve this monotone inclusion problem using the extended Douglas-Rachford method

for three operators, taking

F0(x, z) =

∂f(x)

∂g∗(z)

 , F1(x, z) =

 0 BT

−B 0

x
z

 , F2(x, z) =

 0 CT

−C 0

x
z

 .
Another option would be to solve (5.14) by the consensus Douglas-Rachford method. Figure

5.1 compares these methods with the ADMM and primal-dual Douglas-Rachford methods

for solving problem (5.12) that were presented in section 3.4.2. Note that the plots for

ADMM and primal-dual Douglas-Rachford are identical to those in figure 3.6. Figure 5.1

shows that in this experiment, the consensus Douglas-Rachford method is competitive with

the methods of chapter 3, and the extended Douglas-Rachford method compares favorably

with the methods of chapter 3.

The average elapsed time per iteration was .024 seconds for Chambolle-Pock, .037 seconds

for ADMM, .029 seconds for primal DR, .031 seconds for primal-dual DR, .029 seconds for

95

0 500 1000 1500 2000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number k

(f(xk)− f⋆)/f⋆

ADMM
primal−dual DR
consensus DR
extended DR

Figure 5.1: Relative optimality gap versus iteration number for the experiment in section 5.3.

Compare this figure with figure 3.4.2.

consensus DR, and .028 seconds for extended DR. Close to optimal step sizes for all methods

were selected by trial and error. This experiment was performed on a computer with a 3.70

GHz Intel Xeon(R) E5-1620 v2 processor with 8 cores and 7.7 GB of RAM. The code was

written in MATLAB using MATLAB version 8.1.0.604 (R2013a).

5.4 A domain decomposition approach to image deblurring

In this section we’ll derive a domain decomposition image deblurring algorithm that makes

use of the extended Douglas-Rachford algorithm described above.

5.4.1 “Free” boundary conditions for image deblurring

We first explain in more detail the “unknown boundary conditions” approach to handling

non-periodic boundary conditions in image deblurring [AF13], which was discussed briefly

in section 4.2.

Suppose we want to deblur an image b ∈ RM×N , and the (space-invariant) blur kernel

96

κ is known and has support of size (2d + 1) × (2d + 1). We first enlarge b to an image

b̂ ∈ R(M+2d)×(N+2d) by adding to b a border of width d pixels, filled with all zeros. We then

solve

minimize
x

1

2
‖EKx− b̂‖2 + γ‖Dx‖1 (5.15)

subject to 0 ≤ x ≤ 1

where:

• The optimization variable x ∈ R(M+2d)×(N+2d). Note that in this section it seems more

clear to let x be a matrix, whereas previously in this thesis x has been a vector.

• K is a linear operator on R(M+2d)×(N+2d) that performs a convolution using the kernel

κ and periodic boundary conditions .

• E is a linear operator on R(M+2d)×(N+2d) that simply zeros out “border” components

and leaves all other components unchanged .

• D is a tight frame analysis operator.

The final deblurred image is obtained by removing the border from x. (We could equally

well handle other common deblurring optimization formulations; we focus on (5.15) just for

clarity.)

Problem (5.15) can be solved efficiently by Douglas-Rachford-based methods because the

prox-operator of the function

g1(y1) =
1

2
‖Ey1 − b̂‖2

is inexpensive to evaluate.

Problem (5.15) can be interpreted as a combined deblurring and inpainting problem. The

operator E could also zero out pixels corresponding to missing measurements, for example if

text has been printed on top of the image b (as in many inpainting examples). In this case,

the corresponding pixels of b̂, where we have missing or invalid data, should be zeroed out

as well.

97

5.4.2 Domain decomposition approach

Now we’ll describe a domain decomposition approach to image deblurring, inspired by the

paper [CZT13].

We view the blurry, noisy image b as being composed of IJ subimages bij, each of size

m×n. For each subimage bij, the zero-padded image b̂ (see section 5.4.1) has a corresponding

subimage b̂ij of size (m+2d)×(n+2d). (Note that the subimages of b̂ overlap. See figure 3.1

in [CZT13].) Each subimage bij could be obtained from b̂ij just by removing the “border”

of width d pixels.

Here is some useful notation:

• Let k be the linear operator on R(m+2d)×(n+2d) that performs a convolution using the

kernel κ and periodic boundary conditions.

• Let Kij be the linear operator on R(M+2d)×(N+2d) that, when given an input x, applies

k to the subimage xij ∈ R(m+2d)×(n+2d) and zeros out all other components of x.

• Let Eij be the linear operator on R(M+2d)×(N+2d) that, given an input x, leaves the

non-border pixels of the subimage xij ∈ R(m+2d)×(n+2d) untouched, but zeros out the

border pixels of xij, and also zeros out all other components of x.

Note that

EK =
∑
i,j

EijKij.

Here’s some additional notation: Let

S = {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J},

S1 = {(i, j) ∈ S | i and j are odd},

S2 = {(i, j) ∈ S | i is odd and j is even},

S3 = {(i, j) ∈ S | i is even and j is odd}, and

S4 = {(i, j) ∈ S | i and j are even}.

98

Furthermore, let

K` =
∑

(i,j)∈S`

Kij, E` =
∑

(i,j)∈S`

Eij

for ` = 1, 2, 3, 4. A key fact is that

EK = E1K1 + E2K2 + E3K3 + E4K4.

Problem (5.15) can be expressed in the standard form

minimize
x

f(x) + g(Ax) (5.16)

where f is the indicator function of {x | 0 ≤ x ≤ 1} ,

g(u1, u2, u3, u4, w) = g1(u1, u2, u3, u4) + g2(w)

with

g1(u1, u2, u3, u4) =
1

2
‖E1u1 + E2u2 + E3u3 + E4u4‖2

and g2(w) = γ‖w‖1, and

A =



K1

K2

K3

K4

D


.

Note that

A = A1 + A2 + A3 + A4

where

A1 =



K1

0

0

0

D


, A2 =



0

K2

0

0

0


, A3 =



0

0

K3

0

0


, A4 =



0

0

0

K4

0


.

99

(a) Blurry, noisy image. (b) After 65 iterations. (c) Restored image.

Each of the transformations Ap (for p = 1, . . . , 4) is “easy” in the sense that equations with

coefficient I + λATpAp can be solved efficiently via the FFT.

The optimality conditions (2.11) for optimization problem (5.16) can be written as

0 ∈

∂f(x)

∂g∗(z)

+
4∑
i=1

 0 ATi

−Ai 0

x
z

 . (5.17)

The monotone operator on the right is a sum of five “easy” operators, therefore we can solve

the monotone inclusion problem (5.17) using either the consensus Douglas-Rachford method

or the extended Douglas-Rachford method from section 5.1.

5.4.3 Experiment

Figure 5.4.3 shows a deblurring result obtained using the domain decomposition approach

described in the previous section. The image b is a degraded version of the 512 by 512

“Barbara” image. The original image (scaled so that intensity values are between 0 and

1) was blurred with a 17 by 17 truncated Gaussian kernel with standard deviation σ = 3.

Gaussian noise with zero mean and standard deviation 10−3 was added to each pixel of the

blurred image, then salt and pepper noise was added to a random selection of 10% of the

pixels. We took I = J = 4, so that b is viewed as being composed of 16 subimages. The

parameter γ was chosen to give a visually appealing image reconstruction. The Douglas-

Rachford step size and overrelaxation parameter were selected by trial and error. In this

100

experiment, total variation regularization was used rather than tight frame regularization,

and A was decomposed as a sum of five terms rather than four: A = A1 +A2 +A3 +A4 +A5

where

A1 =



K1

0

0

0

0


, A2 =



0

K2

0

0

0


, A3 =



0

0

K3

0

0


, A4 =



0

0

0

K4

0


, A5 =



0

0

0

0

D


and D is a discrete gradient operator.

101

CHAPTER 6

Conclusions

We have presented Douglas-Rachford-based methods for solving convex optimization prob-

lems of the canonical form

minimize
x

f(x) + g(Ax), (6.1)

where f and g are closed convex functions that are “simple” in the sense that their proximal

operators can be evaluated efficiently. In the most basic case, the matrix A has structure

that allows linear equations with coefficient matrix I + λATA to be solved efficiently (where

λ is a positive constant). In chapter 3 we presented algorithms for the case where A is a

sum of two structured matrices: A = B + C, where linear systems with coefficient matrix

I +λBTB or I +λCTC (but not I +λATA) can be solved efficiently. Chapter 5 described a

primal-dual operator splitting approach to solving the canonical problem in the case where

A is a sum of N structured matrices. The methods of chapter 5 are based on using con-

sensus Douglas-Rachford or an extended Douglas-Rachford method to solve the primal-dual

optimality conditions, which are expressed as a monotone inclusion problem involving a sum

of N + 1 monotone operators.

In chapter 3 we gave applications to image deblurring, discussing how the general de-

blurring problem

minimize φf(Kx− b) + φr(x) + φs(Dx)

can be expressed in the canonical form (6.1) and how physically realistic boundary conditions

(such as replicate boundary conditions) for the blur operator K can be handled by using

techniques that exploit additive structure in A. Although these optimization problems are

very large scale, constrained, and have non-differentiable objective functions, the Douglas-

102

Rachford-based methods presented in this thesis yield simple iterative algorithms where at

each iteration we only have to compute a small number of fast Fourier transforms, evaluate

proximal operators with complexity linear in the number of variables, and solve a very

sparse system of linear equations. Despite the necessity of solving linear systems at each

iteration, the Douglas-Rachford-based methods are able (by exploiting structure in K and D)

to achieve a per-iteration complexity similar to that of the Chambolle-Pock algorithm (which

requires multiplications by A or AT at each iteration, but does not require solving linear

systems involving A). In chapter 5, we presented a domain decomposition approach to image

deblurring, where the image is partitioned into rectangular patches and the blur operator is

written as a sum of four terms, each term corresponding to a set of non-overlapping patches.

In this case the primal-dual optimality conditions are expressed as a monotone inclusion

problem involving a sum of five simple monotone operators, and this inclusion problem is

solved using the consensus or extended Douglas-Rachford methods. The resulting algorithm

has the advantage that at each iteration, all patches are processed in parallel, and the blur

operator is able to use a different blur kernel for each patch. In chapter 4, we considered the

problem of total variation or tight frame regularized image deblurring using two fundamental

models of spatially variant blur: the Nagy-O’Leary model and the related Efficient Filter

Flow model. We showed how, in each case, the deblurring problem can be expressed in the

canonical form with simple choices of f and g and structured A, so that Douglas-Rachford

based methods can be applied. In each case, the key steps are the definitions of g and A

and the computation of the prox-operator of g. The Douglas-Rachford-based methods are

able to solving spatially variant deblurring problems with a complexity comparable to that

of algorithms for spatially invariant deblurring. The cost of each iteration is dominated by

the computation of a small number of fast Fourier transforms.

The basic approach of the primal-dual operator splitting methods presented in this thesis

has been to express the primal-dual optimality conditions (KKT conditions) as a monotone

inclusion problem, which is then solved using the Douglas-Rachford method. This approach

is motivated by the fact that f, g, and A appear separately in the primal-dual optimality

103

conditions, which makes it straightforward to exploit additive structure in A. The purely

primal and dual approaches, on the other hand, may require a large number of splitting

variables and extra constraints to exploit the same type of structure.

In this thesis we have seen that Douglas-Rachford-based methods can often be imple-

mented to have the same complexity per iteration as semi-implicit methods such as the

Chambolle-Pock method. An advantage of the Douglas-Rachford-based methods is that

they do not have a limit on the step size, and do not require estimating the norm of A.

Image deblurring problems are challenging because they are large scale, constrained, and

nondifferentiable, and for that reason they serve as good test problems for the algorithms

presented in this thesis. One direction of future work is to apply these techniques to image

reconstruction problems and related problems arising in areas such as medical imaging and

medical physics. For example, it may be possible to derive spatially variant blur models for

OCT or ultrasound imaging and to apply the deblurring techniques of chapter 4. Beyond

image processing, many large scale problems in areas such as machine learning, statistics,

signal processing, and finance are conveniently expressed in the canonical form (6.1) and

applying the decomposition algorithms of this thesis to problems arising in these application

areas could be a subject of much future work.

104

References

[AF13] M. S. C. Almeida and M. A. T. Figueiredo. “Deconvolving images with unknown
boundaries using the alternating direction method of multipliers.” IEEE Trans.
Image Process., 22(8):3074–3086, 2013.

[BB11] S. Ben Hadj and L. Blanc Féraud. “Restoration method for spatially variant
blurred images.” Rapport de recherche RR-7654, INRIA, June 2011.

[BB12] S. Ben Hadj and L. Blanc-Féraud. “Modeling and removing depth variant blur
in 3D fluorescence microscopy.” In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pp. 689–692. IEEE, 2012.

[BBA12] S. Ben Hadj, L. Blanc-Féraud, G. Aubert, et al. “Space variant blind image
restoration.” 2012.

[BC11a] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011.

[BC11b] L. M. Briceño-Arias and P. L. Combettes. “A monotone + skew splitting model
for composite monotone inclusions in duality.” SIAM Journal on Optimization,
21(4):1230–1250, 2011.

[BJN06] J. Bardsley, S. Jefferies, J. Nagy, and R. Plemmons. “A computational method
for the restoration of images with an unknown, spatially-varying blur.” Optics
express, 14(5):1767–1782, 2006.

[BN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. Analy-
sis, Algorithms, and Engineering Applications. Society for Industrial and Applied
Mathematics, 2001.

[BPC11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.”
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[Bre73] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert, volume 5 of North-Holland Mathematical Studies. North-
Holland, 1973.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation.
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[BT09] A. Beck and M. Teboulle. “Fast gradient-based algorithm for contrained total
variation image denoising and deblurring problems.” IEEE Transactions on Image
Processing, 18(11):2419–2434, 2009.

105

[CDS01] S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic decomposition by basis
pursuit.” SIAM Review, 43(1):129–159, 2001.

[CGM99] T. F. Chan, G. H. Golub, and P. Mulet. “A nonlinear primal-dual method for
total variation-based image restoration.” SIAM Journal on Scientific Computing,
20(6):1964–1977, 1999.

[CL09] S. Cho and S. Lee. “Fast Motion Deblurring.” ACM Trans. Graph., 28(5):145:1–
145:8, December 2009.

[CLC07] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle. “Layering as optimization
decomposition: a mathematical theory of network architectures.” Proceedings of
the IEEE, 95(1):255–312, 2007.

[Con13] L. Condat. “A primal-dual splitting method for convex optimization involving
Lipschitzian, proximable and linear composite terms.” Journal of Optimization
Theory and Applications, 158(2):460–479, 2013.

[CP07] P. L. Combettes and J.-C. Pesquet. “A Douglas-Rachford splitting approach to
nonsmooth convex variational signal recovery.” IEEE Journal of Selected Topics
in Signal Processing, 1(4):564–574, 2007.

[CP10] P. L. Combettes and J.-Ch. Pesquet. “Proximal splitting methods in signal pro-
cessing.” 2010. Available from arxiv.org/abs/0912.3522v4.

[CP11a] A. Chambolle and T. Pock. “A first-order primal-dual algorithms for convex
problems with applications to imaging.” Journal of Mathematical Imaging and
Vision, 40:120–145, 2011.

[CP11b] P. L. Combettes and J.-C. Pesquet. “Proximal Splitting Methods in Signal Pro-
cessing.” In Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering, Springer Optimization and Its Applications, pp. 185–212. Springer New
York, 2011.

[CP12] P. L. Combettes and J.-C. Pesquet. “Primal-dual splitting algorithm for solv-
ing inclusions with mixtures of composite, Lipschitzian, and parallel-sum type
monotone operators.” Set-Valued and Variational Analysis, 20(2):307–330, 2012.

[CTY13] R. H. Chan, M. Tao, and X. Yuan. “Constrained total variation deblurring meth-
ods and fast algorithms based on alternating direction method of multipliers.”
SIAM Journal on Imaging Sciences, 6(1):680–697, 2013.

[CW05] P. L. Combettes and V. R. Wajs. “Signal recovery by proximal forward-backward
splitting.” Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

[CYP05] T.F. Chan, A.M. Yip, and F.E. Park. “Simultaneous total variation image in-
painting and blind deconvolution.” International Journal of Imaging Systems
and Technology, 15(1):92–102, 2005.

106

[CZF10] A. Chakrabarti, T. Zickler, and W. T. Freeman. “Analyzing spatially-varying
blur.” In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on, pp. 2512–2519. IEEE, 2010.

[CZT13] Huibin Chang, Xiaoqun Zhang, Xue-Cheng Tai, and Danping Yang. “Domain De-
composition Methods for Nonlocal Total Variation Image Restoration.” Journal
of Scientific Computing, pp. 1–22, 2013.

[DLP13] W. Deng, M. Lai, Z. Peng, and W. Yin. “Parallel multi-block ADMM with O(1/k)
convergence.” arXiv preprint arXiv:1312.3040, 2013.

[DTS11] L. Denis, E. Thiebaut, and F. Soulez. “Fast model of space-variant blurring and
its application to deconvolution in astronomy.” In Image Processing (ICIP), 2011
18th IEEE International Conference on, pp. 2817–2820, Sept 2011.

[DY14] D. Davis and W. Yin. “Convergence rate analysis of several splitting schemes.”
arXiv preprint arXiv:1406.4834, 2014.

[EB92] J. Eckstein and D. Bertsekas. “On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators.” Mathematical
Programming, 55:293–318, 1992.

[Eck12] J. Eckstein. “Augmented Lagrangian and alternating minimization methods for
convex optimization: a tutorial and some illustrative computational results.”
Technical Report RRR 32-2012, Rutgers Center for Operations Research, 2012.

[Ess10] J. E. Esser. Primal Dual Algorithms for Convex Models and Applications to Image
Restoration, Registration and Nonlocal Inpainting. PhD thesis, Department of
Mathematics, UCLA, 2010.

[EZC09] E. Esser, X. Zhang, and T. Chan. “A general framework for a class of first order
primal-dual algorithms for TV minimization.” Technical Report CAM 09-67,
UCLA Department of Mathematics, 2009.

[FLS10] M. Fornasier, A. Langer, and C.-B. Schnlieb. “A convergent overlapping do-
main decomposition method for total variation minimization.” Numerische Math-
ematik, 116(4):645–685, 2010.

[Gab83] D. Gabay. “Applications of the method of multipliers to variational inequalities.”
In M. Fortin and R. Glowinski, editors, Augmented Lagrangian methods: Appli-
cations to the numerical solution of boundary-value problems, Studies in Mathe-
matics and Its Applications, pp. 299–331. North-Holland, 1983.

[GB08] M. Grant and S. Boyd. “Graph implementations for nonsmooth convex pro-
grams.” In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in
Learning and Control (a tribute to M. Vidyasagar), pp. 95–110. Springer, 2008.

107

[GB12] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.0 (beta). cvxr.com, 2012.

[GM75] R. Glowinski and A. Marrocco. “Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de
Dirichlet non linéaires.” Revue française d’automatique, informatique, recherche
opérationnelle, 9(2):41–76, 1975.

[GM76] D. Gabay and B. Mercier. “A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation.” Computers and Mathematics
with Applications, 2:17–40, 1976.

[GO09] T. Goldstein and S. Osher. “The split Bregman method for L1-regularized prob-
lems.” SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[HHS10] S. Harmeling, M. Hirsch, and B. Schölkopf. “Space-variant single-image blind
deconvolution for removing camera shake.” In J.D. Lafferty, C.K.I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Infor-
mation Processing Systems 23, pp. 829–837. Curran Associates, Inc., 2010.

[HLW03] B. S. He, L. Z. Liao, and S. L. Wang. “Self-adaptive operator splitting methods for
monotone variational inequalities.” Numerische Mathematik, 94:715–737, 2003.

[HNO06] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images. Matrices,
Spectra, and Filtering. Society for Industrial and Applied Mathematics, 2006.

[HSH11] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf. “Fast Removal of Non-
uniform Camera Shake.” In Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pp. 463–470, Washington, DC, USA, 2011. IEEE
Computer Society.

[HSS10] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. “Efficient filter flow for space-
variant multiframe blind deconvolution.” In Computer Vision and Pattern Recog-
nition (CVPR), 2010 IEEE Conference on, pp. 607–614, June 2010.

[HY12] B. He and X. Yuan. “Convergence analysis of primal-dual algorithms for a saddle-
point problem: from contraction perspective.” SIAM Journal on Imaging Sci-
ences, 5(1):119–149, 2012.

[HYW00] B. S. He, H. Yang, and S. L. Wang. “Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities.” Journal of
Optimization Theory and Applications, 106:337–356, 2000.

[JKZ10] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. “Image Deblurring Using
Inertial Measurement Sensors.” ACM Trans. Graph., 29(4):30:1–30:9, July 2010.

108

[Kar84] N. Karmarkar. “A new polynomial-time algorithm for linear programming.” In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp.
302–311. ACM, 1984.

[KL12] G. Kutyniok and D. Labate. Shearlets: Multiscale analysis for multivariate data.
Springer, 2012.

[KSZ11] G. Kutyniok, M. Shahram, and X. Zhuang. “Shearlab: A rational design of a
digital parabolic scaling algorithm.” arXiv preprint arXiv:1106.1319, 2011.

[Las70] L. S. Lasdon. Optimization Theory for Large Systems. MacMillan, 1970.

[Lev06] A. Levin. “Blind motion deblurring using image statistics.” In NIPS, volume 2,
p. 4, 2006.

[LM79] P. L. Lions and B. Mercier. “Splitting algorithms for the sum of two nonlinear
operators.” SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, second edition,
1999.

[Mor65] J. J. Moreau. “Proximité et dualité dans un espace hilbertien.” Bull. Math. Soc.
France, 93:273–299, 1965.

[NCT99] M. K. Ng, R. H. Chan, and W.-C. Tang. “A fast algorithm for deblurring models
with Neumann boundary conditions.” SIAM Journal on Scientific Computing,
21(3):851–866, 1999.

[NN94] Yu. Nesterov and A. Nemirovskii. Interior-point polynomial methods in convex
programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
PA, 1994.

[NO98] J. G. Nagy and D. P. O’Leary. “Restoring images degraded by spatially variant
blur.” SIAM Journal on Scientific Computing, 19(4):1063–1082, 1998.

[OV] D. O’Connor and L. Vandenberghe. “Total variation image deblurring with space-
varying kernel.”.

[OV14] D. O’Connor and L. Vandenberghe. “Primal-dual decomposition by operator split-
ting and applications to image deblurring.” SIAM Journal on Imaging Sciences,
7:1724–1754, 2014.

[PB13] N. Parikh and S. Boyd. “Proximal algorithms.” Foundations and Trends in
Optimization, 1(3):123–231, 2013.

[PC04] C. Preza and J.-A. Conchello. “Depth-variant maximum-likelihood restoration for
three-dimensional fluorescence microscopy.” JOSA A, 21(9):1593–1601, 2004.

109

[PC06] D. P. Palomar and M. Chiang. “A tutorial on decomposition methods for net-
work utility maximization.” IEEE Journal on Selected Areas in Communications,
24:1439–1451, 2006.

[RO94] L.I. Rudin and S. Osher. “Total variation based image restoration with free local
constraints.” In Image Processing, 1994. Proceedings. ICIP-94., IEEE Interna-
tional Conference, volume 1, pp. 31–35 vol.1, Nov 1994.

[Roc67] R.T. Rockafellar. “Duality and stability in extremum problems involving convex
functions.” Pacific Journal of Mathematics, 21(1):167–187, 1967.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, Princeton, second
edition, 1970.

[Roc74] R. T. Rockafellar. Conjugate Duality and Optimization, volume 16 of Regional
Conference Series in Applied Mathematics. SIAM, 1974.

[Roc76a] R. T. Rockafellar. “Augmented Lagrangians and applications of the proximal
point algorithm in convex programming.” Mathematics of Operations Research,
1(2):97–116, 1976.

[Roc76b] R. T. Rockafellar. “Monotone Operators and the Proximal Point Algorithm.”
SIAM J. Control and Opt., 14(5):877–898, August 1976.

[ROF92] L. Rudin, S. J. Osher, and E. Fatemi. “Nonlinear total variation based noise
removal algorithms.” Physica D, 60:259–268, 1992.

[Sor12] M. Šorel. “Removing boundary artifacts for real-time iterated shrinkage deconvo-
lution.” IEEE Transactions on Image Processing, 21(4):2329, 2012.

[Spi83] J. E. Spingarn. “Partial inverse of a monotone operator.” Applied Mathematics
and Optimization, 10:247–265, 1983.

[Spi85] J. E. Spingarn. “Applications of the method of partial inverses to convex pro-
gramming: decomposition.” Mathematical Programming, 32:199–223, 1985.

[Str87] G. Strang. “Karmarkars algorithm and its place in applied mathematics.” The
Mathematical Intelligencer, 9(2):4–10, 1987.

[Tse00] P. Tseng. “A modified forward-backward splitting method for maximal monotone
mappings.” SIAM Journal on Control and Optimization, 38(2):431–446, 2000.

[Vog02] C. R. Vogel. Computational Methods for Inverse Problems. Society for Industrial
and Applied Mathematics, 2002.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

[WSZ12] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. “Non-uniform deblurring for
shaken images.” International Journal of Computer Vision, 98(2):168–186, 2012.

110

[YOG08] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. “Bregman iterative algorithms
for `1-minimization with application to compressed sensing.” SIAM J. Imaging
Sciences, 1(1), 2008.

111

