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Abstract

A gold(I)-catalyzed enantioselective desymmetrization of 1,3-diols was achieved via 

intramolecular hydroalkoxylation of allenes. The catalyst system 3-F-dppe(AuCl)2/(R)-C8-

TRIPAg proved to be specifically efficient to promote the desymmetrizing cyclization of 2-

aryl-1,3-diols, which have proven challenging substrates in previous reports. Multisubstituted 

tetrahydrofurans were prepared in good yield with good enantioselectivity and diastereoselectivity 

by this method.

Graphical Abstract

A chiral anion mediated enantioselective gold(I)-catalyzed desymmetrization of 1,3-diols by 

intramolecular allene hydroalkoxylation was developed. Subtle tuning of the both the chiral 

phosphate (X*) and the achiral phosphine ligand (L) components of the catalyst system allowed 

for the preparation of oxygen heterocycles containing two stereocenters in high enantio- and 

diastereoselectivity
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Asymmetric desymmetrization of prochiral 1,3-diols provides an indirect but powerful way 

to form stereogenic centers, especially for the synthesis of chiral all-carbon quaternary 

centers.[1] During the past decade, substantial effort has been made towards the development 

of methods for the enantioselective intermolecular desymmetrization of such substrates,[2,3] 

On the other hand, intramolecular asymmetric desymmetrization reactions of 1,3-diols to 

generate two or more stereogenic centers have only recently been realized via 

organocatalysis.[4] Sun described a chiral phosphoric acid-catalyzed intramolecular 

transacetalization of 1,3-diols to form tetrahydrofuran skeletons with high efficiency and 

stereoselectivity.[4a] Yeung reported enantioselective desymmetrizing bromoetherification 

reactions of olefinic 1,3-diols catalyzed by a quinidine derived amino-thiocarbamate[4b] or a 

C2 symmetric sulfide.[4c]

In contrast, transition-metal catalyzed reactions for the intramolecular asymmetric 

desymmetrization of 1,3-diols have been far less explored.[5] Palladium-catalyzed 

asymmetric C-O bond formation, including allylic alkylation reaction[5a] and Ullmann-type 

coupling reaction[5b], were designed for this purpose; however, only modest 

enantioselectivities were obtained. A copper-catalyzed consecutive desymmetrization and 

kinetic resolution sequence was designed to obtain highly enantioenriched products.[5c]

Gold-catalyzed asymmetric hydrofuctionalization of allenes has drawn extensive interest 

during the last decade.[6] These reactions serve as atom-economical and highly 

stereoselective methods to assemble commonly encountered heterocycle motifs found in 

natural products and bioactive molecules. Despite these achievements, no succesful method 

has been established to construct heterocycles incorperating more than one stereocenter via 

these transformations. In 2007, our group reported an enantioselective hydroalkoxylation of 

allenes enabled by a chiral counter anion strategy.[7] Herein we disclose our recent efforts 

towards a gold-catalyzed desymmetrizing hydroalkoxylation of allenes that implements this 

same tactic, and provides access to multisubstituted tetrahydrofurans containing two 

stereogenic centers with good enantioselectivity and excellent diastereoselectivity.

Previous studies have demonstrated that the chiral induction induced by a chiral 

counteranion can be sharply modulated by achiral ligands.[8] Thus, our exploration 

commenced with the examination of varying achiral phosphine ligands and their synergistic 

properties in combination with Ag-(S)-TRIP in the desymmetrization of 1,3-diols. The fact 

that 2-aryl-1,3-diol (R = Ar, Figure 1) derived substrates were absent in Sun and Yeung’s 

reports,[4] prompted us to employ 2-phenyl substituted 1,3-diol 1a as the model substrate 

(Table 1). Various mono- and bis-phosphines ligands for gold were first investigated. 

Excellent diastereoselectivity and reactivity was obtained with monophosphine ligands 

(Ph3P, t-Bu3P); however, the enantioselectivity was very low (entries 1 and 2). Switching to 

the a bisphosphine ligand, diphenylphosphinomethane (dppm), produced an improvement in 

the enantioselectivity of the reaction, but with a slight loss of diastereoselectivity (d.r. = 

15:1, 50% ee). Other bisphosphine ligands were subsequently examined (entries 4 and 5).[9] 

Among them, diphenylphosphinoethane (dppe) proved optimal not only in enantioselectivity 

but also in diastereoselectivity (>25:1 d.r., 57% ee).
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Further optimization of the ligand focused on the adjustment of its electronic properties. 

Neither strongly electron-donating groups (4-MeO) nor strongly electron-withdrawing 

groups (4-CF3) were beneficial to the reaction (entries 3, 6 and 7). However, a mild electron 

withdrawing group (4-F) increased the ee to 66% (entry 8). Additional enhancement of the 

enantioselectivity was observed by employing 3-F-dppe as the ligand instead of 4-F-dppe 

(70% ee, entry 9). The structure of the counter anion was also examined, with (R)-C8-TRIP 

providing the desired product 2a in 92% yield with 87% ee as a single diastereoisomer 

(entry 12). Finally, performing the reaction at increased dilution and low temperature 

resulted in further improvements to the enantioselectivity (entries 13, 14).

With the optimal reaction conditions in hand, we next examined the substrate scope of this 

reaction (Table 2). The allene moiety (R1) was investigated, with six-membered ring 

substituent on the allene affording the desired product 2b in 95% yield with 90% ee (entry 

2). By contrast, slightly poorer results were obtained for the five-membered ring containing 

substrate (entry 3). Substrates with an electron-withdrawing group (F, Cl, Br, CF3), an 

electron-donating group (EtO, Me), or two substituents on the aryl ring all were well-

tolerated (entries 4 to 14). Additionally, reactions for substrates bearing a naphthalene or 

indole proceeded smoothly under the standard reaction conditions (entries 15 and 16).

We next turned our attention to substrates varying at the nascent desymmetrized quaternary 

carbon. When a benzyl group was introduced, modified conditions (−35 °C, 60 hrs) were 

needed to maintain good enantioselectivity (entry 17). Substrate with a cinnamyl group was 

also tested, giving the hydroalkoxylation product 2r in 87% yield, without any [2 + 2] 

adduct formed under this catalysts system (entry 18).[10] Similarly, no hydroarylation of 

allene was observed during the preparation of 2s by this method (entry 19).[11] These results 

feathered the counterion controlled reactivity in homogeneous gold catalysis.[12] Finally, the 

reaction was easily extended to substrates incorporating a protected amine functionality at 

the C2 position. While prolonged reaction time was required, the desired tetrahydrofuran 

with a protected amine moiety was isolated in 74% yield with 87% enantioselectivity (entry 

20). Attempts to prepare tetrahydropyran product 2u by this desymmetrization method under 

the standard conditions (−10 °C for 24 hrs) resulted in low conversion (< 10%). Elevated 

reaction temperature could expedite the transformation, however, modest 

diastereoselectivity and enantioselectivity was obtained (d.r. = 3.8:1, 69% ee, entry 21).[13]

The absolute stereochemistry of the hydroalkoxylation product 1a was determined by 

transformation to its sulfonylated derivative 3. X-ray crystallographic analysis of 3 
confirmed its structure and disclosed the absolute configuration as 2S, 4S.[14] Synthetic 

transformation of the desymmetrization products are illustrated in Scheme 1. The alkene 

moiety in 2a was readily converted to the corresponding aldehyde, which was transformed 

to α,β-unsaturated ester using the Hornor-Wadsworth-Emmons olefination reaction. 

Moreover, the hydroxyl in 2a was extended to an ester by oxidation/olefination sequence. 

Additionally, spirocyclic ether 2ma was prepred through an Ullmann type C-O bond 

formation reaction of the adduct (2m) bearing a halogen group at ortho position on the 

phenyl ring.
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To gain insight into the mechanism, some control experiments were conducted. First, when 

the gold catalyst was omitted, no reaction occurred, excluding a chiral silver-catalyzed 

hydroalkoxylation as an operative mechanism [Eq. (1)].[15] Second, the ratio of Au/Ag was 

investigated. Although excess (R)-C8-TRIPAg had no obvious effect to the 

enantioselectivity, we found that when the ratio of Au/Ag was 2:1, the enantiomeric excess 

dropped dramatically to 78% [Eq. (2)].[16] These observations raise the possibility that both 

gold centers in the catalyst play an important role in enantioinduction. While it is tempting 

to invoke a mechanism involving dual activation of the allene leading to a gem-diaurated 

intermediate, these species are generally believed to be less reactive towards protodeauration 

and, therefore, lie off the catalytic cycle.[17] Moreover, we observed a clear linear 

relationship[18] (r2 = 0.996) between the enantiomeric excess of the phosphate catalyst and 

that of the product (Figure 4). Therefore, it seems most plausible that the second gold 

phosphate center in the dinuclear catalyst is providing a structural or steric effect[19] rather 

than dual chiral induction.

In summary, we have achieved the first gold(I)-catalyzed enantioselective desymmetrization 

of 1,3-diols by intramolecular hydroalkoxylation of allenes. With this method, 

multisubstituted oxygen heterocycles, bearing all-carbon quaternary stereogenic centers are 

easily accessed in good yield with high enantioselectivity and diastereoselectivity. Notably, 

in addition to selecting the appropriate chiral anion, tuning of the steric and electronic 

properties of the achiral phosphine supporting ligand proved crucial to identifying the ideal 

catalyst system. This reaction represents an important further example of power of the chiral 

anion strategy for transition metal catalysis.[20]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Strategies for enantioselective intramolecular desymmetrization of 1,3-diols
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Figure 2. 
Absolute stereochemistry of 3 determined by X-ray crystallography.
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Figure 3. 
Relationship between the optical purity of product 2d and catalyst using 3-F-

dppe(AuCl)2/H8-TripAg in toluene.
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Scheme 1. 
Synthetic transformation of the products. Reaction conditions: a) O3, CH2Cl2, −78°C then 

Me2S from 78°C to room temperature. b) (EtO)2P(O)CH2CO2Me, NaH, THF. c) Dess-

Martin periodinane, NaHCO3, CH2Cl2. d) CuI, NaH, toluene, 120°C. See supporting 

information for details.
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Scheme 2. 
Control experiments.
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Table 2

Scope of substrates.[a],[b]

[a]
Reaction conditions: 2.5 mol % 3-F-dppe(AuCl)2, 5 mol % (R)-C8-TRIPAg, 0.1 mmol substrate in 10 mL toluene (C = 0.01 M), 40 mg 4Å 

molecular sieve, −10ºC for 24 hrs. See supporting information for details.

[b]
d.r. was determined by 1H NMR analysis of the crude product and ee was determined by chiral HPLC. Isolated yield.

[c]
− 35°C for 60 hrs.

[d]
− 10ºC for 72 hrs.

[e]
20ºC for 24 hrs.
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