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Abstract: In this article we consider large data Wave-Maps from R
2+1 into a compact

Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist
as long as a certain type of bulk (non-dispersive) concentration is absent. This is a com-
panion to our concurrent article [21], which together with the present work establishes
a full regularity theory for large data Wave-Maps.
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1. Introduction

In this article we consider finite energy large data Wave-Maps from the Minkowski
space R

2+1 into a compact Riemannian manifold (M, g). Our main result asserts that
regularity and dispersive bounds persist as long as a certain type of bulk concentration
is absent. The results proved here are used in the companion article [21] to establish a
full regularity theory for large data Wave-Maps.

The set-up we consider is the same as the one in [33], using the so-called extrin-
sic formulation of the Wave-Maps equation. Precisely, we consider the target manifold
(M, g) as an isometrically embedded submanifold of R

N . Then we can view the M
valued functions as R

N valued functions whose range is contained in M. Such an embed-
ding always exists by Nash’s theorem [18] (see also Gromov [3] and Günther [4]). In this
context the Wave-Maps equation can be expressed in a form which involves the second
fundamental form S of M, viewed as a symmetric bilinear form:

S : T M × T M → NM, 〈S(X,Y ), N 〉 = 〈∂X N ,Y 〉.
For the standard d’Allembertian in R

2+1 we use the notation

� = ∂2
t −�x = −∂α∂α.

The Cauchy problem for the wave maps equation has the form:

�φa = −Sa
bc(φ)∂

αφb∂αφ
c, φ ∈ R

N , (1a)

φ(0, x) = φ0(x), ∂tφ(0, x) = φ̇0(x), (1b)

where the initial data (φ0, φ̇0) is chosen to obey the constraint:

φ0(x) ∈ M, φ̇0(x) ∈ Tφ0(x)M, x ∈ R
2.

In the sequel, it will be convenient for us to use the notation φ[t] = (φ(t), ∂tφ(t)). The
system of Eqs. (1) admits a conserved quantity, namely the Dirichlet energy:

E[φ(t)] :=
∫

R2
|∂tφ(t)|2 + |∇xφ(t)|2dx := ‖φ[t] ‖2

Ḣ1×L2 = E . (2)

Finite energy solutions for (1) correspond to initial data in the energy space, namely
φ[t] ∈ Ḣ1×L2. We call a Wave-Map “classical” on a bounded time interval (t0, t1)×R

2

if ∇x,tφ(t) belongs to the Schwartz class for all t ∈ (t0, t1).
The Wave-Maps equation is also invariant with respect to the change of scale

φ(t, x) → φ(λt, λx) for any positive λ ∈ R. In (2 + 1) dimensions, it is easy to
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see that the energy E[φ] is dimensionless with respect to this scale transformation. For
this reason, the problem we consider is called energy critical.

For the evolution (1), a local well-posedness theory in Sobolev spaces Hs × Hs+1 for
s above scaling, s > 1, was established some time ago. See [7] and [9], and references
therein. The small data Cauchy-problem in the scale invariant Sobolev space is, by now,
also well understood. Following work of the second author [32] for initial data in a scale
invariant Besov space, Tao was the first to consider the wave map equation with small
energy data. In the case when the target manifold is a sphere, Tao [29] proved global
regularity and scattering for small energy solutions. This result was extended to the case
of arbitrary compact target manifolds by the second author in [33]. Finite energy solu-
tions were also introduced in [33] as unique strong limits of classical solutions, and the
continuous dependence of the solutions with respect to the initial data was established.
The case when the target is the hyperbolic plane was handled by Krieger [15]. There is
also an extensive literature devoted to the more tractable higher dimensional case; we
refer the reader to [8,14,17,28,31], and [20] for more information.

To measure the dispersive properties of solutions φ to the Wave-Maps equation,
we shall use a variant of the standard dispersive norm S from [33]. This was originally
defined in [29] by modifying a construction in [32]. S is used together with its companion
space N which has the linear property (precise definitions will be given shortly):

‖φ ‖S[I ] � ‖φ ‖L∞
t (L∞

x )[I ] + ‖φ[0] ‖Ḣ1×L2 + ‖�φ ‖N [I ].

The main result in [33] asserts that global regularity and scattering hold for the small
energy critical problem:

Theorem 1.1. The wave maps Eq. (1) is globally well-posed for small initial data φ[0] ∈
Ḣ1 × L2 in the following sense:

(i) Classical Solutions. If the initial data φ[0] is constant outside of a compact set and
C∞, then there is a global classical solution φ with this data.

(ii) Finite Energy Solutions. For each small initial data set in φ[0] ∈ Ḣ1 × L2 there
is a global solution φ ∈ S, obtained as the unique S limit of classical solutions, so
that:

‖φ ‖S � ‖φ[0] ‖Ḣ1×L2 . (3)

(iii) Continuous dependence. The solution map φ[0] → φ from a small ball in Ḣ1 × L2

to S is continuous.

We remark that due to the finite speed of propagation one can also state a local version
of the above result, where the small energy initial data is taken in a ball, and the solution
is defined in the corresponding uniqueness cone. This allows one to define large data
finite energy solutions:

Definition 1.2. Let I be a time interval. We say that φ is a finite energy wave map in I if
φ[·] ∈ C(I ; Ḣ1 × L2) and, for each (t0, x0) ∈ I and r > 0 so that E[φ(t0)](B(x0, r))
is small enough, the solution φ coincides with the one given by Theorem 1.1 in the
uniqueness cone I ∩ {|x − x0| + |t − t0| � r}.

In this work we consider a far more subtle case, which is a conditional version
of the large data problem. It is first important to observe that for general targets the
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above theorem cannot be extended to arbitrarily large C∞ initial data, and that this fail-
ure can be attributed to several different mechanisms. For instance any harmonic map
φ0 : R

2 → M yields a time independent wave-map which does not decay in time,
therefore it does not belong to S. More interesting is that for certain non-convex tar-
gets, for example when we take M = S

2, finite time blow-up of smooth solutions is
possible (see [13,19]). In this latter case, the blow-up occurs along a family of rescaled
harmonic maps. To avoid such Harmonic-Map based solutions, as well as other possible
concentration scenarios, in this article we prove a conditional regularity theorem:

Theorem 1.3 (Energy Dispersed Regularity Theorem). There exist two functions 1 

F(E) and 0 < ε(E) 
 1 of the energy (2) such that the following statement is true. If
φ is a finite energy solution to (1) on the open interval (t1, t2) with energy E and:

sup
k

‖ Pkφ ‖L∞
t,x [(t1,t2)×R2] � ε(E) (4)

then one also has:

‖φ ‖S(t1,t2) � F(E). (5)

Finally, such a solution φ(t) extends in a regular way to a neighborhood of the interval
I = [t1, t2].
Remark 1.4. In Sect. 4, Theorem 4.1, we shall state a slightly stronger version of this
result which uses the language of frequency envelopes from [29]. In particular, we will
show the energy dispersion bound (4) implies that a certain range of subcritical Sobolev
norms may only grow by a universal energy dependent factor. Put another way, one may
interpret this restatement of Theorem 1.3 as saying that in the energy dispersed scenario,
the Wave-Maps equation becomes subcritical in the sense that there is a quasi-conserved
norm of higher regularity than the physical energy. This information, coupled with the
standard regularity theory for Wave-Maps (e.g. see [33]) provides us with the continua-
tion property.

Remark 1.5. The result in this article is stated and proved in space dimension d = 2.
However, given its perturbative nature, one would expect to have a similar result in
higher dimension d � 3 as well. That is indeed the case. There are two reasons why we
have decided to stay with d = 2 here. One is to fix the notations. The second, and the
more important reason, is to avoid lengthening the paper with an additional argument in
Sect. 4, which is the only place in the article where the conservation of energy is used.
In higher dimensions, this aspect would have to be replaced by an almost conservation
of energy, with errors controlled by the energy dispersion parameter ε.

Remark 1.6. The proof of Theorem 1.3 allows us to obtain explicit formulas for F(E)
and ε(E). Precisely, in the conclusion of the proof of Corollary 4.4 below, we show that
these parameters may be chosen of the form:

F(E) = eCeE M

, ε(E) = e−CeE M

,

with C and M sufficiently large.

As a consequence of the frequency envelope version of this result in Theorem 4.1 we
can also state a weaker non-conditional version of the above result:
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Corollary 1.7. There exists two functions 1 
 F(E) and 0 < ε(E) 
 1 of the energy
(2) such that for each initial data φ[0] satisfying:

sup
k

‖ Pkφ[0] ‖Ḣ1×L2 � ε(E), (6)

there exists a unique global finite energy solution φ ∈ S, satisfying:

‖φ ‖S � F(E), (7)

which depends continuously on the initial data. If in addition the initial data is smooth,
then the solution is also smooth.

Our main interest in Theorem 1.3 is to combine it with the results of our concurrent
work [21], which together implies a full regularity theory for Wave-Maps. In this context,
one may view Theorem 1.3 as providing a “compactness continuation” principle, which
roughly states that there is the following dichotomy for classical Wave-Maps defined on
the open time interval (t0, t1)× R

2:

(1) The solution φ continues to a neighborhood of the closed time interval [t0, t1] as a
classical Wave-Map.

(2) The solution φ exhibits a compactness property on a sequence of rescaled times.

In particular, the second case may be used with the energy estimates from [21] to conclude
that a portion of any singular Wave-Map must become stationary, and via compactness
must therefore rescale to a Harmonic-Map of non-trivial energy. This was known as the
bubbling conjecture (see the introduction of [21] for more background).

Finally, we would like to remark that results similar in spirit to the ones of this paper
and [21] have been recently announced. In the case where M = H

n , the hyperbolic
spaces, global regularity and scattering follows from the program of Tao [22–24,26,30]
and [25]. In the case where the target M is a negatively curved Riemann surface, Krieger
and Schlag [16] provide global regularity and scattering via a modification of the Kenig-
Merle method [6], which uses as a key component suitably defined Bahouri-Gerard [1]
type decompositions.

1.1. A guide to reading the paper. The paper has a “two tier” structure, whose aim is to
enable the reader to get quickly to the proof of the main result in Sect. 4. The first tier
consists of Sects. 2, 3 and 4, which play the following roles:

Section 2 is where the notations are set-up. In addition, in Proposition 2.3 we review
the linear, bilinear, trilinear and Moser estimates concerning the S and N spaces, as
proved in [29,33]. The N space we use is the same as in [29,32]. For the S space we
begin with the definition in [29] and add to it the Strichartz norm S defined later in
(148). This modification costs almost nothing, but saves a considerable amount of work
in several places.

Section 3 contains new contributions, reaching in several directions:

• Renormalization. A main difficulty in the study of wave maps is that the nonlinearity
is non-perturbative at the critical energy level. A key breakthrough in the work of
Tao [29] was a renormalization procedure whose aim is to remove the nonpertur-
bative part of the nonlinearity. However, despite subsequent improvements in [33],
this procedure only applies to the small data problem. We remedy this in Propo-
sition 3.1, introducing a large data version of the renormalization procedure. This
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applies without any reference to the energy dispersion bounds. We note that other
large data renormalization procedures are available in certain cases, for instance by
using the Coulomb or the caloric gauge.

• S bounds for the paradifferential evolution with a large connection. After peeling
off the perturbative part of the nonlinearity in the wave map equation, one is left with
a family of frequency localized linear paradifferential evolutions as in (38). In the
case of the small data problem, by renormalization this turns into a small perturba-
tion of the linear wave equation. Here this is no longer possible, as the connection
coefficients Aα are large, and this cannot be improved using the energy dispersion.
However, what the energy dispersion allows us to do is to produce a large frequency
gap m in (38). As it turns out, this is all that is needed in order to have good estimates
for Eq. (38).

• New bilinear and trilinear estimates which take advantage of the energy disper-
sion. The main bilinear bound is the L2 estimate in Proposition 3.4. Ideally one
would like to have such estimates for functions in S, but that is too much to ask.
Instead we introduce a narrower class W of “renormalizable” functions φ of the
form φ = U †w, where U ∈ S is a gauge transformation, while for w we control
both ‖w‖S and ‖�w‖N . As a consequence of Proposition 3.4 and the more standard
bounds in Proposition 2.3, we later derive the trilinear estimates in Proposition 3.6,
which are easy to apply subsequently in the proof of our main theorem.

Section 4 contains the proof of Theorem 4.1, which is a stronger frequency envelope
version of Theorem 1.3. This is done via an induction on energy argument. The non-
inductive part of the proof is separated into Propositions 4.2 and 4.3, whose aim is to
bound in two steps the difference between a wave-map φ and a lower energy wave map
φ̃ whose initial data is essentially obtained by truncating in frequency the initial data for
φ. The arguments in this section use exclusively the results in Sects. 2, 3.

The second tier of the article contains the proofs of all the results stated in Sects. 2, 3,
with the exception of those already proved in [29] and [33]. These are organized as
follows:

Section 5’s content is as follows:

• A full description of the S and N spaces. Some further properties of these spaces are
detailed in Proposition 5.4; most of these are from [29] and [33], with the notable
exception of the fungibility estimate (159). The bound (159) is proved using only the
definition of N .

• Extension properties for the S space. In most of our analysis we do not work with the
spaces S and N globally, instead we use their restrictions to time intervals, S[I ] and
N [I ]. This is not important for N , since the multiplication by a characteristic function
of an interval is bounded on N . However, that is not the case for S. One can define
the S[I ] norm using minimal extensions. But in our case, we also need good control
of the energy dispersion and of the high modulation bounds for the extensions. To
address this, in Proposition 5.5 we introduce a canonical way to define the extensions
which obey the appropriate bounds, and which also produce an equivalent S[I ] norm.

• Strichartz and L2 bilinear estimates. Using the U p and V p spaces1 associated to the
half-wave evolutions, we first show that solutions to the wave equation �φ = F with
a right hand side F ∈ N satisfy the full Strichartz estimates. The fungibility estimate
(159) plays a significant role here, as it allows us to place the solution φ in a V 2

type space, see (195). A second goal is to prove L2 bilinear bounds for products of

1 For further information on the U p and V p spaces we refer the reader to [5,11,12].
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two such inhomogeneous waves with frequency localization and angular frequency
separation, see Lemma 5.10. This is accomplished using the Wolff [34]-Tao [27] type
L p bilinear estimates with p < 2.

Section 6 is devoted to the proof of the bilinear null form estimates in Proposition 3.4.
A preliminary step, achieved in Lemma 6.1, is to establish the counterpart of the bounds
(44) and (46) in the absence of the renormalization factor. The proofs here use only
Lemma 5.10 and the estimates in Propositions 2.3, 5.4.

Section 7 contains the proof of the trilinear estimates in Proposition 3.6. There are
a number of dyadic decompositions and multiple cases to consider, but this is largely
routine, using either Proposition 3.4 or the estimates in Propositions 2.3 and 5.4.

Section 8 is concerned with the construction of the gauge transformation in Prop-
osition 3.1. The discrete inductive construction in [29,33] is replaced with a continu-
ous version which serves to insure that the renormalization matrices U,<k are exactly
orthogonal. To allow for wave-maps which are large in S, we need to forego the simpler
inductive way of proving S estimates for U,k and instead build them up in a less direct
fashion using iterated paradifferential type expansions. On the positive side, this proof
uses only the estimates in Propositions 2.3, 5.4.

Section 9 is devoted to the proof of the linear bounds for the paradifferential equation
in Proposition 3.2. A key element in this proof is the gauge transformation in Proposi-
tion 3.1, combined with the trilinear estimate (25). This would suffice for connections
Aα arising from wave maps φ which are small in S. However, in our case we need to
handle large wave maps, and a different source of smallness is required. This is provided
by the large size of the frequency gap m, which leads to energy conservation with small
O(2−cm) errors. Feeding these almost apriori energy and characteristic energy bounds
back in the bilinear and trilinear null form estimates turns out to suffice to estimate the
large trilinear contributions, again modulo terms which are small, i.e. O(2−cm).

Section 10’s goal is to provide the description of finite S norm wave-maps in Prop-
osition 3.9. The renormalization bound is a direct consequence of Proposition 3.2 and
Proposition 3.1. The partial fungibility of the S norm is tied to the fungibility of the N
norm in the renormalized setting, although the proof is somewhat more technical.

Under the assumption of small energy dispersion, the smallness of high modula-
tions is given by the trilinear estimate (51). After that, the bound (55) combined with
Proposition 3.1 lead quickly to the frequency envelope control in (67) via a bootstrap
argument.

Section 11 contains the proof of the data truncation result in Proposition 3.5. The
argument is self-contained and uses only L2 type methods.

2. Standard Constructions, Function Spaces, and Estimates

In this section we record the standard portion of the framework we shall use in our
primary demonstration of Theorem 1.3. While we aim to keep our account of things self
contained, we also assume that the reader is thoroughly familiar with the content of the
two papers [29] and [33]. For the sake of completeness, in Sect. 5 below we also include
proofs of several results not contained in these two works, but which are needed for the
more detailed analysis of this paper. Further notation and estimates that are not needed
for the “first tier” of our demonstration of Theorem 1.3, but are needed in later technical
sections are also given in Sect. 5 below.

The symbols �, �, ∼, 
, and � are defined with their usual meanings. The constants
in these notations are allowed to vary from line to line.
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2.1. Constants. There will be a number of large and small constants in the present work.
For the most part these are flexible, although the specific construction of F(E) and ε(E)
from Theorem 1.3 will be sensitive to each other as well as to choices of other constants.
Lower case Greek letters such as δ, ε, and η will always denote small quantities. We
shall employ a globally defined string of small constants:

δ0 
 δ1 
 δ2 
 1, δi � δ100
i+1 . (8)

As it occurs often in the sequel, we will set δ = δ2 throughout. For the convenience
of the reader we list here the purposes of these constants, which all measure various
fractional frequency gains in our dyadic estimates:

• The base constant δ enters our proof through the various multilinear estimates for
the S and N spaces listed below (e.g. in the current section); it measures for instance
various dyadic gains in estimates from [29] and [33]. It also influences any portion
of our argument which is a direct consequence of these estimates, but has nothing to
do with directly bootstrapping large data Wave-Maps. For example, δ also represents
various dyadic gains in our gauge construction (see Proposition 3.1).

• The constant δ1 measures a small fractional gain coming from energy dispersion in
L2 and N -norm null form estimates. It enters our proof through estimates (51) and
(52), and variations thereof.

• The constant δ0 is reserved for slowly varying frequency envelopes, and for the small-
est fractional quantities built from the energy dispersion constant ε. It enters in the core
part of our proof of Theorem 1.3, and is the assumption on the frequency envelopes
of Proposition (3.6).

Large quantities, for example C , F , K , and M will be used in various contexts as
constants in estimates and the size of norms which are not globally defined. We will
also often use m to denote a (possibly) large integer which represents various gaps in
frequency truncations.

To denote growth and dependence of various estimates on that growth we employ
the following notation in the sequel:

Definition 2.1 (Complexity Notation). We say that a positive function f (y) is of “poly-
nomial type” if f (y) � yM for some constant M as y → ∞. We use the notation:

A �F B,

if A � K (F)B for some function K of polynomial type. This notation does not fix K
from line to line, although K is fixed on any single line where it occurs.

2.2. Basic harmonic analysis. As usual we denote by ξ and τ the spatial and temporal
Fourier variables (resp). We set up both discrete and continuous spatial Littlewood-Paley
(LP) multipliers:

I − P−∞ =
∑

k

Pk, I − P−∞ =
∫ ∞

−∞
Pkdk.

For the purposes of trichotomy, these two sets of multipliers are interchangeable, and we
will only distinguish them by the use of

∑
or
∫

in identities. However, for the purposes
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of proving Moser type estimates or constructing gauge transformations, the integral def-
inition of LP projections is essential. We refer the reader to [33] for an earlier use of
continuous LP multipliers, and further information. We often denote by φk = Pkφ. If φ
is any affinely Schwartz function, the above notation means that we have the identities:

φ − lim|x |→∞φ(x) =
∑

k

φk =
∫ ∞

−∞
φkdk.

Therefore, care must be taken to add constants back into certain estimates involving very
low frequencies.

Many times in the sequel we shall have use for the inequality:

‖ PBφ ‖Lq
x

� |B|( 1
r − 1

q )‖φ ‖Lr
x
, (9)

where B ⊆ R
2
ξ is a frequency box. Furthermore, the Pk multipliers enjoy a commutator

structure as follows:

Pk(φψ) = φψk + L(∇xφ, 2−kψ), (10)

where the bilinear form L is translation invariant and bounded on all Lebesgue type
spaces. Such multilinear expressions occur often in the sequel. We call a multilinear
form L of the form:

L(φ(1), . . . , φ(k))(x) =
∫
φ(1)(x + y1) · · · φ(k)(x + yk)dμ(y1, . . . , yk),

where ∫
|dμ| � 1,

“disposable”. Any disposable operator generates a family of estimates from any single
product estimate involving translation invariant norms in the usual way (see [29]).

We will also use the variable notation for frequency envelopes from [33] (see [29]
for another definition):

Definition 2.2 (Frequency Envelopes). A frequency envelope {ck} is called “(σ,�)-
admissible” if it obeys the bounds:

2σ( j−k)ck � c j � 2�(k− j)ck, (11)

for any j < k, where 0 < σ � �. If ‖φ ‖Y is any non-negative real valued functional,
and {ck} is a frequency envelope, we define:

‖φ ‖Yc := sup
k

c−1
k ‖ Pkφ ‖Y . (12)

There is an exception to this notation for the norm S[I ] introduced below, in which case
we set:

‖φ ‖Sc[I ] := ‖φ ‖L∞
t (L∞

x )[I ] + sup
k

c−1
k ‖φ ‖Sk [I ].
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Frequency envelopes may be defined in either the discrete or continuous settings.
It is easy to see that for any such frequency envelope we have the pair of sum rules
(uniformly):

∑
k′�k

2Ak′
ck′ � (A −�)−12Akck, A > �, (13)

∑
k�k′

2−ak′
ck′ � (a − σ)−12−akck, a > σ, (14)

with similar bounds for integrals. These two inequalities capture the essence of every use
we have for the {ck} notation, which is simply to bookkeep (resp.) Low× Low ⇒ High
and High × High ⇒ Low frequency cascades.

2.3. Function spaces and standard estimates. We use the function spaces S and N from
[32,33] and [29] with only a few minor modifications. The spaces of restrictions of S
and N functions to a time interval I are denoted by S[I ], respectively N [I ], with the
induced norms. The first part of our proof does not use the precise structure of these
spaces, only the following statement:

Proposition 2.3 (Standard Estimates and Relations: Part I). Let F, φ, and φ(i) be a col-
lection of test functions, I ⊆ R any subinterval (including R itself). Then there exists
function spaces S[I ] and N [I ] with the following properties:

• Triangle Inequality for S. Let I = ∪K
i Ii be a decomposition of I into consecutive

intervals, then the following bounds hold (uniform in K ):

‖φ ‖S[I ] �
∑

i

‖φ ‖S[Ii ]. (15)

• Frequency Orthogonality. The spaces S[I ] and N [I ] are made up of dyadic pieces in
the sense that:

‖φ ‖2
S[I ] = ‖φ ‖2

L∞
t (L∞

x )[I ] +
∑

k

‖ Pkφ ‖2
S[I ], (16)

‖φ ‖2
N [I ] =

∑
k

‖ Pkφ ‖2
N [I ]. (17)

• Energy Estimates. We have that L1
t (L

2
x )[I ] ⊆ N [I ], and also the estimate:

‖φk ‖S[I ] � ‖�φk ‖N [I ] + ‖φk[0] ‖Ḣ1×L2 . (18)

• Core Product Estimates. We have that:

‖φ(1)<k+O(1) · φ(2)k ‖S[I ] � ‖φ(1)<k+O(1) ‖S[I ] · ‖φ(2)k ‖S[I ], (19)

‖ Pk(φ
(1)
k1

· φ(2)k2
) ‖S[I ] � 2−(max{ki }−k)‖φ(1)k1

‖S[I ] · ‖φ(2)k2
‖S[I ], (20)

‖ Pk(φ<k+O(1) · Fk) ‖N [I ] � ‖φ ‖S[I ] · ‖ Fk ‖N [I ], (21)

‖ Pk(φk1 · Fk2) ‖N [I ] � 2−δ(k−k2)+‖φk1 ‖S[I ] · ‖ Fk2 ‖N [I ]. (22)
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• Bilinear Null Form Estimates. We have that:

‖Pk

(
∂αφ

(1)
k1

· ∂αφ(2)k2

)
‖L2

t (L2
x )[I ] � 2

1
2 min{ki }2−( 1

2 +δ)(max{ki }−k)
∏

i

‖φ(i)ki
‖S[I ], (23)

‖ Pk(∂
αφ

(1)
k1

· ∂αφ(2)k2
) ‖N [I ] � 2−δ(max{ki }−k)

∏
i

‖φ(i)ki
‖S[I ]. (24)

• Trilinear Null Form Estimate. We have that:

‖ Pk(φ
(1)
k1

· ∂αφ(2)k2
· ∂αφ(3)k3

) ‖N [I ] � 2−δ(max{ki }−k)2−δ(k1−min{k2,k3})+ ∏
i

‖φ(i)ki
‖S[I ].

(25)

• Moser Estimates. Let G be any bounded function with uniformly bounded derivatives,
and {ck} a (δ,�)-admissible frequency envelope. Then there exists a universal K > 0
such that:

‖ G(φ) ‖S[I ] � ‖φ ‖S[I ](1 + ‖φ ‖K
S[I ]), (26)

‖ G(φ) ‖Sc[I ] � ‖φ ‖Sc[I ](1 + ‖φ ‖K
S[I ]). (27)

The space N is the same one as used in [29,33]. To obtain the space S we start with
the one used in [29,33] and add the control of the Strichartz norms S defined in (148).
The bound (15) is relatively straightforward; we prove it in Sect. 5. The relations (16)
and (17) can be thought of as a part of the definition of the spaces S, N starting from
their dyadic versions. The linear estimate (18) was proved in [29]; here we show that we
can add the Strichartz component S in Corollary 5.9. The bounds (19)–(22) as well as
(24),(25) were proved in [29]. The one unit gain in the exponent in (20) is not explicitly
stated in [29], but it is implicit in the proof. In our context the proofs of (19), (20) need
to be augmented to add the control over the Strichartz norm S; this is a straightforward
matter which is left for the reader. The bound (23) is implicit in [29], but for the reader’s
convenience we prove it in Sect. 6.

The Moser estimates (26) and (27) were proved in [33]. Adding in the S norm is
again straightforward. An interesting side remark is that in effect the addition of the S
norm to S can be taken advantage of to simplify considerably the proof of the Moser
estimates in [33]. In particular, one can show that it is possible to take K = 2. Since
it does not lead to significant improvements in the present article, we leave this as an
exercise for the reader.

At several places in our argument, it will be necessary for us to introduce some
auxiliary norms. We choose to keep these separate from S defined above for notational
purposes:

Definition 2.4 (Auxiliary Energy and Xs,b Type Norms). We define:

‖φ ‖E[I ] := ‖∇t,xφ ‖L∞
t (L2

x )[I ] + sup
ω

‖ /∇ω
t,xφ ‖L∞

tω (L
2
xω )[I ], (28)

‖φ ‖Xk [I ] := 2− 1
2 k‖�Pkφ ‖L2

t (L2
x )[I ]. (29)

Here the second term in the RHS of (28) represents the energy of φ on characteristic
hyperplanes, see [32,29]. We also define X [I ] as the square sum of Xk[I ], and Xc[I ]
according to (12). Notice that there are no square sums or frequency localizations in
the norm E. The size of this norm depends only on the initial energy of any (global)
classical solution to (1).
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In the sequel, it will be also be notationally convenient for us to work with the fol-
lowing definition which one should think of as a variant of the S[I ] space introduced
above. The reader should keep in mind that this not even a quasinorm due to the lack of
any good additivity property:

Definition 2.5 (Renormalizable Functions). Let C > 0 be a large parameter. We define
a non-linear functional Wk on S as follows:

|||φ |||Wk := inf
U∈SO(d)

[(
‖ U ‖S∩X + sup

j�k
2C( j−k)‖ PjU ‖S∩X

)

· sup
k′

2|k′−k| (‖ Pk′(Uφk)[0] ‖Ḣ1×L2 + ‖ Pk′�(Uφk) ‖N
) ]
. (30)

The functionals W[I ], Wc[I ] are also defined as above.

Notice that while the definition of W is nonlinear, one still has the scaling relation
||| λφ |||W[I ] = λ|||φ |||W[I ]. The reader should note that while these bounds are cumber-
some to state, they are all natural in light of Propositions 3.1–3.2 below.

3. New Estimates and Intermediate Constructions

In this section we introduce the main technical components of the paper. We begin with
the core underlying tools that allow us to handle more complicated constructions. In
a later sub-section we derive some further useful results that encapsulate many of the
repetitive computations in the sequel.

3.1. Core technical estimates and constructions. The right-hand side in Eq. (1) is non-
perturbative even when the energy is small. In the case of larger energies, it becomes
quite a bit more difficult to handle things in a perturbative manner. Therefore, we intro-
duce a set of tools which are general enough to handle large data situations. The first
two of these work without any additional properties (e.g. energy dispersion), and form
the technical heart of the paper. The first is a novel gauge construction that should be
of more general use. It should be noted that this construction is stable regardless of the
size of the energy or the convexity properties of the target, as its key properties depend
only on the compactness of the underlying gauge group.

Proposition 3.1 (The “Diffusion Gauge”). Let φ be a wave-map in a time interval I
with energy E, S[I ] norm F, and S[I ] norm (δ,�)-admissible envelope {ck}. Let the
antisymmetric B be defined by:

(Ba
b )<k =

∫ k

−∞

(
Sa

bc(φ)− Sb
ac(φ)

)
<k′−10

φc
k′ dk′, (31)

where Sa
bc is a smoothly bounded (a, b) symmetric matrix valued vector. We denote the

integrand by Bk. Then for each real number k there exists an orthogonal matrix U,<k
defined on all of R

2+1 with the following properties:
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• U,<k is a Sum of Frequency Localized Pieces in Sk. For each real number k there
exists a matrix U,k such that:

U,<k =
∫ k

−∞
U,k′dk′,

where each U,k = U,<k Bk, and each U,k obeys the bounds:

‖ Pk′U,k ‖S∩X �F 2−δ|k−k′|2−C(k′−k)+ck, (32)

‖Pk′∇ J
t,xU,k‖L1

t (L1
x )

�F 2(|J |−3)k2−C(k′−k)ck, k′ > k + 10, |J | � 2, (33)

‖ Pk′
(
U,<k−20 · Gk

) ‖N �F 2−|k′−k|‖ Gk ‖N , (34)

‖ Pk
(
�U,k1 · ψk2

) ‖N �F 2−|k−k2|2−δ(k2−k1)ck1‖ψk2 ‖S, k1 < k2 − 10. (35)

In addition, if c̃k is a (δ0,�)-admissible frequency envelope for the energy
‖∇t,xφk ‖L∞

t (L2
x )[I ] then we have a similar bound for U,k:

‖ Pk′∇t,xU,k ‖L∞
t (L2

x )
�E 2−|k−k′|−C(k′−k)+ c̃k . (36)

Here C � 0 is any constant.
• The Matrix U Approximately Renormalizes Aα = ∇αB. We have the formula:

U †
,<k∇αU,<k = ∇αB<k −

∫ k

−∞

[
Bk′,U †

,<k′∇αU,<k′
]

dk′. (37)

This result is proved in Sect. 8. Next, we state a technical proposition that will help
us to deal with the non-fungibility of the S norm. The wave map nonlinearity is nonper-
turbative. However, due to the small energy dispersion, at fixed frequency we are able to
perturbatively replace the nonlinearity in the wave map equation with a paradifferential
term, i.e. a linear term involving the lower frequencies of the wave map. This term is
large, and due to the non-fungibility of the S norm, it cannot be made small on small
time intervals. Fortunately, it has another redeeming feature, namely a large frequency
gap (see m below). We take advantage of this in Sect. 9 to prove that:

Proposition 3.2 (Gauge Covariant S[I ] Estimate). Let ψk = Pkψ be a solution to the
linear problem:

�ψk = −2Aα<k−m∂αψk + G, (38)

where Aα<k−m is the so(N ) matrix:

(Aα<k−m)
a
b =

(
Sa

bc(φ)− Sb
ac(φ)

)
<k−m

∂αφc
<k−m . (39)

Assume that φ is a classical Wave-Map on I with the bounds:

‖φ ‖E[I ] + ‖φ ‖X [I ] + ‖φ ‖S[I ] � F. (40)

Furthermore, assume that m � m(F) > 20, for a certain function m(F) ∼ ln(F) (to
be defined in the proof). Then we have the estimate:

|||ψk |||W[I ] �F ‖ψk[0] ‖Ḣ1×L2 + ‖ G ‖N [I ]. (41)
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Remark 3.3. As will become apparent in the proof of estimate (41), the only use of the
large frequency gap parameter m is to be able to bootstrap the RHS involving ψk . In
the sequel, there will be situations where one already has good S[I ] norm bounds on
ψk , and the task is to provide a renormalization w,k such that �w,k has good N norm
bounds. Therefore, we state the following:

• Letψk , Aα<k−m , and G be defined as in Proposition 3.2. Then by simply assuming that
m > 20 we have the following estimate for ψk :

|||ψk |||W[I ] �F ‖ψk ‖S[I ] + ‖ Pk G ‖N [I ]. (42)

• Furthermore, in the above situation, the renormalization on the LHS of estimate (42)
is given by a matrix as in Proposition 3.1 where the pieces B j are defined from Aα<k−m
in the obvious way (this is of course true for estimate (41) as well).

See Remark 9.4 in Sect. 9 for more details.

Next, we state a gauged version of certain improved multilinear estimates for the
wave equation. Roughly speaking, these estimates imply that matched frequency inter-
actions in the RHS of (1) behave in a perturbative fashion in the presence of energy
dispersion. The heart of these estimates lies in the Wolff-Tao bilinear estimates (see [34]
and [27]) for non-parallel waves, and the parallel wave cancelation property of the “Q0
null structure” which was originally investigated in [7]:

Proposition 3.4 (Improved Matched Frequency Estimates). Let φ(i)ki
be functions local-

ized at frequency ki for i = 1, 2. Assume that these functions are normalized as follows:

|||φ(i)ki
|||W[I ] � 1, ‖φ(1)k1

‖L∞
t (L∞

x )[I ] � η. (43)

Then the following estimates hold:

• Bilinear L2 Estimate. We have that:

‖ ∂αφ(1)k1
∂αφ

(2)
k2

‖L2
t (L2

x )[I ] � 2
1
2 max{k1,k2}ηδ. (44)

• Bilinear N Estimate. Assume that in addition to (43) we also have the high modulation
bounds:

‖�φ(1)k1
‖L2

t (L2
x )[I ] � 2

k1
2 η, ‖�φ(2)k2

‖L2
t (L2

x )[I ] � 2
k2
2 η. (45)

Then the following estimate holds:

‖ ∂αφ(1)k1
∂αφ

(2)
k2

‖N [I ] � 2C|k1−k2|ηδ. (46)

This is proved in Sect. 6. Finally, we list a technical result concerning initial data
frequency truncation. This does not preserve the space of functions with values in T M,
so it has to be followed by a non-linear physical space projection � back onto T M.
We will show that in the energy dispersed case, this operation is very well behaved in
the energy norm. Theorems of this type may be useful for other problems involving the
need for a “non-linear Littlewood-Paley theory” of functions with values in a manifold:

Proposition 3.5. For each E > 0 there exists ε0 > 0 so that for each initial data set
φ[0] for (1) with energy E and energy dispersion ε � ε0 and k, k∗ ∈ Z we have

‖ Pk
(
P<k∗φ[0] −�(P<k∗φ[0])) ‖Ḣ1×L2 �E ε

1
4 2− 1

2 |k−k∗|. (47)

This is proved in Sect. 11 using Moser estimates and some integral identities involving
the continuous Littlewood-Paley theory developed in [33].
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3.2. Derived estimates and intermediate constructions. A corollary of the above Prop-
ositions is the following, which will be needed for the proof of our main theorem. The
reader should keep in mind that this proposition is merely a bookkeeping device that
will allow us to avoid many repetitive calculations in the sequel:

Proposition 3.6 (Improved Multilinear Estimates). Let φ(i) be three test functions de-
fined on a time interval I normalized so that:

‖φ(1) ‖S[I ] � 1, sup
i=2,3

|||φ(i) |||W[I ] � 1. (48)

Suppose in addition that φ(2) has the improved energy dispersion bound on I :

sup
k

‖ Pkφ
(2) ‖L∞[I ] � η. (49)

Finally, let {ck} be any (δ0, δ0)-admissible frequency envelope, and 0 � m an additional
integer subject to the condition:

m �
√
δ1| ln(η)|. (50)

Then one has the following multilinear bounds:

i) Core Trilinear L2 Estimate. Suppose along with the above assumptions that φ(3) has
unit Wc[I ] norm for the frequency envelope {ck}. Then for any disposable trilinear
form L we have the bound:

‖ L(φ(1), ∂αφ(2), ∂αφ
(3)) ‖

L2
t (Ḣ

− 1
2 )c[I ] � ηδ1 . (51)

ii) Additional Trilinear L2 Estimate. Suppose again that we have the conditions (48)–
(49), and that this time φ(1) has unit Sc[I ] norm for the frequency envelope {ck}.
Then for any disposable trilinear form L we have the bound:

‖ Pk L(φ(1), ∂αφ(2), ∂αφ
(3)) ‖L2

t (L2
x )[I ] � 2

k
2 ηδ1

(
ck + ‖ P<kφ

(1) ‖S[I ]
)
. (52)

iii) Core Trilinear N Estimate. For a positive integer m and integer k and disposable
trilinear form L, define the following trilinear form:

T m
k (φ

(1), φ(2), φ(3)) := Pk L(φ(1), ∂αφ(2), ∂αφ
(3))

−L(φ(1)<k−m, ∂
αφ

(2)
<k−m, ∂αφ

(3)
k )− L(φ(1)<k−m, ∂

αφ
(2)
k , ∂αφ

(3)
<k−m). (53)

Suppose in addition to the (48)–(49) we also have unit Wc[I ] norm of φ(3), and
furthermore the high modulation bounds:

‖φ(2) ‖X [I ] � η, ‖φ(3) ‖Xc[I ] � η. (54)

Then the following trilinear estimate holds:

‖ T m
k (φ

(1), φ(2), φ(3)) ‖N [I ] � ηδ1ck . (55)
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iv) Additional Trilinear N Estimate. Suppose in addition to (48)–(49) we have unit Sc[I ]
norm of φ(1), and in addition the high modulation bounds:

sup
i=2,3

‖φ(i) ‖X [I ] � η. (56)

Then if T m
k is defined as on line (53) we have the bound:

‖ T m
k (φ

(1), φ(2), φ(3)) ‖N [I ] � ηδ1
(

ck + ‖ P<kφ
(1) ‖S[I ]

)
. (57)

Remark 3.7. If the functions φ(i) admit a common frequency envelope {ck} then we can
relax the admissibility condition on {ck} and work with (δ0,�) frequency envelopes.
Precisely, for any (δ0,�)-admissible frequency envelope {ck} we have the following:

• If (48) is replaced by

‖φ(1) ‖Sc[I ] � 1, sup
i=2,3

|||φ(i) |||Wc[I ] � 1, (58)

then (51) follows.
• If in addition (54) is replaced by

‖φ(2) ‖Xc[I ] � η, ‖φ(3) ‖Xc[I ] � η, (59)

then the following version of (55) holds:

‖ T m
k (φ

(1), φ(2), φ(3)) ‖N [I ] � ηδ1ck . (60)

Remark 3.8. As will become apparent in the sequel, the only use of the renormalized
norms W[I ] and the high modulation bounds X [I ] in the estimates of Proposition 3.6 is
to ensure the smallness coming from the parameterη. Thus, under the simpler assumption
that the φ(i) are only normalized so that ‖φ(i) ‖S[I ] � 1 we have the following:

• If φ(3) has (δ0, δ0)-admissible S[I ] norm frequency envelope {ck}, then estimate (51)
holds with η = 1.

• If φ(3) has a (δ0, δ0)-admissible S[I ] norm frequency envelope {ck}, and if we let
m � 10 be any integer, then we may replace estimate (55) with the bound:

‖ T m
k (φ

(1), φ(2), φ(3)) ‖N [I ] � 24δ0mck . (61)

• If φ(1) has (δ0, δ0)-admissible S[I ] norm frequency envelope {ck}, and if we let m � 0
be any integer, then we may replace estimate (57) with the bound:

‖ T m
k (φ

(1), φ(2), φ(3)) ‖N [I ] � 24δ0m
(

ck + ‖ P<kφ
(1) ‖S[I ]

)
. (62)

For further details, see Remarks 7.1, 7.2 and 7.3 in Sect. 7 below.

Next, we state a result that ties together many of the previous propositions. This is
a structure theorem for large data wave-maps which says that in the presence of good
S[I ] norm bounds one has some additional regularity properties, as well as a crucial
“fungibility” property that is central to energy norm inductions.

Proposition 3.9 (Structure of Finite S Norm Wave-Maps). Let φ be a wave-map defined
on the interval I with energy E and S norm F. Then the following is true:
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• Additional Norm Control. We have the bounds:

‖φ ‖X [I ] + ‖φ ‖E[I ] �F 1. (63)

• Renormalization. If {ck} is a (δ0,�)-admissible frequency envelope for ‖φ ‖S[I ], then
we may renormalize our wave-map as follows:

|||φ |||Wc[I ] �F 1. (64)

• Partial Fungibility. If ‖φ ‖S[I ] = F, then there exists a collection of subintervals
I = ∪K

i=1 Ii , such that K = K (F) depends only on F, and such that the following
bound holds on each Ii :

‖φ ‖S[Ii ] �E 1. (65)

• Smallness of High Modulations. Suppose in addition that we have energy dispersion
supk ‖ Pkφ ‖L∞

t (L∞
x )[I ] � ε. Then we also have the estimate:

‖φ ‖X [I ] �F εδ1 . (66)

• Frequency Envelope Control. Suppose that φ has sufficiently small energy dispersion
ε < ε(F). Then if {ck} is a (δ0,�)-admissible Ḣ1 × L2 frequency envelope for φ[0]
we have:

‖φk ‖S[I ] �F ck . (67)

Proposition 3.9 is proved in Sect. 10.
Finally, for the reader’s convenience we group together the results which enable us

to carry out our bootstrapping arguments:

Proposition 3.10 (Bootstrapping Tool). Let I = [a, b] be an interval and c a (δ0,�) fre-
quency envelope. Then for each affinely Schwartz functionφ in I the following properties
hold:

• Seed S bound. Let In ⊂ I be a decreasing sequence of intervals which converges to
the point t = 0. Then:

lim
n→∞ ‖φ ‖S[In ] � ‖φ[0] ‖Ḣ1×L2 , lim

n→∞ ‖φ ‖Sc[In ] � ‖φ[0] ‖(Ḣ1×L2)c
. (68)

• Continuity Properties. For each subinterval J ⊂ I we have φ ∈ S[J ] ∩ Sc[J ],
and its S norm ‖φ ‖S[J ], its Sc norm ‖φ ‖Sc[J ], and its energy dispersion norm
supk ‖ Pkφ ‖L∞

t (L∞
x )[J ] all depend continuously on the endpoints of J .

• Closure and Extension Property. Let In be an increasing sequence of intervals and
∪In = I = (a, b). Let φ be a classical Wave-Map in I which satisfies the uniform
bounds:

‖φ ‖S[In ] � F, sup
k

‖ Pkφ ‖L∞
t (L∞

x )[In ] � ε,

with ε � ε(F). Then φ ∈ S[I ], and furthermore it can be extended to a classical
Wave-Map in a larger interval I1 = [a1, b1] with a1 < a < b < b1.
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Proof. The first part is a direct consequence of the solvability bound (18) since �φ ∈
L1

t L2
x [I ] as well as �φ ∈ (L1

t L2
x )c[I ].

For the second part we first consider the S norm. Let Jn ⊂ I be a sequence of intervals
converging to J . We consider a sequence of rescalings mapping J to Jn ,

(t, x) → (λnt + t0
n , λn x), λn → 1, tn → 0.

This allows us to map functions in Jn to functions in J ,

φ → φn(t, x) = φ(λnt + t0
n , λn x).

Hence using the scale invariance of the S norm, we have

‖φ‖S[Jn ] = ‖φn‖S[J ] → ‖φ‖S[J ],

where in the last step we simply use the fact that convergence in the Schwartz space
implies the convergence in S[J ].

For Sc norms the proof is similar. The dyadic convergence ‖φk‖S[Jn ] → ‖φk‖S[J ]
follows by the same rescaling argument. This implies the Sc convergence since the tails
are small,

lim
k→±∞ c−1

k ‖φk‖S[I ] = 0,

which is due to the Schwartz regularity of φ. A similar decay of the tails yields the
continuity of the energy dispersion norm.

For the last part we observe that by (67), for each (δ0,�) frequency envelope c
we obtain a uniform bound for ‖ Pkφ ‖Sc[In ] + ‖ Pkφ ‖Xc[In ]. Letting n → ∞ we
directly obtain Pkφ ∈ Xc[I ], which shows that for each k we have Pkφ ∈ S[I ] and
‖ Pkφ ‖S[In ] → ‖ Pkφ ‖S[I ] � ck . Hence φ is a Schwartz wave map in [a, b], therefore
by the local well-posedness result it admits a Schwartz extension to a larger interval. ��

4. Proof of the Main Result

The purpose of this section is to use the setup of the previous two sections to prove the
following result, which easily implies our main Theorem 1.3 as well as Corollary 1.7.

Theorem 4.1 (Frequency Envelope Version of the Main Theorem). There exist two func-
tions 1 
 F(E) and 0 < ε(E) 
 1 of the energy (2) such that if φ is a finite energy
solution to (1) in a closed interval I × R

2, where I = [a, b], with energy E and disper-
sion (4), then estimate (5) holds in S[I ]. In addition, there exists a universal polynomial
K (F) such that if {ck} is any (δ0,�)-admissible frequency envelope for φ[0], we have
the bound:

‖φ ‖Sc[I ] � K (F(E)). (69)

In particular, one may extend φ to a finite energy Wave-Map on the open neighborhood
I ⊆ (a − i0, b + i0) whose additional length i0 depends only on E, {ck}, and ε.
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We immediately observe that it suffices to prove the result for classical wave-maps.
This is due to the small data result in Theorem 1.1, which implies that any finite energy
wave map in a closed interval can be approximated in S by classical wave maps. In
addition, the S convergence easily implies the convergence of the energy dispersion
norm (4).

In the sequel we simply focus on proving (5). Once (5) is known, Proposition 3.9
can be applied and the estimate (69) is an immediate consequence of (67). In fact, it
would be tempting to use the more direct analysis employed in the proof of (67) to estab-
lish (5) as well in a single go. Such a strategy seems to fail basically due to linearized
Low × High ⇒ High frequency interactions. These interactions need to be handled
via Proposition 3.2, which in turn requires one to already control S type norms (e.g. in
assumption (40)). To avoid this dilemma, we employ a simple induction scheme to reduce
things to estimates for Wave-Maps of (slightly) smaller energy. The reader should keep
in mind however that modulo this single Low × High obstruction, our analysis would
work to prove (5) and (67) simultaneously. More specifically, the remaining estimates
basically boil down to using (44)–(46) to eliminate matched frequency “semilinear” type
interactions (this is the only place where the energy dispersion (4) really comes in), and
(24)–(25) to kill off High × High ⇒ Low frequency cascades.

We now construct the functions F(E) and ε(E) such that (4) and (5) hold. Precisely,
we will show that there exists a strictly positive nonincreasing function defined for all
values of E , c0 = c0(E) 
 1, so that if the conclusion of the theorem holds up to energy
E then it also holds up to energy E + c0. It is important here that c0 depends only on E
and not on the size of F(E) or ε(E), as otherwise we would only be able to conclude
the usual first step in an induction on energy proof which is establishing that the set
of regular energies is open.2 Also, we note here the monotonicity of c0 is only used to
conclude that c0 admits a positive lower bound on any compact set.

According to Theorem 1.1 we know that ε(E) and F(E) can be constructed up to
some E0 
 1. We now assume that E0 is fixed by induction, and to increase its range we
consider a solution φ defined on an interval I with energy E[φ] = E0 + c, c � c0(E0)

and with energy dispersion � ε (at first this is a free parameter which we may take as
small as we like). We will compare φ with a solution φ̃ with energy E0. To construct φ̃
we reduce the initial data energy of φ[0] by truncation in frequency. We define the “cut
frequency” k∗ ∈ R according to (this can be done by adjusting the definition of the P<k
continuously if necessary):

E[�P�k∗φ[0]] = E0.

We consider the Wave-Map φ̃ with this initial data φ̃[0] = �P�k∗φ[0]. This Wave-Map
exists classically for at least a short amount of time according to Cauchy stability, and
where it exists classically we have:

E[φ̃(t)] = E0. (70)

Since φ has energy dispersion � ε, by (47) it follows that φ̃ has energy dispersion

�E0 ε
1
4 at time t = 0. Again by the usual Cauchy stability theory, if ε is chosen small

2 In this latter setup, one is then left with the arduous task of eliminating minimal energy blowup solutions.
Our strategy is a bit more direct because we accomplish this as well in our construction of c0, so we are able
to avoid a good deal of repetitive analysis.
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enough in comparison to the inductively defined parameter ε(E0) it follows that there
exists a non-empty interval J0 where φ̃ satisfies:

sup
k

‖ Pk φ̃ ‖L∞
t (L∞

x )[J0] � ε(E0). (71)

Then our induction hypothesis guarantees that we have the dispersive bounds:

‖ φ̃ ‖S[J0] � F(E0). (72)

The plan is now very simple. On one hand, we try to pass the space-time control of
φ̃ up to φ via linearization around φ̃ to control the low frequencies, and conservation
of energy and perturbation theory to control the high frequencies. On the other hand,
we need to pass the good energy dispersion bounds from φ back down to φ̃ in order to
increase the size of J ⊆ I on which (71) holds until it eventually fills up all of I . To
achieve all of this, we proceed via two core estimates:

Proposition 4.2 (Evolution of Low Frequency Errors). Let φ be a Wave-Map defined on
an interval J with energy E + c with 0 < c � 1 and bounds:

sup
k

‖ Pkφ ‖L∞
t (L∞

x )[J ] � ε, ‖φ ‖S[J ] � F. (73)

Suppose in addition that φ̃ is the Wave-Map with energy E defined by φ̃[0] = �P�k∗φ[0],
and that φ̃ is classical on J with bounds:

sup
k

‖ Pk φ̃ ‖L∞
t (L∞

x )[J ] � ε̃, ‖ φ̃ ‖S[J ] � F̃ . (74)

Assume also that the two energy dispersion constants are chosen so that:

ε � ε̃, ε � (C F)−δ
−10
0 , ε̃ � (C F̃)−δ

−10
0 , (75)

where we may assume that F � F̃ � E � C− 1
2 and C is a sufficiently large constant.

Then in addition we have the bound:

‖ φ̃ − P�k∗φ ‖S[J ] �F εδ0 . (76)

Proposition 4.3 (High Frequency Evolution Estimates). Let φ and φ̃ be defined as in the
last proposition, in particular with the bounds (73) and (74) (resp), and that the disper-
sion constants obey (75). Then there exists a universal function c0(E) with c−1

0 �E 1
such that if we assume c0 = c0(E) in the definition of φ̃ we in addition have the bound:

‖ φ̃ − φ ‖S[J ] �F̃ 1. (77)

We postpone the proof of the above propositions to show how to use them to conclude
our induction. By the seed bound (68) we may assume that in addition to (71) and (72)
above we also have:

‖φ ‖S[J ] � 2F(E0 + c),

on some interval J . With this setup, and by an application of the continuity property in
Proposition 3.10 it suffices to combine Propositions 4.2–4.3 to show the following:



Energy Dispersed Wave Maps 159

Corollary 4.4. Assume there exists functions ε(E) and F(E) defined up to E0 such that
(4) implies (5). Choose c0(E0) according to Proposition 4.3. Then there exist extensions
of ε(E) and F(E) such that for each 0 < c � c0(E0) and each classical Wave-Map φ
in a time interval J with energy E0 + c and the bounds:

sup
k

‖ Pkφ ‖L∞
t (L∞

x )[J ] � ε(E0 + c), ‖φ ‖S[J ] � 2F(E0 + c), (78)

we have:

‖φ ‖S[J ] � F(E0 + c). (79)

Proof. In addition to (78) ⇒ (79), we will make the additional assumption that φ̃ is
defined as a Schwartz wave map in J and satisfies:

sup
k

‖ Pk φ̃ ‖L∞
t (L∞

x )[J ] � ε(E0), (80)

and show that if the extensions to ε(E) and F(E) are chosen correctly then we in addition
have the following improvement to (80):

sup
k

‖ Pk φ̃ ‖L∞
t (L∞

x )[J ] � 1

2
ε(E0). (81)

To see that this is sufficient, we first note that by (71) the bound (80) holds in a smaller
interval J0 ⊂ J . Extending J0 to a maximal interval in J , denoted still J0, so that (80)
holds, by the closure property in Proposition 3.10 it follows that J0 must be closed. The
same part of Proposition 3.10 shows that φ̃ has a Schwartz extension to a neighborhood
of J0. Then by (81) applied in J0 and the continuity property in Proposition 3.10 it
follows that (80) holds in a larger interval. Hence J0 must be both closed and open in J ,
and therefore J0 = J .

It remains to find extensions ε(E) and F(E) so that (78) together with (80) imply
(79) and (81). Our extensions of ε(E) and F(E) in (E0, E0 + c0] are constant:

ε(E) = ε, F(E) = F, E ∈ (E0, E0 + c0].
Let K1(F) and K2(F̃) be the implicit polynomials from lines (76) and (77) (resp). In
order to get the improvement (81) we need that:

εδ0 · K1(F) 
 ε(E0).

In order to conclude (79) we need that:

K2(F(E0)) 
 F.

Finally, we also need to choose ε and F so that (75) holds, and so that (which is of
course redundant):

E
1
2
0 ε

1
2 
 ε(E0),

which was used right before line (71) to get things started. All of these goals can easily
be satisfied as long as we choose σ = δ20

0 , with δ0 
 1 sufficiently small, and then first
choose F , followed by ε, such that:

F(E0) 
 Fσ , εσ 
 min{ε(E0), F−1}.
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Notice that this process can be carried on indefinitely, regardless of the size of E , because
we have taken care to decouple the step size c0 from the growth and decay properties of
F and ε.

We remark that the above proof allows us to estimate the size of E(F) and ε(F).
Indeed, what we have obtained are piecewise constant functions c0(E), ε(E), and F(E)
which at the jump points En are given by the recurrence relation:

En+1 = En + c0(En),

and which satisfy:

c0(En) = cE−σ−1

n , F(En+1) = C F(En)
σ−1
, ε(En+1) = cF(En)

σ−2
,

with sufficiently small σ, c and sufficiently large C . The first relation shows that:

En ≈ n
1

σ−1+1 ,

while the next two give relations of the form:

F(En) � Cσ−n

1 , ε(En) � cσ
−n

1 .

Together the last two bounds yield estimates for F and ε of the form:

F(E) � eCeE M

, ε(E) � e−CeE M

,

again with C and M sufficiently large. ��
The remainder of this section is devoted to the proof of Propositions 4.2–4.3. This

will be done in order because we will use some of the estimates of Proposition 4.2 in
our demonstration of Proposition 4.3.

Proof of Proposition 4.2. Denoting:

ψ = P�k∗φ − φ̃, (82)

we will prove the stronger bound:

‖ψ ‖Sc[J ] � 1, (83)

where {ck} is the (δ0, δ0)-admissible frequency envelope ck = 2−δ0|k−k∗|εδ0 . We first
consider the initial data for ψ . By an immediate application of Proposition 11.1 and the
energy dispersion bound (4.2) we have:

‖ Pkψ[0] ‖Ḣ1×L2 �E ε
1
4 2− 1

2 |k−k∗|. (84)

Since ψ is a Schwartz function, this implies that for a small interval I ⊂ J containing
t = 0 we have:

‖ψ ‖Sc[I ] � 1. (85)

Using this as a seed bound, by the continuity property in Proposition 3.10 it suffices to
prove that (83) holds under the bootstrap assumption:

‖ψ ‖Sc[I ] � 2. (86)
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As a preliminary step we use the general renormalization bound (64) as well as the high
modulation bound (66), which in light of the estimates on each of lines (73) and (74)
imply the set of inequalities:

|||φ |||W[J ] �F 1, ||| φ̃ |||W[J ] �F̃ 1, (87)

‖φ ‖X [J ] �F ε
δ1, ‖ φ̃ ‖X [J ] �F̃ ε̃δ1 . (88)

The proof is deduced in a series of steps:
Step 1 (Outline of the proof ). The equation for ψ has the form:

�ψ = −P�k∗
(
S(φ)∂αφ∂αφ

)
+ S(φ̃)∂αφ̃∂αφ̃. (89)

This may be rewritten as follows:

�ψ = −D(φ̃, ψ) + C(φ), (90)

where the difference D and the generalized commutator C are defined as follows:

D(φ̃, ψ) = S(φ̃ + ψ)∂α(φ̃ + ψ)∂α(φ̃ + ψ)− S(φ̃)∂αφ̃∂αφ̃, (91)

C(φ) = S(φ�k∗)∂
αφ�k∗∂αφ�k∗ − P�k∗

(
S(φ)∂αφ∂αφ

)
. (92)

This form of the equation will be used for proving pure L2 estimates.
Alternatively, freezing the spatial frequency k and introducing a frequency gap param-

eter m � 20, we will write (89) in the following paradifferential form:

�ψk + 2 Ãα<k−m∂αψk = Dm
k (φ̃, ψ) + Lm

k (φ̃, ψ) + Cm
k (φ), (93)

which will be useful for establishing N estimates. Here we are writing:

Ãα<k−m = Aα<k−m(φ̃) :=
(
S(φ̃)<k−m − S†(φ̃)<k−m

)
∂αφ̃<k−m . (94)

These terms are chosen roughly as follows. The term Dm
k denotes differences of the

form (91) between φ̃ and ψ which are frequency localized according to the general T m

structure defined on line (53). In particular, these never contain Low× Low× High or
Low×High×Low interactions. The term Lm

k contains certain Low×Low×High and
Low × High × Low interactions in φ̃ and ψ differences, with the additional structure
that ψ is always at Low frequency with a (possibly large) m dependent gap. Finally, the
expression Cm

k (φ) contains φ dependent commutators of the form (92).
With this setup, we prove the following estimates. First, we show that the commuta-

tors are always favorable, regardless of m:

‖ (C, Cm) ‖
(L2

t (Ḣ
− 1

2 )∩N )c[I ] �F ε
1
2 δ

2
1 . (95)

Second, under the bootstrapping assumption (86), we will show the first two terms on
the RHS of (93) may be estimated as follows:

‖Dm
k (φ̃, ψ) ‖Nc[I ] �F̃ 24δ0m, (96)

‖Lm
k (φ̃, ψ) ‖Nc[I ] �F̃ ε̃

δ0 + 2−δ0m . (97)
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While the second of these last two estimates is favorable for closing a bootstrap via
Proposition 3.2, the first is not. However, via Remark 3.3 the above estimates with
m = 20 allow us to gain renormalization control of ψ , namely:

‖ψ ‖Wc[I ] �F̃ 1. (98)

To close the bootstrap, we now use two additional estimates. The first shows that with
(87) and (98), we have improved L2 control:

‖D(φ̃, ψ) ‖
L2

t (Ḣ
− 1

2 )c[I ] �F̃ ε̃δ1 . (99)

In particular by this, (95), and the gap condition (75) we have:

‖ψ ‖Xc[I ] �F̃ ε̃δ1 . (100)

Finally, we show that this last estimate, (98), and (87)–(88) allow the following drastic
improvement to (96):

‖Dm
k (φ̃, ψ) ‖Nc[I ] �F̃ ε̃δ

2
1 . (101)

The bootstrap is therefore concluded by choosing m = δ1| ln(̃ε)| in estimate (97), and
applying the linear bound (41) for the paradifferential flow, with the estimates (101),
(95) for the right-hand side and (84) for the initial data. We remark that while (41) gives
a stronger Wc[I ] control for ψ , in order to conclude the bootstrap we only use a weaker
Sc bound which follows from the Wc[I ] bound.
Step 2 (The algebraic decomposition). Here we derive the form of the RHS of (93). To
uncover this, we shall employ the following generic notation. We let T be a trilinear
expression of the form:

T
(
S(φ(1)), φ(2), φ(3)

)
= L

(
S(φ(1)), ∂αφ(2), ∂αφ(3)

)
, (102)

with L disposable, and S is a smooth function with uniformly bounded derivatives. From
this we may define the T dependent expressions D and C as on lines (91)–(92).

The frequency localized equation for ψ is:

�ψk = −Pk P�k∗
(
S(φ)∂αφ∂αφ

)
+ Pk

(
S(φ̃)∂αφ̃∂αφ̃

)
, (103)

which may be written in the form:

�ψk =2S(φ̃)<k−m∂
αφ̃<k−m∂αφ̃k − 2P�k∗

[
S(φ)<k−m∂

αφ<k−m∂αφk
]

+ T m
1;k,

(104)

where we are writing:

T m
1;k = T m

k

(
S(φ̃), φ̃, φ̃

)− P�k∗ T m
k (S(φ), φ, φ) = Dm

1;k + Cm
1;k, (105)

with T m defined as on line (53). We now employ the geometric identity for the second
fundamental form:

∑
c

Sc
ab(φ)∇t,xφ

c ≡ 0, (106)
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which follows simply because the constraint on the image of φ to lie in M implies
that ∇t,xφ lies in TφM. This is valid for φ̃ as well, because it is an exact wave-map.
Therefore, we have the zero expression:

Pk

(
2S(φ̃)†∂αφ̃∂αφ̃<k−m+2 − 2P�k∗

[
S(φ)†∂αφ∂αφ<k−m+2

])
= 0, (107)

which if added to the first two terms on RHS of (104) produces:

(First two R.H.S.)(104) = 2 Ãα<k−m∂αφ̃k − 2P�k∗
[
Aα<k−m∂αφk

]
+ T m

2;k, (108)

where both Ãα and Aα<k−m = Aα<k−m(φ) are defined as on line (94). Here the trilinear
form T m

2;k is a difference:

T m
2;k = T m

2;k(φ̃)− P�k∗ T m
2;k(φ) = Dm

2;k + Cm
2;k, (109)

where each individual form is defined as a T m from line (53) applied separately to the
two trilinear expressions on the LHS of (107).

We now assign the generalized difference labels on the RHS of (93) by setting
Dm

k =∑i Dm
i;k , where the two summands were defined on lines (105) and (109).

To assign Cm
k , we further denote by Cm

3;k the corresponding expression which results
from commuting the P�k∗ in the second term on the RHS of line (108). We then set
Cm

k =∑i Cm
i;k .

With these choices, Eq. (103) may be written in the form:

�ψk = 2Aα<k−m(φ̃)∂αφ̃k − 2Aα<k−m(φ̃ + ψ)∂α(φ̃k + ψk) + Dm
k + Cm

k .

As a final step we assign:

Lm
k = 2

(
Aα<k−m(φ̃)− 2Aα<k−m(φ̃ + ψ)

)
∂α(φ̃k + ψk), (110)

and the form of (93) is achieved.
The remainder of the proof shows estimates (95), (96), (97), (99), and (101).

Step 3 (Estimates for commutators). Here we demonstrate (95). Let C be any expression
of the form:

C = T
(
S(P�k∗φ), P�k∗φ, P�k∗φ

)− P�k∗ T (S(φ), φ, φ) . (111)

We will prove the general pair of bounds:

‖ C ‖
L2

t (Ḣ
− 1

2 )c[I ] �F ε
1
2 δ1, ‖ C ‖Nc[I ] �F ε

1
2 δ

2
1 . (112)

As a preliminary step we decompose C = C1 + C2 where:

C1 = T
(
S(φ�k∗)− S(φ)�k∗ , φ�k∗ , φ�k∗

)
,

C2 = T
(
S(φ)�k∗ , φ�k∗ , φ�k∗

)− P�k∗ T (S(φ), φ, φ) .

These terms are handled separately:
Step 3A (Estimates for C1). This is based on the Moser type estimate:

‖S(φ�k∗)− S(φ)�k∗ ‖Sk [I ] �F 2−δ|k−k∗|. (113)
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To prove this, we further decompose the difference as:

S(φ�k∗)− S(φ)�k∗ = P>k∗S(φ�k∗) + P�k∗
(
S ′(φ�k∗ , φ>k∗)φ>k∗

)
,

where here S ′ is a bounded and smooth function or its arguments which results from
the difference S(φ�k∗ + φ>k∗) − S(φ�k∗). The bound (113) now follows by directly
applying the Moser estimate (27) to the first term on the last line above, and by applying
a combination of the product estimate (20) and the Moser estimate (26) to the second.

To conclude the proof of (112) for the term C1 we need to split the output frequency
into two cases: k � k∗ + 10 or k > k∗ + 10. In the first case, we directly use (52) and
(57), which together provide (112) in light of (87)–(88) and the additional L∞ estimate:

‖ P<k
[
S(φ�k∗)− S(φ)�k∗

] ‖L∞
t (L∞

x )[I ] �F 2−δ|k−k∗|, for k � k∗ + 10.

This last inequality follows from (113), and the fact that the difference S(φ�k∗) −
S(φ)�k∗ is rapidly decaying outside of a compact set, so in particular one can control
the L∞ norm by summing dyadically from k = −∞. Note that the use of (52) and (57)
costs a power of F because these estimates are in normalized form.

In the second case (k > k∗ +10), we establish (112) by directly appealing to estimates
(51) and (55), which suffice because of (113) and the observation that due to the fact T
is translation invariant we have the identity:

PkC1 = Pk T
(
Pk+O(1)

[
S(φ�k∗)− S(φ)�k∗

]
, φ�k∗ , φ�k∗

)
.

Step 3B (Estimating the Term C2). We first observe that from the definition we have
PkC2 ≡ 0 whenever k > k∗ + 10. Thus, we only need to deal with the frequency range
k � k∗ + 10. We split this range into two regions: either k∗ − m � k � k∗ + 10 or
k < k∗ − m. Here m is defined as follows:

2−m = εδ1 . (114)

Note that this definition has nothing to do with the m in the decomposition (93), and is
only local to this step. We now estimate separately:
Step 3B.1 (The range k∗ − m � k � k∗ + 10). We may write:

PkC2 = T m
k

(S(φ)�k∗ , φ�k∗ , φ�k∗
)− T m

k (S(φ), φ, φ)
+ 2−k∗ (L̃1

(∇xS(φ)<k−m , ∂αφ<k−m , ∂
αφk
)

+ L̃2
(S(φ)<k−m ,∇x∂αφ<k−m, ∂

αφk
)

+ L̃3
(∇xS(φ)<k−m , ∂αφk , ∂

αφ<k−m
)

+ L̃4
(S(φ)<k−m, ∂αφk ,∇x∂

αφ<k−m
))
,

(115)

where the T m
k are defined as on line (53) with the additional structure and frequency

localizations from the definition of C2. The L̃i are an additional collection of translation
invariant and disposable trilinear forms resulting from the commutator rule (10) applied
to the second and third terms on the RHS of line (53). In particular, this commutator is
trivial unless k∗ − 10 � k � k∗ + 10, so L̃i ≡ 0 without this further restriction.

For the first two terms on the RHS (115), we use (87)–(88) which allows us to apply
(51) or (55), and these suffice to give (112) in this case because of the frequency gap
(114) and the conditions (8) on the δi .

It remains to estimate the commutators. From the version of estimate (51) in Remark
3.8, and the fact that:

‖∇xS(φ)<k−m ‖S[I ] + ‖∇xφ<k−m ‖S[I ] �F 2k−m,
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we directly have the L2 bound from line (112) via (114) and the range restriction k∗ −
10 � k � k∗ + 10. To prove the N estimate, we similarly only need to show:

‖ 2−k∗ L̃i ‖N [I ] �F 2−m .

To estimate 2−k∗ L1 in N [I ] we use (25) as follows (again using k = k∗ + O(1)):

‖ 2−k∗ L1 ‖N [I ] �F 2−k∗
∑

k1,k2�k−m

2k1 2−δ(k1−k2)+ �F 2−m .

The details of these calculations for other Li are similar and left to the reader.
Step 3B.2 (The range k < k∗ − m). Here we simply decompose:

PkC2 = −
∑

ki : max{ki }>k∗
Pk L

(
S(φ)k1 , ∂

αφk2 , ∂αφk3

)
,

so in particular at least one of the second two factors must be in the range ki > k∗ − 10.
We remark that this sum has a T m structure of the form (53), so smallness is guaranteed.
The main issue is to also recover the exponential falloff in the definition of {ck}. This
may be achieved via a direct application of estimates (51) and (55) by first introducing
a high frequency (δ0, δ0)-admissible W[I ] envelope for P>k∗−10φ which we denote by
{dk}. In particular, we have dk �F 2δ0(k−k∗), so we directly have (112) for the above sum.
Step 4 (Estimates for matched frequency differences). Here we prove (96), (99), and
(101). To do this, it is enough to demonstrate the bound:

‖Dm(φ̃, ψ) ‖Nc[I ] �F̃ 24δ0m, (116)

under the assumptions (86) and (87), the bound:

‖D(φ̃, ψ) ‖
L2

t (Ḣ
− 1

2 )c[I ] �F̃ ε̃δ1, (117)

under the additional assumption (98), and finally the improved estimate:

‖Dm(φ̃, ψ) ‖Nc[I ] �F̃ ε̃δ
2
1 , (118)

assuming all of the above and also using (88) and (100). Here D is any expression of
the form (91) for a general trilinear form T as on line (102), and Dm denotes a similar
expression in terms of T m from line (53). To some extent these tasks are redundant, so
we will make some effort to collapse cases.3

First we introduce the following decomposition of differences of trilinear expressions
of the form (102):

T
(
S(φ̃), φ̃, φ̃

)− T
(
S(φ̃ + ψ), φ̃ + ψ, φ̃ + ψ

) = R0 + R1 + R2 + R3 + R4.

3 We note that one can eliminate this redundancy and also simplify some of the case analysis by simply
replacing the Sc[I ] bootstrap of the current proof with a direct bootstrap with respect to the Wc[I ] space. We
will not pursue this here.
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Here we have set:

R0 = T
(
S ′(φ̃, ψ)ψ, φ̃, φ̃

)
, (119a)

R1 = T
(
S ′(φ̃, ψ)ψ,ψ, φ̃

)
+ T

(
S ′(φ̃, ψ)ψ, φ̃, ψ

)
+ T

(
S ′(φ̃, ψ)ψ,ψ,ψ

)
, (119b)

R2 = −T
(
S(φ̃), ψ, φ̃

)
, (119c)

R3 = −T
(
S(φ̃), φ̃, ψ

)
, (119d)

R4 = −T
(
S(φ̃), ψ,ψ

)
. (119e)

Here we are using S ′ as shorthand for the formula:

S(φ̃)− S(φ̃ + ψ) := S ′(φ̃, ψ)ψ, (120)

so that it symbolically represents some additional set of smooth functions obeying the
same bounds as the original second fundamental form S. We proceed to estimate the
above terms via two subcases:
Step 4A (Estimates (116)–(118) for the terms R1–R4). The bound (116) for the terms
R2–R4 follows immediately from the estimate (61) of Remark 3.8 in view of the bounds
(86) and (87).

The estimates (117) and (118) for terms R2–R4 under the additional assumptions
(98) and then (100) result directly from estimates (51) and (55).

It remains to prove these estimates for R1. This will be accomplished with the aid of
the following three bounds, which we state in more detail here for their use in the next
step:

‖ P>k∗+10φ̃ ‖Sc[I ] � 1, (121)

‖S ′(φ̃, ψ)ψ ‖Sk [I ] �F̃ ck, (122)

‖ P<k
[
S ′(φ̃, ψ)ψ

] ‖S[I ] �F̃ ck, for k � k∗ + 20. (123)

The proof of the first bound follows immediately from the bootstrapping assumption
(86). The second bound follows from the first and estimates (86) and (87) after an appli-
cation of the product bounds (19)–(20) and the Moser estimate (27). The last estimate
above follows by summing the second and using the explicit form of the frequency
envelope {ck}, and also using the fact that the product vanishes for k = −∞.

The proof of (116)–(118) for R1 is a direct application of estimates (61), (51), and
(55) in conjunction with the bounds (122)–(123) above.
Step 4B (Estimates (116)–(118) for R0). We first demonstrate (117)–(118). We split
things into two output frequency cases: k � k∗ + 20 and k > k∗ + 20. In the first, we
combine the bounds (52) and (57) with both (122) and (123) above. Notice that the
condition k � k∗ + 20 and the specific form of the frequency envelope {ck} below k∗
gives the desired result.

To deal with R0 in the output range k > k∗ + 20 requires additional work. Note
that any estimate of the form (123) is false for k > k∗ + 20, so the needed frequency
envelope control needs to come from the second and third φ̃ factors. For this we employ
the following version of (121):

‖ P>k∗+10φ̃ ‖Wc[I ] �F̃ 1, (124)
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which follows from the assumption (98). To use it, we split R0 into a sum of pieces (we
may drop L from the picture):

R0 = S ′(φ̃, ψ)ψ · [∂αP<k∗+10φ̃∂αP<k∗+10φ̃ + 2∂αP<k∗+10φ̃∂αP�k∗+10φ̃

+∂αP�k∗+10φ̃∂αP�k∗+10φ̃
] = R0,1 + R0,2 + R0,3. (125)

The estimates (117)–(118) for the pieces P>k∗+20 R0,2 and P>k∗+20 R0,3 are an immediate
consequence of estimate (51) and (55) because in either case we can use {ck} frequency
envelope control of the high frequencies of at least one of the φ̃ factors. To handle the
term P>k∗+20 R0,1 we again use (51) and (55) along with the bound (122), which pro-
vides the needed {ck} factor on account of the forced Pk frequency localization of the
first factor in Pk P>k∗+20 R0,1.

The proof of estimate (116) is similar to (116) above except that we use (121) instead
of (124), and (61)–(62) instead of (55) and (57).
Step 5 (Estimates for ψ at low frequency). Here we prove (97). From the definition of
Lm

k on line (110), we see that it suffices to prove the two general bounds:

‖ φ̃(1)<k−m∂
αψ<k−m∂αφ̃

(2)
k ‖N [I ] �F̃ (̃ε

δ0 + 2−δ0m)ck, (126)

‖ (S ′(φ̃, ψ)ψ
)
<k−m ∂

αφ̃
(1)
<k−m∂αφ̃

(2)
k ‖N [I ] �F̃ (̃ε

δ0 + 2−δ0m)ck, (127)

where ‖ φ̃(i) ‖S[I ] �F̃ 1, and where the φ̃(i) also has high frequency improvement (121).
We split into two cases:
Step 5A (The range k < k∗ +10). For estimate (126) we use (21) and (24) which together
give:

(L.H.S.)(126) �F̃

∑
j<k−m

c j �F̃ ck−m �F̃ 2−δ0mck .

For estimate (127) we use (25) and (122):

(L.H.S.)(127) �F̃

∑
j,k1<k−m

2−δ( j−k1)+c j �F̃

∑
j<k−m

(k − m − j)c j �F̃ 2−δ0mck .

Step 5B (The range k > k∗ + 10). Here we use the fact that the φ̃(i) also have high
frequency improvement (121), which already incorporates {ck}. We only need to gain a
small factor. By (21) and (24), and the fact that

∑
k ‖ψ ‖Sk [I ] �F̃ ε̃

δ0 we immediately
have (126).

The proof of (127) follows from (122) and (25), and the summation:

(L.H.S.)(127) �F̃ ck

∑
j<k−m

|k∗ − j |c j �F̃ ε̃δ0 ck .

Notice that the exponential falloff of φ̃(1) was used in the range k1 > k∗ to reduce the
factor of (k −m − j) from the previous step to |k∗ − j | here, and thus avoid a logarithmic
divergence. This concludes our demonstration of Proposition 4.2. ��
Proof of Proposition 4.3. We denote the difference to be estimated by:

φhigh = φ − φ̃,
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which represents the evolution of high frequencies in φ. This solves the equation:

�φhigh = −S(φ)∂αφ∂αφ + S(φ̃)∂αφ̃∂αφ̃. (128)

A natural attempt is to argue directly as in the preceding proof, namely to replace this
nonlinear equation for φhigh with a linear paradifferential equation plus a nonlinear
perturbative term. However, if we do that directly we encounter some difficulties.

Precisely, the initial data φhigh[0] has size on the order of c0 = c0(E). Solving the
linear paradifferential equation we lose a constant which depends on the S[I ] size of
the coefficients, namely at least K (F̃(E)). Thus the solution for the approximate linear
flow will have size c0(E)K (F̃(E)), and the key point is that we cannot expect this to be
small. This would cause the nonlinear effects to be truly non-perturbative, and therefore
outside the scope of the current paper.

One fix to this would be to allow c0 to depend on F̃(E) instead of E . However, this
would weaken our conclusion to the point where the induction on energy argument only
works to show that the set of energies where one has regularity is open. While this is
the usual first step in an induction on energy strategy, it still leaves one to deal with the
heart of the matter which is the task of showing that there is no finite upper bound to the
set of regular energies. Our path here will be to establish this latter claim more directly.

As a first step in our argument, we subdivide the time interval I into consecutive
subintervals Ik , and we can insure that on each such subinterval we have the partial
fungibility:

‖ φ̃ ‖S[Ik ] � E . (129)

This is possible by estimate (65). This estimate remedies the bootstrapping argument
within the first interval because by design φhigh has small initial energy (see (130)
below). However, one might expect that in each subinterval Ii the energy of φhigh may
grow by a K (E) factor, and the number of intervals where (129) is true unfortunately
depends on F̃(E). Thus a brute force bound would allow the energy of φhigh to grow
by a K (F(E)) factor, which would bring us back to the core difficulty. However, such a
brute force approach does not make any good use of the fact that both φ̃ and φ are true
Wave-Maps, and therefore exactly conserve their energy.

In order to take advantage of this last observation, we compute that for each fixed
t ∈ I :

E(φ) = E(P>k∗φ) + E(P�k∗φ) + 2〈P>k∗φ, P�k∗φ〉 � E(P>k∗φ) + E(P�k∗φ),

where 〈·, ·〉 denotes the Ḣ1 × L2 inner product. The last inequality holds because
P�k∗ P>k∗ is a nonnegative operator because it has a nonnegative symbol. By Prop-
osition 4.2 just proved, we have the fixed time bound in I :

‖ (P�k∗φ − φ̃)[t] ‖Ḣ1×L2 �F εδ0 .

Hence we have:

|E(P�k∗φ)− E(φ̃)| + |E(φ − φ̃)− E(P>k∗φ)| �F εδ0 .

Thus

E(φhigh) � E(P>k∗φ) + εδ0 K (F(E)),

� E(φ)− E(P�k∗φ) + εδ0 K (F(E)),

� E(φ)− E(φ̃) + 2εδ0 K (F(E)),

� c0(E) + 2εδ0 K (F(E)). (130)
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This calculation shows that if ε is small enough with respect to the function K (F)which
appears implicity on the RHS of estimate (76) then we have a good uniform bound on
the energy of φhigh . The argument now proceeds in a series of steps:
Step 1 (The bootstrapping construction, and the main estimates). We now fix the interval
Ii ⊆ I and consider an S-norm bootstrap for the φhigh on subintervals J ⊆ Ii , where
we may assume J is centered about t = 0. We seek to prove the bound:

‖φhigh ‖S[J ] � 1. (131)

Due to (130) we have:

‖φhigh[0] ‖Ḣ1×L2 � c0. (132)

Hence by the second part of Proposition 3.10 we obtain the seed bound:

‖φhigh ‖S[J0] � c0,

for a small enough interval J0 ⊂ J . Taking this into account and also the continuity of
the S norm in Proposition 3.10, it suffices to prove (131) under the additional bootstrap
assumption:

‖φhigh ‖S[J ] � 2. (133)

Combining (133) with (129) we obtain:

‖φ ‖S[J ] + ‖ φ̃ ‖S[J ] �E 1. (134)

By Proposition 3.9 this gives:

‖φ ‖W[J ] + ‖ φ̃ ‖W[J ] �E 1, ‖φ ‖X [J ] + ‖ φ̃ ‖X [J ] �E ε̃δ1 . (135)

We rewrite the bounds (132), (133) and (135) using frequency envelopes. Precisely, we
can find a common (δ0/2, δ0/2)-admissible normalized frequency envelope ck so that
ck∗ = 1 and the following bounds hold:

‖φhigh[0] ‖(Ḣ1×L2)c
�E c0, (136a)

‖φhigh ‖Sc[J ] �E 1, (136b)

‖φ ‖Wc[J ] + ‖ φ̃ ‖Wc[J ] �E 1, (136c)

‖φ ‖Xc[J ] + ‖ φ̃ ‖Xc[J ] �E ε̃
δ1 . (136d)

From these four bounds, together with the energy dispersion on lines (73)–(74), we will
obtain the following vastly improved frequency envelope S bound for φhigh :

‖φhigh ‖Sλc[J ] �E 1, λ = c0 + ε̃δ0δ
2
1 . (137)

The second term on the right is small (
 1) due to (75), therefore the desired conclusion
(131) follows if c0 is chosen appropriately small, c0 
E 1.

It remains to show that (73)–(74) together with (136) imply (137). By estimate (83),
we may reduce this demonstration to the frequency range k > k∗ − 10. The mechanics
of our argument is to decompose the Pk frequency localized version of (128) as follows:

�φhigh
k + 2Aα(φ)<k−m∂αφ

high
k = T m

k (φ̃) + T m
k (φ) + Lm

k (φ̃, φ
high), (138)
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where the large gap parameter m is consistent with Proposition 3.6:

2−m = ε̃δ1 . (139)

Here the terms T m
k are matched frequency trilinear expressions of the form (53), while

the term Lm
k denotes certain trilinear expressions between φ̃ and φhigh which contain at

least one (m dependent) low or high frequency factor with improved exponential bounds.
Our first round of estimates shows that:

‖ T m
k (φ̃) ‖N [J ] �E ε̃

δ2
1 ck, ‖ T m

k (φ) ‖N [J ] �E ε
δ2

1 ck . (140)

Our second round of estimates gives the exponential control:

‖Lm
k (φ̃, φ

high) ‖N [J ] �E 2− 1
4 δ0m2− 1

2 δ0|k−k∗| = ε̃
1
4 δ0δ12− 1

2 δ0|k−k∗|. (141)

An application of (41) using (136a) and (140)–(141) then implies (137).
Step 2 (Algebraic derivation of (138)). We first write the frequency localized equation
for φhigh as follows:

�φhigh
k = − 2S(φ)<k−m∂

αφ<k−m∂αφk + 2S(φ̃)<k−m∂
αφ̃<k−m∂αφ̃k

+ T m
1;k(φ) + T m

1;k(φ̃),

where the T m
1;k are trilinear forms as defined on line (53). Adding to this a zero expression

similar to (107) (i.e. without P�k∗ on the second factor), and further decomposing the
result into principle terms and T m interactions, we have:

�φhigh
k = −2Aα(φ)<k−m∂αφk + 2Aα(φ̃)<k−m∂αφ̃k + T m

k (φ) + T m
k (φ̃).

Then Eq. (138) is achieved by setting:

Lm
k = −

(
Aα(φ̃ + φhigh)<k−m − Aα(φ̃)<k−m

)
∂αφ̃k . (142)

Step 3 (Control of matched frequency interactions). Here we prove (140). This is an
immediate consequence of (55) using (136c)–(136d).
Step 4 (Control of separated frequency interactions). Here we prove the estimate (141).
We decompose line (142) as a sum of two terms Lm

k = R1 + R2 where:

R1;k = −S(φ̃)<k−m∂
αφ

high
<k−m∂αφ̃k,

R2;k =
[
S ′(φ̃, φhigh)φhigh

]
<k−m

∂αφ<k−m∂αφ̃k,

where S now denotes the antisymmetrization of the original second fundamental form,
and S ′ is defined as on line (120). Recall that we are restricted to the conditions k �
k∗ − 10 and m � 20. We proceed to estimate each term separately. In doing so, we
repeatedly use the following estimates:

‖ Pk φ̃ ‖S[J ] � 2−δ0(k−k∗), k � k∗, (143)

‖ Pkφ
high ‖S[J ] � 2−δ0(k∗−k), k � k∗, (144)

‖ Pk

[
S ′(φ̃, φhigh)φhigh

]
‖S[J ] �E 2−δ0(k∗−k), k � k∗, (145)

‖S ′(φ̃, φhigh)φhigh ‖S[J ] �E 1. (146)
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Estimates (143)–(144) are simply a weaker restatement of (83) for the convenience of
the reader. Estimates (145)–(146) follow from (144), (133)–(134), and the Moser and
product estimates (19)–(20) and (26)–(27) after a standard summation argument.
Step 4A (Estimating R1;k). After an application of (21)–(22) to peel off the first factor,
it suffices to show the bound:

‖ ∂αφhigh
<k−m∂αφ̃k ‖N [J ] �E 2− 1

4 δ0m2
1
2 δ0(k∗−k).

If k < k∗ this follows at once from (134) and (144), and summing over (24).
If k > k∗, we use (143), and (144) or (133) in (24) to obtain after summation:

‖ ∂αφhigh
<k−m∂αφ̃k ‖N [J ] �E 2−δ0(k−k∗)

∑
j<k−m

2−δ0(k∗− j)+ .

If k∗ < k < k∗ + m then the expression on the right gives 2−δ0m which suffices. If
k > k∗ + m then the expression on the right gives |k − k∗|2−δ0(k−k∗) which is again
sufficient for (141).
Step 4B (Estimating R2;k). In this final step we show the estimate:

‖ R2;k ‖N [J ] �E 2− 1
4 δ0m2

1
2 δ0(k∗−k).

In the case when k � k∗, using (145), (134), and the trilinear estimate (25) we have the
sum:

‖ R2;k ‖N [J ] �E

∑
j,k1<k−m

2−δ( j−k1)+2−δ0(k∗− j) �E 2−δ0m2−δ0|k−k∗|.

Finally, in the case where k > k∗ we use (134), (143), and (145)–(146) in conjunction
with (25) to achieve the sum:

‖ R2;k ‖N [J ] �E 2−δ0(k−k∗)
∑

j,k1<k−m

2−δ( j−k1)+2−δ0(k∗− j)+ .

If k∗ < k < k∗ + m then the expression on the right gives 2−δ0m which is enough for
(141). If k > k∗ + m then the expression on the right gives |k − k∗|2−δ0(k−k∗) which is
again sufficient. This concludes our demonstration of Proposition 4.3. ��

5. The Iteration Spaces: Basic Tools and Estimates

This is a continuation of Sect. 2, and our purpose is to fill in any gap between the nota-
tion and additional structure of basic function spaces used in this paper and the spaces
developed in [32,33 and 29].
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5.1. Space-time and angular frequency cutoffs. As usual we denote by Q j the multiplier
with symbol:

q j (τ, ξ) = ϕ
(

2− j ||τ | − |ξ ||
)
,

where ϕ truncates smoothly on a unit annulus. We denote by Q±
j the restriction of

this multiplier to the upper or lower time frequency space. At times we also denote by
Q|τ |�|ξ | = Q<C for some C > 0.

We denote by κ ∈ Kl a collection of caps of diameter ∼ 2−l providing a finitely
overlapping cover of the unit sphere. According to this decomposition, we cut up the
spatial frequency domain according to:

Pk =
∑
κ∈Kl

Pk,κ .

These decompositions often occur in conjunction with modulation cutoffs on the order
of j = k −2l, and a central principle is that the corresponding multipliers Q±

<k−2l Pk,±κ
are uniformly disposable.

5.2. The S and N function spaces.

Definition 5.1 (Dyadic Iteration Space). For each integer k we define the following fre-
quency localized norm:

‖φ ‖Sk := ‖∇t,xφk ‖L∞
t (L2

x )
+ ‖∇t,xφk ‖

X
0, 1

2∞
+ ‖φk ‖S + sup

j<k−20
‖φ ‖S[k; j].

(147)

In general, the fixed frequency space Xs,b
p is defined as:

‖ Pkφ ‖p

Xs,b
p

:= 2psk
∑

j

2pbj‖ Q j Pkφ ‖p
L2

t (L2
x )
,

with the obvious definition for Xs,b∞ . Here we define the “physical space Strichartz”
norms:

‖φk ‖S := sup
(q,r): 2

q + 1
r �1

2

2(
1
q + 2

r −1)k‖∇t,xφk ‖Lq
t (Lr

x )
, (148)

the “modulational Strichartz” norms:

‖φ ‖S[k; j] := sup
±

⎛
⎝∑
κ∈Kl

‖ Q±
<k−2l Pk,±κφ ‖2

S[k,κ]

⎞
⎠

1
2

, l = k − j

2
> 10, (149)

and the “angular Strichartz” space in terms of the three components:

‖φ ‖S[k,κ] := 2k sup
ω/∈2κ

dist(ω, κ)‖φ ‖L∞
tω (L

2
wω
) + 2k‖φ ‖L∞

t (L2
x )

+2
1
2 k |κ|− 1

2 inf∑
ω φ

ω=φ
∑
ω

‖φω ‖L2
tω (L

∞
xω )
. (150)
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The first component on the RHS above will often be referred to as NFA∗. We define S as
the space of functions φ in R

2+1 with ∇x,tφ ∈ C(R; L2
x ) and finite norm:

‖φ ‖2
S = ‖φ ‖2

L∞
t (L∞

x )
+
∑

k

‖φ ‖2
Sk
,

and also use the frequency envelope convention from Sect. 2 to define Sc.

To measure the derivatives of functions in S we introduce a related space DS:

Definition 5.2 (Differentiated S functions). We define the norm:

‖φ ‖DSk := ‖φk ‖L∞(L2
x )

+ ‖φk ‖
X

0, 1
2∞

+ ‖φk ‖DSk
+ 2k sup

j<k−20
‖φ ‖S[k; j], (151)

where the DS norm is as in (148) but without the gradient:

‖φ ‖DSk
:= sup

(q,r): 2
q + 1

r �1
2

2(
1
q + 2

r −1)k‖φ ‖Lq
t (Lr

x )
. (152)

The DS space is defined as the space of functions for which the square sum of the DSk
norms is finite:

‖φ ‖2
DS =

∑
k

‖φ ‖2
DSk
.

We remark that by definition we have:

‖φ ‖Sk ≈ ‖∇x,tφ ‖DSk . (153)

Definition 5.3 (Dyadic Source Term Space). For each integer k we define the following
frequency localized norm:

‖ F ‖Nk := inf
FA+FB +

∑
l,κ Fl,κ

C =F

⎛
⎝‖ Pk FA ‖L1

t (L2
x )

+ ‖ Pk FB ‖
X

0,− 1
2

1

+
∑
±

∑
l>10

(∑
κ

inf
ω/∈2κ

dist(ω, κ)−2‖ Q±
<k−2l Pk,±κFl,κ

C ‖2
L1

tω (L
2
xω )

) 1
2
⎞
⎠ .
(154)

We will often refer to the last component on the RHS above as NFA, and the norm applied
to a fixed Q±Fl,κ

C as NFA[±κ].
For any closed interval I = [t0, t1] we define spaces X [I ], Xc[I ], E[I ], L∞

t (L
∞
x )[I ],

etc. as the restriction of these classical L p based norms to the time slab I × R
2
x . We also

need a similar procedure for the non-local S and N spaces. As usual we define Sk[I ],
S[I ], Sc[I ], N [I ], etc. in terms of minimal extension.4 For example:

‖φ ‖Sk [I ] = inf
�

{
‖� ‖Sk

∣∣ � ≡ φ on I × R
2
}
. (155)

4 We will modify this procedure somewhat below by an equivalent norm, but for the most part they are
interchangeable.
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On an open time interval (t0, t1) we may also define localized norms by taking
‖φ ‖S(t0,t1) = supI⊆(t0,t1) ‖φ ‖S[I ]. This definition will only be important for us as a
convenience when stating results like Theorem 1.3, so the reader is safe to ignore the
distinction and always assume that I denotes a closed time interval. We now state a
continuation of Proposition 2.3:

Proposition 5.4 (Standard Estimates and Relations: Part 2). Let F, φ, and φ(i) be a col-
lection of test functions, I ⊆ R any subinterval (including R itself). Then the following
list of properties for the S[I ] and N [I ] spaces hold:

• Time Truncation of S. Let χI be the characteristic function of I . Then

‖φ ‖DSk [I ] ≈ ‖χIφ ‖DSk � ‖φ ‖DSk , (156)

‖φ ‖Sk [I ] ≈ ‖χI ∇x,tφ ‖DSk . (157)

• Time Truncation of N . Let I = ∪K
i Ii be a decomposition of I into consecutive inter-

vals, and letχI , χIi be the corresponding sharp time cutoffs. Then the following bounds
hold (uniform in K ):

‖χI F ‖N � ‖ F ‖N , (158)∑
i

‖χIi F ‖2
N � ‖ F ‖2

N . (159)

Furthermore, for any Schwartz function F the quantity ‖χI F ‖N is continuous in the
endpoints of I .

• Basic S and N Relations. We have that:

‖φ(1)k1
· φ(2)k2

‖DS[I ] � 2(k1−k2)‖φ(1)k1
‖DS[I ] · ‖φ(2)k2

‖S[I ], k1 < k2 − 10, (160)

〈φ, Fk〉 � ‖φ ‖DS · ‖ Fk ‖N , (161)

‖φk ‖S � ‖∇t,xφk ‖
X

0, 1
2

1

, (162)

‖ Fk ‖
X

0,− 1
2∞

� ‖ Fk ‖N . (163)

• Lq
t (L

r
x ) and Disposability Estimates. We have that:

‖ Q jφk ‖L2
t (L∞

x )
� 2−( j−k)+2− 1

2 j‖φk ‖S, (164)

‖φk ‖L∞
t (L2

x )
+ ‖ Q� jφk ‖L∞

t (L2
x )

+ ‖ Q jφk ‖L∞
t (L2

x )
� 2−k‖φk ‖S, (165)

‖ Q� jφk ‖L∞
t (L∞

x )
+ ‖ Q jφk ‖L∞

t (L∞
x )

� ‖φk ‖S . (166)

• Fine Product Estimates. We have that:

‖φ(1)k1
· φ(2)k2

‖L2
t (L2

x )
� |κ| 1

2 2− 1
2 k1‖φ(1)k1

‖S[k1,κ] · sup
ω∈κ

‖φ(2)k2
‖L∞

tω (L
2
xω )
, (167)

‖ P< j−10 Q< j−10φ
(1) · φ(2)k2

‖S[k2; j] � ‖φ(1) ‖L∞
t (L∞

x )
· ‖φ(2)k2

‖S, (168)

‖∇t,x Pk Q j (φ
(1)
k1

· φ(2)k2
) ‖

X
0, 1

2
1

�2δ(k−max{ki })2δ( j−min{ki })‖φ(1)k1
‖S‖φ(2)k2

‖S, (169)

‖ Pk(Q j Fk1 · φk2) ‖N � 2δ(k−max{ki })2δ( j−min{ki })‖ Fk1 ‖
X

0,− 1
2∞
‖φk2 ‖S, (170)

where in estimates (169)–(170) we are assuming j � min{ki }.
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Estimates (156)–(160) are proved next. The rest of the above bounds are standard, and
with the exception of (168) which is Lemma 9.1 in [33], may be found in [29]. For the
convenience of the reader we give the detailed citations ([29] page numbers). Estimate
(161) is estimate (94) on p. 487. Estimate (162) is Lemma 8 on p. 483. Estimate (163) is
Lemma 10 on p. 487. Estimates (164)–(166) are listed in estimates (81)–(84) on p. 483.
Estimate (167) is (by duality) the estimate in Step 2 on p. 479, and it also follows more
or less immediately by inspecting the third term on line (150) above. Estimate (169) is
Lemma 13 on p. 515. Estimate (170) is Lemma 12 on p. 501.

Proof of estimates (156)–(157) and (15). Without any loss of generality we replace χI
by χ = χt<0. Our main observation here will be that the multipliers Q j applied to χ
act like time-frequency cutoffs onto dyadic sets |τ | ∼ 2 j . For each of these we have the
Strichartz type estimate:

‖ Q jχ ‖L2
t (L∞

x )
� 2− 1

2 j . (171)

Therefore, one can look upon the estimate (156) as some version of the product bound
(19). We rescale to k = 0, and set φ0 = P0φ.

We begin with the proof of (156). The DS bound in this estimate is immediate.
Therefore we focus on proving the Xs,b and S[0, κ] sum portions of the estimate. This
is split into cases:

Step 1 (Controlling the X
0, 1

2∞ norm). Freezing Q j , our goal is to show that:

‖ Q j (χ · φ0) ‖L2
t (L2

x )
� 2− j

2 ‖φ0 ‖DS . (172)

We now split into subcases.
Step 1.A (χ at low modulation). In this case we look at the contribution of the product
Q j (Q< j−10χ · φ0). We may freely insert the multiplier Q[ j−5, j+5] in front of φ0. Then
(172) is immediate from L∞ control of Q< j−10χ .
Step 1.B (χ at high modulation). In this case we’ll rely on the even stronger L2 bound:

‖ Q� j−10χ · φ0 ‖L2
t (L2

x )
� ‖ Q� j−10χ ‖L2

t (L∞
x )

‖φ0 ‖L∞
t (L2

x )
� 2− 1

2 j‖φ0 ‖S, (173)

which results from summing over (171). In particular, isolating the LHS of this last line
at frequency Q j we have (172) for this term.
Step 2 (Controlling the S[0; j] norms). Freezing j < −20 we need to demonstrate:

‖ Q< j (χ · φ0) ‖S[0; j] � ‖φ0 ‖DS .

Step 2.A (χ at low modulation). The contribution of Q< j−10χ · Q< jφ0 is bounded via
estimate (168). Notice that χ is automatically at zero spatial frequency.
Step 2.B (χ at high modulation). Adding over estimate (173) we have:

‖ Q< j (Q� j−10χ · φ0) ‖
X

0, 1
2

1

� ‖φ0 ‖S,

which is sufficient via the differentiated version of (162).
To wrap things up here, we need to demonstrate the bounds (157) and (15). Beginning

with φ ∈ S[I ] we consider an extension φ ∈ S with comparable norm. Then by (156)
and (153) we have the chain of inequalities:

‖∇x,tφ ‖DSk [I ] � ‖χI ∇x,tφk ‖DSk � ‖∇x,tφk ‖DSk ≈ ‖φ ‖Sk .
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It remains to prove the converse. We begin with the energy norm, observing that for
φ ∈ S[I ], for I = [−i0, i0], we have:

‖φk[±i0] ‖Ḣ1×L2 � ‖∇x,tφk ‖DSk [I ].

We extend φ to I ± = [±i0,±∞) as a solution to the homogeneous wave equation with
data φ[±i0] and use (153) to compute:

‖φ ‖Sk [I ] � ‖φ ‖Sk ≈ ‖∇x,tφ ‖DSk � ‖χI ∇x,tφ ‖DSk + ‖ (1 − χI )∇x,tφ ‖DSk

� ‖∇x,tφ ‖DSk [I ] + ‖φk[±i0]‖Ḣ1×L2

� ‖∇x,tφ ‖DSk [I ].

The proof of (157) is concluded.
Finally, we use (156) and (157) to prove (15):

‖φ ‖Sk [I ] ≈ ‖∇x,tφ ‖DSk [I ] �
∑

i

‖χIi ∇x,tφ ‖DSk �
∑

i

‖φ ‖Sk [Ii ].

The proof is concluded. ��
Proof of estimate (159). Since:

‖ F ‖2
N ≈

∑
k

‖ Pk F ‖2
Nk
,

it suffices to show that the similar relation holds for the Nk spaces:∑
n

‖χIn F ‖2
Nk

� ‖ F ‖2
Nk
. (174)

The space Nk is an atomic space, therefore is suffices to prove (174) for each atom.
Step 1 (L1

t (L
2
x ) atoms). For these we directly have the stronger relation:

∑
n

‖χIn Fk ‖L1
t (L2

x )
� ‖ Fk ‖L1

t (L2
x )
.

Step 2 (Ẋ
0,− 1

2
1 atoms). For F localized at frequency 2k we will prove the relation:

∑
n

‖χIn Fk ‖2

L1
t (L2

x )+Ẋ
0,− 1

2
1

� ‖ Fk ‖2

Ẋ
0,− 1

2
1

.

Without any restriction in generality we can assume that Fk is also localized in modu-

lation at 2 j . By rescaling we can take j = 0. At modulation 1 the Ẋ
0,− 1

2
1 is equivalent

to the L2
t (L

2
x ) norm. Then the last bound would follow from the stronger estimate:

∑
n

‖ Q<−4(χIn Q0 Fk) ‖2
L1

t (L2
x )

+‖ Q>−4(χIn Q0 Fk) ‖2
L2

t (L2
x )

� ‖ Q0 Fk ‖2
L2

t (L2
x )
.

(175)

We trivially have: ∑
n

‖χIn Q0 Fk ‖2
L2

t (L2
x )

� ‖ Q0 Fk ‖2
L2

t (L2
x )
,

therefore it remains to prove the L1
t (L

2
x ) bound on line (175). We do this in two cases:
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Step 2.A (Small intervals). We parse the collection of intervals In into two sub-collec-
tions, intervals Jn such that |Jn| � 1, and intervals Kn such that |Kn| < 1. In the latter
case we may drop the outer Q<−4 and simply use Hölder’s inequality to estimate:

∑
n

‖χKn Q0 Fk ‖2
L1

t (L2
x )

�
∑

n

‖χKn Q0 Fk ‖2
L2

t (L2
x )
,

so the estimate follows as above.
Step 2.B (Large intervals). In this case we break the first term on LHS (175) up as
follows:∑

m

‖ Q<−4(χJm Q0 Fk) ‖2
L1

t (L2
x )

=
∑

m

‖ Q<−4(Q[−10,10]χJm · Q0 Fk) ‖2
L1

t (L2
x )

�
∑

m

‖ Q[−10,10]χJm · Q0 Fk ‖2
L1

t (L2
x )
. (176)

Denoting Jm = [am, bm], for Q[−10,10]χJm we have the pointwise bounds:

|Q[−10,10]χJm (t)| � (1 + |t − am |)−N + (1 + |t − bm |)−N .

Hence by Cauchy-Schwartz we obtain:

L.H.S.(176)�
∑

m

‖ (1 + |t − am |)− N
2 Q0 Fk ‖2

L2
t (L2

x )
+‖ (1 + |t − bm |)− N

2 Q0 Fk ‖2
L2

t (L2
x )

�
∫

R

∑
m

(
(1 + |t − am |)−N + (1 + |t − bm |)−N

)
‖ Q0 Fk(t) ‖2

L2
x
dt.

Since the intervals Jm are disjoint and of size at least 1, the last sum above is bounded
by � 1, therefore we obtain:

L.H.S.(176) � ‖ Q0 Fk ‖2
L2

t (L2
x )
.

Step 3 (NFA atoms). In this case we can express Fk as:

Fk = F+
k + F−

k =
∑
±,κ

F±
k,±κ ,

where F±
k,±κ is supported in the wedge carved by the multiplier Q±

<k−2 j Pk,±κ , with
j > 10, and furthermore: ∑

κ

‖ F±
k,κ ‖2

NFA[±κ] � 1.

Without loss of generality we may assume we are in the + case, and we rescale to k = 2 j ,
and so in particular k > 20.

By summing over (163) we have the L2
t (L

2
x ) bound:

‖ F+
k ‖L2

t (L2
x )

� 1. (177)

The NFA[κ]norms are translation invariant, and are defined using characteristic L1
tω (L

2
xω)

norms. Thus they directly satisfy the inequality:
∑

n

‖χIn F+
k,κ ‖2

NFA[κ] � ‖ F+
k,κ ‖2

NFA[κ]. (178)
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We write:

χIn F+
k = Q>0(χIn F+

k ) + Q−
<0(χIn F+

k ) +
∑
κ

Q+
<0(χIn F+

k,κ ),

and estimate the first component in Ẋ
0,− 1

2
1 , the second in L1

t (L
2
x ), and the third in NFA.

We have from line (177):
∑

n

‖ Q>0(χIn F+
k ) ‖2

Ẋ
0,− 1

2
1

�
∑

n

‖χIn F+
k ‖2

L2
t (L2

x )
� ‖ F+

k ‖2
L2

t (L2
x )

� 1.

Next, using the restriction on the Fourier support of F+
k , we have for any single interval

the bound:

‖ Q−
<0(χJn F+

k ) ‖L1
t (L2

x )
� ‖ Q[−20,20]χJn · F+

k ‖L1
t (L2

x )
.

Using this and (177), one may proceed as in Step 2.A and Step 2.B above. On the other
hand, by (178) and the disposability of Q+

<0 on the Fourier support of the multiplier Pk,κ
we have:∑

n,κ

‖ Q+
<0(χIn F+

k,κ ) ‖2
NFA[κ] �

∑
n,κ

‖χIn F+
k,κ ‖2

NFA[κ] �
∑
κ

‖ F+
k,κ ‖2

NFA[κ] � 1.

��
Proof of estimate (160). This is a minor variation of (21), and the proof is similar to
that of estimate (156) above. We rescale to k2 = 0, discard I , and set ‖φ(1)k1

‖DS =
‖φ(2)0 ‖S = 1. Using the fact that:

‖ Q<k1+10φ
(1)
k1

‖S � 2k1‖φ(1)k1
‖DS, ‖ P0 f ‖DS � ‖ f ‖S,

along with the usual S algebra estimate (19), we control the low modulation contribution
of the first factor. Furthermore, it is always possible to gain in the DS component by
using Bernstein’s inequality and energy estimates for the high frequency factor.

We are reduced to bounding the contribution of Q>k1+10φ
(1)
k1

·φ(2)0 . As a general tool

we have the L2 bound:

‖ Q> j−10φ
(1)
k1

· φ(2)0 ) ‖L2
t (L2

x )
� ‖ Q> j−10φ

(1)
k1

‖L2
t (L∞

x )
‖φ(2)0 ‖L∞

t (L2
x )

� 2k1 2− 1
2 j .

In particular, via the differentiated version of (162), if the output modulation is j < k1
we have both:

‖ Q j (Q>k1+10φ
(1)
k1

· φ(2)0 ) ‖
X

0, 1
2∞

+ ‖ Q>k1+10φ
(1)
k1

· φ(2)0 ‖S[0; j] � 2k1 .

On the other hand, if the output modulation is j > k1, then by again using the above
general L2 estimate, it suffices to show:

‖ Q j (Q[k1+10, j−10]φ(1)k1
· φ(2)0 ) ‖

X
0, 1

2∞
+ ‖ Q[k1+10, j−10]φ(1)k1

· φ(2)0 ‖S[0; j] �‖φ(1)k1
‖L∞

t (L∞
x )
,

and then conclude via an application of Bernstein’s inequality. For the first term on the
LHS, we may freely insert a Q[ j−5, j+5] multiplier in front of the second factor, which
suffices. For the second term, we directly use (168). ��
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5.3. Extension and restriction for S and N functions. In the sequel we will build up esti-
mates through an iterative process by which we first prove bounds in weak spaces (such
as Pk L∞, X , and E), and then show that these may be used in conjunction with boot-
strapping to establish uniform bounds in much stronger spaces (such as S). This process
unfortunately leads to some technical difficulties regarding compatibility of extensions
in various norms. To tame this difficulty, we will make use of a variable but universal
extension process. Because this feature is more of a technicality in our proof, we state
here for the convenience of the reader where such extensions are necessary in the sequel:

• The primary use of compatible extensions is in the proof of Proposition 3.4, most
importantly in the proof of estimate (46). Here we are forced to use several norms
simultaneously in a single estimate that involves space-time frequency cutoffs. As will
become apparent soon, in such a situation choosing extensions needs to be done care-
fully because it is not immediate that this can be done in a way that retains smallness
of the various component norms.

• Universal extensions are also used in a key way in the proof of Proposition 3.2 because
we need to know that extensions still enjoy good characteristic energy estimates when
these estimates are only known on a finite interval. This extended control needs to be
used in conjunction with S norm control in estimates requiring space-time frequency
cutoffs (see Lemma 9.3 in Sect. 9).

• A secondary use of compatible extensions occurs because we do not include X as a
component of S defined above. Doing this allows us to quote standard product esti-
mates from [29] modulo physical space Strichartz components. The price one pays
is that X bounds are established separately, and one then needs to include this a-pos-
teriori into extension estimates. For example, this feature is used at the beginning of
the proof of Proposition 3.1 to extend the connection B with good S and X bounds.

Proposition 5.5 (Existence of S Extensions/Restrictions). Letφ be any affinely Schwartz
function defined on an interval I = [−i0, i0].
• Canonical extension. For every 0 < η � 1 there exists a canonical extension �I,η

which is compactly supported in time and for which the following estimates are true:

‖ Pk�
I,η ‖S � ‖ Pkφ ‖S[I ], (179)

‖ Pk��I,η ‖N � ‖ Pkφ ‖E[I ] + ‖ Pk�φ ‖N [I ], (180)

‖ Pk�
I,η ‖L∞

t (L∞
x )

� η− 5
2 ‖ Pkφ ‖L∞

t (L∞
x )[I ] + η

1
2 ‖ Pkφ ‖X [I ], |I | � 2−kη2, (181)

‖ Pk�
I,η ‖X � η

1
2 ‖ Pkφ ‖E[I ] + ‖ Pkφ ‖X [I ], (182)

‖ Pk�
I,η ‖E � ‖ Pkφ ‖E[I ], (183)

‖ Pk��I,η · ψ j ‖N � 2k− j‖ Pkφ ‖E[I ]‖ψ j ‖S + ‖ Pk�φ · ψ j ‖N [I ], (184)

where the last bound holds under the additional condition that j > k + 10.
• Secondary extension. For every 0 < η � 1 there exists an extension �̃I,η which is

compactly supported in time and such that (179),(180) hold. Furthermore, for this
extension the following improvement of (181) is valid:

‖ Pk�̃
I,η ‖L∞

t (L∞
x )

� η− 1
2 ‖ Pkφ ‖L∞

t (L∞
x )[I ] + η‖ Pkφ ‖E[I ]. (185)

The canonical extension above will be used most of the time. Its only disadvantage is
that in order to control the L∞

t (L
∞
x ) norm of this extension we need to also control the

X norm. In the rare (single) case where this is missing, we use the secondary extension.
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Proof of Proposition 5.5. The canonical extension will be defined dyadically for each
φk . By rescaling we only work with k = 0.
Step 1 (The canonical extension and estimates (179)–(180), (182)–(184)). The obvious
candidate �I for the extension is obtained by solving the homogeneous wave equation
to the left of −i0 and to the right of i0, with Cauchy data P0φ[−i0], respectively P0φ[i0].
Denoting the complement of I by I − ∪ I +, we have:

��I = 0, �I [±i0] = P0φ[±i0], in I ±.

It is relatively easy to verify that the extension �I satisfies all the properties (179)–
(180), (182)–(184). However, there is a core issue with (181), as this bound can easily
fail because nonconcentration at time ±i0, say, does not guarantee nonconcentration at
all later times. To avoid this problem, we truncate �I outside a compact set and define:

�I,η = χ
η
I �

I ,

where χηI is a smooth cutoff with |∂k
t χ

η
I | � ηk , such that χηI ≡ 1 on I and vanishing

outside of the extended interval Ĩ = [−i0 − η−1, i0 + η−1]. Furthermore, in I ± we have
the identity:

��I,η = 2∂t (χ
η
I ) · ∂t�

I + ∂2
t (χ

η
I ) ·�I .

This allows us to estimate:

‖ P0��I,η ‖L1
t (L2

x )[I ±] � ‖ P0φ[±i0] ‖Ḣ1×L2 , (186)

which in turn leads to:

‖ P0�
I,η ‖S[I ±] + ‖ P0��I,η ‖N [I ±] � ‖ P0φ[±i0] ‖Ḣ1×L2 .

Then the bound (179) follows from (15), while (183) follows from energy estimates
for �I,η in I ±. The bound (180) is also straightforward, while for (182) we need to
compute:

‖ P0��I,η ‖L2
t L2

x [I ±] � η
1
2 ‖ P0φ[±i0] ‖Ḣ1×L2 .

To prove (184) we use Bernstein to estimate:

‖ P0��I,η · ψ j ‖L1
t (L2

x )[I ±] � ‖ P0��I,η ‖L1
t (L∞

x )[I ±] · ‖ψ j ‖L∞
t (L2

x )[I ±]
� ‖ P0��I,η ‖L1

t (L2
x )[I ±] · 2− j‖ P0ψ j ‖S,

and conclude with (186).
Step 2 (The L∞

t (L
∞
x ) estimate (181)). We now turn our attention to the most interesting

part, namely (181). The desired bound follows from a reverse dispersive estimate for the
2D wave equation:

‖ e±i t |Dx | P0 f ‖L∞
x

�
√

1 + t ‖ P0 f ‖L∞
x
,

provided that we can first establish the “elliptic” estimate (setting P0φ = φ0):

‖ ∂tφ0 ‖L∞
t (L∞

x )[I ] � η−2‖φ0 ‖L∞
t (L∞

x )[I ] + η‖φ0 ‖X [I ], (187)
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provided that |I | � η2. Without loss of generality we may assume we are in the worst
case scenario |I | = η2. We begin with the Poincare type inequality:

‖ ∂tφ0 − (∂tφ0)
av ‖L∞

t [I ] � η‖ ∂2
t φ0 ‖L2

t [I ],

where (∂tφ0)
av = η−2

∫
I ∂tφ0dt , so in particular:

‖ (∂tφ0)
av ‖L∞

x [I ] � η−2‖φ0 ‖L∞
t (L∞

x )[I ].

Therefore, taking the sup over all space in the second to last line above we have:

‖ ∂tφ0 ‖L∞
t (L∞

x )[I ] � η−2‖φ0 ‖L∞
t (L∞

x )[I ] + η‖�φ0 ‖L2
t (L∞

x )[I ] + η‖�φ0 ‖L2
t (L∞

x )[I ].

The proof of (187) is now concluded via Bernstein in space for the second term on the
RHS above, and Cauchy-Schwartz in time along with the fact that �P0 is bounded on
L∞

x to control the third.
Step 3 (The Secondary Extension). We next turn our attention to the second extension.
Again we set k = 0. The additional difficulty we face here is that we no longer have
pointwise bounds for ∂t P0φ(±i0). We split the function �I outside I into two parts:

�I = �I
0 +�I

1,

corresponding to the two different components of its Cauchy data at ±i0:

��I
0 = 0, �I

0[±i0] = (P0φ(±i0), 0) in I ±,

respectively:

��I
1 = 0, �I

1[±i0] = (0, ∂t P0φ(±i0)) in I ±.

Then we define the extension �̃I,η by truncating the two components on different scales:

�̃I,η = χ
η
I �

I
0 + χ1/η

I �I
1.

For the first component we argue as before. For the second, we begin with a fixed time
L2 bound:

‖ P0�
I
1(t) ‖L2

x
� |t ∓ i0| · ‖ ∂t P0φ(±i0) ‖L2

x
in I ±, (188)

which follows at once from integrating the quantity ∂t P0�
I
1 and energy estimates. This

leads to:

‖ P0�(χ1/η
I �I

1) ‖L1
t (L2

x )[I ±] � ‖ ∂t P0φ(±i0) ‖L2
x
,

which helps us establish bounds of the type (179)–(180). On the other hand, the improved
pointwise bound (185) follows simply by using Bernstein’s inequality in (188) to give:

‖ P0�
I
1(t) ‖L∞

x
� |t ∓ i0| · ‖ ∂t P0φ(±i0) ‖L2

x
in I ±.

The proof of the proposition is thus concluded. ��
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5.4. Strichartz and Wolff type bounds. In this section we prove the estimate (18) for
the S component on line (148), as well as a key L2 bilinear estimate for transverse
waves which takes advantage of the small energy dispersion. The tools we use for these
purposes are the V p

±|Dx | and U p
±|Dx | spaces associated to the two half-wave evolutions.

Precisely, V p
±|Dx | is the space of right continuous L2

x valued functions with bounded
p-variation along the half-wave flow:

‖ u ‖V p
±|Dx |

= ‖ e∓i t |Dx |u(t) ‖V p(L2
x )
,

or in expanded form:

‖ u ‖V p
±|Dx |

:= ‖ u ‖p
L∞

t (L2
x )

+ sup
tk↗

∑
k∈Z

‖ u(tk+1)− e±i(tk+1−tk )|Dx |u(tk) ‖p
L2

x
,

where the supremum is taken over all increasing sequences tk . We note that if p < ∞ then
V p functions can have at most countably many discontinuities as L2

x valued functions.
On the other hand the slightly smaller space U p

±|Dx | is defined as the atomic space
generated by a family Ap of atoms a which have the form:

a(t) = e±i t |Dx |∑
k

1[tk ,tk+1)u
(k),

where the sequence tk is increasing and:∑
k

‖ u(k) ‖p
L2

x
� 1.

Precisely, we have:

U p
±|Dx | = {u =

∑
ckak;

∑
k

|ck | < ∞, ak ∈ Ap}.

The above sum converges uniformly in L2
x ; it also converges in the stronger V p

±|Dx |
topology. The U p

±|Dx | norm is defined by:

‖ u ‖U p
±|Dx |

:= inf{
∑

k

|ck |; u =
∑

k

ckak, ak ∈ Ap}.

These spaces are related as follows:

U p
±|Dx | ⊂ V p

±|Dx | ⊂ U q
±|Dx |, 1 � p < q � ∞. (189)

The first inclusion is straightforward. The second is not, and plays a role similar to the
Christ-Kiselev lemma. These spaces were first introduced in unpublished work of the

second author, and have proved their usefulness as scale invariant substitutes of Xs, 1
2

type spaces in several problems, see [2,5,11,12].
We use these spaces first in the context of the Strichartz estimates, which for frequency

localized homogeneous half-waves can be expressed in the form:

‖ e±i t |Dx |uk ‖Lq
t (Lr

x )
� 2−( 1

q + 2
r −1)k‖ uk ‖L2

x
,

2

q
+

1

r
� 1

2
.

Applying this bound for each segment in U q
±|Dx | atoms, one directly obtains embeddings

of these spaces into Strichartz spaces:
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Lemma 5.6. The following estimates hold:

‖φk ‖Lq
t (Lr

x )
� 2−( 1

q + 2
r −1)k‖φk ‖Uq

±|Dx |
,

2

q
+

1

r
� 1

2
. (190)

The second place where these spaces come into play is in the context of bilinear
L2

t (L
2
x ) estimates for transversal waves. The classical estimate here (see for instance

[10]) has the form:

‖ e±i t |Dx |u(1)k1
· e±i t |Dx |u(2)k2

‖L2
t (L2

x )
� 2

1
2 min{k1,k2}θ− 1

2 ‖ u(1)k1
‖L2

x
‖ u(2)k2

‖L2
x
, (191)

provided the u(i)ki
have angular separation in frequency, namely |θ1 − θ2| > θ in the

(++) or (−−) cases, and |π + (θ1 − θ2)| > θ in the (+−) or (−+) cases. In subsequent
work, Wolff [34] was able to replace the L2

t (L
2
x ) bound on the left with L p

t (L
p
x ) for

p > 5
3 . The endpoint p = 5

3 was later obtained by Tao [27]. Our aim here is to first use
the Wolff-Tao estimate to strengthen the classical L2

t (L
2
x ) bound in a way which takes

advantage of the small energy dispersion, and then phrase it in the set-up of the V 2±|Dx |
spaces:

Lemma 5.7. Let φ(i)ki
∈ V 2±|Dx | be two test functions which have angular separation in

frequency, namely |θ1 − θ2| > θ in the (++) or (−−) cases, and also |π + (θ1 − θ2)| > θ

in the (+−) or (−+) cases. Then for c < 3
29 we have:

‖φ(1)k1
φ
(2)
k2

‖L2
t (L2

x )
� 2

1
2 max{ki }θ−1‖φ(1)k1

‖V 2±|Dx |
‖φ(2)k2

‖1−c
V 2±|Dx |

(
2−k2‖φ(2)k2

‖L∞
t (L∞

x )

)c
.

(192)

We remark that we did not make an effort to optimize c, the balance of the frequencies,
or the power of θ , as these play no role in the present paper.

Proof. Without loss of generality, let us assume we are in the (++) case. If both φ(i)ki

were free waves, then Wolff’s estimate (with Tao’s endpoint) would yield (see [27]
Prop. 17.2):

‖φ(1)k1
φ
(2)
k2

‖
L

5
3
t (L

5
3
x )

� 2
1
5 max{ki }θ−1‖φ(1)k1

(0) ‖L2
x
‖φ(2)k2

(0) ‖L2
x
.

Applying this for each intersection of two segments in a product of atoms, we obtain:

‖φ(1)k1
φ
(2)
k2

‖
L

5
3
t (L

5
3
x )

� 2
1
5 max{ki }θ−1‖φ(1)k1

‖
U

5
3|Dx |

‖φ(2)k2
‖

U
5
3|Dx |
. (193)

On the other hand by (190) with (q, r) = (6, 6) we have:

‖φ(1)k1
φ
(2)
k2

‖L3
t (L3

x )
� 2

k1+k2
2 ‖φ(1)k1

‖U 6|Dx |
‖φ(2)k2

‖U 6|Dx |
. (194)

Interpolating (193) with (194) (it is bilinear interpolation but it suffices to do it for atoms,
so it only involves l p and L p spaces) we obtain:

‖φ(1)k1
φ
(2)
k2

‖L p
t (L

p
x )

� 2(2− 3
p )max{ki }− 3

26 |k1−k2|θ−1‖φ(1)k1
‖U 2|Dx |

‖φ(2)k2
‖U 2|Dx |

, p = 13

7
.
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We want V 2|Dx | instead, so we use the embedding (189) with U 2+|Dx | and L
13
7 +

t (L
13
7 +

x ) in
this last estimate, which gives the bound:

‖φ(1)k1
φ
(2)
k2

‖L p
t (L

p
x )

� 2(2− 3
p )max{ki }− 3

26 |k1−k2|θ−1‖φ(1)k1
‖V 2|Dx |

‖φ(2)k2
‖V 2|Dx |

, p >
13

7
.

On the other hand by using an L∞
t (L

∞
x ) bound we get:

‖φ(1)k1
φ
(2)
k2

‖L6
t (L6

x )
� 2

1
2 k1‖φ(1)k1

‖V 2|Dx |
‖φ(2)k2

‖L∞
t (L∞

x )
.

Then (192) is obtained interpolating the last two lines. ��
In this article we work with the S and N spaces. The next lemma relates them to the

V 2±|Dx | spaces.

Lemma 5.8. Let φk[0] ∈ Ḣ1 × L2 and Fk ∈ N. Then the solution φk to �φk = Fk with
initial data φk[0] satisfies:

2
1
2 k‖ Q�k−10∇t,xφk ‖L2

t (L2
x )

+
∑
±

‖ Q±
<k−10∇t,xφk ‖V 2±|Dx |

�‖φk[0] ‖Ḣ1×L2 + ‖ Fk ‖N .

(195)

Proof. By rescaling we may assume that k = 0, and we’ll relabel φk and Fk as φ, F
with the implicit understanding that they are both at unit frequency.

The estimate for Q�−10∇t,xφ is immediate from the structure of S and the estimate
(18) (note that this was shown in [29] for all portions of the norm (147) except S).

The linear wave evolution in the energy space Ḣ1 × L2 is given by the multiplier:

S(t) =
(

cos(t |Dx |) |Dx |−1 sin(t |Dx |)
−|Dx | sin(t |Dx |) cos(t |Dx |)

)
.

For any increasing sequence t j we can use the energy component of (18) (again estab-
lished in [29]) and (159) to estimate:

∑
j

‖φ[t j+1] − S(t j+1 − t j )φ[t j ] ‖2
Ḣ1×L2 �

∑
j

‖ 1[t j ,t j+1]F ‖2
N � ‖ F ‖2

N .

Diagonalizing, one may write the L2 × L2 evolution as:
(|Dx | 0

0 1

)
S(t)φ[t0] = U∗

(
eit |Dx | 0

0 e−i t |Dx |
)

U
(|Dx |φ(t0)
∂tφ(t0)

)
,

where U = 1√
2

(
1 −i
1 i

)
. Thus, the LHS of the previous difference formula may be

rotated via U to yield:

‖φ[t] − S(t − s)φ[s] ‖2
Ḣ1×L2 = 1

2
‖ (∂t + i |Dx |)φ(t)− ei(t−s)|Dx |(∂t + i |Dx |)φ(s) ‖2

L2

+
1

2
‖ (∂t − i |Dx |)φ(t)− e−i(t−s)|Dx |(∂t − i |Dx |)φ(s) ‖2

L2 .
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Hence taking the supremum over all increasing sequences tk we obtain the pair of bounds:

‖ (∂t + i |Dx |)φ ‖2
V 2|Dx |

+ ‖ (∂t − i |Dx |)φ ‖2
V 2−|Dx |

� ‖φ[0] ‖2
Ḣ1×L2 + ‖ F ‖2

N .

We conclude (195) by noting that one has the following “elliptic” estimate:

‖∇t,x Q±
<−10 P0φ ‖Y � ‖ (∂t ± i |Dx |)φ ‖Y ,

for any translation invariant space-time norm Y , which is valid because the convolution
kernel of the frequency localized ratio ∇t,x (∂t ± i |Dx |)−1 Q±

<−10 P0 is in L1
t (L

1
x ). ��

As a quick application of these ideas, notice that if (q, r) is any pair of indices in the
range of (148), we must have q � 4. Hence from (190) and (195), and some Sobolev
embeddings interpolated with the L∞

t (L
2
x ) estimate for ∇t,xφ to control the first member

on the LHS of (195), we obtain:

Corollary 5.9. Let φ[0] ∈ Ḣ1 × L2 and F ∈ N. Then the solution φ to �φ = F with
initial data φ[0] satisfies

‖φ ‖S � ‖φ[0] ‖Ḣ1×L2 + ‖ F ‖N . (196)

This proves (18), therefore completing the linear theory in the S and N spaces, as
needed in view of our modification of Tao’s [29] definition of the S space, namely by
adding the S norm to it.

In a similar manner, we can combine the bounds (192) and (195) to obtain:

Lemma 5.10. Let φ(i)ki
be two test functions normalized so that:

‖φ(i)ki
‖S + ‖�φ(i)ki

‖N � 1, j = 1, 2, ‖φ(2)k2
‖L∞

t (L∞
x )

� η.

Assume in addition that the localizations Q±
<ki −10φ

(i)
ki

have the angular separation |θ1 −
θ2| > θ in the (++) or (−−) cases, and |π + (θ1 − θ2)| > θ in the (+−) or (−+) cases.
Then for c < 3

29 one has:

‖φ(1)k1
φ
(2)
k2

‖L2
t (L2

x )
� 2− 3

2 min{ki }ηcθ−1. (197)

Proof. By an application of Lemma 5.7, we need only consider the case where one factor
is at high modulation, i.e. a factor of Q�ki −10φ

(i)
ki

. In this case, if the other factor has

the improved L∞
t (L

∞
x ) bound, estimate (197) is immediate on account of the L2

t (L
2
x )

estimate on the LHS of (195). On the other hand, if the factor at high modulation is also
the one with improved L∞

t (L
∞
x ) control, then using L6

t (L
6
x ) Strichartz for the first factor

we have:

‖φ(1)k1
Q�k2−10φ

(2)
k2

‖
L

3
2
t (L

3
2
x )

� 2− 1
2 k1 2− 3

2 k2 .

Interpolating this with the pointwise bound |φ(1)k1
Q�k2−10φ

(2)
k2

| � η we again have
(197). ��
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6. Bilinear Null Form Estimates

In this section we prove the estimates (23), (44), and (46). The first of these is essentially
standard, being implicitly contained in the calculations of [29]. We provide the proof
here for the sake of completeness:

Proof of estimate (23). We begin with the estimate:

‖ Pk Q< j F ‖L2
t (L2

x )
� 2

j
2 ‖ F ‖N . (198)

To see this, notice that if �−1
0 inverts the wave equation with zero Cauchy data, we

immediately have from (18) the inequality:

‖ Pk Q j ′�−1
0 F ‖

X
1, 1

2∞
� ‖ F ‖N ,

which implies the fixed frequency estimate:

‖ Pk Q j ′ F ‖L2
t (L2

x )
� 2

j ′
2 ‖ F ‖N .

Summing this last line over all j ′ < j (198) is achieved. We now split the proof of
estimate (23) into two cases:
Step 1 (Low × High interaction). In this case we assume that k1 < k2 − 10. The case
k2 < k1 − 10 can be handled via a similar argument. For relatively low modulations we
have from estimates (24) and (198):

‖ Q<k1+10(∂
αφ

(1)
k1
∂αφ

(2)
k2
) ‖L2

t (L2
x )

� 2
k1
2 ‖φ(1)k1

‖S · ‖φ(2)k2
‖S .

Therefore, it suffices to look at output modulations larger than k1+10. In this case we split
the modulations of the low frequency term according to φ(1)k1

= Q<k1φ
(1)
k1

+ Q�k1φ
(1)
k1

.
For the first term we have that:

‖Q�k1+10(Q<k1∂
αφ

(1)
k1

· ∂αφ(2)k2
)‖L2

t (L2
x )

�‖ Q<k1∂
αφ

(1)
k1

· Q>k1∂αφ
(2)
k2

‖L2
t (L2

x )

� ‖∇t,xφ
(1)
k1

‖L∞
t (L∞

x )
‖ Q>k1∇t,xφ

(2)
k2

‖L2
t (L2

x )

� 2
k1
2 ‖∇t,xφ

(1)
k1

‖L∞
t (L2

x )
‖∇t,xφ

(2)
k2

‖
X

0, 1
2∞
,

which suffices. For the high modulations of the first factor in the previous decomposition,
we estimate:

‖Q�k1+10(Q>k1∂
αφ

(1)
k1

· ∂αφ(2)k2
)‖L2

t (L2
x )

�‖ Q>k1∇t,xφ
(1)
k1

‖L2
t (L∞

x )
‖∇t,xφ

(2)
k2

‖L∞
t (L2

x )
.

We then conclude using (164) for the first factor.
Step 2 (High × High interaction). In this case we consider the frequency interaction
|k1 −k2| < 5, and without loss of generality we may also assume that k1 � k2. By using
estimates (198) and (24), we may reduce to considering the case of output modulation
larger than k + δ(k1 − k) + 10, where δ is from the RHS of (24) (this ultimately forces a
harmless redefinition of δ to suit line (23)). For this remaining piece, we will show that:

‖ Pk Q�k+δ(k1−k)+10(∂
αφ

(1)
k1

· ∂αφ(2)k2
) ‖L2

t (L2
x )

� 2
k
2 2− 1

2 δ(k1−k)‖φ(1)k1
‖S · ‖φ(2)k2

‖S .
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The key observation here is that the output modulation combined with the output spatial
frequency localization guarantees that at least one term in the product is at modulation
greater than k + δ(k1 − k) − 20. Without loss of generality we may assume this is the
first term in the product, and we estimate via Bernstein:

‖ Pk Q�k+δ(k1−k)+10(Q�k+δ(k1−k)−20∂
αφ

(1)
k1

· ∂αφ(2)k2
) ‖L2

t (L2
x )

� 2k
∑

j>k+δ(k1−k)−20

‖ Q j∇t,xφ
(1)
k1

‖L2
t (L2

x )
· ‖ ∇t,xφ

(2)
k2

‖L∞
t (L2

x )

� 2
k
2 2− 1

2 δ(k1−k)‖∇t,xφ
(1)
k1

‖
X

0, 1
2∞

· ‖∇t,xφ
(2)
k2

‖L∞
t (L2

x )
.

This concludes our demonstration of (23). ��
Our next step is to prepare for the proof of Proposition 3.4. It will first be useful to

have a version of these estimates under simpler assumptions:

Lemma 6.1. a) Let φ(i)ki
be functions localized at frequency ki . Assume that these func-

tions are normalized as follows:

‖φ(i)ki
‖S[I ] + ‖�φ(i)ki

‖N [I ] � 1, ‖φ(1)k1
‖L∞

t (L∞
x )[I ] � η. (199)

Then the following bilinear L2 estimate holds:

‖ ∂αφ(1)k1
∂αφ

(2)
k2

‖L2
t (L2

x )[I ] � 2
1
2 max{k1,k2}ηδ. (200)

b) Assume that in addition to (199) we also have the high modulation bounds:

‖�φ(1)k1
‖L2

t (L2
x )[I ] � 2

k1
2 η, ‖�φ(2)k2

‖L2
t (L2

x )[I ] � 2
k2
2 η. (201)

Then the following estimate holds:

‖ ∂αφ(1)k1
∂αφ

(2)
k2

‖N [I ] � 2C|k1−k2|ηδ. (202)

Proof. We may assume that the interval length is such that |I | � 2− min{ki }η2δ , as
otherwise the desired bounds follow from integrating energy estimates.

We begin by taking extensions of φ(1)k1
and φ(2)k2

according to Proposition 5.5 in such a
way that the L∞

t (L
∞
x ) bound in (199) is preserved; in the case of part (b), we also insure

that (201) is preserved. This is achieved using the second extension in Proposition 5.5 in
case (a), respectively the canonical extension in Proposition 5.5 in case (b). Doing this
requires balancing the parameter η in Proposition 5.5, and has the effect of replacing the

η in both (199) and (201) with a small power of η (η
1
8 should suffice). This is harmless

given the small constant δ which we seek to obtain in both (200) and (202).
We fix m to be a large spatial frequency separation parameter. In the course of proving

(200) and (202), we will decompose into several frequency ranges. In all cases we will
show a bound of the form:

L.H.S. � 2Cmηc + 2−δm,
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where c, δ are suitably small constants depending only on the estimates in Propositions
2.3, 5.4, and 5.10 above, and where C is a suitable large constant. In what follows we
call any bound of this type a “suitable bound”. By choosing m appropriately, and by
(globally) redefining the small parameter δ one may produce the RHS of estimates (200)
and (202) from such bounds.
Step 1 (The unbalanced case |k1 − k2| � m). Here we neglect the pointwise bound in
(199) as well as the high modulation bound in (201). From estimate (23) we immediately
have that:

‖ ∂αφ(1)k1
∂αφ

(2)
k2

‖L2
t (L2

x )
� 2

1
2 max{k1,k2}2− 1

2 m, |k1 − k2| � m,

which is a suitable L2 bound. Similarly, from (24) we obtain a suitable N bound.
Hence, in what follows it suffices to consider the range |k1 − k2| < m. For the

remainder of the proof we let k2 = 0. We split into cases depending on the modulations
of the factors and the output.
Step 2 (The factor φ(2)k2

at high modulation). Here we first prove a suitable L2 bound:

‖ ∂αφ(1)k1
Q>−10m∂αφ

(2)
0 ‖L2

t (L2
x )

� 2Cmη + 2−m . (203)

For moderate modulations of the first factor, i.e. for Q<10mφ
(1)
k1

, we use (199) to place
it in L∞:

‖ ∂αQ<10mφ
(1)
k1

‖L∞
t (L∞

x )
� 2Cmη,

while the second factor is placed in L2 via the general embedding:

‖ Q> jφ
(i)
ki

‖L2
t (L2

x )
� 2− 1

2 j‖φ(i)ki
‖

X
0, 1

2∞
. (204)

For high modulations of the first factor, i.e. for Q>10mφ
(1)
k1

, we reverse the roles and

bound the first factor in L2:

‖ ∂αQ>10mφ
(1)
k1

‖L2
t (L2

x )
� 2−5m‖φ(1)k1

‖S, (205)

while the second factor has a � 1 bound in L∞ thanks to (166), which leads again to a
suitable bound.

In this case it is even easier to obtain the suitable N bound because we have access
to the high modulation assumption (201). We prove:

‖ ∂αφ(1)k1
Q>−10m∂αφ

(2)
0 ‖N � 2Cmη. (206)

This follows from (24) combined with:

‖ Q>−10mφ
(2)
0 ‖S � 25m‖�φ(2)0 ‖L2

t (L2
x )

� 25mη,

where the first inequality follows from (162).
Step 3 (The factor φ(1)k1

at high modulation). Here we can also prove a suitable L2 bound,
namely:

‖ ∂αQ>−10mφ
(1)
k1

Q�−10m∂αφ
(2)
0 ‖L2

t (L2
x )

� 2Cmη
1
4 + 2−m . (207)
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Reusing (205) we can dispense with the very high modulations in φ(1)k1
and replace the

first factor with ∂αQ[−10m,10m]φ(1)k1
. This time we cannot directly use the L∞

t (L
∞
x ) esti-

mate for φ(1)k1
. However, by applying (204) and using the L6

t (L
6
x ) Strichartz estimate

contained in (196) we have that:

‖ ∂αQ[−10m,10m]φ(1)k1
Q�−10m∂αφ

(2)
0 ‖

L
3
2
t (L

3
2
x )

� 2Cm .

Next, using (199) and (166) we directly have:

‖ ∂αQ[−10m,10m]φ(1)k1
Q�−10m∂αφ

(2)
0 ‖L∞

t (L∞
x )

� 2Cmη.

Interpolating these last two estimates yields (207). It is important to notice that in the
above estimates one loses a polynomial in 2m because the multipliers P0 Q�−10m and
Pk1 Q[−10m,10m] are not uniformly disposable on L p. However, a short calculation shows
that the resulting convolution kernels have L1

t (L
1
x ) bounds on the order of 2Cm which

is acceptable.
As in the previous step we also have a suitable N bound:

‖ ∂αQ>−10mφ
(1)
k1
∂αQ�−10mφ

(2)
0 ‖N � 2Cmη. (208)

Step 4 (Low frequency output). This is the case when k1 = k2 + O(1), and we seek
to estimate Pk(∂

αφ
(1)
k1
∂αφ

(2)
0 ) for k < −m. Then we can use (23), respectively (24) to

obtain a � 2−δm suitable bound in L2, respectively N . Here δ is the previously defined
constant from Proposition 2.3.
Step 5A (Both φ(i)ki

at low modulation, output at low modulation < −2m and high
frequency k > −m). In this case, to show (200) we prove the bound:

‖ Pk Q<−2m

(
∂αQ�−10mφ

(1)
k1
∂αQ�−10mφ

(2)
0

)
‖L2

t (L2
x )

� 2−δm, (209)

where the δ is the same as in Propositions 2.3 and 5.4. This estimate again uses only
the S bounds on φ(1)k1

and φ(2)k2
and the localization conditions |k1| � m and k2 = 0. To

show (209), by (198) it suffices to prove the following set of bounds which together also
imply (202) in the present case:

‖ Pk Q<−2m�
(

Q�−10mφ
(1)
k1

· Q�−10mφ
(2)
0

)
‖

X
0,− 1

2
1

� m2−δm, (210)

‖ Pk Q<−2m

(
�Q�−10mφ

(1)
k1

· Q�−10mφ
(2)
0

)
‖N � 2−δm, (211)

‖ Pk Q<−2m

(
Q�−10mφ

(1)
k1

· �Q�−10mφ
(2)
0

)
‖N � 2−δm . (212)

The first estimate above follows from (169), while the second and third both follow
from (170). Note that while the multiplier Q�−2m is not disposable on N (e.g. on the
NFA atoms), one may first replace it by Q<0, and separately estimate the contribution

of Q[−2m,0] as an X
0,− 1

2
1 atom via (163) at an O(m) loss. A similar method using (162)

allows one to handle the interior Q�−10m multipliers, which are not disposable on S,
with another O(m) loss.
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Step 5B (Both φ(i)ki
at low modulation, output at high frequency and high modulation).

In this step, which is the heart of the matter, we establish the single bound:

‖ P�−m Q�−2m

(
∂αQ�−10mφ

(1)
k1
∂αQ�−10mφ

(2)
0

)
‖L2

t (L2
x )

� 2Cmηc. (213)

Here c is the same small constant from the RHS of line (197). To use that estimate, we
only need to establish angular separation of the two factors. This is a standard “geometry
of the cone” calculation, and one finds that the angle between the two factors must satisfy
|θ | � 2−m in the (++) or (−−) cases, and |θ − π | � 2−m in the (+−) or (−+) cases
(see for example Lemma 11 in Sect. 13 of [29]). By decomposing the product on the
LHS of (213) into O(2Cm) angular sectors such that each product has these separation
properties, and by repeatedly applying estimate (197) on each interaction we have (213).
The proof of the lemma is concluded. ��
Proof of Proposition 3.4. For this we use Lemma 6.1. We begin using the extensions
(this will be modified somewhat shortly) and the same parameter m as in the proof of
Lemma 6.1. We start with several simplifications. The key observation is that in the
proof of Lemma 6.1 we have used the bound on ‖�φ(i)ki

‖N just once, namely in Step
5B. All other cases carry over to the proof of Proposition 3.4. Consequently, it suffices
to estimate the expression:

Pk Q>−2m R = Pk Q>−2m(∂
αφ

(1)
k1
∂αφ

(2)
k2
),

in both L2 and N under the assumptions k2 = 0, |k1| � m, and |k| � m + 2.
Furthermore, the contribution Pk Q>−2m ((1 − χI )R) of R in the exterior of I is

estimated directly by Lemma 6.1 because the extensions provided by Proposition 5.5
enjoy estimate (186) in the exterior of I . Hence, we only need consider the expression
Pk Q>−2m(χI R). For this we will establish the pair of suitable bounds:

‖ Pk Q>−2m(χI R) ‖L2
t (L2

x )
� 2Cmηδ + 2−5m, ‖ Pk Q>−2m(χI R) ‖N � 2Cmηδ + 2−4m,

with δ as in Lemma 6.1. We remark that due to the frequency and modulation localization
of R, the second N bound follows from the first L2 bound albeit with a readjusted C .
Therefore, we drop the modulation and spatial frequency localization and simply prove
that:

‖ Pk R ‖L2
t (L2

x )[I ] � 2Cmηδ + 2−5m . (214)

For this we use the renormalization. On the interval I , we may decomposeφ(i)ki
as follows:

φ
(i)
ki

= (U (i)
,<ki

)†w
(i)
,ki
,

where by using the definition (30) we may assume that the component pieces separately
obey the estimates:

‖ Pkw
(i)
ki

‖S[I ] + ‖ Pk�w(i)ki
‖N [I ] � 2−|k−ki | A−1,

‖ U (i)
,<ki

‖S + sup
k>ki

2C(ki −k)‖ PkU (i)
,<ki

‖S � A,
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for a possibly large constant A. By normalization, we may without loss of generality
assume that A = 1, as any bounds for these two quantities will always appear as a
product. Since ‖φ(1)k1

‖L∞
t (L∞

x )[I ] � η, we obtain a similar relation for w(1),k1
, namely:

‖ Pkw
(1)
,k1

‖L∞
t (L∞

x )[I ] � η.

Furthermore, by using Proposition 5.5, we may extend the w(i)ki
so that all of the above

listed bounds are global, albeit with a fractional modification of η. Thus, we may drop
the interval I , and again work globally.

We decompose the null-form R (first on I , then by extension) into R = R1 + R2 +
R3 + R4 where:

R1 = −∂α(U (1)
,<k1

)† · w(1),k1
∂α(U

(2)
,<0)

† · w(2),0 ,
R2 = ∂α(U (1)

,<k1
)† · w(1),k1

· ∂αφ(2)0 ,

R3 = ∂αφ
(1)
k1

· ∂α(U (2)
,<0)

† · w(2),0 ,
R4 = (U (1)

,<k1
)† · ∂αw(1),k1

· (U (2)
,<0)

† · ∂αw(2),0 .
We successively consider each of these terms.
Step 1 (Estimating the term R1). Using the S bounds for U (1)

,<k1
and U (2)

,<0 in the bilinear

L2 null form estimate (23), after dyadic summation we obtain:

‖ ∂α(U (1)
,<k1

)†∂α(U
(2)
,<0)

† ‖L2
t (L2

x )
� m.

Note that the RHS loss is the effect of summing over frequencies k′ � k1 � m on the
first factor. We combine this with the pointwise bound on w(1),k1

to achieve:

‖ R1 ‖L2
t (L2

x )
� ‖w(1),k1

‖L∞
t (L∞

x )
� mη.

Step 2 (Estimating the term R2). This is essentially the same as in the previous step.
Here we use the S bounds for U (1)

,<k1
and for φ(2)0 in conjunction with (23), and we again

use the pointwise bound for w(1),k1
.

Step 3 (Estimating the term R3). We begin by splitting φ(1)k1
into a low and a high mod-

ulation part. For the high modulation part we have from (204) the L2 bound:

‖ Q>10m∂
αφ

(1)
k1

‖L2
t (L2

x )
� 2−5m .

Furthermore, by summing over the energy estimate for U (2)
,<0 and using the decay of high

frequencies we have the pointwise bound:

‖∇t,xU (2)
,<0 ‖L∞

t (L∞
x )

�
∑

k

2k‖ Pk∇t,xU (2)
,<0 ‖L∞

t (L2
x )

� 1. (215)

Combining these two estimates with the pointwise bound for w(2),0 we can estimate the
corresponding part of R3, call it R31, by:

‖ R31 ‖L2
t (L2

x )
� 2−5m .
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It remains to consider the contribution of the low modulation part Q<10mφ
(1)
k1

in R3,

which we will label by R32. Using the S bounds for φ(1)k1
and U (2)

,<0 along with (23), after

dyadic summation we obtain the usual L2 estimate:

‖ ∂αQ<10mφ
(1)
k1

· ∂α(U (2)
,<0)

† ‖L2
t (L2

x )
� 1.

On the other hand, from the Strichartz control (148) and the boundedness of the gauge
we have:

‖w(2),0 ‖L6
t (L6

x )
� ‖φ(2)0 ‖L6

t (L6
x )

� 1,

therefore we obtain a low index space-time L p bound for R32, namely:

‖ R32 ‖
L

3
2
t (L

3
2
x )

� 1.

On the other hand, from the pointwise bound (43) for φ(1)k1
we obtain:

‖ ∂αQ<10mφ
(1)
k1

‖L∞
t (L∞

x )
� 2Cmη.

Combining this with (215) and the pointwise bound for w(2),0 we have:

‖ R32 ‖L∞
t (L∞

x )
� 2Cmη.

Interpolating the last two lines we obtain:

‖ R32 ‖L2
t (L2

x )
� 2Cmη

1
4 .

Step 4 (Estimating the term R4). We start by dividing the main part of the product into
all spatial frequencies:

∂αw
(1)
,k1

· ∂αw(2),0 =
∑

ji

∂αPj1w
(1)
,k1

· ∂αPj2w
(2)
,0 .

Using the bound (200) if j1, j2 < 10m, and (23) otherwise in conjunction with the
2−| ji −ki | frequency separation gains for Pjiw

(i)
,ki

we have:

‖ ∂αw(1),k1
· ∂αw(2),0 ‖L2

t (L2
x )

� 2Cmηδ + 2−5m .

This estimate is directly transferred to R4 due to the pointwise bounds on the gauge
factors. ��
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7. Proof of the Trilinear Estimates

In this section we will prove estimates (51)–(57). In all cases the desired bounds fol-
low easily from a combination of the standard estimates (23)–(25) for widely separated
frequencies, and the improved matched frequency estimates (44) and (46).

Proof of estimate (51). The proof will be accomplished in a series of steps whose goal
is to reduce things to the matched frequency bilinear estimate (44).
Step 1 (Disposal of the φ(1) Factor). As a first step we will show the general estimate:

‖φ · F ‖
L2

t (Ḣ
− 1

2 )c[I ] � ‖φ ‖S[I ] · ‖ F ‖
L2

t (Ḣ
− 1

2 )c[I ], (216)

where {ck} is any (δ0, δ0)-admissible frequency envelope. To prove this, we split it into
the three main frequency interactions.

In the Low × High case we immediately have:

‖ Pk(φ<k−10 · F) ‖
L2

t (Ḣ
− 1

2
x )[I ]

� ‖φ ‖S[I ] · 2− k
2 ‖ P[k−5,k+5]F ‖L2

t (L2
x )[I ],

which is sufficient.
In the High × Low case, we freeze the dyadic frequency of F and we have a similar

estimate:

‖ Pk(φ · Fk′) ‖
L2

t (Ḣ
− 1

2
x )[I ]

� 2
k′−k

2 ck′ ‖φ ‖S[I ] · ‖ F ‖
L2

t (Ḣ
− 1

2
x )c[I ]

,

for any k′ � k − 10. Summing this over all such k′ � k − 10 and using (13) we have
(216) in this case.

In the High×High case we freeze the frequency of the inputs and output to estimate:

‖ Pk(φk1 · Fk2) ‖L2
t (L2

x )
� 2k−k1‖φk1 ‖S[I ] · 2

k2
2 ck2‖ F ‖

L2
t (Ḣ

− 1
2 )c[I ], (217)

which follows easily from Bernstein’s inequality (9) and the bound (165). Multiplying

this last line by 2− 1
2 k , and then summing over all k1 and k2 such that |k1 − k2| � 20 and

k1 � k − 10, and then using (14), we arrive at the estimate (216) for this case.
Step 2 (The Bilinear Estimate). In light of estimate (216) above, it suffices to show that:

‖ ∂αφ(2)∂αφ(3) ‖
L2

t (Ḣ
− 1

2 )c[I ] � ηδ1, (218)

assuming the conditions of estimate (51). This will be done in two steps.
Step 2A (Reduction to Matched Frequencies). Our first step is to peel off all frequency
interactions that cannot be treated by estimate (44). In all of these interactions, we will
exploit the fact that there is a wide separation in the frequency. This is measured by
choosing a large integer m0 = m0(η) such that:

2− 1
2 δm0 = ηδ1, (219)

where we remind the reader that δ is the small dyadic savings from the standard L2

bilinear estimate on line (23), and because of the definition of δ1 we have:

m0 �
√
δ1| ln(η)|. (220)
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Our goal in this step is to show the following fixed frequency estimate:

∑
ki

max{|ki −k|}�m0

2− 1
2 k‖ Pk

(
∂αφ

(2)
k2
∂αφ

(3)
k3

)
‖L2

t (L2
x )[I ] � 2− 1

2 δm0 ck‖φ(2) ‖S[I ]‖φ(3) ‖Sc[I ],

(221)

which in light of (219) suffices to establish (218) for all frequency interactions except
for the case k = k1 + O(m0) = k2 + O(m0). By an application of estimate (23), the two
sum rules (13)–(14), and the definition (11) we immediately have:

(L.H.S.)(221) �
∑

ki
max{|ki −k|}�m0

2− 1
2 k2

1
2 min{ki }2−( 1

2 +δ)(max{ki }−k)ck3 � 2−(δ−δ0)m0 ck,

which by using (219) and the definition of the δi suffices to establish (221).
Step 2B (The Matched Frequency Case). We have now reduced estimate (218) to showing
the matched frequency bound:

∑
ki

max{|ki −k|}<m0

2− 1
2 k‖ Pk

(
∂αφ

(2)
k2
∂αφ

(3)
k3

)
‖L2

t (L2
x )[I ] � ηδ1 ck .

Due to the fact that there are only O(m0) � | ln(η)| terms in this sum, it suffices to
show:

‖ Pk

(
∂αφ

(2)
k2
∂αφ

(3)
k3

)
‖L2

t (L2
x )[I ] � η2δ12

1
2 kck, max{|ki − k|} �

√
δ1| ln(η)|.

But this last estimate follows immediately from (44) and the definition of the δi . ��
Proof of estimate (52). This estimate was essentially established in the previous proof.
We split the estimate into a sum of two pieces:

(L.H.S.)(52) � ‖ Pk

[
P<k+10φ

(1)∂αφ(2)∂αφ
(3)
]

‖L2
t (L2

x )[I ]

+‖ Pk

[
P�k+10φ

(1)∂αφ(2)∂αφ
(3)
]

‖L2
t (L2

x )[I ].

For the first term we simply use (51). For the second term, we use the following version
of (217) above:

‖ Pk(φk1 · Fk2) ‖L2
t (Ḣ

− 1
2 )

� 2
k−k1

2 ck1‖φ ‖Sc[I ] · ‖ F ‖
L2

t (Ḣ
− 1

2 )[I ],

for |k1 − k2| � 5, along with (218). This suffices via the sum rule (14). ��
Remark 7.1. It is possible to prove the frequency envelope estimate (55) with η = 1 in
the case where there is no energy dispersion. As the previous step shows, one may first
reduce to a bilinear estimate. Then the desired bound follows from summation over (23)
using the sum rules (13)–(14). The details are standard and left to the reader.



Energy Dispersed Wave Maps 195

Proof of estimate (55). The proof will be accomplished in a series of steps whose goal
is to reduce things to the bilinear estimate (46).
Step 0 (A Preliminary Reduction). The first order of business is to reduce estimate (55)
to the case where we replace the condition on line (50) with a maximal case:

m = max{√δ1| ln(η)|, 10}. (222)

We claim that a proof of (55) with this choice of m implies (55) for any other choice of
m where we turn (222) into an � inequality. The only caveat is that we must replace the
multiplier Pk in the definition of (53) by a version P̃k with a slightly fattened support, so
that one obtains the quasi-idempotence identity P̃k P[k−5,k+5] = P[k−5,k+5]. To see this,
simply notice that one has the reshuffling identity:

T m0
k (φ(1), φ(2), φ(3))=T m

k (φ
(1), φ(2), φ(3))− T̃ m

1;k(φ
(1), φ(2), φ(3))− T̃ m

2;k(φ
(1), φ(2), φ(3)),

for any 10 � m0 � m, where the T̃ m
i;k(φ

(1), φ(2), φ(3)) are the trilinear forms obtained

from applying the definition of T m
k , with P̃k instead of Pk , to the second and third terms

(resp.) on the RHS of (53) in the definition of T m0
k .

Step 1 (Removal of the Commutator). We are now trying to prove (55) under the condition
(222). Our next step is to use (10) to write (53) in the form:

T m
k (φ

(1), φ(2), φ(3)) = Pk

(
φ(1)∂αφ(2)∂αφ

(3)
)

− Pk

(
φ
(1)
<k−m∂

αφ
(2)
<k−m∂αφ

(3)
)

−Pk

(
φ
(1)
<k−m∂

αφ(2)∂αφ
(3)
<k−m

)
− (C1 + C2 + C3 + C4),

(223)

where the commutator terms C1, C2, C3 and C4 have the form (here the Li refers to
the effect of the commutator, and not the L in the definition of (53) which has been
dropped):

C1 = 2−k L1(∇xφ
(1)
<k−m, ∂

αφ
(2)
<k−m, ∂α P̃kφ

(3)),

C2 = 2−k L2(φ
(1)
<k−m,∇x∂

αφ
(2)
<k−m, ∂α P̃kφ

(3)),

C3 = 2−k L3(∇xφ
(1)
<k−m, ∂

α P̃kφ
(2), ∂αφ

(3)
<k−m),

C4 = 2−k L4(φ
(1)
<k−m, ∂

α P̃kφ
(2),∇x∂αφ

(3)
<k−m).

Here P̃k is the same as in the previous step, and we remind the reader that the Li are
disposable. The goal of this step is to prove the estimates:

‖ Ci ‖N [I ] � ηδ1ck, (224)

which suffice to establish (55) for all but the first three terms on the RHS of the equation
for T m

k above. It suffices to work with the case of i = 3, 4; the cases i = 1, 2 are similar
but simpler because the frequency envelope is on the high term.

For the trilinear form C3 we decompose into all possible frequencies and use (25),
which gives:

‖ C3 ‖N [I ] � 2−k
∑

k1,k3<k−m

2k1 2−δ(k1−k3)+ck3 � 2−mck−m � 2−(1−δ0)mck,

which suffices to show (224) in light of the definition (222) for m.
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To prove the bound (224) for C4 we only split φ(3) into separate frequencies, and we
use (21) and (24) to bound:

‖ C4 ‖N [I ] � 2−k
∑

k3<k−m

2k3 ck3 � 2−mck−m � 2(1−δ0)mck .

Step 2 (Reduction to Matched Frequencies). We are now trying to bound the sum of the
first three terms on the RHS of (223) above. Here we write:

(First three terms on R.H.S.)(223) = A1 + A2 + A3 + B1 + B2,

where A1, A2 and A3 account for the unmatched frequency interactions:

A1 =
∑

k1�k−m

∑
max{k2,k3}�k+m

Pk

(
φ
(1)
k1
∂αφ

(2)
k2
∂αφ

(3)
k3

)
,

A2 =
∑

k1�k−m

∑
min{k2,k3}�k−2m

Pk

(
φ
(1)
k1
∂αφ

(2)
k2
∂αφ

(3)
k3

)
,

A3 =
∑

max{k2,k3}�k+m

Pk

(
φ
(1)
<k−m∂

αφ
(2)
k2
∂αφ

(3)
k3

)
,

while B1 and B2 account for the matched frequency interactions:

B1 =
∑

k−2m<k2,k3<k+m

Pk

(
φ
(1)
�k−m∂

αφ
(2)
k2
∂αφ

(3)
k3

)
,

B2 =
∑

k−m<k2,k3<k+m

Pk

(
φ
(1)
<k−m∂

αφ
(2)
k2
∂αφ

(3)
k3

)
.

The goal of this step is to prove the set of estimates:

‖ Ai ‖N [I ] � 2− 1
2 δmck, (225)

which is sufficient to establish (55) for these terms because of the definition (222).
To prove (225) for the term A1 we use (25). The two highest frequencies can only

differ by O(1), therefore we get three distinct contributions if the highest pairs are {12},
{13}, or {23} respectively:

‖ A1 ‖N [I ] �
∑

k2�k+m

∑
k3�k2

2δ(k3−k2)2δ(k−k2)ck3 +
∑

k3�k+m

∑
k2�k3

2δ(k2−k3)2δ(k−k3)ck3

+
∑

k3�k+m

k3∑
k1=k−m

2δ(k−k3)ck3 � m2− 3
4 δmck+m � 2− 1

2 δmck .

In the case of the term A2 we must have either the condition max{k2, k3} > k − 10,
or the conditions max{k2, k3} � k − 10 and k1 > k − 10. This gives two distinct contri-
butions using estimate (25), which after summing out the k1 index may be (resp) written
as:

‖ A2 ‖N [I ] � S1 + S2,
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with:

S1 =
∑

min{k2,k3}<k−2m

∑
max{k2,k3}>k−10

2δ(k−max{k2,k3})2δ(min{k2,k3}−k+m)ck3 ,

S2 =
∑

min{k2,k3}<k−2m

∑
max{k2,k3}�k−10

2δ(min{k2,k3}−k)ck3 .

For the sum S1 we split into cases depending on which index is minimal, and then sum
out k2 which yields:

S1 �
∑

k3<k−2m

2δ(k3−k+m)ck3 + 2−δm ∑
k3>k−10

2δ(k−k3)ck3 �2−δm(ck−2m + ck)�2− 1
2 δmck .

For the sum S2 we again split into cases depending on which index is minimal:

S2 �
∑

k3<k−2m

(k − k3)2
δ(k3−k)ck3 +

∑
k2<k−2m

k−10∑
k3=k2

2δ(k2−k)ck3 .

For the first sum on the RHS above we get 2−δmck−2m which is acceptable. For the
second sum we further split the range into k3 < k − 2m and k − 2m � k3 < k −
10. In the first case we again get 2−δmck−2m , while in the second we are left with
m2−2δm supk−2m�k3<k−10 ck3 , which again suffices.

Finally, in the term A3 we must have |k2 − k3| < 10 and only the frequency 2k

part of the null form ∂αφ
(2)
k2
∂αφ

(3)
k3

will contribute. Then we use (24) for the null form,
combined with (21):

‖ A3 ‖N [I ] �
∑

k3>k+m

2δ(k−k3)ck3 � 2−δmck+m � 2− 1
2 δmck .

Step 3 (The Matched Frequency Estimate). After the last step, it remains to bound the
remaining two terms Bi . In both cases, by an application of either (21) or (22), we only
need to show the more general matched frequency estimate:

‖ ∂αφ(2)[k−O(m),k+O(m)]∂αφ
(3)
[k−O(m),k+O(m)] ‖N [I ] � ηδ1ck, (226)

under the conditions of Proposition 3.6. Using the bound on m (222) and the definition
(11), it suffices to establish the fixed frequency estimate:

‖ ∂αφ(2)k2
∂αφ

(3)
k3

‖N [I ] � 2Cmηδck3 ,

where we are restricting |k2 − k3| � m. This follows immediately from (46). ��
Remark 7.2. We remark here that one may prove estimate (61) by a quick application of
the above work. To see this, notice the above proof up to Step 3 does not use Proposition
3.4. Thus, we are left with showing estimate (226) in this case, and by inspection of Step
2 we may assume the gap between k2 and k3 is no larger than 3m. By directly applying
estimate (24) we have (61) in this case.
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Proof of estimate (57). The proof of this estimate follows from some simple manipula-
tions of the bounds used to produce (55). A quick review of the previous proof shows

that all bounds were achieved with RHS � η
1
2

√
δ1δ . Thus, by a direct application of those

bounds and using the (δ0, δ0) variance condition on {ck} we have:

‖ T m
k (P<k+mφ

(1), φ(2), φ(3)) ‖N [I ] � ηδ1
(

ck + ‖ P<kφ
(1) ‖S[I ]

)
,

where m is from line (222).
To bound the contribution with a P�k+mφ

(1) factor we directly apply (25) which
yields the sum:

‖ T m
k (P>k+mφ

(1), φ(2), φ(3)) ‖N [I ] �
∑

ki :k1>k+m

2−δ(max{ki }−k)2−δ(k1−min{k2,k3})+ ck1

�
∑

k1: k1>k+m

2−δ(k1−k)ck1 � 2−(δ−δ0)mck,

which suffices. ��
Remark 7.3. To prove (62) we follow a similar procedure as in the previous proof, except
this time applied to estimate (61) instead of (55). Here it suffices to split cases according
to P<k+10φ

(1) or P�k+10φ
(1) contributions. The details are left to the reader.

8. The Gauge Transformation

In this section we prove Proposition 3.1. The proof is divided into several portions which
deal with different aspects of the problem.

8.1. Bounds for B. Here we transfer the bounds from φ to B. Precisely, we have:

Lemma 8.1. Let φ be a wave map as in Proposition 3.1. Then the matrix B defined on
line (31) has an antisymmetric extension off the interval I , which satisfies the following
global bounds:

‖∇t,x Bk ‖L∞
t (L2

x )
�E c̃k, (227)

‖ Bk ‖S∩X �F ck, (228)

‖�Bk′ · ψk ‖N �F 2δ(k
′−k)ck′ ‖ψk ‖S, k′ < k − 10. (229)

Proof. By definition we have that:

Bk = S(φ)<k−10φk,

where S is the antisymmetric part of the original second fundamental form. The bound
(227) on I follows from the same bound for φ combined with Leibniz’s rule. Further-
more, an S[I ] norm bound as on line (228) follows from the algebra property (19)
combined with the Moser estimate (27).

For the estimates involving �Bk we remark that the function S(φ) solves a similar
wave equation to φ on the interval I , which we write schematically as:

�S(φ) = F(φ)∂αφ∂αφ.
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By the version of estimate (51) in Remark 3.8, we have the pair of bounds:

‖�PkS(φ) ‖L2
t (L2

x )[I ] + ‖�Pkφ ‖L2
t (L2

x )[I ] �F 2
k
2 ck . (230)

By Leibniz’s rule we have:

�Bk = �S(φ)<k−10φk + 2∂αS(φ)<k−10∂αφk + S(φ)<k−10�φk . (231)

Hence using (230) for the first and last term, and again using Remark 3.8 for the null
form in the middle term, we obtain an X [I ] bound as on line (228).

It remains to prove the estimate (229) localized to I . We again use the expression
(231) for �Bk . We multiply the RHS of this line by a functionψ j of frequency j > k+10.
The contribution of the middle term can be estimated by (25):

‖ ∂αS(φ)<k−10∂αφkψ j ‖N [I ] �F 2−δ( j−k)ck‖ψ j ‖S[I ].

In both other cases, by the S · N algebra property, it suffices to prove the estimate:

‖ Pk

(
φ(1)∂αφ(2)∂αφ

(3)
)
ψ j ‖N [I ] �F 2−δ( j−k)ck‖ψ j ‖S[I ],

for any set of test functions φ(i) with S[I ] norm of size F , and frequency envelopes {ck}.
To show this, we let T 10

k be the trilinear form defined on line (53), built up out of the
φ(i) in the above estimate. Then by a combination of (61) and estimate (22) we have:

‖ T 10
k · ψ j ‖N [I ] �F 2−δ( j−k)ck‖ψ j ‖S[I ].

It remains to show a bound of the form:

‖ψ j · φ(1)<k−10∂
αφ

(2)
<k−10∂αφ

(3)
k ‖N [I ] �F 2−δ( j−k)ck‖ψ j ‖S[I ],

which encapsulates the remainder from T 10
k (there are two such remainders, but they

are essentially symmetric). This bound follows immediately by applying the algebra
estimate (19) to the first two terms, and then summing the resulting trilinear via estimate
(25).

To conclude our proof of the estimates (227)–(229) we simply need to extend off the
interval I in a simultaneous way. To do this we use the canonical extension defined in
Proposition 5.5. ��

8.2. The gauge construction. Here we construct the gauge transformation U and obtain
estimates on U in S and X . For comparison purposes we note that in the small data
results of [29,33] the function U is constructed iteratively by setting:

U<k =
∑
k′<k

Uk′ , Uk = U<k−C Bk,

with k ∈ Z. This insures that Uk are localized at frequency 2k , while the smallness of φ
in S is used to prove that U †U − I is small.

Such a construction is no longer satisfactory here, as φ can be large in S and thus
U may fail to be almost orthogonal. Instead we switch to a continuous version of the
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above construction where we seek U and its “frequency localized” version U,<k in the
integrated form:

U =
∫ ∞

−∞
U,kdk, U,< j =

∫ j

−∞
U,kdk,

where each U,k is defined by:

U,k = U,<k Bk .

In other words, U,<k solves the Cauchy problem:

d

dk
U,<k = U,<k Bk, U,<−∞ = IN . (232)

Owing to the antisymmetry of the Bk , solutions to this ODE enjoy the conservation law
U,<kU †

,<k = IN , so they are automatically exactly orthogonal. However, the price one
pays is that the exact frequency localization of each U,k is lost. In spite of this, we will
prove that U,k is approximately localized at frequency 2k modulo rapidly decreasing
tails:

‖ PjU,k ‖S �F 2−δ|k− j |ck . (233)

Note however that arbitrarily high frequencies are immediately introduced, and their
evolution is not easy to track. In particular a bootstrap argument for the above S norm
bound would seem to fail due to the lack of smallness of the Bk’s. We proceed with
the proof in several steps aimed at building up to the full S norm estimate by using the
conservation law of (232) in a crucial way:
Step 1 (L∞

t (L
∞
x ) and L∞

t (L
2
x ) bounds for U,k). We will work exclusively with the energy

frequency envelope {̃ck} for B in this step. Without loss of generality we may assume
that this is bounded by the S norm frequency envelope {ck}. We start with the pointwise
and energy bounds:

‖ Bk ‖L∞
t (L∞

x )
�E c̃k, ‖∇t,x Bk ‖L∞

t (L∞
x )

�E 2k c̃k, ‖∇t,x Bk ‖L∞
t (L2

x )
�E c̃k,

(234)

all derived from (227). We claim that this implies the following energy type for U,k
itself:

‖ Pk′∇t,xU,k ‖L∞
t (L2

x )
�E 2−|k′−k|2C(k−k′)+ c̃k . (235)

To show this, notice that by construction of U,<k we immediately obtain:

‖ U,k ‖L∞
t (L∞

x )
�E c̃k, ‖ U,k ‖L∞

t (L2
x )

�E 2−k c̃k .

We estimate ∇t,xU,k by differentiating (232):

d

dk
∇t,xU,<k = ∇t,xU,<k · Bk + U,<k∇t,x Bk, ∇t,xU,<−∞ = 0. (236)

In view of the second estimate on line (234), we have good bounds for the second term
on the RHS of the above expression, and we wish to transfer these to ∇t,xU,<k . In order
to do this, we employ the following device that will be used repeatedly in the sequel:
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Lemma 8.2 (Unitary Variation of Parameters). Let V,<k be given by the ODE:

d

dk
V,<k = V,<k Bk + W,k V,<−∞ = W,−∞ = 0, (237)

where Bk is antisymmetric and the forcing term W,k is arbitrary. Then in any mixed
Lebesgue space Lq

t (L
r
x ) we have the following bound:

‖ V,<k ‖Lq
t (Lr

x )
�
∫ k

−∞
‖ W,k′ ‖Lq

t (Lr
x )

dk′. (238)

Proof. We write the formula for V,<k via variation of parameters as follows:

V,<k =
∫ k

−∞
P(k, k′)W,k′dk′,

where P is the propagator of the unitary problem:

d

dk
P(k, k′) = BkP(k, k′), P(k′, k′) = IN .

In particular, ‖P(k, k′) ‖L∞
t (L∞

x )
� 1. The proof is concluded via an application of

Minkowski’s integral inequality. ��
We now use estimate (238) to integrate (236), which yields:

‖∇t,xU,<k ‖L∞
t (L∞

x )
�E 2k c̃k,

through a direct application of the sum rule (13). From the differentiated equation for
U,k this shows that:

‖∇t,xU,k ‖L∞
t (L2

x )
�E c̃k .

Repeating the process for all possible spatial derivatives of ∇t,xU,<k we get the inductive
bounds:

‖∇ J
x ∇t,xU,<k ‖L∞

t (L∞
x )

�E 2(|J |+1)k c̃k, ‖∇ J
x ∇t,xU,k ‖L∞

t (L2
x )

�E 2|J |k c̃k . (239)

The second relation shows in particular that:

‖ Pk′∇t,xU,k ‖L∞
t (L2

x )
�E 2C(k−k′)c̃k,

for any positive constant C , and therefore by integration that:

‖ Pk′∇t,xU,<k ‖L∞
t (L2

x )
�E 2C(k−k′)c̃k,

which suffices for (235) if k′ � k.
It remains to bound the low frequencies in U,k , and so we write:

Pk′U,k = Pk′(P[k−10,k+10]U<k · Bk), k′ < k − 20.

Using Bernstein’s inequality (9) we obtain:

‖ Pk′∇t,xU,k ‖L∞
t (L2

x )
� 2k′ ‖ ∇t,x (P[k−10,k+10]U,<k Bk) ‖L∞

t (L1
x )

�E c̃k2k′−k .

Hence (235) is proved.
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Step 2 (Strichartz bounds for U,k). This section largely mimics the previous one, so we
will be more terse here. By (228) we have the Strichartz bounds:

‖ Bk ‖DSk
�F 2−kck, ‖∇t,x Bk ‖DSk

�F ck,

where we recall that DSk is the space of Strichartz admissible Lq
t (L

r
x ) norms from line

(152) with appropriate dyadic weight (note that this norm does not include frequency
localization, which will be notationally useful here).

Using the bounds for Bk with Eq. (236) or its derivatives, we directly have:

‖∇ J
x ∇t,xU,k ‖DSk

�F 2|J |kck, |J | � 0.

By using this last set of estimates for high frequencies, and (235) and Bernstein’s inequal-
ity for low frequencies, we have:

‖ Pk′∇t,xU,k ‖DSk
�F 2−|k′−k|2C(k′−k)+ck .

In particular, one has the inequality:

‖ Pk′∇t,xU,k ‖L4
t (L∞

x )
�F 2

3
4 k2−|k′−k|ck, (240)

which will be useful later in this section. Finally, by interpolating this last bound with
(235) and recalling the definition from line (148), we have the following S norm portion
of estimate (233):

‖ Pk′U,k ‖S �F 2− 1
4 |k′−k|ck .

Step 3 (High modulation bounds for U,k). Here we will show that:

‖ Pj�U,k ‖L2
t (L2

x )
�F 2

k
2 2−( 1

2 +δ)|k− j |ck . (241)

Differentiating the equation for U,<k we obtain the evolution equation for �U,<k :

d

dk
�U,<k = �U,<k Bk + U,<k�B,k + 2∂αU,<k∂αBk . (242)

Our first goal will be to use Lemma 8.2 to show that:

‖�U,<k ‖L2
t (L2

x )
�F 2

k
2 ck . (243)

By estimate (238) and the X control for Bk from line (228), it suffices to have the
null-form bound:

‖ ∂αU,<k∂αBk ‖L2
t (L2

x )
�F 2

k
2 ck . (244)

Expanding the term on the LHS of this last line we have:

∂αU,<k∂αBk =
∫ k

−∞
∂α(U,<k′ Bk′)∂αBkdk′,

=
∫ k

−∞
U,<k′∂αBk′∂αBkdk′ +

∫ k

−∞
∂αU,<k′ Bk′∂αBkdk′. (245)
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Estimate (244) for the first term on the RHS of this last line follows by summing over the
bound (23). For the second term on the RHS of the last line above we may take a product
of two L4

t (L
∞
x ) estimates for the terms at frequency k′ and ,< k′, and one energy type

bound for Bk . This again yields (244). A similar argument allows us to prove the analog
of estimates (244) and (243) for higher spatial derivatives:

‖∇ J
x (∂

αU,<k∂αBk) ‖L2
t (L2

x )
�F 2(

1
2 +|J |)kck,

‖∇ J
x �U,<k ‖L2

t (L2
x )

�F 2(
1
2 +|J |)kck .

(246)

Turning our attention to Uk we have the identity:

�U,k = U,<k�Bk + �U,<k Bk + 2∂αU,<k∂αBk . (247)

By estimates (243), (244), and the analogous bound for Bk from line (228) we directly
have:

‖�U,k ‖L2
t (L2

x )
�F 2

k
2 ck,

while the estimates on line (246) combined with the energy and L∞
t (L

∞
x ) bounds for

derivatives of U,<k proved in the first step allow us to prove:

‖∇ J
x �U,k ‖L2

t (L2
x )

�F 2(
1
2 +|J |)kck .

This suffices to give (241) for all but the low frequencies.
It remains to obtain improved low frequency bounds, i.e. prove (241) in the case

when j < k − 10. The first two terms in (247) are easy to estimate, combining the
L2

t (L
2
x ) bound for one factor with the L∞

t (L
2
x ) energy type bound for the other, while

using Bernstein’s inequality at low frequency.
The third term on the RHS of (247) has already been estimated before using (245), but

now we need to be more careful to gain from small j . The first term on the RHS of (245),
call it T1, can at low frequency be split into three contributions, Pj T1 = T11 + T12 + T13,

where

T11 = Pj

∫ k

k−4
P< j+4U,<k′ · P< j+8(∂

αBk′∂αBk)dk′,

T12 = Pj

∫ k

k−4

∫ ∞

j+4
PlU,<k′ · P[l−4,l+4](∂αBk′∂αBk)dldk′,

T13 = Pj

∫ k−4

−∞
P[k−10,k+10]U,<k′ · ∂αBk′∂αBkdk′.

We explain the estimates for each of these terms. In the case of T11 we bound P< j+4U,<k′
in L∞

t (L
∞
x ) and then apply (23) for the remaining null form. In the case of T12 we use

(235) to bound PlU,<k′ in L∞
t (L

2
x ), (23) for the remaining null form, and then conclude

with Bernstein’s inequality. Finally, the bound T13 is obtained in the same way as in the
case of T12.

Finally, we need to prove the low frequency part of the estimate (241) for the sec-
ond term on line (245) above, which we denote by T2. This cannot be done directly,
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because there is no extra room in the application of Strichartz estimates to use Bernstein’s
inequality. Therefore we reexpand as follows:

T2 = T21 + T22 =
∫ k

−∞

∫ k1

−∞
U,<k2∂

αBk2 Bk1∂αBkdk2dk1

+
∫ k

−∞

∫ k1

−∞
∂αU,<k2 Bk2 Bk1∂αBkdk2dk1.

The first term T21 on the RHS above has a structure very similar to the whole of T1 above.
The only new development is that extra factor of Bk1 , but it is harmless due to the fact
that its frequency is always greater than the differentiated term ∂αBk2 . Therefore, one
can use the same methods as in the previous paragraph to bound this term (one could as
well use the procedure we are about to describe for bounding the second term T22). To
handle T22 above, we split it further as:

Pj T22 = T221 + T222 =Pj

∫ k−8

−∞

∫ k1

−∞
P>k−20∂

αU,<k2 · Bk2 Bk1∂αBkdk2dk1

+ Pj

∫ k

k−8

∫ k1

−∞
∂αU,<k2 Bk2 Bk1∂αBkdk2dk1.

For the first term above we put the two (i.e. first and fourth) high frequency terms in
L∞

t (L
2
x ), while the middle two terms are both estimated with L4

t (L
∞
x ); then we use

Bernstein’s inequality. One is forced to lose in the low frequencies this way, but this is
made up for by the arbitrary gain in the difference (k − k2) coming from estimate (235):

‖ T221 ‖L2
t (L2

x )
�F ck

∫ k−8

−∞

∫ k1

−∞
2 j · 2C(k2−k) · 2− 1

4 k2 · 2− 1
4 k1 dk2dk1 �F 2

1
2 j 2

1
2 ( j−k)ck .

To bound the term T222 we put both the k2 indexed terms in L4
t (L

∞
x ), and the other two

factors in L∞
t (L

2
x ) while using Bernstein’s inequality at low frequency. This gives the

inequality:

‖ T222 ‖L2
t (L2

x )
�F ck

∫ k

k−8

∫ k1

−∞
2 j · 2

1
2 k2 · 2−k1 dk2dk1 �F 2

1
2 j 2

1
2 ( j−k)ck .

This completes our demonstration of the estimate (241).
Step 4 (High frequency bounds for U,k). Here we show that the high frequencies in U,k
can be estimated in a much more favorable way:

‖∇ J
t,x Pk′U,k ‖L1

t (L1
x )

�F 2(−3+|J |)k2−C(k′−k)ck, k′ > k + 10, (248)

where |J | � 2. For this we expand with D = {k5 < k4 < k3 < k2 < k1 < k}:

Pk′U,k = Pk′
∫

D
U,<k5 Bk5 Bk4 Bk3 Bk2 Bk1 Bk dk5dk4dk3dk2dk1.

Due to the frequency localizations we can replace U,<k5 by P[k′−10,k′−10]U,<k5 , for
which we may use the L∞

t (L
∞
x ) bound derived from (235). Hence by the Strichartz

estimates alone for the Bki ’s we obtain:

‖ Pk′U,k ‖L1
t (L1

x )
�F ck

∫
D

2C(k5−k′)− 1
4 (k5+k4+k3+k2)−k1−kckdk5dk4dk3dk2dk1.
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The bound (248) with J = 0 follows after integration. The case |J | = 1 is treated simi-
larly. A minor variation is needed in the case |J | = 2 when two time derivatives occur.
There one writes ∂2

t = � +�x , using either (228) or (246) for the factor containing the
d’Alembertian.
Step 5 (Full S norm bounds for U,k). Here we prove that:

‖ Pk′U,k ‖S �F 2−δ|k−k′|ck . (249)

In view of the previous step it suffices to consider the case k′ < k + 10.
Here we encounter the main difficulty compared to [29,33]. The inductive bound used

there grows exponentially in k due to lack of smallness, so it is useless. Bootstrapping
fails for a similar reason. Instead we consider iterated expansions. There are two bounds
we need to prove, namely for ‖ Pk′ Q jU,k ‖

X
1, 1

2∞
and ‖ Pk′ Q jU,k ‖S[k′; j]. Due to the high

modulation bound (241) and the high frequency bound (248) it suffices to consider the
case j < k′ − 20 < k − 10. The key technical step asserts that in either case we can
bound the contribution of U,< j−20 using only pointwise and high modulation bounds:

Lemma 8.3. Let j < k − 10. Then the following estimate holds for test functions u
and φ:

‖ Q j (u< j−10φk) ‖
X

1, 1
2∞

+ ‖ Q< j (u< j−10φk) ‖S[k; j] � ‖ u ‖L∞
t (L∞

x )∩X · ‖φk ‖S .

(250)

Proof. We write

u< j−10φk = Q> j−10u< j−10 · φk + Q< j−10u< j−10 · φk .

For the first term we obtain an L2
t (L

2
x ) bound, which by (162) suffices for both norms

on the left in (250):

‖ Q> j−10u< j−10 · φk ‖L2
t (L2

x )
� ‖ Q> j−10u< j−10 ‖L2

t (L∞
x )

‖φk ‖L∞
t (L2

x )

� 2 j‖ Q> j−10u< j−10 ‖L2
t (L2

x )
‖φk ‖L∞

t (L2
x )

� 2− j
2 −k‖�u ‖

L2
t (Ḣ

− 1
2 )

‖∇t,xφk ‖L∞
t (L2

x )
.

For the second term we consider separately the two cases. On one hand:

Q j (Q< j−10u< j−10 · φk) = Q j (Q< j−10u< j−10 · Q> j−10φk).

Therefore we directly have:

‖ Q j (Q< j−10u< j−10 · φk) ‖
X

1, 1
2∞

� 2
j
2 +k‖ Q< j−10u< j−10 ‖L∞

t (L∞
x )

‖ Q> j−10φk ‖L2
t (L2

x )

� ‖ u ‖L∞
t (L∞

x )
‖φk ‖

X
1, 1

2∞
.

On the other hand, by a direct application of estimate (168) we have:

‖ Q< j (Q< j−10u< j−10 · φk) ‖S[k; j] � ‖ u ‖L∞
t (L∞

x )
‖φk ‖S .

The proof of the lemma is concluded. ��
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We now return to the main proof, and consider the two bounds we need in order to
bound U,k in S, namely:

‖ Pk′ Q jU,k ‖
X

1, 1
2∞

+ ‖ Pk′ Q< jU,k ‖S[k′; j] �F 2− 1
4 |k−k′|ck j < k′ − 20 < k − 10.

For each fixed modulation index j , we expand U,k in the form:

U,k = U,< j−20 Bk +
∫ k

j−20
U,< j−20 Bk1 Bkdk1+

∫ k

j−20

∫ k1

j−20
U,<k2 Bk2 Bk1 Bkdk2dk1.

(251)

Step 5A (Contribution of the first term in (251)). We write:

U,< j−20 Bk = P< j−10U,< j−20 · Bk + P> j−10U,< j−20 · Bk .

The first component has output at frequency k, and its contribution is accounted for due
to Lemma 8.3. The second can have both high and low frequency output, so we need to
split it further.

For the high frequency output we estimate:

‖ P> j−10U,< j−20 · Bk ‖L2
t (L2

x )
�‖ P> j−10U,< j−20 ‖L2

t (L∞
x )

‖ Bk ‖L∞
t (L2

x )
�F 2− j

2 −kck,

where the L2
t (L

∞
x ) norm is estimated by interpolating the (summed version of the)

energy bound (235) with the L1
t (L

1
x ) high frequency bound (248) for U,< j−20, and by

using Bernstein’s inequality.
In the case of low frequency output k′ < k − 20, the first factor is further restricted

to high frequencies so we may bound:

‖ Pk′(P>k−10U,< j−20 · Bk) ‖L2
t (L2

x )
� ‖ P>k−10U,< j−20 ‖L2

t (L∞
x )

‖ Bk ‖L∞
t (L2

x )

�F 2−C(k− j)2− 3
2 kck, (252)

where we have followed the same procedure as in the previous estimate. The restriction
j < k′ then suffices to produce (249) for this term.
Step 5B (Contribution of the second term in (251)). We need to split this into several
subcases:
Step 5B.1 (Contribution of high frequencies in U< j−20). This term may have both low
and high frequency output. In the case of high frequencies we estimate directly in L2

t (L
2
x )

using Strichartz estimates as follows:

‖P> j−10U,< j−20 · Bk1 Bk‖L2
t,x

� ‖ P> j−10U,< j−20 ‖L4
t (L∞

x )
‖Bk1‖L4

t (L∞
x )

‖Bk‖L∞
t (L2

x )

�F 2− j+k1
4 −kck,

where the j − 20 < k1 < k integration is now straightforward and yields a RHS

expression of the form �F 2−k2− 1
2 j ck which suffices.

In the case of low frequency output where k′ < k − 20, we further split the integrand
as follows:

Pk′(P> j−10U,< j−20 · Bk1 Bk) = Pk′(P> j−10U,< j−20 · P>k−10 Bk1 · Bk)

+ Pk′(P> j−10U,< j−20 · P<k−10 Bk1 · Bk).
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The first term is estimated as above with a gain of 2− 1
4 (k− j) due to the restriction on

k1 (which in particular restricts the range of integration for this term). This suffices to
show (249) for this term. To handle the second term, we use the fact that the first factor
is now forced to be at large frequency, which gives an L2

t (L
2
x ) bound as on line (252)

above. Notice that the additional integration in j − 20 < k1 < k may be absorbed via
the factor of 2−C(k− j).
Step 5B.2 (Contribution of low frequencies but high modulations in U< j−20). In this
case the only possible low frequency contribution comes when |k1 − k| < 10. Therefore
we may proceed as above using the high modulation bound (243) for the first factor as
follows:

‖ Pk′(Q> j−10 P< j−10U,< j−20 · Bk1 Bk) ‖L2
t (L2

x )

� ‖ Q> j−10 P< j−10U,< j−20 ‖L4
t (L∞

x )
‖ Bk1 ‖L4

t (L∞
x )

‖ Bk ‖L∞
t (L2

x )

�F 2− j+k1
4 −kck,

and the integral in k1 is the same as above depending on whether |k′ − k| < 10 or

k′ < k − 10. In either case one gains a RHS factor of �F 2− 1
4 (k−k′)2−k2− 1

2 j ck .
Step 5B.3 (Contribution of low frequencies and low modulations in U,< j−20). Here we
deal with the expression Q< j−10 P< j−10U,< j−20 · Bk1 Bk . We consider two subcases:
Step 5B.3.a (Contribution of the range k1 > k − 10). Under this restriction, we may
group the product Bk1 Bk as a single term, which we further decompose into all frequen-
cies k′ < k + 10. For each such localized term we have from the algebra bound (20) the
estimate:

‖ Pk′(Bk1 Bk) ‖S � 2−|k′−k|‖ Bk1 ‖S ‖ Bk ‖S �F 2−|k′−k|ck .

Therefore, in the range j < k′ the resulting term may be estimated in essentially the
same way the first term on the RHS of (251) was estimated in Step 5A above with
the additional simplification that the low frequency gains are already implicit in the
Pk′(Bk1 Bk) localization.
Step 5B.3.b (Contribution of the range j − 20 < k1 < k − 10). In this case the output
is automatically at frequency 2k . Notice that if we argue as in the previous case then we
run into trouble with the k1 integration. Instead, we observe that one has access to the
additional localization:

Q j
(
Q< j−10 P< j−10U,< j−20 · Bk1 Bk

) = Q j
(
Q< j−10 P< j−10U,< j−20 · Q< j+4(Bk1 Bk)

)
,

and according to estimate (169) we may bound the entire contribution of the second
factor as:

‖ Q< j+4(Bk1 Bk) ‖S � 2−δ| j−k1|‖ Bk1 ‖S‖ Bk ‖S, j < k1 � k.

This provides the needed additional gain that enables us to integrate with respect to k1.
Step 5C (Contribution of the last term in (251)). As in the previous step, we need to split
into two further subcases depending on the range of integration:
Step 5C.1 (Contribution of the range k1 > k − 10). A direct application of Strichartz
bounds gives the estimate:

‖ Bk2 Bk1 Bk ‖L2
t (L2

x )
� ‖ Bk2 ‖L4

t (L∞
x )

‖ Bk1 ‖L4
t (L∞

x )
‖ Bk ‖L∞

t (L2
x )

�F 2−k2− k1+k2
4 ck .
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The integration with respect to k1, k2 over the region j − 20 < k2 < k1 < k with the
additional restriction that k1 = k + O(1) is straightforward and yields the RHS term

�F 2− 1
4 (k− j)2−k2− 1

2 j ck which suffices to produce (249) for this term in light of the
restriction j < k′.
Step 5C.2 (Contribution of the range j − 20 < k1 < k − 10). In this case with high
frequency output we may proceed as in the previous step. Notice that integration over
the full range j − 20 < k2 < k1 < k with no additional work still yields a RHS of the

form �F 2−k2− 1
2 j ck .

The contribution of this range with low frequency output forces the first term in
the product to have localization in the range k + O(1). One may again proceed as in
the last case of Step 5A above to produce an L2

t (L
2
x ) estimate via (252). Notice that the

integration in both k1 and k2 is safely absorbed by the factor 2−C(k− j). This concludes
our demonstration of the estimate (249).
Step 6 (Proof of the bound (34)). By the algebra estimates (21) and (22) it suffices to do
this for |k′ − k| > 20. We rescale to k = 0. There are two cases:
Step 6.A (Low frequencies; k′ < −20). Here we may further localize the transformation
matrix to P[−10,10]U,<−20. Therefore, we have access to (33). For the lower modulations
in G0 we estimate via Bernstein:

‖ Pk′(P[−10,10]U,<−20 · Q<20G0) ‖L1
t (L2

x )

� 2k′ ‖ P[−10,10]U,<−20 ‖L2
t (L2

x )
‖ Q<20G0 ‖L2

t (L2
x )
.

This suffices by estimate (198) in Sect. 6 above.
For the high modulation contribution, we split Q>20G0 = G(1) + G(2), a sum (resp.)

of an L1
t (L

2
x ) atom and an X

0,− 1
2

1 atom. For G(1) the bound (34) follows by taking
P[−10,10]U,<−20 in L∞

t (L
2
x ) and using Bernstein.

For the X
0,− 1

2
1 atom G(2), we may assume we are working with a single modulation

Q j G(2),where j > 20. For modulations Q< j−10 P[−10,10]U,<−20, estimate (34) follows
by again putting the first factor in L∞

t (L
2
x ) and using Bernstein to estimate the product

as a X
0,− 1

2
1 atom with a 2k′

gain.
For high modulations of the first factor, we estimate:

‖ Pk′(Q> j−10 P[−10,10]U,<−20 · Q j G
(2)
0 ) ‖L1

t (L2
x )

� 2k′
2− j‖ ∂t Q> j−10 P[−10,10]U,<−20 ‖L2

t (L2
x )

‖ Q j G
(2)
0 ‖L2

t (L2
x )
,

which is sufficient to place the second factor in X
0,− 1

2
1 .

Step 6.B (High frequencies; k′ > 20). Here we may further localize the transformation
matrix to P[k′−5,k′+5]U,<−20. Therefore, we again have access to (33). In this case we
may proceed exactly as above, using at each step the same estimates, which in every
case suffice due to the exponential decay in (33) for large frequencies.
Step 7 (Proof of the bound (35)). Here we establish the estimate:

‖ Pk(�U,k1 · ψk2) ‖N �F 2−|k−k2|2−δ(k2−k1)ck1‖ψ ‖S, k1 < k2 − 10. (253)

We use the expansion (242) for �U,<k1 to write the expression we are estimating via a
linear combination of the following three terms:

G1 = �U,<k1 · Bk1ψk2 , G2 = ∂αU,<k1∂αBk1 · ψk2 , G3 = U,<k1�Bk1 · ψk2 .
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We prove the bound (253) separately for each of these in reverse order. Without loss of
generality we will assume that ‖ψk2 ‖S = 1.
Step 7A (Estimating the term G3). We directly have from (229) and (34) the product
estimate:

‖ Pk(U,<k1 · �Bk1 · ψk2) ‖N �F 2−|k−k2|2−δ(k2−k1)ck1 .

Step 7B (Estimating the term G2). In this case the bound (253) follows by applying the
trilinear null-form estimate (25) along with the bound (249) shown for the first factor in
the previous section. One can again split into medium, high and low output frequency
cases as in the previous step. The details are left to the reader. Notice that the gains from
frequencies higher than k2 in the first factor are essential for maintaining the separation
2−δ(k2−k1).
Step 7C (Estimating the term G1). We break this term into two further contributions:

G1 = G11 + G12 = P<k2−10�U,<k1 · Bk1ψk2 + P>k2−10�U,<k1 · Bk1ψk2 .

The first term has output localized to frequency k2, and we estimate it directly via Stri-
chartz estimates and (243):

‖ G11 ‖L1
t (L2

x )
� ‖�U,<k1 ‖L2

t (L2
x )

‖ Bk1 ‖L4
t (L∞

x )
‖ψk2 ‖L4

t (L∞
x )

�F 2− 1
4 (k2−k1)ck1 .

The second term G12 can have both high and low frequency outputs. When the output is
in the range k < k2 + 10 we use (248) and Bernstein’s inequality to bound it as follows:

‖ Pk G12 ‖L1
t (L2

x )
� 2k‖ P>k2−10�U,<k1 ‖L1

t (L1
x )

‖ Bk1 ‖L∞
t (L∞

x )
‖ψk2 ‖L∞

t (L∞
x )

�F 2k2−k1 2−C(k2−k1)ck1 ,

which suffices to show (253) in this case. When G12 has output in the high range
k > k2 + 10 we have further high frequency localization of the first factor and we may
estimate via the same procedure:

‖ Pk G12 ‖L1
t (L2

x )
� 2k‖ P[k−5,k+5]�U,<k1 ‖L1

t (L1
x )

‖ Bk1 ‖L∞
t (L∞

x )
‖ψk2 ‖L∞

t (L∞
x )
,

�F 2k2−k1 2−C(k−k1)ck1 ,

which is again sufficient to show (253) in this case. This concludes our demonstration
of Proposition 3.1.

9. The Linear Paradifferential Flow

We now proceed with the proof of Proposition 3.2. The main difficulty here is that we
do not necessarily have smallness of the constant from line (40), which would otherwise
make estimate (41), consequence of Propositions 2.3 and 3.1. Instead of proceeding
directly, we shall follow a more measured approach of building up our estimate piece
by piece. Since this is a lengthy argument, we begin with a brief outline.

The first step of the proof is to take advantage of the antisymmetry of Aα , which
makes our paradifferential equation almost conservative. Precisely, the only nontrivial
contributions to energy estimates arise from terms where one derivative falls on the
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coefficients. But such terms are small due to the large frequency gap m. Consequently,
we are able to prove a favorable estimate:

‖ψk ‖E[I ] �F ‖ψk[0] ‖Ḣ1×L2 + 2δm‖ Gk ‖N [I ] + 2−δm‖ψk ‖S[I ], (254)

for the energy (28) on both time slices and characteristic surfaces.
We still need an estimate on the S norm of ψk , for which we renormalize Eq. (38)

using an orthogonal gauge transformation U,<k−m obtained by Proposition 3.1. The
function w,k = U,<k−mψk solves a perturbed wave equation of the form:

�w,k = Rpert
,<k−mψk + U,<k−m Gk . (255)

In the analysis of the small data problem in [29,33] one uses a perturbative bound of the
form:

‖Rpert
,<k−mψk ‖N [I ] �F ‖ψk ‖S[I ],

where the implicit constant is quadratic or better in F , for F small. This is no longer
sufficient here. Instead, we observe that we can rebalance the above estimate and use
only the energy norm of ψk to estimate the bulk of the LHS above. Thus, we prove that
for 0 � m0 
 m we have:

‖ Pj (Rpert
,<k−mψk) ‖N [I ] �F 2−| j−k| (2−δ1m0‖ψk ‖S[I ] + 22m0‖ψk ‖E[I ]

)
. (256)

By the linear solvability bound (18) we have:

‖w,k ‖S[I ] � ‖w,k[0] ‖Ḣ1×L2 + ‖�w,k ‖N [I ].

Since both U,<m−k and (U,<m−k)
−1 = U †

,<m−k are in S with norm �F 1, by the S
algebra property and estimate (34) we have the gauge removal bounds:

‖ψk ‖S[I ] �F ‖w,k ‖S[I ], ‖ Pk′(U,<k−m Gk) ‖N [I ] �F 2−|k−k′|‖ Gk ‖N [I ].
(257)

On the other hand using the energy component of (32) we obtain:

‖ Pjw,k[0] ‖Ḣ1×L2 �F 2−| j−k|‖ψk[0] ‖Ḣ1×L2 . (258)

Summing up the estimates on the last four lines we obtain the S bound for ψk :

‖ψk ‖S[I ] �F ‖ψk[0] ‖Ḣ1×L2 + ‖ Gk ‖N [I ] + 2−δ1m0‖ψk ‖S[I ] + 22m0‖ψk ‖E[I ].
(259)

Now all we have to do is combine this with (254), carefully balancing the constants.
Assuming that m0 = m0(F) for a large enough m0(F) ∼ ln(F), the third term on the
right can be absorbed on the left to obtain:

‖ψk ‖S[I ] �F ‖ψk[0] ‖Ḣ1×L2 + ‖ Gk ‖N [I ] + ‖ψk ‖E[I ].

Substituting (254) for the third term on the RHS of this last line we arrive at:

‖ψk ‖S[I ] �F ‖ψk[0] ‖Ḣ1×L2 + 2δm‖ Gk ‖S[I ] + 2−δm‖ψk ‖S[I ],
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so now assuming m > m(F) for a larger m(F) ∼ ln(F), the last term on the RHS is
again absorbed on the left:

‖ψk ‖S[I ] �F ‖ψk[0] ‖Ḣ1×L2 + ‖ Gk ‖S[I ].

To conclude the proof of (41) we need to improve the S bound above to a W bound.
Returning to w,k , we have the estimate:

‖ Pj�w,k ‖N [I ] + ‖ Pjw,k[0] ‖Ḣ1×L2 �F 2−| j−k| (‖ψk[0] ‖Ḣ1×L2 + ‖ Gk ‖S[I ]
)
.

This follows from (256), (258), and the second member on line (257).
It remains to prove the two main estimates above, namely (254) and (256). In the

proof we shall make use of three auxiliary lemmas whose proofs we postpone until the
end of this section. The first one is used to estimate perturbative expressions which are
small due to the large frequency gap m.

Lemma 9.1 (Some auxiliary estimates). Let Aα be the connection one-form defined on
line (39) above with estimates (40). Then the following bounds hold:

‖ Aα ‖L∞
t (L∞

x )
�F 2k−m, (260)

‖ Aαψk ‖DS[I ] �F 2−m ‖ψk ‖S[I ]. (261)

Also, for three test functions φ(i) normalized with S ∩ E[I ] size one, the following list
of multilinear estimates holds:

‖φ(1)∂αφ(2)<k−m∂αφ
(3)
<k−m · ψk ‖N [I ] � 2−δm ‖ψk ‖S[I ], (262)

‖ P<k−m

(
φ(1)∂αφ(2)∂αφ

(3)
)
ψk ‖N [I ] � 2−δm ‖ψk ‖S[I ], (263)

‖∇t,xφ
(1)
<k−m∂

αφ
(2)
<k−m∂αψk ‖N [I ] � 2−δm2k ‖ψk ‖S[I ], (264)

‖∇t,xφ
(1)
<k−m∂

αφ
(2)
<k−m∂αφ

(3)
<k−m · ψk ‖N [I ] � 2−δm2k ‖ψk ‖S[I ]. (265)

In proving energy estimates we need to restrict integration to half-spaces. This is
where the next lemma comes handy:

Lemma 9.2 (Half-space duality estimate). Let ψk ∈ S and Hk ∈ N be frequency local-
ized functions. Then for any time-slab I , any unit vectorω, and any spatial point x0 ∈ R

2

the following truncated duality estimate holds uniformly:∣∣∣∣
∫ ∫

I∩{t>ω·(x−x0)}
Hk · ψk dxdt

∣∣∣∣ � ‖ Hk ‖N [I ] · ‖ψk ‖DS[I ]. (266)

Finally, for the bulk of the estimate (256) we need the following lemma, which
improves upon the trilinear bound (25) in the case of balanced low frequencies |k1−k2| 

m, k1, k2 < k3 − m:

Lemma 9.3 (An improved trilinear estimate). There exists a universal constant C > 0
such that for any integer m � 0 and S[I ] unit normalized test functions φ(i)ki

with
ki � k − m, and ψk any additional test function defined on I , one has the following
imbalanced trilinear estimate:

‖φ(1)k1
∂αφ

(2)
k2
∂αψk ‖N [I ] � 2C|k1−k2|

(
2−δ2m‖ψk ‖S[I ] + 2m‖ψk ‖E[I ]

)
. (267)
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Assuming these estimates, we give a proof of (254) and (256) in a series of steps. To
close the argument properly, we will employ our chain of small constants (8) (although
their use here is independent of their use in other sections).
Step 1 (A-priori control of the energy norm of ψk: proof of (254)). We begin by writing
Eq. (38) for ψk on the interval I in a covariant form:

�Aψk = Ren
<k−mψk + Gk, (268)

where �A = (∂ + A)α(∂ + A)α is the gauge covariant wave equation with the connection
Aα is given by the formula on line (39) and the function Ren

<k−m has the form:

Ren
<k−m =∂αS(φ)<k−m∂αφ<k−m + S(φ)<k−m P<k−m

(
S(φ)∂αφ∂αφ

)
+ AαAα.

(269)

Note that in the RHS of this last line, the matrix S(φ) is either the pure second funda-
mental form S(φ)cab, or its antisymmetric version as it appears in the formula for Aα .
The distinction will not be important for us here. Also, notice that we have used the
Wave-Map equation for φ on the interval I , which we may do by the assumptions of
Proposition 3.2.

To obtain the energy estimates we proceed via a simple integration-by-parts argu-
ment. First, we form the gauge-covariant energy momentum density:

Qαβ [ψk] = (A∇αψk)
† A∇βψk − 1

2
gαβ(

A∇γ
ψk)

† A∇γ ψk .

Here we are writing A∇α = ∂α+ Aα . A quick calculation shows that (notice that this iden-
tity crucially uses the antisymmetry of Aα , which is the main source of the cancelation
that makes (254) possible):

∇αQαβ [ψk] = (�Aψk)
† A∇βψk + (Fγβψk)

† A∇γ
ψk, (270)

where Fαβ = ∂αAβ − ∂β Aα + [Aα, Aβ ] is the curvature of Aα . Next, we form the linear
momentum one-form Pα[ψk] = Qα0[ψk]. Integrating ∇αPα[ψk] = ∇αQα0[ψk] over
all possible half spaces of the form [0, t0] ∩ {t > ω · (x − x0)} we have the bound:

‖A∇ t,xψk ‖2
L∞

t (L2
x )[I ] + sup

ω
‖ /A∇ t,xψk ‖2

L∞
tω (L

2
xω )[I ] � ‖A∇x,tψk(0) ‖2

L2
x

+ I1 + I2,

(271)

where

I1 = sup
I,ω,x0

∣∣∣∣
∫ ∫

I∩{t>ω·(x−x0)}
(�Aψk)

† A∇0ψk dxdt

∣∣∣∣ ,

I2 = sup
I,ω,x0

∣∣∣∣
∫ ∫

I∩{t>ω·(x−x0)}
(F0γ ψk)

† A∇γ
ψk dxdt

∣∣∣∣ .
Our task is to estimate I1 and I2 and to show that we can replace covariant differentiation
by regular differentiation in (271). For the right hand side of (271) we claim that both:

‖ A∇x,tψk(0) ‖2
L2

x
�F ‖∇x,tψk(0) ‖2

L2
x
, (272)

I1 + I2 �F 2−2δm‖ψk ‖2
S[I ] + 22δm‖ Gk ‖2

S[I ]. (273)
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The proof of (272) is an immediate consequence of expanding the covariant deriv-
ative A∇ and using the triangle inequality, followed by the L∞

t (L
∞
x ) bound for Aα in

(260).
To obtain (273), we use the half-space duality estimate (266) and Young’s inequality

for the term involving Gk . For the other terms, we again use half-space duality, and then
conclude with an application of the estimates (157), (261)–(265). It suffices to establish
the bounds:

‖Ren
<k−mψ ‖N [I ] �F 2−δm‖ψk ‖S[I ], ‖ F0γ · A∇γ

ψk ‖N [I ] �F 2−δm2k‖ψk ‖S[I ].

The first estimate above follows from applying (262)–(263) to each of the terms in
Ren
<k−m . The second estimate follows from the bounds (264)–(265) applied to the defi-

nition of the curvature. Notice that these two multilinear estimates suffice because there
are never any terms in I2 with a single factor containing more than one derivative thanks
to the skew symmetry of the curvature.

The bound (254) will now follow once we can rid ourselves of the gauge covariant
derivatives A∇ t,x on the LHS of (271) in favor of the usual derivatives ∇t,x . This can be
done with a successive application of the two estimates:

‖ Aψk ‖L∞
t (L2

x )[I ] �F 2−m‖∇t,xψk ‖L∞
t (L2

x )[I ],
sup
ω

‖ /Aψk ‖L∞
tω (L

2
xω )[I ] �F ‖ψk‖L∞

t (L∞
x )[I ] � ‖∇t,xψk ‖L∞

t (L2
x )[I ].

The first of these follows immediately from the bound (260), while the second uses the
characteristic energy estimates we are assuming for φ. We remark that using the first
bound above requires m to be large enough, i.e. 2m �F 1.
Step 2 (The S bound for ψ: Proof of (256)). The first thing we need to do is to rewrite
Eq. (38) in a gauged formulation (we have no further use for (268)). As usual, we write:

Aα<k−m = ∂αB<k−m + Dα
<k−m,

where the RHS is given by the integrated terms:

B<k−m =
∫

k′<k−m

(
Sa

cb(φ)− Sb
ca(φ)

)
�k′−10

φc
k′dk′,

Dα
<k−m =

∫
k′<k−m

(
Sa

cb(φ)− Sb
ca(φ)

)
k′−10<·<k−m

∂αφc
k′dk′

−
∫

k′<k−m
∂α
(

Sa
cb(φ)− Sb

ca(φ)
)

�k′−10
φc

k′dk′.

The connection ∂αB<k−m is of the form in Proposition 3.1, and we define the SO(N )
matrix U = U,<k−m accordingly. We also set Cα = ∇αB − U †∇αU , which is given by
the second term on the RHS of formula (37). Finally, we denote by w,k = U,<k−mψk .
Then wk obeys the gauged equation (255) with:

Rpert
,<k−mψk = −2U,<k−m(C

α + Dα)∂αψk + �U,<k−m · ψk . (274)

The second term on the right is easy to estimate using (35), which yields:

‖ Pk′(�U,<k−m · ψk) ‖N [I ] �F 2−|k−k′|2−δ1m‖ψk ‖S[I ]. (275)
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It remains to estimate the first term in Rpert
,<k−mψk , for which we will show the bound:

‖Pk′
(
U,<k−m(C

α + Dα)∂αψk
) ‖N [I ] �F 2−|k−k′| (2−δ1m0‖ψk‖S[I ] + 22m0‖ψk‖E[I ]

)
,

(276)

for 0 < m0 
 m. We will prove this in a further series of steps.
Step 2A (Removal of the gauge and high frequency connection). Here we write Cα

low for
the second term on the RHS of line (37) with each gauge factor replaced by P<k−10U,<k′ .
Thus Cα

low = P<k−10Cα
low. Notice that the connection Dα also has frequency< k −m +

10. Therefore, from estimate (34) we have:

‖ Pk′
(
U,<k−m(C

α
low + Dα)∂αψk

) ‖N [I ] �F 2−|k−k′|‖ (Cα
low + Dα)∂αψk ‖N [I ].

Furthermore, we claim the remainder estimate:

‖ Pk′
(
U,<k−m(C

α − Cα
low)∂αψk

) ‖N [I ] �F 2−|k−k′|2−Cm‖ψk ‖S[I ].

Setting R = U,<k−m(Cα − Cα
low), this follows at once from Bernstein’s inequality and

the improved bounds:

‖ R ‖L1
t (L1

x )[I ] �F 2−2k2−Cm, ‖ Pj R ‖L1
t (L1

x )[I ] �F 2−2k2−C( j−k)2−Cm .

These estimates are a consequence of the improved estimate (33), and the fact that at
least one of the gauge factors in the Cα − Cα

low integral is localized to P>k−10U,<k′ .
Step 2B (Estimation of the main term). The purpose of this step is to prove the remaining
estimate:

‖ (Cα
low + Dα)∂αψk ‖N [I ] �F 2−δ1m0‖ψk ‖S[I ] + 22m0‖ψk ‖E[I ]. (277)

We’ll do this separately for each of the two terms on the left.
Step 2B.1 (Estimation of Dα term). The plan is to use Lemma 9.3. To do this we need to
separate the connection Dα into two pieces, one with essentially matched frequencies
and one with wide frequency separation. We write Dα = Dα

(δ) + D̃α, where

Dα
(δ) =

∫
k′<k−m

(
Sa

cb(φ)− Sb
ca(φ)

)
[k′−10,k′+cδ2m0] ∂

αφc
k′dk′

−
∫

k′<k−m
∂α
(

Sa
cb(φ)− Sb

ca(φ)
)

[k′−cδ2m0,k′−10] φ
c
k′dk′.

Here c 
 1 is an additional small constant. By a direct application of estimate (267) we
have:

‖ Dα
(δ)∂αψk ‖N [I ] �F 2Ccδ2m0

(
2−δ2m0‖ψk ‖S[I ] + 2m0‖ψk ‖E[I ]

)
. (278)

For c small enough in relation to C we have (277) for this term. The remainder term is
in the range where the standard trilinear estimate (25) gives additional savings. A quick
computation shows that for this term we in fact have:

‖ D̃α∂αψk ‖N [I ] �F 2−cδ3m0‖ψk ‖S[I ]. (279)

The details of the dyadic summation are left to the reader.
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Step 2B.2 (Estimation of Cα
low term). We follow the same strategy as in the previous

argument. We split Cα
low = Cα

(δ) + C̃α, where

Cα
(δ) =

∫ k−m

−∞

[
Bk′, P<k−10U †

,<k′∇αP[k′−cδ2m0,k′+cδ2m0] P<k−10U,<k′
]

dk′.

The factors P<k−10U,<k′ are bounded on N via estimate (21), and can therefore be
neglected. Again, by summing over the bound (267) with the help of (32) we have the
analog of (278) (but this time with a factor of 22Ccδ2m0 instead) for the contraction
Cα
(δ)∂αψk . Similarly, we have the analog of (279) for the contraction C̃α∂αψk , which

also uses estimate (33).

Remark 9.4. The above process can also be used to show that if one already has ‖ψk ‖S[I ]
norm control, then one may conclude normalization bounds ‖ψk ‖W[I ] under the much
less restrictive assumption that m � 20. In this case, one simply skips all of Step 1
above, and carry out Step 2 without introducing at all the terms Cα

(δ) and Dα
(δ).

Proof of Lemma 9.1. The estimate (260) follows from the energy bounds for φ com-
bined with Bernstein’s inequality. On the other hand (261) is a consequence of (160)
and (157).

Estimate (262) follows from an application of (21)–(22), and then summation over
the trilinear bound (25). The relevant detail is that one has the dyadic sum:

∑
k2,k3: ki<k−m

2−δ(k−min{k2,k3}) � 2−δm .

Estimate (263) is a more elaborate use of such summations, but it is standard and left to
the reader.

Consider now (264). For modulations at most comparable to the frequencies in the
first factor we can replace the time derivative with a frequency factor and prove the
estimate (264) by summing over (25). The relevant detail is that one has the dyadic sum:

∑
k1,k2: ki<k−m

2k2 2−δ(k2−k1)+ � 2−m2k .

It remains to bound the expression when the first factor is at high modulation. In this
case we take a product of the two bounds:

‖∇t,x Q|ξ |
|τ |φ(1)<k−m ‖L2(L∞) � 2
1
2 (k−m),

‖ ∂αφ(2)<k−m∂αψk ‖L2
x (L

2
x )

� 2
1
2 (k−m)‖ψk ‖S[I ],

the first of which follows from summation over (164) and the second of which follows
from summation over (23). The estimate (265) follows from similar reasoning and is
left to the reader. ��
Proof of Lemma 9.2. The bound we seek is scale invariant, so without loss of generality
we may assume that k = 0, and we may rotate and center the estimate so that ω = (1, 0)
and x0 = (0, 0). In light of (161) we see that the main point of (266) is to be able to drop
half space cutoffs of the form χt<0 and χt<x1 . The required boundedness of cutoffs with
discontinuities across space-like hypersurfaces was already shown in (156). Therefore,
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we seek an analog of (156) in the null case. Due to the frequency localization of both
factors on the LHS of (266), it suffices to prove the following product estimate:

‖ P0
(
χt<x1 · ψ0

) ‖DS � ‖ψ0 ‖DS . (280)

To save notation we will write χ = χt<x1 . Our point of view will be to observe that
χ is a singular solution to the wave equation, so one can hope that (280) is in some sense
a version of the standard product estimate (19). While this is true, the demonstration
requires a bit of care because the PW norm of Pk(χ) does not gain the usual weight
from L1 summation over angles, even though its Fourier support is well localized in the
angular variable. In fact, a quick calculation shows that:

χ̃ (τ, ξ) =
⎧⎨
⎩

c+
ξ1
δ(τ + |ξ |)δ(ξ2), ξ1 > 0;

c−
ξ1
δ(τ − |ξ |)δ(ξ2), ξ1 < 0.

Here c± are appropriate constants depending on ones in the definition of the Fourier
transform. The above formulas show that the (+) wave portion of χ is a measure con-
centrated on the ray (1,−1, 0), and opposite for the (−) wave portion. We have the
frequency localized PW type bound:

‖ Q± Pkχ ‖L2
t(1,0)

(L∞
x(1,0)

) � 2− 1
2 k . (281)

Finally, note that due to the frequency localization in (280), we may replace the cutoff
with Q<10 P<10(χ). Also, if φ0 is at high modulation 10 then P0

(
χt<x1 · ψ0

)
is at com-

parable modulation, therefore (280) is immediate due to the L∞ estimate for χ . We now
proceed to prove (280) in a series of steps:
Step 1 (Controlling the Strichartz norms). Due to the boundedness of χ , we easily have:

‖ P0(P<10χ · ψ0) ‖Lq
t (Lr

x )
� ‖ψ0 ‖DS .

Step 2 (Controlling the Xs,b norm). Our first order of business is to bound the X
0, 1

2∞ part
of the norm (151). Freezing the outer modulation, our goal is to show that:

‖ Q j P0 (P<10χ · ψ0) ‖L2
t (L2

x )
� 2− j

2 ‖ψ0 ‖DS . (282)

We now split into subcases.
Step 2.A (Output far from cone). In this step we consider the contribution of output
modulations j > 20. In this case, we may further localize the product to Q j P0(P<10χ ·
Q j+O(1)ψ0). Estimate (282) follows immediately from L∞ control of χ .
Step 2.B (χ at low frequency (≤ j − 10)). In this case φ0 must be at modulation 2 j ,

therefore we consider the contribution of the expression Q j P0(P< j−10χ · Q j+O(1)ψ0).
Then (282) is immediate from the L∞ control of χ .
Step 2.C (χ at medium frequency, ψ at larger modulation). In this case we consider the
contribution of the term Q j P0(P[ j−10,10]χ · Q� j−20ψ0). Again, only the boundedness
of χ is used.
Step 2.D (χ at medium frequency, ψ at low modulation). The contribution of
Q j P0(P[ j−10,10]χ · Q< j−20ψ0) is considered here. This is the main term. Without loss
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of generality, we may assume that we are in a (++) interaction, which we decompose

into all possible angular sectors of cap size |κ| ∼ 2
1
2 j−10, respectively |κ ′| ∼ 2

1
2 j :

Q j P0(Q
+ P[ j−10,10]χ · Q+

< j−20ψ0) =
∑

j−10�k<10

∑
κ,κ ′

Q j P0,κ ′
(

Q+ Pk(χ) · P0,κQ+
< j−20ψ0

)
.

The main difficulty here is that we cannot really sum over k, because χ is only in an
�∞ type Besov space. However, using Lemma 11 of [29] we see that the above sum is
both essentially diagonal in κ, κ ′, and essentially frequency disjoint in its contribution
of angles for each fixed k. Precisely, two sectors κ, κ ′ and a frequency k can provide
nonzero output if and only if:

dist(κ, κ ′) ∼ 2
j
2 −10, dist(κ, (−1, 0)) ∼ 2

j−k
2 .

In particular the sector κ ′ centered at (1, 0) does not yield any output. Taking this into
account we may bound:

‖ Q j P0(Q
+ Pj−10�·<10χ · Q+

< j−20ψ0) ‖2
L2

t (L2
x )

�
10∑

k= j−10

∑
dist(κ,(−1,0))∼2

j−k
2

dist(κ,κ ′)∼2
j
2 −10

‖ P0,κ ′
(

Q+ Pk(χ) · P0,κQ+
< j−20ψ0

)
‖2

L2
t (L2

x )

�
10∑

k= j−10

∑
dist(κ,(−1,0))∼2

j−k
2

‖ Q+ Pk(χ) ‖2
L2

t(1,0)
(L∞

x(1,0)
)
‖ P0,κQ+

< j−20ψ0 ‖2
L∞

t(1,0)
(L2

x(1,0)
)

�
10∑

k= j−10

∑
dist(κ,(−1,0))∼2

j−k
2

2−k sup

dist(ω,κ)∼2
j−k
2

‖ P0,κQ+
< j−20ψ0 ‖2

L∞
tω (L

2
xω )

� 2− j
∑
κ

‖ P0,κQ+
< j−20ψ0 ‖2

S[0,κ].

From the definition of the S norm (147), this suffices to prove (282).
Step 3 (Controlling the square sum of S[0, κ] norms). Again freezing j < −10 we need
to demonstrate that:

sup
±

∑
κ

‖ Q±
< j P0,±κ(P<10χ · ψ0) ‖2

S[0,κ] � ‖ψ0 ‖2
S, (283)

where angular sector size is |κ| ∼ 2
1
2 j . The subcases repeat Case 2 above with little

difference, and are mostly left to the reader:
Step 3.A (χ at low frequency). This is the contribution of the expression

Q< j P0(P< j−10χ · Q< j+O(1)ψ0).

In this case (283) is immediate from the L∞ control of χ .
Step 3.B (χ at medium frequency, ψ at larger modulation). As before, this is the term
Q< j P0(Pj−10,10]χ · Q� j−20ψ0) for which we have a stronger L2 bound:

‖ Q< j P0(P[ j−10,10]χ · Q� j−20ψ0) ‖L2
t L2

x
� 2− 1

2 j‖ψ0 ‖S .
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Step 3.C (χ at medium frequency, ψ at low modulation). Here we consider the contri-
bution of Q< j P0(P[ j−10,10]χ · Q< j−20ψ0). This is again the main term. Without loss
of generality we may assume that we are in a (++) interaction in terms of output and
ψ0 modulation (in particular, from the estimate in Step 2 above we may dispense with
the case (+) output and (−) input from ψ0), and we again use Lemma 11 of [29] to

decompose into a diagonal sum over caps of size |κ| ∼ 2
1
2 j−C , respectively |κ ′| ∼ 2

1
2 j :

Q+
< j P0(Q

+ P[ j−C,C]χ · Q+
< j−Cψ0) =

∑
dist(κ,κ ′)∼2

j
2

Q+
< j P0,κ ′

(
P[ j−C,C](χ) · P0,κQ+

< j−Cψ0

)
.

Notice that we do not need to frequency localize the factor P[ j−10,10]χ to obtain this
diagonally, which is a good thing because the rougher bounds on the output modulation
and that ofψ0 do not win us disjoint angular contributions in the k-sum of Pkχ . Plugging
the above decomposition into the LHS side of estimate, (283) the RHS bound follows
at once from L∞ control of χ . ��
Proof of Lemma 9.3. We begin by extending ψk via the universal extension in Propo-
sition 5.5 in such a way that we simultaneously maintain the E and S norm control.
The functions φ(i)ki

are similarly extended. Thus, it suffices to prove the bound on all of
space-time.

The constant C will be fixed in the proof in just a moment. Let m � 0 be any fixed
integer. Without loss of generality, we may assume that k = 0. Furthermore, we may
also assume that |k1 − k2| < δm, for otherwise the estimate follows immediately from
an application of the standard trilinear bound (25), and taking C > 1 on the RHS of
(267). The proof will be accomplished in a series of steps:
Step 1 (Reduction to a bilinear estimate). In this step we consider the contribution of

φ
(1)
k1

Q<k2−δm
(
∂αφ

(2)
k2
∂αψ0

)
. By an application of the estimates (163), (24), and (170)

we easily have that for j < k2 − δm (which also implies j < k1) and δ 
 1 sufficiently
small:

‖φ(1)k1
Q j

(
∂αφ

(2)
k2
∂αψ0

)
‖N � 2−δ(k1− j)‖φ(1)k1

‖S ‖φ(2)k2
‖S · ‖ψ0 ‖S .

Summing over all j < k2 − δm we directly have (267) for this component. It remains

to estimate the contribution of φ(1)k1
Q>k2−δm

(
∂αφ

(2)
k2
∂αψ0

)
. We peel off the factor φ(1)k1

from the trilinear estimate via the bound (21). It remains to prove the bilinear bound

‖Q>k2−δm
(
∂αφ

(2)
k2
∂αψ0

)
‖N �F

(
2−δ2m‖ψk ‖S[I ] + 2m‖ψk ‖E[I ]

)
. (284)

Step 2 (ψ0 is far from the cone). In this step we consider the contribution of Q�k2−δm(
∂αφ

(2)
k2

Q�0∂
αψ0

)
. We will prove that the remaining null-form is an X

0,− 1
2

1 atom. In

the present case, we freeze the output modulation j and then estimate:

‖ Q j

(
∂αφ

(2)
k2

Q�0∂
αψ0

)
‖L2

t (L2
x )

� ‖∇t,xφ
(2)
k2

‖L∞
t (L∞

x )
· ‖ Q�0∇t,xψ0 ‖L2

t (L2
x )
,

� 2k2‖φ(2)k2
‖S · ‖ψ0 ‖S .
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Multiplying both sides of this bound by 2− j
2 and then summing over all dyadic j �

k2 − δm we arrive at:

‖ Q�k2−δm
(
∂αφ

(2)
k2

Q�0∂
αψ0

)
‖N � 2

k2
2 +δm‖φ(2)k2

‖S · ‖ψ0 ‖S,

which suffices due to the condition k2 < −m.
Step 3 (φ(2)k2

is far from the cone). In this step we consider the contribution of

Q�k2−δm
(

Q>k2−8δm∂αφ
(2)
k2

Q<0∂
αψ0

)
. In this case, we again freeze the output modu-

lation j and proceed to bound:

‖ Q j

(
Q>k2−8δm∂αφ

(2)
k2

Q<0∂
αψ0

)
‖L2

t (L2
x )

� ‖ Q>k2−8δm∇t,xφ
(2)
k2

‖L2
t (L∞

x )
· ‖ ∇t,xψ0 ‖L∞

t (L2
x )
. (285)

By summing over all j > k2 − 8δm in estimate (164) we have that:

‖ Q>k2−8δm∇t,xφ
(2)
k2

‖L2
t (L∞

x )
� 2

1
2 k2+4δm‖φ(2)k2

‖S .

Substituting this into the RHS of (285), multiplying the result by 2− 1
2 j , and then sum-

ming over all j � k2 − δm we have the estimate:

‖ Q�k2−δm
(

Q>k2−8δm∂αφ
(2)
k2

Q<0∂
αψ0

)
‖N � 25δm‖φ(2)k2

‖S · ‖ψ0 ‖E .

Step 4 (The core contribution). In this step we consider the contribution of the expression

Q�k2−δm
(

Q<k2−8δm∂αφ
(2)
k2

Q<0∂
αψ0

)
. This is the main case, and requires a decompo-

sition into angular sectors of cap size |κ| ∼ 2−4δm . Without loss of generality we may
assume we are in the (++) configuration. The other cases (−−), (+−), and (−+) are
the same with only minor modifications and are therefore left to the reader. We break
the entire contribution into a Q�k2−δm localized sum of two principle terms T1 and T2,
where

T1 =
∑
κ∈Kl

Q+
<k2−8δm Pk2,κ∂αφ

(2)
k2

· (I − P0,2κ)Q
+
<0∂

αψ0,

T2 =
∑
κ∈Kl

Q+
<k2−8δm Pk2,κ∂αφ

(2)
k2

· P0,2κQ+
<0∂

αψ0.

To help state the estimates, we introduce the following weaker version of the NFA∗
portion of the S[k, κ] norm from line (150):

‖ψ ‖S̃k
:= sup

l>10
κ∈Kl

‖ Pkψ ‖S̃[k,κ],

where

‖ψ ‖S̃[k,κ] := sup
±

sup
ω∈ 1

2 κ

2k |κ| · ‖ Q±
<k(I − Pk,±κ )ψ ‖L∞

tω (L
2
xω )
.

Notice that we do not use the more eccentric Q j multipliers for j < k − 10 in this def-
inition, and there is no square-summing over angles. The reason this notation is useful
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is that we have the relation: ‖ψk ‖S̃ � ‖ψk ‖E . This is shown through an application of
the estimate:

‖ Q±
<k(I − Pk,±κ )ψk ‖L∞

tω (L
2
xω )

� 2−k |κ|−1 · ‖ /∇ t,xψk ‖L∞
tω (L

2
xω )
. (286)

Such an inequality may be proved by decomposing the multiplier Q±
<k(I − Pk,±κ )

into a dyadic sum of angular sectors of increasing size and spread from ±κ . With-
out loss of generality, we may assume we are in the “+” case, and we decompose
Q+
<k(I − Pk,κ ) = ∑

1>2 j>|κ| Q+
<k Pk,κ j , where each sector size is |κ j | ∼ 2 j with dis-

tance dist(κ, κ j ) ∼ 2 j . For each of these sectors we use the uniform multiplier bounds:

‖ Q+
<k Pk,κ jψk ‖L∞

tω (L
2
xω )

� 2−k |κ j |−1 · ‖ /∇ t,xψk ‖L∞
tω (L

2
xω )
,

which is an easy consequence of the fact that the kernels associated to the operators:

L = 2k |κ j |/∇−1
t,x Q+

<k Pk,κ j ,

are uniformly in L1
t (L

1
x ). The estimate (286) now follows from simply summing over

this last bound overall all dyadic 1 < |κ j |−1 < |κ|−1.
Returning to the main thread, we first bound the term T1 above. In this case, we are

going to lose a large constant because the sum is not well localized in the second factor
and therefore we cannot use orthogonality with respect to κ . Furthermore, we will not
bother to gain anything from the null-structure, because the frequency localization of
this term eliminates parallel interactions. To compensate for the large number of non-
orthogonal sectors, we may use the S̃ norm for the second factor. Using the product
estimate (167) we may bound:

‖ Q j T1 ‖L2
t (L2

x )
�
∑
κ∈Kl

|κ| 1
2 2− 1

2 k2‖ Q+
<k2−8δm Pk,κ∂αφ

(2)
k2

‖S[k2,κ]

· sup
ω∈κ

‖ (I − P0,2κ)Q
+
<0∂

αψ0 ‖L∞
tω (L

2
xω )

� 2
1
2 k2‖φ(2)k2

‖S · 24δm‖ψ0 ‖S̃ .

Multiplying both sides of this last estimate by the factor 2− 1
2 j and then summing over

all j > k2 − δm we have:

‖ Q>k2−δm T1 ‖N � 25δm‖φ(2)k2
‖S · ‖ψ0 ‖S̃,

which is sufficient.

Our final task here is to bound the term Q>k2−δm T2 in the space X
0, 1

2
1 . Notice that

because of the angular and (++) localization, as well as the fact that j > k2 − δm, for
each Q j T2 we may freely insert the multiplier Q> j−10 in front of the second factor,
because the complement vanishes (see Lemma 11 of [29]). In this case the resulting
sum is both diagonal and orthogonal in κ , so freezing Q j T2 we have with the aid of
Bernstein’s inequality (9) the estimate:

‖ Q j T2 ‖2
L2

t (L2
x )

�
∑
κ∈Kl

‖ Q+
<k2−8δm Pk,κ∂αφ

(2)
k2

‖2
L∞

t (L∞
x )

· ‖ P0,2κQ+[ j−10,0]∂αψ0 ‖2
L2

t (L2
x )

�
(

2k2−2δm‖φ(2)k2
‖S · 2− 1

2 j‖ψ0 ‖S

)2
.
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Multiplying the root of this inequality by the factor 2− 1
2 j and then summing over all

j > k2 − δm we finally have:

‖ Q>k2−δm T2 ‖N � 2−δm‖φ2
k2

‖S · ‖ψ0 ‖S .

This concludes our proof of estimate (267). ��

10. Structure of Finite S Norm Wave-Maps and Energy Dispersion

In this section we prove Proposition 3.9. There is almost nothing to do for (63). The
X bound follows from the reduced version of (51) in Remark 3.8, while the E bound
follows from energy estimates on null surfaces.

10.1. Renormalization. Here we establish the renormalization bound (64). Our start-
ing point is the construction of the renormalization matrix U in Proposition 3.1. The
frequency localized wave-map equation for φ is given by:

�φk = −Pk
(
S(φ)∂αφ∂αφ

)
. (287)

For each index m the RHS of this expression can be written in terms of the trilinear from
T m

k from line (53) as follows:

Pk
(
S(φ)∂αφ∂αφ

) = 2S(φ)<k−m∂
α
<k−mφ∂αφk + T m

1;k
(
S(φ), ∂αφ, ∂αφ

)
.

Using the identity (106) we have:

Pk

(
S†(φ)∂αφ∂αφ<k−m+2

)
= 0.

Thus, we may further write:

S(φ)<k−m∂
α
<k−mφ∂αφk =

(
S(φ)<k−m − S(φ)†<k−m

)
∂αφ<k−m∂αφk + T m

2;k,

where T m
2;k is obtained by applying the decomposition (53) to the previous line. There-

fore, we have written the original frequency localized wave-map equation in the form:

�φk = −2Aα<k−m∂αφk +
∑

i

T m
i;k, (288)

where the T m
i;k are trilinear forms as on line (53) with O(m) gap indices. By an application

of estimates (42) and (61) with m = 20 we have the bound:

|||φk |||W[I ] �F ck,

where {ck} is some S[I ] frequency envelope for φk . This proves (64).
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10.2. Partial fungibility of the S norm. Here we prove that there is always a decompo-
sition of intervals I = ∪K (F)

i,l Iil , where K (F) is some polynomial in the S[I ] norm of
φ, and where (65) holds in each subinterval. Our starting point is the series of frequency
localized equations (288). For a fixed φk we use (288) with m = 20. As in the previous
section, we can find a renormalization w,k = U,<k−20φk on all of I such that:

‖ Pk′�w,k ‖N [I ] �F 2−|k−k′|ck . (289)

Let η 
 1 to be chosen later. By the fungibility property (159) (and continuity) there
exists a polynomial K1 in Fη−1 such that I = ∪K1

i Ii such that:

‖ Pk′�w,k ‖N [Ii ] � 2− 1
2 |k−k′|ηci

k,

where {ci
k} are now some unit normalized frequency envelope which may depend on the

interval Ii . We label each time interval as Ii = [ti , ti+1], and on each of these time slabs
we write w,k = w

f ree
,k + wsource

,k , where w f ree
,k is a free wave with data w,k[ti ]. By the

previous line and the energy estimate (18) we have on Ii the bound:

‖ Pk′wsource
,k ‖S[Ii ] � 2− 1

2 |k−k′|ηci
k . (290)

Consequently, for the corresponding part U †
,<k−20w

source
,k of φk we obtain:

‖ U †
,<k−20w

source
,k ‖S[Ii ] �F ηci

k .

By choosing η as the reciprocal of an appropriate polynomial in F , we have:

‖ U †
,<k−20w

source
,k ‖S[Ii ] � ci

k . (291)

It remains to bound the free wave contribution U †
,<k−20w

f ree
,k on each of the intervals

Ii , or on some further subdivision thereof.
Unfortunately we do not directly know that U †

,<k−20 is manageable on Ii . However,
we do have from estimate (36) and the energy bound for φ that:

‖ Pk′w f ree
,k [ti ] ‖Ḣ×L2 �E 2−|k−k′|ck,

uniformly with respect to i where we may choose the unit frequency envelope {ck} to
be the same as on line (289) above. In particular, we have the uniform control:

‖ Pk′w f ree
,k ‖S[Ii ] �E 2−|k−k′|ck . (292)

Now we turn our attention to the U,<k−20’s. Given a large parameter m to be chosen
later, we consider the sections P[ j−m, j+m]U,<k−20 of U,<k−20. Recall that from Remark
3.3 each U,<k−20 is built up out of the same connection (31), and therefore the bounds
(32) for each U,<k−20 may be taken in terms of the same frequency envelope. Hence,
except for a polynomial in m F number of indices j we already have:

sup
k

‖ P[ j−m, j+m]U,<k−20 ‖S[I ] � 1. (293)
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Such indices j are called “good j’s”; the remainder (of which we have at most a
polynomial in m F) are called “bad j’s”. We also introduce the corresponding parts
of U †

,<k−20w
f ree
,k :

φk( j) = P[ j−m, j+m]U †
,<k−20 · w f ree

,k .

The goal of the argument is now to choose a polynomial in m F collection of sub-
intervals Iil , partitioning the Ii , such that on each there is uniform control over all k
and j :

‖ Pk′φk( j) ‖S[Iil ] �E 2− 1
2 δ|k−k′|c jl

k , (294)

for some additional set of unit normalized frequency envelopes {c jl
k }. For good j’s this

is straightforward in view of (292) and (293). Since there are � m F bad j’s, it suffices
to consider such a fixed bad j . The equation for each fixed φk( j) is:

�φk( j) = P[ j−m, j+m]�U †
,<k−20 · w f ree

,k + 2∂αP[ j−m, j+m]U †
,<k−20∂αw

f ree
,k .

Therefore, by a direct application of the estimates (292), (32), (24), and (33)–(35) we
have on all of Ii the bound:

‖�Pk′φk( j) ‖N [Ii ] �m F 2−δ|k−k′|ck,

and from the energy norm control giving (292) and estimate (36) we also have the
uniform energy control:

‖ Pk′φk( j)[t] ‖Ḣ1×L2 �E 2−|k−k′|ck .

Thus, by again using the property (159) we obtain the desired partition {Iil} of I , with
estimate (294) uniformly, at a cost of at most �m F 1 subdivisions.

To conclude the proof we need to estimate U †
,<k−20w

f ree
,k on each subinterval J = Iil ,

which is now fixed with the property that (294) holds. We split U †
,<k−20 into:

U †
,<k−20 = P<k−mU †

,<k−20 + P[k−m,k+m]U †
,<k−20 + P>k+mU †

,<k−20.

For the high frequency part we use (33) in conjunction with the product bounds (19)–(20)
to obtain:

‖ Pk′(P>k+mU †
,<k−20w

f ree
,k ) ‖S[I ] �F 2−Cm2−|k′−k|ck,

which suffices provided m is large enough, m ∼ ln F . For the medium frequency part
we can use directly (294) with j = k. Thus, we are reduced to providing good S[J ]
norm bounds for the quantities P<k−mU †

,<k−20 ·w f ree
,k which are localized at frequency

2k . We do this in a series of steps depending on what component of the S[J ] norm is
being considering:
Step 1 (Energy and Strichartz norm control). For any of the Strichartz norms we imme-
diately have from Leibniz’s rule, estimates (292) and (36) the bound:

‖∇t,x

(
P<k−mU †

,<k−10 · w f ree
,k

)
‖DS[J ] �E ck,

which is sufficient.
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Step 2 (X
0, 1

2∞ norm control). Fix a modulation Q j . Without loss of generality we will
assume that j < k, as the complimentary region is easier to treat using the high modu-
lation bounds in (32) and (33). We decompose as follows:

Q j

(
P<k−mU †

,<k−20 · w f ree
,k

)
=
{

Q jφk( j) + Q j R,k, j < k − 2m;
Q jφk(k − 2m) + Q j R,k, j > k − 2m,

(295)

where

R,k =
{

P< j−mU †
,<k−20 · w f ree

,k + P[ j+m,k−m]U †
,<k−20 · w f ree

,k , j < k − 2m;
P<k−3mU †

,<k−20 · w f ree
,k , j > k − 2m.

By estimate (294) we already control the first terms on the RHS of (295), so we only
need to bound the contribution of Q j Pk R,k . This is given by the following analog of
Lemma 8.3:

Lemma 10.1. Let j < k − 10 and m > 10 be an integer. Then the following estimates
hold for test functions u = u<k−10 and φk:

‖Q j (u< j−mφk)‖
X

1, 1
2∞
+‖Q< j (u< j−mφk)‖S[k; j] �

(‖u‖L∞
t (L∞

x )
+2−δm‖u‖X

) ‖φk‖S,

‖Q j (P> j+mu<k−10φk)‖
X

1, 1
2∞

+‖Q< j (P> j+mu<k−10φk)‖S[k; j] � 2−δm‖u‖S‖φk‖S .

Proof. The proof of the first bound is immediate from (168) and the product bounds
(19)–(20) in conjunction with the following easy estimate for very high modulations:

‖ Q> j− 1
2 mu< j−m ‖S � 2− 1

4 m‖ u ‖X .

The second estimate is just a summed version of (169) which also incorporates (162). ��
Using a combination of the estimates in this last lemma, and (292), we have:

‖ Q j Pk R,k ‖
X

0, 1
2∞

�E
(
1 + 2−δm Q2(F)

)
ck,

which suffices.
Step 3 (S[k; j] norm control). This is immediate from the decomposition (295), the
estimate (294), and Lemma 10.1.

10.3. The role of the energy dispersion. By applying estimate (64) and then using (51)
on Eq. (287) we have (66).

Suppose now that {ck} is a frequency envelope for the initial data of φ in Ḣ × L2.
Then by the seed bounds (68) we have full control:

‖φ ‖Sc[J ] � K1(F), (296)

on some sufficiently small subinterval J ⊆ I . Here K1 is a universal polynomial that
will be chosen in a moment. The goal now is to bootstrap this control and show that if:

‖φ ‖Sc[J ] � 2K1(F), (297)
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then we have (296). By Proposition 3.10 we may continue and finally close this last
estimate on all of I .

By applying estimates (64) and (66) to (297), we have:

‖φ ‖Wc[J ] � K2(F)K1(F), ‖φ ‖Xc[J ] � εδ1 K2(F)K1(F),

for a universal polynomial K2.
Next, choose the gap m � ln(F) in Eq. (288) in a way that is consistent with the

assumptions of Proposition 3.2, and apply estimate (41) to (288), while using (55) via
the last two bounds. This gives:

‖φk ‖S[I ] � K3(F)
(

1 + εδ
2
1 K2(F)K1(F)

)
ck .

The proof is concluded by choosing K1 = 2K3 and assuming ε is sufficiently small.

11. Initial Data Truncation

Here we prove that for each initial data set with small energy dispersion we can contin-
uously regularize it. In a sufficiently small tubular neighborhood V (M) of the surface
M ⊂ R

N we introduce a projection operator:

� : V (M) → M.

This also induces a projection operator on the tangent bundle:

� : T V (M) → T M,

which is a product of � in R
N and Euclidean linear orthogonal projection onto each

fiber in the second factor. Given an initial data set:

φ[0] = (φ0, φ1) : R
2 → T M,

which belongs to Ḣ1 × L2, we regularize it as follows:

φ,<k[0] = �(P<kφ[0]).
The following result asserts that if φ[0] has small energy dispersion then its regulariza-
tions are well defined, and stay close to the corresponding Littlewood-Paley projections:

Proposition 11.1. For each E > 0 there exists ε0 > 0 so that for each initial data set
φ[0] for (1) with energy E and energy dispersion ε � ε0 and k, k∗ ∈ Z we have:

‖Pk(P<k∗φ[0] − φ,<k∗ [0])‖Ḣ1×L2 �E min{ε| ln ε|2, 2−|k−k∗|}. (298)

Proof. By rescaling we assume that k∗ = 0. We begin with two simple Moser type
estimates which we will repeatedly use in the sequel. Precisely, for each smooth and
bounded function G with bounded derivatives we have:

‖∇ J
x G(P<kφ0) ‖L∞

x
�E 2|J |k, (299)

and

‖∇ J
x G(P<kφ0) ‖L2

x
�E 2(|J |−1)k, |J | � 1, (300)

which are easily proved using the chain rule and Bernstein’s inequality.
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We first show that if ε is small enough then the projection�P<0φ[0] is well defined:

Lemma 11.2. Under the assumptions of Proposition 11.1 we have:

dist (P<0φ0,M) �E ε| log ε|.
Proof. By translation invariance, it suffices to show that:

I =
∫

|x |�1
|P<0φ0(0)− φ0(x)|dx �E ε| log ε|. (301)

We use a positive parameter m and a Littlewood-Paley decomposition to estimate I as
follows:

I � ‖∇x P<−mφ0 ‖L∞
x

+ ‖ P[−m,m]φ0 ‖L∞
x

+ ‖ P>mφ0 ‖L2
x
.

Using Sobolev embeddings for the first term, energy dispersion for the second, and the
Ḣ1 norm for the third we obtain:

I � 2−m E + mε + 2−m E .

Then (301) is obtained by choosing 2m = ε−1. ��
To continue the proof of the proposition, we remark that � can be expressed as:

�(φ(1), φ(2)) =
(

G(φ(1)), H(φ(1))φ(2)
)
, (302)

where G is some smooth extension of � to all of R
N , and H is some extension of the

fiber projection composed with G. Note that both G and H may be chosen as bounded
functions with bounded derivatives. We separately estimate the high frequencies, middle
frequencies and low frequencies of the difference P<k∗φ[0] − φ,<k∗ [0].
Step 1 (High frequency bounds, the contribution of k > 0). For the high frequencies we
do not use the fact at all that φ[0] takes values in T M. Instead, we use (299) to directly
estimate:

‖ Pk G(P<0φ0) ‖L2
x

�E 2−(C+1)k,

where C is a large integer. Similarly we have:

‖ Pk (H(P<0φ0)P<0φ1) ‖L2
x

�E 2−Ck .

Thus we obtain:

‖ Pk(P<0φ[0] − φ,<0[0]) ‖Ḣ1×L2 �E 2−Ck . (303)

Step 2 (Low frequencies bounds, the contribution of k < 0). Here we take advantage of
the identity �φ[0] = φ[0]. Then we can write:

Pk
(
P<0φ[0] − φ,<0[0]) = Pk (�φ[0] −�(P<0φ[0])) := ψ[0].

To estimate the last difference we use an integral expansion as follows:

ψ0 = Pk

∫ ∞

0

d

dk1
G(P<k1φ0)dk1,

= Pk

∫ ∞

0
G ′(P<k1φ0)Pk1φ0dk1,

= Pk

∫ ∞

0
P>k1−10G ′(P<k1φ0) · Pk1φ0dk1.
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Next, we use Bernstein’s inequality and (300) to estimate:

‖ Pk
(
P>k1−10G ′(P<k1φ0) · Pk1φ0

) ‖L2
x

� 2k‖ P>k1−10G ′(P<k1φ0) · Pk1φ0 ‖L1
x

� 2k‖ P>k1−10G ′(P<k1φ0) ‖L2
x
‖ Pk1φ0 ‖L2

x

�E 2k−2k1 . (304)

Hence after integration with respect to k1 � 0 we obtain:

‖ψ0 ‖L2
x

�E 2k .

A similar computation shows that:

ψ1 = Pk

∫ ∞

0
H ′(P<k1φ0)Pk1φ0 · P<k1φ1dk1 + Pk

∫ ∞

0
H(P<k1φ0)Pk1φ1dk1.

Then proceeding as above, we may estimate both integrands on the RHS in terms of
�E 2k−k1 , which upon integration over all k1 � 0 yields a similar bound:

‖ψ1 ‖L2
x

�E 2k .

Thus we have proved that:

‖ Pk
(
P<0φ[0] − φ,<0[0]) ‖Ḣ1×L2 �E 2k . (305)

Step 3 (Intermediate frequency bounds, the contribution of −m < k < m). Here m is
some fixed large integer. The goal of the argument here is to show the estimate:

‖ Pk
(
P<0φ[0] − φ,<0[0]) ‖Ḣ1×L2 �E m2ε + 2−m, |k| � m. (306)

This is used with m chosen so that 2−m ≈ ε. Due to the identity �φ[0] = �φ[0] we
can rewrite (306) in the form

‖ Pk (P<0�φ[0] −�P<0φ[0]) ‖Ḣ1×L2 �E m2ε + 2−m . (307)

This is a direct consequence of the following paradifferential relation:

Lemma 11.3. Let � be as in (302), and D� be its differential. Then for each ψ[0] ∈
Ḣ1 × L2 with energy E and energy dispersion ε and each k ∈ R we have

‖Pk�ψ[0] − D�(P<k−mψ[0])Pkψ[0]‖Ḣ1×L2 �E m2ε + 2−m, m > 4, (308)

where Pk can be substituted by any multiplier whose symbol has similar size, localization
and regularity.

We remark that in (308) there is no geometry left. That is to say, ψ[0] in (308) need not
satisfy the identity �ψ[0] = ψ[0].

It is easy to see that (308) implies (307). Indeed, if k ≥ 2 then the first term
Pk P<0�φ[0] in (307) does not contribute, while for the second we use (308) with
ψ[0] = P<0φ[0]. On the other hand if k < 2 then for the first term Pk P<0�φ[0] in
(307) we use (308) with Pk replaced by Pk P<0 and ψ[0] = φ[0], while for the second
term we again use (308) with ψ[0] = P<0φ[0]. It remains to prove the lemma.
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Proof of Lemma 11.3. We write

Pk�ψ[0] − D�(P<k−mψ[0])Pkψ[0] = (w0, w1),

with

w0 = Pk G(ψ0)− (∇G)(P<k−mψ0)Pkψ0,

w1 = Pk(H(ψ0)ψ1)− (H(P<k−mψ0)Pkψ1 + (∇H)(P<k−mψ0)Pkψ0 P<k−mψ1).

Then we need to prove that

‖w0‖Ḣ1 + ‖w1‖L2 �E m2ε + 2−m .

We observe that the expression for ∇w0 coincides with the expression for w1 with
H = ∇G and ψ1 = ∇ψ0. Hence it suffices to prove the bound forw1. Furthermore, the
last term in w1 is directly estimated as

‖(∇H)(P<k−mψ0)Pkψ0 P<k−mψ1‖L2 � ‖Pkψ0‖L∞‖ψ1‖L2 �E ε.

It remains to show that

‖Pk(H(ψ0)ψ1)− H(P<k−mψ0)Pkψ1‖L2 �E m2ε + 2−m . (309)

We use the integral representation

Pk(H(ψ0)ψ1) =Pk

∫ ∞

−∞
d

dk1
(H(P<k1ψ0)P<k1ψ1)dk1

=Pk

∫ ∞

−∞
H(P<k1ψ0)Pk1ψ1 + ∇H(P<k1ψ0)Pk1ψ0 P<k1ψ1dk1.

The integrals from −∞ to k −m, respectively from k +m to ∞ can be bounded �E 2−m

as in Step 1, respectively Step 2 above. For the integral from k − m to k + m we consider
the two terms in the integrand separately. The second term is estimated directly,

‖∇H(P<k1ψ0)Pk1ψ0 P<k1ψ1‖L2 � ‖Pk1ψ0‖L∞‖P<k1ψ1‖L2 �E ε.

Thus so far we have

Pk(H(ψ0)ψ1) = Pk

∫ k+m

k−m
H(P<k1ψ0)Pk1ψ1dk1 + OL2(mε + 2−m).

The remaining integrand is further expanded,

H(P<k1ψ0)Pk1ψ1 = H(P<k−mψ0)Pk1ψ1 +
∫ k1

k−m
∇H(P<k2ψ0)Pk2ψ0 Pk1ψ1dk2.

The second term can be estimated as above by �E mε. We arrive at

Pk(H(ψ0)ψ1) = Pk(H(P<k−mψ0)P[k−m,k+m]ψ1) + OL2(m2ε + 2−m).

This implies (309) via a commutator bound, see (10):

‖[Pk, H(P<k−mψ0)]P[k−m,k+m]ψ1‖L2 � 2−k‖∇H(P<k−mψ0)‖L∞‖P[k−m,k+m]ψ1‖L2

�E 2−m .

The proof of the lemma is complete. ��
This concludes our demonstration of Proposition 11.1. ��
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