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ABSTRACT OF THE THESIS

A Fundamental Approach for Storage Commodity Classification

by

Michael J. Gollner

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2010

Forman A. Williams, Chair

Experimental tests were conducted on a single cartoned, unexpanded Group

A plastic commodity to evaluate an approach to commodity classification in complex

fuel geometries. The approach is based on comparing the chemical energy released

during the combustion process with the energy required to vaporize the fuel. The

ratio of these two quantities is often called the mass transfer number, B-number or

Spalding number.

The Group A commodity tested was essentially a three-dimensional cardboard

box subdivided by cardboard placeholders for individual unexpanded polystyrene

cups. Experiments consisted of burning the front face of a single box with all remain-

ing faces uniformly insulated. Measurements of gas temperatures, mass-loss rate and

heat flux from the flame were used to calculate a modified B-number, which includes

consideration of the role of radiant heat transfer. Results from experiments have

produced time-averaged B-numbers for stages of burning. Comparison to a concur-

rent study using a cone calorimeter on smaller-scale material samples shows good

agreement between these methods. Future use of the results to improve commodity

classification for better assessment of fire danger is discussed.

xvi



Chapter 1

Introduction

1.1 Problem

Imagine a design method that affords engineers the ability to predict the full-

scale performance of a proposed sprinkler protection strategy in terms of a measurable

parameter that universally defines fire suppression and control for any commodity.

Such a method could infuse limitless creativity into the design process by providing

engineers with the tools that they need to accurately evaluate full-scale performance

during the design phase. This is the ultimate goal of engineers dedicated to fire-

suppression research and development. However, the current state of the art falls

well short of this idealization.

In engineering, there are two limits of acceptable ways of generating a solution

to a problem. The first, and most preferable, method is to extract a solution directly

from the set of equations that govern the physical and/or chemical process under

investigation. The major strength of this approach lies in the known validation of the

source. The most significant weakness of this approach, however, is that the com-

plexity introduced by real-world applications is often so computationally expensive

that the approach becomes impractical, even when the underlying set of equations is

known, which often it is not.

The second approach consists of experimentation within the parameters of

the scientific method. Such experimentation may be used in conjunction with the

first approach to provide validation, or as a standalone method to draw correlations

1
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between significant parameters. The strength of this method lies in the ability to

focus on isolated cause-and-effect relationships; however, it is often the case that

many experiments are necessary to produce only narrowly applicable solutions.

To date, the field of fire-protection engineering has invested heavily in the latter

of these two approaches for the development of fire-suppression strategies. As a result,

engineers have been able to produce solutions to many unique design challenges; yet

these results lack cohesion within the global research framework. Consequently, the

National Fire Protection Association’s (NFPA) standard NFPA 13: Standard for

the Installation of Sprinkler Systems has evolved into a nearly 350-page document

including several appendices with detailed qualifications of the narrow applicability of

various experimental efforts [1]. This complicates its application to the fire protection

of commodities in warehouses.

Given this characterization, engineers must question the validity of the basic

design principles espoused by NFPA 13 in an effort to merge such data into the

more widely applicable design methods necessary for practitioners to function. This

introduces questions focused on the input and output of the experimental process.

For instance, if the general performance of sprinkler protection is to be evaluated,

commodity classification may be viewed as the primary input, with the level of fire

control and/or suppression designated as the output. Other required inputs to this

model would include sprinkler characteristics, ignition location and initial fire size.

This is seen in figure 1.1 where commodity and storage description is used as an

input to determine the free burn heat-release rate (HRR) [2]. The current standard

contains a significant level of subjectivity with respect to these parameters.

A report recently published by the Fire Protection Research Foundation, a

non-profit research organization dedicated to the communication of research for the

development of codes and standards, found an absence of any credible basis for mul-

tiple commodity classifications in NFPA 13 [3]. Additional research has, not surpris-

ingly, confirmed a lack of repeatability for the data in question [2] (see pages 149-153

of this reference). In light of these discoveries, there is a need for research engineers

to rectify the situation by creating a solid and broad foundation for the way forward.

Such a foundation will never truly be found without a focus on the complex physical

and chemical processes that characterize fire suppression.
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Figure 1.1: Conceptual sprinklered warehouse fire model flowchart proposed by
Zalosh.

The purpose of fire safety standards is to establish uniform specifications for

a material, product, process or procedure that will yield a desired minimum level

of protection. The broader problem in fire protection is that such standards and

associated performance targets were created and have evolved separately from a fun-

damental knowledge of fire. The result is a product with wide variation in quality

and effectiveness due to ill-defined objectives. The aim of this project is to begin

resolving such objectives by clarifying the role of basic parameters.

1.2 Warehouse Fire Risk

Storage of commodities in large warehouses poses a unique hazard to oc-

cupants, fire fighters, and surrounding communities due to the concentration of
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flammable, often toxic materials commonly stored to heights of up to 16 meters (50

ft). A key aspect of the protection strategy for these large warehouses is resolving

the thermal load presented by a given set of materials in a known configuration. De-

spite strong advances in the fire sciences, over the last three decades this area of fire

protection has been overlooked. Protection strategies in these facilities are deficient,

evident from the series of large loss fires that have occurred over the last two decades

as shown in table 1. A long history of destruction has resulted from warehouse fires,

including fire fighter deaths and environmental catastrophe. These large structures

present a unique fire fighting situation; fire fighters investigating fires enter a maze-

like inferno where the seat of a fire may occur deep and high above the floor within a

space where visibility quickly decays. Lives have been risked and in come cases lost

in such situations where firefighters are tasked with augmenting the performance of

an automatic sprinkler system (table 1.1).

The environmental damage occurring from these warehouse fires can also be

disastrous, as seen by the classic example of the Sandoz Chemical Plant and Storage

Facility fire that occurred near Basle, Switzerland in 1986. Pesticides from the chem-

ical plant were washed into the Rhine River in the course of fire-fighting efforts killing

fish populations for over a year and threatening the water supplies of residents in sev-

eral countries downstream [12]. Similar detrimental effects occurred during similar

chemical warehouse fires in Nantes, France in 1987 resulting in the evacuation of over

25,000 people because of a toxic smoke plume [13]. Fire departments are faced with

difficult situations when combating large warehouse fires balancing the protection of

their fire fighters, potential victims within the building, and environmental impacts

to the surrounding community. Out-of-control warehouse fires that become a risk to

the local environment leave fire departments few options to respond to such threats.

Fighting a fire with water for days may cause environmental damage to local water

supplies, and allowing a fire to burn unabated may create a large toxic plume - more

knowledge of the fire hazard of commodities within a warehouse must be obtained

to effectively make such decisions. This includes knowledge of the capability limits

of the suppression system. A logical response from the engineering community is to

reduce such risks by optimizing the automated suppression system.
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1.3 Proposed Solution

The goal of commodity classification is to characterize the thermal loading

presented by a particular set of materials in a known configuration. Knowledge of the

thermal load in turn facilitates the design of effective fire protection systems. The

burning rate, fire-spread rate, time to ignition, and fuel vaporization temperature are

all factors that govern the burning of a fuel, but for a fire in a warehouse setting, an

adequate means of suppression might well be determined solely from the burning rate

of the commodity in the warehouse. While the critical heat flux and time to ignition

are relevant in determining whether a fire will start, since the function of sprinklers

protecting a facility is to control and suppress fires that occur, their requirements

are influenced more strongly by the burning rate and spread rate, and spread rates

may correlate with burning rates. This premise motivated the present investigations.

Currently there exists no elegant and straightforward method for calculating the

burning rate of a three-dimensional fuel, such as occurs in a warehouse commodity.

Unless existing two-dimensional models of combustion can be adapted to characterize

three-dimensional burning, engineers are left with only computationally expensive

numerical methods for evaluating complex combustion processes.

A solution is proposed to use a model for two-dimensional burning that may

be well suited for the purposes of determining measurable commodity classification

and fire suppression sought by NFPA 13. The basic premise of this method consists

of classifying commodities in terms of a time-varying parameter known as the mass

transfer number (also known as the B-number or the Spalding number). This dimen-

sionless parameter is quite simply a ratio that compares a summation of the various

impetuses (i.e. heat of combustion) for burning to a summation of the various resis-

tances (i.e. heat of vaporization) to the process. For any given system, the B-number

may be derived directly from the set of governing equations for combustion (i.e. first

principles). The parameter therefore has inherent universal meaning and validation.

The B-number has been shown to describe both the burning rate and upward spread

rate of a solid burning fuel [14, 15], which makes it ideally suited for this application.

The B-number is a dimensionless ratio, and therefore independent of scale.

This gives the possibility of comparing systems of fuel on a natural scale that defines
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fire severity. The B-number can also be used to deduce valuable information related

to fire spread and smoke generation. This could be a meaningful basis for measur-

able commodity classification. Determination of this parameter is accomplished by

small-scale experimentation, resulting in highly decreased costs for fire testing and

an increase in the global database of fire protection engineering information.

Prior work classified material flammability using a B-number specific to homo-

geneous materials [14, 15]. A warehouse commodity, however, consists of collections

of different materials and a practical flammability ranking scheme should take into

account the flammability of basic product, its packaging, and its container. Exper-

imental determination of a B-number for a group of different materials packaged

together has never been attempted before. Successful completion of this study will

allow a fire protection engineer to classify warehouse commodities based on a funda-

mental non-dimensional number, thereby facilitating estimation of parameters such

as mass burning rate, heat-release rate, and flame-spread rate. All these parameters

are crucial when selecting sprinkler locations and characteristics.

By definition, there exists a critical B-number for any given fuel system below

which fire extinction occurs [16]. This could enable engineers to make suppression

and extinction a measurable quantity, as well as allowing the exploration of extinction

and suppression by means other than sprinklers.

1.4 Experimental Approach

For this study, a Group A plastic commodity was chosen to be carefully

studied at the small-scale level for a number of reasons. Because this commodity

group represents the greatest hazard and because its large-scale behavior has been

extensively studied, more data on its small-scale burning behavior may be useful for

connecting large-scale and small-scale phenomena. The commodity is essentially a

three-dimensional cardboard box subdivided by cardboard placeholders for individ-

ual polystyrene cups. Experiments consisted of burning the front face of a single box

with all other sides uniformly sealed and insulated. Measurements of gas tempera-

tures, mass-loss rate and heat flux from the flame were used to calculate a modified

B-number, which includes consideration of the role of radiant heat transfer. Smaller-
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scale tests have been conducted using a cone calorimeter in a concurrent study [17].

Data collected in that study matches well with observations on the Group A plastic

commodity.
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Table 1.1: Recent fire losses in large warehouse storage facilities.

05/22/09 Furniture Warehouse–
Houston, TX

4,600 m2 warehouse, filled with furni-
ture and electronics. An Inventory of
$5 million was lost. 120 Fire Fighters
were involved in putting the fire out
[4].

12/11/07 Warehouse Fire–
Hemingway, SC

15,329 m2 warehouse storing plastic
Tupperware. Warehouse was pro-
tected by sprinklers to code, 78 fire-
fighters responded but fire burned out
of control for a 35-hour period [5].

6/19/07 Furniture Warehouse
Fire– Charleston, SC

9 firefighters died. Furniture pre-
sented a much larger fire hazard
than protection system could handle.
Flashover occurred while firefighters
were attempting to find the seat of the
fire after one employee was rescued.
[6].

12/16/03 Furniture Warehouse
Fire– NY

1 firefighter died while searching for
the seat of a fire in a furniture and
mattress warehouse [7].

3/14/01 Supermarket Fire–
Phoenix, AZ

1 firefighter died. Fire began in
storage pile in the rear of the
store, spreading throughout the store
rapidly via attic and duct space [8].

12/18/99 Paper Warehouse
Fire– MS

1 firefighter died after becoming lost in
a paper warehouse fire. The structure
was equipped with a sprinkler system
[9].

12/3/99 Cold-Storage and
Warehouse Building
Fire– MA

6 firefighters died after becoming
lost in a six-floor, maze-like building
searching for two victims. The build-
ing was abandoned at the time of the
fire [10].

4/16/96 Lowes Store– Albany,
GA

Fire grew so rapidly it penetrated the
roof and filled the building with smoke
down to the 1.5 m (5 ft) level, all
within about 5 minutes. The fire took
over 2 days to extinguish, destroying
the 8,000 m2 warehouse. Deficient
protection resulted from commodities
stored in racks not matched to the fire
hazard [11].



Chapter 2

Literature Review

In order to improve upon the process of commodity classification, an extensive

review of current and past classification schemes is necessary. The issue of material

flammability is first investigated. An overview of methods that have been important

for classifying commodities in the past will be included, with a comparison to meth-

ods in use today. A history of the B-number and why it may serve as a superior

flammability criterion will finish the literature review.

2.1 Fundamental Flammability

Depending on the application, factors controlling flammability and fire haz-

ard vary [18, 19]. In general, for both plastics and cellulosic materials five major

components adequately express flammability: ignition, fire growth, burning intensity,

generation of smoke and toxic compounds, and extinction/suppression [20]. Each of

these components has been the subject of flammability and hazard testing methods

on materials yet no known method has succeeded in expressing flammability as a

cohesive unit comprised of these various elements. The methodology to classify ma-

terials being developed here is intended to express the “fire hazard” of an item, in

an effort to specify adequate protection. To that end, flammability will be defined

as a material’s ability to begin and sustain combustion. Extinction, suppression and

control are often interchanged in literature, but their definitions must be distinct

in this application. Throughout this paper extinction will be defined as the point

9
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where a material ceases to combust, suppression as controlling a fire so that it no

longer spreads laterally or vertically to ignite new material, and control as the act

of preventing the spread of fire beyond a designated control point during a defined

test period. With respect to a ranking parameter, four quantities will be evaluated:

ignition, heat-release rate, flame spread and extinction.

Williams describes ignition as “the process whereby a material capable of re-

acting exothermically is brought to a state of rapid combustion,” [21]. A material

may be ignited by either spontaneous ignition or piloted ignition. The process of a

material heating by a convective or radiative source from a distance is a basic exam-

ple of spontaneous ignition, where the material has an external heat flux initiating

combustion but no spark or flame. Piloted ignition can occur at a much lower tem-

perature than spontaneous ignition, but requires an external spark or flame to ‘pilot’

ignition. Ignition is an integral part of measuring flammability because it defines the

point where a material will begin to combust. Flame spread is a measurement of how

easily a flame spreads across a solid combustible material, emanating from a point

of ignition [22]. It is important to quantify flame spread for flammability in order to

determine how quickly a fire will spread over a material or through an enclosure, yet

doing so can be difficult. The rate of flame spread may vary depending on the shape

and orientation of a sample.

Both radiant and convective heat fluxes are emitted during burning, but ra-

diant heating dominates during many fire phenomena [23]. The HRR of a fire is an

estimation of the rate at which heat is generated. It is often described as the product

of the mass-loss rate (ṁf
′′) and effective heat of combustion, ∆Hc [24]. The HRR

is not unique to a material, but varies with the arrangement and size of the burning

material. It is also a time-dependent parameter, as the mass-loss rate of a material

varies over stages of burning. Reducing the supply of flammable vapors to below a

critical level in a combustion reaction can cause control of flaming combustion. How-

ever, re-introduction of this limiting parameter to the system can yield re-ignition if

adequate heat and fuel remain. The same level of control may be exerted by manip-

ulation of heat and fuel. Determining the conditions that constitute such control is

critical for designing means of fire protection.
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2.2 Applied Flammability

Two approaches exist to reduce the flammability of a storage commodity: pre-

venting fire ignition or providing adequate fire suppression. A great deal of work has

been done, thoroughly summarized for plastics by Hilado, to reduce the flammability

of plastics by adding fire suppressants to or modifying the makeup of the materials

[19]. The general approach taken in warehouse storage configurations is that of sup-

pression, and commodity classification is used to design the parameters of suppression

necessary to contain or extinguish fires.

2.3 Basis of Warehouse Storage Classification

Methods

In the United States commodity classification for fire prevention purposes is

outlined by FM Global, a research-based risk-insurance company, and the NFPA,

whose standards are adopted in most states to determine minimum protection re-

quirements for buildings. Both methods utilize a similar outline with some minor

differences in which commodities are classified into categories. Tables 2.1 and 2.2

show the general classification scheme in use today for both NFPA and FM Global

[1, 25]. The distinction between Group A and Group B plastics is different in NFPA 13

than in FM Global Property Loss Data Sheet 8-1 [25]. Table 2.3 lists some examples

of plastics in different categories and their properties from NFPA 13. Several of the

NFPA 13 Group A plastics are considered to be good examples of Group B plastics

in FM Global Property Loss Data Sheet 8-1, including polycarbonate, polyethylene,

polyproylene, and thermosetting polyesters [2]. These differences are a product of

subjectivity in the approach.
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Table 2.1: Generic commodity classification in NFPA 13

Class Product Packaging Plastic Content
I Noncombustible None; on pallets. Sin-

gle wall carton, or pa-
per wrap.

Negligible

II Noncombustible Multi-wall carton, or
wood crate or wood
box.

Negligible

III Wood, paper, leather,
natural fiber textile,
or Group C plastic.

None or ordinary com-
bustible.

Negligible (≤ 5%)
Group A or Group B

IV Class I, II, or III with
5-15 weight % or 5-25
vol % of Group A plas-
tic.

Anything except
Group A plastic.

Either Group B or an
appreciable amount of
Group A as defined for
product.

Commodities in tables 2.1 and 2.2 are listed in order of severity, Class I being

mostly non-combustible material stored within combustible packaging, while Group

A plastics are plastic materials with a high heat of combustion (Btu/lb or kJ/kg) and

burning rate (lb/min or kg/min) greater than all other classes [25]. The classifications

are based mainly on results of large-scale fire testing in models of warehouses with

sprinklers. A ranking scheme based upon comparison of the heat of combustion

(∆Hc) to the heat of gasification (∆Hg) shown in table 2.3 was proposed by Zalosh,

but the inability for the ratio to distinguish differences between similar plastics of

varying densities was reasoned to illustrate the inability of a rigid parameter scale to

accurately classify materials [2]. This ratio, although similar to the B-number, does

not include loss terms that can be accounted for in experimental measurements.

To perform large-scale testing of the severity of these commodities engineering

researchers at FM Global created “prototype” or “standard” commodities which are

used in large-scale research and testing of sprinkler systems, shown in table 2.4.

Test commodities that were used in original benchmark testing in the 1970’s as well

as the standard commodities still used in benchmark rack-storage testing today are

shown. Specifications for standard commodities were chosen based upon common

stored goods at the time initial testing was done. The standard Class II commodity

consists of a metal lined double tri-wall cardboard carton, with the metal lining
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Table 2.2: Plastic commodity classification in FM Global Datasheet 8-1

Group Description Examples
C Plastics with a heat of combus-

tion and burning rate similar to
those of ordinary combustibles.
(Protected at Class III)

Phenolics, silicone, etc.

B Plastics that have heat-release
rates higher than ordinary com-
bustibles, but lower than Group
A plastics.

Polypropylene, polycarbon-
ate, nylon, etc.

A Plastics that have a heat of com-
bustion much higher than ordi-
nary combustibles and burning
rate higher than Group B plas-
tics.

Polyurethane, polystyrene,
etc.

Table 2.3: Summary of plastic commodity classification in NFPA 13, where ∆Hc is
the material’s heat of combustion and ∆Hg is its heat of gasification.

Polymer ∆Hc (kJ/g) ∆Hg (kJ/g)
Group A Plastics
Polycarbonate 29.7 2.1
Polyethylene 43.6 1.8(LD), 2.3(HD)
Polymethylmethacrylate (PMMA) 25.2 1.6
Polypropylene 43.4 2.0
Polystyrene 39.9 1.3-1.9

Group B Plastics
Cellulose Acetate 17.7 -
Nylon 30.8 2.4
Silicone Rubber 21.7 -

Group C Plastics
Phenolic 10-36.4 1.6-3
Polytetraflouroethylene (PTFE) 5.3 -
Polyvinyl Chloride (PVC, rigid) 16.4 2.5
Urea Formaldehyde 14.6 -
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Table 2.4: Commodity ranking applied from NFPA 231 and FM Global Datasheets

Class/Group Original test commod-
ity(1970’s testing)

Benchmark/standard
test commodity (used
in modern testing)

Class I No testing performed,
assumed density required
12% < Class II

Glass jars in compartmen-
talized cardboard carton

Class II Metal-lined double tri-wall
cardboard cartons

Metal-lined double tri-wall
cardboard cartons

Class III Hallmark paper products Paper cups in compart-
mented cardboard cartons

Class IV 3M paper + plastic products 25 wt% PS Cups + pa-
per cups in compartmented
cardboard cartons

Group C Plastic Not tested Not tested
Group B Plastic Not tested Not tested
Group A Plastic PS cups in compartmented

cardboard carton
PS cups in compartmented
cardboard carton

designed to hold the structure of the box in place lowering the peak heat release

rate of the overall commodity [2]. Standard commodities for Class I, III and IV

commodities consist of eight compartmented, single-wall, corrugated paper cartons

consisting of 125 16oz cups inside. The Class I standard commodity consists of glass

cups, Class II consists of paper cups, and Class IV a mix of polystyrene and paper cups

[2]. Dean, as part of the Factory Mutual Research Corporations’s (now FM Global)

research program in plastics, developed what has become the standard commodity

for Group A plastics, the same compartmented corrugated paper carton with 125

unexpanded polystyrene cups [26]. Polystyrene was chosen as the plastic because it

represented the most severe fire in all small and large-scale tests conducted, and the

arrangement in cartons created a very repeatable fire test.

2.4 Area-Density Curves

The 1972 Edition of NFPA 13: Standard for the Installation of Sprinkler Sys-

tems contains the first area-density curves used to design hydraulically calculated
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sprinkler systems shown in figure 2.1 [3]. These curves give the required amount of

sprinkler coverage depending on the occupancy of a building, which is determined

by the group of commodities contained in that building, as classified into 7 distinct

groups, Class I-IV and Group C-A in order of increasing severity. The curves them-

selves were developed from full-scale testing of several of these commodities. The

testing however did not include any plastics because they were not yet stored in large

quantities at many facilities, and only one type of sprinkler was used because it was

the most commonly available protection [3]. There were no “stages” of burning in

these initial tests, which did not involve plastics, because the importance of packaging

was not yet well captured.

The tests involved starting a fire in a given storage commodity at a position in a

sprinklered area simulating a large warehouse and determining whether the sprinklers

“control” the fire, that is, prevent it from spreading significantly beyond the initial

ignition area. The design area of sprinkler operation is the area in which sprinklers

would open in a fire with a given ceiling sprinkler density. At a given sprinkler

density, the design area of sprinkler operation thus is proportional to the number of

sprinklers that were activated by the fire prior to “control.” The fact that the area

decreases with increasing density in these curves therefore can be understood because

at higher density water is deposited onto a rack storage fire at a higher rate, so that

the size to which the fire grows before sprinklers “control” the spread of the fire will

be less, leading to a smaller area of sprinkler activation. Ceiling sprinkler density

can be increased by either increasing the number of sprinklers within a given area or

increasing the water pressure of the sprinkler system. The curves do not imply that

a larger initial area of fire involvement at the time of ignition or that a warehouse of

larger area requires less sprinkler density for “control”, as might generally be surmised

in the absence of knowledge of the test protocol; on the contrary, a large initial fire

requires at least as high a sprinkler density as a smaller one.

The original sprinkler area-density curves were developed as the result of a

series of full-scale tests from 1969-72 to determine the amount of suppression coverage

required for different stored commodities, as shown in figure 2.2. These sprinkler area-

density curves (which ironically are no longer curves but straight lines in the most

current edition of NFPA 13) determine the flow rate of water required from sprinklers
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Figure 2.1: Area-density curves first used to determine the required amount of sprin-
kler coverage based on occupancy in the 1972 edition of NFPA 13. The class III curve
was set 12% greater than the class II curve based on one test and the Class I curve
was assumed to lie 12% lower than the Class II curve without any testing. All three
curves have identical slopes even though the slope was only measured by tests for the
class II curve. The identical setting of slopes was justified by an unverified concept
called parallelism [27].
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to combat a fire of a given size. Sprinkler designers today must design their sprinkler

systems to meet the density requirements of these curves for the specific commodity

stored in the designed warehouse. A long series of large and small-scale rack storage

tests were conducted on a range of different commodities until it was decided upon

that the “standard” commodity used to set a baseline of testing was to be a Class II

commodity (double tri-wall corrugated cardboard carton with metal liner) [2].

Varying the ceiling sprinkler density by means of increasing water pressure, a

full-scale rack storage setup was then burned to determine the number of sprinklers

that operated during the test to contain the fire. The design area of sprinkler oper-

ation was then determined by the area of the grid of sprinklers that operated during

the test. Six tests were used to set the “baseline” curve for Class II commodities,

of which only one test was repeated at the same sprinkler density due to cost and

time limitations. Serious discrepancies lead one to question the validity of the tests,

including the fact that the pass/fail criteria for tests was changed throughout the

test series, and generally only required that the fire not go beyond the confines of the

mock facility.

Figure 2.2 shows the tests used to set design-area curves for NFPA 13 [27]. The

baseline Class II curve has only 3 tests, 65, 66, and 68 that fall onto the curve used in

the original standard. Two tests conducted with high-hazard commodities, tests 64

and 78, were used to “set” curves for class III and IV commodities, even though these

tests did not actually fall onto these curves. It was decided that the Class I commodity,

with little hazardous material should require less coverage, so it was set 12% lower

than the class II curve without additional testing. The seemingly overlooked step in

the process is the assumption of parallel curves delineating separate hazard classes in

an arbitrary manner [3]. No testing was performed to verify this concept. A similar

series of tests were later performed on plastics to develop similar curves for Group A-

C plastics [26]. The fact remains that little, if any scientific basis has been applied to

either the selection of commodities or the standards created to protect configurations

of such commodities. Millions have been spent on additional large-scale testing to

address issues for a multitude of specific warehouse configurations, without regard to

developing a widely-applicable protection scheme with verified and validated levels of

protection.
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Figure 2.2: Large-scale rack storage tests were carried out to generate area-density
curves for Class I–IV commodities. The Class II curve was set by 6 tests, and the
slope of that curve was duplicated for Class I, III, and IV commodities. Test 64 and 78
were used to designate the location of the Class III and Class IV curves respectively.
No tests were conducted on Class I commodities, and the curve was set 12% lower
than the Class II curve [27].
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2.5 Test Methods for Classification

Tewarson conducted extensive work at FM Global creating a classification

methodology that uses four experimentally measured parameters to classify the flamma-

bility hazard of a material or a commodity [18]. These parameters address different

aspects of flammability: the Critical Heat Flux (CHF) and Thermal Response Pa-

rameter (TRP) are associated with ignition, the Heat Release Parameter (HRP)

is associated with combustion, and the Fire Propagation Index (FPI) is associ-

ated with fire propagation. A fundamental shortfall of these parameters is their

dimensionality, which prohibits scaling analyses. The FPI, for example, has units of

((m/s1/2)/(kW/m)2/3), revealing no clear fundamental definition because the param-

eter is based upon correlations of experimental data and not fundamental physics.

There is also no method to tie these parameters together in a comprehensive manner

for fire hazard assessment. Each of these parameters is determined for a material

based on measurements conducted on commonly used apparatuses: The Ohio State

University (OSU) Heat Release Apparatus, the Factory Mutual Research Corporation

(FMRC) Flammability Apparatus, The National Institute of Standards and Technol-

ogy (NIST) Flame Spread Apparatus (LIFT) and a Cone Calorimeter. All of these

will be referred to as bench-scale calorimeters below. A summary of flammability

parameters and testing apparatus are shown in figure 2.3.

Bench-scale calorimeters are used primarily in fire protection engineering to de-

termine the HRR of a combustible material. The most common bench-scale calorime-

ter in use today is the Cone Calorimeter, shown in figure 2.4 [24]. The Cone Calorime-

ter measures the HRR of a burning sample via the oxygen consumption method: the

mass fractions of combustion products and the flow rate are measured from the ex-

haust to calculate heat release [28]. A small sample is placed into the apparatus,

mounted either horizontally or vertically, and a 5-kW heating element heats the sam-

ple with radiant, heat while an electric spark is used as the ignition pilot [29]. The

portion of the apparatus holding the test sample is mounted on a load cell to mea-

sure the specimen mass-loss rate over time. Measurements vary depending on the

area, thickness, and orientation of samples tested, and great care must be taken to

test samples properly. This apparatus was used in a study of smaller-scale tests of
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individual materials with the cone heater disabled [17]. The original OSU apparatus

was the first developed and is also one of the best known bench-scale experiments

closely related to the cone calorimeter. Its setup is very similar to the cone, ex-

cept that it uses thermocouple temperature measurements to calculate heat-release

rates from samples [28]. Some heat loss to the outside walls of the exhaust tube can

occur, skewing thermocouple measurements. Most modern OSU experiments have

been modified to take measurements by the oxygen-consumption method as well, as

in the cone calorimeter. Various forms of the OSU apparatus have been used by the

Federal Aviation Administration (FAA), National Research Council of Canada, Lund

University, the Forest Products Laboratory, and the National Institute of Standards

and Technology (NIST) [28]. Other bench-scale calorimeter-type devices include the

FMRC combustibility apparatus, which can be modified to hold a tall sample and

measure upward fire propagation on a sample. HRR measurements vary between

different bench-scale calorimeters based on differences in geometry, test conditions,

and mounting methods. Large-scale heat-release rate calorimeters have also been de-

veloped for furniture tests, tests of larger building materials not represented well by

bench-scale testing, and room-scale testing mostly to calibrate computer models.

The LIFT fire propagation apparatus, developed by NIST, provides ignitability

and flame-spread information for vertically oriented samples [30]. The apparatus

consists of a radiant panel mounted at a 15 degree angle from a vertically oriented

sample that provides a varying external heat flux along the length of a sample. A

small pilot flame above the sample ignites the sample once a flammable mixture

is achieved. Measurements by this device can provide the rates at which a flame

propagates across a sample from a known, varying external heat flux.

Despite several previous studies, there does not currently exist a good method

to correlate or compare small-scale test data to large-scale fire tests [31, 32]. Attempts

to develop a large-scale model have also not addressed the fact that commodities

and their packages involve several mixed materials, and the joint influence of these

different materials together must be accounted for.

The FM Global Datasheet 8-1 on Commodity Classification outlines several

tests used to evaluate the hazard classification of a commodity [25]. Bench-scale

laboratory tests such as the heat-of-combustion test, percentage-inert-material test,
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Figure 2.4: The Cone Calorimeter [24]

parallel-panel test, and random-burn test are all designed to aid in the classification of

commodities. However, these tests only provide limited quantitative information and

cannot simulate full-scale burning behavior of the product being tested. In order to

fully evaluate the hazard classification of a commodity FM Global uses the Fire Prod-

ucts Collector (FPC) Commodity Classification Test. The FPC test is essentially a

large-scale calorimeter which measures the heat-release, products of combustion, and

burning rate of an 8 pallet array (4 standard commodities per pallet) [25]. Water

is sprayed on the array to simulate sprinkler intervention during the burning pro-

cess, and tested commodities are qualitatively evaluated against a known database

of benchmark commodities to determine classification. A few fundamental problems

with the FPC approach include an arbitrary configuration whose results are extended

to taller arrays, and the addition of sprinkler suppression adding complexity before

fundamentals can be understood. Although bench-scale testing would be highly desir-

able financially, at the current time FM Global’s bench-scale tests cannot accurately

predict large-scale behavior, although research to that end is continuing.

Other flammability tests are outlined in the United States by the American
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Society for Testing and Materials (ASTM), Underwriters Laboratories (UL), and the

International Conference of Building Officials (ICBO) [19]. The majority of these

tests and standards focus on specific building products, materials, etc. Examples of

these include tests for mattress flammability, airplane paneling, tire storage, etc. Each

test is highly specific to the application, and the minimum requirements for materials

differ widely depending on the test and application. Test equipment is available to

measure a wide range of material flammability parameters, but isolating important

parameters that may be useful in scaling a fire scenario requires a renewed focus on

fundamental theory.

2.6 Diffusion Flame Theory and Development of

the B-number

An ideal diffusion flame consists of an infinitesimally thin exothermic reaction

zone which separates fuel diffusing from the burning material and oxygen from the

air that diffuses in the opposite direction [33]. Burke and Schumann [34] were the

first to develop an ideal description of a diffusion flame where fuel and oxygen meet in

stoichiometric proportions in this thin burning layer to react and produce intense heat,

supporting further combustion. An example of a diffusion flame is the combination

of a liquid fuel droplet in an oxidizing gaseous atmosphere.

Spalding first introduced the B-number in 1950 to develop an expression for

the burning rate of a liquid fuel droplet in a gas stream [35]. The B-number is

a property of pyrolyzing material, and it appears in boundary conditions of energy

conservation at the fuel surface. Physically, it relates the heat release from combustion

(the numerator) to the energy required to generate fuel gases (the denominator) [33].

In 1956 Emmons provided a solution for the burning rate of a diffusion flame over

a planar liquid fuel surface subjected to a forced flow parallel to the surface [36].

Emmons also used Spalding’s B-number in a boundary condition at the fuel surface.

The closed-form solution developed by Emmons shows that the local burning rate, or

mass-loss rate varies inversley with the square root of distance from the leading edge

and varies directly with the square root of air velocity. Using the Shvab-Zel’dovich
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formulation [21] the highly non-linear reaction-rate term from energy and species

equations could be eliminated. Due to the simplicity of this solution, Emmons’s

“classical solution” is widely used as a starting point for further studies.

Kosdon et al. developed a solution similar to Emmons for a buoyancy-driven

flow [37]. A similarity theory for laminar natural convection along a wall was devel-

oped and compared to experiments conducted on cellulose cylinders. Results from

experimentation show an over-prediction by theory by a factor of approximately two.

The authors explain these discrepancies mostly due to radiant heat exchange. A sim-

ilar study by Hedge et al. tried to resolve these discrepancies between theory and

prediction by numerically introducing varying viscosity, specific heat, and conductiv-

ity constants [38]. Accuracy was increased by only 8% with tests on PMMA cylinders

burning in air. Kim et al. numerically computed a solution of a laminar pyrolysis

zone of a freely burning fuel surface similar to Kosdon et al. for a wide variety of

fuels [39]. Their theoretical predictions of burning rate agree reasonably well for fuels

with low molecular weights [40].

In all of the previously mentioned studies there are two important disadvan-

tages that limit their use towards accurately characterizing flame spread. First, they

do not include radiation effects, which become increasingly important as the flame

height is increased [41]. Second, these studies only provide an empirical means of

predicting flame height.

Pagni and Shih introduced the concept of “excess pyrolyzate” in 1978 to predict

flame heights above the pyrolysis region [15]. According to this concept, fuel that does

not burn in the pyrolysis region escapes downstream, forming a combusting plume

where the fuel burns higher than earlier predicted. Both free and forced laminar

convection burning were included by imposing initial conditions on the pyrolysis zone

and using an integral scheme proposed by Yang [42] to solve for the combustion plume

region (above the pyrolysis zone). Pagni and Shih’s theory predicts nondimensional

flame heights to be dependent only on B, the mass transfer number, and r, a mass

consumption number. They do not address upward flame spread.

In work addressing upward spread, Annamalai and Sibulkin test Pagni and

Shih’s theory by replacing surface boundary conditions by a simplified polynomial fit

[43, 14]. They plot experimentally determined pyrolysis lengths versus theory and still
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find an over-prediction of the data by almost a factor of 2. Pagni’s introduction of the

concept of excess pyrolyzate brings some closure to the problem of buoyancy-driven

vertical combustion, but mismatches between experimentation and theory still need

to be addressed [44]. Work determining a variable B-number using flame standoff

distance by Rangwala improves the accuracy of flame height predictions from An-

namalai and Sibulkin in laminar regimes, but more work remains [40]. More recent

work develops additional spread models by Saito et al. [45, 46], Delichatsios [47, 48],

Quintiere et al. [49], Kulkarni and Sibulkin [50], Grant and Drysdale [51], Karls-

son [52] and Hasemi et al. [53] that address upward and wind-driven flame spread.

Additional reviews are given by Joulian [54] and Brehob et al. [55].

2.7 Use of the B-number in Fire Safety

Pagni applied his analysis of excess pyrolyzate in a later paper to fire-safety

applications by comparing predicted flame heights of varying fuels as an assessment

of flammability [56]. Pagni suggests the use of a mass consumption number, r, as an

index of fire. Later work showed the mass consumption number, and thus the flame

height, to be mostly dependent on the B-number, allowing the B-number to become

a general ranking criterion for flammability classification [14]. Kanury also evaluated

flammability (or burning intensity) of materials using the B-number, in this case for

pool fires with a variety of polymers [33]. Kanury used a modified B-number that

took into account flame radiation effects by using a radiative fraction of feedback,

although radiation played a smaller roll in pool fires than say, for upward burning

on a wall. Kanury proposed that a B-number serves as the best representation of

flammability classification for these pool fires.

Recent work has been performed analyzing the B-number for its use as a uni-

versal flammability criterion for microgravity applications by Torero et al. [57]. The

form for the B-number of a material used by Torero et al. takes into account complex

modes of heat transfer, including excess pyrolyzate and an estimate for radiation.

This experimentally determined B-number can be used to rank materials based on

their propensity to sustain concurrent flame spread. Rangwala shows through experi-

mental data that the B-number is not a constant, but rather changes from the leading
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edge to the trailing edge of a flame [58]. A relationship between the B-number and

flame standoff-distance was found, of the form yf = A(B)x1/4 and data supporting

the increased accuracy of a flame-spread model thanks to this result was presented.

Rangwala also suggested using the B-number as a material flammability criterion

because a large B-number implies a highly exothermic fuel relative to heat required

for gasification, thus the thermodynamic/thermochemical part of the flame spread

problem is implicit in the B-number. The procedure for calculating a time-averaged

B-number for material flammability ranking was suggested by the author.

Rasbash [59] has indicated that a critical B-number may be defined below

which extinction occurs by water application. Recently Torero et al. presented ad-

ditional methods of experimentally determining a critical B-number for extinction

[57]. Thus, irrespective of whether extinction or delaying spread is the criterion,

the B-number arises as a relevant parameter. Use of a critical B-number also allows

exploration of extinction and suppression by means other than sprinklers.



Chapter 3

Theory

3.1 Definition of the B-number

It has been shown by Pagni and Shih [15] that upward laminar flame propa-

gation can be described well by the B-number (also called Spalding’s mass transfer

number) [57]. The B-number appears in a boundary condition at the fuel surface in

the classical Emmons solution for forced-flow flames over a condensed fuel [36]. This

dimensionless parameter is quite simply a ratio that compares a summation of the

various impetuses (e.g. heat of combustion) for burning to a summation of the various

resistances (e.g. heat of vaporization) to the process. Originally [36] a purely ther-

modynamic quantity, its definition can be extended to encompass effects of different

heat-transfer processes [40]. A useful definition that can be selected is [40]

B =
(1− χ)(∆HcYO2,∞)/νs − Cp,∞(Tp − T∞)

∆Hg + Q
(3.1)

where χ is the fraction of the total energy released by the flame that is radiated to

the environment, ∆Hg denotes the heat of gasification of the condensed fuel and ∆Hc

represents the heat of combustion. Here νs denotes the oxygen-fuel mass stoichio-

metric ratio, YO2,∞ is the mass fraction of oxygen in ambient air, Cp,∞ represents the

specific heat of air at an ambient temperature of T∞, and Tp equals the pyrolysis

temperature of the fuel. The parameter Q represents the normalized non-convective

heat transfer at the surface, given by

27
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Q =
q̇′′s,c + q̇′′s,r − q̇′′f,r

ṁ′′
f

(3.2)

where ṁ′′
f is the burning rate per unit area, q̇′′s,c represents the rate of conduction of

energy into the solid per unit area, q̇′′s,r represents the rate of surface re-radiation of

energy per unit area, and q̇′′f,r denotes the radiative energy feedback from the flame

to the surface per unit area. Thus, a large B-number basically implies a highly

exothermic fuel relative to the heat required for gasification.

3.2 General Expected Evolution of the Combus-

tion

Figures 3.1 and 3.2 show a theoretical picture of the burning observed in a

standard warehouse commodity. The heat flux to unignited material from the fire

plume that extends upwards over the distance (Xf −Xp) is responsible for the rapid

upward spread of the flame. In figures 3.1 and 3.2 the length of the fire plume,

(Xf −Xp) is a function of the B-number and pyrolysis height [58].

During the early stages of the fire (figure 3.1), the flame is small, and the

burning rate is a function only of the material properties of the corrugated board.

This is later described as stage I of burning for a standard warehouse commodity. Heat

flux from combustion pyrolyzes the board and packing material, releasing gaseous fuel

adjacent to the combustion surface. Some of this fuel burns in the boundary layer in

front of the fuel surface, but some is carried above its originating height and burns

above, creating much larger flames. This fuel carried above its originating surface is

called excess pyrolyzate [15]. The pyrolysis height increases with time in the early

stage represented by figure 3.1. In the later stages of figures 3.1 and 3.2 it has reached

the top of the commodity.

Heat flux via in-depth conduction through the corrugated board can pyrolyze

the packing material and commodity, releasing combustible vapors. As the outer

corrugated board layers break down, these combustible vapors diffuse through the

remaining board, enhancing the flame spread rate. At this stage, the B-number is a

function of the material properties of the corrugated board as well as the pyrolysis
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into a pool fire (right). The commodity is now in stage III of burning where plastic
dominates the burning rate.
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vapor from the heated commodity that penetrates the corrugated board. As time

advances, the corrugated board can disintegrate, thereby exposing the commodity

inside to direct flame impingement.

After the outer covering and inner packaging burn off, they smolder signifi-

cantly, slowing the burning rate as the inner plastic product heats towards its ignition

temperature. This is described as stage II of burning. The plastic product (depend-

ing on its material properties) can then burn from inside or spill out as solid chunks

or a viscous liquid pool once it reaches its ignition temperature, illustrated in figure

3.2. At this later stage, the B-number is a function of the material properties of the

corrugated cardboard, the commodity pyrolysis vapor (diffusing outwards) and the

commodity and packing material that have either spilled out or are burning within.

This is later referred to as stage III of burning for a standard plastic warehouse

commodity.

3.3 Calculation of the B-number from Experiments

One approach to correlating the vaporization and combustion rates of a ware-

house commodity is to follow the procedure presented by Kanury [33], which expresses

the average burning rate per unit area ṁ′′
f as

ṁ′′
f =

h

cg

ln(B + 1) (3.3)

where h̄ is the heat-transfer coefficient and cg may be approximated as the specific

heat of air at a temperature equal to an average of flame temperature and ambient

[60]. This equation links the burning rate, ṁ′′
f to the heat-transfer conditions h/cg

and material/thermodynamic ln(B + 1)controlling parameters. To estimate the rate

of convective heat transfer and thus the influence of the flow field during upward

turbulent burning, a relation with the Nusselt number, Nux may be used [61], namely

h̄

cg

=
ρgαg

Xp

Nux (3.4)

where ρg and αg are the density and thermal conductivity of air, respectively. From

this an average heat-transfer coefficient, h̄ is determined. The Nusselt number is
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determined from a standard correlation for turbulent heat transfer to a vertical surface

[62]

Nux = 0.13(GrxPr)1/3 (3.5)

where Grx is the Grashof number of the flow, and Pr is the Prandtl number of the

gas, Pr = νg/αg. With the Grashof number defined as

Grx =
gX3

p∆T

ν2
gTg

(3.6)

where ∆T = Tf − T∞ equations 3.3–3.5 can be combined to yield the expression

B = exp

(
ṁf

′′

ρgαg0.13[g∆T/νgαgTg]1/3

)
− 1 (3.7)

which can be used to calculate a B-number from experimental measurements. Note

that this expression for the B-number is dependent only on properties of the gas

phase and the mass-loss rate; no fuel properties appear. This approach is useful for

experiments in which turbulent convective heat transfer dominates radiative feedback,

as is estimated to occur in the present experiments. The absence of the length Xp in

equation 3.7 is a special characteristic of natural convective heat transfer to vertical

surfaces being dominant in the experiments.

3.4 Thin-Skin Calorimeters

Heat flux above the commodity is measured using thin-skin calorimeters which

are described in detail in ASTM E 459-97 [63]. A thin sheet of metal (Inconel) is

coated in a thin layer of flat, black paint and a type-K thermocouple is spot-welded

onto the back of the thin metal as shown in figure 3.3 [64]. The calculation of the

flux is based on an assumption of one dimensional heat flow arriving on the exposed

face of the thin-skin calorimeter.

The equation for planar heat flux across the thin-skin calorimeter is

q̇′′ = ρCpδ
dT

dt
(3.8)
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Heat Flux

Inconel Plate

Thermocouple

Figure 3.3: Diagram of thin-skin calorimeter with heat applied from the left and a
thermocouple mounted to the back.

where ρ is the density of the metal, Cp is the metal’s specific heat, δ the metal’s

thickness, and dT
dt

is the rate of rise in temperature of the back surface over time, in

this experiment calculated numerically with a finite-difference code.

The combined heat flux from the thin skin calorimeter then becomes

q̇′′i = q̇′′c + q̇′′r + q̇′′sto − q̇′′c,st. (3.9)

as displayed graphically in figure 3.4. The heated plate will transfer heat to the cooler

surrounding air by convective heat transfer expressed by

q̇′′c = h(Ts − T∞) (3.10)

where h is the convection heat transfer coefficient, Ts is the surface temperature of

the Inconel plate, and T∞ is the ambient temperature. The heated steel plate will

radiate energy to the environment by the Stefan-Boltzmann law,

q̇′′r = σε(T 4
s − T 4

∞) (3.11)

where σ is the Stefan Boltzmann constant and ε is the emissivity of the inconel plate.

Conduction heat transfer within the plate will occur at a rate defined by Fourier’s

law,

q̇′′c,st = −k
dTs

dt
(3.12)
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Figure 3.4: Total heat flux on a thin-skin calorimeter.

where k is the thermal conductivity of the plate. Storage of heat into the plate occurs

at a rate defined by

q̇′′sto = ρCpδ
dT

dt
. (3.13)

For a chosen metal with a low conductivity such as Inconel, losses from the

plate can be ignored, and the combined equation for heat flux measured by a thin-skin

calorimeter accounting for losses becomes

q̇′′ = h(Ts − T∞) + σε(T 4
s − T 4

∞)− k
dTs

dt
+ ρCpδ

dT

dt
. (3.14)

3.5 Flame Height Theory

Two methods are presented here to calculate a predicted flame height based

upon experimental data. The first method of calculation is based upon on a theory

for upward flame spread developed by Annamalai and Sibulkin, following the method

Pagni and Shih used for their calculations [14, 15]. For vertical flame growth in a
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naturally convected flame, the ratio of pyrolysis heights (flame height over pyrolysis

front height) is given by a correlation [14]

Φ =
Xf

Xp

= 0.64(r/B)−2/3. (3.15)

r is referred to as the mass consumption number or stoichiometric parameter, and is

defined as the ratio of the mass fraction of ambient oxygen to the mass fraction of

fuel in the transferred phase times the stoichiometric oxygen-fuel mass ratio [43]. To

calculate the theoretical length of the pyrolysis front for a naturally convective flame,

Xp is solved for using

(X1/2
p −X

1/2
p,0 ) =

(
4(1− 1.25(r/B)1/3))

π

)
∗

(
a2

0

ρscp,sks(Tg − T∞)

)
∗ (t− t0). (3.16)

The term a0 is a constant dependent on various fuel and gas properties and is given

by [14]

a0 = 0.27
B7/4

(B + 1)1/4
r0.19 ∆Hc/νs(g∆Hc/ν

2
s cp,gT∞)1/4

Pr1/2
ln(B + 1) (3.17)

where ∆Hg is the heat of gasification, νs is the stoichiometric oxygen-fuel mass ratio,

and ∆Hc is the heat of combustion. Using equations 3.15 and 3.16, along with a

value for r given by Annamalai and Sibulkin the flame height, Xf is solved for [43].

The resulting formulation represents a power-law dependence of the flame height on

B and r.

An alternative method to predict flame heights, representing an exponential

limit was developed by Saito et al. [45]. They present a rough formulation for the

rate of pyrolysis spread assuming Xf − Xp remains approximately constant during

steady-state burning, which for a non-charring fuel yields

Vp = (Xf −Xp)/τ. (3.18)

Vp is the rate of spread of the pyrolysis front (dXp/dt) and Xf and Xp are the flame

and pyrolysis heights, respectively. τ is a material property, the characteristic ignition

time for spread,
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τ = [κρcp(Tp − Ta)
2]/q̇′′0 (3.19)

where the numerator is often referred to as the Thermal Response Parameter (TRP),

for which many experimentally-measured values exist [18]. In their paper, Saito et

al. applies a flame height correlation of the form

xf = K[Q̇′ + q̇′′0

∫ Xp

0

(ṁ′′
fdX)]n (3.20)

where K and n are constants, q̇′′0 is the heat flux from the flame, Q̇′ is the external

heat flux to the surface, and ṁ′′
f is the fuel mass-loss rate. In the pyrolysis region,

0 < X < Xp, ṁ′′
f can be assumed to be independent of x, and therefore combining

equations 3.18 and 3.19 yields

dXp

dt
= (K[Q̇′ + ṁ′′

f q̇
′′
0Xp]

n −Xp)τ. (3.21)

For n = 1, this equation is easily solved. It can be further assumed that K and n are

approximately equal to unity, and in the case of no applied heat flux (Q̇′ = 0)

Xf = A exp(αt) (3.22)

where

α = (Xf/Xp − 1)/τ 2, (3.23)

A is a constant determined by initial conditions, and Xf/Xp is determined by equation

3.15.
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Chapter 4

Experimental Setup

4.1 Commodity

All testing reported herein was conducted at the Worcester Polytechnic Insti-

tute Fire Sciences Laboratory in Worcester, Massachusetts, USA, with no significant

modifications to the apparatus or instrumentation made between test sessions. The

Group A plastic commodity was burned with one exposed face, and the measured

burning rates were employed to calculate the B-number of the mixed commodity by

use of equation 3.7.

Table 4.1: Composition of standard commodities used in large-scale testing [2].

Commodity NFPA
Class

Cardboard/
paper(kg)

Plastic
(kg)

Total
(kg)

Polystyrene
Cups

Group A
Plastic

2.375 3.875 6.25

Paper Cups Class III 4.25 0 4.25

Figures 4.1(a) and 4.1(b) shows the Group A plastic commodity. This com-

modity is often used by the fire-protection industry to test the effectiveness of fire

sprinklers and other fire-protection devices [25]. The fuel consists of a corrugated

cardboard carton subdivided into 125 compartments. The mass of each constituent

36
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(a) Group A commodity with half of

its exterior corrugated cardboard re-

moved

(b) Commodity insulated on all but

one side with Kaowool glass fiber-

board

Figure 4.1: Standard Group A Plastic Commodity consisting of a 1-ply corrugated
cardboard box continuing 125 polystyrene (PS) cups within segregated corrugated
cardboard cells.

in the standard commodity is listed in table 5.1. The outer dimensions of each card-

board carton are 530mm wide by 530mm deep by 530mm high. The 125 cells are

created by cardboard dividers subdividing the box in a 5 × 5 × 5 matrix of cells.

Each cell contains a 0.45L, 36g unexpanded PS cup. Each cup is 9cm in height, with

the opening face down, a top radius of 4.5cm and a bottom radius of 3.75cm. The

corrugated cardboard is 1-ply, with a thickness of approximately 4mm, but can be

compressed to as little as 1mm in some places where handling damage has occurred.

In all experiments where the cardboard is oriented vertically, the corrugations in

the board are also oriented vertically. All measurements of the cardboard are ap-

proximate, and small variations exist between each commodity burned due to the

adaptability of the cardboard. The commodity is wrapped in Kaowool insulating

boards approximately 0.65cm (0.25in) thick on all except one vertical side, on which

measurements were taken. This arrangement, limiting the burning of the box, allows

for a closer investigation of the fundamental physics governing the combustion of the

plastic commodity. The experimental setup consisted of the Group A plastic com-

modity placed on top of a Setra, Super II load cell that measured the mass loss of

the plastic commodity to within an accuracy of ±0.5 g.
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4.2 Experimental Apparatus

(a) Experimental setup at WPI front view (b) Experimental setup at WPI back view

Figure 4.2: The experimental setup used to evaluate a standard Group A plastic
commodity is shown with accompanying thin-skin calorimeters to measure heat flux
and thermocouple (TC) wires used to measure temperature inside the commodity.

Figure 4.3 shows the experimental setup and instrumentation configuration.

Inside the box 3 Type-K Chromel-Alumel thermocouples are installed inside five cells

on the front face of the box, as seen as in Figure 4.2. One set of thermocouples is

placed on the front face of the cardboard to track the progression of the pyrolysis

front along the face of the cardboard, one set is placed in the direct center of the PS

cup to measure the temperature within the cup, nominally indicating the moment

at which the cup ignites, and one set hangs to the side of the cup in the air space

between the cup and cell wall, nominally indicating the cell’s mean bulk temperature.

Cameras are setup on the sides of the apparatus to measure the flame standoff

distance and in front of the setup to measure flame heights.

Nine thin-skin calorimeters were mounted on a 1.3cm thick (0.5in), vertically

oriented glass fiber board oriented above- and flush to the front combusted face of the
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test commodity. This configuration allows for spatial measurements of the combined

radiative and convective heat flux that the combusting plume of excess pyrolyzate

will exert on stored commodities of higher elevation.

The setup was placed under a 4MW hood to eject burning fumes and embers.

A controlled ignition was achieved by adding 4mL of n-heptane to a strip of glass

fiber board approximately 1cm tall, 0.35m wide by 3mm in depth. The wetted wick

igniter was held by an aluminum u-channel that was positioned adjacent to and below

the lower front edge of the commodity. Experimental time begins when the strip is

piloted at the centerline of the commodity’s front face.
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Chapter 5

Experimental Data and Results

Four tests were conducted on Group A Plastic commodities (see experimental

setup, chapter 4). All tests, with the exception of test 1, measured flame height,

pyrolysis height, mass-loss rate and temperatures within cells along the first layer of

the commodity. Test 1 used thermocouple rods to collect temperature and pyrolysis

height information that proved to be inaccurate, so that data has not been included.

In tests 2-4, individually placed K-type thermocouples were used in the setup as

described in detail in chapter 4. A summary of Group A commodity tests performed

is provided in table 5.1

5.1 Detailed Observations during each Test

All tests were ignited by a wick soaked in 4mL of n-heptane. In each test the

heptane in the wick burned off and a small pyrolyzing region began to develop at the

bottom face of the exposed region of cardboard within 30 seconds of ignition. In test

1, 53 seconds after ignition the first layer of the front face of cardboard had begun

to peel away. After 75 seconds the cardboard in the first rows of cells had ignited,

and the flames began to extend above the top of the commodity. After 89 seconds

the cups in the bottom row began to deform, and at 113 seconds all cardboard in the

first layer of cells had ignited. Flame heights reached between 1.5–2 times the height

of the commodity. The fire was manually extinguished 125 seconds after ignition. In

41
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Table 5.1: Summary of Group A commodity tests.

Test Setup Result
Test 1 Front and side cameras,

load cell, thin skins, ther-
mocouple rods

Burned evenly across front
face. Load-cell, thin-skin and
camera data were complete.
Thermocouple rods were inac-
curate and needed to be re-
placed. First layer of cells
burned.

Test 2 Front and side cameras,
load cell, thin skins,
thermocouples mounted
in/on front face

Burned evenly. Load-cell,
thin-skin, camera, and ther-
mocouples data were complete.
During first layer burning, PS
cups melted onto front face of
cardboard and prevented front
face from burning off for ex-
tended burning “plateau” pe-
riod. Hence, behavior was
atypical from other tests.

Test 3 Front & side cameras,
load cell, Thin Skins,
Thermocouples mounted
in/on front face one in-
side plastic cup

Burned evenly. Load-cell,
thin-skin, camera, and ther-
mocouples data were complete.
Second layer PS cups ignited.
Test was shut down before
fully igniting second layer.

Test 4 Front and Side Cameras,
Load Cell, Thin Skins,
Thermocouples mounted
in/on front face

Burned evenly. Load-cell,
thin-skin, camera, and ther-
mocouples data were complete.
Second, third layer PS cups ig-
nited. Test was shut down be-
fore fully igniting third layer.



43

Figure 5.1: Test 1 Timeline: (a) 53 seconds, peeling front face of cardboard, (b) 75
seconds, 1st layer cells cardboard ignite, (c) 89 seconds, PS cups in bottom row of
first layer begin to deform, (d) 113 seconds, all PS cups and cardboard in 1st layer
engulfed in flame.

subsequent tests the commodity was allowed to burn into further layers of cells, but

because it had not yet been determined whether the polystyrene would create a pool

fire, and there was uncertainty concerning the stability of the box, this first test was

ended earlier than subsequent ones. A visual timeline of test 1 is shown in figure 5.1.

In test 2 the commodity was ignited in the same fashion and developed a

laminar region of burning along the front face within 21 seconds. The flame was

observed to transition into turbulent burning 4 seconds later. The front of the other

cardboard cover (which consisted of two layers, a front one and an inner) peeled up

quickly, and at approximately 50 seconds post-ignition it burned off. At the same

time the bottom two rows of cells were exposed and burning, and the back layer of this

outer cardboard above row two ceased to peel away and seemed to form a solid barrier

slowing the burning process. Polystyrene had melted onto the back of the cardboard

on the front face, holding this layer in place. The bottom two rows smoldered until

at 122 seconds three cups on the bottom of the box begin to ignite and continued to

ignite fully the bottom two rows of polystyrene cups. These created a large enough

plume to force the top flap of cardboard off the front face at 158 seconds from ignition

and the entire front face of the box burned at a rapid rate thereafter. At 172 seconds

from ignition polystyrene began to melt and drip down the front face, creating a “wall

of fire” with the remaining cardboard and melted polystyrene burning at an increased
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Figure 5.2: Test 2 Timeline: (a) 21 seconds, laminar burning on front face, (b) 50
seconds, front layer of cardboard burned off; cardboard in bottom two rows of cells
ignited, (c) 70 seconds, PS cups melted earlier than other tests, melted to front face
and created shield stalling burning rate, (d) 122 seconds, bottom row of cups ignited,
forcing top layer of cardboard/melted PS off, (e) 172 seconds, entire front layer of PS
cups and cardboard burning in wall. Second layer of cells beginning to ignite.

rate. The fire was then extinguished. Inspection of the burned commodity revealed

only several cells in the second layer ignited, but most cups in the second layer began

to deform. A visual timeline of test 2 is shown in figure 5.2.

In test 3 the atypical behavior experienced in test 2 where the front face of

cardboard became a barrier slowing the initial burning rate did not occur. Much like

the first test, after approximately 30 seconds from ignition the front face of cardboard

developed a progressing pyrolysis front whose associated flame quickly transitioned

to turbulent burning. Without the top flap delaying the initial burning rate, within

92 seconds the entire front face of cardboard was exposed, and all exposed cardboard

was burning. By 100 seconds the front face remained exposed and began smoldering,

and the burning rate plateaued. Polystyrene began to ignite at 120 seconds in the

center of the front face, and then the burning progressed to engulf the entire front

face by 132 seconds. By 150 seconds the second layer of cells had begun to burn

as well, significantly increasing the burning rate. The fire was extinguished at 172

seconds when the stability of the box was no longer ensured. A visual timeline of test

3 is shown in figure 5.3.
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Figure 5.3: Test 3 Timeline (a) 30 seconds, front layer pyrolyzing and laminar burning
along face, (b) 92 seconds, front face cells are exposed and burning, (c) 100 seconds,
smoldering front face, second layer cells heating and PS cups deforming, (d) 132
seconds, all PS cups in the first layer ignited and burning, (e) 150 seconds, second
layer of cells also burning.

The initial stages of test 4 had similar features to tests 1 and 3. After 30

seconds the first layer of cardboard was significantly pulled away and the second

layer of cardboard began burning. After burning up approximately 10cm, the fire

began to burn up the front face in two branches, left and right, with the right branch

burning significantly faster than the left. By 110 seconds both fronts combined and

the entire front face had burned away exposing all cells. The second layer of cells

began to burn after 123 seconds in the center region of the second layer. Cups then

began to ignite and by 150 seconds from ignition melted polystyrene began to drip

down the front face creating a “wall of fire” in the front. By 180 seconds layer one and

two of cells were fully involved, and both melted polystyrene and pieces of charred

cardboard began to fall to the bottom of the commodity. The sides of the commodity

began to bend and lose rigidity at which point the fire was extinguished 212 seconds

after ignition. The first layer of cells was completely destroyed; only some melted

plastic remained. The second layer was still distinguishable, but charred, with most

polystyrene melted. The third layer was charred on the front of the layer due to the

heat of the flames in front of it, and most of the cups had deformed, but the flames

did not significantly penetrate layer 3 in the time the fire was permitted to burn. A

visual timeline of test 4 is shown in figure 5.4.
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Figure 5.4: Test 4 Timeline: (a) 30 seconds, first layer of cardboard burning, (b) 60
seconds, 2 fronts burning up front face of cardboard, (c) 123 seconds, second layer of
box cells begin to ignite, (d) 150 seconds, PS cups ignited and dripping on front face,
(e) 196 seconds, layer 1 and 2 of cells cardboard and PS fully enveloped.

5.2 General Observations from all Tests

Observations from all four tests have established a general pattern of the burn-

ing of a Group A plastic commodity. Ignition of a cardboard commodity may occur

by piloted ignition with a wick, as in this experiment, or by radiant heating in the

case of aisle-jumping in large-scale rack storage configurations. The outer face of

the commodity is made of two-layer corrugated cardboard. On the face where igni-

tion occurs, the first layer of cardboard will ignite and burn, eventually peeling away

and igniting the second layer of corrugated cardboard, which will then experience a

similar combustion process. The fire at this stage is comparable to that of a single

doubly-ply sheet of cardboard burning upright. The arrangement of the commodity

within the box has not yet influenced the burning. Figure 5.5 indicates that the

stored plastic product is not yet involved in the burning. In a small percentage of

commodities tested the polystyrene was observed to melt onto the second layer of

corrugated cardboard which delays this layer from peeling away, reducing the initial

burning rate.

For this typical commodity, the contents of the boxes burn sequentially as

individual cells. Each cell is contained by corrugated cardboard on six sides with

a polystyrene cup in the center as indicated in figure 5.5. While the front face of
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Figure 5.5: Side-view of the representative stages of burning for a Group A plastic
commodity. Stage I on the far left consists only of upward flame spread along the
outer cardboard face with no involvement of the inner packing commodity. Stage II
in the center is the plateau region, where the inner packing material burns off and
polystyrene heats before ignition, and Stage III on the far right involves combustion
of polystyrene and remaining cardboard from within the commodity.

corrugated cardboard is burning, the first layer of cells begins to be heated, and

the corrugated cardboard within the cells close to the front face begins to pyrolyze.

As soon as the corrugated cardboard front face peels away, oxygen can reach the

smoldering corrugated cardboard in the cell, causing it to ignite quickly. Adjacent

cells heat one another, and in this manner the entire front layer of cells ignites,

although the polystyrene is not yet affected significantly. Once the flaming combustion

of corrugated cardboard within each cell in the first layer nearly ceases the commodity

reaches the plateau stage of burning, shown in figure 5.5 labeled as stage II. During

this plateau region cardboard smolders, cups absorb heat and are deformed until

reaching the ignition temperature of polystyrene. Once the polystyrene reaches this

temperature it ignites and begins to melt vigorously. The period of burning of the

polystyrene cups is labeled in figure 5.5 as stage III. The melting and dripping of

the polystyrene cups after their ignition, and the associated increased rate of heat

flux from combustion of volatile polystyrene causes the second layer of cells to ignite

and to repeat the process. As further layers of cells ignite, they add to a “wall” of
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flame formed by the dripping polystyrene and charred cardboard that moves inwards

sequentially through layers of cells in the package.

Although no tests conducted were able to continue past the third layer of

cells, it is expected that burning through the remaining two layers of the commodity

would continue in the same fashion until the structural stability of the commodity is

compromised.

5.3 Quantitative Results

Measurements of the mass lost over time are shown in figure 5.6. Transitions

between stages that are indicated in the figure were deduced with the help of the data

from the thermocouples that were suspended within cardboard cells and polystyrene

cups. Air currents resulting from the turbulent combustion process create fluctuations

in the mass-loss readings on the order of 1–3 grams. These small fluctuations, which

are not representative of the actual mass loss, are smoothed over by applying an nth-

order polynomial fit to mass-loss data, resulting in the curves that are shown in figure

5.6 along with the raw data. Two test periods were not fit due to test inconsistencies.

A ten-second section of test 2 in stage III was neglected because a piece of cardboard

fell off the test sample then back onto the load cell, and all of stage II in test 4 was

neglected due to behavior inconsistent with all other tests, probably because of large

air-current fluctuations during this irregular burning period causing erratic load-cell

readings. The transition between stages I and II, chosen as the point where inner

packing material starts to burn and upward flame spread has reached the top of the

front face of the package, or is close to the top, occurs around 77 seconds for three

of the four tests. The inclusion of test 4, which displays an earlier transition between

stages I and II, is useful for indicating the range of deviations that may occasionally

occur in complex tests such as these.

The mass-loss rate was calculated from the derivatives of polynomial fits of

recorded mass lost over time. Fluctuations in the mass-loss rate occur because of

both time-dependent changes in the material burning and changes in the mixture

of constituents burning throughout the box over time. The mass-loss rate shown in

figure 5.7 steadily increases during most of stage I as the flame front progresses over
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Figure 5.6: Mass lost from the commodity as a function of time, measured by a load
cell at the base of the commodity. Polynomials are fit to the mass-loss measure-
ments to smooth 2–3g fluctuations caused by air currents, but the smoothed data
still captures the mixed commodity burning behavior. Relative stages of burning are
indicated in the figure, with vertical lines denoting transitions between stages. The
timeline for each test was shifted so that the transition betwen stages II and III oc-
cured at 138 seconds. The deviations in time for the transition between stage I and II
for the four different tests is indicated by the vertical grey band between those stages.
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Figure 5.7: Mass-loss rates, calculated from the derivative of polynomial fits to the
mass-lost data. Relative stages of burning are indicated in the figure as described in
the caption of figure 5.6.

the front face. The mass-loss rate then reaches a plateau in stage II while corrugated

cardboard packing material burns and polystyrene melts and gasifies. The mass-

loss rate then typically decreases as all remaining corrugated cardboard burns out.

Once polystyrene reaches its ignition temperature at the beginning of stage III, the

mass-loss rate sharply increases, until water spray is applied to extinguish the flames.

The heat flux reaching a vertically oriented surface above the tested commod-

ity, measured by thin-skin calorimeters, is shown in figure 5.8. The heat flux was

determined by applying a 7-point moving average to temperature histories of the sen-

sor element of the thin-skin calorimeters measured at 10 Hz. This serves to smooth

the data while still giving a time resolution better than 1 second, much finer than that

of the load cell and appropriate because this is nearly a point measurement, rather

than being integrated over the entire volume of the fire. A finite-difference formula

was applied to this data to determine its derivative. The heat flux was calculated
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accounting for radiative, convective, and storage losses using a method outlined in

section 3.4. The heat fluxes displayed in figure 5.8 represent a combined radiative

and convective heat flux at this higher elevation. They cannot be equated to the

heat flux directly in front of the commodity, but they can be used for analysis of

upward spread rates. These heat fluxes sharply increase towards the end of stage I of

burning, unlike the mass-loss rate which steadily increases throughout the first part

of stage I. The high peak heat flux observed after approximately 1 minute of burning,

due to increased amounts of excess pyrolyzate burning above the commodity, is likely

to contribute to the rapid upward flame spread rates seen in large warehouse fires.

The heat flux then steadily declines throughout the burning- rate plateau of stage II,

and it increases again with the involvement of polystyrene in stage III. Heat fluxes

measured over a large spatial region above the commodity are given in Appendix A.

Ranges of flame heights, determined from high-definition camcorder recordings

of images of the front of the commodity are shown in figure 5.9. The flame height

was defined as the highest peak of an attached yellow flame determined by running

an edge-detection algorithm on the video output. The flame and pyrolysis heights

measured are both shown in figure 5.9, with grey bands between curves indicating

experimental scatter. In obtaining the pyrolysis height, thermocouples mounted along

a column of cells in the front face of the commodity provided data on the position

of the pyrolysis front along the front face of the box during stage I as shown in

figure 5.10 (Thermocouple A). Recorded thermocouple temperatures of 380 ◦C, the

ignition temperature of cellulose reported in literature [43], were chosen to mark the

locations of the pyrolysis front as shown in figure 5.11. Approach to a temperature

plateau is also indicative of reaching the pyrolysis front, and this was found to occur

within 5 ◦C of 380 ◦C, the recorded temperatures sometimes being below the literature

value, possibly due to heat loss from the junction or the instrument heating time. The

results were consistent with charring that could be seen from the front-view cameras.

Thermocouple temperature measurements used to calculated pyrolysis rates, as well

as those located within the commodity are provided in Appendix B.

In figure 5.9, the pyrolysis height pertains only to stage I because at the end

of that stage, the pyrolysis front has reached the top of the package, but the flame

heights exhibit the same three stages as the mass-loss rate and heat flux shown in
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Figure 5.8: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 3 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Additional heat flux measurements are provided in
Appendix A.
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Figure 5.9: Ranges of flame (Xf ) and pyrolysis (Xp) heights from four tests, with
grey bands between the curves indicating experimental scatter. Relative stages of
burning are indicated in the figure, with vertical lines denoting transitions between
stages, as described in the caption of figure 5.6

figures 5.7 and 5.8. Flame heights rapidly increase during initial burning, reflecting

the high fire hazard of outer corrugated cardboard covering. They then taper off as the

cardboard begins to smolder. The decrease in flame heights corresponds to smoldering

of packing material and to a decrease in the excess pyrolyzate burning above the tested

commodity. A steady increase in flame height is observed once volatile polystyrene

reaches its ignition temperature and dominates the burning process in stage III. The

fact that the burning is more vigorous in stage III than in stage I is due to the

involvement of more volatile plastic fuel, reflected in the higher mass-loss rate in

stage III seen in figure 5.7, increases the excess pyrolyzate and causes more of the

heat release to occur at higher elevations, moving the flames away from the thin-skin

gauges, thereby tending to decrease their readings, as seen in figure 5.8.

All fire processes exhibit some random behavior inherent in their turbulent and
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Figure 5.10: Locations of thermocouples placed within the grouped commodity. A
closeup of one cell is shown on the right. Thermocouple ‘A’ is mounted on the front
face of the cell to track the progression of the pyrolysis front, thermocouple ‘B’ is
suspended in the air inside the polystyrene cup to detect ignition of the polystyrene,
and thermocouple ‘C’ is suspended in the air between inside the cell to detect flashover
within the cell.

complicated nature, but because this standard commodity is segregated into small

cells it exhibits roughly repeatable behavior. When a large number of individual iden-

tical elements are measured, results on a large scale can become roughly repeatable,

even with the random nature of events taking place on a small scale. The layers and

dividers within the box also provide structural stability to the test commodity so that

it takes a longer period of time for the commodity to disintegrate and thereby lead

to burning behavior that is more unpredictable.

5.4 Extraction of B-number Values

Equation 3.7 was used to determine a B-number as a function of time using

the experimentally determined mass-loss rates shown in figure 5.7. Time-dependent

B-numbers have been addressed by Pizzo et al. [65] for laminar upward flame spread

over small polymethylmethacrylate slabs. In the present work, larger fluctuations

are experienced due to turbulence, the mixed nature of the commodity and its more
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Figure 5.11: Temperatures readings by thermocouples located on the front cardboard
face of the commodity in test 3. Temperatures measured determine the advancement
of the pyrolysis front over the face of the commodity, with 380 oC representing the
approximate ignition temperature of cardboard. Thermocouple 1 represents the low-
est thermocouple location, and 5 the highest. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.

complex geometry. In calculating B, the values [61] ρg =0.50 kg/m3, αg = 9.8× 10−5

m2/s and νg = 6.8× 10−5 m2/s were used. A mean gas temperature, Tg for use in the

calculation was found by averaging the temperature of ambient gas, T∞ = 20 ◦C and

an approximate flame temperature for cellulosic materials, Tf = 800 ◦C [60, 23].

The area of burning during stage I was calculated from visual video measure-

ments of the blackened pyrolysis region on the front face. The thermocouple mea-

surements of Xp cannot be used accurately to obtain the area because of the irregular

nature of the upward propagation along the imperfect wide surface of the front of

the package; the Xp results pertain only to progress along one vertical thermocouple

line. A second-order polynomial was fit to the area seen in the video for each test, for
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the purpose of calculating ṁ′′
f in equation 3.7 for stage I. This area increases steadily

over time, reaching a maximum value between 54 to 77 seconds (the end of stage I

for the respective test). A constant area equal to the total area of the front face of

the package was assumed for calculating ṁ′′
f during stages II and III. During stages

II and III there are variations in the exposed burning surface areas of the packing

material and of the commodity, but these areas cannot be estimated well, and on

the average the total burning surface area in these stages is approximately the total

front-face area. Because the initial burning area cannot be determined in stages II

and III, uncertainties in B at any given time on the order of a factor of two must be

accepted so that the resulting time dependence of B is at best qualitatively indicative

of its variations during these later stages. The first 15-20 seconds of all measurements

are neglected to remove effects of the ignition source. The resulting time-dependent

B-numbers of the four tests are shown in figure 5.12, in which the most reliable time

dependencies pertain to stage I.

With these procedures, in stages II and III the calculated variations of B are

proportional to the variations of the mass-loss rate seen in figure 5.7. In stage I,

however, the increasing area causes the variations in B to exceed those of the mass-

loss rate. Comparisons of figures 5.7 and 5.12 shows that the result is that the values

of B tend to vary over roughly the same range in all three stages, while the mass-loss

rate is clearly much smaller during the early part of stage I than during the later

stages. While significant deviations in the time-dependent B-number exist, just as

for the mass-loss rate, the subsequent average values of B for each stage vary much

less, as can be inferred from figure 5.12.

The time-dependent B-number in stage I reaches a peak towards the end of

the stage as the pyrolysis front accelerates upward, consistent with the increasing

heat flux from the flame, shown in figure 5.8. The B-number then decreases as the

cardboard smolders in stage II, where the pyrolysis front has reached the top of the

front face, reducing the amount of excess pyrolyzate and thus the applied heat flux.

In some cases this is different from the mass-loss rate in figure 5.7 for stage I, where it

is seen that for test 3 the mass-loss rate nearly constantly increases throughout stage

I and into stage II, underscoring the general variability of the fire development. Stage

III presents even more varied behavior as the ignition of polystyrene cups in each test
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Figure 5.12: Time-dependent B-numbers calculated from the mass-loss rate using
equation 3.7. The B-numbers in stage I were calculated using a varying area of
burning, while the area was taken constant in stages II and III. Relative stages of
burning are indicated in the figure, with vertical lines denoting transitions between
stages, as described in the caption of figure 5.6.
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Table 5.2: Summary of burning behavior over 3 representative stages for a standard
plastic commodity. Note that values are taken as either the indicated maximum or
average in the denoted region for each test, and then averaged for all four tests. The
average and peak heat fluxes given here were measured by a thin-skin calorimeter 3
cm directly above the test commodity, indicating the heat flux applied to material
directly above the commodity.

Summary of Stages

Stage I

Outer layer of commodity is ignited,
producing rapid upward turbulent flame
spread over the front face of a commodity.
B is independent of polystyrene.

Bavg 1.8
ṁf,avg 0.83 g/s
Xf,max 0.51 m
q̇f,avg 1.2 kW/m2

Stage II

Front layer of corrugated cardboard has
burned to top, exposing inner region,
which burns and then smolders.
Polystyrene does not burn because of its
higher ignition temperature.

Bavg 1.4
ṁf,avg 1.7 g/s
Xf,max 0.48 m
q̇f,avg 0.38 kW/m2

Stage III
Polystyrene ignites and a rapid increase
in the burning rate occurs.

Bavg 1.9
ṁf,avg 2.2 g/s
Xf,max 0.65 m
q̇f,avg 2.4 kW/m2

occurs in a different pattern, but all show very steep increases in the B-number, just

as in the mass-loss rate. Stage III introduces additional uncertainties associated with

using a constant area of burning because polystyrene melts and drips, increasing its

burning surface area, and it is difficult to accurately determine the processes involved

during such a dynamic stage.

Rangwala et al. [58] found that an experimentally determined B-number

changes over time for a material, and they suggested a method of averaging the

B-number over time. Applying their method, a time-averaged B-number for each of

three stages was found by time-averaging the mass-loss rate per unit area in each

stage, and using this value to calculate an average B-number of the stage. Values

of B averaged for each relative stage of burning, reflecting the average burning rate

for that stage are given in table 5.2. While a number of other averaging methods

can be defined, such as averaging directly over time in figure 5.12, the results are not

substantially different.

Average burning rates, ṁf,avg in table 5.2 were determined by averaging mass-

loss rates from figure 5.7 for each stage, and taking the average of these values for
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all four tests. The mass-loss rates, independent of burning area, increase from stages

I-III, growing as the amount of material burning increases, and in stage III they

increase as volatile polystyrene becomes the primary material burning.

The B-number for stage I is markedly higher than it would have been if it

were calculated using a non-varying area, because the small area of burning during

the initial stages of upward spread dramatically increases the value in that calculation,

as shown in figure 5.12. The average B-number of each stage of burning is influenced

by the mixture of constituent materials involved in combustion during that stage. In

stage I, the burning rate is solely dependent on corrugated cardboard combustion,

resulting in a B-number of 1.8. Next, during stage II, the plateau in the burning rate

due to smoldering of cardboard and gasification of polystyrene results in a decreased

B-number of 1.4. The B-number for stage III, 1.9, is similar to that of stage I even

though it is influenced by the combustion of polystyrene and cardboard together.

Maximum flame heights observed from the videos were averaged from all four

tests to give the values of Xf,max for each stage listed in table 5.2. The highest

flame heights were observed during stage III, where volatile polystyrene burns at the

highest B-number, producing additional excess pyrolyzate lifting the flames higher

above the test apparatus. The flame height is noticably shorter in Stage II, on average,

because the smoldering of cardboard packing material slows down the burning process.

Maximum flame heights observed in test I are greater than those observed in stage

II, although earlier in stage I flame heights are smaller.

Peak heat fluxes above the commodity for each stage, averaged from all four

tests, achieve their highest values in stages I and III, similar to the flame heights as

seen in table 5.2. Heat fluxes above the commodity peak substantially higher in stage

III than in stage I, at double the value, and are significantly lower in stage II than in

stage I, one third the value. These sharp deviations occur because smaller increases

in the burning rate significantly increase the amount of excess pyrolyzate burning

above the front face of the commodity, thereby increasing the rate of heat release and

thus the heat flux to think-skin calorimeters mounted above the commodity.
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Table 5.3: B-numbers of polystyrene, cellulose, and fir wood from previous literature.

Polystyrene Cellulose Fir Wood

0.48 [15] 0.86 [15] 0.58 [15]
1.55 [43] 6.96 [43] 1.75 [43]
1.3 [56] 0.45 [67] 0.352 [67]

0.8 [56]

5.5 Discussion of Results

The “practical,” experimentally measured average values of B given in table

5.2 can be compared to theoretically calculated thermodynamic values for both cor-

rugated cardboard and polystyrene by using equation 3.1 and assuming χ and Q

equal zero [57] to obtain an ideal value, assuming there are no losses. For a rep-

resentative picture of previously-measured B-numbers of polystyrene and cellulosic

materials1 they are displayed in 5.3. Annamalai and Sibulkin [43] report values of

heats of combustion and heats of vaporization which when used provide B-numbers

of 6.4 and 1.6 for cellulose and polystyrene, respectively. The value for cellulose is,

however, not representative of cellulosic materials; it is much too high because the

heat of gasification is too low. Tewarson [66] reports a heat of gasification for cor-

rugated cardboard, which results in B = 1.1 instead, a more reasonable value. The

calculated ideal value of 1.6 for polystyrene is consistent with results obtained from

other literature [66, 56]. It may be concluded that the thermodynamic values of B for

these two materials do not differ greatly, both lying between 1 and 2, with the values

for polystyrene somewhat higher than the other. The values in table 5.2 are also in

this range, although a little higher, especially for stage I, since 1.8 solely represents

corrugated cardboard. The difference between the thermodynamic and experimental

values reflect real-world heat-transfer processes, notably radiative feedback, which

can cause Q to be negative in equation 3.1.

The determination of a B-number of mixed materials would be useful for ware-

house commodity classification. The B-number of stage III would be expected to be

1Cellulose and fir wood are displayed in the table as representative of cardboard because previous
measurements of the B-number for cardboard have not been recorded.
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some combination of corrugated cardboard and polystyrene, creating a “composite”

B-number for the stage. One approach would be to combine the influence of material

constituents by weight percent. Combining the B-numbers of corrugated cardboard

and polystyrene by weight percent results in a composite B of 1.43 if thermodynamic

values are used. Another possible combination could be by exposed burning surface

area, which results in a combined thermodynamic B-number of 1.24. Both of these

approaches produce values of B lower than the experimentally measured value for

stage III. The value of B for corrugated cardboard measured experimentally is the

same as the theoretical value for polystyrene, within experimental error, so any com-

bination using this value and the thermodynamic value of B for polystyrene would

be the same, and thus inconclusive for testing how best to estimate a value for mixed

materials. It would be of interest to perform experiments on mixed materials that

have very different values of B.

While the “predicted” values of B in table 5.2 lie between 1 and 2, fluctuation

in values between 0 and 5 are seen to occur in figure 5.12. Only by averaging over these

large fluctuations can values be obtained that are potentially useful for commodity

classification. The relatively small range of the averaged values suggest the possibility

of selecting values representative of mixed materials that can be helpful in hazard

assessments.

It is to be noted that this test setup presents many obstacles to determine

an accurate B-number. The surface is wide which allows horizontal flame spread as

well as buoyancy-induced vertical spread. Deviations in the front face of corrugated

cardboard as well as varying influences of materials within the commodity during

upward flame spread present many difficulties in this test setup. Careful observations

of the test results must be conducted in order to reject regions of non-upward flame

spread during this test, as well as other deviations such as chunks of material falling

off the test stand. Despite the difficulties of this test setup, it has yielded relevant

information on general fire behavior, ranges of values of B to be expected and on

3Thermodynamic B-numbers for corrugated cardboard, B = 1.1 and polystyrene B = 1.6 were
used. Product mass percent was calculated from total weight of Group A commodity: 2.38 kg
corrugated cardboard and 3.88 kg polystyrene.

4Exposed surface area was defined as the area exposed in the first layer of cells, not including
the front face which burned away. The area of exposed polystyrene was 0.296 m2, and corrugated
cardboard 0.944 m2.
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the incremental stages of burning which occur within the commodity. More accurate

smaller-scale tests should be conducted as research continues.

Initial fire spread in warehouses, during the first 1–2 minutes of burning is

typically restricted to spread over vertical corrugated cardboard surfaces. Prediction

of fire spread during this initial stage of burning is important to predict sprinkler

activation times, and may provide a link between fire behavior and a commodity

ranking scale. Flame heights observed during the first stage of burning for a Group A

plastic commodity tend to be restricted to a small range of fluctuations unlike later

stages, suggesting a common behavior occurs for flame spread up vertical cardboard

surfaces. A variety of flame-spread theories have been developed that may be used

to predict flame heights, a summary of which was presented in section 2.6. Flame

and pyrolysis heights observed in figure 5.9 suggest either a power-law or exponential

increase in flame height over time. It will be of particular interest to compare the-

ories that produce flame height predictions of this type. Two potential models are

suggested here, one based upon a boundary-layer model by Annamalai and Sibulkin

[43] and another flame-spread theory by Saito et al [45], is an extension of the model

of Markstein and De Ris [68]. These two formulations will produce different depen-

dencies of flame and pyrolysis heights on time to predicted flame spread behavior in

the future, and analysis of the results may yield accurate prediction methods. Both

also require readily-available input parameters, such as the B-number, TRP, etc.
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Chapter 6

Conclusion

6.1 Summary

This work has laid a framework to experimentally measure the B-numbers of

a mixed commodity for use as a fire-hazard ranking criterion in warehouses. Small-

scale tests performed on a Group A plastic commodity were used to calculate time-

dependent as well as time-averaged values of the B-number for three representative

stages of burning. This commodity consisted of 125 polystyrene cups in segregated

corrugated cardboard compartments within a corrugated cardboard container. Be-

cause a Group A plastic commodity is mixed, consisting of plastic and corrugated

cardboard products, three representative stages of burning were outlined for the

combustion of the commodity, each with unique burning behavior The influence of

constituent materials varied depending on the stage of burning.

The significant hazards known to occur in warehouses due to upward flame

spread have been addressed here, quantifying aspects of high heat fluxes, rapidly

increasing flame heights, and large B-numbers immediately after ignition of the com-

modity and during the combustion of the plastic product, with a decrease in the

burning rate between the two regions. The experimental B-numbers reported here

contain inaccuracies, but they take into account more physical processes than ana-

lytically determined thermodynamic B-numbers.
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6.2 Broader Impact

A history of warehouse fires and resulting damage was presented in chapter

1. Preventing these high-loss situations requires knowledge of the initial behavior of

fire in rack-storage situations as well as the influence of the storage configuration and

inner products on later stages of the fire. The research conducted in this project is the

first to use the B-number as a single criterion to calculate the flame height during the

initial burning region, approximately 1–1.5 minutes in most warehouse fires. Thus far

a relation to later stages of burning in the warehouse has not been addressed by this

research, but a link between small-scale testing and large-scale behavior using the

same test methods in a related study has been established. With this, the B-number

seems to be a likely candidate for use as a universal fire-hazard classification criterion

in warehouses. Because upward spread is dominant in these fires, other influences

can be approximately neglected for the use of classifying hazards of commodities.

6.3 Recommendations for Future Work

Predicting fire behavior is an important task associated with commodity clas-

sification, and future work to develop accurate predictions of flame and pyrolysis

heights will aid the eventual goal of developing a fundamental method to classify

commodities. Future work should compare flame and pyrolysis heights measured in

this study with previous studies. Different flame height prediction methods should be

applied, with particular attention paid to the input parameters required to generate

predictions. A wide variety of parameters are currently used throughout a variety of

ranking schemes and flame spread models (CHF, FPI, TRP, r, etc.), and it would be

useful to study the relationships between these parameters and the B-number.

With sufficient additional research, B-numbers may be used in the future in

approaches to classifying the flammability of a given warehouse commodity and de-

signing a suppression system to protect the commodity. Experimentally obtaining

the B-number in a repeatable manner for a mixed commodity is of prime importance,

and studies using devices such as a cone calorimeter to calculate the B-number on

smaller-scale cells and individual materials should be continued [17]. The influence
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of material and volume density of materials within a commodity should be closely

studied to determine a relationship between these parameters and a composite B-

number that could be used to calculate the B-number of a grouped commodity. A

critical B-number used as an extinction criterion may also be determined to lay a

groundwork for a warehouse fire model. These combined ignition, fire spread, and

extinction/suppression characteristics may be used by fire protection engineers to de-

termine a general prediction of warehouse fire behavior in the future, aiding safer

design of these storage occupancies. The use of a B-number and similar nondimen-

sional parameters in computational fluid dynamics (CFD) models of fire-driven fluid

flow in the future present a huge potential to simplify the parameters necessary to

model fires, and should also be investigated in the future.



Appendix A

Additional Heat Flux Data

Measurements of heat flux from the combusting plume above the burning

commodity to a vertically-oriented surface above are provided here to supplement

the material given in chapter 5, Experimental Results. The heat flux displayed in

figures A.2–A.23 represents a combined radiative and convective heat flux from the

flame to a surface of a higher elevation. Ten thin-skin calorimeters were instrumented

above the 0.5 meter high commodity, measuring the variation of heat flux at increasing

heights above the commodity and between the centerline and sides of the commodity.

This spatial information provides a picture of the heat flux that potentially would be

provided to commodities of higher elevations stored in racks, and may be useful in

the future analyses to quantify upward flame spread rates.

The heat flux, much like the burning rate varies over the three stages of burn-

ing for a Group A plastic commodity. Figures A.2–A.11 show the variation of heat

flux for each of the three stages of burning for all ten thin-skin calorimeters. Although

the relative magnitude of heat flux decreases at increasing heights, the behavior of

increasing heat flux rates during stage I, decreased heat flux rates rates during stage

II, and peak heat fluxes during stage III are observed at all elevations. The in-

creasing heat flux observed during the first stage occurs because of increasing excess

pyrolyzate with increased pyrolysis heights, and thus a higher and larger combusting

plume. In the second stage, corrugated cardboard smoulders, dramatically reducing

the height of the combusting plume and observable flame heights, thus the observed

heat flux significantly decreases during this burning plateau. During the third stage,

66
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polystyrene ignites and the combustion of the dripping, sooty polystyrene increases

the observed heat flux above the commodity.

Figures A.12–A.15 show that the magnitude of heat fluxes over time is much

greater at lower elevations closer to the top surface of the burning commodity, and

drastically decays as elevation increases. A comparison of heat fluxes across the

bottom width of the thin-skin calorimeter setup is shown in figures A.16–A.19 and

across the top width of the think-skin setup in figures A.20–A.20. Typically, the

heat fluxes observed along the centerline are greater than those 16 cm to the sides of

the centerline. This value is not usually significantly greater than the measurements

taken to the sides of the centerline, and in some cases is the same or actually lower

than heat flux measurements to the side (e.g. figure A.21). Heat flux measurements

along the centerline are generally expected to be slightly greater than those on the

side because of additional heat losses at the sides of the vertical combusting plume.

In cases where this is not the case the cause is most likely uneven burning of the

commodity below. The wide base of the sample does not always burn evenly, and for

some short time periods greater pyrolysis heights and burning rates may be observed

on one side or the other below the thin-skin calorimeters.
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Figure A.1: Location of thin-skin calorimeters 1-10 used to measure heat flux above
the tested commodity.



69

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time from Ignition (s)

H
ea

t F
lu

x 
(k

W
/m

2 )

Heat Flux Measured by Thin−Skin 1

 

 

Stage I Stage II Stage III

Test 1
Test 2
Test 3
Test 4

Figure A.2: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 2 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.



70

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time from Ignition (s)

H
ea

t F
lu

x 
(k

W
/m

2 )

Heat Flux Measured by Thin−Skin 2

 

 

Stage I Stage II Stage III

Test 1
Test 2
Test 3
Test 4

Figure A.3: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 16 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.
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Figure A.4: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 31 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.
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Figure A.5: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 46 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.



73

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time from Ignition (s)

H
ea

t F
lu

x 
(k

W
/m

2 )

Heat Flux Measured by Thin−Skin 5

 

 

Stage I Stage II Stage III

Test 1
Test 2
Test 3
Test 4

Figure A.6: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 61 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.
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Figure A.7: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 76 cm directly above the top center of the face of the tested commodity,
representing a combined convective plus radiative heat flux exerted on commodities at
higher elevations. Relative stages of burning are indicated in the figure, as described
in the caption of figure 5.6. Results for all four tests are displayed.
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Figure A.8: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 16 cm above and 14 cm to the left of the top center of the face of
the tested commodity, representing a combined convective plus radiative heat flux
exerted on commodities at higher elevations. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6. Results for all four tests are
displayed.
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Figure A.9: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 46 cm above and 14 cm to the left of the top center of the face of
the tested commodity, representing a combined convective plus radiative heat flux
exerted on commodities at higher elevations. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.
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Figure A.10: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 16 cm above and 14 cm to the right of the top center of the face of
the tested commodity, representing a combined convective plus radiative heat flux
exerted on commodities at higher elevations. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.
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Figure A.11: The heat flux measured by a vertically oriented thin-skin calorimeter
approximately 46 cm above and 14 cm to the right of the top center of the face of
the tested commodity, representing a combined convective plus radiative heat flux
exerted on commodities at higher elevations. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.
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Figure A.12: The heat flux measured by 5 vertically oriented thin-skin calorimeters
approximately 16 cm directly above the top center of the face of the tested commodity
representing a combined convective plus radiative heat flux exerted on commodities
at higher elevations in test 1. Relative stages of burning are indicated in the figure,
as described in the caption of figure 5.6.
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Figure A.13: The heat flux measured by 5 vertically oriented thin-skin calorimeters
approximately 16 cm directly above the top center of the face of the tested commodity
representing a combined convective plus radiative heat flux exerted on commodities
at higher elevations in test 2. Relative stages of burning are indicated in the figure,
as described in the caption of figure 5.6.
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Figure A.14: The heat flux measured by 5 vertically oriented thin-skin calorimeters
approximately 16 cm directly above the top center of the face of the tested commodity
representing a combined convective plus radiative heat flux exerted on commodities
at higher elevations in test 3. Relative stages of burning are indicated in the figure,
as described in the caption of figure 5.6.
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Figure A.15: The heat flux measured by 5 vertically oriented thin-skin calorimeters
approximately 16 cm directly above the top center of the face of the tested commodity
representing a combined convective plus radiative heat flux exerted on commodities
at higher elevations in test 4. Relative stages of burning are indicated in the figure,
as described in the caption of figure 5.6.
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Figure A.16: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 16 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 1. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.17: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 16 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 2. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.18: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 16 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 3. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.19: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 16 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 4. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.20: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 46 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 1. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.21: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 46 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 2. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.22: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 46 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 3. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure A.23: The heat flux measured by 3 vertically oriented thin-skin calorimeters
approximately 46 cm directly above and at center, 14 cm to the left and 14 cm to
the right of the top of the face of the tested commodity representing a combined
convective plus radiative heat flux exerted on commodities at higher elevations in
test 4. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.



Appendix B

Additional Thermocouple Data

Thermocouples were installed on the face of and within the tested commodity

along its centerline, shown in figure 5.10. Thermocouples in figure 5.10 labeled ‘A’

were located along the front face of the commodity and were embedded within the

corrugated cardboard to measure the effective location of the pyrolysis front. Figures

B.1–B.3 show the temperature measurements along the front face used to track the

progression of the pyrolysis front for the three tests in which this information is avail-

able. At approximately 100◦C a small plateau in temperatures indicates vaporization

of water moisture that was present in the corrugated cardboard. 380◦C is marked

by a horizontal dotted line in figures B.1–B.3 and indicates the approximate igni-

tion temperature of cardboard used to determine the pyrolysis location. Therefore,

where thermocouple measurements intersect this dotted line the pyrolysis front was

assumed to have reached that point. In some cases thermocouple measurements pro-

vided inconsistent data, such as TC 5 in B.2, and those measurements were not used

in calculating the location of the pyrolysis front. Most likely these errors, typically

from the top thermocouple, were caused by changes in the sample geometry during

burning that disturbed the mounted thermocouple.
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Figure B.1: Temperatures readings by thermocouples located on the front cardboard
face of the commodity in test 2. Temperatures measured determine the advancement
of the pyrolysis front over the face of the commodity, with 380 oC representing the
approximate ignition temperature of cardboard. Thermocouple 1 represents the low-
est thermocouple location, and 5 the highest. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.
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Figure B.2: Temperatures readings by thermocouples located on the front cardboard
face of the commodity in test 3. Temperatures measured determine the advancement
of the pyrolysis front over the face of the commodity, with 380 oC representing the
approximate ignition temperature of cardboard. Thermocouple 1 represents the low-
est thermocouple location, and 5 the highest. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.
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Figure B.3: Temperatures readings by thermocouples located on the front cardboard
face of the commodity in test 4. Temperatures measured determine the advancement
of the pyrolysis front over the face of the commodity, with 380 oC representing the
approximate ignition temperature of cardboard. Thermocouple 1 represents the low-
est thermocouple location, and 5 the highest. Relative stages of burning are indicated
in the figure, as described in the caption of figure 5.6.

Thermocouples were also mounted inside a vertical column of cells along the

centerline, shown in figure 5.10 as thermocouple ’B’. Because the thermocouple was

suspended in the center of the polystyrene cups and not in contact with the burning

material, the temperatures measured do not actually indicate the actual burning

temperature of polystyrene. Video footage along with temperatures within the cups

shown in figures B.7–B.9 was used to determine transition times to stage III of burning

(i.e. ignition of the polystyrene cups). It was difficult to use these temperatures alone

to determine ignition times of the polystyrene cups due to the staggered ignition of

the cups, but this data was useful to determine stage transitions when used alongside

associated video footage.
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Figure B.4: Temperatures readings by thermocouples located inside the polystyrene
cup in test 2. Temperatures measured determine the time the polystyrene cup ignites.
The temperature does not directly relate to an ignition temperature of polystyrene.
Thermocouple 1 represents the lowest thermocouple location, and 5 the highest. Rel-
ative stages of burning are indicated in the figure, as described in the caption of figure
5.6.
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Figure B.5: Temperatures readings by thermocouples located inside the polystyrene
cup in test 3. Temperatures measured determine the time the polystyrene cup ignites.
The temperature does not directly relate to an ignition temperature of polystyrene.
Thermocouple 1 represents the lowest thermocouple location, and 5 the highest. Rel-
ative stages of burning are indicated in the figure, as described in the caption of figure
5.6.
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Figure B.6: Temperatures readings by thermocouples located inside the polystyrene
cup in test 4. Temperatures measured determine the time the polystyrene cup ignites.
The temperature does not directly relate to an ignition temperature of polystyrene.
Thermocouple 1 represents the lowest thermocouple location, and 5 the highest. Rel-
ative stages of burning are indicated in the figure, as described in the caption of figure
5.6.

Thermocouples were also suspended in the air within five cells of corrugated

cardboard, shown in figure 5.10, labeled as thermocouple ’B’. Again, thermocouples

were not in direct contact with the burning material, and deducing actual tempera-

tures of burning materials or specific ignition times was too difficult and unreliable

to be performed. Evidence of the evolution of the burning process, such as higher

temperatures in stage III were observed and provide another qualitative picture of

the progression of burning internally within the commodity.
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Figure B.7: Temperatures readings by thermocouples located inside the cardboard
cell in test 2. Temperatures measured determine the time the cardboard cell reaches
flashover. The temperature does not directly relate to an ignition temperature of
cardboard. Thermocouple 1 represents the lowest thermocouple location, and 5 the
highest. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure B.8: Temperatures readings by thermocouples located inside the cardboard
cell in test 3. Temperatures measured determine the time the cardboard cell reaches
flashover. The temperature does not directly relate to an ignition temperature of
cardboard. Thermocouple 1 represents the lowest thermocouple location, and 5 the
highest. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.
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Figure B.9: Temperatures readings by thermocouples located inside the cardboard
cell in test 4. Temperatures measured determine the time the cardboard cell reaches
flashover. The temperature does not directly relate to an ignition temperature of
cardboard. Thermocouple 1 represents the lowest thermocouple location, and 5 the
highest. Relative stages of burning are indicated in the figure, as described in the
caption of figure 5.6.



Appendix C

Test of Possibility of Ventilation

Control

The Group A commodity tested is segregated into individual cardboard cells

which ignite one by one, and a baseline analysis was performed to determine if com-

bustion in each cell occured as separate enclosure fires, and if so if they were oxygen or

fuel-controlled. If it was found that combustion in the cells was oxygen-controlled, it

might be possible to estimate the expected rates of burning from the size of openings

into the cells. Using a calculation for the burning rate of an enclosure fire from P.H.

Thomas [69]

−dM

dt
' 91.67 ∗ Aw

√
Hw (C.1)

where Aw is the window area and Hw is the window height. The formula gives

the mass-loss rate in grams per second. A burning rate of approximately 20 g/s is

predicted assuming the interior of the box is burning post-flashover and is ventilation-

controlled.

During peak burning, when all exposed surfaces in the interior of the box

are combusting, a peak mass-loss rate of 5–8 g/s is observed, less than half the

predicted value if the box was ventilation controlled. This suggests that the box is

not ventilation controlled, but rather fuel controlled.

Another method of determining whether an opening is ventilation or fuel con-

trolled is provided by Thomas and Heselden [70] and shows regimes of fuel and ven-
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Figure C.1: Opening factor and predicted temperature for compartment fires of vari-
ous geometries. Regimes of fuel and ventilation controlled burning are also displayed
on the graph.

tilation controlled fires with the temperatures measured within sorted between fuel

and ventilation controlled fires based on an opening factor AT /AwH1/2. AT here is

the total area of walls, ceiling, and floor of the compartment not including Aw. For

this experiment, where the front face of the burning commodity has burned away, the

opening factor is calculated to be approximately 2.5. A diagram given by Thomas

and Heselden showing this relationship between opening factor and fuel/ventilation

control is shown in figure C.1 [22]. Based on this graph, this test fits clearly within

the fuel-controlled regime, and burning rates cannot be determined from the amount

of oxygen available to the system.
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