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Abstract

Detecting analogy is an important high-level cognitive skill
that is involved in many aspects of human reasoning.
While Structure Mapping Theory (Gentner, 1983) is a well-
recognized high-level theory of analogy, it lacks a neural pro-
cess implementation that links to perception and attention.
Avoiding algorithmic computation on ungrounded symbols,
we present a dynamic neural architecture built from interact-
ing neural populations that establishes analogy between ob-
jects in two visually presented scenes. Consistent with SMT, it
accounts for how humans find such analogies.
Keywords: analogy; dynamic field theory; neural process
model; grounded cognition; embodied cognition

Introduction
Analogical reasoning is the human competence to transfer
knowledge from one scene (usually a familiar situation) to
another scene (a new situation), even if both settings are from
different domains (Gentner & Maravilla, 2018).

A simple form of semantic analogy is expressed by the fol-
lowing sentence: “A is related to B as C is related to D”.
Here, the relation between A and B (the target) is explained
by referring to the relation between C and D (the base). A
famous example is the analogy between the solar system and
Rutherford’s model of the atom. How do we understand the
analogy? We use the shared structure of the two scenes to
identify the roles of entities in either of the scenes: The plan-
ets are related to the sun as the electrons to the nucleus – e.g.,
because the planets orbit the sun and are smaller than the sun,
just as the electrons orbit the nucleus and are smaller than the
nucleus. Importantly, the analogy cannot be found merely by
comparing the planets with the electrons and the sun with the
nucleus based on superficial similarity. Instead, it has to be
identified that the planets bear to the sun the same relation-
ships (orbiting, smaller than) as the electrons to the nucleus.

We focus on visual analogies formed on the basis of two
visually presented scenes – a base scene and a target scene.
In the specific task we model, each scene contains two objects
that bear various relationships to each other (Figure 1). An
analogy exists between the two scenes when the objects in
the base scene bear the same relationships to each other as
the objects in the target scene. We postulate that more than
one relationship must match across the two scenes to imply
an analogy (Figure 2). If an analogy exists, each object in
the target scene can be mapped onto an object in the base
scene so that their roles in the relationships match. The goal

Figure 1: A typical example of a base scene (left) and a target
scene (right) between which an analogical mapping can be
established. Here, base scene object 1 is related to base scene
object 2 as target scene object 1 is related to target scene ob-
ject 2. The outer frames and the labels are for reference only
and are not part of the actual visual input.

of the model is to provide this mapping or to conclude that no
analogy exists.

To simplify, we assume objects vary only in color, shape
or size an consider only spatial relations (e.g., left of, above,
. . . ), size relations (smaller than, same size as, larger than)
and categorical identity relations (e.g., same shape as, differ-
ent shape than). The model can be extended to more complex
features and relations without altering its core.

In Figure 1, base scene object 1 bears to base scene object
2 the same relationships (left of, same color as, . . . ) as target
scene object 1 bears to target scene object 2, thus making 1
analogous to 1 and 2 analogous to 2. The fact that base scene
object 1 is also visually similar to target scene object 1 (and 2
to 2) is not relevant for the presence of an analogy, although
it may aid the process of identifying the analogy.

Our goal in this paper is to propose a neural process
model that may detect an analogy and establish the map-
ping. Avoiding algorithmic computation on ungrounded sym-
bols, the model is based on perceptually grounded repre-
sentations (Barsalou, 2008) and neural principles formal-
ized in Dynamic Field Theory (Schöner, Spencer, & Re-
search Group, 2016). We are guided by Structure Mapping
Theory (Gentner, 1983), a widely accepted theoretical frame-
work that describes the goals of and steps toward successful
analogical inference and that is able to explain a large body of
empirical data. We further back up various modeling choices
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(a) cross-mapping (b) no analogy

Figure 2: Two more pairs of base scene and target scene.
(a) Cross-mapping: Mapping based on superficial similarity
would map base scene object 1 to target scene object 2 be-
cause of the same color, shape, and size, whereas structure
mapping would map 1 to 1 and 2 to 2 because base scene
object 1 bears to base scene object 2 the same relationships
(above and larger than) as target scene object 1 to target scene
object 2. (b) No meaningful analogy exists because objects 1
and 2 share only one relationship (above).

by qualitative effects from the experimental literature.

Background
Structure Mapping Theory (SMT; Gentner, 1983) de-
scribes analogy as a mapping from objects in a base scene to
objects in a target scene. It further suggests how analogous
structure is to be found. Given a target scene and a base scene
(retrieved from memory), a mapping process finds the shared
systematic structure between the two scenes to establish a
one-to-one mapping of all relevant entities.

Each scene includes objects which have different features
and stand in relations with each other. The aim is to find
the “best” map from objects of the base scene to objects of
the target scene that would enable inference about the target
scene from knowledge about the base scene. A central as-
sumption is that only the relations between objects in a scene
and relations between their features are relevant, and that the
objective for the mapping is to preserve as many relations as
possible; feature values themselves do not contribute. This
process is called structure mapping.

How humans perform in analogy tasks differs depen-
dent on the setup and configuration of the scenes and the task.
Gentner and Toupin (1986) found that superficial similarity
helps children to correctly map analogous objects. Gentner
and Maravilla (2018) refer to this as the “transparency” of
the mapping. Relatedly, children may be distracted into map-
ping objects based on superficial similarity (Loewenstein &
Gentner, 2005; Richland, Morrison, & Holyoak, 2006). This
effect is known as cross-mapping (Figure 2 (a)).

Language and concept knowledge play an important
role in the discovery of analogy. Loewenstein and Gentner
(2005) found that providing children with spatial language
cues (such as “on top” or “below”) promotes their tendency
to use relational mapping and therefore to detect analogy.
Richland et al. (2006) inferred from their results that hav-
ing more knowledge of relations and relational concepts may
be the reason why older children make fewer errors when

finding analogies. In mapping tasks conducted with children
by Christie and Gentner (2014), participants performed much
better when they knew terms for the presented relations and
feature values. These observations motivate our assumption
that feature values and relations are represented as concepts
when used to detect analogies.

Methods
Dynamic Field Theory (DFT; Schöner et al., 2016) is a theo-
retical framework for designing neural process models. The
core elements of DFT and building-blocks for neural dynamic
architectures are dynamic neural fields (DNFs) that model
neural populations. In these fields, a time-dependent acti-
vation u(⃗x, t) is assigned to each location x⃗ in some feature
space. The activation essentially emerges from the following
dynamical system:

u̇(⃗x, t) =−u(⃗x, t)+h+ s(⃗x, t)+
∫

g(u(⃗x′, t))k(⃗x− x⃗′) d⃗x′

s(⃗x, t) formalizes an external input at position x⃗ and time t. g
is an activation function. h is a constant negative resting level.
k represents the lateral interaction of the activation dependent
on the distance between field positions.

Each field generates an output g(u(⃗x, t)). g is a monotoni-
cally non-decreasing function, returning values close to 0 for
activation below 0 and close to 1 for activation above; it has
its inflection point at 0.

The interaction kernel k takes the distance between two po-
sitions inside the field and returns the strength of interaction.
Positive values result in lateral excitation and negative val-
ues result in inhibition. Usually, these interaction kernels are
weighted sums of Gaussian bells, realizing local excitation,
mid-range inhibition, and global inhibition. Dependent on
the desired properties of the field, the parameters (amplitudes,
widths, and the global inhibition constant) need to be adapted
(and possibly set to 0 to not appear at all).

Relevant information in a DNF is represented via the pres-
ence of peaks. The lateral interaction together with the activa-
tion function induces instabilities: With no activation above
the threshold, the system converges to its attractive and stable
sub-threshold solution u = h+ s < 0, no peak. When activa-
tion at certain positions in the field is above threshold (super-
threshold), the system converges to its attractive and stable
super-threshold solution u = h+ s+g(u) and local excitation
results in a peak of super-threshold activation. This peak is
self-stabilized: An input that led to a sub-threshold solution
earlier now possibly results in a super-threshold solution, as
the lateral interaction contributes to the activation. c By in-
creasing lateral inhibition, fields can be tuned to allow only
a limited number of peaks, which can serve to model limited
cognitive capacities or the selection between different possi-
ble peak positions. By increasing local excitation, fields can
be tuned to serve as a short-term memory, so that peaks re-
main even without any input. External inhibition is needed to
remove peaks in such fields.
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Information of any kind – such as perceptual information
of a recognized object, spatial attention at a specific location,
remembered object locations, values in a concept space (e.g.
color, size), or relative positions – is represented by peaks in
a field defined over an appropriate feature space.

Dynamic Neural Nodes hold only one value of activation.
Their dynamics are similar to the dynamics of fields. Lateral
interaction reduces to self-excitation. A set of neural nodes
inhibiting each other resembles a field over a discrete feature
space. Nodes are used to represent categories, here in the
form of concepts (color, shape, size, relations). Similar to
fields, there are memory nodes that may remain in their “on”-
state when there is no input.

Different components can be coupled by adding some
function of the output g(u) of one to the input s of another
to enable the construction of complex feature-rich cognitive
architectures.

Model
Following a common paradigm (e.g., Loewenstein & Gen-
tner, 2005), we assume that the base scene is presented first,
followed by a presentation of the target scene in which ana-
logical matches are to be found.

This requires keeping a representation of the base scene
in short-term memory. We hypothesize that this representa-
tion is of discrete/categorical nature, i.e., that the base scene
is described in terms of which feature concepts characterize
the objects (e.g., red, circle, big, . . . ), and which concepts
characterize the relationships the objects bear to each other
(e.g., larger than, left of, . . . ). In the context of analogy, this
choice is justified, as discussed above. For Figure 1, the base
scene description would thus store the conceptual informa-
tion expressible by the phrase “small red circle left of small
red triangle; same size, different shape, same color”.

Afterwards, a mapping is established, which is guided by
the conceptual base scene description. That candidate map-
ping is then evaluated with respect to a goodness-of-fit cri-
terion, which roughly corresponds to the number of match-
ing relationships. When a mapping is accepted, a description
of the analogy can be generated by removing from the base
scene description all non-matching concepts. For Figure 1,
that description would be expressible as “small circle left of
small triangle; same size, different shape, different color”.

Architecture
We combined and extended different mechanisms from the
DFT framework to devise a neural process model. A very
simplified overview is given in Figure 3. It can be understood
as consisting of the following sub-systems:

The Perception system implements early processing of
the visual input. Three-dimensional fields defined over two-
dimensional space (corresponding to the visual array) and
one feature dimension hold information about the objects’
features at positions in space (Schneegans, Lins, & Spencer,
2016). We use fields for the features size, color, and shape.

The Attentional Selection system (Schneegans, Spencer,
& Schöner, 2016) is responsible for object selection during
both base scene description and search for analogical matches
in the target scene: The Spatial Attention Field is defined over
the spatial dimensions with input from the Perception fields,
and is tuned to be selective. This models attention to one
object at a time. A memory field for “inhibition-of-return”
keeps track of already selected objects to avoid selecting the
same object base scene object twice; a second “inhibition-
of-return for target scene processing” is used for hypothesis
testing when processing the target scene, to prevent that ob-
jects are processed in the same order twice. When processing
the target scene, a selection represents a hypothesis: the se-
lected object is the analog to the first (resp. second) object of
the conceptually described base scene.

In the Feature Extraction system, attention is combined
with the perception fields in a “feature/space attention field”
to extract feature values of attended objects. These are then
translated into a conceptual representation via nodes (Richter,
Lins, & Schöner, 2021).

Relation Detection is done between two objects within
one scene. Four relation detection mechanisms get input from
the Attentional Selection end Feature Extraction systems and
store a target and a reference location / feature value. For
spatial and size relations, the relative position/value of the tar-
get as compared to the reference is determined via a steerable
neural map (Schneegans & Schöner, 2012) and translated into
conceptual representations of relational concepts (Lipinski,
Schneegans, Sandamirskaya, Spencer, & Schöner, 2012); for
color and shape there is a comparison mechanism resulting in
a conceptual representation of same or different.

The conceptual Base Scene Description stores informa-
tion about the base scene in short-term memory in the form
of concept nodes (Richter et al., 2021). These nodes are mem-
ory nodes (holding their activation even in the absence of any
input). For each object there is a node for every concept we
account for, whose activation reflects that the respective ob-
ject is described by the respective concept. These nodes are
getting input from the Feature Extraction system. Addition-
ally, there is one node for every relational concept we account
for, whose activation reflects that the two objects stand in that
relation. These nodes get input from the Relation Detection
system. Effectively, the transient feature-based representa-
tion of objects and relationships is thereby converted into a
conceptual description in short-term memory.

The way in which the target scene is processed is guided by
the Base Scene Description. Whether the first object’s analog
or the second object’s analog is currently searched for is con-
trolled by a Control and Gating Mechanism controllable
via nodes. This is a straightforward combination of nodes
that passes information only when activated. Here, it is re-
sponsible for controlling (1) the Attention Bias and (2) the
Evaluation (see below).

The Attention Bias system biases the spatial attention field
towards selecting target objects that match specified features
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Figure 3: A simplified overview over the architecture. Not all connections are shown. The visual input goes into the perception
system (top right). The outcome of analogy detection and structure mapping is represented by the nodes marked in light blue,
the base scene description and the discard nodes. The Process Organization component of the neural architecture is not
displayed; it sequentially activates and deactivates fields/nodes that may contribute and controls some of the coupling terms
via gating mechanisms. This model is based on prior work, with innovation primarily in the evaluation component and the
process organization, which control how hypotheses are tested, how attentional bias is induced by the base scene description
and influences selection in the target scene, and how all neural processes are coordinated.

and relations. For feature-based bias, it contains one three-
dimensional “feature/space attention bias” field for each fea-
ture. Each of these fields is defined over one feature dimen-
sion and two spatial dimensions, and the output of these fields
provides one source of attentional selection bias. This mecha-
nism operates in a similar way as the “scene guidance” mech-
anism reported in Grieben et al. (2020). For relation-based
bias, we introduce a new mechanism to also promote those
positions where an object could match a role (reference or
target) of a specified relation. The overall attention bias has
a higher value at those positions where many features and re-
lations match, effectively promoting the selection of an ana-
logical match that is “superficially similar” in feature values
and “structurally similar” in relations. Input to the attention
bias mechanisms is coming from the Perception system and
the Control and Gating Mechanism.

The Evaluation system checks whether the selected ob-
ject’s features and relations (provided by the Feature Extrac-
tion and the Relation Detection) match the required concepts
from the base scene description (provided by the Control and
Gating Mechanism). For each relation and each feature con-
cept it finds out whether the perceived feature value or rel-
ative position/value is within the concept (“match”) or out
of it (“mismatch”). The “mismatch”-nodes activate the so-
called “discard nodes” which indicate which components of

the Base Scene Description do not match the target scene and
therefore do not belong to the common description of the two
scenes. They contribute to the input of a “reject”-node. Given
sufficient input, it gets activated, which represents that the
selected candidate was not a good analogical match, and re-
triggers the selection process. To account for the higher im-
portance of relations for a correct analogical mapping, “dis-
card nodes” of relational concepts are weighed more strongly
as input to “reject” than those of feature concepts

The Process Organization system controls how different
subsystems of the architecture can effectively contribute. It
is implemented using elementary behaviours (Richter, San-
damirskaya, & Schöner, 2012) and a serial order process
organization (Sandamirskaya & Schöner, 2010). It en-
ables to sequentially activate architecture sub-systems via an
“intention”-node that is deactivated again, when the “condi-
tion of satisfaction” is met, represented by a homonymous
node. In our model, there is one serial order process for the
plain base scene description, and one for the target scene de-
scription.

Base Scene Processing is to be started when the model is
presented with the base scene of the task. It causes an object
to be selected by the Attentional Selection system and to be
stored the Base Scene Description in terms of extracted fea-
ture values, and as the reference in the Relation Detection.
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Figure 4: The base scene description of our example repre-
sented by memory nodes, encoding “a large red triangle right
of a large red circle; having same size, having same color,
having different shape”.

Next, it clears the “Spatial Attention Field” and causes a new
object to be selected, which is also stored in the Base Scene
Description and as the target in the Relation Detection. Fi-
nally, it causes the relations of the Relation Detection to be
stored in the Base Scene Description. The whole scene is
described and the process terminates.

The process for Target Scene Processing is to be started
when the input is set to the target scene and realizes the fol-
lowing: As a first step, the Control and Gating Mechanism is
configured to seek for the first object. Perception, Attentional
Selection, and Feature Extraction are reset to re-trigger the
selection of objects and extraction of features. An object is
selected (e.g. hypothesized to be the first base scene object’s
analog), it is stored as the reference in the Relation Detection,
and the Evaluation is activated. If the “reject”-node stays off,
the hypothesis is accepted and the process continues. The
Control and Gating Mechanism is configured to seek for the
second object, the Attentional Selection is cleared again, and
an object is selected (e.g. hypothesized to be the second base
scene object’s analog) and evaluated. If the object is not re-
jected, the process terminates and the model succeeded to
find an analogy, represented by the activated “success”-node.
If the object is rejected, the whole process organization for
processing the target scene can be restarted. If no more ob-
jects can be selected (since all objects have been tried), the
“fail”-node will be activated, representing the failure to find
an analogy between the two scenes.

Results
We tested our model on different paradigm instances and go
over one example in more detail: the typical but non-trivial
example already presented in Figure 1. Here, the correct map-
ping is to map the circle to the circle and the triangle to the
triangle (1 → 1,2 → 2). Detecting the analogy entails finding
a common description. This common description does not
include the color value, as it differs between the two scenes.

Processing the Base Scene
The architecture is presented with the base scene image, and
the process to represent the base scene in memory is started.
The attention mechanism chooses the more salient object 1
first and extracts a conceptual description that is stored in the

description nodes. Then, object 2 is attended and described.
The relation mechanisms extract relational concepts that are
also remembered in the conceptual description nodes. (Refer
to Richter et al. (2021) for a detailed visualization of a de-
scription process.) The resulting base scene description (Fig-
ure 4) includes all features and relations and is a full concep-
tual description of the base scene.

Processing the Target Scene
The image of the target scene is given to the architecture, and
the target scene processing is started. The process is visual-
ized in Figure 5. The first row shows the activation of the two
“bias”-nodes representing that the model is seeking the ana-
log to either the first object (in this example: a red large circle)
or the second object (a red large triangle). The second row
shows the activation of the success and failure nodes. When
either is above threshold, the process terminates. The third
row shows the activation of the “reject”-node as it sums up the
mismatching features and relations. If it passes the threshold
the chosen object is rejected. This plays a role in less trans-
parent tasks (cross-mapping). The snapshots are taken at the
indicated times and show: the activation of the space atten-
tion field representing attention to a specific location in the
visual field; the activation of the inhibition-of-return indicat-
ing which objects were selected before; and the influence of
the attention bias mechanisms on the attention selection.

Figure 5: Visualization of some nodes and fields during the
target scene processing of our example. Snapshots show the
activation of fields at one time. High activation is shown by
a brighter color. The last row shows the sum of all attention
bias contributions with a different color scale.
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Selecting the First Object According to the serial order,
the bias 1 is activated (representing the seeking after a first
object’s analog), and the perception is reset. The resulting at-
tention bias before releasing the inhibition is shown in the first
snapshot: Size (“large”) promotes both objects, color (“red”)
promotes none of them; shape (“circle”) promotes the object
on the left; the spatial relation (“right-of”) promotes the circle
(as it can take the reference role) and the size relation (“same
size”) promotes both equally. The model chooses the circle,
as shown in the second snapshot. It hypothesizes the analogy
map 1 → 1. The activation of the “REJECT”-node increases,
as the model detects a mismatch (color).

Selecting the Second Object To find the second object’s
analog, the bias 2 is activated, and the spatial attention field
is cleared. The attention bias now consists of minor selective
advantage for the circle (size “large” and target role in the
size relation “same size”) and more selective advantage for
the triangle (size “large”, shape “triangle”, and target role in
both relations “same size” and “right of”). The last snapshot
shows the successful selection of the triangle, representing
the hypothesis 2 → 2. As not too many relations and features
mismatch, the REJECT-node remains in its “off”-state, and
the SUCCESS-node indicates that 0+the architecture came to
a common description, i.e., it found an analogical mapping.

Response The architecture claims that it found an analogy.
This analogy is given via the common description of both
scenes, implicitly represented via the full base scene descrip-
tion and discard-nodes, indicating which part of the descrip-
tion does not apply to both scenes (here: color). The result
is “a large triangle right of a large circle; having same size,
having same color, having different shape”.

We further tested our model on other examples, including
those shown in Figure 2. Instance (a) is a cross-mapping ex-
ample: Distracted by the superficial similarity the model first
chooses the wrong object and rejects this choice only when
the second object is considered. The restarted process finds
the correct mapping where all relations match, although no
features match. Thus, it takes the model longer and a higher-
level evaluation is needed. In (b) the model does not find an
analogy: it tries out both possible mappings but in each case,
the non-matching features and relations are too many and the
choice is rejected. In the third run of processing the target
scene, no object is left and the “fail”-node is activated.

Discussion
We proposed a model that is capable of finding an analogical
mapping between two visual scenes or to determine that there
is none. The model is consistent with the theoretical demands
of SMT and the experimental results reviewed in the Back-
ground section. It uses grounded concept representations
both to create a description of the base scene and to search for
analogous objects in the target scene. The model uses estab-
lished neurally plausible mechanisms of short-term memory,

attentional selection, process organization, visual search, re-
lational processing, and sequence generation. Crucially, the
model is a single dynamical system that generates meaningful
neural representations as stable activation states that emerge
from organized instabilities. Stability enables embedding the
model in wider neural process accounts of grounded embod-
ied cognition, in which sensory input may be time-varying or
actively generated by gaze shifts or orienting behavior, and
which may generate motor output.

This sets our model apart from accounts in which analogy
is established based on ungrounded symbols (e.g., Carpenter,
Just, & Shell, 1990; Lovett, Forbus, & Usher, 2010), even
when such accounts are implemented using neural networks
(e.g., Eliasmith & Thagard, 2001). Our goal also differs from
neural network models of machine learning (e.g., Frankland,
Webb, Petrov, O’Reilly, & Cohen, 2019) that learn analogy
detection from examples (as evaluated by benchmarks; e.g.,
Webb et al., 2020), without aiming at neurally realistic mod-
els of human cognition.

Petrov (2013) describes a hybrid symbolic-connectionist
model that is more closely aligned with our goals. It shares
the notion that cognitive capacities emerge from interactions
between component processes rather than from central pro-
cessing, and provides for context sensitivity through contin-
uous coupling to the environment. We would argue, that the
neural mechanisms of that model are not fully consistent with
the demands of embodiment, however.

Doumas, Puebla, Martin, and Hummel (2022) summa-
rize extensive theoretical work based on the well-known
LISA and DORA architectures that is also close in spirit
and method to our effort. A groundable symbolic short-term
memory of a base scene guides search for analogical objects
in a target scene based on feature values. The perceptual
grounding of visual features is less well embedded in neu-
ral process accounts of visual cognition, we believe, and the
extent to which these models enable embodiment remains to
be examined. Unlike our model, these address the learning of
analogical mapping. A shared concern for both our and this
work is how the hypothesized specific neural circuits scale as
the number of concepts increases.

Generating a conceptual representation of the base scene
makes it possible to account for the influence of language and
concept knowledge as reviewed in the Background section. In
the model, conceptual knowledge is critical to transfer rela-
tions from the base to the target scene. A linguistic cue to a
relational concept may pre-activate the concept node.

Here we developed and demonstrated the model for a spe-
cific, very limited task. Through its mechanisms for weigh-
ing attention bias and evaluation, the model could reach
a wider range of tasks and visual objects. Extending the
model beyond visual structure mapping may enable linking
more quantitatively to human performance (Chen, Peterson,
& Griffiths, 2017). This report is is only a first exploration of
how analogy may be reached in the style of DFT.
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