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Abstract Cardiovascular disease continues to be the
leading cause of death, suggesting that new therapies are
needed to treat the progression of heart failure post-
myocardial infarction. As cardiac tissue has a limited
ability to regenerate itself, experimental biomaterial thera-
pies have focused on the replacement of necrotic cardio-
myocytes and repair of the damaged extracellular matrix.
While acellular and cellular cardiac patches are applied
surgically to the epicardial surface of the heart, injectable
materials offer the prospective advantage of minimally
invasive delivery directly into the myocardium to either
replace the damaged extracellular matrix or to act as a
scaffold for cell delivery. Cardiac-specific decellularized
matrices offer the further advantage of being biomimetic of
the native biochemical and structural matrix composition,
as well as the potential to be autologous therapies. This
review will focus on the requirements of an ideal scaffold
for catheter-based delivery as well as highlight the promise
of decellularized matrices as injectable materials for cardiac
repair.
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Introduction

The progressive pathological changes post-myocardial
infarction (MI) include an initial inflammatory response

[1], loss of cardiomyocytes [2, 3], and degradation of the
left ventricular (LV) extracellular matrix (ECM) by matrix
metalloproteases [4, 5], which lead to wall thinning, infarct
expansion [6], scar tissue formation, and eventual LV
dilatation and decrease in cardiac function [7]. This process
of negative LV remodeling post-MI is thought to indepen-
dently contribute to heart failure (HF) [8]. Currently, the
only successful treatments for end-stage HF post-MI are
total heart transplantation and the use of an LV assist
device. As coronary heart disease continues to be the
leading cause of death in the USA and the Western world
[9], it is clear that new therapies are needed.

To replace the necrotic cardiomyocytes and damaged
ECM, cardiac tissue engineering approaches have become a
major research focus for therapy post-MI. These approaches
include biomaterial scaffolds in combination with cells, as
well as biomaterials alone that are intended to recruit cells
into the damaged region. Initially, cellular therapy, or
cellular cardiomyoplasty, involved the injection of cells in
saline or media without any type of scaffold. Although this
technique has shown promise in preclinical and clinical
trials [10–14], the lack of an appropriate extracellular
environment for cellular adhesion has limited cell retention,
survival, and integration into the host tissue within the
damaged infarct region [15, 16]. More recently, biomaterial
scaffolds have been explored for use as cellular and
acellular cardiac patches [17–22] and also as injectable
materials [23–27], often referred to as in situ gelling
materials [28]. In addition to cellular cardiac patches, used
to increase cell transplant survival [17–19], acellular
cardiac patches have been developed from a variety of
materials to provide structural support for the damaged
ventricle and/or encourage cellular recruitment into the
material [20–22]. While both have been somewhat effective
at preserving cardiac function in animal models, implanta-
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tion of these patch materials involves an invasive open
chest procedure, such as sternotomy or thoracotomy.
Furthermore, patch materials are sutured to the epicardial
surface of the heart, limiting the region of therapeutic
benefit. In contrast, injectable materials offer a unique
solution of replacing the damaged myocardial ECM and/or
delivering cells directly to the infarcted region while
offering the potential for minimally invasive delivery.

Injectable Scaffold Requirements

As a variety of injectable materials have been explored for
cardiac tissue engineering and the prevention of HF, it is
important to consider the factors necessary for an ideal
injectable scaffold for the heart. The ideal injectable
material would be one that mimics the native cardiac
extracellular milieu and meets the clinical need of mini-
mally invasive catheter delivery. From a tissue engineering
perspective, it is important that a material be biocompatible
and provide the appropriate cell–matrix interactions to
allow for cell adhesion proliferation and/or maturation
[29–31]. The native extracellular environment provides
cells with a complex combination of proteins and poly-
saccharides. Thus, while scaffolds have been functionalized
with simple peptides such as RGD to promote adhesion
[32], it is known that more complex, combinatorial signals
promote significant changes in cell behavior [33, 34],
indicating that the biochemical composition of a scaffold is
critical to instruct cells. Furthermore, material properties
such as degradation products play an important role. It is
essential that the degradation products be non-toxic and that
the degradation rate allows for new tissue in-growth.
Beyond biochemical composition, structural properties,
such as porosity, are considerations that effect degradation
and cellular infiltration [35, 36]. Pores should be
interconnected with a diameter >10 μm to allow for cellular
and vascular infiltration as well as diffusion of nutrients
[30]. Biochemical composition and porosity that allows for
cellular infiltration should thus allow for vascular cell
infiltration and revascularization of the ischemic region.
The angiogenic potential of a scaffold is important for most
tissue engineering applications [29, 30, 37], but is partic-
ularly critical in the ischemic region of the heart post-MI as
microvascular dysfunction is a known predictor of LV
dilation [38–40].

For a material to be compatible with clinically relevant
catheter delivery, allowing for a minimally invasive
procedure, additional design requirements become impor-
tant. Initial human cellular transplantation studies involved
direct epicardial injection while a patient received an open
chest procedure, such as cardiac artery bypass graft or the
implantation of a LV assist device [41, 42]. However, recent

advances in catheter technology allow for percutaneous
transcoronary or transendocardial delivery [10–14, 24],
eliminating the need for an invasive surgical procedure.
Thus, materials designed as injectable scaffolds should
meet design requirements for coronary or endocardial
catheter delivery. The material must have the proper
gelation properties and kinetics to remain liquid within the
catheter while allowing the formation of a solid gel within
the myocardial tissue. Materials currently being tested in
small animal models, via direct epicardial injection [23, 25–
27, 43, 44], would likely have difficulty translating to
catheter delivery due to gelation properties or other delivery
constraints. For example, a quick-gelling material may clog
the catheter, preventing injectability. Additionally, some
materials are multi-component, requiring a double-barreled
injector for delivery [27, 43–45], which is not compatible
with current catheter technology.

Synthetic Materials

Synthetic materials for tissue engineering offer the advan-
tage of tunability, allowing the design of a material with the
appropriate porosity, mechanical stability, and degradation
properties [30]. Recently, variations of poly(N-isopropyla-
crylamide) (PNIPAAM) and poly(ethylene glycol) (PEG)
have been developed and evaluated as injectable therapies.
PNIPAAM, a synthetic hydrogel, is advantageous because
it undergoes a phase transition just below physiologic
temperature, causing it to form a gel at 37°C, yet remains a
liquid at room temperature. Variations of PNIPAAM,
including biodegradable dextran (Dex) grafted poly(E-
caprolactone)-2-hydroxylethyl methacrylate (PCL-HEMA)/
PNIPAAm (Dex-PCL-HEMA/PNIPAAm) [46, 47] and
copolymerization of NIPAAm, acrylic acid (AAc), and
hydroxyethyl methacrylate-poly(trimethylene carbonate)
(HEMAPTMC), to create poly(NIPAAm-co-AAc-co-
HEMAPTMC) [48] have shown preserved or improved
cardiac function in small animal infarct models. Addition-
ally, PEG, a common bioinert material, has been explored
as a non-degradable option. However, injection of PEG-
vinyl sulfone immediately following permanent ligation in
a rat model showed no difference in long-term functional
benefit as compared to saline injection [49]. A recent study
in our lab involving the injection of PEG suggests that the
injection of a bioinert, non-degradable material is insuffi-
cient to reduce negative LV remodeling and prevent the
progression of HF despite an increase in infarct wall
thickness (data unpublished). Thus, while synthetic materi-
als offer the benefit of tunability, they lack inherent
bioactivity, important for cellular adhesion, proliferation,
and growth, which may play a key role in cardiac
regeneration.
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Naturally Derived or Inspired Materials

The primary focus for injectable materials has been on naturally
derived or inspired materials to improve cell survival or
preserve cardiac function. The advantage of natural materials
is that the components are recognized by the body and are
easily degraded into safe by-products [30]. The first materials
explored as injectable scaffolds include collagen and fibrin
glue, both commonly used tissue engineering materials.
Collagen, a helical structure with a defined pattern of amino
acids that can be easily recognized by the body, is the main
protein component of most extracellular environments and is
thus a common material choice for tissue engineering
scaffolds [50]. Commercially available collagen products have
been used as injectable scaffolds for cardiac tissue engineering
[26, 51, 52], yet advances with collagen have slowed since the
initially reported studies. Fibrin, another commonly used
fibrillar protein, is involved in the coagulation cascade, in
wound healing responses [53], and in promoting angiogenesis
[54, 55]. Fibrin glue is a commercially available two-
component product consisting of the fibrin precursor, fibrino-
gen, and the activating enzyme, thrombin, that self-assemble
upon contact to create a fibrin gel. Fibrin glue was the first
material used to demonstrate that an injectable biomaterial can
improve cell survival [43] as well as induce neovascularization
and preserve cardiac function with or without cells [27, 43, 51,
56]. However, fibrin glue requires a double-barreled injection
system that is not currently compatible with catheter delivery,
unless the catheter is flushed with saline between injections.
This method is likely not clinically feasible, as multiple flushes
of material into the bloodstream would occur. Both collagen
and fibrin are single proteins that, although common for tissue
engineering applications, do not mimic the native ECM, which
is a tissue-specific network of proteins and polysaccharides.

To create a more complex extracellular environment,
Matrigel is a commonly used material [16]. Matrigel refers to
the purified matrix derived from Engelbreth–Holm–Swarm
mouse sarcoma cells and includes a complex mixture of
laminin, collagen IV, entactin, heparan sulfate proteoglycans,
and growth factors. Another attractive characteristic is that
Matrigel undergoes a phase transition to create a gel at
physiologic temperature. However, being that Matrigel is
derived from a mouse sarcoma line, it is not tissue-specific
and presents the risk of tumor induction [57, 58], which will
likely limit its clinical translation. Additionally, Matrigel may
not be conducive to allowing neovascularization, as recent
studies present varied results [51, 59]. In one study, a lack of
cellular infiltration, including a lack of vascular cell infiltra-
tion, into injected Matrigel was reported [59].

Chitosan and alginate are two non-mammalian poly-
saccharide materials that have been explored for cardiac
tissue engineering. Chitosan, derived from the structural
component of crustacean shells, is a polysaccharide with

tunable chemistry that allows for the control of
degradation properties [60]. The ability to undergo
temperature-phase transition at physiologic temperature
allows chitosan to gel in situ upon injection into the
myocardium with or without cells [23]. Mouse embryonic
stem cells delivered into an ischemic border zone showed
improved retention and engraftment when injected with
chitosan, in addition to improved function and neo-
vascular formation [23]. Potential barriers to using
chitosan include the lack of solubility in neutral solutions
and inconsistency in cellular attachment [50]. Alginate, a
polysaccharide derived from brown seaweed, has the
unique ability to undergo a phase transition, utilizing the
calcium present in the myocardial tissue, upon injection
into the LV free wall [24]. The use of alginate has shown
positive results in both acute and chronic rat MI models
[25] and additionally has been delivered in combination
with growth factors [61] or modification with RGD [32].
This past year, alginate was shown to improve function in
a porcine model upon minimally invasive transcoronary
catheter delivery [24]. Despite the recent success, known
limitations associated with alginate include poor cell
adhesion and infiltration, as the hydrophilic nature of
alginate leads to the prevention of protein adsorption and
mammalian cell interaction [50]. Furthermore, as chitosan
and alginate are both derived from non-mammalian
sources, they likely do not provide the appropriate
extracellular microenvironment.

As naturally inspired materials, self-assembling peptides,
RAD16-I and RAD16-II, which are able to form nanofibrous
gels at physiologic pH have also been explored. Initial in vivo
studies using the RAD16-II self-assembling peptides alone
showed promising results in healthy myocardium, including
the infiltration of endothelial cells and cardiomyocytes, as well
as differentiation of human embryonic stem cells (hESCs) to
cardiomyocyte (CM) upon injection [59]. However, upon
injection in MI models, success has only been achieved with
the addition of tethered growth factors, with variable results
depending on the growth factor and the cell type. It has been
shown that incorporation of insulin-like growth factor-1 (IGF-
1) with self-assembling peptides aids in CM survival [62],
improves survival and proliferation of cardiac progenitor cells
(CPC) [63], and improves cardiac function upon delivery with
CM or CPC cells [62, 63]. Self-assembling peptides injected
with platelet derived growth factor (PDGF) showed improved
fractional shortening, although they did not improve function
when injected alone [64, 65]. Furthermore, nanofibers
delivered with a protease-resistant stromal cell derived
factor-1 (SDF-1) were shown to recruit endogenous stem
cells and improve cardiac function [66]. However, both self-
assembling peptide sequences, with or without PDGF, failed
to improve skeletal myoblast survival and cardiac function in
a rat model [67]. These varied data suggest the potential
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importance of an injected biomaterial to create the appropriate
microenvironment for the cell type being delivered or recruited.

Several groups have explored combination materials, or
incorporated additional components, such as growth factors
to create a more complex microenvironment, to aid in cell
survival, and/or preserve cardiac function. Combination
materials include a collagen–Matrigel combination [68], a
fibrin–alginate biocomposite [45], and a PEGylated fibrin
biomatrix [42]. While these combination materials provide
a more complex scaffold, they do not properly mimic the
native cardiac ECM.

Decellularized Materials

In native healthy tissue, the extracellular environment is a
complex composition of proteins and proteoglycans that
guides cellular attachment, survival, migration, prolifera-
tion, and differentiation [30, 31, 69–72]. Thus, as described,
cardiac tissue engineering strategies have focused on the
development of injectable scaffolds to replace the native
ECM, with the hope of providing cells the proper
environment to develop [15]. It follows that the best
replacement of the complex milieu is the native ECM
itself. Therefore, recent focus has been placed on the
utilization of decellularized ECM for a variety of medical
applications, including cardiac repair.

Decellularization involves the physical, chemical, or
enzymatic removal of an organ or tissue’s cellular content,
thus leaving only the ECM. Although it may alter the
chemical and structural composition of the ECM,
decellularization is beneficial as it allows for the removal
of cellular antigens, which could induce a foreign body
reaction, inflammation, and potential transplant rejection
[73]. The removal of cellular antigens and the fact that
ECM proteins are fairly well conserved among species [74]
allow xenogeneic decellularized materials to be well
tolerated [75]. In fact, numerous decellularized ECMs,
such as small intestine submucosa (SIS), pericardium, skin,
and heart valve from both bovine and porcine sources are
FDA-approved and used clinically [75].

For cardiac applications, decellularized urinary bladder
matrix has been used as an epicardial cardiac patch
material, showing cellular infiltration into the patch and
functional benefits [21, 22, 76]. However, the use of a non-
cardiac-specific decellularized ECM patch material resulted
in undesirable cartilage tissue formation within the myo-
cardium [22], potentially a result of non-tissue-specific
cell–ECM interactions. In addition, patch materials are
limited to the epicardial surface of the heart and thus do not
provide the advantages of minimally invasive delivery and
treatment within the infarct region, as injectable materials
offer.

For these reasons, the use of decellularized matrices as
injectable therapies for cardiac repair has gained recent
focus. Decellularized SIS has been processed to be a
powder and injected, as an emulsion, directly into rat
myocardium following an ischemic–reperfusion event [79].
Results showed cellular recruitment into the injection and
without intermediate flushing of the catheter. However, it
has been shown that while the general ECM components of
each tissue are similar, each individual tissue does contain
its own unique combination of proteins and proteoglycans
[30, 70]. Thus, cardiac-specific decellularized tissue would
be the appropriate choice to replace the damaged myocar-
dial ECM. It was recently shown that intact rat and porcine
hearts can be decellularized via perfusion with detergents,
utilizing the vasculature to access, lyse, and remove all of
the cells [77, 78], thus opening up the possibility of using
decellularized myocardial ECM for cardiac repair.

Decellularized ventricular and pericardial ECM are
two attractive options recently developed for cardiac
tissue engineering. Our lab has shown that decellularized
porcine ventricular tissue, as well as porcine and human
pericardial tissue, can be processed to create a solubi-
lized liquid with the ability to gel via self-assembly at
physiologic temperature both in vitro and in vivo upon
injection into myocardial tissue [80, 81]. Briefly, ventric-
ular or pericardial tissue was harvested and decellularized
using sodium dodecyl sulfate detergents (Figs. 1 and 2).
The decellularized matrix was then lyophilized and milled
to create a fine powder (Fig. 3a, b). This powder can be
solubilized using enzymatic digestion to create a liquid
matrix for catheter delivery (Fig. 3c).

As it is critical that a material for cardiac therapy mimic
the native ECM to provide the appropriate microenvironment
to facilitate cell–matrix interactions, the decellularized
ventricular ECM biochemical composition was characterized
and shown to retain a complexity of proteins, peptides, and
glycosaminoglycans [80]. The complex solubilized myocar-
dial matrix was shown to reassemble in vitro at physiologic
pH and temperature into a nanofibrous and porous structure.
Initial in vivo feasibility testing showed gelation within
healthy rat myocardial tissue upon direct epicardial injection,
with pore size of ~30 μm and a structure resembling that of
the intact decellularized tissue, prior to processing (Fig. 4a).
In addition, the myocardial matrix was shown to promote the
migration of human coronary artery endothelial cells and rat
aortic smooth muscle cells in vitro as well as promote the
infiltration of vascular cells and the formation of arterioles in
vivo [80]. The myocardial matrix has been shown to
preserve LV volume and ejection fraction in a rat infarct
model (data unpublished). To assess clinical feasibility, the
matrix has further been tested in a porcine model via
transendocardial catheter delivery (data unpublished). Brief-
ly, multiple injections were made throughout the LV free
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wall and septal wall, as guided by an electromechanical
voltage (NOGA) map. The resistance of each injection was
rated and did not increase with time, indicating that the
material did not gel within the catheter. Thus, the feasibility
of the material to meet the criteria for transendocardial
delivery has been demonstrated. The presented myocardial
matrix thus provides a cardiac-specific matrix that meets
clinical design criteria and is a promising option for
translation.

Our lab has also tested the initial feasibility of a decellular-
ized pericardial gel which has the potential to be an autologous
therapy [81]. While the pericardium provides some structural
support for the heart, it is considered non-essential for survival

and is routinely cut or removed from patients during surgery,
without adverse effects [82]. Thus, a portion of the pericar-
dium can be removed and processed to be an autologous
treatment, as has been done for valve replacement and left
ventricular repair [83, 84]. Pericardial matrix gels have been
created from porcine pericardium, as well as human pericar-
dium, following a similar preparation as the myocardial
matrix [81]. Human pericardium was obtained from patients
undergoing cardiothoracic surgery, who would be the likely
targets of this autologous therapy. Initial in vivo results
demonstrate that both human and porcine pericardial matrices
are able to gel in vivo (Fig. 4b, c) and promote the infiltration
of vascular cells, including arteriole formation. Although

Fig. 1 Decellularized ventricu-
lar ECM and non-decellularized
porcine ventricular tissue
(hematoxylin and eosin-stained
sections). a, b Intact decellular-
ized ventricular ECM prior to
processing. c Intact non-
decellularized ventricular tissue.
Scale bars, 100 μm. Note the
absence of cells in the decellu-
larized ECM. Reprinted with
permission from [80]

Fig. 2 Decellularized and non-
decellularized human and por-
cine pericardial tissue
(hematoxylin and eosin-stained
sections). a, b Human; c, d
Porcine; a, c Non-decellularized
pericardial tissue; b, d Decellu-
larized pericardial ECM. Scale
bars, 500 μm. Note the absence
of cells in the decellularized
ECM. Reprinted with
permission from [81]
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pericardial matrix is not an exact ECM match for ventricular
myocardium, the pericardium is thought to influence myocar-
dial contraction and epicardial vessel properties [82] and
offers the additional benefit of providing a potentially
autologous treatment option.

Conclusions

A variety of materials are being explored to prevent the
progression of HF post-MI, including synthetic and
naturally derived or inspired materials. Keeping in mind
the outlined requirements of an injectable scaffold, decellu-
larized matrices show great promise for clinical translation.
Synthetic materials, while able to be modified or allow for
angiogenesis through their porous structure [85], do not
offer the bioactivity to replace the damaged ECM and allow
for the appropriate cell–matrix interactions. Many of the
recently explored naturally derived and inspired materials
offer the benefit of bioactivity, although have not been
designed specifically for cardiac repair. Fibrin and collagen
are single proteins, each lacking the complexity of a native
ECM. Matrigel, while more complex, will likely not

progress to the clinic as it is derived from a mouse sarcoma
line. Furthermore, fibrin, collagen, and Matrigel would
potentially gel prematurely during catheter delivery due to
their rapid gelation kinetics. Although chitosan and alginate
may be suited for catheter delivery, both are from non-
mammalian sources and thus do not offer a mimic of native
ECM.

Decellularized materials offer the advantage of being
cardiac-specific and potentially autologous injectable ther-
apies. The myocardial and pericardial matrices have shown
initial feasibility within healthy rat myocardium via in vivo
gelation and vascular cell infiltration. In addition, gelation
of myocardial matrix occurs with the proper kinetics to
allow for transendocardial catheter delivery, as assessed in a
porcine model. Being that the myocardial matrix and
pericardial matrix have similar gelation kinetics, we
anticipate that the pericardial matrix will also be compatible
with catheter injection. Catheter compatibility is critical
because while many materials have shown preserved or
improved function upon injection with or without cells in
small animal models [23–27], most will likely not translate
to catheter delivery. In addition, the ventricular and
pericardial decellularized matrices retain complex biochem-

Fig. 4 In vivo gelation of injectable myocardial and pericardial matrix
scaffolds (hematoxylin and eosin-stained sections). a Arrow indicates
area of injected myocardial matrix, and the inset is intact decellularized
ventricular ECM prior to processing. Scale bar, 100 μm. Note the
similar structure of the self-assembled matrix to the decellularized

ECM. b Arrow indicates area of injected human pericardial matrix.
Scale bar, 500 μm. c Arrow indicates area of injected porcine
pericardial matrix. Scale bar, 500 μm. Reprinted with permission
from [80, 81]

Fig. 3 Decellularization process of ventricular extracellular matrix. a Decellularized, lyophilized (dried) ECM. b Milled powder. c Solubilized
myocardial matrix in a 1-mL syringe, prepared for injection
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ical ECM cues, providing an extracellular milieu that
cannot currently be mimicked by other materials, and thus
offer promising solutions as injectable therapies to replace
the degraded ECM for the treatment of MI and HF.
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