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ABSTRACT OF THE DISSERTATION

Algorithms For The Closest And Shortest
Vector Problems On General Lattices

by

Panagiotis Voulgaris

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Daniele Micciancio, Chair

The shortest vector problem (SVP) and closest vector problem (CVP) are

the most widely known problems on point lattices. SVP and CVP have been

extensively studied both as purely mathematical problems, being central in the

study of the geometry of numbers and as algorithmic problems, having numerous

applications in communication theory and computer science.

There are two main algorithmic techniques for solving exact SVP and CVP:

enumeration and sieving. The best enumeration algorithm was given by Kannan

in 1983 and solves both problems in nO(n) time, where n is the dimensionality of

the lattice. Sieving was introduced by by Ajtai, Kumar and Sivakumar in 2001

and lowered the time complexity of SVP to 2O(n), but required 2O(n) space and
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randomness. This result posed a number of important questions: Could we get a

deterministic 2O(n) algorithm for SVP? Is it possible to acquire a 2O(n) algorithm

for CVP?

In this dissertation we give new algorithms for SVP and CVP and resolve

these questions in the affirmative. Our main result is a deterministic Õ(22n) time

and Õ(2n) space that solves both SVP and CVP and by reductions of (Micciancio,

2008) most other lattice problems in NP considered in the literature. In the case of

CVP the algorithm improves the time complexity from nO(n) to 2O(n), while for SVP

we achieve single exponential time as sieving, but without using randomization and

improving the constant in the exponent from 2.465 (Pujol and Stehlé, 2010) to 2.

The core of the algorithm is a new method to solve the closest vector problem

with preprocessing (CVPP) that uses the Voronoi cell of the lattice (described

as intersection of half-spaces) as the result of the preprocessing function. We

also present our earlier results on sieving algorithms. Although the theoretical

analysis of the proposed sieving algorithm gives worse complexity bounds than

our new Voronoi based approach, we show that in practice sieving can be much

more efficient. We propose a new heuristic sieving algorithm that performed quite

well in practice, with estimated running time 20.52n and space complexity 20.2n.
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Chapter 1

Introduction

1.1 Lattice Problems

A d-dimensional lattice Λ can be defined as the set of all integer linear

combinations of n ≤ d linearly independent basis vectors B = [b1, . . . ,bn] ∈ Rd×n.

There are many famous algorithmic problems on point lattices, the most important

of which are:

• The shortest vector problem (SVP): given a basis B, find a shortest nonzero

vector in the lattice generated by B.

• The closest vector problem (CVP): given a basis B and a target vector t ∈ Rd,

find a lattice vector generated by B that is closest to t.

SVP and CVP have been extensively studied both as purely mathematical prob-

lems, being central in the study of the geometry of numbers [Cas71] and as algo-

rithmic problems, having numerous applications in communication theory [CS98]

and computer science. SVP and CVP have been used to solve major algorithmic

problems in combinatorial optimization (integer programming [Len83, Kan87b],

solving low density subset-sum problems [CJL+92]), algorithmic number theory

and geometry of numbers (factoring polynomials over the rationals [LLL82], check-

ing the solvability by radicals [LM85], and many more [Kan87a]) and cryptanalysis

(breaking the Merkle-Hellman cryptosystem [Odl89], and many other applications

1
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[JS98, NS01]). Finally understanding the hardness of approximating SVP is funda-

mental in evaluating the security (and applicability) of many recent lattice based

cryptosystems [Ajt04, AD97, Dwo97, Reg04a, Reg09, MR07, PW08, GPV08].

The complexity of lattice problems has been investigated intensively. SVP

and CVP have been shown to be NP-hard both to solve exactly [vEB81, Ajt98,

BS99], or even approximate within small (constant or sub-polynomial in n) approx-

imation factors [BS99, ABSS97, DKRS03, CN99, Mic01b, Kho05, HR07]. Much

effort has gone into the development and analysis of algorithms both to solve these

problems exactly [Kan87b, Hel85, HS07, Blö00, AKS01, AKS02, BN09] and to effi-

ciently find approximate solutions [LLL82, Sch88, Sch87, SE94, Sch06, GHGKN06,

GN08b].

In this dissertation we focus on the complexity of finding exact solutions to

these problems. Of course, as the problems are NP-hard, no polynomial-time so-

lution is expected to exist. Still, the complexity of solving lattice problems exactly

is interesting both because many applications (e.g., in mathematics and commu-

nication theory [CS98]) involve lattices in relatively small dimension, and because

approximation algorithms for high dimensional lattices [Sch87, SE94, GHGKN06,

GN08b] (for which exact solution is not feasible) typically involve the exact solution

of low dimensional subproblems.

1.2 Prior Work

There have been two main approaches for solving exact lattice problems:

enumeration and sieving. Enumeration algorithms, given a lattice basis B, system-

atically explore a region of space (centered around the origin for SVP, or around

the target vector for CVP) that is guaranteed to contain a nonzero shortest lattice

vector. The running time of these algorithms is roughly proportional to the number

of lattice points in that region, which, in turn depends on the quality of the input

basis. Using an LLL reduced basis [LLL82], the Fincke-Pohst enumeration algo-

rithm [Poh81] achieves complexity of 2O(n2) for both problems. This was improved

to nO(n) by Kannan in 1983 [Kan87b] using a smart basis reduction algorithm. A
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careful analysis of the algorithm in [Hel85, HS07] further reduced the complexity

to n0.184n for SVP and n0.5n for CVP and SIVP. Kannan’s algorithm from 1983

remains the best algorithm for CVP and the best deterministic algorithm for SVP.

Several other enumeration variants have been proposed (see [AEVZ02] for a sur-

vey,) including the Schnorr-Euchner enumeration method [SE94], currently used

in state of the art practical lattice reduction implementations [Sho03, PS08].

The AKS Sieve, introduced by Ajtai, Kumar and Sivakumar in [AKS01],

lowers the running time complexity of SVP to a simple exponential function 2O(n)

using randomization and 2O(n) space. We refer collectively to the algorithm of

[AKS01] and its variants as proposed in [NV08] and in this dissertation, as sieve

algorithms. In [NV08, MV10b, PS09], improved analysis and variants of the AKS

sieve are studied, but still using the same approach leading to randomized algo-

rithms. Unfortunately, the best practical variant of sieving [NV08] is outperformed

by the asymptotically inferior Schnorr-Euchner enumeration [SE94]. This discrep-

ancy between asymptotically faster algorithms and algorithms that perform well

in practice is especially unsatisfactory in the context of lattice based cryptography,

where one needs to extrapolate the running time of the best known algorithms to

ranges of parameters that are practically infeasible in order to determine appro-

priate key sizes for the cryptographic function.

Sieving algorithms posed numerous fundamental theoretical questions. Is

randomization and exponential space necessary to lower the time complexity of

SVP from nO(n) to 2O(n)? Perhaps an even more interesting question is: can we

achieve similar time complexity improvements for CVP? Extensions of the AKS

sieve algorithm for CVP have been investigated in [AKS02, BN09], but only led

to approximation algorithms which are not guaranteed (even probabilistically) to

find the best solution, except for certain very special classes of lattices [BN09]. A

possible explanation for the difficulty of extending the result of [AKS01] to the

exact solution of SIVP and CVP was offered by Micciancio in [Mic08], where it

is shown (among other things) that CVP, SIVP and all other lattice problems

considered in [BN09], with the exception of SVP, are equivalent in their exact

version under deterministic polynomial-time dimension-preserving reductions. So,
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either all of them are solvable in single exponential time 2O(n), or none of them

admits such an algorithm.

1.3 Our Results

In this dissertation we give new algorithms for SVP and CVP and resolve

most of the open theoretical open questions discussed above. Our main result

[MV10a] is a deterministic Õ(22n) time and Õ(2n) space that solves both SVP

and CVP and by reductions of [GMSS99, Mic08] most other lattice problems in

NP considered in the literature. In the case of CVP the algorithm improves the

time complexity from nO(n) [Kan87b] to 2O(n), while for SVP we achieve single

exponential time as sieving, but without using randomization and improving the

time and space complexity from 22.465n and 21.233n [PS09] to Õ(22n) and Õ(2n).

The core of the algorithm is a new method to solve the closest vector problem

with preprocessing (CVPP) that uses the Voronoi cell of the lattice (described as

intersection of half-spaces) as the result of the preprocessing function. We remark

that all our algorithms, just like [AKS01], use exponential space. So, the question

whether exponential space is required to solve lattice problems in single exponential

time remains open.

Additionally we present some of our earlier work [MV10b] on sieving algo-

rithms. We give a 23.2n time and 21.325n space sieving algorithm, improving the

Õ(25.9n)-time and Õ(22.95n)-space complexity bounds of the asymptotically best

previously known algorithm [AKS01, NV08]. The algorithm is relatively simpler

than AKS and gives an explicit connection to sphere packings which allows us to

relate the performance of sieve algorithms to well studied quantities in the theory

of spherical codes, and make use of the best bounds known to date [KL78]. Al-

though our new Voronoi algorithm gives better theoretical guarantees than sieving,

the results remain relevant because sieving can be very effective in practice. In

particular we give a heuristic variant of our sieving algorithm which in our ex-

periments outperformed standard enumeration techniques used in practice, with

running time 20.52n and space complexity 20.2n
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In the following subsections we give a fast overview of our sieving algorithms

and the basic Voronoi algorithm.

1.3.1 Sieving Algorithms

In order to describe the main idea behind our algorithms, we first recall how

the sieve algorithm of [AKS01] works. The algorithm starts by generating a large

(exponential) number of random lattice points P within a large (but bounded)

region of space. Informally, the points P are passed through a sequence of finer

and finer “sieves”, that produce shorter and shorter vectors, while “wasting” some

of the sieved vectors along the way. (The reader is referred to the original article

[AKS01] as well as the recent analysis [NV08] for a more detailed and technical

description of the AKS sieve).

While using many technical ideas from [AKS01, NV08], our algorithms

depart from the general strategy of starting from a large pool P of (initially long)

lattice vectors, and obtaining smaller and smaller sets of shorter vectors. Instead,

our algorithms start from an initially empty list L of points, and increase the length

of the list by appending new lattice points to it. In our first algorithm List Sieve,

the points in the list never change: we only keep adding new vectors to the list.

Before a new point v is added to the list, we attempt to reduce the length of v as

much as possible by subtracting the vectors already in the list from it. Reducing

new lattice vectors against the vectors already in the list allows us to prove a lower

bound on the angle between any two list points of similar norm. This lower bound

on the angle between list points allows us to apply the linear programming bound

for spherical codes of Kabatiansky and Levenshtein [KL78] to prove that the list

L cannot be too long. The upper bound on the list size then easily translates to

corresponding upper bounds on the time and space complexity of the algorithm.

Similarly to previous work [AKS01, NV08], in order to prove that the al-

gorithm produces non-zero vectors, we employ a now standard perturbation tech-

nique. Specifically, instead of generating a random lattice point v and reducing it

against the vectors already in the list, we generate a perturbed lattice point v + e

(where e is a small error vector), and reduce v + e instead. The norm of the error
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e is large enough, so that the lattice point v is not uniquely determined by v + e.

This uncertainty about v allows to easily prove that after reduction against the

list, the vector v is not too likely to be zero. Unfortunately the introduction of

errors reduces the effectiveness of sieving and increases the space complexity.

In practice, as shown in [NV08], variants of sieving algorithms without

errors, perform much better, but lack theoretical time bounds. Gauss Sieve is a

practical variant of List Sieve without errors which incorporates a new heuristic

technique. Beside reducing new lattice points v against the points already in the

list L, the algorithm also reduces the points in L against v, and against each

other. As a result, the list L has the property that any pair of vectors in L forms

a Gauss reduced basis. It follows from the properties of Gauss reduced bases that

the angle between any two list points is at least π/3, that is the list forms a good

spherical code. In particular, the list length never exceeds the kissing constant τn,

which is defined as the highest number of points that can be placed on a sphere,

while keeping the minimal angle between any two points at least π/3.1 As already

discussed, this allows to bound the space complexity of our second algorithm by

20.402n in theory, or 20.21n in practice. Unfortunately, we are unable to bound the

running time of this modified algorithm, as we don’t know how to prove that it

produces nonzero vectors. However, the algorithm seems to work very well in

practice, and outperforms the best previously known variants/implementations of

the AKS Sieve [NV08] both in theory (in terms of provable space bounds,) and in

practice (in terms of experimentally observed space and time requirements).

1.3.2 Voronoi Algorithms

At the core of all our results is a new technique for the solution of the closest

vector problem with preprocessing (CVPP). We recall that CVPP is a variant of

CVP where some side information about the lattice is given as a hint together

with the input. The hint may depend on the lattice, but not on the target vector.

Typically, in the context of polynomial time algorithms, the hint is restricted to

1 The name “kissing” constant originates from the fact that π/3 is precisely the minimal angle
between the centers of two nonintersecting equal spheres that touch (kiss) a third sphere of the
same radius.
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have polynomial size, but since here we study exponential time algorithms, one

can reasonably consider hints that have size 2O(n). The hint used by our algorithm

is a description of the Voronoi cell of the lattice. We recall that the (open) Voronoi

cell of a lattice Λ is the set V of all points (in Euclidean space) that are closer to

the origin than to any other lattice point. The Voronoi cell V is a convex body,

symmetric about the origin, and can be described as the intersection of half-spaces

Hv, where for any nonzero lattice point v, Hv is the set of all points that are closer

to the origin than to v. It is not necessary to consider all v ∈ Λ \ {0} when taking

this intersection. One can restrict the intersection to the so-called Voronoi relevant

vectors, which are the lattice vectors v such that v/2 is the center of a facet of

V . Since the Voronoi cell of a lattice can be shown to have at most 2(2n − 1)

facets, V can be expressed as a finite intersection of at most 2(2n − 1) half-spaces.

Throughout this dissertation, we assume that the Voronoi cell of a lattice is always

described by such a list of half-spaces.

The relation between the Voronoi cell and CVPP is well known, and easy

to explain. In CVPP, we want to find the lattice point v closest to a given target

vector t. It is easy to see that this is equivalent to finding a lattice vector v such

that t − v belongs to the (closed) Voronoi cell of the lattice. In other words,

CVP can be equivalently formulated as the problem of finding a point in the set

(Λ + t)∩ V̄ , where V̄ is the topological closure of V . The idea of using the Voronoi

cell to solve CVP is not new. For example, a simple greedy algorithm for CVPP

based on the knowledge of the Voronoi cell of the lattice is given in [SFS09]. The

idea behind this algorithm (called the Iterative Slicer) is to make t shorter and

shorter by subtracting Voronoi relevant vectors from it. Notice that if t /∈ H̄v,

then the length of t can be reduced by subtracting v from t. So, as long as t is

outside V̄ , we can make progress and find a shorter vector. Unfortunately, this

simple strategy to solve CVPP using the Voronoi cell is not known to perform any

better than previous algorithms. The work [SFS09] only proves that the algorithm

terminates after a finite number of iterations, and a close inspection of the proof

reveals that the best upper bound that can be derived using the methods of [SFS09]

is of the form nO(n): the running time of the Iterative Slicer is bound by a volume
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argument, counting the number of lattice points within a sphere of radius ‖t‖, and

this can be well above 2O(n) or even nO(n).

In the next two paragraphs we first sketch our new algorithm to solve CVPP

using the Voronoi cell V in time 2O(n), and then we show how to use the CVPP

algorithm to recursively implement the preprocessing function and compute the

Voronoi cell V . Since both the preprocessing and CVPP computation take time

2O(n), combining the two pieces gives an algorithm to solve CVP (and a host of

other lattice problems, like SVP, SIVP, etc.) without preprocessing.

The CVPP algorithm As already remarked, the goal of CVPP with target

vector t can be restated as the problem of finding a point t′ ∈ (Λ + t) ∩ V̄ inside

the Voronoi cell. (This point is also characterized as being a shortest vector in

the set Λ + t.) Therefore we need to find the shortest vector of the set Λ + t.

We follow an approach similar to the Iterative Slicer of [SFS09]. Given the list of

relevant vectors, the algorithm generates a sequence of shorter and shorter vectors

from Λ+ t, until it finds the shortest vector of the set. However, in order to bound

the number of iterations, we introduce two important modifications to the greedy

strategy of [SFS09]. First we reduce the general CVPP to a special case where the

target vector is guaranteed to belong to twice the Voronoi cell 2V̄ . This can be

done very easily by a polynomial time Turing reduction. Next, using properties of

the geometry of the Voronoi cell, we show that it is possible to generate a sequence

of shorter and shorter vectors in Λ + t, with the additional property that all the

vectors are inside 2V̄ . This allows to bound the length of the sequence by 2n. For

each vector of the sequence the algorithm spends Õ(2n) time, which gives a total

time complexity of Õ(22n).

Computing the Voronoi cell We have sketched how to solve CVPP, given

the Voronoi cell of the lattice. This leaves us with the problem of computing the

Voronoi cell, a task typically considered even harder than CVP. To this end, we

use a method of [AEVZ02] to compute the Voronoi cell of a lattice Λ, making 2n

calls to a CVPP oracle for the same lattice Λ. We combine this with a standard

rank reduction procedure implicit in enumeration algorithms [Kan87b, HS07]. This
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procedure allows to solve CVPP in a lattice Λ of rank n making only 2O(n) calls

to a CVPP oracle for a properly chosen sub-lattice Λ′ of rank n − 1, which can

be found in polynomial time. Combining all the pieces together we obtain an

algorithm that computes the Voronoi cell of a lattice Λ by building a sequence

of lattices Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn = Λ with rank rank(Λi) = i, and iteratively

computing the Voronoi cell of Λi+1 using the previously computed Voronoi cell of

Λi. Since each V(Λi) can be computed from V(Λi−1) is time 2O(n) (by means of

2O(n) CVPP computations, each of which takes 2O(n) time), the total running time

is 2O(n).

1.4 Related Work

Most relevant work has already been described in the introduction. Here

we mention a few more related papers and results that were inspired by our work.

The closest vector problem with preprocessing has been investigated in several

papers [Mic01a, FM03, Reg04b, CM06, AKKV05], mostly with the goal of showing

that CVP is NP-hard even for fixed families of lattices, or devising polynomial

time approximation algorithms (with super-polynomial time preprocessing). In

summary, CVPP is NP-hard to approximate for any constant (or certain sub-

polynomial) factors [AKKV05], and it can be approximated in polynomial time

within a factor
√
n [AR05], at least in its distance estimation variant. In this

dissertation we use CVPP mostly as a building block to give a modular description

of our CVP algorithm. We use CVPP to recursively implement the preprocessing

function, and then to solve the actual CVP instance. It is an interesting open

problem if a similar bootstrapping can be performed using the polynomial time

CVPP approximation algorithm of [AR05], to yield a polynomial time solution to
√
n-approximate CVP.

The problem of computing the Voronoi cell of a lattice is of fundamental

importance in many mathematics and communication theory applications. There

are several formulations of this problem. In this dissertation we consider the prob-

lem of generating the list of facets ((n−1)-dimensional faces) of the Voronoi cell, as
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done also in [AEVZ02, SFS09]. Sometimes one wants to generate the list of vertices

(i.e., zero dimensional faces), or even a complete description including all faces in

dimension 1 to n− 1. This is done in [VB96, SSV09], but it is a much more com-

plex problem, as in general the Voronoi cell can have as many as (n+ 1)! = nΩ(n)

vertices, so they cannot be computed in single exponential time. In [SSV09] it is

also shown that computing the number of vertices of the Voronoi cell of a lattice

is #P -hard.

There have been a number of papers that have used or extended our results.

In [PS09] the authors give a variation of our List Sieve algorithm with time and

space complexity 22.465n and 21.233n. A promising approach for faster heuristic

sieving is given in [WLTB], but without any experimental results. Finally in

[DPV10] the authors give an deterministic 2O(n) algorithm for SVP in any `p

norm and nn algorithm for integer programming using our Voronoi algorithm as a

subroutine.

1.5 Open Problems

We have shown that CVP, SVP, SIVP and many other lattice problems can

be solved in deterministic single exponential time. Many open problems remain.

Here we list those that we think are most important or interesting.

Our algorithm uses exponential space. It would be nice to find an algorithm

running in exponential time and polynomial, or even sub-exponential space.

Our algorithms are specific to the `2 norm. Many parts of the algorithm

easily adapt to other norms as well, but it is not clear how to extend our results to

other norms. The main technical problem is that the Voronoi cells in norms other

than `2 are not necessarily convex. So, extending the algorithm to any other norm is

likely to require some new idea. (Convexity of the Voronoi cell is used implicitly in

several parts of our proof.) An important application of extending our algorithm to

other norms is that it would immediately lead to single exponential time algorithms

for integer programming [Kan87b]. There has been some advances towards this

direction in [DPV10] where they give a deterministic 2O(n) SVP algorithm for any
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norm, however it is still unclear if CVP in other norms (or integer programming)

can be solved in 2O(n).

As we have already discussed we can solve CVP in time Õ(22n). It is an open

question if one can further decrease the constant in the exponent, with a better

analysis of the CVPP algorithm and faster algorithms for Enum2V̄ . However, it is

clear that our approach cannot possibly lead to constants in the exponent smaller

than 1 (as achieved for example by randomized heuristics for SVP [NV08, MV10b])

just because the Voronoi cell of an n-dimensional lattice can have as many as

2n facets. Still, it may be possible to extend our ideas to develop an algorithm

with running time proportional to the number of Voronoi relevant vectors. This

may give interesting algorithms for special lattices whose Voronoi cell has a small

description. Another possible research direction is to develop practical variants of

our algorithm that use only a sublist of Voronoi relevant vectors, at the cost of

producing only approximate solutions to CVP.

It would be nice to extend our algorithm to yield a single exponential time

solution to the covering radius problem, or equivalently, the problem of computing

the diameter of the Voronoi cell of a lattice. In principle, this could be done by

enumerating the vertices of the Voronoi cell, and selecting the longest, but this

would not lead to a single exponential time algorithm because the number of such

vertices can be as large as nΩ(n). No NP-hardness proof for the covering radius

problem in the `2 norm is known (but see [HR06] for NP-hardness results in `p

norm for large p). Still, the problem seems quite hard: the covering radius problem

is not even known to be in NP, and it is conjectured to be Π2-hard [Mic04, GMR05]

for small approximation factors. Counting the number of vertices of the Voronoi

cell [SSV09] or the number of lattice points of a given length [Cha07] is also known

to be #P -hard.

Concerning sieve based algorithms we identify two possible lines of research.

Firstly, improving the current algorithms. Bounding the running time of Gauss

Sieve, or getting a faster heuristic would be very interesting. Another interesting

question is whether the bound of Kabatiansky and Levenshtein [KL78] can be

improved when the lattice is known to be cyclic, or has other interesting structure.
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The second line of research is to use sieving as a subroutine for other algorithms

that currently use enumeration techniques. Our early experimental results hint

that sieving could solve SVPs in higher dimensions than we previously thought

possible. It is especially interesting for example, to examine if such a tool can give

better cryptanalysis algorithms.



Chapter 2

Preliminaries

In this chapter we give a fast exposition of the notation and the theoret-

ical background required for the following chapters. We review basic facts and

definitions about packing bounds, lattices, the Voronoi cells of lattices and the

algorithmic problems studied in this thesis. For a more in-depth discussion of the

background material the reader is referred to [MG02] for lattice theory and [CS98]

for theory on the Voronoi cells of lattices and packings.

2.1 General Notation

The d-dimensional Euclidean space is denoted Rd. We use bold lower case

letters (e.g., x) to denote vectors, and bold upper case letters (e.g., M) to denote

matrices. The ith coordinate of x is denoted xi. For a set S ⊆ Rd, x ∈ Rd and

a ∈ R, we let S + x = {y + x : y ∈ S} denote the translate of S by x, and

aS = {ay : y ∈ S} denote the scaling of S by a. The Euclidean norm (also known

as the `2 norm) of a vector x ∈ Rd is ‖x‖ = (
∑

i x
2
i )

1/2, and the associated distance

is dist(x,y) = ‖x− y‖. The linear space spanned by a set of vectors S is denoted

span(S) = {
∑

i xisi : xi ∈ R, si ∈ S}. The affine span of a set of vectors S is

defined as x + span(S−x) for any x ∈ S, and does not depend on the choice of x.

We will use φx,y to refer to the angle between the vectors x,y.

The distance function is extended to sets in the usual way: dist(x, S) =

dist(S,x) = miny∈S dist(x,y). We often use matrix notation to denote sets of vec-

13
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tors. For example, matrix S ∈ Rn×m represents the set of n-dimensional vectors

{s1, . . . , sm}, where s1, . . . , sm are the columns of S. We denote by ‖S‖ the max-

imum length of a vector in S. The linear space spanned by a set of m vectors S

is denoted span(S) = {
∑

i xisi : xi ∈ R for 1 ≤ i ≤ m}. For any set of n linearly

independent vectors S, we define the half-open parallelepiped P(S) = {
∑

i xisi :

0 ≤ xi < 1 for 1 ≤ i ≤ n}. Finally, we denote by Bn(x, r) the closed n-dimensional

Euclidean ball of radius r and center x, Bn(x, r) = {w ∈ Rn : ‖w−x‖ ≤ r}. If no

center is specified, then the center is zero Bn(r) = Bn(0, r).

We write log for the logarithm to the base 2, and logq when the base q

is any number possibly different from 2. We use ω(f(n)) to denote the set of

functions growing faster than c · f(n) for any c > 0. A function e(n) is negligible

if e(n) < 1/nc for any c > 0 and all sufficiently large n. We write f = Õ(g) when

f(n) is bounded by g(n) up to polylogarithmic factors, i.e., f(n) ≤ logc g(n) · g(n)

for some constant c and all sufficiently large n.

2.2 Packing Bounds

The following classical packing bound is required for the analysis of our

SVP algorithm of Chapter 3.

Theorem 2.2.1. (Kabatiansky and Levenshtein [KL78]). Let A(n, φ0) be the max-

imal size of any set C of points in Rn such that the angle between any two distinct

vectors in C is at least φ0. If 0 < φ0 < 63◦, then for all sufficiently large n,

A(n, φ0) ≤ 2cn for

c = −1

2
log(1− cos(φ0))− 0.099.

Notice that when φ0 = 60◦ this is equivalent to the kissing constant: τn =

A(n, 60◦) ≤ 20.401n. We remark that these upper bounds are probably not tight, as

there is no known matching lower bound. For example, for the case of the kissing

constant, the best currently known lower bounds only proves that τn > 20.2075+o(1)

[CS98].
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Figure 2.1: A two dimensional lattice and two different basis

2.3 Lattices

A d-dimensional lattice Λ of rank n is the set of all integer combinations{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rd. The set of vectors b1, . . . ,bn

is called a basis for the lattice. A basis can be represented by the matrix B =

[b1, . . . ,bn] ∈ Rd×n having the basis vectors as columns. The lattice generated

by B is denoted L(B). Notice that L(B) = {Bx : x ∈ Zn}, where Bx is the

usual matrix-vector multiplication. For any lattice basis B and point x, there

exists a unique vector y ∈ P(B) such that y − x ∈ L(B). This vector is denoted

y = x mod B, and it can be computed in polynomial time given B and x. A

sub-lattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). The Gram-Schmidt

orthogonalization of a basis B is the sequence of vectors b∗1, . . . ,b
∗
n, where b∗i is the

component of bi orthogonal to span(b1, . . . ,bi−1). The determinant of a lattice

det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped P(B)

and is given by | det(B)|.
The minimum distance of a lattice Λ, denoted λ(Λ), is the minimum dis-

tance between any two distinct lattice points, and equals the length of a nonzero
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shortest lattice vector:

λ(Λ) = min{dist(x,y) : x 6= y ∈ Λ}

= min{‖x‖ : x ∈ Λ \ {0}} .

We often abuse notation and write λ(B) instead of λ(L(B)).

The covering radius µ(Λ) of a lattice Λ, is the minimum distance r such

that, for any point p in the linear span of Λ, dist(p,Λ) ≤ r. The dual Λ× of a

lattice Λ is the set of all the vectors x in the linear span of Λ, that have integer

scalar product 〈x,y〉 =
∑

i xi · yi ∈ Z with all lattice vectors y ∈ Λ. Banaszczyk’s

transference theorem [Ban93] gives a very useful relation between the primal and

dual lattices, namely µ(Λ) · λ(Λ×) ≤ n.

2.4 Lattice Problems

In this thesis we are mostly concerned with the following problems:

• The shortest vector problem (SVP): given a basis B, find a shortest nonzero

vector in the lattice generated by B.

• The closest vector problem (CVP): given a basis B and a target vector t ∈ Rd,

find a lattice vector generated by B that is closest to t.

Our results give algorithms of several other lattice problems like the Shortest Inde-

pendent Vector Problem (SIVP), Subspace Avoiding Problem (SAP), the General-

ized Closest Vector Problem (GCVP), and the Successive Minima Problem (SMP)

considered in the lattice algorithms literature [BN09, Mic08]. The results for all

problems other than CVP are obtained in a black-box way by reduction to CVP

[Mic08], and we refer the reader to [GMSS99, BN09, Mic08] for details.

For simplicity we consider only inputs to lattice problems where all the

entries in the basis matrix B have bit size polynomial in n, i.e., log(‖B‖) = poly(n).

This allows to express the complexity of lattice problems simply as a function of

a single parameter, the lattice rank n. All the results in this thesis can be easily

adapted to the general case by introducing an explicit bound log ‖B‖ ≤ M on



17

the size of the entries, and letting the time and space complexity bound depend

polynomially in M .

2.5 Useful Lattice Algorithms

The following classical lattice algorithms are used in this thesis. The Nearest

Plane algorithm [Bab86], on input a basis B and a target vector t, finds a lattice

point v ∈ L(B) such that ‖v − t‖ ≤ (1/2)
√∑

i ‖b∗i ‖2. The LLL basis reduction

algorithm [LLL82] runs in polynomial time, and on input a lattice basis, outputs a

basis for the same lattice such that ‖b∗i+1‖2 ≥ ‖b∗i ‖2/2. (LLL reduced bases have

other properties, but this is all we need here.)

We also use stronger basis reduction algorithms than LLL. In particular,

we consider block basis reduction [GN08b, Sch87] of the dual Λ× of the input

lattice Λ. This algorithm on input a lattice basis, outputs a basis for the same

lattice such that 1/‖b∗n‖ ≤ kn/kλ(Λ×), using polynomially many queries to an

SVP oracle for k-rank lattices, with 1 < k < n. By Banaszczyk’s transference

theorem [Ban93], the inequality above gives: µ(Λ)/‖b∗n‖ ≤ nkn/k. This algorithm

is required for Chapter 6 where we use directly the last inequality, without any

further reference to the dual lattice or Banaszczyk’s theorem. For a full description

of these algorithms and the relation between primal and dual lattice bases the

reader is referred to [GN08b].

2.6 The Voronoi Cell of a Lattice

2.6.1 Definitions and Facts

The (open) Voronoi cell of a lattice Λ is the set

V(Λ) = {x ∈ Rn : ∀v ∈ Λ \ {0}.‖x‖ < ‖x− v‖}

of all points that are closer to the origin than to any other lattice point. We also

define the closed Voronoi cell V̄ as the topological closure of V

V̄(Λ) = {x ∈ Rn : ∀v ∈ Λ \ {0}.‖x‖ ≤ ‖x− v‖}.
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We omit Λ, and simply write V , when the lattice is clear from the context. The

Voronoi cell of a lattice point v ∈ Λ is defined similarly, and equals v + V . For

any (lattice) point v, define the half-space

Hv = {x : ‖x‖ < ‖x− v‖}.

Clearly, V is the intersection of Hv for all v ∈ Λ\{0}. However, it is not necessary

to consider all v. The minimal set of lattice vectors V such that V =
⋂

v∈V Hv is

called the set of Voronoi relevant vectors. The Voronoi cell V is a polytope, and

the Voronoi relevant vectors are precisely the centers of the ((n− 1) dimensional)

facets of 2V .

The following observation connects the Voronoi cell, solving CVP and find-

ing shortest vectors on cosets of the form Λ + t. These problems will be used

interchangeably throughout the paper.

Observation 2.6.1. Let Λ be a lattice, V its Voronoi cell and t, tS vectors in the

linear span of Λ. The following statements are equivalent:

1. tS is a shortest vector in the coset Λ + t

2. tS belongs to (Λ + t) ∩ V̄

3. c = t− tS is a lattice vector closest to t.

Proof. We prove that the three statements are equivalent by demonstrating the

chain of implications 1 → 2, 2 → 3 , 3 → 1. We start with the implication

1 → 2. Notice that for all v ∈ Λ, tS − v ∈ Λ + t. Therefore from 1 we get that

∀v ∈ Λ.‖tS‖ ≤ ‖tS − v‖ which is exactly the definition of the Voronoi cell. So

tS ∈ V̄ .

Next, we prove 2→ 3. If tS ∈ Λ + t∩ V̄ , then c = t− tS is a lattice vector

and t ∈ V̄+c. By definition of the Voronoi cell, this gives that c is a lattice vector

closest to t.

Finally, we show that 3 → 1. If c is a lattice vector closest to t, then

∀v ∈ Λ.‖t − c‖ ≤ ‖t − v‖. Notice that the set ∪v∈Λ{t − v} is exactly the coset

Λ + t, so tS = t− c is a shortest vector in the coset Λ + t.
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Figure 2.2: The Voronoi cell and the corresponding relevant vectors

We also need the following observation on the geometry of the Voronoi cell.

Observation 2.6.2. Let V̄ be the closed Voronoi cell of a lattice Λ and p a point

on the facet of V̄ defined by the relevant vector v, namely {x ∈ V̄ : ‖x‖ = ‖x−v‖}.
Then p− v also belongs to the Voronoi cell.

Proof. By Observation 2.6.1 we get that p is a shortest vector in the coset Λ + p.

Notice that ‖p−v‖ = ‖p‖ and the cosets Λ+p−v and Λ+p are identical. We con-

clude that p−v is a shortest vector in the coset Λ+p−v and by Observation 2.6.1

it is a point in V̄ .

2.6.2 Relevant Vectors

In this work we describe the Voronoi cell by the set of its relevant vectors.

In order to identify these vectors we use Voronoi’s classical theorem:

Theorem 2.6.3 (Voronoi, see [CS98]:). Let Λ be a lattice and v a non-zero lattice

vector. Then v is Voronoi relevant if and only if ±v are the unique shortest vectors

of the coset 2Λ + v.
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We use a number of techniques and observations derived directly from

Voronoi’s work. One of these techniques is partitioning the lattice Λ into 2n cosets

modulo 2Λ.

Observation 2.6.4. Let B be a basis for an n-rank lattice Λ. Λ can be partitioned

to exactly 2n cosets of the form CB,p = 2Λ + B · p with p ∈ {0, 1}n.

Combining Voronoi’s theorem with the observation above gives the following

corollary.

Corollary 2.6.5. Let B be a basis for an n-rank lattice Λ and the cosets CB,p as de-

fined above. If sp is a shortest vector for CB,p then the set R =
⋃

p∈{0,1}n\{0}{±sp}
contains all the relevant vectors.

Proof. Let v be a relevant vector of Λ. By Observation 2.6.4 there exists a p ∈
{0, 1}n such that v ∈ CB,p. If p 6= 0 by Voronoi’s theorem ±v are the unique

shortest vectors of CB,p, so they are exactly the vectors ±sp included in R. If

p = 0, the shortest vector of CB,0 is 0 and v cannot be a relevant vector.

Finally we need a theorem from [Hor96] that characterizes the lattice points

on the boundary of 2V̄ .

Theorem 2.6.6. Any lattice point u in the boundary of 2V̄ is a sum of relevant

vectors that are orthogonal with each other.



Chapter 3

Sieving Algorithms

In this chapter we present and analyze new algorithms for the shortest

vector problem in arbitrary lattices that both improve the best previously known

worst-case asymptotic complexity and also have the advantage of performing pretty

well in practice, thereby reducing the gap between theoretical and practical algo-

rithms. More specifically, we present:

• List Sieve: A new probabilistic algorithm that provably finds the shortest

vector in any n dimensional lattice (in the worst case, and with high proba-

bility) in time Õ(23.199n) and space Õ(21.325n) (or space 21.095n and still 2O(n)

time), improving the Õ(25.9n)-time and Õ(22.95n)-space complexity bounds of

the asymptotically best previously known algorithm [AKS01, NV08], and

• Gauss Sieve: A practical variant of List Sieve that admits much better space

bounds, and outperforms the best previous practical implementation [NV08]

of the AKS sieve [AKS01].

The space complexity of our second algorithm can be bounded by Õ(τn),

where τn is the so called “kissing” constant in n-dimensional space, i.e., the max-

imum number of equal n-dimensional spheres that can be made to touch another

sphere, without touching each other. The best currently known lower and upper

bounds on the kissing constant are 2(0.2075+o(1))n < τn < 2(0.401+o(1))n [CS98]. Based

on these bounds we can conclude that the worst-case space complexity of our sec-

ond algorithm is certainly bounded by 20.402n. Moreover, in practice we should

21
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expect the space complexity to be near 20.21n, because finding a family of lattices

for which the algorithm uses more than 20.21n space would imply denser arrange-

ments of hyperspheres than currently known, a long standing open problem in the

study of spherical codes. So, input lattices for which our algorithm uses more than

20.21n space either do not exist (i.e., the worst-case space complexity is 20.21n), or

do not occur in practice because they are very hard to find. The practical experi-

ments reported in Section 3.4 are consistent with our analysis, and suggest that the

space complexity of our second algorithm is indeed near 20.21n. Unfortunately, we

are unable to prove any upper bound on the running time of our second algorithm,

but our experiments suggest that the algorithm runs in time 20.52n.

The rest of the chapter is organized as follows. In Section 3.1 we give an

overview of our new algorithms and our contribution. In Section 3.2 we describe

our new algorithms and state theorems about their complexity. Section 3.3 gives

the proof for the time and space complexity asymptotic bounds, while Section 3.4

contains our experimental results.

3.1 Overview

In order to describe the main idea behind our algorithms, we first recall how

the sieve algorithm of [AKS01] works. The algorithm starts by generating a large

(exponential) number of random lattice points P within a large (but bounded)

region of space. Informally, the points P are passed through a sequence of finer

and finer “sieves”, that produce shorter and shorter vectors, while “wasting” some

of the sieved vectors along the way. (The reader is referred to the original article

[AKS01] as well as the recent analysis [NV08] for a more detailed and technical

description of the AKS sieve.)

While using many technical ideas from [AKS01, NV08], our algorithms

depart from the general strategy of starting from a large pool P of (initially long)

lattice vectors, and obtaining smaller and smaller sets of shorter vectors. Instead,

our algorithms start from an initially empty list L of points, and increase the length

of the list by appending new lattice points to it. In our first algorithm List Sieve,
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Figure 3.1: Reducing two points p1,p2 with the list {v1,v2,v3,v4}

the points in the list never change: we only keep adding new vectors to the list.

Before a new point v is added to the list, we attempt to reduce the length of v as

much as possible by subtracting the vectors already in the list from it. Reducing

new lattice vectors against the vectors already in the list allows us to prove a lower

bound on the angle between any two list points of similar norm. This lower bound

on the angle between list points allows us to apply the linear programming bound

for spherical codes of Kabatiansky and Levenshtein [KL78] to prove that the list

L cannot be too long. The upper bound on the list size then easily translates to

corresponding upper bounds on the time and space complexity of the algorithm.

Similarly to previous work [AKS01, NV08], in order to prove that the al-

gorithm produces non-zero vectors, we employ a now standard perturbation tech-

nique. Specifically, instead of generating a random lattice point v and reducing it

against the vectors already in the list, we generate a perturbed lattice point v + e

(where e is a small error vector), and reduce v + e instead. The norm of the error

e is large enough, so that the lattice point v is not uniquely determined by v + e.

This uncertainty about v allows to easily prove that after reduction against the

list, the vector v is not too likely to be zero. Unfortunately the introduction of

errors reduces the effectiveness of sieving and increases the space complexity.
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In practice, as shown in [NV08], variants of sieving algorithms without

errors, perform much better, but lack theoretical time bounds. Gauss Sieve is a

practical variant of List Sieve without errors which incorporates a new heuristic

technique. Beside reducing new lattice points v against the points already in the

list L, the algorithm also reduces the points in L against v, and against each

other. As a result, the list L has the property that any pair of vectors in L forms

a Gauss reduced basis. It follows from the properties of Gauss reduced bases that

the angle between any two list points is at least π/3, that is the list forms a good

spherical code. In particular, the list length never exceeds the kissing constant τn,

which is defined as the highest number of points that can be placed on a sphere,

while keeping the minimal angle between any two points at least π/3.1 As already

discussed, this allows to bound the space complexity of our second algorithm by

20.402n in theory, or 20.21n in practice. Unfortunately, we are unable to bound the

running time of this modified algorithm, as we don’t know how to prove that it

produces nonzero vectors. However, the algorithm seems to work very well in

practice, and outperforms the best previously known variants/implementations of

the AKS Sieve [NV08] both in theory (in terms of provable space bounds,) and in

practice (in terms of experimentally observed space and time requirements).

3.1.1 Contribution

Our contribution is both analytical and algorithmic. On the analytical

side, we explicitly introduce the use of sphere packing bounds in the study of sieve

algorithms for lattice problems. Such usage was already implicit in previous work,

but somehow obfuscated by the complexity of previous algorithms and analyses.

Our simpler algorithms and explicit connection to sphere packings, allows us to

relate the performance of sieve algorithms to well studied quantities in the theory

of spherical codes, and make use of the best bounds known to date [KL78]. We

remark that these bound are broadly applicable, and can be used to improve the

analysis of previous sieving algorithms [AKS01, NV08] as well. However, this is

1 The name “kissing” constant originates from the fact that π/3 is precisely the minimal angle
between the centers of two nonintersecting equal spheres that touch (kiss) a third sphere of the
same radius.



25

not the only source of improvement. In Section A.1 we sketch how to apply sphere

packing bounds to the analysis of the original sieve algorithm [AKS01, NV08],

and show that, even using the powerful linear programming bound of [KL78], only

yields provable space and time complexity bounds approximately equal to 21.97n

and 23.4n, which is still worse than the performance of our theoretical algorithm

by an exponential factor.

On the algorithmic side, we introduce a new sieving strategy, as described

in the previous section. While at first sight the new strategy may look like a

simple reordering of the instructions executed by the original sieve of Ajtai, Kumar

and Sivakumar [AKS01], there are deeper algorithmic differences that lead to a

noticeable reduction in both the provable space and time complexity. The main

source of algorithmic improvement is the way our new sieving strategy deals with

useless points, i.e., samples that potentially yield zero vectors in the original sieve.

In our algorithms these vectors are immediately recognized and discarded. In

the original sieve algorithm these vectors are generated at the outset, and remain

undetected during the entire execution, until the algorithm reaches its final stage.

Both in the analysis of [AKS01, NV08] and in this chapter, such useless points

are potentially an overwhelming fraction of all samples, leading to a noticeable

difference in performance.

3.2 Algorithms

In this section we describe our two algorithms for the shortest vector prob-

lem. For simplicity we assume that these algorithms:

• take as input a square basis B ∈ Nn×n,

• a parameter µ ∈ [λ1(B), 1.01 · λ1(B)] which approximates the length of the

shortest nonzero lattice vector within a constant factor 1.01, and

• are only required to produce a nonzero lattice vector of length bounded by

µ, possibly larger than λ1.
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This is without loss of generality because any such algorithm can be turned, using

standard techniques, into an algorithm that solves SVP exactly by trying only

polynomially many possible values for µ.

In Section 3.2.1, we describe List Sieve, while in Section 3.2.2 we give the

Gauss Sieve, a practical variant of the List Sieve with much better provable worst-

case space complexity bound Õ(τn), where τn is the kissing constant in dimension

n.

3.2.1 The List Sieve

Algorithm 3.1: The List Sieve Algorithm

function ListSieve(B, µ)

L← {0}, δ ← 1− 1/n

ξ ← 0.685, K ← 2cn . The choice of ξ, c is explained in the analysis

for i = 0 to K do

(pi, ei)← Sample(B, ξµ)

vi ← ListReduce (pi, L, δ)− ei

if (vi 6∈ L) then

if ∃vj ∈ L : ‖vi − vj‖ ≤ µ then

return vi − vj

L← L ∪ {vi}

return ⊥

function Sample(B, d)

e
$← Bn(d)

p← e mod B

return (p, e)

function ListReduce(p, L, δ)

while (∃vi ∈ L : ‖p− vi‖ ≤ δ‖p‖) do

p← p− vi

return p
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The List Sieve algorithm works by iteratively building a list L of lattice

points. At every iteration, the algorithm attempts to add a new point to the

list. Lattice points already in the list are never modified or removed. The goal of

the algorithm is to produce shorter and shorter lattice vectors, until two lattice

vectors within distance µ from each other are found, and a lattice vector achieving

the target norm can be computed as the difference between these two vectors.

At every iteration, a new lattice point is generated by first picking a (somehow

random, in a sense to be specified) lattice point v, and reducing the length of v

as much as possible by repeatedly subtracting from it the lattice vectors already

in the list L when appropriate. Finally, once the length of v cannot be further

reduced, the vector v is included in the list.

The main idea behind our algorithm design and analysis is that reducing v

with the vector list L ensures that no two points in the list are close to each other.

2 We use this fact to bound from below the angle between any two list points of

similar norm and use Theorem 2.2.1 to prove an upper bound on the size of the list

L. This immediately gives upper bounds on the space complexity of the algorithm.

Moreover, if at every iteration we were to add a new lattice point to the list, we

could immediately bound the running time of the algorithm as roughly quadratic

in the list size, because the size of L would also be an upper bound on the number

of iterations, and each iteration takes time proportional3 to the list size |L|. The

problem is that some iterations might give collisions, lattice vectors v that already

belong to the list. These iterations leave the list L unchanged, and as a result they

just waste time. So the main hurdle in the time complexity analysis is bounding

the probability of getting collisions.

This is done using the same method as in the original sieve algorithm

[AKS01]: instead of directly working with a lattice point v, we use a perturbed

version of it p = v + e, where e is a small random error vector of length ‖e‖ ≤ ξµ

for an appropriate value of ξ > 0.5. As before the length of p is reduced using list

points, but instead of adding p to the list we add the corresponding lattice vector

2This is because if v is close to a list vector u ∈ L, then u is subtracted from v before v is
considered for inclusion in the list.

3Each iteration involves a small (polynomial) number of scans of the current list L.
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v = p− e. We will see that some points p = v1 + e1 = v2 + e2 correspond to two

different lattice points v1, v2 at distance precisely ‖v1 − v2‖ = λ1(B) from each

other. For example, if s is the shortest nonzero vector in the lattice, then setting

p = −e1 = e2 = s/2 gives such a pair of points v1 = 0,v2 = s. The distance

between two points in L is greater than µ or else the algorithm terminates and as a

result at most one of the possible lattice vectors v1,v2 is in the list. This property

can be used to get an upper bound on the probability of getting a collision.

Unfortunately the introduction of perturbations comes at a cost. As we

have discussed above, sieving produces points that are far from L and as a result

we can prove a lower bound on the angles between points of similar norm. Indeed

after sieving with L the point p will be far from any point in L. However the point

that is actually added to the list is v = p− e which can be closer to L than p by

as much as ‖e‖ ≤ ξµ. That makes the resulting bounds on the angles worse. This

worsening gets more and more significant as the norm of the points gets smaller.

Fortunately we can also bound the distance between points in L by µ, which gives

a good lower bound on the angles between shorter points. The space complexity

of the algorithm is determined by combining these two bounds to obtain a global

bound on the angle between any two points of similar norm, for any possible norm.

The complete pseudo-code of the List Sieve is given as Algorithm 3.1. Here

we explain the main operations performed by the algorithm.

Sampling. The pair (p, e) is chosen picking e uniformly at random within a

ball of radius ξµ, and setting p = e mod B. This ensures that, by construction,

the ball B(p, ξµ) contains at least one lattice point v = p − e. Moreover, the

conditional distribution of v (given p) is uniform over all lattice points in this ball.

Notice also that for any ξ > 0.5, the probability that B(p, ξµ) contains more than

one lattice point is strictly positive: if s is a lattice vector of length λ1(B), then

the intersection of B(0, ξµ) and B(s, ξµ) is not empty, and if e falls within this

intersection, then both v and v + s are within distance ξµ from p.

List reduction. The vector p is reduced by subtracting (if appropriate) lattice

vectors in L from it. The vectors from L can be subtracted in any order. Our
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analysis applies independently from the strategy used to choose vectors from L.

For each v ∈ L, we subtract v from p only if ‖p−v‖ < ‖p‖. Notice that reducing

p with respect to v may make p no longer reduced with respect to some other

v′ ∈ L. So, all list vectors are repeatedly considered until the length of p can no

longer be reduced. Since the length of p decreases each time it gets modified, and

p belongs to a discrete set L(B) − e, this process necessarily terminates after a

finite number of operations. In order to ensure fast termination, as in the LLL

algorithm, we introduce a slackness parameter δ < 1, and subtract v from p only

if this reduces the length of p by at least a factor δ. As a result, the running

time of each invocation of the list reduction operation is bounded by the list size

|L| times the logarithm (to the base 1/δ) of the length of p. For simplicity, we

take δ(n) = 1− 1/n, so that the number of iterations is bounded by a polynomial

log(n‖B‖)/ log(1− 1/n)−1 = nO(1).

Termination. When the algorithm starts it computes the maximum number K

of samples it is going to use. If a lattice vector achieving norm at most µ is not

found after reducing K samples, the algorithm outputs ⊥. In Section 3.3 we will

show how to choose K so that if λ1(B) ≤ µ ≤ 1.01λ1(B) the algorithm finds a

vector with norm bounded by µ with probability exponentially close to 1.

Now we are ready to state our main theorem.

Theorem 3.2.1. Let ξ be a real number such that 0.5 < ξ < 0.7 and c1(ξ) =

log(ξ +
√
ξ2 + 1) + 0.401, c2(ξ) = 0.5 log(ξ2/(ξ2 − 0.25)). List Sieve solves SVP

in the worst case, with probability exponentially close to 1, in space Õ(2c1n), and

time Õ(2(2·c1+c2)n).

Proof. Immediately follows from Theorem 3.3.3 and Theorem 3.3.1, proved in Sec-

tion 3.3.

Setting the parameter ξ: A smaller ξ gives smaller perturbations and reduces

the space complexity. On the other hand we need ξ > 0.5 to bound the collision

probability and consequently the running time. By choosing ξ arbitrarily close to
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0.5, we can achieve space complexity 2cn for any c > log((1 +
√

5)/2) + 0.401 ≈
1.095, and still keep exponential running time 2O(n), but with a large constant

in the exponent. At the cost of slightly increasing the space complexity, we can

substantially reduce the running time. The value of ξ that yields the best running

time is ξ ' 0.685 which yields space complexity < 21.325n and time complexity

< 23.199n.

3.2.2 The Gauss Sieve

Algorithm 3.2: The Gauss Sieve Algorithm

function GaussSieve(B, µ)

L← {0}, S ← { }, K ← 0

while K < c do

if S is empty then

S.push( SampleKlein(B) )

vnew ←GaussReduce(S.pop(), L, S)

if (vnew = 0) then

K ← K + 1

else

L← L ∪ {vnew}

return Shortest vector of L.

function GaussReduce(p, L, S)

while (∃vi ∈ L : ‖vi‖ ≤ ‖p‖ ∧ ‖p− vi‖ ≤ ‖p‖) do

p← p− vi

while (∃vi ∈ L : ‖vi‖ > ‖p‖ ∧ ‖vi − p‖ ≤ ‖vi‖) do

L← L \ {vi}
S.push(vi − p)

return p

As we have discussed in the previous section the introduction of pertur-

bations substantially increases the space requirements. In an attempt to make
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sieving algorithms practical Nguyen and Vidick in [NV08] have proposed a heuris-

tic variant of AKS that does not use perturbations. Their experiments show that

in practice collisions are not common and the algorithm performs quite well. We

also introduce a practical variant of our algorithm without perturbations which we

call the Gauss Sieve.

The Gauss Sieve follows the same general approach of building a list of

shorter and shorter lattice vectors, but when a new vector v is added to the list,

not only we reduce the length of v using the list vectors, but we also attempt to

reduce the length of the vectors already in the list using v. In other words, if

min(‖v±u‖) < max(‖v‖, ‖u‖), then we replace the longer of v,u with the shorter

of v±u. As a result, the list L always consists of vectors that are pairwise reduced,

i.e., they satisfy the condition min(‖u±v‖) ≥ max(‖u‖, ‖v‖). This is precisely the

defining condition of reduced basis achieved by the Gauss/Lagrange basis reduction

algorithm for two dimensional lattices, hence the name of our algorithm.

It is well known that if u,v is a Gauss reduced basis, then the angle between

u and v is at least π/3 (or 60 degrees). As a result, the maximum size of the list

(and space complexity of the algorithm) can be immediately bounded by the kissing

number τn. Unfortunately, we are unable to prove any bounds on the probability

of collisions or the running time. Notice that collisions are problematic because

they reduce the list size, possibly leading to nonterminating executions that keep

adding and removing vectors from the list. In practice (see experimental results in

Section 3.4) this does not occur, and the running time of the algorithm seems to

be between quadratic and cubic in the list size, but we do not know how to prove

any worst-case upper bound.

As in [NV08], we do not use perturbations, and just choose p = v at random

using Klein’s randomized rounding algorithm [Kle00] (denoted SampleKlein in the

description of the algorithm). However since we cannot prove anything about run-

ning time, the choice of sampling algorithm is largely arbitrary. In the context

of the Gauss Sieve, not using perturbation has the main practical advantage of

allowing to work with lattice points only. This allows an integer only implementa-

tion of the algorithm (except possibly for the sampling procedure which may still
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internally use floating point numbers).

The Gauss Sieve pseudo-code is shown as Algorithm 3.2. The algorithm

uses a stack or queue data structure S to temporarily remove vectors from the list

L. When a new point v is reduced with L, the algorithm checks if any point in

L can be reduced with v. All such points are temporarily removed from L, and

inserted in S for further reduction. The Gauss Sieve algorithm reduces the points

in S with the current list before inserting them in L. When the stack S is empty,

all list points are pairwise reduced, and the Gauss Sieve can sample a new lattice

point v for insertion in the list L. Unfortunately, we cannot bound the number

of samples required to find a nonzero shortest vector with high probability. As a

result we have to use a heuristic termination condition. Based on experiments a

good heuristic is to terminate after a certain number c(n) of collisions has occurred

(see section 3.4).

3.3 Analysis of List Sieve

In this section we prove time and space upper bounds for the List Sieve

algorithm, assuming it is given as a hint a value µ such that λ1 ≤ µ ≤ 1.01 ·λ1. In

subsection 3.3.1 we use the fact that the list points are far apart to get an upper

bound N on the list size. Then in subsection 3.3.2 we prove that collisions are not

too common. We use this fact to prove that after a certain number of samples are

processed, the algorithm finds a nonzero vector with norm less than or equal to µ

with high probability.

3.3.1 Space complexity

Theorem 3.3.1. The number of points in L is bounded from above by N =

poly(n) · 2c1n where

c1 = log(ξ +
√
ξ2 + 1) + 0.401.

Proof. Let B be the input basis, and µ be the target length of the List Sieve

algorithm. Notice that as soon as the algorithm finds two lattice vectors within

distance µ from each other, the algorithm terminates. So, the distance between
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any two points in the list L must be greater than µ. In order to bound the size of

L, we divide the list points into groups, according to their length, and bound the

size of each group separately. Consider all list points belonging to a ball of radius

µ/2

S0 = L ∩ B(µ/2).

Clearly S0 has size at most 1, because the distance between any two points in

B(µ/2) is bounded by µ. Next, divide the rest of the space into a sequence of

spherical shells

Si = {v ∈ L : γi−1µ/2 < ‖v‖ ≤ γiµ/2}

for i = 1, 2, . . . and γ = 1+1/n. Notice that we only need to consider a polynomial

number of spherical shells logγ(2n‖B‖/µ) = O(nc), because all list points have

length at most n‖B‖. We will prove an exponential bound on the number of

points in each spherical shell. The same bound holds (up to polynomial factors)

for the total number of points in the list L.

So, fix a spherical shell Si = {v ∈ L : R < ‖v‖ ≤ γR} for some R =

γi−1µ/2. Consider two arbitrary points va,vb ∈ Si and let φva,vb
be the angle

between them. We will show that

cos(φva,vb
) ≤ 1− 1

2(ξ +
√
ξ2 + 1)2

+ o(1). (3.1)

The upper bound on cos(φ) is greater than 0.5. (Equivalently the minimum angle

is less than 60◦.) Therefore, we can safely use Theorem 2.2.1 with the bound (3.1),

and conclude that the number of points in Si is at most 2c1n where

c1 = −1

2
log(1− cos(φ))− 0.099

≤ log
(√

2(ξ +
√
ξ2 + 1)

)
− 0.099

= log(ξ +
√
ξ2 + 1) + 0.401.

as stated in the theorem. It remains to prove (3.1).

We use the fact that

cos(φva,vb
) =

va · vb
‖va‖‖vb‖

, (3.2)
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to transform any upper bound on va · vb into a corresponding upper bound on

cos(φva,vb
). We give two bounds on va · vb. First remember that ‖va − vb‖ > µ.

Squaring the terms yields va · vb < (v2
a + v2

b − µ2)/2 and we can use (3.2) to get

cos(φva,vb
) ≤ v2

a + v2
b − µ2

2‖va‖‖vb‖

≤ v2
a + v2

b

2‖va‖‖vb‖
− µ2

2‖va‖‖vb‖
.

Since R < ‖va‖, ‖va‖ ≤ γR = (1 + o(1))R, we get

cos(φva,vb
) ≤ 1− µ2

2R2
+ o(1). (3.3)

Notice that this bound is very poor when R is large. So, for large R, we bound va·vb
differently. Without loss of generality, assume that vb was added after va. As a

result the perturbed point pb = vb+eb was reduced with va, i.e., ‖pb−va‖ > δ‖pb‖.
After squaring we get pb · va < ((1− δ2)p2

b + v2
a)/2 and therefore

va · vb = va · pb − va · eb

< ((1− δ2)p2
b + v2

a)/2 + ‖va‖ξµ.

Using (3.2) gives

cos(φva,vb
) ≤ (1− δ2)p2

b + v2
a

2‖va‖‖vb‖
+
‖va‖ξµ
‖va‖‖vb‖

.

Since 1− δ2 = o(1), we get

cos(φva,vb
) ≤ 1

2
+
ξµ

R
+ o(1). (3.4)

Combining the two bounds on cos(φva,vb
) we get

cos(φva,vb
) ≤ min

{
1− µ2

2R2
,
1

2
+
ξµ

R

}
+ o(1). (3.5)

As R increases, the first bound gets worse and the second better. So, the minimum

(3.5) is maximized when

1− µ2

2R2
=

1

2
+
ξµ

R
.

This is a quadratic equation in x = µ/R, with only one positive solution

µ

R
=
√

1 + ξ2 − ξ =
1

ξ +
√

1 + ξ2
,

which, substituted in (3.5), gives the bound (3.1).
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3.3.2 Time Complexity

In this subsection we prove bounds on the running time and success proba-

bility of our algorithm. We recall that the List Sieve samples random perturbations

ei from Bn(ξµ), sets pi = ei mod B and reduces pi with the list L. Then it con-

siders the lattice vector vi = pi− ei. At this point, one of the following (mutually

exclusive) events occurs:

• Event C: vi is a collision (dist(L,vi) = 0, i.e., vi ∈ L)

• Event S: vi is a solution (0 < dist(L,vi) ≤ µ).

• Event L: vi is a new list point (dist(L,vi) > µ)

We will prove that if λ1(B) ≤ µ ≤ 1.01λ1(B), event S will happen with high

probability after a certain number of samples.

We first give a lower bound to the volume of a hypersphere cap (an alter-

native proof is given in [NV08]), which will be used to bound the probability of

getting collisions.

Lemma 3.3.2. Let CapR,h be the n-dimensional spherical cap with height h of a

hypersphere Bn(R) and set Rb =
√

2hR− h2. Then we have that:

Vol(CapR,h)

Vol(Bn(R))
>

(
Rb

R

)n
· h

2Rbn
.

Proof. The basis of CapR,h is an n − 1 dimensional hypersphere of radius Rb =
√

2hR− h2. Therefore CapR,h includes a cone C1 with basis Bn−1(Rb) and height

h. Also notice that a cylinder C2 with basis Bn−1(Rb) and height 2 · Rb includes

Bn(Rb). Using the facts above we have:

Vol(CapR,h) > Vol(C1) = Vol(Bn−1(Rb))
h

n
=

Vol(C2)
h

2Rbn
> Vol(Bn(Rb))

h

2Rbn
.

Therefore

Vol(CapR,h)

Vol(Bn(R))
>

Vol(Bn(Rb))

Vol(Bn(R))
· h

2Rbn
=

(
Rb

R

)n
· h

2Rbn
.



36

In the following theorem we assume ξ < 0.7 as this yields a slightly simpler

proof, and the values of ξ that optimize the space and time complexity of our

algorithm satisfy this constraint anyway. The theorem remains valid for larger

values of ξ.

Theorem 3.3.3. If λ1(B) ≤ µ ≤ 1.01λ1(B) and 0.5 < ξ < 0.7 then List Sieve

outputs a lattice point with norm ≤ µ with probability exponentially close to 1 as

long as the number of samples used is at least K = Õ(2(c1+c2)n), where

c1 = log(ξ +
√
ξ2 + 1) + 0.401, c2 = log

(
ξ√

ξ2 − 0.25

)
.

Proof. Let s be a shortest nonzero vector in L(B). Consider the intersection of two

n-dimensional balls of radius ξµ and centers 0 and −s: I0 = Bn(0, ξµ)∩Bn(−s, ξµ)

and also I1 = Bn(0, ξµ) ∩ Bn(s, ξµ) = I0 + s. Notice that ξµ ≤ 0.707λ1(B) < ‖s‖
and as a result I0 and I1 do not intersect.

Consider an error vector ei in I0∪I1, and the corresponding perturbed point

p = v + ei generated by the list reduction procedure. The conditional distribution

of v given p, is uniform over the lattice points in p− I0 ∪ I1. We know that this

set contains at least one lattice point v = p − ei. Moreover, if v ∈ p − Ib, then

v− (−1)bs ∈ p− I1−b. Finally, notice that the diameter of each p− Ib is bounded

by

2
√

(ξµ)2 − λ2
1/4 ≤ 2

√
0.7072 − 0.25λ1 < λ1.

It follows that v and v′ = v− (−1)bs are the only two lattice vectors in p− I0∪ I1,

and at most one of them belongs of L because ‖v − v′‖ = λ1 ≤ µ. This proves

that, conditioned on ei ∈ I0 ∪ I1, the probability that v ∈ L is at most 1/2:

Pr[C|ei ∈ I0 ∪ I1] ≤ 1/2.

Now notice that I ∪ I ′ contains four disjoint caps with height h = ξµ −
‖s‖/2 ≥ ξµ− µ/2 on an n-dimensional ball of radius ξµ. We use Lemma 3.3.2 to
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bound from below the probability that ei ∈ I0 ∪ I1:

Pr[ei ∈ I0 ∪ I1] =
4Vol(Capξµ,ξµ−0.5µ)

Vol(Bn(ξµ))

>

(√
ξ2 − 0.25

ξ

)n

· ξ − 0.5

n
√
ξ2 − 0.25

= 2−c2n · ξ − 0.5

n
√
ξ2 − 0.25

.

Therefore the probability of not getting a collision is bounded from below by

Pr[C’] ≥ Pr[C’|ei ∈ I ∪ I ′]Pr[ei ∈ I ∪ I ′]

≥ 2−c2n · ξ − 0.5

2n
√
ξ2 − 0.25

= p.

Now given that the probability of event C’ is at least p, the number of occurrences

of C’ when K samples are processed is bounded from below by a random variable

X following binomial distribution Binomial(K, p). Let F (N ;K, p) = Pr[X ≤ N ]

the probability of getting no more than N occurrences of C’ after K samples. If

we set K = 2Np−1 = Õ(2(c1+c2)n) we can use Chernoff’s inequality:

F (N ;K, p) ≤ exp

(
− 1

2p

(Kp−N)2

K

)
= exp

(
−N

4

)
≤ 1

2O(n)
.

As a result if List Sieve uses K samples, then, with exponentially high probability,

at least N + 1 of them will not satisfy event C. These events can either be L or S

events. However the list size cannot grow beyond N , and as a result the number

of L events can be at most N . So event S will happen at least once with high

probability.

Theorem 3.3.3 is used to set the variable K in the List Sieve algorithm,

in order to ensure success probability exponentially close to 1. A bound on the

running time of the algorithm immediately follows.

Corollary 3.3.4. The total running time of the algorithm is 2(2·c1+c2)n where c1, c2

are as in theorem 3.3.3.
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Proof. Let us consider the running time of List Reduce. After every pass of the

list L the input vector pi to List Reduce gets shorter by a factor δ. Therefore the

total running time is logδ(‖B‖n) = poly(n) passes of the list and each pass costs

O(N) vector operations, each computable in polynomial time. Now notice that

our algorithm will run List Reduce for K samples. This gives us total running

time of Õ(K ·N) = Õ(2(2c1+c2)n).

3.4 Practical performance of Gauss Sieve

In this section we describe some early experimental results on Gauss Sieve.

We will describe the design of our experiments and then we will discuss the results

on the space and time requirements of our algorithm.

Experiment setting: For our experiments we have generated square n×n bases

corresponding to random knapsack problems modulo a prime of ' 10·n bits. These

bases are considered “hard” instances and are frequently used in the experimental

evaluation of lattice algorithms [NV08, GN08a]. In our experiments we used Gauss

Sieve, the NV Sieve implementation from [NV08] and the NTL library for standard

enumeration techniques [SE94]. For every n = 35, . . . , 63 we generated 6 random

lattices, reduced them using BKZ with window 20, and measured the average space

and time requirements of the algorithms. For sieving algorithms the logarithms of

these measures grow almost linearly with the dimension n. We use a simple model

of 2cn to fit our results and we use least squares estimation to compute c. We

run our experiments on a Q6600 Pentium, using only one core, and the algorithms

were compiled with exactly the same parameters. The experiments are certainly

not exhaustive, however we believe that they are enough to give a sense of the

practical performance of our algorithm, at least in comparison to previous sieving

techniques.

Termination of Gauss Sieve: As we have already discussed we cannot bound

the number of samples required by Gauss Sieve to find a nonzero shortest vector
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with high probability. A natural termination condition is to stop after a certain

number c of collisions. In order to get an estimate for a good value of c, we measured

the number of collisions before a nonzero shortest vector is found. Although the

number of collisions vary from lattice to lattice we have found that setting c to be

let’s say a ' 10% of the list size, is a conservative choice. The results that follow

are based on this termination condition. Gauss Sieve found the nonzero shortest

vector for 173 out of the 174 of the lattices we tested. Interestingly enough the

failure was for dimension 38, and can be probably attributed to the very short list

size used by the Gauss Sieve in small dimension.

Size complexity: To evaluate the size complexity of the Gauss Sieve we measure

the maximum list size. (We recall that in the Gauss Sieve the list can both grow

and shrink, as list points collide with each other. So, we consider the maximum list

size during each run, and then average over the input lattice.) Our experiments

show that the list size grows approximately as 20.2n. This is consistent with our

theoretical worst-case analysis, which bounds the list size by the kissing constant

τn. Recall that τn can be reasonably conjectured to be near 20.21n. The actual

measured exponent 0.2 may depend on the input lattice distribution, and it would

be interesting to run experiments on other distributions. However, in all cases, we

expect the space complexity to be below 20.21n. Gauss Sieve improves NV Sieve

results in two ways:

• Theory: Our τn bound is proven under no heuristic assumptions, and gives

an interesting connection between sieving techniques and spherical coding.

• Practice: In practice Gauss Sieve uses far fewer points (e.g., in dimension n '
40, the list size is smaller approximately by a factor ' 70). See Figure 3.4.

Running time: Fitting the running time with our simple model 2cn gives c =

0.52, which is similar to the experiments of NV Sieve. However once more Gauss

Sieve is better in practice. For example, in dimension ' 40, the 70-fold improve-

ment on the list size, gives a 250× running time improvement. In Figure 3.4 we

also give the running time of the Schnorr-Euchner (SE) enumeration algorithm as
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implemented in NTL.4 This preliminary comparison with SE is meant primarily to

put the comparison between sieve algorithms in perspective. In [NV08], Nguyen

and Vidick had compared their variant of the sieve algorithm with the same im-

plementation of SE used here, and on the same class of random lattices. Their

conclusion was that while sieve algorithms have better asymptotics, the SE algo-

rithm still reigned in practice, as the cross-over point is way beyond dimension

n ' 50, and their algorithm was too expensive to be run in such high dimension.

Including our sieve algorithm in the comparison, changes the picture quite a bit:

the crossover point between the Gauss Sieve and the Schnorr-Euchner reference

implementation used in [NV08] occurs already in dimension n ' 40.

This improved performance shows that sieve algorithms have the poten-

tial to be used in practice as an alternative to standard enumeration techniques.

Although currently sieving algorithms cannot compare with more advanced enu-

meration heuristics (e.g., pruning), we hope that it is possible to develop similar

4The running time of enumeration algorithms, is greatly affected by the quality of the initial
basis. To make a fair comparison we have reduced the basis using BKZ with window 20.
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heuristics for sieve algorithms. The development of such heuristics, and a thorough

study of how heuristics affect the comparison between enumeration and sieving,

both in terms of running time and quality of the solution, is left to future research.

3.5 Extensions

An interesting feature common to all sieve algorithms is that they can

be slightly optimized to take advantage of the structure of certain lattices used in

practical cryptographic constructions, like the NTRU lattices [HPS98], or the cyclic

lattices of [Mic07]. The idea is the following. The structured lattices used in this

constructions have a non-trivial automorphism group, i.e., they are invariant under

certain (linear) transformations. For example, cyclic lattices have the property

that whenever a vector v is in the lattice, then all n cyclic rotations of v are in

the lattice. When reducing a new point p against a list vector v, we can use all

rotations of v to decrease the length of p. Effectively, this allows us to consider
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each list point as the implicit representation of n list points. This approximately

translates to a reduction of the list size by a factor n. While this reduction may

not be much from a theoretical point of view because the list size is exponential,

it may have a noticeable impact on the practical performance of the algorithm.

Chapter 3 and Section A.1, in part, are a reprint of the paper “Large

Faster exponential time algorithms for the shortest vector problem” co-authored

with Daniele Micciancio and appearing in the proceedings of SODA 2010. The

dissertation author was the primary investigator and author of this paper.



Chapter 4

Voronoi Algorithms

In this chapter we give some common background for both the basic Voronoi

algorithm and the optimized variant. In particular in Section 4.1 we give an

overview of the algorithms and our contribution, while in Section 4.2 we define

the Voronoi graph of a lattice and prove useful lemmas for both algorithms. The

basic Voronoi algorithm is presented in Chapter 5, while the optimized variant in

Chapter 6.

4.1 Overview

At the core of all our results is a new technique for the solution of the closest

vector problem with preprocessing (CVPP). We recall that CVPP is a variant of

CVP where some side information about the lattice is given as a hint together

with the input. The hint may depend on the lattice, but not on the target vector.

Typically, in the context of polynomial time algorithms, the hint is restricted to

have polynomial size, but since here we study exponential time algorithms, one

can reasonably consider hints that have size 2O(n). The hint used by our algorithm

is a description of the Voronoi cell of the lattice. We recall that the (open) Voronoi

cell of a lattice Λ is the set V of all points (in Euclidean space) that are closer to

the origin than to any other lattice point. The Voronoi cell V is a convex body,

symmetric about the origin, and can be described as the intersection of half-spaces

Hv, where for any nonzero lattice point v, Hv is the set of all points that are closer

43
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to the origin than to v. It is not necessary to consider all v ∈ Λ \ {0} when taking

this intersection. One can restrict the intersection to the so-called Voronoi relevant

vectors, which are the lattice vectors v such that v/2 is the center of a facet of

V . Since the Voronoi cell of a lattice can be shown to have at most 2(2n − 1)

facets, V can be expressed as a finite intersection of at most 2(2n − 1) half-spaces.

Throughout this dissertation, we assume that the Voronoi cell of a lattice is always

described by such a list of half-spaces.

The relation between the Voronoi cell and CVPP is well known, and easy

to explain. In CVPP, we want to find the lattice point v closest to a given target

vector t. It is easy to see that this is equivalent to finding a lattice vector v such

that t − v belongs to the (closed) Voronoi cell of the lattice. In other words,

CVP can be equivalently formulated as the problem of finding a point in the set

(Λ + t)∩ V̄ , where V̄ is the topological closure of V . The idea of using the Voronoi

cell to solve CVP is not new. For example, a simple greedy algorithm for CVPP

based on the knowledge of the Voronoi cell of the lattice is given in [SFS09]. The

idea behind this algorithm (called the Iterative Slicer) is to make t shorter and

shorter by subtracting Voronoi relevant vectors from it. Notice that if t /∈ H̄v,

then the length of t can be reduced by subtracting v from t. So, as long as t is

outside V̄ , we can make progress and find a shorter vector. Unfortunately, this

simple strategy to solve CVPP using the Voronoi cell is not known to perform any

better than previous algorithms. The work [SFS09] only proves that the algorithm

terminates after a finite number of iterations, and a close inspection of the proof

reveals that the best upper bound that can be derived using the methods of [SFS09]

is of the form nO(n): the running time of the Iterative Slicer is bound by a volume

argument, counting the number of lattice points within a sphere of radius ‖t‖, and

this can be well above 2O(n) or even nO(n).

In the next two paragraphs we first sketch our new algorithm to solve CVPP

using the Voronoi cell V in time 2O(n), and then we show how to use the CVPP

algorithm to recursively implement the preprocessing function and compute the

Voronoi cell V . Since both the preprocessing and CVPP computation take time

2O(n), combining the two pieces gives an algorithm to solve CVP (and a host of
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other lattice problems, like SVP, SIVP, etc.) without preprocessing.

The CVPP algorithm As already remarked, the goal of CVPP with target

vector t can be restated as the problem of finding a point t′ ∈ (Λ + t) ∩ V inside

the Voronoi cell. (This point is also characterized as being a shortest vector in the

set Λ + t.) Therefore we need to find the shortest vector of the set Λ + t. We

follow a greedy approach similar to the Iterative Slicer of [SFS09]. Given the list of

relevant vectors, the algorithm generates a sequence of shorter and shorter vectors

from Λ+ t, until it finds the shortest vector of the set. However, in order to bound

the number of iterations, we introduce two important modifications to the greedy

strategy of [SFS09]. First we reduce the general CVPP to a special case where the

target vector is guaranteed to belong to twice the Voronoi cell 2V̄ . This can be

done very easily by a polynomial time Turing reduction. Next, using properties of

the geometry of the Voronoi cell, we show that it is possible to generate a sequence

of shorter and shorter vectors in Λ + t, with the additional property that all the

vectors are inside 2V̄ . This allows to bound the length of the sequence by 2n. For

each vector of the sequence the algorithm spends Õ(2n) time, which gives a total

time complexity of Õ(22n).

Computing the Voronoi cell We have sketched how to solve CVPP, given

the Voronoi cell of the lattice. This leaves us with the problem of computing the

Voronoi cell, a task typically considered even harder than CVP. This is where the

basic and optimized versions of the algorithm differ. The basic algorithm is more

modular and uses already known techniques in an (almost) black-box way, while

the optimized uses properties of the Voronoi cell to make the computation faster.

Here we only give an overview of the modular but slower approach. In order to

compute the Voronoi cell of a lattice Λ we use a method of [AEVZ02] that solves

the problem by making 2n calls to a CVPP oracle for the same lattice Λ. We

combine this with a standard rank reduction procedure implicit in enumeration

algorithms [Kan87b, HS07]. This procedure allows to solve CVPP in a lattice Λ of

rank n making only 2O(n) calls to a CVPP oracle for a properly chosen sub-lattice

Λ′ of rank n− 1, which can be found in polynomial time. Combining all the pieces



46

together we obtain an algorithm that computes the Voronoi cell of a lattice Λ by

building a sequence of lattices Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn = Λ with rank rank(Λi) = i,

and iteratively computing the Voronoi cell of Λi+1 using the previously computed

Voronoi cell of Λi. Since each V(Λi) can be computed from V(Λi−1) is time 2O(n)

(by means of 2O(n) CVPP computations, each of which takes 2O(n) time), the total

running time is 2O(n).

4.1.1 Contribution

In this work we give a deterministic Õ(22n) time and Õ(2n) space algorithm

for CVP, and therefore by the reductions in [GMSS99, Mic08], also to SVP, SIVP

and several other lattice problems in NP considered in the literature. This improves

the time complexity of the best previously known algorithm for CVP, SIVP, etc.

[Kan87b] from nO(n) to 2O(n). In the case of SVP, we achieve single exponential

time as in [AKS01, NV08, MV10b, PS09], but without using randomization and

decreasing the complexity from Õ(22.465n) [PS09] to Õ(22n). In the process, we also

provide deterministic single exponential time algorithms for various other classic

computational problems in lattices, like computing the kissing number, and com-

puting the list of all Voronoi relevant vectors. Finally, in order to achieve these

results we introduce the notion of the Voronoi graph of a lattice, which might be

of independent interest.

4.2 The Voronoi Graph

In this section we define graphs where nodes are vectors from the coset

Λ + t. In particular we are considering the following families of graphs.

Definition 4.2.1. Let Λ an n-dimensional lattice and t a vector on the span of Λ.

The Voronoi Graph of the coset Λ + t, denoted by GΛ+t is an infinite graph with:

• Nodes U = {ui : ui ∈ Λ + t}, all the vectors of the coset Λ + t 1

1The set of nodes is denoted by U instead of the usual V . The letter V is used to denote the
relevant vectors.
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0 0

Figure 4.1: A coset Λ + t and the corresponding Voronoi graph

• Edges between the nodes ui,uj if and only if ui − uj is a relevant vector.

For each node u in the graph GΛ+t we consider the following two quantities:

1. The norm, which is simply the euclidean norm of the vector ‖u‖.

2. The parity p ∈ {0, 1}n. We say that a node u has parity p with respect to

some basis B, if and only if u ∈ 2Λ + B · p + t.

The parities effectively partition Λ + t to 2n cosets of the form 2Λ + B · p + t.

Notice that the partition acquired is independent of the choice of B. The choice

of basis simply assigns parity vectors p ∈ {0, 1}n to each partition.

We define the following finite subgraphs of GΛ+t:

1. The core subgraph, denoted by G(Λ+t)∩V̄ that is induced by the nodes in

(Λ + t) ∩ V̄ .

2. The open relevant subgraph, denoted by G(Λ+t)∩2V that is induced by the

nodes in (Λ + t) ∩ 2V .

3. The closed relevant subgraph, denoted by G(Λ+t)∩2V̄ that is induced by the

nodes in (Λ + t) ∩ 2V̄ .
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We outline some simple facts about these graphs. By definition the core subgraph

consists of the shortest vectors of Λ + t. Notice that there is a straightforward

correspondence between shortest vectors of Λ + t and closest vectors to t. In

particular if s is such a shortest vector then t − s is a closest vector to t. If the

shortest vector is unique then the core subgraph consists of a single node in the

interior of V . If there are multiple shortest vectors then they reside in the boundary

of V̄ . If a node u is in G(Λ+t)∩2V̄ then it is a shortest vector among all the vectors

that share the same parity. Additionally if it is in G(Λ+t)∩2V then it is a unique

shortest vector for its parity. Recall that there are exactly 2n parities, therefore

the number of nodes in G(Λ+t)∩2V is bounded by 2n. (However the number of nodes

in G(Λ+t)∩2V̄ can be as big as 3n, for example consider Zn.)

We show that all three subgraphs are connected. We start with the core

subgraph.

Lemma 4.2.2. For any lattice Λ and target vector t the core subgraph G(Λ+t)∩V̄

is connected.

Proof. We show that any two nodes u1,u2 in G(Λ+t)∩V̄ are connected. By definition

both u1,u2 are shortest vectors of Λ + t so ‖u1‖ = ‖u2‖. Their difference u2 − u1

is in Λ∩ 2V̄ and by theorem 2.6.6 there exists a subset M of relevant vectors such

that: u2 = u1 +
∑

vi∈M vi. Using the orthogonality of these relevant vectors:

‖u1‖ = ‖u2‖ = ‖u1 +
∑
vi∈M

vi‖ ⇒
∑
vi∈M

‖u1 + vi‖2 = |M | · ‖u1‖2

Notice that the vectors u1 + vi are in Λ + t and cannot be shorter than u1 so:

‖u1 +vi‖ ≥ ‖u1‖. Combining the above we conclude that for every vi: ‖u1 +vi‖ =

‖u1‖, so the vectors u1 + vi are also shortest vectors of Λ + t and consequently

nodes of G(Λ+t)∩V̄ . Applying this argument iteratively we conclude that for any

subset M ′ ⊆ M , the vectors u1 +
∑

vi∈M ′ vi are also nodes of G(Λ+t)∩V̄ . Finally,

notice that the set of these vectors form a connected component of G(Λ+t)∩V̄ . The

vectors u1,u2 are in this component and therefore they are connected.

In order to show that the relevant subgraphs are connected we need the

following technical lemma.
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Lemma 4.2.3. Let u ∈ Λ + t, such that it is exactly on the boundary of the scaled

voronoi cell kV̄, with k > 1 and in particular on a facet corresponding to the scaled

relevant vector kv (‖u−kv‖ = ‖u‖). Then the vector u′ = u−v has the following

properties:

• It is in (Λ + t) ∩ kV̄,

• It is strictly shorter than u (‖u′‖ < ‖u‖).

Proof. In order to prove the first property we use Observation 2.6.2, if u is in the

facet of kV̄ corresponding to the relevant v, then u− kv is also in kV̄ . Given that

both u and u − kv are in kV̄ and by convexity of the Voronoi cell we have that

u′ = u−v is also in kV̄ . For the second property we have that: ‖u−kv‖ = ‖u‖ ⇒
2〈u,v〉 = k‖v‖2 and

‖u′‖2 = ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u,v〉 = ‖u‖2 − (k − 1)‖v‖2 < ‖u‖2.

Finally we show that both the open and closed relevant subgraphs are con-

nected, by using the connectivity of the core subgraph.

Theorem 4.2.4. There exist a path in G(Λ+t)∩2V̄ (G(Λ+t)∩2V) from any node u of

the graph to a node in (Λ+t)∩V̄. Additionally we can construct such a path where

the nodes have strictly decreasing norm and the length of the path is bounded by

2n.

Proof. We construct such a path u = u1,u2, . . . ,uN by iteratively subtracting

appropriate relevant vectors ui+1 = ui − vi chosen as shown in Lemma 4.2.3.

Notice that as long as ui is not in V̄ , the new vector ui+1 is strictly shorter than ui

and is still in 2V̄ (or 2V if we started with a point in the open relevant subgraph)

and consequently is a node of the graph. What remains to be shown is that the

length of the path is at most 2n nodes. Recall that every node in 2V̄ is a shortest

node for its parity. Given that there are only 2n parities and that the norms of the

vectors of the path are strictly decreasing we conclude that the length of the path

is bounded by 2n.
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Corollary 4.2.5. For any lattice Λ and t on the span of Λ, the open and closed

relevant subgraphs of GΛ+t are connected.

Chapter 4, Chapter 5 and Chapter 6, in part, are a reprint of the full

version of the paper “A Deterministic Single Exponential Time Algorithm for Most

Lattice Problems based on Voronoi Cell Computations” co-authored with Daniele

Micciancio. An extended abstract of this paper was presented in STOC 2010. The

dissertation author was the primary investigator and author of this paper.



Chapter 5

Basic Voronoi Algorithm

5.1 Overview

In this chapter we describe and analyze a Õ(23.5n) time and Õ(2n) space

algorithm for CVP and related lattice problems. This is improved to a Õ(22n)

time and Õ(2n) space algorithm in Chapter 6. We describe the slower algorithm

first as it allows for a more modular description and illustrates the connections

with previous work. The CVP algorithm presented in this chapter has three com-

ponents:

1. An Õ(22n)-time algorithm to solve the closest vector problem with preprocess-

ing (CVPP), where the output of the preprocessing function is the Voronoi

cell of the input lattice, described as the intersection of half-spaces.

2. A rank reduction procedure that solves CVP on a k-rank lattice Λk =

L(b1, . . . ,bk) with 20.5k calls to a CVP oracle for Λk−1 = L(b1, . . . ,bk−1).

3. A procedure for computing the Voronoi cell of a lattice Λ by 2n calls to a

CVP oracle for Λ and 22n polynomial time computations.

These three components are described and analyzed in Sections 5.2, 5.3, 5.4. In

Section 5.5 we show how these components can be combined together into an

algorithm for CVP with running time Õ(23.5n).

51
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Notice that the rank reduction procedure immediately gives a recursive

algorithm to solve CVP in arbitrary lattices. However, the obvious way to turn

the rank reduction procedure into a recursive program leads to an algorithm with

2O(n2) running time, because each time the rank of the input lattice is reduced by

1, the number of recursive invocations gets multiplied by 2O(n). We use the CVPP

and Voronoi cell computation algorithms to give a more efficient transformation.

The idea is to compute the Voronoi cells of all sub-lattices Λk = L(b1, . . . ,bk)

sequentially, where b1, . . . ,bn is the lattice basis produced by the rank reduction

procedure. Each Voronoi cell V(Λk) is computed by (rank) reduction to 2O(k) CVP

computations in the lattice Λk−1. In turn, these CVP computations are performed

using the CVPP algorithm and the previously computed Voronoi cell V(Λk−1).

Once V(Λn) has been computed, the input CVP instance can be solved using

CVPP. We show that:

Theorem 5.1.1. There is a deterministic Õ(23.5n)-time algorithm to solve CVP.

The proof of the theorem is postponed to Section 5.5, after we have de-

scribed and analyzed the building blocks of the algorithm. The pseudocode of the

algorithm is given in Algorithms 5.1, 5.2, 5.3, 5.4.

5.2 CVP with preprocessing

We give an algorithm that on input an n-rank lattice Λ, a list V of the

Voronoi relevant vectors of Λ and a target vector t, computes a lattice point closest

to t in time Õ(22n). We proceed as follows:

1. We present CVPP2V̄ , a Õ(22n) algorithm for the special case where t ∈ 2V̄ ,

2. then we solve the general CVPP problem with polynomially many calls to

CVPP2V̄ .

For the following we assume without loss of generality that t belongs to the linear

span of Λ, otherwise, we simply project t orthogonally to that subspace.

First we present the CVPP2V̄ algorithm. Recall that in order to solve

CVPP for t it is enough to find a vector u ∈ (Λ + t) ∩ V̄ (then t− u is a closest
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Algorithm 5.1: Single exponential time for CVPP

function CVPP(t,B, V )

t← Project t on the linear span of B

tp ← t . Choose smallest p ∈ Z that t ∈ 2pV̄
for i = p downto 1 do

ti−1 ← ti − CVPP2V̄(ti, 2
i−1V )

return t− t0

function CVPP2V̄(t, V )

i← 1

u1 ← t

while ui /∈ V̄ do

Find vi ∈ V that maximizes 〈ui,v〉/‖v‖2

ui+1 ← ui − vi

i← i+ 1

return t0 − ui

vector to t). Consider the graph G(Λ+t)∩2V̄ , by assumption t is in 2V̄ and therefore

a node in the graph. By Theorem 4.2.4 we can construct a path in G(Λ+t)∩2V̄

from t = u1 to a node uN ∈ (Λ + t) ∩ V̄ . The algorithm computes such a path

t = u1,u2, . . . ,uN as follows:

• As long as ui is not in V̄ , it finds the relevant vector vi that maximizes the

quantity 2〈ui,v〉/‖v‖2.

• It sets ui+1 = ui − vi.

When it finds a uN ∈ V̄ it returns t − uN . We show that the relevant vector

subtracted from each node ui is exactly the relevant vector chosen in Lemma 4.2.3

and therefore the path is identical with the path of Theorem 4.2.4.

Lemma 5.2.1. Given a list V of the relevant vectors of lattice Λ and a target point

t ∈ 2V̄ the CVPP2V̄ algorithm (Algorithm 5.1) finds a closest vector to t in time

Õ(22n), where n is the rank of the lattice.
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Figure 5.1: One step of CVPP2V̄ (left), Succesive steps of CVPP(right)

Proof. Let vi be the relevant vector that maximizes the quantity 2〈ui,v〉/‖v‖2,

let k be this maximum value. Then for every relevant vector v, ‖ui − kv‖ ≥ ‖ui‖
and for vi, ‖ui − kvi‖ = ‖ui‖. Equivalently ui is in kV̄ and exactly in the facet

corresponding to the (scaled) relevant vector kvi. Therefore the chosen relevant

vectors are identical with Lemma 4.2.3 and by Theorem 4.2.4 the path u1, . . . ,uN

is in G(Λ+t)∩2V̄ and after at most 2n nodes the algorithm should find a node uN ∈ V̄ .

Concluding, the CVPP2V̄ algorithm finds the required vector uN , and solves

CVPP, after at most 2n iterations. Recall that each iteration examines all the

relevant vectors in order to find an appropriate vi, therefore the complexity of each

such iteration is poly(n)|V | ≤ Õ(2n), which gives a total complexity of Õ(22n).

The next theorem shows how to solve CVP for any target vector.

Theorem 5.2.2. On input a list V of the relevant vectors of a lattice Λ and a

target point t, the CVPP algorithm (Algorithm 5.1) finds a closest vector to t in

log ‖t‖ · Õ(22n) time, where n is the rank of the input lattice.

Proof. The CVPP algorithm computes a factor α such that t is exactly on the

boundary of αV̄ . Recall that α can be computed as 2 maxv∈V (〈t,v〉/‖v‖2), so α <

2‖t‖. Then it computes the smallest integer p such that 2p > α, so that t ∈ 2pV̄ .
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The algorithm sets tp = t and computes a sequence of vectors tp, tp−1, . . . , t0 in

Λ + t such that each ti is in 2iV̄ . The algorithm obtains ti from ti+1 with a call to

CVPP2V̄ . Notice that p is bounded by log ‖t‖+2 and each CVPP2V̄ computation

costs Õ(22n) by Lemma 5.2.1. Therefore the total complexity is log ‖t‖ · Õ(22n).

The vector t0 is in V̄ and consequently a shortest vector in Λ + t. As a result the

algorithm can simply output t− t0 which is a closest vector to t.

Finally, we show how to obtain ti from ti+1 with a call to CVPP2V̄ . The

algorithm scales the lattice Λ and the corresponding relevant vectors V by 2i and

runs CVPP2V̄ on 2iΛ, with target vector ti+1. Notice that ti+1 is in 2·2iV , therefore

it is a valid input for CVPP2V̄ on the lattice 2iΛ. Finally, given the closest vector

ci+1 the algorithm simply sets ti = ti+1 − ci+1. The new vector ti is in Λ + t and

also in 2iV by Observation 2.6.1.

5.3 Rank reduction

Algorithm 5.2: Rank reduction procedure for CVP

function RankReduceCVP(t,Bk, Vk−1, H)

ht ← 〈t,b∗k〉/〈b∗k,b∗k〉
c← 0

for all h that: |h− ht| < H do

ch ← CVPP(t− hbk, Vk−1) + hbk

if ‖ch − t‖ < ‖c− t‖ then

c← ch

return c

We present a procedure that on input a basis Bk = {b1, . . . ,bk} for a k-rank

lattice Λk and an integer H such that µ(Λk)/‖b∗k‖ ≤ H, solves a CVP instance on

Λk, with 2H+1 calls to CVP on the (k−1)-rank sub-lattice Λk−1 = L(b1, . . . ,bk−1)

(where µ(Λk) is the covering radius of Λk and b∗k the component of bk orthogonal

to Λk−1). The efficiency of this transformation depends on the bound H of the

ratio µ(Λk)/‖b∗k‖ and therefore on the quality of the input basis. To address this

issue the rank reduction consists of two steps:
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1. A polynomial time preprocessing step that outputs a basis B for the in-

put lattice such that the ratio µ(Λk)/‖b∗k‖ is bounded by 20.5k for every

k = 2, . . . , n. We show that this can be achieved by simply running the

LLL algorithm[LLL82]. This step is done only once at the beginning of the

algorithm and all further computations use the higher quality basis.

2. The actual rank reduction procedure that given an integer H such that

µ(Λk)/‖b∗k‖ ≤ H solves a CVP instance on Λk with 2H + 1 calls to CVP

on Λk−1.

Combining the two steps gives a reduction from a CVP in Λk to 20.5k CVPs in

Λk−1. The two procedures are analyzed in the following lemmas.

Lemma 5.3.1. The LLL algorithm, on input a basis for an n-rank lattice Λ,

outputs a new basis B for the same lattice with the following property: for every

sub lattice Λk = L(b1, . . . ,bk), k ≤ n, we have µ(Λk)/‖b∗k‖ ≤ 20.5k.

Proof. Notice that:

• If B is a basis for Λ, then µ(Λ) ≤ ρ = 1
2

√∑n
i=1 ‖b∗i ‖2, as the set {

∑
xib

∗
i :

−1
2
< xi ≤ 1

2
} is a fundamental region of Λ and it is contained in a ball with

radius ρ centered at 0.

• If B is LLL reduced then ‖b∗i+1‖2 ≥ 2−1‖b∗i ‖2 and consequently ‖b∗k‖2 ≥
2i−k‖b∗i ‖2. Thus:

ρ =
1

2

√√√√ n∑
i=1

‖b∗i ‖2 ≤ 1

2

√√√√ n∑
i=1

2n−i‖b∗n‖2 =
1

2

√
2n − 1‖b∗n‖ ≤ 20.5n‖b∗n‖.

From the above inequalities we conclude that if B is an LLL reduced basis for

Λ then µ(Λ)/‖b∗n‖ ≤ 20.5n. Finally, notice that if B is LLL reduced then, for

all k ≤ n, the basis Bk = {b1, . . . ,bk} is also LLL reduced and consequently

µ(Λk)/‖b∗k‖ ≤ 20.5k.

Lemma 5.3.2. On input a basis Bk = {b1, . . . ,bk} for a k-rank lattice Λk and

an integer H such that µ(Λk)/‖b∗k‖ ≤ H, the algorithm RankReduceCVP (Al-

gorithm 5.2) solves a CVP instance on Λk with 2H + 1 calls to CVP on the

(k − 1)-rank sub-lattice Λk−1 = L{b1, . . . ,bk−1}.
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Proof. Let t be the target vector of CVP on Λk. We can assume without loss of

generality that t belongs to the linear span of Λk, otherwise, we simply project

t orthogonally to that subspace. Partition the lattice Λk into layers of the form

hbk + Λk−1, where h ∈ Z. Notice that:

• by the definition of the covering radius, the closest vector to t has distance

at most µ(Λk).

• the distance of all lattice points in the layer hbk + Λk−1 from t is at least

|h − ht| · ‖b∗k‖, where ht = 〈t,b∗k〉/〈b∗k,b∗k〉, because this is the distance

between t and the entire affine space generated by the layer.

It follows from the above observations that the lattice points in Λk closest to t

belong to layers hbk + Λk−1 such that |h − ht| ≤ µ(Λk)/‖b∗k‖. Recall that the

algorithm is given an H such that µ(Λk)/‖b∗k‖ ≤ H. Therefore, in order to find a

lattice point closest to t the algorithm iterates over all 2H + 1 layers with h such

that |h − ht| ≤ H, and for each of them finds a point in hbk + Λk−1 closest to t.

Notice that this is equivalent to finding a point in Λk−1 closest to t − hbk, i.e., a

CVP computation in Λk−1. A lattice point closest to t is found selecting the best

solution across all layers.

5.4 Computing the Voronoi cell

This component computes the relevant vectors of a lattice Λ by 2n− 1 calls

to CVP, all for the same lattice, plus 22n polynomial time computations. In order

to achieve this we use a variant of the RelevantVectors algorithm of [AEVZ02] 1.

Our variant computes the relevant vectors in two steps:

1. First it runs the FindRelevant procedure that, given a lattice Λ, outputs a

list V of size 2(2n− 1) that contains all the relevant vectors, with the help of

2n− 1 CVP queries. Notice that the list might contain non relevant vectors,

but all vectors in the list are lattice points.

1 The original algorithm as described in [AEVZ02] does not require the additional step of
RemoveNonRelevant, but it requires a CVP oracle that finds all closest points. We describe
this variant in order to avoid giving one more algorithm for solving the AllCVP problem.
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Algorithm 5.3: Voronoi cell computation

function FindRelevant(Bk, Vk−1, H)

for p in {{0, 1}k \ 0} do

t← −Bk · p/2
c← RankReduceCVP(t,Bk, Vk−1, H)

Vk ← Vk ∪ {±2(c− t)}

return Vk

function RemoveNonRelevant(Vk)

for vi ∈ Vk do

for vj ∈ Vk : vj 6= vi do

if ‖vj − vi/2‖ ≤ ‖vi/2‖ then

Vk ← Vk \ {vi}

return Vk

2. Then it feeds the output list V to the RemoveNonRelevant procedure.

RemoveNonRelevant discards the non-relevant points from a list of lat-

tice points V that contains all the relevant vectors in time poly(n)|V |2. Notice

that |V | < 2n+1, therefore this step takes Õ(22n) time.

The pseudocode is given in Algorithm 5.3. We go on to describe and analyze the

two procedures.

Lemma 5.4.1. Given a basis B for an n-rank lattice, the FindRelevant proce-

dure (Algorithm 5.3) computes a set of at most 2n+1 lattice vectors that contains

all the relevant vectors of Λ = L(B) using 2n−1 CVP queries for the same lattice.

Proof. On input a basis B for a n-rank lattice Λ, the FindRelevant procedure

iterates over all p ∈ {0, 1}n \ {0}, and for each of them, does the following:

1. Find a closest vector c of Λ to t = −B · p/2.

2. Include ±sp = ±2(c− t) to the list V .

It is clear that the above procedure generates a list of 2(2n−1) vectors using 2n−1

calls to a CVP oracle. Now in order to show that it contains all the relevant vectors,
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notice that if c ∈ Λ is a vector closest to t = −Bp/2, then by Observation 2.6.1,

2(c − t) is a shortest vector of the coset CB,p = 2Λ + B · p. Therefore the list V

contains a pair of shortest vectors for all the cosets CB,p, with p ∈ {0, 1}n \ {0},
and by Corollary 2.6.5 all the relevant vectors.

Lemma 5.4.2. Given a superset of the relevant vectors V , the RemoveNon-

Relevant procedure (Algorithm 5.3) outputs a set that contains only the relevant

vectors in time poly(n)|V |2.

Proof. Given a list of vectors V = {v1, . . . ,vk}, RemoveNonRelevant iterates

over the vectors vi and if there exists vj 6= vi ∈ V such that ‖vj−vi/2‖ ≤ ‖vi/2‖,
removes vi from the list. Finally it outputs the list V without the discarded vectors.

It is clear that the algorithm runs in time poly(n)|V |2. For correctness we need

the following two observations:

• If vi is a relevant vector, for every u 6= vi ∈ Λ, ‖u−vi/2‖ > ‖vi/2‖. For the

proof, notice that if vi is a relevant vector, ±vi should be unique shortest

vectors of 2Λ+vi. The vector 2u−vi is in 2Λ+vi therefore ‖2u−vi‖ > ‖vi‖
which gives the required inequality.

• If vi is not relevant, there exists a relevant vector r such that ‖r− vi/2‖ ≤
‖vi/2‖. We prove the statement by contradiction. Assume that vi is not

relevant and that for all relevant vectors r, ‖r−vi/2‖ > ‖vi/2‖. Equivalently

the vector vi/2 is in the interior of V and 0 is its unique closest vector. This

is a contradiction because 0 and v have the same distance from v/2.

Now, by the first observation none of the relevant vectors is going to be removed

from the list. Therefore the second observation gives that all the non-relevant

vectors are going to be discarded (because all the relevant vectors remain in the

list).

5.5 Combining the blocks

In this section we give a Õ(23.5n) algorithm for computing the Voronoi cell

by combining the three blocks of the previous sections. First we describe RankRe-
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Algorithm 5.4: The Voronoi Cell Algorithm

function BasicVoronoiCell(B)

B← Preprocess(B)

V1 = {(b1,−b1)}
for k = 2 to n do

Bk ← [b1, . . . ,bk]

Vk ← RankReduceVCell(Bk, Vk−1, 2
0.5k)

return Vn

function Preprocess(B)

return LLL(B)

function RankReduceVCell(Bk, Vk−1, H)

Vk ← FindRelevant(Bk, Vk−1, H)

Vk ← RemoveNonRelevant(Vk)

return Vk

duceVCell, an algorithm that computes the Voronoi cell of Λn = L(b1, . . . ,bn)

with the the Voronoi cell of Λn−1.

Lemma 5.5.1. Given a basis B = {b1, . . . ,bn} for an n-rank lattice Λn, an integer

H such that µ(Λn)/‖b∗n‖ ≤ H and the Voronoi cell of Λn−1 = L(b1, . . . ,bn−1) the

RankReduceVCell procedure (Algorithm 5.4) deterministically computes the

Voronoi cell of Λn in time H · Õ(23n).

Proof. In order to compute the Voronoi cell of Λn it is enough to call the procedure

FindRelevant followed by RemoveNonRelevant (see Section 5.4). However,

notice that FindRelevant requires access to a CVP oracle for Λn. RankRe-

duceVCell instantiates a CVP oracle for Λn as follows. For each query to the

CVP oracle it calls RankReduceCVP to reduce the given CVP instance on

Λn to 2H + 1 CVP instances on Λn−1 (Lemma 5.3.2). Then it solves every such

instance with a call to the CVPP algorithm for Λn−1 (notice that the Voronoi cell

of Λn−1 is given as input). Consequently we have the following derivations:

1. FindRelevant computes a superset of the relevant vectors of Λn with 2n−1

CVP computations in Λn (Lemma 5.4.1).
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2. RankReduceCVP reduces each such CVP computation to at most 2H+1

(Lemma 5.3.2) CVP computations in Λn−1 (Lemma 5.3.2).

3. CVPP solves each CVP computation in Λn−1 with the help of the precom-

puted Voronoi cell in time Õ(22n) (Lemma 5.2.2).

4. RemoveNonRelevant discards vectors that are non relevant from the list

produced by FindRelevant in time Õ(22n) (Lemma 5.4.2).

We conclude that computing the Voronoi cell of Λn is reduced to 2H+1 CVP com-

putations in Λn−1 each solved in Õ(22n) time by CVPP plus 22n polynomial time

computation by RemoveNonRelevant. Therefore the total time complexity for

computing Vn−1 from Vn is H · Õ(23n).

The following theorem describes the main algorithm of this chapter. An

algorithm that computes the Voronoi cell of a given lattice with the help of two

subroutines. A preprocessing subroutine (LLL) and a subroutine for computing

the Voronoi cell of Λk+1 using the Voronoi cell of Λk (RankReduceVCell). The

pseudocode is given as Algorithm 5.4.

Theorem 5.5.2. There is a deterministic Õ(23.5n)-time and Õ(2n) space algorithm

that on input a lattice B, outputs the relevant vectors of Λn = L(B).

Proof. The BasicVoronoiCell algorithm (Algorithm 5.4) combines the two sub-

routines as follows. First it runs LLL on the input basis, and acquires a new basis

B for the same lattice where for all k = 2, . . . , n we have µ(Λk)/‖b∗k‖ ≤ 20.5k, by

Lemma 5.3.1. The rest of the algorithm works on the new basis B. The algorithm

sets the Voronoi cell of the one dimensional lattice Λ1 = L(b1) to V1 = {b1,−b1}.
Then for k = 2, . . . , n it uses the RankReduceVCell algorithm with H = 20.5k,

in order to compute the Voronoi cell of Λk+1 using the Voronoi cell of Λk. Each

such call has a cost of Õ(23.5k), therefore the total time complexity of the algo-

rithm is
∑

k=2,...,n(Õ(23.5k)) = Õ(23.5n). Finally the space requirements are at most

Õ(2n), as none of the called procedures requires more space.
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Combining the BasicVoronoiCell and CVPP algorithms gives a Õ(2n)

space and Õ(23.5n) time algorithm for CVP and a proof for the main theorem of

this chapter (Theorem 5.1.1).

Proof. In order to solve CVP for target t on a lattice Λ, the algorithm first

computes the Voronoi relevant vectors V of Λ with BasicVoronoiCell (The-

orem 5.5.2) in Õ(23.5n) time and Õ(2n) space. Then it solves the CVP instance

using the Õ(22n) CVPP algorithm and the precomputed relevant vectors of Λ

(Theorem 5.2.2).

Chapter 4, Chapter 5 and Chapter 6, in part, are a reprint of the full

version of the paper “A Deterministic Single Exponential Time Algorithm for Most

Lattice Problems based on Voronoi Cell Computations” co-authored with Daniele

Micciancio. An extended abstract of this paper was presented in STOC 2010. The

dissertation author was the primary investigator and author of this paper.



Chapter 6

Optimized Voronoi Algorithm

6.1 Overview

In this chapter we present the ImprovedVoronoiCell algorithm, a deter-

ministic Õ(22n) algorithm for computing the Voronoi cell and consequently solving

CVP, SVP, and other hard lattice problems. The algorithm follows the general

outline of the BasicVoronoiCell algorithm. First it preprocesses the input lat-

tice to acquire a better quality basis B = {b1, . . . ,bn} and sets the Voronoi cell

of Λ1 to {−b1,b1}. Then it computes the Voronoi cells of Λ2, . . . ,Λn iteratively,

using a subroutine that computes the Voronoi cell of Λk+1 given the Voronoi cell

of Λk. The improved time complexity comes from improved subroutines for both

the preprocessing and Voronoi cell computation. In particular the Improved-

VoronoiCell algorithm uses the following subroutines:

1. The OptPreprocess, a Õ(2n) basis reduction subroutine that on input

an n-rank lattice Λn outputs a basis B = {b1, . . . ,bn} for the same lat-

tice, such that for all k = 2, . . . , n we have µ(Λk)/‖b∗k‖ ≤ k5, (where

Λk = L(b1, . . . ,bk)).

2. The OptRankReduceVCell, a subroutine that on input a basis B =

{b1, . . . ,bk+1}, an integer H such that µ(Λk+1)/‖b∗k+1‖ ≤ H and the Voronoi

cell of Λk outputs the Voronoi cell of Λk+1 in time H2 · Õ(22k).

63



64

The full description and analysis of the subroutines is given in Sections 6.2, 6.3, 6.4.

In the following paragraphs we briefly revisit the initial subroutines Preprocess

and RankReduceVCell and show why it is possible to improve upon them.

The goal of the preprocessing step is to output a basis B = {b1,b2, . . . ,bn}
for the input lattice, such that the quantities µ(Λk)/‖b∗k‖ are relatively small. The

basic Preprocess subroutine simply runs LLL and achieves µ(Λk)/‖b∗k‖ < 20.5k

in poly(n) time, where n is the rank of the lattice. It is natural to ask if there are

algorithms that provide stronger guarantees on the output basis, ideally bounding

µ(Λk)/‖b∗k‖ by a polynomial of k. In Section 6.2 we show that OptPreprocess is

such an algorithm. In particular it achieves µ(Λk)/‖b∗k‖ ≤ k5 in Õ(2n) time. This

is possible using block reduction techniques from [GN08b, Sch87]. Notice that the

new preprocessing algorithm is much slower than LLL. However, in our case this

is not an issue. The preprocessing step is run only once at the beginning of the

algorithm and as long as its time complexity is lower (or equal) with the Voronoi

cell computation step it cannot affect the total time complexity of the algorithm.

Finally we show why it is possible to improve the Voronoi cell computation

subroutine. Recall that RankReduceVCell computes the Voronoi cell of Λk+1

with the help of H ·Õ(2k) calls to CVPP for the lower rank lattice Λk, where H an

integer such that µ(Λk+1)/‖b∗k+1‖ ≤ H. It turns out that the CVP instances solved

by CVPP have a very special structure that allows for more efficient strategies

to compute them. In particular, it is possible to group them in such a way that

solving a group of 2k CVP instances on Λk can be reduced to a single instance of

the following problem on Λk:

Definition 6.1.1. Enum2V̄ for target t on Λ: Given a basis B for an n-rank

lattice Λ and a target vector t in the span of Λ, enumerate all the vectors of the

set Λ + t ∩ 2V, where V is the (open) Voronoi cell of Λ.

In Section 6.3 we give an algorithm that solves Enum2V̄ given the Voronoi

cell of Λ in Õ(22n), (while using directly CVPP results a Õ(23n) algorithm). In

Section 6.4 we show how to use this algorithm for Enum2V̄ to acquire a faster

Voronoi cell computation subroutine. In particular the OptRankReduceVCell

subroutine computes the Voronoi cell of Λk+1 given the Voronoi cell of Λk in time
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H2 ·Õ(22k), compared with the H ·Õ(23k) of the RankReduceVCell. We remark

that the increased dependence on H is not an issue, after running OptPrepro-

cess H can be a polynomial in k.

In Section 6.5 we combine the improved subroutines to acquire the Op-

timizedVoronoiCell algorithm and give a proof for the main theorem of this

chapter:

Theorem 6.1.2. There is a deterministic Õ(22n)-time and Õ(2n) space algorithm

that on input an n-rank lattice Λ with basis B, outputs the relevant vectors of Λ.

From the description of the Voronoi cell, we immediately get a solution

to many other lattice problems, e.g., the shortest vector problem (SVP) can be

solved simply by picking the shortest vector in the list of lattice points describing

the Voronoi cell, and the kissing number of the lattice can be computed as the

number of vectors in the list achieving the same length as the shortest vector in

the lattice.

Corollary 6.1.3. There is a deterministic Õ(22n) time algorithm to solve SVP,

and to compute the kissing number of a lattice.

Once the Voronoi cell of Λn has been computed, then we can solve CVP

using the CVPP algorithm.

Corollary 6.1.4. There is a deterministic Õ(22n) time, Õ(2n) space algorithm to

solve CVP.

Proof. First we run the OptimizedVoronoiCell to acquire the relevant vectors

Vn of the n-rank input lattice Λ in time Õ(22n) and space Õ(2n). Then we solve

the given instance of CVP using CVPP and the precomputed relevant vectors in

time Õ(22n).

Algorithms for other lattice problems, like SIVP, SAP, GCVP, SMP, can

be obtained by a reduction to CVP.

Corollary 6.1.5. There is a deterministic Õ(22n) time, Õ(2n) space algorithm to

solve SIVP, SAP, GCVP and SMP.

Proof. See [Mic08] for reductions of the above problems to CVP.
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6.2 Preprocessing with block reduction

Algorithm 6.1: Optimized Preprocessing

function OptPreprocess(B)

for k = n downto 2 do

Run dual block reduction with

block size k/4 on Bk = {b1, . . . ,bk}
and replace Bk with the output basis.

return B

In this section we describe and analyze the optimized preprocessing sub-

routine. The results are summarized in the following lemma.

Lemma 6.2.1. On input a basis for an n-rank lattice Λ, the OptPreprocess

subroutine outputs new basis B for the same lattice with the following property: For

every sub-lattice of the form Λk = L(b1, . . . ,bk), k ≤ n, we have µ(Λk)/‖b∗k‖ ≤ k5.

The subroutine is deterministic and its complexity is Õ(2n).

Proof. First we give a deterministic Õ(2n) procedure that on input a basis for an

n-rank lattice Λ, outputs a basis B for the same lattice, such that µ(Λ)/‖b∗n‖ ≤ n5.

We achieve this by running block basis reduction algorithms from [GN08b, Sch87]

to the dual of the input lattice. The dual block reduction, on input a basis for

an n-rank lattice Λ, outputs a basis B for Λ such that µ(Λ)/‖b∗n‖ ≤ nβn/β (see

Preliminaries chapter). This is achieved with the help of polynomially many calls

to an SVP oracle for β-rank lattices. (The reader is referred to [GN08b] for a

thorough analysis of block reduction and and the connections between dual and

primal lattice bases).

For our purposes set β = n/4 and instantiate the SVP oracle with our unop-

timized Õ(23.5n) algorithm, in order to avoid circular dependencies. 1 We show that

for this instantiation of block reduction the required property is achieved. First,

observe that for β = n/4, dual block reduction gives a basis with µ(Λ)/‖b∗n‖ ≤ n5.

1We could instantiate the oracle with the optimized variant, but it would make the proof more
complicated because we would need an induction argument.
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This is achieved with polynomially many calls to our algorithm for rank n/4 which

gives a total complexity of Õ(23.5n/4) < Õ(2n) and concludes the analysis.

Now we can just apply this procedure for all Λk for k = n, n− 1, . . . , 2 and

get a basis with µ(Λk)/‖b∗k‖ ≤ k5 for all k. The time complexity is essentially the

same
∑i=n

i=2 Õ(2i) = Õ(2n).

6.3 Enumeration of (Λ + t) ∩ 2V

In this section we describe and analyze a procedure that given a basis B of

an n-rank lattice Λ, the relevant vectors V of Λ and a target t on the linear span

of Λ, outputs a set of at most 2n vectors that contain all the points in Λ + t∩ 2V .

Notice that traversing the nodes of the open relevant graph G(Λ+t)∩2V is

equivalent with enumerating the set Λ + t∩ 2V . We have already proved that this

graph is connected, therefore we could traverse it by first computing a vector in

Λ + t ∩ V̄ using CVPP and then use standard graph traversal algorithms (e.g.

DFS). Given any node u and the relevant vectors V we can easily compute all

the accessible nodes on GΛ+t from u, and then discard all the nodes that are not

in G(Λ+t)∩2V . Unfortunately checking if a node is in 2V costs Õ(2n) and a simple

depth first search would give a Õ(23n) algorithm (for each of 2n nodes of the graph,

for each of their 2n neighbors we should run a check). We show that using simple

facts about the parity of the nodes and Theorem 4.2.4 we can lower the complexity

to Õ(22n).

Given the relevant vectors of an n-rank lattice Λ, the Enum2V̄ algorithm

traverses all the nodes of G(Λ+t)∩2V in time Õ(22n), the complete pseudocode is

given in Algorithm 6.2 2. The algorithm keeps a list of visited nodes and a list

of accessible nodes, both indexed by parity. At any point the algorithm keeps

only one vector for each parity that might be either visited or accessible, therefore

the space requirements are Õ(2n). The first step of the algorithm is to compute a

vector us ∈ (Λ+t)∩V̄ using one CVPP computation that costs Õ(22n) and add it

to the list of accessible nodes. (us = t−CVPP(t,B, V )). At each subsequent step

2The algorithm might also visit nodes outside 2V, but on the boundary of 2V̄.
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Algorithm 6.2: Enum2V̄ Algorithm

function Enum2V̄(B, V, t)

. The following arrays are indexed by p ∈ {0, 1}n and initialized to none.

Visited[] ← Array of 2n vectors

Accessible[] ← Array of 2n vectors

us ← t− CV PP (t,B, V )

Accessible[parity(us,B)] = us

while no more Accessible vectors do

u← Shortest Accessible vector

Visit(u,B, Visited, Accessible)

return Visited

function Visit(u,B, Visited, Accessible)

p← parity(u,B)

Visited[p] = u

Accessible[p] = none

for v ∈ V do

a← u + v

pa ← parity(a,B)

if Visited[pa] = none then

aprev ← Accessible[pa]

if aprev =none OR ‖aprev‖ > ‖a‖ then

Accessible[pa] = a
Where:

p←parity(u,B)⇔ u ∈ 2Λ + B · p,p ∈ {0, 1}n
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the algorithm visits the shortest vector on the accessible list. When the algorithm

visits a node u the following computations take place:

1. The vector u is removed from the Accessible list and added to the Visited

list to the corresponding parity index.

2. Then the algorithm considers all the accessible nodes in G from u by adding

relevant vectors. It computes the vectors ai = u + vi for all vi ∈ V and for

each of them does the following:

(a) If there is a visited node with the same parity as ai, or an accessible

node with shorter norm for the same parity, it discards ai.

(b) Else it inserts ai to the accessible list, discarding possible accessible

nodes with the same parity (but larger norm).

The algorithm terminates when there are no more accessible nodes, and outputs

the vectors of the Visited list.

Lemma 6.3.1. Given a basis B for an n-rank lattice Λ, the relevant vectors V for

Λ and a target vector t, the Enum2V̄ algorithm (Algorithm 6.2) computes a set of

at most 2n vectors that includes all the vectors of Λ + t ∩ 2V, in time Õ(22n).

Proof. For the time complexity of the algorithm, notice that the initial CVPP

computation costs Õ(22n) and that for each visited node the algorithm does Õ(2n)

additional computations. It is not hard to validate that the algorithm will visit at

most 1 vector from each parity. Therefore there are at most 2n visited nodes and

the complexity is Õ(22n).

We prove correctness of the algorithm in two steps. First we show that

the algorithm visits all the nodes in the core subgraph G(Λ+t)∩V̄ before visiting

any other node. In order to see this notice that the first visited node is in the

core subgraph, the core subgraph is connected and the algorithm always visits the

shortest accessible node.

Now we prove by contradiction that any node u in G(Λ+t)∩2V is visited.

Assume that a node u ∈ G(Λ+t)∩2V is not visited. By Theorem 4.2.4 there exists
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00 0

Figure 6.1: Relevants are in a cylinder with base 2V̄

a path in G(Λ+t)∩2V with vectors of decreasing norms u,u1, . . . ,uN . Where uN

is a node of the core subgraph and is surely visited. Therefore there exist two

nodes uk,uk+1 in the sequence such that uk is not visited, while uk+1 is. When

uk+1 was visited, the node uk was considered for inclusion in the list of accessible

nodes. Notice that uk is in G(Λ+t)∩2V and consequently the shortest node of GΛ+t

for its parity. As a result uk would be included in the accessible list and eventually

visited, unless a node x with the same parity was visited first. However this is

impossible because uk is in 2V and therefore it is the shortest vector of its parity,

so shorter than x. Also all the nodes in the path from uk+1 to uN are shorter

that uk. Consequently the algorithm should visit the nodes of the path leading to

uk instead of x. We conclude that the assumption is false and all the points in

G(Λ+t)∩2V are visited.

6.4 Relevant vectors using Enum of (Λ + t) ∩ 2V

In this section we give an algorithm that on input a basis Bn = {b1, . . . ,bn}
for an n-rank lattice, the relevant vectors Vn−1 of Λn−1 = L(b1, . . . ,bn−1) and an

integer H such that µ(Λn)/‖b∗n‖ ≤ H, computes the relevant vectors of Vn with



71

Algorithm 6.3: Optimized Voronoi cell computation

function OptRankReduceVCell(Bk, Vk−1, H)

Vk ← Vk−1

for all h that: |h| < H do

Vk,h ← Enum2V̄(Bk, Vk, h(bk − b∗k))

Add hb∗k to every element of Vk,h

Vk ← Vk
⋃
Vk,h

Vk ← RemoveNonRelevant(Vk)

return Vk

4H + 1 calls to the algorithm Enum2V̄ described in the previous section. First we

give two useful lemmas for the relevant vectors of Λn. The lemmas restrict the

search space for relevant vectors.

Lemma 6.4.1. Set Bn, Λn, Λn−1 as defined above. Let b∗n be the component of bn

orthogonal to Λn−1. If u is a relevant vector of Λn, then it belongs to some layer

Λn−1 + hbn with h an integer and |h| ≤ 2µ(Λn)/‖b∗n‖.

Proof. Partition the lattice Λn in layers of the form Λn−1 +hbn with h ∈ Z. Notice

the following:

• If u is a relevant vector then it is in 2V̄ .

• For all the points in V̄ the vector 0 is a closest vector. Therefore the norm

of any point in V̄ is at most µ(Λn).

• The norm of all lattice points in the layer Λn−1 + hbn is at least |h| · ‖b∗n‖,
because this is the distance between 0 and the entire affine space generated

by the layer.

By the above it is not hard to validate that the norm of the relevant vectors is at

most 2µ(Λ) and consequently they belong to layers with |h| < 2µ(Λn)/‖b∗n‖.

Lemma 6.4.2. Set Bn, Λn, Bn−1, Λn−1 as defined above. Let Vn−1 be the open

Voronoi cell of Λn−1 and Vn−1 be the set of the corresponding relevant vectors. If

u is a relevant vector of Λn then:
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• If u ∈ Λn−1, u is relevant for Λn−1,

• If u ∈ h · bn + Λn−1 for h 6= 0, then u ∈ h · b∗n + 2Vn−1 + h(bn − b∗n).

Proof. Let u be a relevant vector of Λn, equivalently ±u are the only shortest

vectors of the coset 2Λn + u. If u ∈ Λn−1 then ±u are also the only shortest

vectors of the coset 2Λn−1 + u therefore u is a relevant vector of Λn−1. Now

assume u 6∈ Λn−1. The vectors ±u should be the only shortest vectors of 2Λ + u

therefore:

∀v ∈ Λn, v 6= u : ‖u− 2v‖ > ‖u‖.

But u 6∈ Λn−1, therefore for all the relevant vectors vi of Λn−1: u 6= vi. Combining

this fact with the equation above we have:

∀vi ∈ Vn−1 : ‖u− 2vi‖ > ‖u‖.

Notice that the equation above describes exactly the points inside a cylinder with

base 2Vn−1.

Finally we are ready to state the lemma that summarizes the results of this

section.

Lemma 6.4.3. Set Bn, Λn, Bn−1, Λn−1, b∗n, Vn−1, Vn−1 as defined above. On

input the Voronoi cell of Λn−1 and an integer H such that µ(Λn)/‖b∗n‖ ≤ H,

the OptRankReduceVCell algorithm (Algorithm 6.3) computes the relevant

vectors of Λn in time H2 · Õ(22n) and space H · Õ(2n).

Proof. In order to compute the relevant vectors the algorithm partitions Λn in

layers of the form Λn−1 + hbn. For each layer with |h| ≤ 2H, the algorithm

computes a set of at most 2n vectors that contains all the relevant vectors of the

layer. By Lemma 6.4.1 the union of these sets is a superset of the relevant vectors.

The additional vectors are discarded with the procedure RemoveNonRelevant. We

go on to show how to find appropriate sets for each layer.

For the layer with h = 0 the precomputed relevant vectors of Λn−1 are

sufficient (by Lemma 6.4.2). Now, for layers with h 6= 0 the intersection of Λn−1 +

hbn with the cylinder with base 2Vn−1 is an appropriate set (by Lemma 6.4.2).
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Notice that projecting vectors from Λn−1 + hbn to the linear span of Λn−1 gives

a one to one mapping between vectors v on the layer and their projections on

the linear span of Λn−1 v‖ = v − hb∗n. In order to enumerate the intersection of

Λn−1 + hbn with the cylinder with base 2Vn−1 we project it to Λn−1, enumerate

the projections and acquire the original vectors by adding hb∗n. Notice that this

projection is the set Λn−1 + h(bn − b∗n) ∩ 2Vn−1 and enumerating these vectors is

an instance of Enum2V̄ .

For the complexity of the algorithm notice that it enumerates at most H ·
Õ(2n) vectors using 4H + 1 calls to Enum2V̄ that requires Õ(22n) time. Finally

it runs RemoveNonRelevant to discard non relevant vectors. Therefore the total

time complexity is H2 · Õ(22n) and space complexity H · Õ(2n).

We remark that we can reduce the space complexity of the above algorithm

to Õ(2n) and time complexity to H · Õ(22n) but it does not change the total

asymptotics of the final algorithm because H is going to be polynomial in n.

6.5 Combining the blocks

Algorithm 6.4: The Optimized Voronoi Cell Algorithm

function OptimizedVoronoiCell(B)

B← OptPreprocess(B)

V1 = {(b1,−b1)}
for k = 2 to n do

Bk ← [b1, . . . ,bk]

Vk ← OptRankReduceVCell(Bk, Vk−1, k
5)

return Vn

Finally we present OptimizedVoronoiCell, a deterministic Õ(22n)-time

and Õ(2n)-space algorithm for computing the Voronoi cell of an n- rank lattice Λ

and prove the main theorem of this chapter (Theorem 6.1.2).

Proof. Given a basis for an n-rank lattice the OptimizedVoronoiCell algorithm

does the following:
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1. First it applies the Õ(2n) OptPreprocessing algorithm to get a basis

B = {b1, . . . ,bn} for the same lattice such that µ(Λk)/‖b∗k‖ ≤ k5 for all

k = 2, . . . , n (Lemma 6.2). The rest of the algorithm is using the new basis.

2. It sets the Voronoi cell of Λ1 = L(b1) as V1 = {b1,−b1}.

3. Then for k = 2, . . . , n it runs the OptRankReduceVCell algorithm to acquire

Vk from Vk−1 in time Õ(22k) and space Õ(2k) (Lemma 6.4.3, with H ≤ k5).

Notice that the total time complexity of the algorithm is Õ(2n) +
∑n

k=1 Õ(22k) =

Õ(22n) and the space complexity is Õ(2n).

Chapter 4, Chapter 5 and Chapter 6, in part, are a reprint of the full

version of the paper “A Deterministic Single Exponential Time Algorithm for Most

Lattice Problems based on Voronoi Cell Computations” co-authored with Daniele

Micciancio. An extended abstract of this paper was presented in STOC 2010. The

dissertation author was the primary investigator and author of this paper.



Appendix A

Additional Proofs

A.1 Analysis of AKS with Packing Bounds

In this section we show how to improve the analysis of AKS using the pack-

ing bounds of Theorem 2.2.1 and a number of other observations. Our analysis

shows that the time and space bounds of AKS can be improved to 23.4n and 21.97n.

However even after the improved analysis, AKS is outperformed by the conceptu-

ally simpler List Sieve. Intuitively there are two reasons for this:

1. AKS algorithm has to generate all the points from the beginning. As a

result the points that will cause collisions (which in a worst case analysis are

exponentially more) increase the space bounds. List Sieve on the other hand

discards collisions as early as possible.

2. AKS sieving cannot provably continue to produce shorter vectors after a

certain norm. As a result it generates enough “short” vectors so that the

difference of two of them will give a nonzero shortest vector. The point

arrangements we get out of this procedure are slightly worse than the sieving

of List Sieve.

In the following, we assume the reader has some familiarity with [NV08]

and only highlight the elements of the algorithm that are directly relevant to the

comparison to our work. Apart from the parameters ξ, µ used in List Sieve, AKS
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requires a parameter γ the shrinking factor. The core procedure of AKS takes

as input a set of perturbed points Pi (the norm of the perturbations is bounded

by ξµ) with maximum norm Ri. It generates a maximal subset Li of Pi with

the property that the distance between any two points in Li is greater than γRi.

Then it uses Li to reduce the norms of the remaining points in Pi \ Li to at most

γRi + ξµ. The algorithm starts with a large pool of points P0 with maximum

norm R0. Applying the core procedure described above it generates a sequence of

sets P0, P1, P2, . . . with shorter and shorter maximum norms R0, R1, R2, . . .. Notice

that the maximum norm of the sets Pi can be easily reduced near Rk ' ξµ/(1−γ)

but not further. The algorithm runs a polynomial number k of steps and acquires

a set Pk of perturbed points with maximum norm Rk ' ξµ/(1 − γ). After the

removal of the perturbations these points correspond to a set of lattice vectors Vk

with maximum norm R∞ ' ξµ(1 + 1/(1− γ)). Then AKS computes the pairwise

differences of all the points in Vk to find a nonzero shortest vector.

We bypass most of the details (the reader is referred to [NV08] for the

complete analysis), to show directly how to improve the space and time bounds

of AKS. Let the total number of generated points |P0| = 2c0n, the probability of

a point not being a collision p = 2−cun, the maximum number of points used for

sieving |Li| ≤ 2csn, and the number of points required in Vk to find a vector with

the required norm is 2cRn. After k steps of the algorithm the points in Pk will be

2c0n − k2csn and the points in Vk at most (2c0n − k2csn)/2cun because of collisions.

Notice that we need enough points in P0 to generate the lists Li, c0 > cs and acquire

enough points in Vk, c0 − cu > cR. Therefore the space complexity is 2c0n with

c0 = max{cs, cR+cu}. Every sieving step reduces 2c0n points with the 2csn points of

Li, as a result the sieving procedure needs 2(c0+cs)n time. Finally we need to acquire

the pairwise differences of at least 2cRn points in Vk, but for each point we might

need to use 2cun points from Pk. As a result the total running time for the last step

is 22cRn+cun. Totally the time complexity is 2cTn with cT = max{c0 + cs, 2cR + cu}.
Now we are ready to introduce the linear programming bounds. Let A

a set of points inside an n-dimensional ball of radius R and pairwise distance

≥ r. Using similar techniques with our main theorems we can show that the
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angle between any two points with similar norm is cosφ < 1− r2/(2R2) and using

theorem 2.2.1 we get that the total number of points in A are bounded by 2cn

with c = 0.401 + log(R/r). Now we can give bounds to all the constants defined

above. First cu = log

(
ξ√

ξ2−0.25

)
which is identical to c2 in our analysis. Notice

that the points in any set Li are in a ball of radius Ri and have pairwise distance

γRi therefore cs = 0.401 + log(1/γ). On the other hand the set Vk has minimum

distance > µ while the maximum radius of the points is R∞ ' ξµ(1 + 1/(1 − γ))

therefore we need cR = 0.401 + log(ξ(1 + 1/(1 − γ))). To minimize the space

constant c0 = max{cs, cR + cu} we set ξ = 0.71, γ = 0.382 which gives space

requirements 21.79n and time 23.58n. On the other hand if we want to minimize the

time complexity good values are ξ = 0.69 and γ = 0.49 which give space 21.97n and

time 23.4n.

Chapter 3 and Section A.1, in part, are a reprint of the paper “Large

Faster exponential time algorithms for the shortest vector problem” co-authored

with Daniele Micciancio and appearing in the proceedings of SODA 2010. The

dissertation author was the primary investigator and author of this paper.
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[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector
problem in time 22.465n. Cryptology ePrint Archive, Report 2009/605,
2009.

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their ap-
plications. In Proceedings of the 40th annual ACM symposium on
Theory of computing, pages 187–196. ACM, 2008.

[Reg04a] O. Regev. New lattice-based cryptographic constructions. Journal
of the ACM (JACM), 51(6):899–942, 2004.

[Reg04b] Oded Regev. Improved inapproximability of lattice and coding prob-
lems with preprocessing. IEEE Transactions on Information Theory,
50(9):2031–2037, 2004. Preliminary version in CCC 2003.

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical Computer Science, 53(2–3):201–
224, August 1987.

[Sch88] Claus-Peter Schnorr. A more efficient algorithm for lattice basis re-
duction. Journal of Algorithms, 9(1):47–62, March 1988.



84

[Sch06] Claus Peter Schnorr. Fast LLL-type lattice reduction. Information
and Computation, 204(1):1–25, January 2006.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Math-
ematical programming, 66(1-3):181–199, August 1994. Preliminary
version in FCT 1991.

[SFS09] Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest
lattice point by iterative slicing. SIAM J. Discrete Math., 23(2):715–
731, April 2009.

[Sho03] V. Shoup. NTL: A library for doing number theory, 2003.
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