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ABSTRACT OF THE DISSERATION 

 

Study of nonlinear energy transfer between drift wave turbulence and spontaneously generated 

sheared flows in a laboratory plasma 

 

by 

 

Min Xu 

 

Doctor of Philosophy in Engineering Sciences (Engineering Physics) 

 

University of California, San Diego, 2010 

 

Professor George R. Tynan, Chair 

 

 Experiments in a laboratory plasma are used to identify how small-scale turbulent structures 

give rise to large-scale sheared zonal flows. A new technique based on cross-bispectral analysis has 

been developed and applied to directly measure the nonlinear energy transfer rates between drift 

wave turbulence and sheared flows. In addition fast imaging is used to directly observe the turbulent 



 

xx 

structure dynamics.  A combined study using both Langmiur probe arrays and fast visible light 

imaging shows that the sheared zonal flow is sustained by the emission of drift vortices in the 

central plasma which then propagate in a spiral trajectory, approach the shear layer, and then merge 

into the sheared flow, thereby transferring their momentum and kinetic energy to it. The shear flow 

is then amplified. The results are consistent with previous probe measurements of the turbulent 

Reynolds stress, and provide a detailed confirmation of the basic theoretical expectations for the 

turbulent drive of zonal flows in magnetized plasmas. 
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Chapter 1 
 

Introduction 

 

1.1 Why fusion? 

When discussing energy, most people think of oil, coal, natural gas, solar, wind power, 

hydropower, etc., but few will realize that all the above energy resources actually originate from the 

sun, which is powered by nuclear fusion. Fusion is the mechanism that powers our sun and all the 

stars in the universe, and it is the origin of nearly all forms of energies in nature. Although currently 

fossil fuels provide most of the world’s energy, these fuels supply are limited and we are running out 

of them rather quickly. At current consumption rates, the proven oil reserve will be used up in about 

30-50 years, the proven natural gas reserve can only sustain roughly 60 more years, and the coal 

reserve will be depleted within 150 years [1]. Although it seems that renewable energies such as 

solar and wind, which are large and inexhaustible, will play important roles in future energy supply, 

they are highly intermittent, seasonal and subject to geographic limitations, therefore have limited 

potential. In order to fill up the gap left by the depletion of fossil fuels in the future, we need a 

reliable, sustainable, environmentally benign, and economical source of energy. Fusion is a 

candidate solution that may offer all of the above qualities.  
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1.2 Fusion and the relevant confinement 

1.2.1 Fusion reactions and Lawson criterion 

Nuclear fusion is the process in which multiple light nuclei fuse together to form a single 

heavier nucleus. Generally a fusion of two nuclei with lower mass than iron, which has the largest 

binding energy per nucleon, releases energy; while a fusion of two nuclei heavier than iron absorbs 

energy. The typical nuclear fusion reactions in current fusion energy research are:  

  2 3 4 1(3.5 ) (14.1 )D T He MeV n MeV+ → +     (1.1) 

  3 2 2 1(0.82 ) (2.45 )D D He MeV n MeV+ → +     (1.2) 

  2 2 3 1(1.01 ) (3.02 )D D T MeV H MeV+ → +     (1.3) 

  2 3 4 1(3.6 ) (14.7 )D He He MeV H MeV+ → +    (1.4) 

By far the most promising method to supply fusion energy is through reaction Eqn. (1.1) by heating 

deuterium-tritium fuel to a sufficiently high temperature (10 keV or roughly 100 million degree 

centigrade) such that the thermal velocities of nuclei are high enough to overcome the Coulomb 

repulsion force to produce the fusion reaction.  As a result we need to confine the very hot ions and 

electrons to maintain a sufficient ion density n , at a very high temperature T , for a sufficient long 

time Eτ , as described by the famous Lawson criterion [2]:  

  21 35 10  EnT m s keVτ −> ×         (1.5) 

In the above equation Eτ  is called the energy confinement time, and is a measure of the rate at 

which the system loses energy to the environment.  Although the required density, temperature and 

confinement time have all been obtained, they have not been achieved in the same plasma. The 

energy confinement time is defined as the total stored thermal energy in the plasma W , divided by 
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the energy loss rate lossP : 

  E
loss

W
P

τ ≡            (1.6) 

 

1.2.2 Particle motion in magnetic field 

The idea of using magnetic field to confine the hot fusion fuel particles in the form of plasma is 

called magnetic confinement fusion [3], which is one of the two major branches of nuclear fusion 

research, with the other being inertial confinement fusion [4] that seeks to fuse nuclei so fast that the 

fuel assembly do not have time to expand. The magnetic fusion has been highly developed and is 

generally considered more promising for energy production.  

 

 

 

Figure 1.1 Gyro-motion of ions and electrons in a uniform magnetic field [5].  

 

When an externally imposed magnetic field is present in a plasma, charged particles (ions and 

electrons) will gyrate around the magnetic field lines, as shown in figure 1.1. They can not move 
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across the magnetic field lines and therefore are confined in the directions perpendicular to the 

magnetic field. Along the magnetic field charged particles can move freely thus are not confined.  

 

Ions and electrons in magnetic field experience guiding center drifts, which can be easily seen 

from the fluid momentum equation: 

  ( )dvmn qn E v B p
dt

= + × − ∇
G G GG

       (1.7) 

where the plasma density is denoted by n , the charge carried by the particle by q , electric field by 

E
G

, magnetic field by B
G

, and the pressure gradient by p∇ . By crossing the above equation by B
G

 

and solving the corresponding equation we can get the velocity perpendicular to the magnetic field 

  2 2 2

dvE B p B mv B
B qnB qB dt

⊥
⊥

× ∇ ×
= − − ×
G G G G GG

     (1.8) 

For the conditions of our experiments the first term on the RHS of equation (1.8) is dominant [3], 

and thus we can replacing 
dv
dt

⊥
G

 in the RHS by 2

dv d E B
dt dt B

⊥ ⎛ ⎞×
= ⎜ ⎟

⎝ ⎠

G GG
 and the equation becomes 

  2 2 2

dEE B p B mv
B qnB qB dt

⊥
⊥

× ∇ ×
= − +

GG G G
G

      (1.9) 

Equation (1.9) can be rewritten as 

  2 2

1

c

dEE B p Bv
B qnB B dtω

⊥
⊥

× ∇ ×
= − ±

GG G G
G

      (1.10) 

where c
qB
m

ω =  is the cyclotron frequency and the “+” and “-” signs correspond to positive and 

negative charged particles respectively. The first term in the RHS of equation (1.10) is called the 

ExB drift velocity 2E
E Bv

B
×

=
G G

. It is independent with charge and mass, which means that for both 

ions and electrons their ExB drift velocities are in the same direction and with the same magnitude. 
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Therefore ExB drift does not lead to charge separation in the plasma. The second term in the RHS of 

equation (1.10) is called diamagnetic drift velocity 2d
p Bv

qnB
∇ ×

= −
G

. The diamagnetic drift velocity 

is actually not a guiding center drift of particles, but is instead a fluid velocity related to the fact that 

there are more particles passing through a reference surface in one direction than the other when 

there is a pressure gradient. The last term of equation (1.10) is normally referred as the polarization 

drift 
1

p
c

dEv
B dtω

⊥= ±
G

. Its physical origin is easy to understand: suppose there is an ion at rest in 

magnetic field B
G

 , and suddenly an electric field ( )E t⊥

G
 perpendicular to B

G
 is applied. The first 

thing that the ion does is to move along E⊥

G
. It is only after picking up a velocity does the ion feel 

the v B×
GG

 Lorentz force. Therefore polarization drift can be thought of as a startup drift due to 

inertia. Note that the polarization drift velocities of ions and electrons are in the opposite directions, 

therefore they will result in a charge separation, which we will see lately in the following sections 

that it will lead to drift wave instability.  

 

When the magnetic field is not uniform, there will be other mechanisms that lead to drift 

motions in plasmas, such as curvature drift and B∇  drift, etc. When a particle’s guiding center 

drift follows a curved magnetic field line, it feels a centrifugal force 
2

ˆc c

mv
F r

R
= &G

, where ĉr  is the 

unit vector outward along the radius of curvature. The corresponding momentum equation is: 

  c
dvm F qv B
dt

= + ×
G G GG

         (1.11) 

Following similar derivation for the ExB drift, the curvature drift velocity can be obtained: 
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2

2 2

ˆ1 c c
c

mvF B r Bv
q B qB R

× ×
= = &

G G G
       (1.12) 

In a magnetic field with a transverse gradient the part of particle’s orbit on the stronger magnetic 

field side has a smaller gyro-radius, while the part on the weaker magnetic field side has larger 

gyro-radius. This leads to a guiding center drift due to B∇ . Its drift velocity can be written as: 

  2

1
2B L

B Bv v r
B∇ ⊥

×∇
= ±

G
        (1.13) 

More detailed derivation of the drift velocities can be found at any plasma physics text books such 

as [3].  

 

1.2.2 Neoclassical and turbulent transport 

If the energy (or particle) loss in a magnetically confined plasma is fully diffusive, we can 

model the corresponding transport using random walk processes, for which the diffusion coefficient 

D  can be expressed as: 

  
2

2D
t

δ νδ= =
Δ

          (1.14) 

where δ  here is the average random walk step size and tΔ  is the average time elapsed between 

two successive walks, and ν  is defined as 
1
tΔ

 and is the average random walk frequency.  From 

the diffusion equation with constant diffusion coefficient: 

  2( , ) ( , )r t D r t
t

φ φ∂
= ∇

∂
         (1.15) 

we can estimate the energy confinement time as 

  
2

E
L
D

τ =             (1.16) 

where L  is the plasma pressure gradient scale length and is associated with machine size, and we 
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have taken 
1~
Et τ

∂
∂

 and 2
2

1~
L

∇  . Combining Eqns. (1.15) and (1.16) we can rewrite the 

energy confinement time as 

  
2 2

2 2E
L Ltτ
δ νδ

= Δ =           (1.17) 

The above equation implies that we can get a better confinement by either increasing the machine 

size L  or decreasing the random walk size δ .  In a cylindrical plasma the collisional transport of 

particles and energy can be understood using this simple random walk model, by simply replacing 

tΔ  with the characteristic collision time cτ  and the random walk step size by the Larmor 

gyro-radius Lρ , such that the diffusion coefficient becomes 
2
L

c

D ρ
τ

=  and the corresponding 

energy confinement time becomes 
2

E c
L

Lτ τ
ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  This collisional diffusion in a cylindrical 

plasma is called classical diffusion.   

 

The classical transport model described above is not appropriate in a torus [3], especially for 

high temperature plasmas in which the lower collisional frequency allows particles to have 

trajectories determined by the toroidal geometry, such as banana orbits as shown in figure 1.2. 
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Figure 1.2 The banana orbit of a particle in a toroidal confinement device [6]. 

 

Because the collisions which scatter the ions or electrons out of their trapped banana orbits will 

displace the particles across the flux surface by a distance of the banana orbits width, 1/2 L
q ρ

ε
, 

therefore they will lead to a bigger random walk step size and thus a higher diffusive transport.  

Here q  is the safety factor defined as 
rB

q
RB

φ

θ

= , where r is the minor radius and R is major 

radius; Bφ  and Bθ  are the magnetic field in the toroidal and poloidal direction respectively, and 

ε  is the inverse aspect-ratio which is defined as /a Rε = .  By taking into account that only a 

fraction, 1/2~ ε , of particles are trapped, the effective banana regime diffusion coefficient is 

22

3/2~ L

c

qD ρ
ε τ

, and the corresponding energy confinement time is 
23/2

2~E c
L

L
q

ετ τ
ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 [3].  This 

collisional transport in a torus is known as neoclassical transport, in which case Eτ  is different 

from the classical diffusion by a factor of 
3/2

2q
ε

.  Note that in a toroidal machine typically 1q >  
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in the center of plasma and ~ 2 8q −  at the edge, and the inverse aspect-ratio 0.5ε < , which 

renders 
3/2

2 ~ 0.1
q

ε
, and thus this transport exceeds the classical values.  

 

Nuclear fusion probably would have been realized today if the cross field particle and thermal 

transport follow their neoclassical levels. However with few exceptions their values measured in 

experiments are much higher than the levels predicted by the neoclassical calculation. Figure 1.3 

shows such a case for the L-mode (low confinement mode) discharges [7], where it is very clear that 

all the thermal ( eχ  and iχ ) and particle ( eD , HeD , and TD ) diffusivity are much higher than the 

predicted neoclassical values, especially the electron heat conduction is about two orders of 

magnitude higher than its predicted neoclassical values. This enhanced transport is now believed to 

be largely due to the presence of turbulence in plasmas, or more specifically the low-frequency drift 

wave turbulent fluctuations [7, 8]. Such turbulence-induced high level of thermal and particle 

transport is normally referred to as “anomalous” transport or turbulent transport. Therefore in order 

to achieve a better confinement and ultimately realize fusion, we really need to understand how drift 

turbulence is generated in plasmas, how it induces the large transport, and how we can predict and 

control the turbulence and the resulting turbulent transport. Key aspects of this turbulent transport 

physics are summarized in several recent review papers [8-11]. 
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Figure 1.3. The thermal ( eχ  and iχ ) and particle ( eD , HeD , and TD ) diffusivity in a tokamak 

discharge. The inferred values from experiment are substantially larger than the predicted 

neoclassical values [4].  

 

 

1.3 Basic drift turbulence theory 

1.3.1 Linear electrostatic drift waves and the corresponding instability 

Drift waves and drift turbulence result from the interaction between the dynamics 

perpendicular and parallel to the magnetic field due to the combined effects of density gradient, ion 

inertia, and electron parallel motion.  The name ‘drift wave’ is related to the fact that the wave 

phase velocity (perpendicular to both density gradient and magnetic field) propagates in the 

diamagnetic drift direction of the species with dominant pressure gradient at a speed of 

approximately the same as the diamagnetic drift velocity.  
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A brief derivation of drift wave dispersion relation is shown in the following, which is quite 

simple and is available elsewhere in many text books and papers such as [6, 12, 13]. For the cool 

collisional plasma used in our work it is normal to assume /thi theu k uω<< <<& , where ω  is the 

drift wave frequency, thiu  and theu  are the ion and electron thermal speed respectively, such that 

for the interested time scale electrons can move rapidly along the magnetic field line to establish a 

thermodynamic equilibrium among themselves, but ion motions along B could be neglected.  

Therefore for electron momentum equation along magnetic field, we have 

  e
e e e e e

u
m n u u neE P

t
∂⎛ ⎞

+ ⋅∇ = + ∇⎜ ⎟∂⎝ ⎠
&

& & & &

G
G G

      (1.18) 

where eP  is the electron pressure, E  is the electric field and &  denotes the direction along the 

magnetic field. Here electron dissipation has been neglected.  Because electrons have low inertia, 

the LHS of Eqn. (1.18) is small and thus negligible, and we can then obtain a Boltzmann relation: 

  
0 B e

n e
n k T

φ
=

��
            (1.19) 

where 0n  and eT  are the equilibrium density and temperature, and it is assumed that 1
B e

e
k T

φ� � .  

When considering waves satisfying / thik uω & � , we can neglect the parallel ion motion. For the 

conditions of our experiments the ion motion perpendicular to the magnetic field is dominated by 

the ExB velocity 
ˆ

E
zu u

B
φ

⊥

∇ ×
≈ = −

�
� �  ( ẑ  stands for the direction along magnetic field line), thus 

the ion continuity equation  

  ( ) 0i
i i

n n u
t

∂
+ ∇ ⋅ =

∂
�           (1.20) 

can be rewritten as: 
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  0i
E i

n u n
t

∂
+ ⋅∇ =

∂
�           (1.21) 

For a plane wave solution ( )~ exp ik r i tω⋅ −
G G

, we then have 

  0
0

1
ii n n

B y
φω ∂

= − ∇
∂

�
�           (1.22) 

where y refers to the azimuthal direction, and the density gradient is only in the radial direction. 

Combining (1.19) and (1.22) and using the quasi-neutrality condition e in n n≈ =� � , the drift wave 

dispersion relation could be found: 

  0

0 0

B e

y

k T n
k eB n
ω ∇

= −            (1.23) 

Note that in Eqn. (1.23) the drift wave phase velocity is exactly the electron diamagnetic drift 

velocity. The physical picture of the electron drift wave is shown in figure 1.4, where the 

equilibrium density gradient is towards the left, and the equal density contour is initially a vertical 

line. If a small density perturbation is introduced then it will perturb the equal density contour, as 

indicated by the isobar . In the case when Eqn. (1.19) is valid, i.e., electrons can move freely along 

magnetic field line such that density and potential fluctuations are in phase, higher density regions 

have a higher potential, which means that region ① in figure 1.4 has a higher potential and region ③ 

has a lower potential, leading to an electric field along the y direction at position ②. Therefore an 

ExB drift pointing to the “+x” direction exist at position ②, which will bring in particles from the 

denser plasma region and increase the density at position ②. The fluctuating electric fields at other 

locations are indicated by the arrows under yE , and the corresponding drift velocities for electrons 

and ions are indicated by ev  and iv  respectively (in figure 1.4 iv  is the total drift velocity that 

includes the ExB and polarization drift velocities). By looking at the arrows indicating velocities we 

can tell that the drift motions move the perturbation upward, thus generating an oscillatory drift 
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wave.  

 

 

Figure 1.4 Physical mechanism of a drift wave [13]. 

 

Note that the drift wave described above is purely oscillatory, hence no damping or growth is 

predicted. The drift instabilities are a particular important class of instabilities which have often 

been invoked as the source of plasma turbulence responsible for anomalous transport in tokamaks. 

The origin of resistive drift wave instability could be seen through the following derivation [6]. 

Since the electron polarization drift is negligible due to its low inertia e im M� , the ion 

polarization drift 
1

pi
ci

dEv
B dtω

⊥=
�

�  carries the perpendicular current: 
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  0 0
0

i i
i pi

ci ci

en endEJ en v k
B dt B

ω φ
ω ω

⊥
⊥ ⊥= = = −

� �� �        (1.24) 

where 0in refers to the equilibrium ion density and a plane wave assumption 

( )~ exp i k r tφ ω⎡ ⎤⋅ −⎣ ⎦
G G�  was made, which makes 

dE d k
dt dt

φ ω φ⊥ ⊥
⊥

∇
= − = −

�� � . Due to the 

conservation of charge, perpendicular current should be compensated by parallel current, which 

gives 

  J J⊥ ⊥∇ = −∇& &
� �             (1.25) 

From Ohm’s law we have  

  
0 0

1 1 1 B ek TJ E p ik ik n
en en

φ
η η

⎛ ⎞ ⎛ ⎞
= + ∇ = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
& & & & &

& &

�� � � �      (1.26) 

Substitute (1.26) and (1.24) into (1.25) we have a Boltzmann relation 

  *

0 B e

ibn e
n k T ib

ω σφ
ω σ

+
=

+
&

&

��
           (1.27) 

where 
2

2
B e y

i ci

k T k
b

M ω
= , 0

*
0 0

y B ek k T n
eB n

ω ∇
= − , and 

2

2
ce ci

y ei

k
k
ω ω

σ
ν

= &
& . Combining Eqn. (1.27) with Eqn. 

(1.22) gives the dispersion relation of resistive drift waves in the limit of 1b� : 

  ( )2
* 0iω σ ω ω+ − =&            (1.28) 

Solving the above equation when σ ω& �  we have 

  
2
*

* i ωω ω
σ

≈ +
&

            (1.29) 

This shows that with any finite parallel electron dissipation Im( )ω  is always positive and 

therefore drift waves are always unstable. They have *Rω ω≈  and 
2
*ω

σ &

 is maximum for 1b ≤ . 

Comparing the derivation of Eqn. (1.23) and (1.30) we know that the instability depends on the 
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existence of a phase shift between the wave electric field (or plasma potential) and plasma density 

oscillations. The phase shift could be introduced in the collision-dominated regime by electron-ion 

collisions and in the collisionless regime by Landau damping through the interaction between 

electrons and waves [12]. As a result, in the direction parallel to the magnetic field electrons lose 

their momentum to the background and can not be considered moving freely along the field line. 

Thus the Boltzmann relation (1.19) is no longer valid, and instead ( )( )0/ / 1B en n e k T iφ δ= −��  as 

shown in Eqn. (1.27), where 0δ ≠  [9]. In this case, the charge separation introduced by 

polarization drift (resulted from the different velocities of ions and electrons in figure 1.4) can not be 

cancelled therefore instabilities will develop. A more detailed description about the physical 

pictures of linear drift waves and the linear drift wave instability can be found at [3, 6, 13].  

 

1.3.2 Hasegawa-Wakatani model and Hasegawa-Mima model 

The Hasegawa-Wakatani (HW) model [14, 15] is a basic but very useful model which includes 

necessary components to describe a drift turbulence system: linear drift waves, a mechanism for 

driving instability, and linear or nonlinear damping mechanism for turbulence saturation. A brief 

derivation of this model is given in the following. Starting from the electron momentum equation 

2 2( ) ( ) ( )e
e e e e e e e e e i

un m u u en u B p n e u u
t

φ ξ∂
+ ⋅∇ = − −∇ + × − ∇ − −

∂

G GG G G G G
  (1.30) 

 where 2
e ei

e

m
n e

νξ =  is electron resistivity and the electron pressure gradient is indicated by ep∇ , 

we can obtain the drift velocity perpendicular and parallel to the magnetic field:  

  2 2

1 1ˆ ( )e
e e e e

e e e

p BBu u u z p
B en B en z en z
φ φ

ξ⊥

∇ ×∇ × ∂ ∂
= + ≈ − + + −

∂ ∂&

GG
G G G

  (1.31) 

where ẑ  denotes the direction along the magnetic field. Substitute this velocity into the electron 
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continuity equation:  

( ) 0e
e e

n n u
t

∂
+ ∇ ⋅ =

∂
         (1.32) 

we have: 

2 2

2 2 2 2

1( ) ln lnB e
e e

e e

k TB n n
t B e n z en z

φ φ
ξ ξ

⊥
⊥

∇ ×∂ ∂ ∂
− ⋅∇ = −

∂ ∂ ∂

G
  (1.33) 

Note that 0e e en n n= + �  in Eqn. (1.33). Normalizing the above equation by 
0

ˆ e
e

e

nn
n

≡
�

, ˆ
B e

e
k T

φφ ≡ , 

ˆ
1/ ci

tt ≡
Ω

, ˆ
sρ⊥ ⊥∇ ≡ ∇ , and ˆ /nr nr sL L ρ≡ , where 2

s B e
s

ci ci

c k T
M

ρ ≡ =
Ω Ω

 is the effective ion 

Larmor radius, and dropping all “^”, we get:  

  ( ) ( )0 1ˆ lnz n n c n
t

φ φ⊥ ⊥

∂⎛ ⎞− ∇ × ⋅∇ + = −⎜ ⎟∂⎝ ⎠
� �� �      (1.34) 

where 2 2
1 /the e cic k u ν ω= &  is the “adiabatic parameter”. This is the first equation of the HW model. 

 

Similarly from the ion momentum equation 

  2( ) ( )i i i i i i iMn u u en u B p u
t

φ μ⊥ ⊥

∂
+ ⋅∇ = −∇ + × − ∇ + ∇

∂
G G G G

  (1.35) 

we can obtain the ion velocity perpendicular to the magnetic field: 

  
2

2 2 2 2

i
i i

i i
i

i i

uM u u B
p B u BB tu

B en B en B eB
μφ ⊥ ⊥

⊥

∂⎛ ⎞+ ⋅∇ ×⎜ ⎟∇ × ∇ ×∇ × ∂⎝ ⎠= − − + −

G GG GG GG GG
  (1.36) 

By combining (1.36) and the ion continuity equation 

  ( ) 0i
i i

n n u
t

∂
+ ∇ ⋅ =

∂
G

          (1.37) 

and neglecting the ion parallel motion we then have 

  
2

2 4
2 2 2 2

ˆ
( ) (ln )i B e

i
B e

n M k Tb en
eB t B e z k T eB

φ μφφ φ
ξ

⊥ ⊥
⊥ ⊥ ⊥

∇ ×∂ ∂
− ⋅∇ ∇ = − + ∇

∂ ∂
  (1.38) 
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Following the same normalizations as applied to (1.33), the second equation of the HW model 

can be obtained 

  ( )2 4
1 2ẑ c n c

t
φ φ φ φ⊥ ⊥ ⊥ ⊥

∂⎛ ⎞− ∇ × ⋅∇ ∇ = − + ∇⎜ ⎟∂⎝ ⎠
� � � ��     (1.39) 

where 2 2
1 /the e cic k u ν ω= &  is the “adiabatic parameter” and 2

2 /ii s cic μ ρ ω=  is the normalized ion 

viscosity. Here k&  is the wavenumber along magnetic field line, theu  is the electron thermal speed, 

and eν  is the electron collision frequency. The adiabatic parameter is related to the electron 

parallel dynamics and quantifies the degree that a Boltzmann relation between density and potential 

fluctuations is maintained. The coupled equations (1.34) and (1.39) together comprise the HW weak 

turbulence model.  

 

When 1 ~ 1c  electron parallel momentum will be damped hence there exist a phase shift 

between density and potential fluctuations, and the Boltzmann relation is no longer valid. The new 

relation is ( )( )0/ / 1B en n e k T iφ δ= −�� , where the phase shift δ  is the key for instability. For 

1 1c � , which means electrons can hardly move along the magnetic field line, (1.34) reduces to the 

two-dimensional Euler equation. Drift waves become turbulent typically when / 1s nLρ �  and 

2 1c � , which makes the convective derivative term in the ion momentum equation important [16]. 

In our experiments this condition is satisfied by 1 1c ≈ , / 0.3 0.5s nLρ ≈ − , and 2 0.2 0.3c ≈ −  

inside the plasma [16]. 

 

For 1 1c �  electrons can move very rapidly along magnetic field line to cancel out any 
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excessive charges. This will lead to a Boltzmann relation between density and potential hence the 

drift waves are linearly stable. In this case by adding equations (1.34) and (1.39) together we will 

recover the Hasegawa-Mima (HM) model [16, 17]:  

( ) ( )2 2 1ˆ 0
n

z
t L y

φ φ φ φ φ⊥ ⊥ ⊥ ⊥

∂ ∂⎡ ⎤− ∇ − ∇ × ⋅∇ ∇ − =⎣ ⎦∂ ∂
� � � � �    (1.40) 

 

By looking at the two coupled equations of HW model, we can see that HW model has retained 

the polarization drift term 2

t
φ⊥

∂
∇

∂
� . It makes the ion motion perpendicular to the B field no longer 

incompressible ( 0u⊥ ⊥∇ ⋅ ≠� ) and leads to a charge separation, which combined with any 

mechanism associated with electron parallel momentum dissipation will lead to drift wave 

instability thus generate drift wave turbulence in plasmas. The HW model has also included the 

nonlinear terms ( )2ẑφ φ⊥ ⊥ ⊥∇ × ⋅∇ ∇� �  and ( )0ˆ lnz n nφ⊥ ⊥∇ × ⋅∇ +� � . These two terms originally 

come from the convective nonlinear terms u u⊥⋅∇
G G

 and u n⊥⋅∇
G

, which effectively introduce the 

mechanism of turbulent energy exchange among different turbulent frequencies or spatial scales. 

Figure 1.5 shows the temporal evolution of the energy spectrum ( )2 221
2k k kE n k φ= +  from 

numerical simulation, which suggests that there is an inverse energy transfer to the small 

wavenumber region [15].  
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Figure 1.5 The temporal evolution of the energy spectrum ( )2 221
2k k kE n k φ= +  [15].  

 

In 1979, Hasegawa et al. studied the nonlinear dynamics of drift waves using numerical 

simulations, and found that the potential fluctuation forms a closed potential surface, which is the 

consequence of the generation of toroidally and poloidally symmetric m=n=0 potential structures 

through inverse energy transfer from the drift wave kinetic energy with perpendicular wavenumber 

in the range 0.1 1sk ρ⊥< < , as shown in figure 1.6 [18]. Therefore the HW model naturally 

included the physics of generating turbulence and nonlinearly redistributing the turbulent energy to 

other scales, which we will see in the next section naturally lead to the formation of zonal flows. 
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Figure 1.6 The density contour (a) and potential contour (b) from the numerical simulation of the 

electrostatic plasma turbulence. The closed iso-potential contours indicate that an azimuthally 

directed, radially sheared flow has been generated [18].   

 

1.4 Theoretical understanding of zonal flows generation and their 

back-reaction on turbulence 

In the context of tokamak plasmas, zonal flow refers to the toroidally (also predominantly 

azimuthally) symmetric but radially localized band-like flow structures, i.e., it is an n=m=0 

electrostatic fluctuation with finite radial wavenumber. It got its name because of its similarities to 

the large scale quasi-two-dimensional atmospheric and oceanic flows along the latitude line in 

geophysics, where “zonal” here means latitudinal. Another feature of zonal flow is that it has a zero 

frequency. Figure 1.7 shows a schematic of the typical structures of zonal flows [11]. It is clear in 

the figure that the associated E B×
G G

 flow is in the poloidal direction, and its sign changes with 
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radius.  

 

 

 

Figure 1.7 Zonal electric field and zonal flow. The poloidal cross-section is shown here, where the 

hatched region and dotted region denote the positive and negative charges respectively [11]. 

 

In a cylindrical plasma, the zonal flows are in the direction of diamagnetic drift velocity. 

However in a torus the magnetic field deviates from the geodesic lines (defined as curves whose 

tangent vectors remain parallel if they are transported along the curves), the E B×
G G

 drift velocities 

at neighboring points are no longer parallel to each other. This will lead to a nonzero divergence of 

the E B×
G G

 drift, and thus a compression of plasma density. If the flows are constrained to the 

magnetic surface, i.e. 0rV = , then the divergence of the poloidal flow Vθ⊥∇ ⋅  either can be 

compensated by a parallel flow V∇ ⋅& &  ( 2 cosV qVθ θ= −& , where q is the safety factor), which 

leads to the zero frequency zonal flows (m=n=0), or can be relaxed by launching a sound wave 
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( 2 /GAM sc Rω = , where R is the major) along the magnetic field line, which is called the 

geodesic acoustic mode (GAM, m=1, n=0) [9, 19-21]. In the following part of this thesis, “zonal 

flows” refers to the zero frequency zonal flows and the other branch of zonal flow with finite 

frequency is referred to as “GAM” unless otherwise specified. Figure 1.8 from [20] shows the 

physical mechanism for the density compression caused by geodesic curvature and the helical 

structure of zonal flows.  

 

 

Figure 1.8 (a) The magnetic field and E B×
G G

 drift. The fact that the magnetic field line deviates 

from the geodesic line causes the compression of plasma. (b) The helical zonal flows in a torus [20]. 

 

Because zonal flows occur within a magnetic flux surface where plasma pressure .p const= , 

they cannot tap expansion free energy stored in the temperature, density gradient, etc. that are 

normal to the surface, and as a result they can only be driven by nonlinear interactions that transfer 

energy from drift waves into this n=m=0 mode. Thus the generation of zonal flows naturally reduces 

the intensity and the level of transport caused by drift wave turbulence. This is the main reason why 

the research on zonal flows has been carried out so extensively in magnetic confinement fusion. 

Also because of their symmetry, zonal flows do not generate additional energy or particle transport, 
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and are not subject to Landau damping and primarily damped by collisional processes. All the above 

features are thought to make zonal flows a benign reservoir of free energy in the system [11].   

 

The generation of zonal flows by turbulence is closely related to the inverse energy cascade in 

two-dimensional fluid turbulence, where the dynamics are fundamentally different from those of 

three-dimensional turbulent flows. In 3D turbulence the vortex tube has the freedom to stretch along 

the vortex axis, i.e., 0zV
z

∂
≠

∂
 (here z is along the vortex axis). This stretching process is associated 

with an increase of vorticity in the stretching direction due to the conservation of angular 

momentum, and for incompressible flows the lengthening along the vortex axis will lead to a 

thinning in the direction perpendicular to the axis due to volume conservation of fluid element. As a 

result, this stretching allows a production of enstrophy (mean squared vorticity defined 

as
21  

2 S
u dsε ≡ ∇×∫
G

) and a cascade of kinetic energy from large to small vortices, i.e. from 

lower to higher wavenumbers, where both the energy and enstrophy is strongly dissipated via 

viscosity. This is the well-known direct energy cascade [22]. However in 2D turbulence by 

definition the stretching along vortex axis does not occur, i.e., 0zV
z

∂
=

∂
, and both the enstrophy 

and kinetic energy are conserved [23]. In this case the kinetic energy will be transferred from small 

to large vortices, while the enstrophy will be transferred from large to small vortices [23].  

 

In strongly magnetized plasmas the turbulence is approximately 2D since the turbulent 

correlation length along B field is much larger than the correlation length perpendicular to B, thus 

making the zonal flow formation in plasma very similar to the inverse energy cascade in 2D fluid 

turbulence. Note that there is at least one major difference between these two nonlinear energy 
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transfer processes: zonal flow formation involves a direct interaction between small scales and large 

scales, and is a non-local interaction in wavenumber space, while the inverse energy cascade 

proceeds via a series of local couplings [11].  Zonal flows can be thought of as being generated by 

turbulence via three wave coupling that satisfies the wavenumber constraint 1 2 ZFk k k+ =
G G G

, where 

1k
G

 and 2k
G

 are the wavenumbers of turbulence, and ZFk
G

 denotes the zonal flow wavenumber. 

Figure 1.9 shows the thin triangle for generating zonal flows by drift wave turbulence, where we can 

see that the wavenumbers of drift waves are much bigger than that of the zonal flow 1 2,  ZFk k k
G G G

� .  

 

 

 

Figure 1.9 The generation of zonal flows by drift wave turbulence via three wave (triad) coupling. 

The wavenumbers of drift waves are much bigger than that of the zonal flow 1 2,  ZFk k k
G G G

� , 

indicating a non-local energy transfer in wavenumber space[11]. 

 

The turbulence drive mechanism of zonal flows has been described by a simple model [9, 24]:  

  v vZF x y d ZFV V
t x

ν∂ ∂
= − −

∂ ∂
� �         (1.41) 

where ZFV  denotes the zonal flow velocity, and dν  is the elective zonal flow damping rate. Here 

x and y denote the radial and azimuthal (or poloidal) direction respectively. The time-averaged 
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quantity v vx y� �  is the turbulent momentum flux, and also known as the Reynolds stress. It plays 

the role of redistributing momentum among different spatial locations but does not inject or 

dissipate momentum into or out of the plasma system. The divergence of such a momentum flux 

then corresponds to the concentration or diffusion of momentum, thus should be closely related to 

the velocity profiles in plasmas.  

 

Another feature of zonal flows that makes them a focus of fusion plasma research is that they 

can shear turbulent eddies into smaller ones. At smaller scales, eddies will have a stronger coupling 

to dissipation, thus zonal flow shearing can effectively reduce the turbulence intensity and the 

resulting turbulent transport. Zonal flows present a spatio-temporally complex shearing pattern, as 

shown in figure 1.10 (a) [21]. In position space the zonal flows shearing is random because zonal 

flows have complex spatial structures, i.e., the signs and amplitudes of zonal flow rotations in the 

poloidal direction are random variables of radial position; while in the time domain although zonal 

flows have a zero-mean frequency the zonal flow shearing is also random because zonal flows are 

with random life times. Thus the shearing could be considered as a random diffusive process 

consists of many short kicks, as shown in figure 1.10 (b). The change of turbulence wavenumber, rk
G

, 

due to the zonal flow shearing is considered diffusive in wavenumber space and could be modeled 

as [11]: 

2
r kk D tδ =             (1.42) 

where the turbulent diffusion rate is 2 '2
k ZF cD k Vθ τ= � , and ⋅ ⋅ ⋅  denotes the average.  
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Figure 1.10 (a) (Left) spatially complex structures of zonal flows. (b) (Right) zonal flow shearing is 

a random, diffusive process consists of a series of kicks [21]. 

 

Based on the above discussion, we can clearly see that drift wave turbulence and zonal flows 

are closely coupled: on the one hand drift turbulence can generate large scale zonal flows through 

the typical three-wave interaction, in which small-scale turbulent eddies nonlinearly transfer their 

kinetic energy and momentum into a large-scale zonal structure to maintain it against damping; on 

the other hand zonal flows can actively shear turbulent eddies into smaller ones, at which scale the 

dissipation of kinetic energy and enstrophy of those smaller eddies are stronger. Both of the 

generation and shearing processes of zonal flows can effectively reduce the turbulence intensity and 

the resulting turbulent energy and particle transport, thus will lead to a better plasma confinement.. 

Also note that both the mean shear flow and the zonal flow can reduce the transport by altering the 

wave-particle interaction time, which determines the “cross-phase”, even for fixed turbulence 

intensity. Due to this feedback loop between zonal flows and turbulence, plasma turbulence now can 

be regarded as a combination of drift waves and zonal flows, which interact with each other and 
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self-regulate to reach an equilibrium state, are often referred to as drift wave-zonal flow turbulence. 

This process is schematically shown in figure 1.11 [10, 11].  

 

 

 

Figure 1.11 The paradigm of drift wave-zonal flow system for plasma turbulence. Density or 

temperature gradients generate turbulence, which causes an enhanced turbulent transport. And the 

generated turbulence also nonlinearly transfer their energy and momentum to zonal flows, in which 

process reduces the turbulence intensity. Zonal flows will also give a back-reaction on turbulence to 

further reduce its intensity by either shearing or trapping. Due to their symmetry, zonal flows do not 

contribute to transport, and therefore serve as benign reservoir of free energy in the system [10]. 

 

Finally it is also important to note the difference between zonal flows and the mean shear flow, 

which can also exist in the plasma. First, zonal flows are exclusively driven by turbulence through 

nonlinear coupling. Therefore if there is no turbulence, there will be no zonal flow; while the mean 

shear flow can either be driven by turbulence [24] or neoclassical ion orbit loss [20], or can be 

externally excited by techniques such as electrode biasing [25, 26] or momentum input. Second, 
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zonal flow shearing is spatially and temporally random, which increases the turbulence radial 

wavenumber rk
G

 through a diffusive process. As we can see from Eqn. (1.42), rk
G

 increases as 

1/2~ t ; while the coherent shearing generated by the mean shear flow increases rk
G

 as ~ t  [11]. 

Therefore both type of shear flows act to reduce the turbulent transport. For a detailed discussion of 

the difference please refer to the review paper [11].  
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Chapter 2 
 

Previous experimental research on the 
plasma drift wave-zonal flow system 

 

2.1 The link between turbulence and confinement 

Drift turbulence can come from a variety of free energy sources. When there is significant ion 

heating, it can be generated via a type of instability driven by ion temperature gradient (ITG) [1, 2]; 

similarly when there is strong electron heating, the electron temperature gradient (ETG) could be 

large enough to trigger the ETG turbulence [3]; the presence of trapped particles can also lead to 

instabilities, such as the trapped electrons mode (TEM), which can be driven by a combined effect 

of trapped electron collisions and electron temperature gradient [4-6]. For laboratory plasma or the 

edge tokamak plasmas, the collisional or resistive drift turbulence can occur. Figure 2.1 presents the 

heavy ion beam probe (HIBP, which measures the plasma density and potential by injecting singly 

charged ions [7]) measurements in ISX-B tokamak, which shows that density and potential 

fluctuations drastically depart from the Boltzmann relation at the edge 0.95ρ > , indicating that 

parallel electron dissipation is strong in this region [8].  
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Figure 2.1 The ratio of normalized plasma potential to normalized density fluctuations is plotted out 

as a function of radius. The ratio is significantly bigger than the expected value ~1 for the case of 

adiabatic electrons. (a) is for ohmic discharge and (b) is L-mode discharge [8]. 

 

In a variety of toroidal confinement experiments, the turbulent particle/heat flux appears to be 

within about a factor of 2 of the value needed to explain the observed global confinement. The 

parametric variations of particle or heat confinement and turbulence have been studied in many 

experiments. In these cases, the flux is integrated over the flux surface and the resulting total particle 

or heat loss is compared against expectations from global confinement measurement. For example, 

measurements in ISX-B, figure 2.2 [8], showed that the total particle flux of beam-heated discharges 

is an order of magnitude larger compared to ohmic discharges, which is consistent with changes in 
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global confinement. In the beam heated discharges, the convective thermal electron heat flux was 

roughly consistent (within a factor of 2) with global energy confinement time.  

 

 

 

Figure 2.2 Radial profiles of turbulent particle flux in the ISX-B tokamak. The empty squares 

correspond to the case with neutral beam heating, and the filled squares are for the case without 

beam heating [8].  

 

The first measurement of the convective and conducted turbulent heat flux was carried out in 

the TEXT tokamak [9], as is shown in figure 2.3. The results showed that turbulent fluctuations 

were dominantly responsible for the energy loss at the edge region, and sufficient to explain the loss 

of heat from the core plasma; but deeper in the plasma the convective turbulent heat flux was much 
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lower than the flux estimated to be exhausted from the plasma core, suggesting that some other 

mechanism such as turbulent conduction by temperature fluctuations could be responsible for the 

loss of heat in the core plasma region.  

 

 

 

Figure 2.3 Radial profiles of total ion and electron heat flux from power balance q  (shaded area), 

the total convective heat flux convq  predicted by a neutral-penetration code and Hα  

measurements, and the turbulence-introduced heat flux E
convq �

 [9].  

 

2.2 Existence of zonal flows in plasmas 

The first identification of zero-frequency zonal flows [10, 11] where ions are magnetized was 

carried out on the CHS heliotron (R=1.0 m, a=0.2 m, B=0.9 T) using two heavy ion beam probes 

(HIBP) [7]. These two HIBPs were toroidally separated by 90D , as shown in figure 2.4 (a). The 
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waveforms of fluctuations at two toroidal locations are quite identical with each other if the two 

observation points are on the same magnetic flux surface (figure 2.4 (b)). If the two observation 

points are located on slightly different flux surface the fluctuations are with a constant phase 

difference determined by the separation distance in the radial direction. These above observations 

apparently confirmed the symmetry of zonal flows in the toroidal direction and the finite rk
G

 in the 

radial direction. Recently the zonal flow symmetry in the poloidal direction was confirmed by a 

L-mode discharge in DIII-D (R=1.73 m, a=0.6 m, B=2.0 T) using a beam emissions spectroscopy 

(BES) [12], where for the two observation points separated by 1.2 cm in the poloidal direction no 

poloidal phase shift was found for the lower frequency region 10 f kHz<  (but with a finite 

coherence 0.15-0.3 between these two channels).  

 

The 3D structures of the GAM was also investigated in HL-2A (R=1.65 m, a=0.4 m, B=2.3-2.4 

T) for an ohmic discharge, which confirmed the symmetry of GAMs in the toroidal and poliodal 

directions, and the finite correlation length in the radial direction was also observed [13].  
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Figure 2.4 Zonal flow structure measurement in CHS. (a) The position of the two toroidally 

separated twin HIBPs. (b) Waveforms of the electric field (or potential difference) on the same 

magnetic flux surface at difference toroidal positions. (c) Waveforms of the electric field (or 

potential difference) on slightly different magnetic flux surface at different toroidal positions [10, 

11]. 

 

The research on the generation of shear/zonal flows by turbulence is strikingly important 

simply because they can serve as a tool to suppress turbulence and the resulting turbulent transport. 

The process in which turbulence drives zonal flows is essentially the process in which small-scale 

turbulent fluctuations nonlinearly transfer their energy and momentum to large-scale zonal flows. 

The first experiment to attempt to study how the energy is nonlinearly transferred from high k to low 

k region was performed on the TEXT tokamak [14]. The one fluid model suitable for weak parallel 

dissipation used there was formed in the wavenumber domain. Therefore a sufficient high spatial 

resolution was needed for actually computing the nonlinear energy transfer function. Due to 
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experimental limitations, two poloidally separated Langmiur probes were used to measure the 

density fluctuations and the relevant spectral analysis was done on frequency domain since Ritz 

argued that a frozen flux approximation could be safely used. It was found that the energy in the 

linearly unstable frequency range (30 to 110 kHz) was transferred predominantly to the linearly 

stable frequency range (10 to 40 kHz). Recent work on the TJ-K stellarator measured the two-field 

nonlinear energy transfer in the wave number domain [15]. The results are qualitatively consistent 

with the turbulence drive mechanism of zonal flows, with kinetic energy transferred to larger scale 

and energy associated with density transferred to smaller scales. The nonlinear energy transfer 

measurement was also carried out on the H1-heliac toroidal machine (R=1.0 m, a=0.2 m) by using 

both the above one fluid model developed by Ritz et al. and the amplitude correlation technique [16], 

which showed that the energy associated with floating potential nonlinearly coupled from unstable 

frequency region (20-50 kHz) into the lower frequency region (0-15 kHz) associated with large 

coherent structures, and into the broad band turbulence region.  

 

2.3 Effects of zonal flows on turbulence 

Only a few experimental observations have been made on the interaction between zonal flow 

and turbulence. Figure 2.5 shows the turbulence modulation due to the stationary zonal flows in 

CHS [17, 18], where the comparison between the waveforms of turbulence and the zonal flow 

power shows that the turbulence power increases (decreases) when the power of zonal flow 

decreases (increases). This anti-correlation clearly demonstrates that stationary zonal flows can 

modulate turbulence.  
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Figure 2.5 Turbulence modulation due to stationary zonal flows in CHS [17, 18]. (a) Evolution of 

the wavelet spectrum of electric field. (b) Evolution of zonal flows ( )AZ t . (c) FFT spectrum of 

wavelet power evolution of frequencies 30 to 100 kHz. (d) Conditional averages of wavelet power 

spectra around the maxima and minima of the zonal flow.  

 

Similar observations have shown that GAMs modulate turbulence amplitude. Figure 2.6 shows 

such a modulation, and there exists an anti-correlation between the envelope of density fluctuation 

and GAMs [19].  
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Figure 2.6 Turbulence modulation due to GAM in JFT-2M [19]. (a) GAM fluctuation. (b) The 

ambient density fluctuation. (c) Power spectrum of the envelope of density fluctuation. (d) 

Coherence between GAM and density fluctuation. 
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2.4 Mean shear effects on turbulence and transport 

When it comes to the question of how shear/zonal flows can suppress turbulence and make a 

better confinement, we must mention the high confinement mode (H-mode). The discovery of 

H-mode is probably one of the most important things that have happened in nuclear fusion research. 

In 1982 H-mode was found in the “old” ASDEX tokamak (which is now in China as HL-2A) [20, 

21]. When enough neutral beam heating (NBI) power was injected into the plasma, the energy 

confinement time was observed to spontaneously double from the previous low confinement regime, 

and the energy, particle, impurity and momentum transport were improved simultaneously. This 

type of behavior has been subsequently observed in many different tokamaks, such as PDX [22], 

DIII-D [23], and JET [24], etc., and finally in the W7-AS stellarator [25]. The change of the 

confinement is first apparent at the edge of plasma where there is a rapid increase in the pressure 

gradient mainly due to the increase in edge density. Thus the edge can be thought of as having a 

transport barrier, inside which the density gradient is very high. When this edge transport barrier 

(ETB) appears, the density of the whole plasma volume increases on the confinement time scale. It 

is generally accepted that the improved confinement is due to the turbulence reduction by a 

E B×
G G

shear flow developed at the edge of plasmas. The PCI (Phase Contrast Imaging) 

measurement in DIII-D showed that in the region where there is a strong electric field the turbulent 

radial correlation length is significantly decreased [26]. Figure 2.7 was taken from [26] to show this 

turbulent correlation length reduction during the L-mode to H-mode transition. Note that in figure 

2.7 (b) the turbulent correlation length was reduced roughly by a factor of two, and figure 2.7 (c) 

shows the L-H transition through the Dα  emission intensity (a measure of the recycling between 
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the plasma and the surrounding surfaces). The Langmiur probe measurement in DIII-D also 

suggested that the plasma poloidal rotation plays a critical role in the L-H transition, which implied 

that the physics introduces this rotation determines the transition. 

 

 

 

Figure 2.7 (a) RMS fluctuation amplitude shows a reduction of fluctuation intensity in the H-mode 

regime. (b) Turbulent radial correlation length. (c) Dα  light emission from the separatrix region 

[26]. 

 

The turbulent particle flux inferred from the correlation of density and potential fluctuations 

was found to be greatly reduced across the whole edge and SOL (scrape-off layer) region, as shown 
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in figure 2.8 [27], when plasma develops from L-mode to H-mode phase. The particle flux reduction 

is due to both changes in turbulence amplitude and cross-phase between density and potential 

fluctuations.  

 

 

Figure 2.8 (a) The frequency resolved turbulent particle flux and (b) density potential cross-phase in 

the ohmic and ohmic H-mode [27]. 

 

Although H-mode has been discovered for almost 30 years, and there have been substantial 

experimental and theoretical efforts put into it, the physics origin or trigger behind H-mode has not 

been quite understood, most notably the sudden suppression (or disappearance) of edge turbulence 
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with its driving source (the gradients) increase. To verify if the mean shear flow is really triggered 

by turbulence via a nonlinear process akin to zonal flow generation a simultaneous measurement of 

the turbulence and shear flow intensity is necessary but not enough. A direct measurement of the 

energy flow into the shear flow would be sufficient and conclusive. Equivalently if there is a transfer 

of momentum from the turbulence to the shear flows to maintain them against damping, a 

measurement of the turbulent momentum flux (i.e., Reynolds stress) profile and the shear/zonal 

flow intensity profile evolution would be very useful. Unfortunately for both case, no such 

experiment has ever been done on strong magnetized plasmas. This is mostly because both of the 

above verifications require a multi-channel plasma potential measurement, which is difficult in high 

performance tokamaks. One possible way is through HIBP, which is very expensive; another way is 

by Langmiur probe array, which is much cheaper but can only be placed at edge under very limited 

occasions. For lower temperature laboratory plasmas detailed measurements are made possible 

through Langmiur probe arrays to test these theoretical pictures. Motivated by these considerations 

we give a brief summary of experiments done on the linear laboratory plasma device (CSDX).  

 

2.5 Previous experiments on CSDX 

The Controlled Shear Decorrelation Experiment (CSDX) is a linear plasma device in 

University of California, San Diego. CSDX is a 2.8 m long linear helicon plasma device equipped 

with a 13.56 MHz half wave-length azimuthally symmetric (RF wavefields have azimuthal mode 

number m=0) helicon source with a radius rsrc=4.5cm, which typically produces a plasma with an 

on-axis density ~ 1013 cm-3 and on-axis electron temperature ~3 eV. The typical operation magnetic 
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field is 0.1 T, and the injected RF power is 1.5kW (reflected power less than 30 W), and the gas fill 

pressure is 3.2 mTorr. A number of experiments have been done on CSDX, including a controlled 

transition from coherent drift wave oscillations to drift turbulence [28]; evidence for the 

turbulence-drive mechanism of the spontaneous rotation in the device [29, 30]; a study of the 

statistical properties of Reynolds stress [31]; and evidence for a edge-drive mechanism through the 

influence of residual stress at the plasma boundary [32]. 

 

The plasma in CSDX is very stable and very repeatable, and it will make a gradual transition 

from coherent drift wave fluctuations into a turbulent regime as the magnetic field is increased. 

Figure 2.9 shows the transition process [28]. It is clear that when the magnetic field increases from 

500 Gauss to 1000 Gauss, potential fluctuations evolve from a combination of discrete modes into a 

broadband turbulent stage. Also notice that at 700 Gauss there develops one single dominating 

coherent mode at 10 kHz.  
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Figure 2.9 The spatially resolved spectrum for floating potential at different magnetic field. It is 

clear that when the magnetic field increases from 500 Gauss to 1000 Gauss, potential fluctuations 

evolves from a combination of discrete modes into a broadband turbulent stage [28]. 
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As the magnetic field increases, the energy contained in the linearly stable fluctuations with 

low wavenumbers ( 0.5sk ρ⊥ ≤ ) increases over a factor of 100, while the energy contained in those 

linearly unstable fluctuations with intermediate wavenumbers ( ~ 1 2sk ρ⊥ − ) increases by only a 

factor of 2-3 (shown in figure 2.10). The energy in these linearly stable modes must come from a 

nonlinear process, implying that there exists a nonlinear transfer of energy from the linearly 

unstable region into the linearly stable region, which seems to be consistent with the theory of 

fluctuations driven shear flow.  

 

 

 

Figure 2.10 Azimuthal wavenumber spectral evolution suggests an inverse energy transfer [28]. 

 

As will be shown in chapter 3, the nonlinear terms ( )n u n⋅∇
G

 or ( )u u u⋅ ⋅∇
G G G

 in the 

modified plasma continuity or momentum equation are the only terms responsible for redistributing 
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turbulent energy among different turbulent frequencies or spatial scales through nonlinear 

wave-wave interactions. In the Fourier domain, these two terms correspond to the 3-wave 

interaction, i.e., two waves beating with each other to generate the 3rd wave, of which the amount of 

energy transferred can be quantified by bispectra. Therefore we can infer that 3-wave interaction is 

the only process that nonlinearly transfers the turbulent energy in the Fourier domain from the 

linearly unstable wavenumber regions to the linearly stable regions.  

 

By using a Langmiur probe array, the plasma ion velocity in the azimuthal direction could be 

obtained by using Mach probe and the time-delay estimation techniques [33]. It was found that the 

plasma spontaneously rotates in the azimuthal direction even without any external momentum input, 

and the time average rotation speed has a velocity shear, as is shown in figure 2.11 [34]. An 

azimuthal momentum conservation analysis was done by substituting the experimentally measured 

Reynolds stress profile into an azimuthal momentum balance equation given below   

  ( )2
2 2

1 1
r i n ii

u u
r u u u r

r r r r r r
θ θ

θ θν μ−

⎡ ⎤⎛ ∂ ⎞∂ ∂
= − + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

� �   (2.1) 

where ru uθ� �  is the Reynolds stress computed from floating potential channels, i nν −  is the 

ion-neutral collision rate, and iiμ  is the ion viscosity, and then estimating the ion-neutral drag and 

ion viscosity, and then finally solving the equation to infer the time average azimuthal velocity 

profile [29]. The result is shown in figure 2.11 by the black solid line, which agrees well with the 

Mach probe data (blue curve) and the TDE measurement (black diamonds). 
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Figure 2.11 Both the Mach probe data (blue curve) and the TDE inferred azimuthal velocity (black 

diamonds) show that there is a shear flow in the plasma. The black solid line is the inferred velocity 

from turbulent momentum conservation analysis, which agrees well with the Mach probe and TDE 

measurement. The red curve is from a two-field turbulence simulation and is consistent with the 

experimental measurements [34]. 

 

Based on the above analysis, it was concluded that the turbulent Reynolds stress determines the 

spatial distribution of azimuthal momentum throughout the plasma. But one natural question to ask 

when staring at the described azimuthal profiles is: why does the velocity shear exist at the plasma 

edge? A comparison of the Reynolds stress profile against the velocity profile can partly answer this 

question. Figure 2.12 (c) shows the Reynolds stress profile and 2.12 (e) is the velocity profile. Note 

that the maximum negative Reynolds stress gradient lies in the same region (shaded) as the 
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maximum azimuthal velocity, which is consistent since a negative divergence means a 

concentration of turbulent momentum. This result apparently implies that turbulence carries 

momentum from other radial positions and concentrates it at the edge region.  

 

 

 

Figure 2.12 Plasma equilibrium profiles. (a) Density (solid black) and RMS of density fluctuation 

(solid red). (b) Turbulent particle flux. (c) Reynolds Stress. (d) Estimated ion viscosity. (e) Plasma 

azimuthal velocity [31]. 

 

But other closely related questions remain unanswered, including: why is the momentum 

concentrated at the edge? What makes the edge region special from other radial positions in the 
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plasma ? Where does the net azimuthal momentum come from?  

 

Recent experiments suggest an edge drive mechanism to explain the origin of the azimuthal 

momentum [32]. The experiment was based on the calculation of a non-diffusive turbulent 

momentum transport term which has been also termed the residual stress. Generally the Reynolds 

stress term, which is the total turbulent momentum transport, can be modeled as [35]:  

  eff res
r r r

u
u u V u S

r
θ

θ θ θ θχ
∂

= − + +
∂

� �       (2.2) 

where θχ  is the turbulent diffusivity, eff
rV  is the convective velocity (pinch velocity), and res

rS θ  

is the residual stress. Due to the symmetry of the plasma in CSDX, the pinch term is estimated to be 

zero since it relies on the presence of trapped particles. By estimating turbulent diffusivity from the 

turbulent correlation time 2
r cuθχ τ= �  and measuring the azimuthal velocity profile, the 

diffusive momentum transport term can be constructed and subtracted from the total momentum 

flux ru uθ� � , thus inferring the residual stress term. Figure 2.13 (e) shows the resulting residual 

stress profile, which peaks at the plasma edge. When combined with a no-slip boundary condition 

in the outer regions (r>5cm or so) due to strong flow damping by neutral gas in this region, this 

turbulent stress then gives rise to a net plasma fluid rotation in the observed direction [32].  
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Figure 2.13 Inferring the residual stress term and relevant profiles. (a) Equilibrium density. (b) 

Reynolds stress. (c) Mean square of turbulent radial velocity. (d) Constructed diffusive turbulent 

transport term, diff

u
r
θ

θπ χ
∂

= −
∂

. (e) Inferred residual stress. (f) Equilibrium azimuthal velocity 

[32]. 

 

2.6 Motivation behind the dissertation 

The above sections merely summarize the extensive efforts from both experimentalists and 

theorists on the turbulence and shear/zonal flows studies. We now have a better understanding of the 

anomalous transport problems, particularly we have shifted from the basic concept of “drift wave 

turbulence” to the new “drift wave-zonal flow turbulence” paradigm, which shows that drift waves 

and zonal flows are inherently interdependent on each other and the plasma system is a 
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self-regulating system. The existence of zero-frequency zonal flow and GAM has been confirmed in 

experiments through the measurement of their symmetry properties [10, 11, 36, 37]. It is now 

believed that zonal/shear flows do regulate and suppress turbulence and the cross-field transport but 

there are only very limited and inconclusive observations actually supporting the turbulence-drive 

mechanism of shear/zonal flows, especially in tokamaks.  

 

Despite the great efforts spent on this drift wave-zonal flow problem, at least from the 

experimental side our understanding is very basic and there are far more questions asked than 

answered. Some of the unanswered questions include: Can we find direct microscopic evidence that 

shear/zonal flows are really generated by turbulence through nonlinear processes? How big will the 

zonal flows intensity be? This will involve the linear and nonlinear saturation mechanism of zonal 

flows, and the branching ratio of energy between turbulence and zonal flows, i.e., what fraction of 

the free energy will flow to shear/zonal flows and what fraction will flow to turbulence. Of course 

the effectiveness of the shear/zonal flows back-reaction on turbulence is also very important. What 

is the origin of intrinsic rotation (which the plasma rotates itself without external momentum input)? 

This is important since the rotation can lead to a better confinement. In future fusion reactors the 

H-mode regime will be the operating regime. Thus we at least need to know the origin of the L-H 

transition. There are limited observations suggesting that shear flow is the key to the L-H transitions 

and that turbulence feeds the shear flow, but there are contradictory observations as well [34].  

 

Motivated by these considerations this dissertation work was oriented to answer two inherently 

related questions:  
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(1) How is the turbulent energy and momentum redistributed over different scales and frequencies? 

Previous time domain analysis on CSDX showed that turbulence mediates the turbulent momentum 

transport throughout the plasma, and that the turbulent Reynolds stress profile is quantitatively 

consistent with the time-averaged azimuthal velocity profile, as seen in the previous section. This 

proved that turbulence drives the shear flow. But in order to answer what components (frequency or 

scale) of the turbulence drives the shear flow, we need to directly measure the nonlinear energy 

transfer between turbulence and shear flows in Fourier domain.  

 

(2) What is the underlying turbulent dynamics that leads to the nonlinear energy and momentum 

transfer from turbulence into shear flow? To answer this question, we need both the statistical 

analysis from probe measurement and the dynamic picture from the fast imaging. Answering this 

question will also help to identify the origin of the sheared flow.  

 

The rest of this dissertation is arranged as the following: Chapter 3 presents all relevant 

methods used in the dissertation, and comments and discussions are made as needed.  

 

In chapter 4, the turbulent energy transport equations for density and velocity (or potential) 

fluctuations are derived in the frequency domain, and a detailed design of the dual 3x3 Langmiur 

probe array used to measure the nonlinear energy transfer rates is given. Bispectral data analysis 

method has also been explained and discussed. Finally initial experimental results are presented.  

 

Chapter 5 applies this technique and presents the nonlinear energy transfer measurement 
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results, which clearly show that turbulent energy with intermediate frequencies (~10kHz), which 

correspond to azimuthal mode number m~3 fluctuations, are nonlinearly coupled to low frequency 

azimuthally symmetric sheared flows. This means that the large-scale sheared azimuthal flows in 

CSDX are nonlinearly driven by small-scale turbulent fluctuations. The radial flux of vorticity is 

found to be dominantly responsible for the nonlinear kinetic energy transfer to the sheared flows.  

 

Chapter 6, based on a combined study of the dual 3x3 probe array and fast imaging, proposes a 

physics picture for the statistical results of nonlinear energy transfer into sheared flows, in which 

drift wave packet structures with density and vorticity fluctuations are nonlinearly generated in the 

central plasma pressure gradient region, then as they spiral out and approach an axisymmetric, 

radially sheared azimuthal flow located at the plasma boundary they are azimuthally tilted, stretched, 

and finally absorbed into the shear layer. This is the mechanism that amplifies a pre-existing shear 

flow. Similar mechanisms likely operate at the edge of confined toroidal plasmas and should lead to 

the amplification of sheared flows at the boundary of these devices as well. 

 

 The last chapter 7 concludes the dissertation by a summary and discussions about future plans.  
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Chapter 3  
 

Experimental setup and data analysis 
methods 

 

In this chapter, a brief description of the experimental hardware, including the CSDX linear 

plasma device, relevant diagnostics, as well as the methods used for the data analysis, will be 

presented.  

 

3.1 CSDX linear plasma device 

The Controlled Shear Decorrelation Experiment (CSDX) is a linear cylindrical plasma device 

at University of California, San Diego, and is shown in figure 3.1 in the following [1]. The 

cylindrical vacuum chamber is 2.8 m in length and 0.2 m in diameter, and is immersed in a uniform 

magnetic field generated by a series of solenoidal coils, which can be adjusted continuously from 0 

to 1000 Gauss. The field lines terminate on insulated plates on both ends of the machine, which 

ensure that there is no current running through the end plates, and that the axial current fluctuations 

introduced by drift waves can only be balanced by cross-field ion polarization drift current given by 

the equation J J⊥ ⊥∇ = −∇& & . The spatial variation of the magnetic field is negligible at the central 

sections of the device where all Langmiur probe data used in this dissertation were taken. The 

pressure in the vacuum chamber is maintained by a typical two-step vacuum pumping system with a 



59 

 

mechanical pump as the first stage and a turbo pump on the second stage. There are several pressure 

gauges used to monitor the gas pressure before and during plasma discharges, including a 

convectron gauge, an ion gauge, and a baratron gauge. The baratron gauge provides a direct 

measure of the total kinetic pressure, and is functional during plasma discharges. Working gases 

(typically argon) are injected by mass flow controllers installed at the exit plane of the RF helicon 

source which is used to ionize the gas to produce plasmas. RF power at 13.56 MHz is coupled to the 

plasma by an azimuthally symmetric antenna. The RF power could be set to any value between 0 

and 3 kW, with a feedback system to ensure the reflected power is less than 30 W. Figure 3.2 shows 

a picture of the CSDX plasma machine.  

 

 

Figure 3.1 Schematic of the Controlled Shear Decorrlation Experiment linear plasma device [1]. 
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Figure 3.2 Picture of the Controlled Shear Decorrlation Experiment. 

 

3.2 Diagnostics 

Most of this thesis work is based on three diagnostics: two different multi-tip electric Langmiur 

probe arrays for both plasma density and potential measurements, and a fast imaging system for the 

two-dimensional turbulent density and velocity fluctuations measurements. These diagnostics are 

very powerful tools to study the drift wave-zonal flow turbulence in CSDX.  

 

3.2.1 The dual 3x3 Langmiur probe array 

For a laboratory plasma device, a Langmiur probe is probably the best and widely used 

diagnostic, simply due to the fact that it is relatively easy to construct; and that it can offer excellent 
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spatial resolution as well as time resolution which most other diagnostics can not offer. In order to 

measure the nonlinear internal and kinetic energy transfer rates, which will be discussed in the next 

chapter, a dual 3x3 probe array was designed, built and installed on the machine, which is shown in 

figure 3.3 [2] 

 

 

 

Figure 3.3 Dual 3x3 Langmiur probe array, of which one 3x3 array (9 channels) is for floating 

potential and anther 3x3 array is for ion saturation current (or density). These two arrays shift in the 

axial direction by 1.5 mm [2]. 
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This dual 3x3 array has a total of 18 probe tips arranged in two 3x3 arrays. One 3x3 array gives 

floating potential ( , , )x y tφ  and the other gives density or ion saturation current ( , , )n x y t . These 

two arrays are shifted by 1.5 mm in the axial direction (along the B field), and the introduced phase 

shift due to this 1.5 mm distance is negligible because of the typical long correlation length (meters) 

in the axial direction. In the azimuthal and radial directions these two arrays are overlapped with 

each other, hence there will be no phase shift in these two directions. This property is very important 

because many inferred quantities such as particle flux and internal energy transfer can be affected by 

the phase shift. During experiments all Isat channels were biased to -25V with respect to the vacuum 

chamber to make sure thermal electrons ( ~ 3eT eV ) approaching the Isat probe tips will be rejected 

by the negative potential. Although generally a more negative bias voltage will guarantee that all 

electrons are rejected, it is not preferable because of two reasons: 1) the thickness of the plasma 

sheath, which determines the effective ion current collection area, will expand more at higher bias 

voltage. Too high a bias will artificially increase the collective surface area hence artificially 

increase the inferred density. 2) when the bias voltage is too high, ions will bombard the probe tip at 

very high kinetic energy, and will sputter the probe tip material. The sputtered material such as 

tungsten will be coated on ceramic tubes, finally making the ceramic tubes conductive. For CSDX, 

at the typical operation regime (RF power 1.5 kW, B=1000 Gauss, working gas pressure 3.0 mtorr) 

the on-axis electron temperature is roughly 3 eV [1], and a -25V bias voltage is good choice based 

on experience.  

 

For potential channels it is preferable to place the high impedance resistors (~100 kOhm) as 

close as possible to the probe tips, especially when the plasma density is low and probe tip is small. 
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If the resistor is placed after the coaxial cable (shown by figure 3.4), the probe tip sheath impedance 

and the cable capacitance will comprise a low pass filter, thus filtering away all high frequency 

components in the floating potential signal and distort the phase information for low frequency 

components. For the dual 3x3 probe array, each probe tip is 1.0mm long and 0.33mm in diameter, 

which gives a very high plasma sheath impedance ~ 10 20B e
plasma

isat

k TR kOhm
eI

= −  at a density 

of 12 3~ 10 cm−  at the plasma edge. Typically the cables connecting probe arrays to amplifiers are 

about 5 m long and with a total capacitance of ~500pF. Then a rough estimation of the bandwidth is 

given by 
1 1 ~ 15 30

2 [ ( )] 2c
plasma float in cable plasma cable

f kHz
R R R C R Cπ π

= −
+

�
&

. This is not 

sufficient for measuring turbulent fluctuations with frequencies in the range ~ 10kHz.  

plasmaR floatR

cableC inR
outV

fV

1i

2i

3ia

 

 

Figure 3.4 Thevinen equivalence for floating potential channels with resistor placed after the cable.  

 

Putting the high impedance resistor close to the probe tip will effectively isolate the cable 

capacitance and largely increase the bandwidth of the effective transmission line. In this case, the 

low-pass filter is comprised of cableC  and inR  as shown in figure 3.5. The corresponding 
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estimated bandwidth is given by 
1 ~ 6.5

2c
in cable

f MHz
R Cπ

�  (the input impedance of amplifier 

is ~ 50inR Ohm typically), much higher than the former case when the resistor is after placed after 

the coaxial cable.  

plasmaR floatR

cableC inR
outV

fV

1i

2i 3i

 

 

Figure 3.5 Thevinen equivalence for floating potential channels with resistor placed before the 

cable.  

 

Floating potential is not exactly equal to plasma potential, and for plane probe approximation 

they are related by 1/ 2

0

1ln[ ( ) ]
2

B e i
plasma float

e

k T M
e m

φ φ
α π

= + , where plasmaφ  is the plasma 

potential, floatφ  is the floating potential, eT  is the electron temperature, iM  is the ion mass and 

em  is the electron mass [3]. The plane approximation is valid here since the sheath thickness is 

much smaller than the tip radius. Depending on different working gases, the coefficient 

1/2

0

1ln[ ( ) ]
2

i

e

M
m

χ
α π

≡  is different, where 0 ~ 0.5α  is the ratio of the ion density at the probe 

sheath edge to the local equilibrium plasma density outside the sheath region, and its exact value 

depends on the conditions in the presheath. Typically 5.18χ ≈  for argon plasmas and 3.33χ ≈  

for hydrogen plasmas. For detailed theory about Langmiur probes, please refer to [3, 4]. Since we 
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need plasma potential instead of floating potential to calculate the electric field inside plasmas, we 

should really measure the plasma potential using such as an emissive probe. But for the dense 

plasmas of these experiments, it is difficult to get an emissive probe sufficiently hot so that the 

outgoing thermionically emitted electron flux balances the incoming plasma electron flux and thus 

obtain an accurate plasma potential measurement. Fortunately a recent study showed that there is 

not much difference between the floating potential fluctuations and the plasma potential fluctuations 

[5], which means that we can compute the electric field fluctuations inside plasmas using floating 

potential. 

 

The CSDX data acquisition system is comprised of secondary amplifiers, a multi-channel 

digitizer, and relevant electric circuits. All analogue signals from the Langmiur probe array are first 

amplified and then converted into digital signals by the digitizer, and finally saved into a computer 

for later analysis. A 16-bit 96-channel digitizer with an input impedance 20 kOhm and a sampling 

frequency 500 kHz, which gives a Nyquist frequency 250 kHz (well above the drift wave frequency 

~ 10 kHz), was used to record the data. In order to get sufficient bandwidth, it is generally required 

to use low input impedance amplifiers for floating potential channels. Otherwise the low-pass filter 

comprised of the input impedance and the cable capacitance will filter away high frequency 

components of the signals. On CSDX a 16-channel amplifier with a gain of 28 and an input 

impedance of 50 Ω  is used for floating potential measurements. For Isat channels a 16-channel 

AC coupled amplifier based on current transformer can directly convert the ion saturation current 

into a voltage signal with an output impedance of 50 Ω  and a bandwidth of more than 1 MHz. For 

equilibrium and fluctuation density measurement, a DC coupled differential amplifier is used to 
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measure the voltage across a shunt resistor, which can be used to infer the Isat running through the 

resistor. 

 

3.2.2 The 4-tip turbulent flux Langmiur probe array 

A fast scanning 4-tip Reynolds stress probe array, as shown in figure 3.6, was used to measure 

Isat and floating potentials.  

 

 

Figure 3.6 The 4-tip turbulent flux probe array. (a) and (b) shows the position relative to the 

magnetic field line. (c) is a 3D sketch and (d) is a picture of the Langmiur probe array. One of the 3 

short tips is for ion saturation current, and the rest (two short tips and one long tip) are for floating 

potential, as indicated in (b).  

 

This probe is mounted on a pneumatically activated probe drive that scans all radial positions 
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within seconds. With this probe array layout, it can give an estimation of equilibrium density and 

Reynolds stress profiles, as well as density and potential fluctuations. This probe was separated by a 

distance of ~ 0.8 m in the axial direction with reference to the 18-tip probe array. Comparison and 

correlation studies between different probe arrays are then made possible. 

 

3.2.3 Fast imaging diagnostic 

Because turbulent eddy structures evolve very rapidly (with the eddy rotation time ~ 10 

microseconds) and move around at a high speed ~ 105 cm/s, we need a diagnostic that can offer a 

high spatial resolution (at least can sample hundreds of points in space) at a very high time 

resolution (~100kHz sample rate), such that we can simultaneously monitor hundreds of points in 

space to construct the eddies’ spatial-temporal dynamics. Langmiur probe arrays mentioned above 

can offer high temporally resolved signals but for the spatial resolution is inadequate to track the 

2-dimensional turbulent evolution. Fast imaging is a very powerful tool that can offer 2-dimensional 

images with very high spatial resolution (millimeters) at very high time resolution (microseconds). 

Combining dynamics analysis from fast imaging and the statistical analysis from Langmiur probe 

measurements we can obtain in-depth pictures of the underlying physics. 

 

The CSDX fast imaging system is composed of a fast camera and the relevant optics that 

couple the visible light emissions into the camera. A Phantom V. 7.1 fast camera was used, which 

has a 12-bit CMOS monochrome sensor array with a total of 800x600 pixels. The detailed features 

of this camera can be found elsewhere [6]. At a resolution of 128x64 pixels the framing rate of this 

camera can be as high as 100 kHz, which gives a spatial resolution 1-2 mm, when the plasma 
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column cross-section is imaged on the sensor array. The minimum exposure time is 2 microseconds, 

and is sufficient for studying drift wave turbulence dynamics. The internal/external trigger function 

can be used to synchronize the camera and Langmiur probe measurements. Images are coupled to 

the fast camera using a large telescope (28 cm aperture). The optical setup is shown in figure 3.7, 

and gives an integrated view within +/- 0.7 deg along the magnetic field line. For detailed 

description of the optical setup please refer to [2].  

 

 

 

Figure 3.7 The optical setup of the fast imaging system [2]. 

 

Since there is no interference filter used in the experiment, the collected light emissions by the 

camera were integrated over all wavelengths in the sensitive range of the CMOS sensors. However 

the collected light intensity fluctuations were shown to be closely correlated with density 

fluctuations in earlier experiments on CSDX [7]. Figure 3.8 (a) shows the raw ion saturation current 
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fluctuations from Langmiur probe and light intensity fluctuations from fast imaging. Figure 3.8(b) 

shows a cross-correlation ~0.5 at zero phase delay. The cross-correlation is relatively high 

considering the contribution from small-scale fluctuations that were not resolved by the camera. 

The Langmiur probe and fast imaging signals also present very similar statistical properties which 

also validates the interpretation of light intensity fluctuations as density fluctuations. For more 

details about the relationship between the probe and the camera measurements please refer to [7].  

 

 

 

Figure 3.8 (a) Raw ion saturation current signal from Langmiur probe and light intensity fluctuation 

from fast imaging as a function of time. (b) Cross-correlation between Isat and light intensity 

fluctuations [7]. 
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3.3 Methods for data analysis 

3.3.1 General statistical analysis techniques 

In order to get the statistical properties of turbulence, the autospectrum ( )xxS f , 

cross-spectrum ( )xyS f , cross-phase ( )xy fα , and cross-correlation ( )xyC f  were all used in 

this dissertation. The definitions of the above quantities are shown in Eqns (3.1)-(3.4). Bispectral 

analysis is a key part of this dissertation and will be discussed later.  

  *( ) ( ) ( )xxS f X f X f=          (3.1) 

  *( ) ( ) ( )xyS f X f Y f=          (3.2) 

  [ ]( ) arctan Im( ( )) / Re( ( ))xy xx xxf S f S fα =      (3.3) 

  
0

( ) ( ) ( )
T

xyC x t y t dtτ τ= −∫          (3.4) 

In the above equations, ( )X f  and ( )Y f  are the Fourier transform of time series ( )x t  and 

( )y t  respectively, ...  denotes the ensemble average, and the star “*” indicates the complex 

conjugate, “ Im ” refers to the imaginary part, “ Re ” refers to the real part, and τ  here is the time 

delay. Time series of density or potential fluctuations can be obtained from the probe or imaging 

data. Let us take potential ( )tφ  as an example. To estimate its autospectrum, as the first step we cut 

( )tφ  into a set of windowed time series with desired length and denote the thi  window as ( )itφ . 

We then Fourier transform ( )itφ into frequency domain to get ( )ifΦ , and multiply ( )ifΦ with 

its complex conjugate to get *( ) ( )i if fΦ Φ . Finally we take the ensemble average over all the 

windows to get the autospectrum *

1

1( ) ( ) ( )
N

i i
i

S f f f
Nφφ

=

= Φ Φ∑ , where N is the total number of 



71 

 

windows. Other quantities in Eqns (3.2)-(3.4) can be obtained similarly.  

 

In reality the length of data and sample rate are limited. In the Fourier domain the frequency 

resolution is then determined by the length of each window, and the maximum frequency is limited 

by the sample rate. The more windows we have, the more likely we will get a convergent spectrum. 

With finite data length, there is a trade-off between the number of windows and the length for each 

window, which means that if we want to get higher frequency resolution, we need to sacrifice the 

convergence. For example, suppose the total length of the time series ( )tφ  is T  seconds and we 

use this T  seconds of data as one window to do the Fourier transform. Then according to discrete 

Fourier transform [8] the frequency resolution is 1/f TΔ = , but since we use only one window the 

obtained Fourier transformed series may be very noisy (i.e., its variance is big).. But if we first 

divide the T  seconds of data into N windows then compute the Fourier transform, for each 

window the frequency resolution is 1/f NTΔ = , a factor of N lower compared to before. But 

since the spectrum we get is an averaged value over N windows, the variance level will be a factor of 

1/ N  lower. Thus we can see that the windowed Fourier transform offers spectrum with a lower 

noise level at the cost of frequency resolution. More details about discrete Fourier transform can be 

found in [8].  

 

In cases when the data length is very limited like fast scan Langmiur probe data from tokamaks, 

overlapped or sliding windows are sometimes used to increase the frequency resolution. There are 

times when spectrum time evolution is needed, sliding window can effectively increase the time 

resolution, but special attention is needed when interpreting the time and frequency resolutions of 
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the obtained sequence. Finally note that Hanning windows or Hamming windows [9] are often used 

in order to deal with frequency leakage due to finite window length.  

 

3.3.2 Bispectral analysis and its interpretation 

The auto-bispectrum was used in fluid mechanics [10] and introduced by Kim and Powers [11] 

into plasma signal analysis for studying the quadratic nonlinearity of wave-wave interactions. It is 

essentially a measure of the phase coherence among different waves. The auto-bispectrum is 

normally defined as [8]:  

* * * *
1 2 1 2 1 2

1

1( , ) ( ) ( ) ( ) ( ) ( ) ( )
M

xxx
k k

S f f X f X f X f X f X f X f
M =

⎡ ⎤≡ = ⎣ ⎦∑  (3.5) 

where k indicates the kth realization (or window), and M is the total number of realizations. In the 

above definition, the summation is the process of phase mixing (or phase canceling). In order to see 

this more clearly, the auto-bispectrum definition can be rewritten as:  

1 2

* *
1 2 1 2

1

( ) ( )( ) * *
1 2

1

* *
1 2

1

1( , ) ( ) ( ) ( )

1                  ( ) ( ) ( )

1                  ( ) ( ) ( )

M

xxx
k k

M
i f i fi f

k k

M
i

k k

S f f X f X f X f
M

X f e X f e X f e
M

X f X f X f e
M

θ θθ

δθ

=

− −

=

=

⎡ ⎤≡ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑

∑

∑

  (3.6) 

where 1 2( ) ( ) ( )f f fδθ θ θ θ= − − . If δθ  is a zero-mean symmetrically distributed random 

variable nothing will survive the phase mixing process, leading a zero auto-bispectrum; if δθ  is 

distributed around one specific value δθ  throughout all realizations, the auto-bispectrum will 

equal to * *
1 2 1 2

1

1( , ) ( ) ( ) ( )
M

i
xxx

k k

S f f e X f X f X f
M

δθ

=

⎡ ⎤≈ ⎣ ⎦∑ . So δθ  determines how 

much can survive the phase mixing, thus determines the value of auto-bispectrum 1 2( , )xxxS f f .  
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A 3-wave interaction, i.e. two waves beating together to generate the 3rd wave, will result in a 

phase coherence among ( )fθ , 1( )fθ  and 2( )fθ . This means that δθ  for all windows is not 

randomly distributed over ( ),π π−  and thus the ensemble averaging gives a non-zero 

auto-bispectrum. Linear couplings do not survive the averaging since they will lead to a random 

δθ  (due to the random phase of the driving wave). 

 

The normalized auto-bispectrum, i.e. auto-bicoherence, is typically defined as [8]:  

2* *
1 22

1 2 2 2
1 2

( ) ( ) ( )
( , )

( ) ( ) ( )
xxx

X f X f X f
b f f

X f X f X f
≡       (3.7) 

Bicoherece is often interpreted as the ratio of the nonlinearly coupled energy to the total energy [11]. 

Note that bicoherece can only indicate the intensity of the quadratic coupling and can not tell the 

direction of energy flow. Therefore an auto-bicoherence analysis cannot tell which waves are 

sources and which waves are generated via nonlinear couplings.  

 

To more clearly see the physics arguments and the symmetry properties of auto-bispectrum and 

auto-bicoherence, a test signal is generated to simulate the data from experiments:   

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

1( ) cos cos cos
2

             cos cos

             ( )

k k k k
b b c c d d

k k
b b c c

k

x t f t f t f t

f t f t

noise t

θ θ θ

θ θ

= + + + + +

+ + +

+

  (3.8) 

where 0.220b

N

f
f

= , 0.375c

N

f
f

= , d b cf f f= + , and ( )k
bθ , ( )k

cθ and ( )k
dθ  are uniformly 

distributed independent random phases for the thk  realization, and ( ) ( )knoise t  is the applied 
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Gaussian distribution noise (-5dB). From the analytical form of ( ) ( )kx t  it should be expected that: 

(1) Half of the energy at frequency df  is coupled from bf  and cf , therefore the 

auto-bicoherence for the coupling among df , bf  and cf  should be 0.5; 

(2) All of the energy at frequency c bf f−  is coupled from bf  and cf , therefore the 

auto-bicoherence for the coupling among c bf f− , bf  and cf  should be 1.0 

Figure 3.9 gives autopower, auto-bispectrum, and auto-bicoherence calculated from this test signal. 

It can be seen from figure 3.9 (b) that the auto-bicoherence is consistent with both of the above 

statements. Note that in figure 3.9 (d) the 6 different bright spots indicated stand for the same 

physics process for auto-bicoherence, which will be explained in detail in the next chapter.  
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Figure 3.9 (a) auto-spectrum of the test signal x(t). (b) 3D view of the auto-bicoherence. (c) 

auto-bispectrum, and (d) auto-bicoherence.  

 

The auto-bispectrum and auto-bicoherence can be easily generalized to measure the phase 

coherence among three different fields [8, 12]:  

 * * * *
1 2 1 2 1 2

1

1( , ) ( ) ( ) ( ) ( ) ( ) ( )
M

xyz
k k

S f f X f Y f Z f X f Y f Z f
M =

⎡ ⎤≡ = ⎣ ⎦∑   (3.9) 
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2* *
1 22

1 2 2 2
1 2

( ) ( ) ( )
( , )

( ) ( ) ( )
xyz

X f Y f Z f
b f f

X f Y f Z f
≡         (3.10) 

The cross-bicoherence can still be interpreted as the ratio of coupled energy to the total energy at 

destination frequency. Similar to the auto-bicoherence, the general cross-bicoherence by itself 

cannot show the direction of energy flow.  

 

3.3.3 Other techniques used 

One way to estimate the time average turbulent velocity is by time delay estimating (TDE) [13]. 

The underlying principle is straightforward. Suppose that there are two probe tips separated with a 

distance of x+ . When a turbulent structure passes one probe tip at time t  and passes another one 

at some later time t τ+ , then the turbulent velocity can be estimated as /u x τ=+ . The key 

assumption that the two-point technique based on is the unidirectional feature of flows in the 

direction of the tip separation, i.e. the direction of the flow velocity, which is the azimuthal direction, 

is the same as the tip separation direction. Otherwise the interpretation is problematic. In CSDX this 

assumption is satisfied since the average azimuthal flow is mainly in the electron diamagnetic 

direction. The time delay τ  can be estimated from the peak of the cross-correlation between two 

tips. Figure 3.10 shows plasma azimuthal velocity estimated by two-point correlation TDE 

technique from both probe and fast imaging, which is consistent with ion fluid velocity measured by 

Mach probe, showing that two-point TDE can produce a good approximation. For details and 

evaluation of this time delay estimation (TDE) technique, please refer to [13].  
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Figure 3.10 The azimuthal velocity measured by two-point correlation TDE from probe and 

imaging data compared against ion fluid velocity measured by Mach probe [14]. 

 

An alternative way to estimate the time average turbulent velocity is by two-point technique, 

which was first applied by Beall et al.[13]. Since the time delay is essentially a phase delay, 

alternatively we can first calculate the cross-phase between two channels ( )xy fα  as is shown in 

Eqn. (3.3), then the effective wavenumber can be estimated by ( ) ( ) /xyk f f xα= + , and finally 

the velocity can be obtained via ( ) / ( )u f f k f= . Note that the velocity here is frequency 

resolved. To have a time average azimuthal velocity, we can average it over all frequencies with 

cross-power as the weight. Thus this technique is essentially the same as TDE. Both TDE and 

two-point technique can also be applied to imaging data to extract velocities, which can be used to 
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compare against velocities estimated from Langmiur probe data.  

 

The Reynolds stress, which is the turbulent momentum flux, is estimated via rRS u uθ= � � , 

where ru�  and uθ�  can be approximated by E B×
G G

 drift velocities, i.e., 0/ru E Bθ= ��  and 

0/ru E Bθ = − �� , and ...  here denotes the ensemble average. As mentioned before, the floating 

potential can be used to calculate the fluctuating electric field r r fE φ= −∇ ��  and fEθ θφ= −∇ ��  by 

assuming that temperature fluctuation is negligible.  

 

CSDX discharge conditions are highly stable and repeatable, which means that the plasma 

turbulence is stationary. This is very important because we need long sequences of data to get 

statistically converged values when estimating plasma parameters such as autospectra, Reynolds 

stress, and plasma velocities, etc. from turbulent fluctuations. The current CSDX 96-channel data 

acquisition system can store up to 8 seconds of data at a sample rate of 500 kHz for one shot. 

Because CSDX plasma is stable and all shots taken under the same discharge conditions (magnetic 

field, gas pressure, etc.) are with the same statistical properties, we can take as many shots as needed 

to compute the statistics to the desired convergence. Typically for each channel about 10 seconds (~ 

5 million sample points) of probe data were taken, and they were divided into more than 1000 

realizations to compute ensemble averages. Therefore the corresponding statistical uncertainties of 

the estimated parameters are very small and typically are within the thickness of the produced 

curves. Bispectra converge more slowly compared to quantities like autopower, particle fluxes, etc., 

but 1000 realizations are enough to get good convergence as will be shown in the next chapter.  
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All the contents of the next chapter, including text and data, has been published as it appears in 

“Study of nonlinear spectral energy transfer in frequency domain”, M. Xu, G. R. Tynan, C. Holland, 

Z. Yan, S. H. Muller, J. H. Yu, Phys. Plasmas 16 042312 (2009). The dissertation author is the 

primary investigator and author of this article.  
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Chapter 4  
 

Study of nonlinear spectral energy 
transfer in frequency domain 

 

4.1 Introduction 

The study of nonlinear dynamics of drift wave turbulence, and specifically the study of how 

large spatial scale fluctuations and zonal flows are generated by nonlinear processes and of how the 

resulting shear flows affect the turbulent density fluctuation scale lengths directly addresses the 

underlying physics for zonal/shear flow generation [1, 2], gyro-Bohm/Bohm scaling [3] and the 

origins of critical gradient transport scaling in magnetically confined plasmas [4], as well as 

provides tests of fundamental turbulence theory. As a result, the nonlinear spectral energy transfer 

mediated via wave-wave coupling has received significant attention, as given in Ref. [1, 5-10]. The 

bispectrum, which is related to the degree of phase correlation among three waves, was introduced 

to the plasma physics community by Kim and Powers [11] to study the quadratic nonlinearity of 

plasma fluctuations, and was motivated by earlier applications of this technique to neutral fluid 

turbulence, see, for example, Ref. [12-14]. By assuming the detailed form of three-wave coupling 

and deriving a power balance equation, Kim went further and developed a way to experimentally 

determine the coupled energy flow among different spectral components [10]. In that work, the 

wave coupling coefficient had to be known a priori in order to know this power transfer due to the 
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three-wave coupling.  

 

Using a single field model suitable for turbulence with very small parallel electron dissipation, 

Ritz et al [15] then developed and subsequently Kim et al [16] refined a method which enables one 

to quantitatively estimate the growth rate kγ , dispersion relation kω  and the wave-wave coupling 

coefficient 1 2( , )Q
k k kΛ , from which the power transferred through nonlinear coupling can be 

calculated from experimental data. In order to obtain two coupled equations that yield the growth 

rate, dispersion relation and coupling coefficient, the fourth-order spectral moment that occurs in 

their work was approximated by the square of the second-order moment using the Millionshchikov 

approximation [17]. This method was derived in the wavenumber domain and in principle requires a 

knowledge of the temporal behavior of the Fourier transformed potential ( , )k tφ  (which is 

obtained from simultaneous multipoint turbulence measurements) to perform the calculation. As a 

result, a simultaneous measurement at a large number of spatially localized points is typically 

required, which is challenging due to practical (i.e. large number of channels) and physical (i.e. 

measuring turbulence properties without much disturbance) limitations.  These works then used the 

Taylor frozen flow hypothesis to relate wavenumber to frequency, and then argued that the energy 

transfer could then be studied in the frequency domain, thereby avoiding the requirement for a large 

number of spatial measurements. 

 

Another concern in applying these techniques arises from the multi-field nature of plasma 

turbulence. Turbulence in magnetic fusion plasmas is characterized by fluctuations in density, 

potential, temperature, and magnetic field and these fluctuations can influence the turbulence 
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dynamics and resulting transport.  All the methods mentioned above assume that the observation of 

one field is sufficient to describe the nonlinearity in the plasma, and the effects introduced by 

cross-field interaction are small. For example, turbulence in magnetic fusion confinement devices 

clearly exhibits multi-field dynamics as shown e.g. by the fact that the normalized amplitudes of 

density and potential fluctuations are not equal [18], in clear violation of the underlying assumptions 

of all single-field drift turbulence models.  Furthermore in the edge plasma region where these 

techniques are usually applied there is a large phase shift between the density and potential 

fluctuations [18], again invalidating the fundamental model on which these single-field energy 

transfer models are based.  In low temperature plasmas found e.g. in the CSDX device [19] used in 

this work, the measured density and potential fields have a cross-correlation significantly less than 

unity as shown by figure 4.3(d), and have a non-zero density-potential cross-phase, again in clear 

violation of the assumptions of single field models.  Similar observations hold for the turbulence in 

the edge and scrape-off layer region of confinement experiments.  As a result, studies of turbulence 

nonlinear dynamics that are to be compared against such experiments should include at least two 

fields (e.g. at least density and velocity or electrostatic potential as well as temperature fluctuations 

if those are important for the turbulence dynamics) and cannot rely upon models that are based upon 

the single field model of drift turbulence.  

 

Nonlinear energy transfer in simple models of drift-wave turbulence has been extensively 

studied by many groups using both analytic and computational approaches (see, for instance, the 

work by Camargo et al [20] for a comprehensive numerical investigation of the issue). Recently 

Manz et al [21] analyzed experimental measurements in wavenumber space using a single-field 
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model applied separately to density and potential measurements and showed that turbulent density 

fluctuation energy was transferred to small scales, while turbulent kinetic energy was transferred to 

large scales.  The first use of a multi-field approach to study nonlinear turbulence dynamics via 

direct calculation of cross-bispectra was performed by Holland et al [22] using beam emission 

spectroscopy data. The results showed that radially sheared, oscillating poloidal velocity of a 

geodesic acoustic mode caused the density fluctuation energy to move towards higher frequency. A 

brief discussion of multi-field nonlinear energy transfer in drift turbulence was also included in a 

recent review paper [23]. 

 

In this chapter, we develop a technique to study the nonlinear transfer of turbulence energy in 

the frequency domain in a system that is described by two fluctuating fields (density and potential). 

By combining the derived energy balance equations with a cross-bispectral analysis of the nonlinear 

terms, the nonlinear energy transfer due to the wave-wave interactions of the drift fluctuations can 

be determined. Although it is not discussed here, the technique can also be extended in a 

straightforward manner to turbulence involving temperature fluctuations.  

 

The rest of this chapter is arranged as follows: Section 4.2 presents the theoretical derivation 

and interpretation of nonlinear energy transfer coefficients and their realization in experiments. 

Section 4.3 gives a brief description about the experimental setup. Section 4.4 is a sample of 

experimental results of nonlinear energy transfer. Section 4.5 includes a summary of the contents 

and some discussions. 
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4.2 Theoretical derivation and interpretation of nonlinear energy 

transfer terms  

Although a similar derivation of spectral energy transfer terms was reported, as given in Ref. 

[20], and in particular the derivation and study of internal energy transfer in frequency space has 

been published in Ref. [22], a brief derivation for both internal and kinetic energy transfer terms in 

frequency domain is included here to help to understand the experimental results from both 

technical and physical perspective of views. The three-wave coupling enters when a Fourier 

transform is performed on either the continuity or momentum equation, with the convective 

derivative u n⋅∇  or  u ⋅∇u , where u  is the fluid velocity that is approximated by 

2

Bu
B
φ⊥∇ ×

≈ −  in the following derivation. From the electron momentum and electron continuity 

equations, an energy transport equation for the spectra of density fluctuations is derived in the 

frequency domain.  

The electron continuity equation: 

  ( ) ( ) 0e
e e e e

n n u n u
t z⊥ ⊥

∂ ∂
+ ∇ ⋅ + =

∂ ∂ &         (4.1) 

in which the electron velocity perpendicular to magnetic field is dominated by E B×  and 

diamagnetic drifts, can be written as (with the unit vector in the magnetic field direction denoted 

by ẑ  and the quasi-neutral assumption e in n n≈ =  applied):  

  ( ) ( )u n nu
t z⊥ ⊥

∂ ∂
+ ⋅∇ = −

∂ ∂ &          (4.2) 

where 
ẑu

B
φ⊥

⊥

×∇
=  is the E B×  velocity. The plasma density fluctuations can be represented 

in the frequency domain by ( , ) ( , ) i tn x t n x t e ω
ω

ω

= ∑ where we have allowed the coefficients to 

possibly vary in time (we discuss this point at length below). A similar expression can be used to 
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decompose the velocity into the frequency domain.   Therefore we can then write the time 

derivative in equation (4.2) as: 

( , ) ( , )

( , )            [ ( , )]

            [( ) ( , )]

i t

i t i t

i t

n x t n x t e
t t

n x te i e n x t
t

i n x t e
t

ω
ω

ω

ω ωω
ω

ω

ω
ω

ω

ω

ω

∂ ∂
=

∂ ∂
∂

= +
∂

∂
= +

∂

∑

∑

∑

      (4.3) 

As we discuss below, there are limitations on the rate of change of the frequency components 

which must be tested empirically from experimental data.  Next, we Fourier transform equation 

(4.3) into the frequency domain, and denoting ( , )n x tω  as nω  we then have: 

  
1 1

1

 ( ) F( )n i n u n nu
t zω ω ω ω ω

ω

ω ⊥ − ⊥
∂ ∂

+ + ⋅∇ = −
∂ ∂∑ &      (4.4) 

Where F  denotes the Fourier transform. Multiply both sides by the conjugate of nω , i.e. *nω  

1 1
1

2* * *
 ( ) F( )nn i n n u n n nu

t z
ω

ω ω ω ω ω ω ω
ω

ω ⊥ − ⊥

∂ ∂
+ + ⋅∇ = −

∂ ∂∑ &     (4.5) 

Adding the above equation to its conjugate and ensemble averaging over a sufficient number of 

realizations, we can form an ensemble-averaged energy conservation equation in the frequency 

domain: 

⇒  
1 1

1

2
* *

 
1 Re[ ( ) ] Re[ F( )]
2

n
n u n n nu

t z
ω

ω ω ω ω ω
ω

⊥ − ⊥

∂ ∂
= − ⋅∇ + −

∂ ∂∑ &  (4.6) 

The above equation (4.6) simply states that the rate of change of internal energy at the frequency ω  

is determined by quadratic coupling, linear growth or damping at ω , and parallel dissipation of 

parallel electron motion. The physical meaning of each term is given below: 

2
1
2

n
t
ω∂

∂
 is the rate of change of density fluctuation spectra 2nω  (denoted as the internal 
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energy ) at one specific spatial position; 

1 1

1

*
 Re[ ( ) ]n u nω ω ω ω

ω
⊥ − ⊥− ⋅∇∑  is the nonlinear wave-wave coupling term that determines how 

much energy flows into or out of the Fourier component at the frequency of ω  due to 3-wave 

coupling. This quadratic nonlinear term comes from the Fourier transform of the convective 

derivative, which is in the form of a convolution, and thus imposes a selection rule 1 2ω ω ω= +  

on the nonlinear coupling. Since this nonlinear coupling term is related to density auto-spectrum, it 

is called the internal energy transfer term, denoted as nT  here. 

 

Assuming an isothermal plasma, u&  can be obtained from the parallel component of the 

electron momentum equation. Substituting this result into equation (4.6), and using the 

normalizations 
0

ˆ e
e

e

nn
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≡
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e
k T
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1/ ci
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ˆefreez zλ

∂ ∂
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, and 

ˆ /nr nr sL L ρ≡ , where 2
s B e

s
ci ci

c k T
M
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Ω Ω

 is the effective ion Larmor radius calculated with 

electron temperature, 1/2
2( )the B e e

efree
ei e e

u k T m
m n e

λ
ν η

= =  is the electron mean free path and 

  
Lnr ≡

n0 x( )
∇rn0

 is the local density gradient scale length, and we drop the l( )  notation, the internal 

energy equation becomes:  
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1
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    (4.7) 
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Here we have invoked the quasi-neutrality assumption, and the term 
  
−

1
Lnr

Re[nω
* ∇θφω ]  

indicates that energy can be extracted from the mean density gradient and hence is the linear driving 

term, and 
2

*
2Re[ ( )]ei

ci

n n
zω ω ω

ν φ∂
−

Ω ∂
 means that energy can be dissipated via electron-ion 

collision hence is the parallel dissipation term. The above equation (4.7) forms the basis of one of 

the coupled Hasegawa-Wakatani [24] equations; however here it is expressed solely in the 

frequency domain without the corresponding spatial Fourier transform used in that original work.  

 

By performing a similar process on the ion momentum equation, with the same normalizations 

as before, an energy balance equation related to velocity fluctuation can be obtained:    
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∑
 

                 (4.8)  

where μ⊥  is the ion viscosity, i nν −  is the ion-neutral collision rate and neutrals have been 

assumed to have negligible velocity.  

 

The kinetic energy balance equation involves only the plasma potential, in which 

2
1
2 t

ωφ⊥∂ ∇
∂

 is the rate of change of the E B×  velocity fluctuation energy at one specific 

spatial position, and the term 
1 1

1

*

 

ˆ ˆ ˆRe ( ) [( )( )]z z zω ω ω ω
ω

φ φ φ⊥ ⊥ − ⊥ ⊥− ×∇ ⋅ ×∇ ⋅∇ ×∇∑  

determines how much energy is nonlinearly coupled into or out of the frequency ω . Again, a 
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selection rule 1 2ω ω ω= +  is imposed on the nonlinear coupling in order for the ensemble average 

to have a finite value. This nonlinear term is called the kinetic energy transfer term, uT , due to the 

fact that it is related to the perpendicular kinetic energy evolution. Finally, the term 

* 2
2

ˆ ˆˆ ˆRe[( ) ( )]
ci s

z zω ω
μ φ φ

ρ
⊥

⊥ ⊥ ⊥×∇ ⋅∇ ×∇
Ω

 gives the rate at which energy can be damped due to 

ion viscosity, and the term 
2i n

ci
ω

ν φ−
⊥− ∇

Ω
 is a flow damping term due to ion-neutral collisions, 

or due to any other damping mechanism (e.g. trapped-passing ion collisions in a torus), that is 

simply proportional to the turbulent kinetic energy and a momentum exchange rate with a 

background stationary species. 

 

The energy conservation equations (4.7) and (4.8) are simply the Fourier transformed fluid 

continuity and momentum equations, where the internal and kinetic nonlinear transfer terms nT  

and uT  are not related to a specific pre-assumed wave coupling form, and are simply derived from 

the convective derivatives in the continuity and momentum equations, and where the velocity in the 

convective derivative is dominated by the ExB and diamagnetic drift terms. Therefore the properties 

of internal and kinetic energy transfer terms are very basic and physical.  

 

By expanding the vector identities for a magnetized plasma with ˆBz=B , the internal and 

kinetic energy transfer terms can be rewritten as:  
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                 (4.10) 

where x (y) denote the radial (azimuthal or poloidal) directions respectively.  

 

With energy balance equations (4.7) and (4.8), it can be seen that nT  and uT  are actually 

energy flow rate. If nT  is positive while all other terms in (4.7) are constant, then the energy term 

2nω  will grow; if nT  is negative then 
2nω  decreases. Similarly positive uT  renders a growth 

in 
2

ωφ∇  while  negative uT  renders a decrease in 
2

ωφ∇ . Therefore the bispectral terms nT  

and uT  in the energy balance equations not only can tell how various three-wave interactions 

transfer energy into or out of fluctuations with frequency ω , but also can be used to determine the 

rate and direction of the nonlinear energy transfer. 

 

By splitting the nT  and uT  into parts, more detailed insight into the origins of the nonlinear 

energy transfer mechanisms can be obtained. For example, if the first part, 
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2*
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1Re[ ]
M

k
kM x y x

ω ω ωω
φ φφ −

=

∂ ∂∂
∂ ∂ ∂∑ , of the expanded form of the kinetic energy transfer term is 

positive (where k denotes the k-th ensemble of a total of M available ensembles), it means 
2

ωφ⊥∇  

is gaining energy because 1

y
ω ωφ −∂

∂
 and 1

2

2x
ωφ∂

∂
 interact to give energy to 

x
ωφ∂

∂
. Or physically this 

means that ( )uθ ω  gains energy from the radial velocity 1( )ru ω ω−  and the azimuthal velocity 

shear 1( ) /u rθ ω∂ ∂ .  

If the Fourier transformed conservation equation (e.g. Eqn 4.4 or 4.8) is to exist for all 

frequencies, it is necessary that the equation satisfies a slowly varying assumption for all 

frequencies of interest.  Thus if the conservation equation is written as A(t) = 0 then the Fourier 

transform Aω (t)  will exist only if
1

Aω (t)
∂Aω (t)

∂t
<< ω  for the frequencies of interest.  The 

validity of this assumption must be verified from the experimental data. 

 

The calculation and interpretation of the above nT  and uT  needs a thorough understanding 

of the 3-field cross-bispectrum. The auto-bispectrum introduced by Kim and Powers [11] can be 

easily generalized to measure the phase coherence among three different fields.  The 

cross-bispectrum is defined as   

  * * * *
1 2 1 2 1 2

1

1ˆ ( , ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]
M

XYZ k
k

S f f E X f Y f Z f X f Y f Z f
M =

≡ = ∑  (4.11) 

Writing each signal in terms of an amplitude and phase, it can alternatively be written as,  

  * *
1 2 1 2

1

1ˆ ( , ) [ | ( ) ( ) ( ) | ]
M

i
XYZ k

k

S f f X f Y f Z f e
M

δθ

=

≡ ∑     (4.12) 

where 1 2( ) ( ) ( )X Y Zf f fδθ θ θ θ≡ − − denotes the phase mismatch for a given ensemble.  

Clearly if δθ  varies randomly across the ensemble average (i.e. if the random phase 
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approximation is satisfied) then 1 2
ˆ ( , )XYZS f f will vanish; alternatively if δθ  has a reproducible 

range of values across the ensemble average then 1 2
ˆ ( , )XYZS f f  will have a finite value and, since 

the cross bispectrum is related to the energy transfer in the Fourier domain, there will be a finite 

exchange of energy between the frequencies involved in such cases. The calculation region can be 

greatly reduced because of the symmetry properties of the cross-bispectrum and by the fact that 

often the fluctuation frequencies of interest are much smaller than the Nyquist frequency. Figure 4.1 

shows the typical calculation region for the 3-field cross-bispectrum with green (light grey), red 

(grey), and blue (dark grey) triangles, where the interested frequencies (assumed 9.5KHz≤  for 

the test data used in this illustration) are much smaller than the typical Nyquist frequency. Suppose 

that 3 different plasma waves with frequencies, e.g. 8KHz , 6KHz  and 2KHz , interact with 

each other. There will be a total of 6 different permutations for this interaction as shown by table 4.1, 

where each column stands for a different physical coupling process since it involves coupling 

among 3 fields (X, Y and Z). For 1-field couplings where X=Y=Z, i.e. the auto-bispectrum or 

auto-bicoherence, these 6 different combinations stand for exactly the same physical process. 

 

Table 4.1. A layout of all possible combinations of 3-wave interactions with different 

frequencies 8KHz , 6KHz  and 2KHz . 

X  8KHz  8KHz  6KHz  6KHz  2KHz  2KHz 

Y  2KHz  6KHz  8KHz  -2KHz  8KHz  -6KHz 

Z  6KHz  2KHz  -2KHz  8KHz  -6KHz  8KHz 
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Figure 4.1. Calculation region for 3-field (X,Y, Z) cross-bispectrum and cross-bicoherence. The 

x-axis is for field X and y-axis is for field Y. 

Red (grey): 1 2,  ,  0f f f > , means that the way 1( )Y f  and 2( )Z f  interact is via the summation 

condition 1 2| | | | | |f f f= + , and the phase relation is 1 2( ) ( ) ( )X Y Zf f fθ θ θ= + . 

For the green region the frequencies satisfy the condition: 1,  0f f >  and 2 0f <  and satisfy a 

frequency relation 1 2| | | | | |f f f= −  and phase relation 1 2( ) ( ) (| |)X Y Zf f fθ θ θ= − .  

For the blue region the frequencies satisfy the condition  2,  0f f >  and 1 0f <  , and satisfy the 

frequency relation 2 1| | | | | |f f f= −  and phase relation is 2 1( ) ( ) (| |)X Y Zf f fθ θ θ= − . 
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In figure 4.1, with the x-axis for field X and y-axis for field Y, all the 6 different combinations 

are indicated accordingly by the red dots. In the region with red (grey) color ( 1 2,  ,  0f f f > )  

1( )Y f  and 2( )Z f  interact so that 1 2| | | | | |f f f= + , and the phase relation is 

1 2( ) ( ) ( )X Y Zf f fθ θ θ= + . E.g., for the dot at 1( 8 , 2 )f KHz f KHz= =  we can infer that 2f  

corresponding to field Z must be 6KHz , and the phase relation for this coupling must be 

(8 ) (2 ) (6 )X Y ZKHz KHz KHzθ θ θ= + .  in the green (light grey) region, 1,  0f f >  and 

2 0f < , the frequency relation is 1 2| | | | | |f f f= − , and the phase relation is 

1 2( ) ( ) (| |)X Y Zf f fθ θ θ= − . in the blue (dark grey) region, 2,  0f f >  and 1 0f < , the 

frequency relation is 2 1| | | | | |f f f= − , and the phase relation is 2 1( ) ( ) (| |)X Y Zf f fθ θ θ= − . 

Since the frequency selection rule for 3-wave coupling is typically written as 1 2f f f= + , 

negative frequencies are used here to correspond to physical processes when two frequencies 

subtract to generate the third, e.g. 1f  subtract 2f  to generate f .  

 

4.3 Experimental measurement of multi-field nonlinear energy 

transfer 

To experimentally determine the internal energy transfer term nT  one can measure the density 

and potential fluctuations, compute their derivatives in the radial and azimuthal directions, Fourier 

transform those quantities into frequency domain to find nω ,
n
x
ω∂

∂
,

n
y
ω∂

∂
and 

x
ωφ∂

∂
,

y
ωφ∂

∂
, and 

finally construct nT  by convolution. For the kinetic energy transfer uT , plasma potential and its 

first and second derivatives are needed.  
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The quantities needed to infer both nT  and uT  can be obtained experimentally using the 

spatial layout of density and potential measurements shown in figure 4.2 where the radial direction 

is denoted as x̂ , and the azimuthal or poloidal direction is denoted as ŷ  direction.  

 

 

Figure 4.2. Spatial layout of the measurement grid points. (b) is the side view of (a). All the probe 

tips are identical, but the floatV  tips were purposely drawn smaller in (b) in order to distinguish the 

satI  tips from floatV  tips. All the derivatives 
x
φ∂

∂
, 

y
φ∂

∂
, 

2

2x
φ∂

∂
, 

2

2y
φ∂

∂
and 

2

x y
φ∂

∂ ∂
 can be 

computed using finite difference method from the 9 channels of potential (blue). n , 
n
x

∂
∂

 and 
n
y

∂
∂

 

can be computed from the 9 channels of density (red).  

 

In this figure, potential fluctuation channels are indicated by blue while the density channels 

are denoted by red.   The finite difference method can then be used to compute estimates of the 

derivatives. For example, the central finite difference approximation can be used to calculate 
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+ −∂
≈

∂ Δ
 with a 

leading error proportional to 2( )xΔ . With additional grid points, a higher accuracy of finite 

difference can be achieved. In our experiments, the choice of xΔ  should be much less than the size 

of typical turbulent structures, and at the same time large enough so that the phase difference among 

adjacent tips is measureable. In our experiment, the typical turbulent correlation lengths are 

0.6 2cm∼ [25];  the ion sound radius ρS =
Cs

ΩCi

~ 1cm  and the spatial separation between tips 

is 1.5mm in radial direction and 2.5mm in azimuthal direction.  We find that the typical phase shift 

between spatially separated probe tips is ~2-3 radian, which is significantly larger than the statistical 

uncertainty estimated as << 0.1 radian in the cross phase shift measurements. Actually the statistical 

noise is not a concern when computing the CSDX plasma turbulence statistics due to the reasons 

mentioned in the previous chapter. 

 

Because all the derivatives are computed in a rectangular coordinate for cylindrical plasmas in 

our experiment, it is required that the plasma scale is much larger than the scale of the measurement 

array. Alternatively one can layout the grid points on magnetic surfaces, and correspondingly use a 

cylindrical coordinate to compute all the derivatives. The layout in figure 4.2 is setup such that the 

center of potential channels are the same as the center of density channels in both azimuthal and 

radial directions, which makes every calculated derivative centered and thus eliminates the phase 

shift in both radial and azimuthal directions.  If the two 3x3 array are spatially shifted by a 

displacement vector δx  relative to each other, then the phase shift k ⋅δx  incurred from this 

effect due to the wavenumber k would need to be accounted for in computing the cross spectral 
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quantities.  As long as this shift is small compared to the turbulence scale lengths, then such a 

correction can in principle be applied. In our experiment, the two 3x3 arrays are shifted by 1.5mm 

along the magnetic field line, but the corresponding phase shift is negligible since k k⊥& �  for the 

fluctuations. Generally the density and potential (or velocity) field can be measured in a variety of 

ways, such as Langmiur probe, heavy ion beam probe (HIBP) [26] or velocimetry of beam emission 

spectroscopy (BES) [27]. For the study of plasmas in linear devices or edge plasmas in Tokamaks, a 

multi-point Langmiur probe array is a good candidate for its excellent spatial resolution, relative 

easiness to design and construct, and the lower cost compared to other techniques.  However, we 

explicitly note that such nonlinear energy transfer studies are also possible with these other 

diagnostic approaches provided that the necessary multipoint data can be obtained. 

 

Using the approach discussed above, multifield nonlinear energy transfer measurements have 

been carried out on the CSDX device at the University of California, San Diego. For the 

experiments reported here the discharges were operated with 1000 Gauss magnetic field and 

3.0mtorr argon filling pressure, the helicon plasma source was operated at 13.56 MHz with a power 

of 1.5KW; the resulting plasma had a peak on-axis density 13 -310 cm∼  and on-axis electron 

temperature 3 eV∼ . The plasma source has a diameter of 10 cm, and the vacuum chamber has a 

diameter of 20 cm. Further details about the device and characteristics of the plasma and of the 

transition to a state of weak turbulence can be found elsewhere [19, 28].  

 

A dual 3 3×  tip Langmiur array was built and installed on CSDX, which enables us to 

simultaneously measure 9 channels of plasma density and 9 channels of floating potential on a 
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x y−  grid as shown in Figure 4.2. Therefore all the quantities needed for constructing the internal 

and kinetic energy transfer terms can be obtained by this probe array. Although for the purpose of 

measuring energy transfer only the first derivatives of density are needed, thus 4 channels of density 

are enough, the 5 redundant density channels either can be used to compute the second derivatives 

or can be setup for other purposes such as triple probe array [29] to measure plasma potential and 

electron temperature. A general concern could be that the layout of Isat and floating potential tips 

would introduce a shadowing effect among them, especially between Isat and floating potential tips, 

and thus could distort the measured bispectra. Experiments have been carried out to compare the 

obtained kinetic energy transfer coefficients at the conditions with or without Isat bias voltage. No 

significant differences have been found between these two cases suggesting that any such 

shadowing effects are small. 

 

4.4 Experimental results 

Figure 4.3 shows the typical profiles of CSDX plasma operated with a magnetic field of 1000 

Gauss, an argon fill pressure of 3.0mtorr and an RF power input of 1.5KW. The plasma density 

profile presented in figure 4.3(a) is measured by the 18-tip probe array. Figure 4.3(b) shows the 

plasma azimuthal velocity profile calculated from 2D visible light imaging using a time delay 

estimation technique [30].  We find that the azimuthal velocity grows and decays with a frequency 

of ~250Hz; the radial profiles show that the shearing rate also varies in magnitude at the same 

frequency [31].  Previous results, which were obtained by ensemble averaging over many such 

oscillation cycles showed that the resulting time-averaged shear flow is consistent with the 

measured time-averaged turbulent Reynolds stress and the estimated damping profiles [1].   As we 
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show below, the bispectral calculation shows that both internal and kinetic energy are transferred 

from drift turbulence to this velocity oscillation. Figure 4.3(c) is the time-averaged electron 

temperature profile taken from a previous published chapter [28] 

 

 

 

Figure 4.3 (a) Time-averaged plasma density. (b) Time resolved plasma azimuthal velocity profile 

calculated from 2D visible light imaging using Time Delay Estimation [31]. It is found that the 

velocity at the shadowed region 3.6r cm∼  develops and decays at the frequency around 250Hz. 

(c) Time-averaged electron temperature profile [28]. (d) Correlation between density and potential 

fluctuations at shear layer. 

 

All the potential and density channels were simultaneously sampled at 500 kHz, and the total 
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sampling time was 10 seconds giving a total of 5 million sampling points for each channel.  These 

time series were then divided into one to several thousand independent realizations to produce 

statistically converged bispectra using ensemble averaging. Figure 4.4 shows the convergence test 

for the bispectral calculation of the internal and kinetic energy transfer terms 1( , )nT f f  and 

1( , )uT f f  at the frequencies 0.25f KHz=  and 1 10.25f KHz= .  We can see that both the 

internal and kinetic bispectra are reasonably converged when at least ~1000 realizations are used.  

As is shown below, the existence of very slowly varying nonlinearly driven fluctuations such as 

zonal flows imposed a physics requirement for high frequency resolution.  This requirement, 

combined with the large number of ensembles required for convergence implies the requirement for 

long time series (with ~107 samples per channel) and highly stationary experimental conditions.  A 

similar number of realizations are required to converge at other combinations of f and f1. 

 

 

Figure 4.4 Convergence test for the bispectral calculation for the internal and kinetic energy 

transfer terms 1( , )nT f f  and 1( , )uT f f  at the frequencies 0.25f KHz=  and 

1 10.25f KHz= . (a) is for 1( 0.25 , 10.25 )nT f KHz f KHz= =  and (b) is for 

1( 0.25 , 10.25 )uT f KHz f KHz= = . 
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Before examining the nonlinear turbulence energy transfer processes of interest, it is important 

to determine if the ansatz 
( , )1

( , )
n x t

n x t t
ω

ω

ω
∂

∂
�  is satisfied.  To determine this, the 

experimentally measured density was first normalized by its time-averaged value to give n(x,t), 

and then band pass filtered for several representative frequency ranges.  The relevant frequency 

ranges are chosen based upon previously published spectral results [19] and plotted as function of 

time in figures 4.5(a), 4.5(b) and 4.5(c). Figure 4.5(a) corresponds to the band pass filtered over a 

range 0.2 0.5KHz∼ , in which the envelope of density fluctuations varies with a period of 

15 20ms∼  ( 50 67Hz∼ ) a factor of 6 slower than the corresponding phase change frequency 

approximated by the center value of the filter. Figure 4.5(b) is density fluctuation filtered by 

0.8 1.2KHz∼ , where the envelope shows a period of 6 9ms∼ (110 170Hz∼ ), i.e. a factor of 

~10x slower variation than the fluctuation frequency. Figure 4.5(c) is the density fluctuation filtered 

by 9.0 10.0KHz∼ , and the envelope has a period of 2.0 2.3ms∼ ( 430 500Hz∼ ) which again 

is a factor of ~10-20x longer than the fluctuation period under consideration.  Thus from figures 

4.5(a), 4.5(b) and 4.5(c) we can tell that for the conditions of these experiments the amplitude of 

density fluctuations varies on a timescale that is a factor of ~5-20x slower than the corresponding 

phase changes. By following the same process, it has been verified that this is also true for φ⊥∇ . 

Figures 4.5(d) through 4.5(f) show similar results calculated for the left hand side of Eq. (4.2) from 

measured data.  We therefore conclude from this study that the slowly varying assumption is 

reasonably well satisfied by the experimental data. 
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Figure 4.5 (a) 0.2~0.5kHz band-pass-filtered density fluctuation n(t)�  plotted as a function of time. 

The envelope shows a period of 15-20 ms, indicating a slowly variation of the spectra at 0.2~0.5kHz. 

(b) 0.8~1.2kHz band-pass-filtered density fluctuation. The envelope has a period of 6-9 ms. (c) 

9.0~10kHz filtered density fluctuation with a enveloped period of 2-4 ms. (d) 0.2~0.5kHz 

band-pass-filtered total derivative of density fluctuation ( ) ( ) ( )A t u n t
t

∂
≡ + ⋅∇

∂
G

 plotted as a 

function of time. The envelope shows a period of 15-20 ms, indicating a slowly variation of the 

spectra at 0.2~0.5kHz. (e) 0.8~1.2kHz band-pass-filtered total derivative of density fluctuation. The 

envelope has a period of 8-10 ms. (f) 9.0~10kHz filtered total derivative of density fluctuation with 

a enveloped period of 3-5 ms. 
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Figure 4.6. Measurement is taken at 3.6r cm= , magnetic field 1000Gauss, RF power 1.5KW 

and pressure 3.0mtorr. (a) Bispectral internal energy transfer 1( , )nT ω ω  (in both (a) and (b) the 

x-axis corresponds to ω  and y-axis corresponds to 1ω  in equation (4.7) and (4.8), and notation 

2 1ω ω ω= −  ). (b) Bispectral kinetic energy transfer 1( , )uT ω ω  

 

The internal and kinetic energy transfer functions derived in this manner are shown in figure 

4.6, which was obtained when the probe was centered on the shear layer located at r=3.6cm, with 

magnetic field 1000Gauss, RF power 1.5KW and pressure 3.0mtorr. These conditions are the same 

as those used to study the origin of the shear layer in previous work [1, 5].  In computing the 

bispectra in figure 4.6, for each channel a total of 5 million samples were divided into 1200 

ensembles, with 4096 samples in each ensemble. Since a sampling frequency of 500KHz was used 
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when acquiring the data, the frequency resolution in figure 4.6 is about 120Hz.  Figure 4.6(a) 

shows the internal energy transfer 1( , )nT ω ω , and figure 4.6(b) shows the kinetic energy transfer 

coefficient 1( , )uT ω ω .  

 

From the energy balance equation (4.7) and (4.8), we know that positive (negative) internal or 

kinetic energy transfer means that fluctuations at frequency ω  gain (lose) energy through the 

wave-wave interaction with 1ω  and 1ω ω− . In both plots the x-axis is ω  and y-axis is 1ω . 

Several prominent 3-wave coupling triplets are indicated in these two figures, such as the 

triplet (10 ,  5 ,  5 )K K KHz in Figure 4.6(a). The negative value for 1( , )nT ω ω  at 

1( 10 ,  5 )KHz KHzω ω= =  means that density fluctuation n  at 10KHz loses energy to either 

φ⊥∇  at 5KHz or n⊥∇  at 5KHz ( 1 5KHzω ω− = ). There is an uncertainty of which frequency 

is receiving energy because we can only tell from the energy conservation equation (4.7) that the 

frequency ω  is gaining or losing energy, but it is not possible to determine into which wave the 

energy is moving.  Similarly in figure 4.6(b) the positive value for 1( , )uT ω ω  at 

1( 0.3 ,  10 )KHz KHzω ω= =  means that the velocity ( ˆ /z Bφ⊥×∇ ) at 9.7KHz interact with the 

vorticity 2φ⊥∇  at 10KHz to transfer energy to the velocity fluctuation occurring at 0.3KHz.  

 

The frequency and wave number resolved two-point estimated spectrum has been measured on 

CSDX [1], which shows that small scale drift turbulence is typically with a kθ  bigger than 1cm-1 

and with a frequency of several KHz to 20KHz; while large scale azimuthal flow has both the kθ  

and frequency close to zero. By using this measured local spectra, we can conclude that the positive 

value for 1( , )uT ω ω  at 1( 0.3 ,  10 )KHz KHzω ω= =  in figure 4.6(b) is a clear sign of energy 
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transfer from a turbulent flow to a large-scale shear flow, since we have found that this 0.3KHz 

velocity fluctuation is associated with the slow evolution of the sheared zonal flow as summarized 

above and shown in detail elsewhere [31]. In figure 4.6(b) the negative value for uT  at 

1( 10 ,  0.3 )KHz KHzω ω= =  means the velocity at 10KHz loses energy through 3-wave 

coupling with 2φ⊥∇  at 0.3KHz and the velocity at 9.7KHz. If we expand uT  into 4 different parts 

and calculate them separately from experimental data, we will find that there is one part, 

1 1

2*

2
1

1Re{ [ ] }
M

k
kM x y x

ω ω ωω
φ φφ −

=

∂ ∂∂
∂ ∂ ∂∑ , that dominates others. This means that the nonlinear kinetic 

energy transfer to azimuthal shear flow is mostly due to the radial flux of vorticity (due to the fact 

that in the experimental data 
2

2x
φ∂

∂
 dominates 

2

2y
φ∂

∂
 and 

2

x y
φ∂

∂ ∂
 in the expansion form of 2φ⊥∇ ). 

Or it can be interpreted that azimuthal velocity shear couples with radial velocity to transfer energy 

to shear flow. The internal energy transfer also has a similar feature. These relevant arguments and 

physical interpretation will be discussed in detail in the next chapter.  

 

4.5 Summary and discussions 

In this chapter, a method for studying the nonlinear energy transfer with a two-field (density 

and potential) model, including both theoretical derivation and experimental setup, are proposed 

and explained. Experimental results measured at the shear layer give a clear picture of wave 

coupling and energy transfer. This is the first time that nonlinear energy transfer is experimentally 

studied using a two-field model in frequency domain.  

 

Calculating bispectrum (essentially a convolution) is slow and computationally expensive. 
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Instead of doing convolutions in frequency domain, an alternate way to calculate the nonlinear 

energy transfer coefficients is to first construct an effective time series in real time domain using 

time series of density and potential, then take the Fourier transform of the constructed time series to 

get energy transfer coefficients. This approach is much faster than directly calculating bispectra in 

frequency domain. For example, the internal energy transfer coefficient can be formulated as: 

1
1 1 1 1

1 1

1 1
1

* *

| |

ˆRe ( ) Re ( )
nyq

nyq
nyq
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n
f
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n n
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ω ω ω ω ω ω
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φ φ
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∂ ∂ ∂ ∂∑ ∑

                (4.13) 

But it can also be reformulated as:  

1 2

1 2
1 2

* *

  ,

ˆRe ( ) Re{ [FFT( )] FFT[ ] }n
n nT n z n n

y x x yω ω ω
ω ω

ω ω ω

φ φφ⊥ ⊥

= +

∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂∑  

                (4.14) 

According to equation (4.14), one can first construct a time series 
n n

y x x y
φ φ∂ ∂ ∂ ∂

−
∂ ∂ ∂ ∂

, then take the 

cross-power of density n  and this effective time series. Note that this approach can only produce 

the coefficients summed over 1ω . When one desires to determine the interacting triplets, then the 

results contained in figures 4.6(a) and 4.6(b) are needed and the method computing convolution 

should be used. Due to finite signal sampling frequency of real data acquisition systems, these two 

methods may produce slightly different curves (difference comes from the fact that Fast Fourier 

Transform of a finite time series is defined from circular convolution instead of a linear 

convolution). However, when the sampling frequency is sufficiently high, the difference is 

negligible. We plan to discuss this approach and comparing it to the cross-bispectral technique in a 
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separate chapter. 

 

The method proposed in this chapter is completely in frequency domain. The disadvantage of 

this approach is that it is not formulated in wavenumber space which may make comparison with 

analytic theory and simulation more difficult (although in principle simulations can calculate these 

quantities in frequency space exactly, provided that they are run for enough time and that any 

possible frame transformation between laboratory and plasma center of mass frame due to bulk 

rotation is accounted for). One way to overcome this difficulty could be combining these results 

with a measured dispersion relation to relate frequencies to azimuthal wave numbers. Also note that 

in this experiment, the floating potential instead of plasma potential is used to calculate electric field 

and the fluid velocity. This approach has essentially neglected the effect introduced by electron 

temperature fluctuations. One interesting future work could be including density, potential and 

temperature fluctuations to study the quadratic nonlinearity in a 3-field model via a straightforward 

extension of this approach to a system that includes particle, momentum and heat conservation 

equations. 

 

All the contents of the next chapter, including text and data, has been published as it appears in 

“Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma”, M. Xu, G. R. 

Tynan, C. Holland, Z. Yan, S. H. Mueller, J. H. Yu, Phys. Plasmas 17, 032311 (2010). The 

dissertation author is the primary investigator and author of this article.  
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Chapter 5  

 

Fourier-domain study of drift 
turbulence driven sheared flow in a 
laboratory plasma 

 

5.1 Introduction 

Turbulent nonlinear energy transfer is important since it is directly related to questions of how 

plasma fluctuation energy is redistributed and how large scale structures, e.g. zonal flows, are 

formed.  Great efforts [Ref. 1-7] have been put into this issue ever since Ritz et al [8] 

experimentally measured the nonlinear energy transfer using a one-field model.  Because it is 

difficult to measure plasma potential in large tokamaks (especially when a large number of spatial 

channels are needed) linear plasma machines become ideal devices to study the nonlinear dynamics 

involving turbulence and shear flows.  Earlier work [9] in the CSDX device suggested that 

turbulent energy is nonlinearly coupled to the linearly stable low kθ  zonal flow region, and further 

time-domain investigations by Tynan et al [2] and Holland et al [3] provided direct experimental 

support for the drift-turbulence-driven mechanism of zonal flows in this plasma.  In that work, the 

experimentally measured Reynolds Stress was used in a turbulent azimuthal momentum 

conservation analysis, which produced a time-averaged azimuthal velocity profile that agrees 
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reasonably well with experimental measurements.  The dynamic interplay between zonal flows and 

drift turbulence has also been studied in detail by Yan et al [10], which showed that a slow variation 

in the shear flow is accompanied by a corresponding variation in the Reynolds Stress.   

 

In this chapter we report the results from a direct nonlinear energy transfer measurement based 

on the technique described in the former chapter, which gives a frequency domain measurement of 

the nonlinear convective terms in the continuity and momentum equations.  These measured 

nonlinear energy transfer rates were then mapped into the azimuthal wavenumber domain using 

experimentally measured dispersion relation.  The results show clearly a net energy transfer from 

the linearly unstable drift wave turbulence region with intermediate frequencies to both low 

frequency and high frequency regions.  A comparison with linear stability of drift waves is also 

reported here.  The content of this chapter is deeply related to the issue of turbulent transport in 

magnetically confined fusion as seen in [11-16]. 

 

This chapter is organized as follows. Section 5.2 gives a description of the experimental setup, 

section 5.3 shows the detailed nonlinear energy transfer measurement, section 5.4 shows results 

from the linear eigenmode analysis and finally section 5.5 gives a summary and a discussion of the 

results.  

 

5.2 Experimental setup 

As discussed in our earlier work [1] and in the previous chapter, by Fourier transforming the 
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momentum and continuity equations, ensemble-averaged energy transport equations for the spectra 

of density and potential fluctuations can be derived in frequency domain, where the internal and 

kinetic energy transfer rates come from convective derivatives u n⋅∇
G

 and u u⋅∇
G G

, and are 

defined,  respectively, as;  

( ) ( )2 1 2 1

* *
1 ˆ( , ) Re Ren f f f f f fT f f n u n n z nφ⊥ ⊥ ⊥ ⊥≡ − ⋅∇ = − ×∇ ⋅∇K
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≡ − ⋅ ⋅∇
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   (5.2) 

where   〈 〉  denotes the ensemble average, the asterisk denotes the complex conjugate and ⊥  

denotes the plane perpendicular to the magnetic field.  The velocity u⊥
K

 is the E B×
K K

 velocity 

defined as ˆu z φ⊥ ⊥≡ ×∇K
, and 1 2f f f≡ + .  A positive (negative) 1( , )nT f f  or 1( , )uT f f  

means that fluctuations at the frequency f gain (lose) energy from (to) frequencies 1f  and 2f  

through 3-wave coupling.  In order to determine these two terms, the plasma density fluctuations 

n�  and their first derivative n⊥∇ �  as well as the potential fluctuations φ�  and their first and second 

derivatives φ⊥∇ �  and 2φ⊥∇ �  need to be experimentally measured.  These measurements were 

performed with a dual 3x3 probe array centered at the same radial location [1].  These quantities 

were then Fourier transformed into the frequency domain to compute the corresponding 

convolutions and finally ensemble-averaged over a sufficient number of realizations to reach 

statistically converged bispectra.  

 

The dual 3x3 Langmiur probe array, described in detail in Chapters 2 and 3, was installed at 
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z=75 cm (here z=0 is defined as the interface between the source belljar and the vacuum chamber).  

The output analog signals from the probe array are simultaneously sampled and stored at a high time 

resolution (500 kHz).  The measurement circuits have sufficiently high bandwidth such that for the 

drift turbulence signals ( < 25 kHz) the phase shifts introduced by the signal conditioning circuits 

are negligibly small ( < 0.5D ).  The 3x3 array for density channels and the 3x3 array for potential 

channels were centered at the same spatial point in both azimuthal and radial directions, but shifted 

by 1.5 mm along the magnetic field line.  Since the turbulent correlation length along magnetic 

field line is much larger than 1.5 mm, the resulting phase shifts are also negligible.  The machine 

runs in a steady state, which makes the measurement of long time sequences possible to achieve 

statistically converged bispectra.  

 

5.3 Experimental results 

For convenience the basic profiles such as plasma density, potential, particle flux, etc. for the 

CSDX plasma have been reproduced here in figure 5.1.  For more details about how these profiles 

were obtained, the reader is referred to previous work from the CSDX device [17].  
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Figure 5.1 Equilibrium radial profiles for CSDX. (a) Time-averaged density (solid black) and 

RMS of density fluctuation (solid red). (b) Time-averaged turbulent particle flux. (c) Time-averaged 

Reynolds Stress. (d) Estimated ion viscosity. (e) Plasma azimuthal velocity [17]. 

 

The results shown in this chapter were measured at the plasma discharge condition: argon fill 

gas with a pressure 3.2 mtorr, magnetic field strength of 1000 Gauss and RF power 1.5 kW with 

reflected power less than 20 W, in order to allow direct comparison with previously published time 

domain results [2, 3, 10, 17, 18].  As we can see from the spectra in figures 5.2 (a) through 5.2(c), 

the plasma at this condition is in a weak turbulent state, in which the fluctuations have a significant 
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degree of frequency broadening but still reasonably follow the linear dispersion relation (see figures 

5.6 (a) and 5.6 (b)), with coherent modes coexisting with broadband turbulent fluctuations.  Both 

the density and potential spectra peak at around 5 kHz and 10 kHz, which have been identified as 

m>0 collisional drift waves [9].  The potential and azimuthal velocity spectra also exhibit peaks at 

very low frequencies ( 1~2 kHz≤ ).  These low frequency fluctuations have been associated with 

the slow evolution of the m=0 radially sheared flows [10].  The spectra of density and potential 

fluctuations are significantly different, particularly at frequencies of 2.5kHz and below, and their 

cross correlation is significantly less than unity [1].   
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Figure 5.2  Typical autospectra (a) density, (b) potential, and (c) perpendicular velocity for the 

weakly turbulent plasmas in CSDX.  Measurement was taken at argon pressure 3.2 mTorr, 

magnetic field 1000 Gauss, and RF power 1.5 kW by the dual 3x3 Langmuir probe array centered at 

the radial position r=3.6 cm.  

 



117 

 

 

 

Figure 5.3  The experimentally measured nonlinear energy transfer rates. (a) Internal energy 

transfer. (b) Kinetic energy transfer [1].  In both figures positive (negative) values correspond to a 

positive (negative) energy transfer to either density or perpendicular velocity fluctuations. Several 

prominent frequency triplets (f, f1, f2) are highlighted. 

 

The nonlinear internal and kinetic energy transfer rates 1( , )nT f f  and 1( , )uT f f , given by 

Eq. (5.1) and (5.2) , have been measured using the dual 3x3 probe array at argon pressure 3.2 mTorr 

and magnetic field 1000 Gauss.  The probe array was centered at r = 3.6 cm, which lies at the inner 

radius of the shear layer (Fig 5.1e).  About 5 million sampling points on each channel were divided 

into roughly 1200 independent realizations to perform the bispectral calculation with good 

frequency resolution ( ~ 120f HzΔ ).  As has been shown in Chapter 3 and in the literature [1] 

both 1( , )nT f f  and 1( , )uT f f  will converge once the number of realizations reaches ~ 1000.  
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For convenience, figures from that earlier chapter showing the 2-dimensional 1( , )nT f f  and 

1( , )uT f f  at this discharge condition are reproduced and shown here as figure 5.3, where the 

positive peak at 10.3 ,  10 f kHz f kHz= =  in figure 5.3(b) clearly indicates that slowly varying 

zonal flows are coupled to drift wave turbulence and gain kinetic energy from ~ 10 kHz drift wave 

turbulences through 3-wave coupling.   

 

If we sum 1( , )nT f f  over the frequency 1f , we find the net internal energy transfer rate for the 

frequency f , i.e. 
1

1( ) ( , )n n
f

T f T f f= ∑ , which gives the total net internal energy transfer into (or 

out of) frequency f  from all other frequencies.  Figures 5.4(a) and 5.4(b) show the net internal 

energy transfer and the net kinetic energy transfer respectively computed in this manner.  Here a 

negative value means that frequency f is losing energy and a positive value means that it is gaining 

energy.  We can clearly see that the drift turbulence region (which corresponds to several kHz to ~ 

12 kHz [9]) loses internal and kinetic energy to both low and high frequencies.  The large positive 

peak in the low frequency region (f<2 kHz) in figure 5.4(b), which has been shown to correspond to 

m=0 zonal flows (see figure 5.2(b)), gain net kinetic energy, while the large negative peak at f ~ 10 

kHz shows that fluctuation at this frequency loses kinetic energy.  An examination of 1( , )uT f f  

in figure 5.3(b) shows that the nonlinear zonal flow drive is dominated by the transfer of energy 

from these 10 kHz drift fluctuations.  It can be inferred that the strongest flow drive comes from 

kθ ρS ≈1 fluctuations since the 10 kHz fluctuations can be mapped to an m=3 mode using the 

experimentally measured dispersion relation shown in figure 5.6(b), and for the m=3 mode 

1
θk =m/r ~ 0.8 cm−  and sρ  ~ 1 cm .   
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Figure 5.4  Net energy transfer rates (a) internal (b) kinetic.  Here a positive value at one specific 

frequency means that density (or perpendicular velocity) fluctuation at this frequency gains energy, 

while a negative value means losing energy.  

 

Since the total normalized fluctuation energy in the system can be defined as 

2 2| ( ) | | ( ) |totalE n f u f⊥≡ +� �  and the internal and kinetic energy transfer rates quantitatively 

indicate the amount of energy redistributed among different frequencies through nonlinear 

processes, it is useful to sum the internal and kinetic energy transfer rates to get a net rate of the total 
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fluctuation energy transfer, ( ) ( ) ( )total n uT f T f T f≡ + .  The bispectral results show that 

generally the magnitude of kinetic energy transfer rate is at least a factor of 5 bigger than that of the 

internal energy transfer rate.  With figures 5.4(a) and 5.4(b) this means that the total energy transfer 

rate follows the kinetic energy transfer rate and the bulk of the total fluctuation energy is nonlinearly 

transferred to low frequency zonal flow region.  This could be understood by noting that the total 

fluctuation energy can be rewritten as 
22

2 2

0 0

( ) ( )~
( ) ( )total s

B e

n r rE k
n r k T r

φρ⊥

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

��
 and in our 

experiment s s ciρ =C /Ω  ~ 1 cm , implying that the second term on the RHS should dominate if the 

fluctuation amplitudes of the two fields are comparable.  At the shear layer for the m=3 mode 

1
θk =m/r ~ 0.8 cm−  and r θk >>k  since the measured turbulence correlation length in azimuthal 

direction is roughly a factor of 3 higher than the turbulence correlation length in radial direction at 

the shear region [17].  We thus estimate that sk ρ ~ 3⊥ .  In our experiment the locally normalized 

density and potential fluctuations are about the same magnitude, i.e. 
0 0

( ) ( )~
( ) ( )B e

n r r
n r k T r

φ��
.  

Combining the above we then find that the kinetic fluctuation energy is roughly a factor of 10 higher 

than the density fluctuation energy.  This is consistent with the measured results showing that the 

nonlinear kinetic energy transfer rate is much bigger than the internal energy transfer rate.   

 

From Eqns. (5.1) and (5.2), we can see that the internal and kinetic energy transfer terms can 

both be divided into components.  For example 1( , )uT f f  is comprised of 4 different parts 
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1

2

, *
, , Re  x f

x f y f

u
u u

y
∂

−
∂

.  A similar set of expressions can be written for 1( , )nT f f .  By 

calculating each of these components separately and summing the resulting bispectra over 1f , the 

contribution from each part to the total net energy transfer rate can be found.  The results of this 

calculation are shown in figures 5.5(a) and 5.5(b).  The net internal energy transfer (Fig. 5.5 (a)) 

shows that the term 1

2

*
, Re  f

f x f

n
n u

x
∂

−
∂

 (red dash) closely follows the total internal energy 

transfer (solid black line), while the term 1

2

*
, Re  f

f y f

n
n u

y
∂

−
∂

 (blue dot) is much smaller.  We 

therefore conclude that the term 1

2

*
, Re  f

f x f

n
n u

x
∂

−
∂

 (corresponding to a radially directed 

E B×
K K

 velocity interacting with a radial density gradient) is the major player for redistributing 

internal energy among different frequencies via nonlinear wave-wave coupling.  This result would 

seem to make intuitive sense, since the radial density gradient is the dominant source of free energy 

in the system and is advected by radial motion induced by the drift wave instability. 

 

We can also see in figure 5.5(b) that the term 1

2

, *
, , Re  y f

y f x f

u
u u

x
∂

−
∂

 dominates the net 

kinetic energy transfer.  Because 
( )yu t
x

∂

∂

�
 is the azimuthal flow shearing rate, it is clear that the 

slowly varying azimuthal velocity oscillations ( )yu f  at f=200-300Hz gains energy due to the 

interaction between ( )xu t�  at frequency 2 1f f f= −  and the azimuthal shearing rate at frequency 

1f .  By noting that vorticity can be written as 
2 2

2
2 2

( ) ( )( ) t tt
x y
φ φφ⊥

∂ ∂
∇ = +

∂ ∂
 and that 
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2 2

2 2

( ) ( )t t
x y
φ φ∂ ∂

>>
∂ ∂

� �
 in our experiments, we can take 

2

2

( )t
x
φ∂

∂

�
 approximately to be vorticity, and 

hence 
2

2
2

( ) ( )( ) ( ) ( ) ( )y
x x x

u t tu t u t u t t
x x

φ φ⊥

∂ ∂
= ≈ ∇

∂ ∂

�� �� � �  is approximately the instantaneous radial 

flux of vorticity associated with perpendicular velocity fluctuations.  This result then suggests that 

one can also view the shear flow as being generated by a flux of vorticity which accumulates at the 

shear layer and reinforces or amplifies the shear flow.   By noting that, for divergence-free flows 

such as E B×
K K

 drifts, we can write  x y x zu u u
x

∂ ω
∂

= �� � �  where ( )z z
uω ≡ ∇×� �  is the vorticity 

of the fluctuating velocity in the x-y plane [19, 20], this interpretation can be seen to be entirely 

consistent with the results of Holland et al [3] which showed that the time-averaged Reynolds Stress 

was consistent with the observed shear flow profile and estimated damping processes.  The results 

here therefore suggest that the transient vorticity flux 
2

2

( )( )x
tu t

x
φ∂

∂

�
�  is responsible for the transfer 

of turbulent energy in frequency space, and specifically is responsible for the transfer of turbulent 

momentum with higher frequency into the slowly oscillating (i.e. low frequency) shear flows.  This 

result provides a consistent and complementary picture of the fluctuations drive mechanism of shear 

flows to the earlier time-domain picture which attributes the shear flow drive to an accumulation of 

turbulent momentum within the shear layer. 
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Figure 5.5. (a) Contributions to the net internal energy transfer rate due to 1
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(red dash) and 1
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 (blue dot).  The total value is indicated by the solid black 

line.  (b) Contributions to the net kinetic energy transfer rate due to 1
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 (orange dash dot).  The total kinetic energy transfer rate is 

indicated by the solid black line.  



124 

 

 

 

 

Figure 5.6  Two-point spectrum ( , )S f kθ  from potential (with the intensity in log scale).  (a) 

Dispersion measured at r = 2.6 cm (strong density gradient region) and the black dashed line is for 

the real part of the linear eigenmode frequencies of the first radial eignemode branch (n=1) 

calculated from the linear dispersion relation Eq. (5.3) with Doppler shift accounted (using typical 

CSDX parameters ~ 2.0 eT eV , ~ 2.5 nL cm , 10.0 a cm= , - ~ 6.0 i n kHzν  and 

4 2~ 2.0 10  /ii cm sμ × ).  The effective azimuthal mode number is a continuous variable defined 

as m k rθ≡ .  (b) Dispersion measured at r = 3.6 cm (maximum shear region), and the black solid 

line indicates the weighted-average values, which were used to map the nonlinear transfer rate in the 

frequency space into the wavenumber space.  

 

5.4 Linear stability analysis with comparison to experiment 

The idea that linearly unstable modes release free energy into finite amplitude fluctuations, and 
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the energy of these fluctuations is then nonlinearly transferred into linearly damped or stable 

fluctuations is assumed implicitly in nearly all turbulence models of drift turbulence, and yet this 

model has never received direct experimental scrutiny (see e.g. the Hasegawa-Wakatani collisional 

drift-wave model [21]).  These results do permit us to infer the energy transfer rates, and to 

compare then against a linear stability analysis and the measured saturated turbulent power spectra 

in order to determine if the observations are consistent with such an ansatz for the balance of linear 

release of free energy, nonlinear energy transfer, and damping via linear processes.   

 

We proceed by first assuming that the equilibrium density is of Gaussian form 

( ) ( )( )2
0 0 exp 0.5 nn r n r L= −  (which is close to the profile shown in Fig 5.1(a) ).  Using this 

profile in the linearized Hasegawa-Wakatani collisional drift turbulence model (thought to be 

appropriate for this experiment) written in a cylindrical geometry, we find the linear dispersion 

relation 

  ( )2 2 2
|| ||1 0s

mn mn mn k mn k
n

ik k m i
L
ρω ω ν ω ω ν

⎛ ⎞⎡ ⎤− + + + − − =⎜ ⎟⎣ ⎦ ⎝ ⎠
    (5.3) 

Here mnk  is the effective radial wavenumber denoted by kmn = Xmn a , where Xmn is the nth zero 

of Jm(x) and a  is the radius of the plasma cylinder. ω|| = k||
2vTe

2 νei  is the parallel electron 

adiabatic parameter (assumed constant here) and ν k = ν i−n + μiikmn
2( )kmn

2  is a dimensionless 

measure of perpendicular dissipation due to the combined effect of the ion-neutral collision 

frequency i nν −  and the ion-ion collisional viscosity.   More details about this calculation can be 

found elsewhere [22].  By using typical CSDX parameters for the 1000 Gauss case with an average 

electron temperature ~ 2.0 eT eV , density gradient scale length ~ 2.5 nL cm , plasma 
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radius 10.0 a cm= , an average ion neutral collision rate - ~ 6.0 i n kHzν , and an average ion 

collisional viscosity 4 2~ 2.0 10  /ii cm sμ ×  [3], we can solve the complex eigenfrequencies 

mnω  from the linear dispersion relation and thus find the real frequencies and the growth rates for 

each eigenmode.  The Doppler shift introduced by the mean E B×
K K

 flow associated with the 

azimuthal flow has been taken into account by adding a frequency shift given by kθ V θ , where 

the value of Vθ  measured by a Mach probe  [18] was used.  This Doppler shifted frequency 

mnω  (real part) for n=1 is shown as the black dashed line in figure 5.6(a). Note that in these figures 

the effective azimuthal modenumber, effm , is a continuous variable defined as effm k rθ= .   

 

By using two azimuthally separated Langmuir probes, the spectrum ( , )S f kθ  can be 

measured and a mapping between frequencies and azimuthal mode numbers can be established [23].  

Figure 5.6(a) shows the two-point k-spectrum measured at r = 2.6 cm at the strong density gradient 

region, where the x-axis is the azimuthal mode number and the y-axis is frequency.  Figure 5.6(b) is 

the dispersion relation measured at r = 3.6 cm at the maximum shear region.  We can see that the 

spectrum exhibits strong dispersion for 3m ≥ , and several azimuthal mode numbers ~ 3 6m −  

are degenerate with frequency f ~ 10 kHz.  It is interesting to note that the strong nonlinear 

interaction of these degenerate fluctuations is what leads to the very low frequency 

( ~ 200 300 Hzf − ) m=0 sheared flow fluctuation (shown in Fig. 5.2); this observation may be 

the m=0 limit of the more general nonlinear convective cell generation mechanism discussed by 

Shukla [24].   

 

With the experimentally measured k-spectrum in figure 5.6 (b), we can now map the measured 
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energy transfer rates from the frequency domain to the azimuthal wavenumber domain.  To do this, 

for each frequency a weighted-average value 
0 0

( ) ( , ) / ( , )k f S f k k dk S f k dkθ θ θ θ θ θ

∞ ∞
≡ ∫ ∫  was 

obtained by averaging over the two-point spectrum in figure 5.6(b), then those values for different 

frequencies were smoothed to get the black solid line in Fig. 5.6(b).  The resulting effective curve 

( )kF θ  was used to map the net energy transfer rates into the wavenumber domain.  Figure 5.7(a) 

shows the mapped kinetic energy transfer rate ( )( )uT k fθ  by the red solid curve and the mapped 

internal energy transfer rate ( )( )nT k fθ  by the blue dashed line.  The results show that the zonal 

flow (m ~ 0 mode) gains net kinetic energy while fluctuations with m = 1, 2, 3 etc.lose kinetic energy.  

The mapping for 4m ≥  has large uncertainties when the mapping frequencies approach ~ 10 kHz 

due to the frequency degeneracy seen in figure 5.6 (b).  However it is still very clear from figure 5.6 

(b) that the major zonal flow driving frequency range 9 ~ 11 kHz corresponds to azimuthal modes 

m 3≥ , implying that the kinetic energy carried by fluctuations with higher azimuthal wavenumber 

is nonlinearly transferred to m ~ 0 mode where it is (presumably) damped away through collisional 

processes.  The driving source for those waves with higher azimuthal mode numbers still needs to 

be identified.  As we show next, the m=1 ~ 10 modes are linearly unstable thus they can tap energy 

directly from density gradient; in addition they can interact nonlinearly with each other to re-arrange 

the energy spectrum. 
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Figure 5.7 (a) Nonlinear energy transfer rates mapped from frequency domain to wavenumber 

domain using the experimentally measured k-spectrum ( , )S f kθ  presented in figure 5.6(b).  The 

red solid line is for ( )uT m  and the blue dashed line is for ( )nT m .  (b) Effective growth rates 

inferred from the nonlinear net energy transfer rates.  The red solid line is for u
effγ  and the blue 

dash line is for n
effγ .  (c) Linear growth rates from Hasegawa-wakatani model.  The red solid line 

is the growth rate of the first linear radial eigenmode n=1, 1nγ = ,  and the blue dashed line is for the 

second radial eigenmode n = 2, 2nγ = .    
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In figure 5.6(a) the real parts of the linear eigenfrequencies for the first radial eigenmode were 

plotted as the black dashed line, which agrees well with the experimentally measured k-spectrum.  

The imaginary parts of the linear eigenfrequencies (i.e. the linear growth rates) for the first and 

second radial eigenmodes computed from this linear stability analysis are plotted in figure 5.7(c).  

We find that the 1m ≥  modes on the n=1 and n=2 branches are both linearly unstable.  

Furthermore, we note that the unstable (stable) regions correspond to the regions where 0uT <  

( 0uT > ), consistent with expectations for a stationary spectrum established by balancing the linear 

growth/decay against the nonlinear energy transfer.  To test the consistency of this spectrum 

balance picture, we can lump the linear effects into an effective linear growth/damping rate, u
effγ , 

and rewrite the frequency-domain kinetic energy transport equation (see Ref 1) as: 

  

2

21 ( ) ( ) | |
2

f u
u eff f

u
T f f u

t
γ⊥

⊥

∂
= +

∂

K
K

        (5.4) 

For a time stationary plasma the left-hand side of the equation (5.4) is zero.  By dividing the 

equation by 2| |fu⊥
K

 we can infer an effective linear growth/damp rate as 

2

( )( )
| |

u u
eff

f

T ff
u

γ
⊥

≡ − K , which can be compared with the analytically calculated linear grow rate 

from equation (5.3).  The red solid line in figure 5.7(b) shows the result.  We note that the sign of 

u
effγ  agrees with the linear stability analysis, and the relative magnitudes of the unstable region, 

where 0u
effγ >  and where both 1 0nγ = >  and 2 0nγ = > , is in rough agreement.  However, we 

also note that u
effγ  for 0effm ≈  is significantly more negative than 1nγ =  and 2nγ =  at 0effm ≈ .  

This result, which is found by balancing the time-averaged zonal flow amplitude against the 
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nonlinear energy transfer into the zonal flow, suggests that some additional damping mechanism 

(e.g. a shear flow instability unrelated to the damping mechanism that are contained in the linear 

stability analysis) may influence the zonal flow saturation.  Additional work is required to 

determine if this is indeed the case.  

 

5.5 Summary and discussion 

We have shown in this chapter that the directly measured nonlinear energy transfer rates for 

both velocity and density fluctuations are negative at intermediate frequencies and positive in both 

low and high frequency regions, indicating that turbulent energy is nonlinearly transferred to low 

frequency zonal flows and to regions at higher frequencies, where the energy is then presumably 

dissipated.  In addition, we find that the radial flux of vorticity, equivalent to gradient of the 

turbulent Reynolds stress, is dominantly responsible for redistributing turbulent kinetic energy 

among different frequencies (or different scales).  Thus the vorticity flux can be thought of as 

having two equivalent roles: it leads to the transport of momentum in configuration space and to the 

spreading of energy among different spatiotemporal scales in the Fourier domain.   

 

We also compared the net nonlinear transfer results against a linear eigenmode calculation 

based on the Hasegawa-Wakatani model.  Despite the use of very simplified profiles (flat electron 

temperature, ion viscosity profiles, etc.), the comparison shows that the linearly unstable 

fluctuations correspond to the regions where the nonlinear transfer leads to a loss of energy.  

Conversely, the linearly stable fluctuations correspond to regions that receive nonlinearly 

transferred energy.  Linear analysis also shows that m 1≥  modes of the first two radial 
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eigenmodes n=1 and n=2 are unstable at the typical CSDX condition, suggesting that these two 

radial eigenmodes could play a role in driving the zonal flows. 

 

The observation that zonal flows are driven predominantly by the radial flux of vorticity, 

combined with the observation that the shear layer is spatially separated from the strong gradient 

region (which presumably is where drift fluctuations originate) suggests a picture where drift 

fluctuations with finite vorticity are generated at one location and then propagate outward and then 

interact with and reinforce a pre-existing shear layer.  In the next chapter we use direct 

visualization of the fluctuations to obtain a deeper understanding of this result.  

 

All the contents in the next chapter, including text and data, has been submitted for publication 

as it appears in “Generation of a Sheared Plasma Rotation by Emission, Propagation and Absorption 

of Drift Wave Packets”, M. Xu, G. R. Tynan, P. H. Diamond, S. H. Muller, C. Holland, J. Yu , Z. Yan, 

Phys. Rev. Lett. (2010). The dissertation author is the primary investigator and author of this article.  
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Chapter 6  

 

Generation of a sheared plasma rotation 
by emission, propagation and absorption 
of drift wave packets 

 

The generation of intrinsic rotation in toroidally confined plasmas, in which the plasma 

spontaneously rotates in the toroidal direction without direct toroidal momentum input, has been 

attributed to the existence of a non-diffusive residual turbulent stress localized to the plasma 

boundary [1].  Macroscopic measurements in tokamak experiments [2, 3] and recent studies in a 

linear plasma device [4] provide evidences that such a residual stress does indeed exist at the plasma 

boundary and plays a role in the generation of intrinsic rotation.  However, this earlier work did not 

identify the operative microscopic physics mechanism that leads to the generation of such a stress at 

the plasma boundary. In this chapter, we show how this residual stress and the associated sheared 

intrinsic flow are caused by the emission of isotropic turbulent drift vortices from the inner plasma 

region which spiral outward.  As these structures approach the shear layer at the plasma boundary 

they are stretched azimuthally, become increasingly anisotropic and then are absorbed into the shear 

layer, thereby transferring their momentum and energy to the shear layer which is consequently 

amplified.  This mechanism is likely to be operative in toroidal confinement devices and also is 

similar to mechanisms operating in other fluid systems [5], and therefore should be of broad interest. 
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These experiments were carried out in the Controlled Shear Decorrelation Experiment (CSDX), 

which is a 2.8 m long linear helicon plasma device.  Argon plasmas with an on-axis density ~ 1013 

cm-3 and electron temperature ~3 eV in a 0.1 T magnetic field is produced by a 13.56 MHz half 

wave-length azimuthally symmetric ( i.e. the RF wavefields have azimuthal mode number m=0) 

helicon source with a radius rsrc=4.5cm and 1.5kW RF power input (reflected power less than 30 W) 

and a gas fill pressure of 3.2 mTorr.  The exit plane of the source defines the axial position z=0 cm.  

Doppler broadened central-chord line-averaged argon ion and neutral gas temperatures are ~0.7 and 

~0.5 eV respectively.  Details of the apparatus and earlier physics results can be found in the 

literature [6-14].  

 

Heat input from the RF source sustains a centrally peaked plasma density (Fig. 6.1(a)) and 

electron temperature profile [7] (not shown here), thus driving an electron pressure gradient in the 

region r<5cm, with a peak density gradient located at r=3cm (Fig. 6.1(b)).  A time-averaged 

azimuthally symmetric sheared azimuthal flow, vθ , exists [15] (Fig. 6.1(c)), and is consistent 

with the measured time-averaged turbulent stress and estimated viscous and ion-neutral flow 

damping [8], thus satisfying the essential criteria for a turbulence-driven sheared zonal flow.  This 

drift is dominated by a plasma fluid flow in the electron diamagnetic drift direction [15] and has a 

negative vorticity, ωZF = ∇r vθ = VE
′ < 0  in the shear layer at r=3.5-4cm.  The plasma 

column maintains this intrinsic rotation by the combined action of turbulent stresses and a no-slip 

boundary condition due to ion-neutral drag [4].   We also note that the peak density gradient occurs 

slightly inside the shear layer.   
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The sheared flow grows over a few msec period [12] and then undergoes a more rapid (100’s of 

μ sec) collapse when a plasma blob is ejected into the region r>5cm [17].  During the shear flow 

growth phase, the turbulence is characterized by fluctuations with azimuthal wavenumber 

kθ ≥ 1cm−1 , corresponding to an effective azimuthal mode number meff ≡ kθ r ≥ 3 for r=3 cm 

with a frequency f ≥ 6kHz [12], while during the collapse phase the central plasma fluctuations 

are dominated by a global m=1 oscillation with f~2-4kHz.  Since in this chapter we are focused on 

the generation mechanism of the shear flow, we apply a non-recursive finite impulse response (FIR) 

high-pass digital filter using a Kaiser window to the imaging and probe fluctuation data.  This gives 

an amplitude suppression ratio >5 within 1 kHz of the 5 kHz cutoff frequency and a ratio as high as 

106 with sufficient frequency width [18], and thereby isolates the growth phase of the sheared flow. 
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Figure 6.1: Time averaged radial profiles of the CSDX plasma.  (a) Time-averaged Density 0n .  

(b) Gradient of the time-averaged density 0 /n r−∂ ∂  .  (c) Time-averaged azimuthal velocity 

Vθ  (d) Residual stress res
rθπ  (solid red) and the diffusive momentum flux 

2diff
r c

V
v

r
θπ τ

∂
≡ −

∂
�  (solid black).  (e) Skewness of density (solid black) and vorticity (solid 

red) fluctuations. (f) Time-averaged radial flux of vorticity rv ω��  (solid black) and Reynolds 

force, Fθ
R  due to turbulent vorcicity (dashed red). 

 

A 28 cm diameter f/10 telescope coupled to a digital fast-framing (100,000 frames/sec) camera 
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located ~8m away from the object focal plane located at z=75 cm provides a view with viewing 

sightlines aligned within +/-0.7 deg of the magnetic field lines. The camera detects visible light 

intensity fluctuations visI~  (due primarily to neutral argon emission) as shown in Fig. 6.2.  These 

visI~  fluctuations have been shown to be correlated with Isat Langmuir probe fluctuations [19] 

caused primarily by plasma density fluctuations. The initially isotropic m~3 structures with 

frequency f ≥ 6kHz  are born between the plasma center and the maximum density gradient at 

r~3cm, and propagate primarily in the electron diamagnetic drift direction. We directly measured 

the nonlinear kinetic energy transfer term ( )∑ ∇⋅⋅−= −
1

11

~~~Re)(
f

ffffu uuufT   with a 3x3 probe 

array [13] located at z=75cm and centered at r ~2 cm, and then mapped these frequency domain 

results into the kθ  domain using the measured dispersion relation kθ ( f )  [14].  The result, 

Tu(kθ ) , is shown in Fig. 6.3 (a) (dotted blue line), and indicates that the m~3 structures born at 

r=2-3cm are generated by the nonlinear transfer of kinetic energy from other spatial scales with m>0 

into the m=3 structures.  We therefore conclude that these fluctuations are nonlinearly pumped drift 

turbulence structures or wave packets. 

 



139 

 

 
 

Figure 6.2  Sequential visible light emissions images showing the birth, evolution, and death of 

vortex-like structures.  Radii of r = 3.0 cm and r = 4.0 cm are denoted by the two dashed circles. 

 

Since these structures have correlated density n~  and potential φ~  fluctuations [7], and since 

the resulting vorticity fluctuations Ev~~ ×∇≡ω  (where 2E
Bv

B
ϕ×∇

≡
G

��  is the fluctuating 

electrostatic ExB velocity) are given by φω ~1~ 2∇≡
B  , the vorticity fluctuations should be 

correlated with density fluctuations as expected from the Hasagawa-Wakatani model of collisional 

drift turbulence, and should have 
2

2
0

0

ln 0S

e

ed nn
dt n kT

ρ φ
⎛ ⎞

+ − ∇ =⎜ ⎟
⎝ ⎠

� �  in the limit of vanishing 

cross-field collisional diffusion so that the total potential vorticity 
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2
2

0
0

ln S

e

enq n const
n kT

ρ φ≡ + − ∇ =
� �  is an inviscid invariant along fluid trajectories. Here, 0n  

varies slowly in time as compared to fluctuating quantities, therefore q q const≈ =� .  

Simultaneous measurements of satI~ and ω~  with the 3x3 probe array [13] show that this is indeed 

the case (Fig. 6.3 (b) and 6.3(c)) and that the vorticity has roughly a zero time delay with respect to 

the density fluctuations, suggesting that indeed q�  is conserved in this region. We can therefore 

conclude that the fast imaging also reveals the birth, evolution, motion and death of structures with 

correlated positive and negative density and vorticity fluctuations.   

 

Examining Fig. 6.2 carefully, we also observe that the structure motion contains an outward 

radial component in addition to the azimuthal component, and thus the structures gradually move 

outwards in a spiral-shaped trajectory.  As the structures approach the shear layer located at 

r=3.5cm (which is within the region between the two circles shown in each panel of Fig. 6.2) their 

radial propagation slows as they undergo a “tilt-stretch-absorption” process (TSA).  In the course 

of this their radial correlation length is reduced [10]. They tilt and become increasingly anisotropic 

and ultimately are absorbed by the shear layer.  This TSA behavior is reminiscent of the 

Howard-Krishnamurti process [5] by which a series of two dimensional convective rolls tilt, stretch 

and then merge to form a larger scale eddy; the difference here is that a smaller scale eddy or 

structure is interacting with a pre-existing larger scale m=0 sheared flow.  Eddies also occasionally 

breakup into several smaller scaled eddies.  

 

Probe measurements show that the Isat skewness (Fig. 6.1(e) solid black) changes sign near 
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r=2cm, suggesting that the turbulent radial velocity fluctuations give rise to outward (inward) going 

positive (negative) density perturbations which modulate the density gradient in this region and 

drive outward particle transport, consistent with previous turbulent particle flux measurements [7]. 

The vorticity fluctuation skewness is positive in the region between 0<r<3.5cm and is peaked near 

r=2cm (figure 6.1(e) solid red), indicating that an excess of positive vorticity events occur in the 

region where the positive density events are born. Correlated measurements of ( ) ( )
B

t
tv f

r

φθ
~

~ ∇
−=  

and ( )tω~  from the 3x3 probe array show a positive flux of vorticity, rv ω��  (figure 6.1(f) solid 

black).  However, examining Fig. 6.1(e-f) in detail, we find that the vorticity skewness and 

vorticity flux change sign and become negative in the region 3.0<r<3.5cm.  The imaging results 

(Fig. 6.2) show that the structures, which have vorticity associated with them, are still moving 

outwards (albeit at a slower rate) and therefore have on average 0~ >rv  in this region.  We can 

therefore infer that, on average, the sign of the vorticity of the structures is changed in this region.  

Noting that the m=0 flow shearing rate ∇r vθ = ωZF ≈ ωsh ≈ −8 ×104 sec−1 < 0 as discussed 

above and estimating that 1 4 1
2 1 6 10 seceddy BL

φω τ − −

⊥

≈ ≈ ≈ − ×
�

�  for the observed rms floating 

potential fluctuation amplitude Vf 6.03.0~
−≈φ  and perpendicular structure scale length 

L⊥ ≈1− 2cm , we find that ωω ~>ZF . Here  τ eddy
−1  is the eddy rotation rate. Hence a crude 

estimate based on the Okubo, McWillaims, Weiss criteria [20] for evolution of the local vorticity 

gradient, namely ∂ t∇ω ∝ ′ V 2 − ω 2( )1/ 2
, suggests that ∂ t∇ω > 0  near the shear layer, where 

′ V > ω ~
1

τ eddy

as noted above.  This steepening of the vorticity gradient drives a forward 

enstrophy transfer to small scales, which effectively then peels apart the eddy. Thus when the 
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weaker (i.e. ωω ~>ZF ) small-scale positive vorticity structure encounters the large-scale shear 

layer with strong negative vorticity, a progressive merging process occurs during which the outer 

layers of the smaller structure are sequentially peeled off , leading to the eventual absorption of the 

smaller structure by the stronger large scale shear flow.  This picture is consistent with the vorticity 

flux profile (Fig. 6.1(f)) and with recently published results from neutral fluids and plasmas [21, 22].  

Small structures with negative vorticity, which are rarer in the central plasma region (Fig. 6.1(e)), 

will be readily absorbed by the negative vorticity mean shear layer.  The net contribution from 

small structures with positive vorticity and those with negative vorticity results in a transfer of the 

structure’s turbulent kinetic energy into the shear layer as shown by measurements of  Tu(kθ )  at 

r=3.0-4.0cm (Figure 6.3 (a) solid red curve).    

 

For these ExB dominated turbulent flows which have azimuthally invariant fluctuation 

statistics, the Taylor identity [23] holds and shows that the vorticity flux is related to the turbulent 

Reynolds stress and Reynolds force Fθ
R

 exerted by the fluctuations upon the background plasma 

by the relation ωθθ
~~~~

rrr
R vvvF −=−∇=  [23, 24].  Our previous work shows that for the 

estimated dissipation profiles, Fθ
R

 is consistent with the mean shear flow, and that the slow 

variations in Fθ
R

 are also consistent with slow changes in the shear flow [12]. Examining Fig. 

6.1(f), we find that 0~~ <ωrv  for 3<r<3.5cm and has values consistent with the previously 

published total Reynolds stress profile.  The Reynolds force thus amplifies the shear flow in the 

plasma boundary region, and is consistent with the global turbulent force balance demonstrated in 

our earlier work. A cross-correlation analysis between the instantaneous fluctuating vorticity flux at 

variable positions r<3.6cm and the instantaneous turbulent stress at the shear layer at r=3.6cm 
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shows that an increase in vorticity flux from the central plasma region precedes an increase in the 

turbulent stress at the shear layer maximum (Fig. 6.3 (d-g)).  
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Figure 6.3 (a) Nonlinear kinetic energy transfer vs. effective azimuthal mode number at  r=2.4cm 

(dashed black line) corresponding to the vortex structures generation region and  r=3.2cm (solid 

red line) corresponding to the location of the shear layer. A positive (negative) Tu value indicates a 

gain (loss) of turbulent kinetic energy through nonlinear processes.  The noise level is negligible 

small as was shown in a former paper [14]. (b) Time resolved density (blue) and vorticity (red) 

fluctuations.  (c) Correlation between density and vorticity fluctuations, which shows that density 

and vorticity fluctuations have a significant correlation with zero phase shift. (d-g) 

Cross-correlation between vorticity flux at different radial positions (d-g correspond to r=2.1, 2.6, 

3.1, 3,6 cm respectively) and total turbulent stress in the shear layer at r=3.6 cm.  
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In the above figure an increase in central plasma vorticity flux leads to a subsequent increase in 

the boundary plasma Reynolds stress ~ 120 microsecond later. Solid blue lines are the calculated 

correlations. Up-down symmetric envelopes (solid purple line) were computed from the 

correlations; the center of each envolope is indicated by the dotted red vertical lines. The dotted 

green line corresponds to zero time delay. 

 

The TSA mechanism may also be understood as a consequence of shear-induced refraction and 

its impact on wave packet energetics.  Since wave packet action density (closely linked to potential 

enstrophy density) is conserved in a spatio-temporally adiabatic shearing field [25], the wave packet 

energy density then evolves according to 
dε
dt

=
∂ωk

∂kr

dkr

dt
ε

ωk

= −kθ vgr ′ V E ε /ωk  where wave 

packets obey a dispersion relation ωk .  Since vgr = −
2krkθ ρS

2

1 + k
⊥

2 ρS
2 v*  and taking 

kr = kr
(0) − kθ VE

′ τ , this means that 
dε
dt

=
−2kθ

2ρS
2

1+ k
⊥

2 ρS
2( ) ′ V E

2
τLε   where τ L denotes the 

lifetime of the wave packet and we took kθ VE
′ τ > kr

(0) for simplicity.  Note that wave packet 

energy decreases due to shearing, at a rate that is quadratic in the shear strength.  As shown 

elsewhere [25], the total energy is conserved in the course of the straining interaction, so that 

d
dt

ε + VE
2( )= 0  for a suitably normalized shear flow velocity, meaning that flow energy 

VE
2
 increases  at the expense of the wave packet energy.  This simple calculation, then, 

quantifies the intuitive concept of the TSA mechanism, whereby shear flows strain and stretch wave 

packets, and so ultimately consume their energy.  The TSA mechanism may also be viewed as a 

type of strongly anisotropic inverse cascade, though we emphasize it is not intrinsically statistical.   
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These results also imply that wave stresses naturally act to amplify sheared flows.  This follows 

simply from the fact that for electrostatic ExB flows 
2

2
0

1
r r kv v k k

Bθ θ φ= �� � . So for 

kr = kr
(0) − kθ VE

′ τ , the shearing breaks symmetry so as to render krkθ  unambiguous.  Thus 

2
2 2 2

r S S E
B e

ev v k C V
k Tθ θ

φρ τ′≈ −
�

� � , and comparison with the discussion above then shows that 

r E
d v v V
dt θ
ε ′= � � , which is clearly equivalent to the Reynolds work performed by the wave stress 

on the mean shear flow.    

 

Finally, we observe that in toroidal geometry, the TSA realization of the perpendicular stress, 

rv v⊥� � , will have a finite toroidal projection, and so may drive intrinsic toroidal rotation.  

Furthermore, we note that the plasma edge of tokamaks and linear devices has been shown to 

generate plasma density “blobs” and “holes” [26, 27]; the blobs propagate outwards while the holes 

propagate inwards and have vorticity associated with them [27, 28]; this region of toroidally 

confined plasmas has long been known to have a shear layer present due to equilibrium effects at the 

last closed flux surface.  Thus a radial vorticity flux and associated wave stresses must exist at the 

boundary of the tokamak plasmas and may contribute to shear flow amplification and intrinsic 

rotation in these devices. Similar experiments should be repeated on large tokamaks to confirm the 

above physical picture, particularly there will be a clearer scale separation between turbulent 

correlation lengths and the scale length from generation to damping locations.  These results also 

show that particle flux and vorticity flux are closely related and suggest that potential vorticity 

conservation plays an important role in momentum transport in confined plasmas, much like in 

planetary and stellar atmospheres [29].  These issues are now under investigation and will be 
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discussed in future publications [30]. 
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Chapter 7  

 

Summary, discussions and future plans 

 

In this chapter, we first summarize the key objectives and conclusions of this work, then 

discuss the implications of the work and make suggestions for the future work.  

 

7.1 Summary and conclusions 

This dissertation work was oriented to answer two inherently related questions:  

(1) How is the turbulent energy redistributed over different turbulent frequencies or scales and 

in particular what turbulent spatiotemporal scales are involved in sustaining the large scale 

sheared zonal flow?  

(2) What is the microscopic physics mechanism that leads to this nonlinear turbulence drive?  

To answer the first question, we developed an experimental technique to directly measure the 

energy exchange rates among different frequencies, especially between turbulence and shear flows 

which allows us to determine the energy transfer from turbulence to shear flows through nonlinear 

processes. This measurement was made possible by experimentally determining the appropriate 

cross-bispectrum that arises from the convective derivative term in either momentum or continuity 

equation. When the momentum equation is used to write a kinetic energy conservation equation, 
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and this result was then transformed into frequency domain, the convective nonlinear term gave the 

nonlinear kinetic energy transfer term ( )2 1

*Re f f fu u u⊥ ⊥ ⊥ ⊥− ⋅ ⋅∇K K K
 which we denoted as 

1( , )uT f f . The kinetic energy transfer term is basically a cross-bispectrum involving different 

frequencies, of which the value depends on the coherence among these three different frequencies, 

i.e., the only process that gives a nonzero 1( , )uT f f  is that two waves with coherent phases beat 

together to produce the third. By approximating the turbulent velocity by E B×
K K

 velocity 

ˆ /u z Bφ⊥ ⊥= ×∇K
, all the quantities needed for computing the nonlinear energy transfer term can 

be measured by a specially designed dual 3x3 Langmiur probe array. Measuring the internal energy 

transfer was very similar to measuring the kinetic energy transfer. Since this method was directly 

based on the momentum and continuity equations and no special assumptions were needed, it 

reveals the first principle physics of the nonlinear energy transfer.  

 

Experiments with this technique showed that both kinetic and internal energy were nonlinearly 

transferred from turbulences with intermediate frequencies (5-12 kHz) into shear flows with low 

frequencies (<1 kHz) at the velocity shear region, which is exactly what should be expected for a 

turbulence-driven shear flow.  An examination of the experimentally measured dispersion relation 

showed that these intermediate frequencies corresponded to fluctuations with an average azimuthal 

mode number m~3; the fluctuations had a broad spectrum and thus cannot be thought of as coherent 

waves, but rather would correspond to spatially localized structures.  It was also found through 

experiments that the radial flux of vorticity is dominantly responsible for the kinetic energy transfer 

to shear flows, which suggested that the vorticity flux mediates the transfer of kinetic energy.  
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Based on these findings, we then carried out a subsequent study using the dual 3x3 probe array 

and a fast framing camera coupled to a telescope which provided a physical picture of the 

underlying microphysics that leads to the observed nonlinear energy transfer. The probe array 

measurements showed that the intermediate frequency (~ 10 kHz) fluctuations were nonlinearly 

generated in the inner plasma region r=2-3 cm by extracting energy out of a wide range of drift wave 

frequencies. Fast imaging also showed very clearly that m~3 coherent turbulent structures are 

generated at r~2cm.  A cross-correlation analysis of these structures using the 3x3 array showed 

that the structures have a finite vorticity that is in phase with the density fluctuations, indicating that 

they are in fact drift vortices formed by the nonlinear interaction of multiple drift waves.  These 

structures were then observed to spiral out toward the edge at r=3.5-4 cm, and undergo a tilting, 

stretching and absorption process at the shear layer located at the plasma boundary.  This results in 

an increase in the turbulent shear stress at the boundary, which gives rise to an amplification of the 

large scale shear flow.  The associated vorticity flux is directly related to and consistent with the 

turbulent Reynolds stress, which has been previously shown to be consistent with the observed 

sheared flow.  Furthermore, the probe measurements also demonstrated that an increase of vorticity 

flux in the central plasma region precedes the increase of Reynolds stress at the boundary, 

confirming the causality of the observations. 

 

These observations have significant implications for shear flow formation in toroidal 

confinement devices. For example, there are many published papers (see e.g. [1, 2] for 

representative work) showing the propagation of coherent density fluctuations (also known as 

“blobs”, “avaloids” and/or “intermittent plasma objects”) at the edge of tokamak devices. These 
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earlier works have implied that these discrete structures have a finite vorticity associated with them.  

Since these structures move radially, it is a straightforward inference to then conclude that a 

vorticity flux exists at the boundary of these devices as well.  This flux is associated with the 

turbulent Reynolds stress which has been associated with the generation of large scale sheared flows.  

Furthermore, this same region of the plasma is known to be universally characterized by a 

pre-existing sheared flow.  Thus the conditions that lead to the turbulent amplification of sheared 

flows at the boundary of these devices exist; the transition from a state of low confinement (L-mode) 

to high confinement (H-mode) which occurs at the boundary of the plasma might then be associated 

with a transport of momentum and kinetic energy mediated by these edge plasma blobs. 

 

There are limitations for the experiments on CSDX. First of all, in CSDX the density gradient 

scale length is about 2 cm while the turbulent correlation length is about 1 cm. Furthermore, the 

spatial separation between the structure birth location and the absorption location is only about 

1.5-2cm.  Therefore the spatial scale separation, which is often assumed in theoretical models, is 

marginal at best and a clearer scale separation, especially if we want to generalize the results 

measured on a linear device to tokamaks, or to compare with theoretical and computational models 

is needed. Second, when using the electric field calculated from floating potential instead of plasma 

space potential to estimate E B×
K K

 velocity, we neglected the temperature fluctuation and assumed 

it to be small. Although this seems to be reasonable according to published papers [3], we may need 

to investigate it on CSDX since drift wave turbulence is driven by pressure gradient, and 

temperature could play a role in the generation of shear flows. Third, all the analyses were done on 

just one condition (fixed pressure, and RF power), it would be interesting to do a parametric scan to 
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see if at other conditions the physical picture still hold, or some new physics will come out.  

 

7.2 Discussions and future plans 

These results suggest several future experiments that would test the key conclusions of this 

work, and which would provide additional insight into the physics of turbulence-shear flow 

interactions. 

 

7.2.1 Perturbative and bias experiments on CSDX 

So far all the experiments on CSDX, such as the momentum conservation analysis, residual 

stress measurement, and the nonlinear energy transfer rate estimation, are measurements for the 

self-organized response of plasmas. If fluctuations can drive shear flow, then externally introduced 

fluctuations may also drive shear flow. By externally exciting fluctuations in the plasma we can 

study the shear flow response to externally introduced fluctuations. It is expected that when excited 

fluctuations are strong, shear flow should be strong; when excited fluctuations are weak, then shear 

flow should be weak. If this conjecture is confirmed in CSDX, it could be tested on tokamak devices, 

where it could offer a potential method to control shear flow intensity at the edge of tokamaks and 

thus offer a way to get a better confined plasma, or at least a way to trig H-mode transition. If 

externally excited fluctuations do not reinforce shear flow it would be useful to understand why . 

Another elegant experiment would be using externally applied bias voltage to change the plasma 

space potential, therefore to introduce a perturbed radial electric field and associated azimuthal ExB 

drift in the plasma. In particular, it would be interesting to try and cancel out the intrinsic rotation 
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inside CSDX plasma, which is another way to prove the existence of self-generated momentum. 

Once the sheared flow is cancelled we can do a systematic study of plasma, such as measuring the 

nonlinear energy transfer rates, particle flux and corresponding phase relations, then compare the 

results against the case when there is an intrinsic rotation. Finally, the external bias could then be 

rapidly removed, and the resulting spin-up of the plasma from turbulent momentum transport could 

be studied. 

 

7.2.2 A systematic study of the transition to turbulent stage 

Earlier work in CSDX has shown that the transition from coherent drift wave oscillations to a 

state of weak drift turbulence can be controlled by increasing the magnetic field from low values 

(~400 G in Argon) to higher values exceeding ~700 G in Argon.  During such a transition, one 

would then measure all relevant quantities such as density and potential rms fluctuation intensity, 

particle flux, Reynolds stress, nonlinear energy transfer rate and fast imaging of 2D dynamics, etc. 

during the gradual transition. The results should then provide a deeper understanding of the role that 

plasma turbulence plays in the development of sheared zonal flows.  

 

7.2.3 Analysis of nonlinear energy transfer using conditional average 

Typically very long time series are needed to get converged bispectra. For the nonlinear energy 

transfer measurement on CSDX, ~ 10 second of data were divided into more than 1000 independent 

windows to do the ensemble averages. Thus it is not possible to study the dynamics of energy 

transfer using this approach.   Earlier work in CSDX has demonstrated that the shear flow slowly 

grows and decays. Since the CSDX plasma is highly stable, by using conditional average technique 
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we could study the evolution of energy transfer over time. The growth and collapse phases of shear 

flows can be separated this way, and the nonlinear energy transfer rates of both phases can be 

obtained and compared against each other.  

 

7.2.4 Increasing the separation of spatial scales 

As discussed above, one of the weaknesses of the current CSDX experiments is a poor 

separation of spatial scales.  If the device could be upgraded to operate at higher magnetic fields, 

operate with lighter ions (e.g. neon, helium or even hydrogen) and/or operate with a larger sized 

plasma source, is likely that a wider range of sizes of drift vortices could be observed, and a larger 

separation between the vortex birth region and the shear layer could be produced.  If this distance 

was large enough, it might be possible to try and observe the formation of multiple zonal flow shear 

layers and thus confirm theoretical predictions of an equivalent to the Rhines scale that has been 

observed in geophysical systems. 

 

7.2.5 A testing of ideas from linear machines on tokamak plasmas 

In principle, similar measurements of the energy transfer rates, the Reynolds stress and 

background poloidal and toroidal flow velocities could be performed in tokamak devices. This 

would be a direct test to see whether the vortex-driven physics picture at CSDX plasma edge is 

operative in hot toroidal plasmas. This would require the design of an appropriately arranged array 

of probes which could then be inserted into the edge region of such a plasma.  Of course, the 

parallel heat flux in such a device is much higher, and care would have to be taken that the probe 

array does not overheat and/or cause unacceptable disturbances to the tokamak plasma discharge.  
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It is likely that multiple discharges would have to be carried out in order to obtain adequately long 

datasets for the required ensemble averaging.  In addition, fast imaging of the tilting, stretching and 

absorption of turbulent structures using fast imaging diagnostics in tokamak plasmas, and 

associated such observations with the evolution of sheared flows in these devices would also 

provide useful tests of the observations presented in this work. 
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