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Abstract

Background/Objective: Exposure to air pollution may contribute to both increasing depressive 

symptoms and decreasing episodic memory in older adulthood, but few studies have examined 

this hypothesis in a longitudinal context. Accordingly, we examined the association between air 

pollution and changes in depressive symptoms and episodic memory and their interrelationship in 

oldest-old (aged ≥ 80 years) women.

Design: Prospective cohort data from the Women’s Health Initiative Memory Study

Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO).
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Setting: Geographically-diverse community-dwelling population.

Participants: 1,583 dementia-free women aged ≥ 80.

Measurements: Women completed up to 6-annual memory assessments (latent composite of 

East Boston Memory Test and Telephone Interview for Cognitive Status) and the 15-item Geriatric 

Depression Scale. We estimated 3-year average exposures to regional PM2.5 (particulate matter 

with aerodynamic diameter <2.5 μm; interquartile range [IQR] = 3.35μg/m3) and NO2 (IQR = 9.55 

ppb) at baseline and during a remote period 10 years earlier, using regionalized national universal 

kriging.

Results: Latent change structural equation models examined whether residing in areas with 

higher pollutant levels was associated with annual changes in standardized episodic memory and 

depressive symptoms while adjusting for potential confounders. Remote NO2 (β=.287 per IQR; 

p=.002) and PM2.5 (β=.170 per IQR; p=.019) exposure was significantly associated with larger 

increases in standardized depressive symptoms, although the magnitude of the difference, less 

than 1 point on the GDS-15, is of questionable clinical significance. Higher depressive symptoms 

were associated with accelerated episodic memory declines (β=−.372; p=.001), with a significant 

indirect effect of remote NO2 and PM2.5 exposure on episodic memory declines mediated by 

depressive symptoms. There were no other significant indirect exposure effects.

Conclusions: These findings in oldest-old women point to potential adverse effects of late-life 

exposure to air pollution on subsequent interplay between depressive symptoms and episodic 

memory, highlighting air pollution as an environmental health risk factor for older women.

Keywords

Depressive symptoms; episodic memory; air pollution; oldest-old

1. Introduction

People age 80 year and older, referred to hereafter as the oldest-old, represent the fastest 

growing segment of the US population1. A u-shaped curve of depressive symptoms (DS) 

exists across older adulthood, with late-life DS decreasing during the early period of older 

adulthood with an uptick in the oldest-old2. Declines in episodic memory (EM)3, become 

more pronounced after age 80 and typically co-occur with DS4. There is considerable 

environmental influence on the etiology of both DS5 and EM6, 7; however, in the oldest-old, 

the role of the physical environments has been understudied.

Exposure to air pollutants, such as ambient PM2.5 (particulate matter with aerodynamic 

diameter <2.5 μm) and gaseous NO2 (nitrogen dioxide), may represent novel environmental 

risk factors of accelerated brain aging8. Longitudinal studies have examined PM2.5 exposure 

as a risk factor for DS, EM decline, and dementia in older adulthood9–13. No longitudinal 

studies have examined associations between exposure to traffic-related pollutants with DS 

or depression in late life. Previous work on has also focused on associations with exposures 

measured in recent years immediately prior to the emotional or cognitive health assessment. 

It is unknown how remote exposure to air pollution is associated with trajectories of DS and 

EM performance in the oldest-old.
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Research examining longitudinal interrelationships among PM2.5 exposure, DS, and 

EM suggests that air pollution-related memory decline may precede increases in 

DS14. Specifically, PM2.5 exposure averaged 3-years prior to annual neuropsychological 

assessments was associated with declining performance on EM tests, which were then 

associated with subsequent increases in DS. Although this report was the first demonstrating 

the temporal dynamics between DS and EM affected by air pollution exposure in late life, 

the average baseline age was 73 years old, making it difficult to generalize the observed 

associations to the oldest-old. This previous work was further limited by studying only 

PM2.5, whereas other studies had reported the associations of EM decline with NO2
15, 16.

The purpose of this longitudinal study was to examine the associations of exposures to NO2 

and PM2.5 with changes in EM and DS over a 5-year period in a geographically-diverse 

community-dwelling cohort of women aged 80 years and older. We also examined whether 

the observed associations, might vary by pollutants (NO2 vs. PM2.5) and exposure time 

period (in recent vs. remote years).

2. Materials and Methods

2.1 Study Population

This longitudinal cohort study included 1,583 community-dwelling older women age 

80 years or older enrolled in the Women’s Health Initiative Memory Study of the 

Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO)17 who were dementia-free 

(see Supplemental Methods for description of dementia ascertainment) at study baseline 

(aged 80–93 years old). The WHIMS-ECHO began in 2008, and was an extension study 

to the Women’s Health Initiative Memory Study (WHIMS)18 which itself was an ancillary 

study to the larger Women’s Health Initiative (WHI) trial of postmenopausal hormone 

therapy19 (see Supplementary Figure 1 for a panel A for a flowchart of this study sample 

while panel B presents a timeline of study assessments). Participants completed annual 

phone-based neuropsychological assessments (up to 6 assessments), including measures 

of DS and EM. A more detailed description of the study population is included in the 

Supplemental methods.

2.2 Assessment of DS

DS were assessed at WHIMS-ECHO baseline and at each annual follow-up using the 

15-item Geriatric Depression Scale (GDS-15)20. GDS-15 scores were positively skewed, so 

scores were transformed using a 3-quantile spline transformation applied in our previous 

work11. Transformed scores were standardized on a T-score metric (Mean = 50; SD = 10), 

based on the baseline mean and standard deviation. Higher scores reflect greater depression 

symptoms.

2.3 Assessment of verbal EM

Verbal EM was assessed by the immediate (IR) and delayed recall (DR) measures from both 

the East Boston Memory Test (EBMT)21 and word-list items of the Telephone Interview 

for Cognitive Status-modified (TICSm)22. A higher score represents better performance 

on these four measures of EM. Performance on each measure was also standardized on a 
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T-score metric based on the baseline mean and standard deviation. In order to minimize the 

number of models that were fit, we combined the four measures of EM (EBMT-IR; EBMT

DR; TICSm-IR; and TICSm-DR) into a latent factor that captures the overall performance of 

EM (see Supplemental methods for additional details).

2.4 Assessment of ambient PM2.5 and NO2

Participants’ addresses were prospectively collected at each WHI assessment and geocoded 

using standardized procedures23, 24. Ambient annual mean concentrations of PM2.5 in ug/m3 

and NO2 in ppb at each location were estimated using regionalized universal kriging models, 

which were based on US Environmental Protection Agency (EPA) monitoring data25–27. 

Given the annual estimates, we calculated 3-year average exposures for each of these two 

pollutants both at WHIMS-ECHO baseline (referred to as recent exposures) and during 

the remote period 10 years earlier (referred to as remote exposures). Remote exposure 

corresponds to average annual exposure 10–13 years prior to the WHIMS-ECHO baseline 

(see Figure 1 panel B). Both exposure variables were scaled to the interquartile range (IQR) 

based on the remote exposure time period (remote PM2.5 IQR = 3.35 μg/m3; remote NO2 

IQR = 9.55 ppb).

2.5 Relevant Covariate Data

A structured questionnaire was administered at WHIMS baseline to gather information 

on time-independent covariates: demographics (age, race/ethnicity), geographic region of 

residence (Northeast, South, Midwest, and West); socioeconomic status (education; family 

income; employment status); lifestyle factors (smoking; alcohol use; physical activities); 

and clinical characteristics, including past or present self-reported postmenopausal hormone 

treatment, history of cardiovascular disease (including previous coronary heart, stroke, 

or transient ischemic attack), hypertension (defined as elevated blood pressure or use 

of antihypertensive medication), hypercholesterolemia, and diabetes mellitus (defined as 

physician diagnosis plus oral medications, or insulin therapy). Reliability and validity 

of these self-reported medical histories and the physical measures have been previously 

documented28. Neighborhood socioeconomic characteristics (nSES) were characterized 

using standard methods29.

2.6 Statistical Analysis

Structural equation models (SEMs) for latent change scores (LCSs)30, 31 were constructed 

to characterize associations between air pollution exposure and temporal changes in the 

two inter-related neuropsychological processes (EM; DS) over the first five years of the 

WHIMS-ECHO study period. We examined change over one-year intervals because women 

completed annual assessments of both EM and DS. The Supplemental methods provide a 

more detailed description of the analytic approach.

We first constructed univariate LCS models to examine the association between exposure 

and annual change in each of these two neuropsychological processes, separately for DS 

(Supplemental Figure S1) and EM (Supplemental Figure S2). For DS, the equation to 

estimate annual individual-specific change in DS for individual i at timepoint t (Δdepi,t) was 

written as:
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∆ depi, t = αdep*slpdep, i + βdep*ldepi, t + γexposure on ∆ dep*Exposurei (Equation 1)

In the above equation, Δdepi,t denotes the estimated individual-specific annual change in 

DS and is a function of the following effects: individual-specific constant linear change 

(denoted by slpdepi), non-linear proportional change capturing the extent to which magnitude 

of change is dependent on previous estimate of DS (βdep); and the effect of exposure 

(γexposure on Δdep). Exposure effects, and individual-specific estimates of initial symptoms 

and linear change were adjusted for the following covariates: age at the WHIMS-ECHO 

baseline, race/ethnicity, employment status, geographic region of residence, education, 

household income, lifestyle factors (smoking; alcohol use; physical activities), nSES, and 

clinical characteristics (any prior hormone use ever, hypercholesterolemia, hypertension, 

diabetes, and history of cardiovascular disease). Analogous equations can be written for 

univariate SEM to estimate exposure effects on change in the EM latent factor. In univariate 

models for EM, a latent factor of EM performance consisting of the four measures of 

EM (EBMT-IR, EBMT-DR, TICSm-IR, and TICSm-DR) was created at each timepoint 

(see Supplemental methods). Separate models were run to examine how the defined 

neuropsychological process was influenced by ambient PM2.5 or NO2, each including 

remote and recent exposures effects.

2.6.3 Bivariate latent change score models.—Figures S3 and S4 in Supplemental 

materials present the full bivariate models that were estimated. In the bivariate models 

change in DS (Δdepi,t) was again a function of linear systematic change (slpdepi), 

proportional change (βdep), and the effect of exposure (γexposure on Δdep). The equation to 

estimate change in DS also contains a coupling parameter linking EM performance with 

subsequent change in DS (γlem on Δdep).

The specific indirect effect of exposure on changes in DS was estimated by multiplying 

the two estimated coupling parameters while deriving estimates of 95% confidence intervals 

(95% CI) via Monte Carlo simulation32. All bivariate LCS models were adjusted for the 

same set of covariates as described in the univariate LCS models. Analogous equations can 

be written to examine whether there was an indirect effect of exposure on changes in EM 

mediated by exposure-related changes in DS. Again, separate models were run to examine 

effects of remote and recent exposure to both PM2.5 and NO2.

We conducted three sensitivity analyses to examine the robustness of our study findings. 

We first excluded women (n=137) with either prevalent stroke at the beginning of the study 

period or incident stroke by 2017 and re-ran these analyses to examine whether our findings 

could be explained by stroke risk. Second, we excluded women (n=289) who developed 

dementia (see Supplemental methods for dementia ascertainment) by June 2018, to explore 

whether any observed associations remain among the oldest-old who were cognitively-intact 

during the entire study period. Last, we excluded women (n=127) who self-reported a 

history of depression prior to the WHIMS baseline, to explore whether findings could be 

explained by prior history of depression. All LCS models were conducted using the SEM 

program MPLUS version 833 which was run via the MPLUS Automation package34 in R.
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3. Results

On average, participants completed nearly five (mean±S.D.= 4.25±1.81) assessments of EM 

and DS. Table 1 compares the distribution of 3-year average exposures to regional PM2.5 

and NO2 at the remote period 10 years before the WHIMS-ECHO baseline assessment 

by population characteristics. Participants exposed to higher concentrations of remote 

PM2.5 were more likely to be racial/ethnic minorities (African-American or Hispanic 

White), residing in the South, and have hypercholesterolemia. Participants with higher 

concentrations of remote NO2 exposure were more likely to have either more or less than 

a high school education, to reside in the West, and to be racial/ethnic minorities, current 

smokers, and non-drinkers (less than one drink per day).

All univariate LCS models fit data acceptably (Supplemental Table S1 for all model 

fit indices). Increased remote exposures were associated with greater annual increases 

in DS during the WHIMS-ECHO follow-up (Supplemental Table S2). For example, 

one inter-quartile increment increase in PM2.5 (3.35 μg/m3) exposure was associated 

with a .170 larger annual increase in T-score standardized DS (95% confidence interval 

(CI) = .027-.312). A similar putative adverse exposure effect was observed for NO2 

(γremote NO2 on Δdep = .287; 95% CI = .105-.470; per inter-quartile increment of 9.55 

ppb). Although similar patterns of increased DS were also found in those residing in 

locations with higher exposures during the recent 3 years before WHIMS-ECHO baseline, 

the associations did not reach statistical significance (p=.090 for NO2; p=.126 for PM2.5). 

In contrast, there was no statistically significant association of EM decline with either 

PM2.5 or NO2, regardless of exposure time periods. Figure 2 presents the exposure effect 

parameter estimates and depicts estimated trajectories of EM and DS (transformed back 

to GDS-15 units to aid in clinical interpretation) associated with each pollutant at either 

relatively low (25th percentile), average (median), or relatively high (75th percentile) 

exposure concentrations among women with the average performance of EM or DS at 

WHIMS-ECHO baseline and average individual-specific linear change. Women residing in 

areas with high exposure to NO2 experienced 24% larger increases in DS compared to 

women with low exposure while higher PM2.5 exposure was associated with 17% larger 

increases. Applying recently published guidelines for effect size interpretation our observed 

effect sizes of exposure on changes in depressive symptoms are considered small yet 

potentially consequential35.

In Table 2, the results of bivariate LCS models examining the direct and indirect effect 

of exposure on changes in DS are presented. All models exhibited acceptable model fit 

(see Supplemental Table S1). Consistent with univariate models, neither NO2 nor PM2.5 

exposure over the remote or recent period was associated with EM declines. Additionally, 

EM performance in the oldest-old women was not associated with subsequent changes in 

DS.

Results for the direct and indirect effects of exposure on changes in EM performance are 

presented in Table 3. Remote NO2 and PM2.5 exposures were both associated with increased 

DS over the follow-up period. For example, a one inter-quartile increment in remote NO2 

exposure was associated with a .255 larger annual increases in T-score standardized DS. 
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Oldest-old women with higher DS tended to have accelerated declines in EM during the 

subsequent year, with a one T-score increase in DS being associated with .377-.380 larger 

annual declines in EM performance. The resulting indirect effect of remote exposure on 

accelerating EM declines mediated by DS was present for both pollutants, with a larger 

effect estimate per interquartile range for NO2 exposure. The magnitude of effects of recent 

exposures during the 3 years before the WHIMS-ECHO baseline were of similar magnitude 

as remote exposure although not statistically significant.

In our sensitivity analyses, the observed direct associations between exposures and increased 

DS (Table S3), as well as the resulting indirect effects on EM decline mediated by increased 

DS (Table S4), were largely the same after excluding women who experienced a stroke. 

After excluding oldest-old women who developed dementia by 2018, the associations of 

increased DS with remote exposures to NO2 and PM2.5 (Supplement Table S5), as well as 

the indirect effects on EM decline (Supplement Table S6), were substantially attenuated. 

The corresponding indirect effect of exposure on declines in EM mediated by DS was no 

longer statistically significant. After excluding oldest-old women who self-reported a history 

of depression prior to the WHIMS baseline, the associations between exposure to higher 

concentrations of PM2.5 and NO2 and annual changes in DS were significantly attenuated 

(Supplement Table S7). The corresponding indirect effect of exposure to PM2.5 on declines 

in EM mediated by DS was no longer statistically significant (Supplement Table S8). The 

corresponding indirect effect of exposure to NO2 on declines in EM mediated by DS was 

attenuated but remained statistically significant.

4. Discussion

In this geographically-diverse cohort of women aged 80 years and older, we found that 

living in locations with higher exposures to ambient air pollution was associated with 

increased DS and this putatively adverse exposure effect may differ by pollutants. In 

univariate analyses, long-term exposure to ambient NO2 or PM2.5 was associated with 

increased DS, of small effect size, over the follow-up. Associations between exposure and 

changes in DS were slightly stronger and statistically significant for exposures of 10–13 

years before the neuropsychological assessment. These observed associations were also 

stronger with NO2, as compared to PM2.5 exposure. The magnitude of these exposure effects 

on increases in DS were of questionable clinical significance corresponding to less than 

a one-unit increase in raw GDS-15 score per IQR increment of the exposure. We did not 

find any statistically significant direct association of EM declines with remote or recent 

exposure to NO2 and PM2.5. In bivariate models, women with increasing DS tended to 

have larger declines in EM one year later, whereas EM was not associated with subsequent 

changes in DS. A statistically significant indirect effect of remote exposure to either NO2 

or PM2.5 on declining EM via increased DS was present. This suggests DS might serve 

as a neuropsychological mediator of the association between long-term exposure and EM 

decline in the oldest-old women. Findings could not be explained by socio-demographic 

factors, lifestyle, individual SES, neighborhood socioeconomic characteristics, or clinical 

characteristics. To our knowledge, this is the first study to examine how air pollution 

exposures are associated with DS as well as the interrelationship between DS and EM in the 

oldest-old population.
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Our study demonstrates evidence that living in areas with higher levels of ambient NO2 and 

PM2.5 are associated with increases in DS, of small magnitude, in the oldest-old. Previous 

longitudinal studies examining the association between air pollution and DS or major 

depression in late-life have produced mixed results. For instance, PM2.5 exposure might 

increase the risk of clinically significant depression across adulthood36, but such association 

was less consistent among middle-aged and older women37. Long-term PM2.5 exposure has 

also been associated with more severe DS in some studies11, 38 , but no direct associations in 

the others14, 39, 40. However, none of the prior studies focused on the oldest-old populations. 

The magnitudes of the effect size of exposure on increases in DS were small and of 

questionable clinical significance. The modest-sized effect highlights the need for a larger 

sample to have adequate statistical power to detect effects of public health significance. 

Additionally, although we adjusted for important demographic, clinical, and lifestyle factors 

in our analyses, air quality might be a surrogate for other unmeasured social determinants 

of health. The statistically significant increases in DS associated with remote exposures to 

PM2.5 and NO2, our data suggest that the neurotoxic insults resulting from air pollution 

exposures may accumulate over time, and the resulting neuropathological processes may 

continue up to 10 years or longer before the increases in DS become measurable in the 

oldest-old women. In our sensitivity analyses excluding older women with dementia, the 

observed exposure effect on increased in DS as well as its neurocognitive consequences was 

attenuated and no longer statistically significant. This suggests that the observed exposure 

effects on increased DS may coincide with neuropathological processes leading to dementia.

Findings of this study expand the results of our previous work14, suggesting the effect 

of living in areas with higher air pollution on the dynamic relation of DS and EM may 

vary by age in late life, although the exact reasons are unclear. In the present study on 

oldest-old, we found that DS were a neuropsychological mediator of the association between 

exposure and declining EM. In our previous study among older women with an average age 

of 73 (SD=3.8 years), we found EM was a neuropsychological mediator of the association 

between exposure and increased DS. Furthermore, we found no direct associations between 

time-varying PM2.5 exposure on increased DS, nor indirect effects on EM declines. Age 

differences in the perception of cognitive changes may be present. Declining EM may be 

more distressing in earlier older adulthood compared to later older adulthood. It is possible 

that worse memory may be more distressing at younger ages. Therefore, we may see 

increases in DS being a reaction to worse EM at younger ages. During later older adulthood 

worse memory may not be as distressing therefore there is no significant association 

between worse memory and subsequent increases in DS. Future studies should examine 

possible contributions to age differences in the association between DS and memory across 

older adulthood.

In the oldest-old women, the air pollution exposure effect on neuropsychological processes 

of brain aging may vary by pollutants. Specifically, we found that NO2 exposure had a 

stronger association with changes in DS compared to PM2.5 and DS. In the sensitivity 

analyses excluding dementia, the association between NO2 exposure and DS was attenuated 

and no longer statistically significant. Previous studies have shown that exposure to both 

PM2.5 and NO2 may increase risk of dementia41. The attenuation of the exposure effect after 

excluding women with incident dementia suggests that exposure to NO2 and PM2.5 may be 
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contributing to a common neuropathological process contributing to both dementia risk and 

DS. Similarly, excluding prior depression attenuated the association between PM2.5 and NO2 

on increases in DS. However, NO2 was attenuated less than PM2.5 after excluding women 

with a prior history of depression. This observation suggests that PM2.5 may impact areas of 

the brain contributing to DS earlier in life. The observed differential exposure effects suggest 

that traffic-related air pollution, as compared to particulate matter from regional sources, 

may exert a greater neurotoxic effect on the brain areas important for emotional regulation 

and health of older people. Further research with animals and humans is needed to compare 

the adverse physiological effects of late-life exposures to NO2 and PM2.5.

We recognize several limitations of our study. First, exposure estimates are still subject 

to measurement error, and we did not measure personal exposures directly. We compared 

average annual remote (10–13 years prior to WHIMS-ECHO baseline) and recent (0–3 years 

prior to WHIMS-ECHO baseline) exposure while not examining the magnitude or change 

in exposure for the years in between remote and recent exposure periods. Future studies 

need to examine how changes in exposure over time impact trajectories of DS and EM 

in the oldest-old. Second, although our data did not support the hypothesis that EM is a 

neuropsychological mediator of brain aging associated with exposure, we could not rule 

out the possibility that increased exposure may impact other cognitive abilities implicated 

with DS, specifically executive functioning. Third, the oldest-old women included in these 

analyses were mostly Caucasian well educated and generally in good health, whereas those 

excluded due to missing data on air pollution exposure or relevant covariates tended to 

have fewer years of and were more likely be African-American and of lower socioeconomic 

status, and in poorer health. Although these factors were all accounted for in our analyses, 

differences in these population characteristics may limit the generalizability of our study 

findings. Lastly, our study did not include men or younger women.

Our study provides epidemiologic evidence that living in areas with higher levels of PM2.5 

and NO2 in late life may contribute directly to increased DS, of small magnitude, and 

indirectly to declines in EM of the oldest-old women. These findings highlight that the 

adverse effect of air pollution on the interplay between DS and EM is heterogenous, likely 

varying by pollutants and age.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A).Flowchart of study participation. (B). Timeline of study assessments

WHIMS-EHCHO = Women’s Health Initiative Memory Study of the Epidemiology of 

Cognitive Health Outcomes
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Figure 2. 
Estimated depressive symptoms as measured by the 15-item Geriatric Depression Scale 

by pollutants and exposure time period for low (25th percentile), median, and high (75th 

percentile) average 3-year exposure. The exposure effects are portrayed in a grid with the 

first row representing recent exposure and the second row representing remote exposure. 

The first column represents the NO2 exposure effect while the second column is the PM2.5 

exposure effect. Therefore, the graph illustrated in the first row and first column represents 

the effect of recent NO2 exposure.
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* Denotes p <.05

** Denotes p<.01
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Table 1.

Comparison of Estimated Remote PM2.5 and NO2 Exposures by Population Characteristics at Baseline (N = 

1,583).

Distribution of remote 3-year average
a

PM2.5 exposure(µg/m3)
Distribution of remote 3-year average

a

NO2 exposure (ppb)

Population Characteristics N Mean ± SD (25th, Median, 75th) p
b Mean ± SD (25th, Median, 75th) p

b

Overall 1,583 13.34 ± 2.80 (11.7, 13.4, 15.0) 16.22 ± 7.28 (10.9, 15.3, 20.4)

Region of Residence <.01 <.01

 Northeast 498 12.95 ± 1.87 (11.7, 13.0, 14.0) 17.42 ± 7.75 (11.2, 16.0, 21.6)

 South 302 14.07 ± 2.04 (12.9, 14.3, 15.5) 13.95 ± 6.46 (8.7, 12.4, 18.7)

 Midwest 351 13.49 ± 2.13 (11.9, 13.4, 15.1) 13.98 ± 4.82 (10.3, 14.0, 17.6)

 West 432 13.17 ± 4.17 (9.6, 13.3, 15.8) 18.25 ± 7.97 (12.9, 17.8, 22.5)

Race/Ethnicity <.01 <.01

 African-American 68 15.16 ± 2.16 (14.0, 15.2, 16.0) 21.09 ± 8.43 (13.9, 21.1, 26.2)

 Hispanic White 18 14.59 ± 2.91 (13.1, 14.1, 16.4) 22.08 ± 7.06 (17.9, 21.9, 25.9)

 Non-Hispanic White 1455 13.23 ± 2.78 (11.5, 13.3, 14.9) 15.82 ± 7.04 (10.6, 15.0, 19.7)

 Other or Missing 42 13.89 ± 3.19 (12.3, 13.7, 15.4) 19.69 ± 8.71 (13.8, 19.1, 24.9)

Education .22 .02

 Less than high school 70 13.72 ± 3.00 (11.9, 13.9, 15.7) 17.32 ± 8.57 (11.4, 16.4, 22.1)

 High school 330 13.14 ± 2.62 (11.4, 13.0, 14.8) 15.26 ± 6.69 (10.4, 14.5, 19.0)

 More than high school 1,183 13.38 ± 2.83 (11.8, 13.4, 15.1) 16.43 ± 7.33 (10.9, 15.6, 20.5)

Employment .56 <.01

 Currently working 179 13.51 ± 2.86 (12.1, 13.4, 15.0) 17.83 ± 8.42 (11.2, 17.1, 22.7)

 Not working 151 13.18 ± 2.81 (11.7, 13.5, 14.9) 15.29 ± 6.37 (10.7, 14.2, 19.0)

 Retired 1253 13.34 ± 2.78 (11.6, 13.4, 15.0) 16.11 ± 7.17 (10.7, 15.2, 20.2)

Income (in USD) .23 .20

 < 9,999 47 13.15 ± 3.56 (10.8, 13.7, 15.3) 16.01 ± 8.46 (9.7, 15.2, 20.1)

 10,000–34,999 232 13.22 ± 2.88 (11.6, 13.0, 15.0) 15.54 ± 7.31 (9.4, 15.1, 19.0)

 35,000–49,999 425 13.20 ± 2.87 (11.4, 13.3, 14.9) 15.96 ± 7.32 (10.6, 15.0, 19.8)

 50,000–74,999 296 13.48 ± 2.82 (11.7, 13.5, 15.4) 16.30 ± 7.21 (10.6, 15.5, 21.0)

 75,000 or more 357 13.46 ± 2.48 (12.0, 13.5, 14.8) 16.86 ± 7.27 (11.4, 15.9, 21.0)

 Don’t know 72 12.99 ± 2.50 (11.5, 13.0, 14.4) 15.72 ± 6.88 (11.3, 13.9, 19.3)

Lifestyle

Smoking status .23 <.01

 Never smoked 920 13.4 ± 2.79 (11.7, 13.4, 14.9) 15.74 ± 6.96 (10.4, 14.8, 19.7)

 Past smoker 600 13.26 ± 2.73 (11.6, 13.3, 15.1) 16.74 ± 7.50 (11.2, 16.2, 20.8)

 Current Smoker 63 13.90 ± 3.38 (11.3, 14.2, 15.9) 18.29 ± 8.80 (11.2, 18.1, 23.0)

Alcohol use .23 <.01

 Non-drinker 190 13.40 ± 2.97 (11.7, 13.4,15.1) 14.51 ± 7.93 (8.6, 12.3, 18.1)
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Distribution of remote 3-year average
a

PM2.5 exposure(µg/m3)
Distribution of remote 3-year average

a

NO2 exposure (ppb)

Population Characteristics N Mean ± SD (25th, Median, 75th) p
b Mean ± SD (25th, Median, 75th) p

b

 Past drinker 271 13.44 ± 2.96 (11.5, 13.5, 15.5) 15.80 ± 7.20 (10.5, 14.5, 19.8)

 Less than 1 drink/ day 916 13.39 ± 2.66 (11.7, 13.4, 14.9) 16.75 ± 7.14 (11.6, 16.1, 20.9)

 More than 1 drink/ day 206 12.97 ± 2.96 (11.3, 13.2, 15.1) 16.00 ± 7.10 (10.7, 15.2, 20.2)

Moderate or strenuous activities ≥ 20 
minutes .18 .10

 No activity 852 13.38 ± 2.79 (11.8, 13.5, 15.0) 16.09 ± 7.40 (10.6, 15.3, 20.2)

 Some activity 84 13.80 ± 2.42 (12.2, 14.0, 15.5) 17.68 ± 6.73 (13.5, 17.9, 22.2)

 2–4 episodes/week 347 13.36 ± 2.82 (11.7, 13.2, 15.0) 16.65 ± 7.31 (11.6, 15.3, 20.9)

  ≥4 episodes/week 300 13.09 ± 2.86 (11.3, 13.1, 14.9) 15.70 ± 7.00 (10.6, 14.5, 19.7)

Physical Health

Hypertension .71 .43

 No 1025 13.32 ± 2.84 (11.6, 13.4, 15.0) 16.12 ± 7.24 (10.7, 15.2, 20.1)

 Yes 558 13.38 ± 2.72 (11.8, 13.5, 15.0) 16.42 ± 7.33 (11.2, 15.6, 20.9)

Treated hypercholesterolemia .03 .90

 No 1302 13.27 ± 2.81 (11.6, 13.3, 15.0) 16.21 ± 7.24 (10.7, 15.4, 20.3)

 Yes 281 13.68 ± 2.71 (11.9, 13.7, 15.4) 16.27 ± 7.47 (11.2, 14.8, 20.7)

Diabetes Mellitus .92 .77

 No 1513 13.34 ± 2.81 (11.7, 13.4, 15.0) 16.23 ± 7.30 (10.9, 15.4, 20.4)

 Yes 70 13.38 ± 2.48 (11.8, 13.7, 15.0) 15.97 ± 6.86 (10.8, 15.0, 19.7)

Cardiovascular disease .51 .26

 No 1343 13.36 ± 2.82 (11.7, 13.4, 15.0) 16.31 ± 7.30 (10.9, 15.4, 20.5)

 Yes 240 13.23 ± 2.64 (11.7, 13.4, 14.9) 15.74 ± 7.11 (10.5, 15.1, 19.8)

Prior hormone therapy .10 .06

 No 886 13.45 ± 2.56 (11.9, 13.5, 14.9) 16.53 ± 7.37 (10.9, 15.6, 20.9)

 Yes 697 13.21 ± 3.07 (11.3, 13.3, 15.1)  15.83 ± 7.14 (10.7, 15.2, 19.7)

Hormone therapy assignment .11 .55

 E-alone intervention 269 15.71 ± 7.47 (10.1, 14.2, 19.5) 13.23 ± 2.86 (11.5, 13.2, 15.3)

 E-alone control 295 16.74 ± 7.07 (11.7, 16.2, 20.6) 13.54 ± 3.02 (11.8, 13.7, 15.4)

 E+P intervention 486 15.78 ± 7.56 (10.3, 14.8, 19.7) 13.29 ± 2.81 (11.6, 13.2, 15.0)

 E+P control 553 16.60 ± 7.00 (11.3, 15.9, 20.9) 13.34 ± 2.62 (11.9, 13.5, 14.8)

Note

a
3-year average of the annual exposure estimated before the remote period of 10-years prior to the WHIMS-ECHO baseline at each participant’s 

location using the national spatiotemporal model

b
p values estimated from ANOVA F-tests or t-tests comparing the mean exposures.
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Table 2.

Bivariate latent change score structural equation models examining the direct effect of recent and remote 

exposure to NO2 and PM2.5 on changes in depressive symptoms as well as the respective indirect exposure 

effect mediated by episodic memory (N = 1,583).

Exposure: NO2

Remote
a
 Exposure Recent

b
 Exposure

Est
d

(95% CI)
Est

d

(95% CI)

Estimates of Direct Effect
c

 Effect of NO2 on annual change in depressive symptoms (γNO2 on Δdep) .221 (−.093; .535) .169 (−.185; .523)

Estimates of Indirect Effect
c

 Effects of NO2 on annual changes in episodic memory (γNO2on Δem) −.074 (−.264; .116) −.163 (−.441; .114)

 Effects of episodic memory performance on annual change in depressive symptoms 
(γLem on Δdep)

.112 (−.276; .500) .094 (−.294; .483)

 Indirect effect of NO2 on annual change in depressive symptoms (γNO2on Δem * γLem on Δdep)
−.008 (−.078; .035)

e
−.015 (−.140; .059)

e

Exposure: PM2.5

Remote
a
 Exposure Recent

b
 Exposure

Est
d
 (95% CI) Est

d
 (95% CI)

Estimates of Direct Effect
c

 Effect of PM2.5 on annual change in depressive symptoms (γPM2.5 on Δdep) .108 (−.158; .373) .115 (−.194; .424)

Estimates of Indirect Effect
c

 Effects of PM2.5 on annual changes in episodic memory (γPM2.5 on Δem) −.095 (−.272; .082) −.026 (−.260; .209)

 Effects of episodic memory performance on annual change in depressive symptoms 
(γLem on Δdep)

.113 (−.278; .503) .085 (−.296; .466)

 Indirect effect of PM2.5 on annual change in depressive symptoms (γPM2.5 on Δem * 

γLem on Δdep)
−.011 (−.088; .041)

e
−.002 (−.079; .050)

e

Abbreviations: NO2 = nitrogen dioxide; PM2.5 = particulate matter with <2.5 μm; episodic memory = latent factor consisting of the immediate 

and delayed recall from the East Boston Memory Test and the world list memory from the Telephone Interview for Cognitive Status; depressive 
symptoms = 15-item Geriatric Depression Scale, CI = Confidence interval, Est = parameter estimate

Estimates bolded if statistically significant at p<0.05

a
Remote represents the 3-year average exposures to regional PM2.5 and NO2 10 years prior to study baseline

b
Recent represents the 3-year average exposures to regional PM2.5 and NO2 for the 3 years prior to study baseline

c
All effects below were derived from the bivariate structural equation models (SEM) as depicted in figure 2 panel A, with exposure scaled by 

interquartile range from the remote period ( PM2.5 scaled by 3.35 μg/m3 and NO2 scaled by 9.55 ppb).
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d
In all models, the effects were adjusted for initial age at WHIMS-ECHO, race/ethnicity, geographic region of residence, employment status, 

education, household income, lifestyle factors (smoking, alcohol use, physical activities), clinical characteristics (use of hormone treatment; 
hypercholesterolemia, hypertension, diabetes, and history of cardiovascular disease), and neighborhood socioeconomic characteristics.

e
 95% confidence interval for the indirect effect is asymmetric and estimated via Monte Carlo Simulation
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Table 3.

Bivariate latent change score structural equation models examining the direct effect of recent and remote 

exposure to NO2 and PM2.5 on changes in episodic memory as well as the respective indirect effect mediated 

by depressive symptoms (N = 1,583).

Exposure: NO2

Remote
a
 Exposure Recent

b
 Exposure

Est
d
 (95% CI) Est

d
 (95% CI)

Estimates of Direct Effect
c

 Effect of NO2 on annual change in episodic memory (γNO2 on Δem) .179 (−.119; .477) −.024 (−.425; .377)

Estimates of Indirect Effect
c

 Effects of NO2 on annual changes in GDS-15 (γNO2 on Δdep) .255 (.074; .436) .203 (−.042; .447)

 Effects of GDS-15 performance on annual change in episodic memory (γLdep on Δem) −.372 (−.594; −.150) −.384 (−.615; −.154)

 Indirect effect of NO2 on annual change in episodic memory (γNO2 on Δdep * γLdep on Δem)
−.095 (−.171; −.026) 

e
−.078 (−.184; .018)

e

Exposure: PM2.5

Remote
a
 Exposure Recent

b
 Exposure

Est
d
 (95% CI) Est

d
 (95% CI)

Estimates of Direct Effect
c

 Effect of PM2.5 on annual change in episodic memory (γPM2.5 on Δem) .114 (−.149; .377) .154 (−.183; .491)

Estimates of Indirect Effect
c

 Effects of PM2.5 on annual changes in GDS-15 (γPM2.5 on Δdep) .138 (−.004; .280) .123 (−.081; .328)

 Effects of GDS-15 performance on annual change in episodic memory (γLdep on Δem) −.377 (−.608; −.146) −.380 (−.612; −.148)

 Indirect effect of PM2.5 on annual change in episodic memory (γPM2.5 on Δdep * 

γLdep on Δem)
−.052 (−.112; −.001) 

e
−.047 (−.130; .035)

e

Abbreviations: NO2 = nitrogen dioxide; PM2.5 = particulate matter with <2.5 μm; episodic memory = latent factor consisting of the immediate 

and delayed recall from the East Boston Memory Test and the world list memory from the Telephone Interview for Cognitive Status; depressive 
symptoms = 15-item Geriatric Depression Scale, CI = Confidence interval, Est = parameter estimate

Estimates bolded if statistically significant at p<0.05

a
Remote represents the 3-year average exposures to regional PM2.5 and NO2 10 years prior to study baseline

b
Recent represents the 3-year average exposures to regional PM2.5 and NO2 for the 3 years prior to study baseline

c
All effects below were derived from the bivariate structural equation models (SEM) as depicted in figure 2 panel A, with exposure scaled by 

interquartile range from the remote period ( PM2.5 scaled by 3.35 μg/m3 and NO2 scaled by 9.55 ppb).
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d
In all models, the effects were adjusted for initial age at WHIMS-ECHO, race/ethnicity, geographic region of residence, employment status, 

education, household income, lifestyle factors (smoking, alcohol use, physical activities), clinical characteristics (use of hormone treatment; 
hypercholesterolemia, hypertension, diabetes, and history of cardiovascular disease), and neighborhood socioeconomic characteristics.

e
 95% confidence interval for the indirect effect is asymmetric and estimated via Monte Carlo Simulation
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