UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
GIS For Mapping of Lane-Level Data and Re-Creation in Real Time For Navigation

Permalink
https://escholarship.org/uc/item/56m28858

Author
Sutarwala, Behlul Zoeb

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/56m28858
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

GIS for Mapping of Lane-Level Data and Re-Creation in Real Time for
Navigation

A Thesis submitted in partial satisfaction
of the requirements for the degree of
Master of Science
in
Electrical Engineering
by
Behlul Zoeb Sutarwala

March 2011

Thesis Committee:

Dr. Jay A. Farrell, Chairperson
Dr. Mathew Barth

Dr. Shrikanth Krishnamurthy

Copyright by
Behlul Zoeb Sutarwala
2011

The Thesis of Behlul Zoeb Sutarwala is approved.

Committee Chairperson

University of California, Riverside

ACKNOWLEDGEMENTS

I would like to thank Professor Jay Farrell for his mentorship without which
this thesis would not have been possible. I would also like to thank Professor
Matthew Barth and Professor Shrikanth Krishnamurthy for serving on my

committee.

I would like to thank my fellow graduate students Arvind Ramanandan and

Anning Chen for their support and help in data collection and testing.

I would also like to thank Akshay Morye for his help in database management

using ArcGIS.

Lastly, but most importantly, I would like to thank my parents, Nafisa and
Zoeb Sutarwala, my brother Quresh and the rest of my family for their

support and patience.

ABSTRACT OF THE THESIS

GIS for Mapping of Lane-Level Data and Re-Creation in Real Time for
Navigation

by

Behlul Zoeb Sutarwala

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, March 2011
Dr. Jay A. Farrell, Chairperson
Advanced navigation systems for advanced driver assistance systems for
safety of vehicle occupants and for autonomous vehicles require high
accuracy digital maps. These maps should contain enough attributes and
precision to be able to guide the vehicles within their lanes. Along with these
digital maps we also require them to process the data in real time. In this
Thesis we will desigh a geodatabase for such a lane-level digital map using a
nodal approach. We collect decimeter accuracy data by using a datalog
vehicle (Rover). We followed GIS practices for database development and
use GIS management tools such as ArcGIS. In the second half of the thesis
we implemented a Human Machine Interface for an Advanced Drive
Assistance System. This system will query data from the geodatabase and
process it to graphically display on screen the vehicle and the lane-level map

of the region around it. It will also display a predicted vehicle position to

notify drivers of future lane departures. We tested this system along the
Interstate 80 in the Donner Lake Region where it was a part of a Snow Plow

Guidance Project implemented by UCR for CALTRANS.

Vi

Contents

LISt Of TaDIES .. s ix
LISt Of FIQUIES ..ottt e e eree e enan s X
1. INErOAUCHION ..ot r e sane e 1
1.1. BacCKgroUNdc.ooiiiiicee e e 1
1.2. MOTIVALION .. e 2
1.3. 2 [o USSP 2
2. GIS for Mapping Lane-Level Datacccccceeeeiieicieeecee e 5
2.1. GIS for Transportation ... 5
2.2. GIS Management Softwareccccocoeeiiiecciie e .6
2.3. Preparation of Geodatabase ... 9
2.3.1. Data CollECLIONccceoiiiiieie e 9
2.3.2. Trajectory Fitting10
2.3.3. Node ALLrDULESooi e 11
2.3.4. Verification using Google Earthcccccoeveeiiiiecceeccee e 12
2.3.5. Database DESIgNcccoceeiiiiiiiieeee e 14
2.4. CONCIUSION <.t et 15
. Re-Creation of Maps in Real Time for Navigationcccccoiiniiiinnnen. 16
3.1. INErOdUCEION ..o .16
3.2. OUr APPrOACK ..o 18
3.3. Current Vehicle State ... 21

Vii

3.3.1. Data Transmission and Flow Controlccccocvvniininnnns .21

3.3.2. Data Reception and Storageccccoceeiiiiiiiiiene e .22

3.4. Reference Frames 22

3.5. Database Query for lane-level mapsccccoceeeeeiiieecieeecnns 25

3.5.1. Creating database query for nearby Roads/Lanes 25

3.5.2. Querying database for Individual Lane Datac...ccoec..s 26

3.6. Interpretation and Filtering of Lane-Level Data 26

3.7. Drawing Lane Edges and Lane Dividersccccooeevieeeiieeccnns 27
3.8. Compute point on trajectory at minimum distance

to the VEhICIE 28

3.9. Display current and predicted vehicle pathcc.cccceeenn.. 29

3.10. (DTS o] 1= 1V ©e] 1 0] o = 1SS 32

3.11. Display Textual Datacccceeeiieiiiec e 32

3.12. CONCIUSION .t 32

TS A o o] | Tt f To] o =SSO 33

4.1. SNOW PIOW GUIAANCEoviiiiiiiiiieee s e .33

5. Conclusions and FUtUre WOrK ..o 36

REFEIENCES ...t 38

AN 0] 01T o o [A S PTSPRR 42

Appendix B

viii

List of Tables

1.

2.

3.

List of GIS Management Software and Their Features 6
List of Database Management Software ..o, 8
Table showing the node attributes for a lane with 3 nodes 11

Table showing Vehicle State Data Transmitted

from ROVEN t0 HMI .uuureiiiiei i i ennensnnsnnnnnnnnnnns

List of Figures

1. Implementation Flow of our ADAS ..., 4

2. KML files generated using the nodescccceviiiiiicicec e 16
3. Map created using ArcGIS ... e 18

4. Flowchart of our Display Programcccccocceeiiiieiiee v 20
5. Reference frames in the display programccccccooveiviieecceecnens. 23
6. Computing a point at minimum distance to the vehicle 28
7. Compute Predicted Vehicle Path ... 31
8. Region on I-80 between Donner’s Lake Exit and Big Bend Exit.....34
9. Lane-level trajectory curve fit on I-80ccccooveeiiieccieeeees 34
10.A photograph of the navigation system working in real time......... 35

Chapter One: Introduction

1.1 Background

Navigation systems based on Global Positioning System (GPS) are
commercially available and can pin-point our position with an accuracy of
approximately 20 meters. These are used in vehicles to help plan a route and
guide the driver to the desired destination.

Advanced applications in vehicle navigation systems to assist drivers have
been undertaken by the Transit Vehicle and Automation (VAA) program.
These include lane departure warning systems [9], [16], [18] which reduce
the chance of accidents, the intelligent cruise control [19] and lane-level
driver guidance [12] which helps reduce excessive and last minute lane
changes.

Vision systems have been used with GPS receivers to develop a lane
departure warning system [21] but these fail if the lane markers are not
visible.

We intend to further improve these automotive navigation systems so that

we increase safety of the vehicle occupants.

1.2 Motivation

The motivation for this project was to improve vehicle occupant safety. If we
can convey to the driver of the motor vehicle, the current vehicle position
and the predicted vehicle path for the next few seconds, he would have more
time to correct himself if required in order to avoid an accident. For example,
it would be extremely helpful to Snow Plow drivers who have little or no
visual confirmation of road or lane edges. Such an Advanced Driver
Assistance System (ADAS) could also be used as an early warning system for
lane departure.

1.3 Aim

We want to design an Advanced Driver Assistance System which would
convey the current vehicle position and the predicted path to the driver. To
do so, we need to determine the current vehicle state [position, attitude,
speed] and the predicted vehicle path and then display this information along
with a lane-level map of region surrounding the vehicle.

To find the current vehicle state, we use a GPS receiver with carrier phase
differential corrections and an Inertial Measurement Unit [1]. From this we
calculate the predicted vehicle path.

To display the map around the vehicle we need a digital map containing lane-
level data. This map, when queried should be able to supply information in
real time. We also need to be able to process data from the maps to display

in real time and hence the need for the database to be concise.

Current maps do not contain enough lane-level data to be able to locate the
position of the vehicle in the lane due to the unavailability of decimeter
accuracy positional data [26]. Since, we have a system to collect positional
data with centimeter level accuracy and create maps with decimeter accuracy
[3], we use this data to create our own maps. The approach to database
design and tools used is discussed in detail in Chapter 2.

Once we have built the digital map of the desired roadway network, we need
to query this database in real time and convey to the driver this information
along with the predicted vehicle path. This would enable the driver to take
corrective steps in order to avoid an accident. This step is discussed in
Chapter 3.

Figure 1 shows the general workflow of our implementation. It shows the
offline section, non-real time which is the building of the lane-level maps with
decimeter accuracy and the online section, real time system to access maps

and display information in real time.

|
yred paaipaid pue

uonysod a[aIyan Juaund ay
Y Buoje ajoiyan ayy Jesu
uoibay ayy Jo dew ayy Aedsig
"8[oIyah punose uoibas

10 dew Joj aseqejeq Asanp)
:908}3)U| BUIYIR| URWNY

SNI Papie 5900 e Buisn
ejep [euonysod ajndwo?)

:eJe(] |euonIsoq

aseqeleq
fuanp

HLYd 311OH3IA ANV dYI AV1dSIO -3NITNO

J

I
alur) [eal Ul

pauanb uaym ejep Addns
pue aseqejepoab ai0)g
:saniiqede?) ssa20y
| [eay pim 00]
Juawabeueyy aseqejeq

[|l

pSeqelepoas) podx3

|00} Sj) & Buisn aseqejepoab
B 0JuI pajy ue| Y2ea Jo sapou Buipodw

5|00
§19 buisn aseqeyep e bujureyurey

foemndoe

13)3WI28P YYIM S3POU 3S3Y) UAM)3q
Yied 8y 8jndwodas o} uonewsoju ybnous
Buiureyas ajiym saaue)sip asieds Je ‘aue|
yoea 10} ‘sapou ajesauab o) ejep ssad0iq
:bumi4 Luoyoales)

Aaeinaoe Jajawnuad yym
SaUJajua) aue Joj eleq) [BUONISO4
U01}08]|07) BJe(

35vav1va039 v ONIOTING *INIT340

Implementation Flow of our ADAS.

Figure 1

4

Chapter Two: GIS for Mapping Lane-level Data

2.1 GIS for Transportation.

Geographical Information Systems (GIS) are systems which are used to
capture, analyze, interpret and manage data related to their location. It is
the merging of cartography, statistical analysis, and database technology. In
general a GIS system creates a database with the positional data of a certain
area and some statistical attributes in that area. For example it may store,
the Latitude, Longitude, Altitude (positional data) for the center of each city
and the daily temperatures corresponding to them. Such a database created
with reference the geographical position is known as a geodatabase.

GIS is widely used in the design of transportation systems like road, rail and
water networks. This branch of GIS is commonly known as GIS-T i.e. GIS for

Transportation.

2.2 GIS Management Software

We require two main functionalities in our decimeter accuracy lane-level

maps:

1. A scalable database with tools to maintain the maps.

2. Ability to retrieve data within a small region in real time.

To build and maintain our maps we had a few choices of available GIS tools.

Table 1 provides a selected list of such tools we considered to build our

digital maps.

GIS

Software

Management

Features

TransCAD

It is an application for public transport applications.

In addition to point, line, polygon and raster image layers
in a GIS map, it also supports route system layers.

It possesses tools for creating, manipulating and
displaying routes.

TransCAD uses network data structure to support routing
and network optimization models.

Trip generation, mode choice and traffic assignment
models that support transportation planning and travel
forecasting are supported.

It also has a set of dynamic segmentation and linear
referencing tools for managing highways and other
networks.

ArcGIS

It is considered to have the most amount functionality
when it comes to use in Transportation applications.

It comes with software extensions like Network Analyst,
which can be used to make a network of trajectories.

It can store vector and raster data in shape files. It can
also store data in a proprietary relational database
management system (RDBMS) format called Geodatabase.

It has the capability to export the geodatabase to PostGRE
SQL, MS SQL Server.

GRASS

It is a free, open source GIS, capable of handling vector
(topological), raster, image processing and graphic data.

It can be used on Mac OS, Windows and Linux platforms.
It was released under the GNU-GPL license.

The software is interfaced through a GUI using an internal
GUI or by plugging into GRASS via Quantum GIS, which is
available for free.

The latest release of the software introduced new
topological 2-D and 3-D vector engine and support for
vector network analysis.

Attributes for the features are managed in a ‘.dbf’ file or
an SQL-based DBMS such as MySQL, Postgre SQL /
PostGIS and SQLite.

Microsoft MapPoint

It is a program created by Microsoft to allow users to
view, edit and integrate maps.

Visualization and analysis of the custom data is possible.

Many of Microsoft’s acquisitions have supplemented data
and feature integration.

It includes all the functionality of the most recent version
of streets and trips i.e. a consumer mapping software.

This software also integrates with other Microsoft products
like MS Office and a VBA interface, allowing automation of
MapPoint environment.

The latest edition of the software has GPS integration
features.

This software is essentially aimed at business users.

Table 1: A few GIS Management Softwares and their features.[29]

After our initial review of the capabilities of each of the above software we

realized none of them would be able to deliver data in real time for a query

from our display program. Hence we decided to use one of these tools to

build our geodatabase and to export it to another database management tool

which can be queried in real time. Some of these are listed in Table 2.

Database Management Software

Cost / Features

SQL Server

Free : Express Edition — Database Size Limit 1GB
Paid : Enterprise or Personal Edition - No size limit,

Product Support

Postgre SQL

Free : Open source, RDBMS

MySQL

Free : Open source, RDBMS

Table 2: Database Management Software

The database management software listed in Table 2, all support spatial

databases, i.e. they are optimized to store and query objects in space for

example points, lines polygons, etc.

After evaluating the functionalities of the GIS Management Software in Table

1 and their compatibility with Database Management Software in Table 2, we

chose ArcGIS, for the following reasons:

1. It provided extensive tools to insert features into the geodatabase

and to maintain roadway networks.

2. It had the capability to export the completed geodatabase to Microsoft

SQL Server.

3. A student license version of ArcIinfo, an ArcGIS package with

extensions that supports the above was available to us for a low cost

of approximately $200.

2.3 Preparation of Geodatabase

We will use the “Nodal Approach” as described in [4] to represent the

roadway network in our geodatabase. This is done in three steps.

1. Acquire data representing lane centerlines with centimeter accuracy.
2. Fit the data to a trajectory depicting the lane centerlines with
decimeter accuracy.
3. Store the data in a manner that:
e It represents each lane on a road
e We can reproduce the lane trajectory from this data with
decimeter accuracy.
e We can query this data in real time.
Steps 1 and 2 are part of a separate project being carried out under Prof.

Farrell. In this thesis, we will describe in detail Step 3.

2.3.1 Data Collection

We acquire data using a Carrier Phase Differential GPS (CPDGPS) aided INS
system [1][11]. This system is referred to as the Rover is mounted on a
vehicle. The vehicle is driven along a lane, with best efforts to keep the
vehicle on the center of that lane. The carrier phase differential corrections
are transmitted by the Base system. Both the Base and Rover systems run
on software implemented in C++ on a computer running the Ubuntu flavor of

Linux. Even though the data collected using the CPDGPS system has

9

centimeter level accuracy, human error is introduced due to the driver trying

to keep the vehicle on the center of the lane. This data is collected at 15Hz.

Both the base and rover software were developed at the Controls and

Robotics Lab at UCR under the guidance of Prof. Jay Farrell.

2.3.2 Trajectory Fitting

The data acquired in Section 2.3.1 is dense positional data, which is not
uniformly distributed as it depends on the speed of the vehicle. The slower
the vehicle, the denser our data is. To efficiently store this lane centerline
data, we need to store points at sparser intervals which can represent this
data with decimeter accuracy. We fit this data to a trajectory depicting the
lane centerlines. We use the trajectory fitting code developed by Prof. Farrell
in MATLAB. This takes place in two steps. First we plot all the positional data
to visually check the integrity of the raw data. Then we cross reference this
data with the timings we wrote down during data collection and parse the
data into different sections for each lane. We now plot this again on screen
one lane or one section of a lane at a time and remove the points which
seem to be obviously corrupted. This is done by using the function
‘parse_datadtraj.m’.

Then we use this data to fit a Hermite spline through it using least squares to
generate nodes for each lane using the ‘traj_fit.m’ function. This is explained

in detail in [3][4].

10

The data for each lane is stored as a sequence of nodes with each node

having different attributes to describe the lane.

2.3.3 Node Attributes

Each node has certain attributes required to recreate the

lanes with

decimeter accuracy. The table below shows a few sample nodes and

attributes which we used to create the geodatabase.

Node Latitude Longitude Altitude Yaw Grade Curvature | Arclength
No. (Deg.) (Deg.) (m) (rad) (m)
1 D:39 D:-120 2177.36 | 1.207 0.023 0.0001 1.00
M:20 M:20
S$:20.5938 | S:55.035
2 D:39 D:-120 2177.76 | 1.217 -0.006 | 0.0001 105.39
M:20 M:20
S$:21.7752 | S:50.949
3 D:39 D:-120 2178.91 | 1.207 -0.012 | 0.0000 209.78
M:20 M:20
S:22.9446 | S:46.86

Table 3: Table showing the nodes and node attributes for a lane with 3 nodes
(Latitude and Longitude are stored in decimal degrees. They are listed as DMS for

representation purposes)

The first three parameters i.e. latitude, longitude and altitude give us the
positional data in the geodetic ECEF plane. Even though we fit the data in the
tangent plane we transform it to the ECEF frame before we build the
database. This allows us to use the same database for different base
locations.

‘Yaw’ is defined by the angle between the lane trajectory at that point and
the true north and is represented in degrees.

‘Grade’ is defined as the inclination of the road with reference to the local

tangent plane.

11

‘Curvature’ is defined as the rate of change of the unit tangent vector at that
point.

‘Arclength’ is the distance travelled along the lane trajectory from the
beginning of this section of the lane to the current node.

The sequence of nodes for each lane is stored in a comma separated value
(*.csv’) file.

For verification purposes we also create Keyhole Markup Language (KML)
files which are XML-based files for expressing geographic data. They are used
to display geographic data in any Earth browsers such as Google Earth. We
generate two types of KML files, one that contains nodes that will be inserted
into the geodatabase and one which contains a dense set of points generated
between each of the nodes using a Hermite polynomial[3][4].

2.3.4 Verification using Google Earth

Now that we had a list of nodes for each lane along with their attributes, we
projected these in Google Earth by importing the ‘.kml’ created above with
the same nodes. We made sure that the lanes and roads were consistent
with the background on Google Earth. A sample projection of few lanes is
shown in Figure 2(a) and 2(b). In these figures, the yellow place marks
depict the position of the nodes and the red line is the generated trajectory

using the node attributes.

12

Google
C

Figure 2 (b)

Figure 2: KML files generated using the nodes and the calculated points using the
Hermite Spline.

13

2.3.5 Database Design

Until now we have processed data for a single lane segment and stored it as
a list of nodes. Now, we need to include this as a part of a roadway network
and store the data from all lanes in a database that can be queries in real
time. As discussed in section 2.2, we used ArcGIS 9.3 as our GIS database
management tool and MS SQL Server as for real time database access. We
created a map in ArcMap by importing nodes and their attributes for each
lane generated in section 2.3.2. Figure 3 shows a map created with two
lanes.

30 Analyst ¥ @ @@ | Georeferencing ¥
DEE& [ic] & |[1sa7es &S0 N LY I P &1 | Labeing ¥ 3

m
g
&

i |- £ Layers

SHcif 1501 _EASTBOUND_2_R$ Events:

.
S| 1801_EASTBOUND_1$ Events
.

.
.
e
oo o0
..a"'” ®%00scee®

o’
o’
oo’

*
oo
oo
.
X144
0®*%%000,, o0
00000

00000000000°

+ o sosnuansn e

Display | Source | Selection 2024
Drawing ¥ R O~ A~ 0) Avial | [0+

-120.386 39.355 Decimal Degrees

Figure 3: Map created using ArcGIS.
Now we used ArcCatalog to create a geodatabase. After which we inserted all
the lanes on our map into the geodatabase.

14

It consisted of a separate table for each lane stored. There were numerous
other tables created. We only used one other table called ‘SDE_layers’ which
contained spatial information like the maximum and minimum values of the
latitude and longitude of each lane.
We differentiated our roads and lanes by the nomenclature of each of these
lanes. Our lanes and thus tables in the geodatabase were named in the
format

ABC_DIR_123_R
where, ‘ABC’ represents the name of the road e.g. ‘'I80’; ‘DIR’ represents the
direction in which the road is heading e.g. ‘EASTBOUND’; ‘123’ represents
the lane number starting from the left most lane as ‘1’ and 'R’ is an addition
only present in the right most lanes. As you can see the different attributes
of the table name for a lane are separated by '_’. This is used to differentiate
the roads and lanes during rendering. The above example would generate a
table name as ‘'I80_EASTBOUND_1’ for a road with multiple lanes or
‘I80_EASTBOUND_1_R’ for a road with only 1 lane.
A step by step guide to importing data into ArcGIS to build a geodatabase is
described in Appendix A.
2.4 Conclusion
Following the procedure described above, we have built a lane-level map,
with decimeter accuracy, of the surveyed area and stored it in a geodatabase
in ArcGIS. This database is then exported into an MS SQL Server database to

allow real time data access.

15

Chapter Three: Re-Creation of Maps in Real Time for Navigation

3.1 Introduction

What are Real Time Systems?

Real Time Systems are systems in which the outcome is guaranteed in a
fixed amount of time. This time could be 10 minutes or 10 milliseconds. As
long as it is guaranteed to complete an assigned task before a deadline it is a

real time system. This time varies depending on the application.

Why do we need real time navigation systems?

The commercially navigation systems available in the present day help us
plan the route of our journey, and re-route us in case of human error
resulting in missing a turn. Some systems also give us information on the
number of lanes on the road we are travelling on and direct us to certain
lanes for safe and comfortable driving. Some ADAS systems also give us
information on the current lane the vehicle is driving along and have lane
departure warning [26]. But what these systems lack is the ability to inform

the driver about the vehicle’s current position within the lane. We have

16

discussed in Chapter 2, that we use the Rover to acquire positional data with
centimeter accuracy. Using this data along with the lane-level geodatabase
with decimeter accuracy we can convey to the driver his position in the lane.
As an additional feature we will also calculate the predicted vehicle path as
discussed in section 3.9

To improve vehicle safety by informing the driver about his position within a
lane, it is ijmperative to also deliver this information fast enough so that the
driver has enough reaction time. Also such a system would need a high
refresh rate as circumstances can change quickly. For example, a vehicle
travelling at 65 mph covers a distance of 2.9 meters per second. If we design
system which updates information to the driver at 10Hz, he would have

travelled distance

290cm
d =

10 = 29cm

before he gets updated with his position. For our evaluation purpose we
refreshed our system at this rate. Also, our designed system flagged the user
if it could not deliver information at this rate. Hence, we designed a soft real

time navigation system.

17

3.2 Our Approach

To deliver relevant information to the driver, our display screen would

require the following:

1. An object representing the vehicle on screen.

2. A map of the region around the vehicle representing lanes.

3. A compass showing us the direction of motion of the vehicle.

4. A predicted path and a predicted vehicle position for the object.

5. Textual data representing the vehicle state and the integrity of our

data.

To display the above listed items we had considered a few graphics libraries
such as Qt, DirectX, Flash and OpenGL. After a brief evaluation of their
features and complexity, and discussion with students who had used them,
we chose OpenGL for its processing speed and comparatively easy learning
curve. We chose to write our program on a Windows based platform in Visual
Studio to make use of the MSDN libraries for SQL Server database access. I
initially wrote the program in C#, but switched to C++; since I needed help

debugging the program and it was the language Prof. Farrell knew.

To deliver the above listed information on screen we require two sets of

data:

1. Vehicle State (Position, Velocity, Acceleration).
2. Lane-level map of the region near the vehicle.

18

We receive the vehicle state from a CPDGPS aided INS system, similar to
the one used in data collection. This gives us the vehicle position with
centimeter accuracy. This data is transmitted to our display program from
the Rover via the serial port. We discuss the vehicle state transmitted and

serial port connection in detail in section 3.3.

Once we know the current position of the vehicle, we query the database
built in Chapter 2 and receive data representing the lane-level map of the
surrounding region. We then process this data to display the required items
to the driver. A flowchart of this process is shown in figure 4. The rest of this
chapter discusses the various steps taken in order to construct our graphical

display.

19

Initialize: Serial
Communication,
Database Connection,

Read Vehicle State Data

NV

Draw Lane Divider

Query Database for List of Roads

\|1

Query Nodes for each Lane

|

Read and store attributes for

Is No. of
Nodes > 1

If no new

nodes

Fals

No

If no new
lanes

True

Display Vehicle,
Predicted Vehicle,
Compass and
Textual Data

If Quit

False

NS

True

Close: Serial Port,
Database Connection
and Log Files

Lanes > 1

Figure 4: Flowchart of our Display Program

3.3 Current Vehicle State

The current vehicle state is transmitted to our display program from the

rover. This data is then stored in an object of class ‘Vehicle_Data’. These

steps are discussed in the following subsections.

3.3.1 Data Transmission and Flow Control

We transmitted vehicle data from the rover to our computer through the

serial port operating at a Baud rate of 38400 bits/sec, 8 data bits and 1 stop

bit.

A vehicle data packet consisted of 39 bytes. The first two bytes were header

bytes fixed as ‘AA’ and 'BB’, followed by 36 bytes containing vehicle

information. The last remaining byte was the checksum. The checksum was a

simple sum of the 36 bytes preceding it.

The 36 vehicle information data was distributed in the following manner:

Bytes No. Total Data Vehicle Parameter Units Accuracy
Bytes Type Level

1-8 8 Double Latitude Radians Cm

9-16 8 Double Longitude Radians Cm

17-20 4 Float Altitude Meters Cm

21-24 4 Float Yaw Radians .001 rad

25-28 4 Float Vehicle Speed - North | Meters/sec Cm/s
Component

29-32 4 Float Vehicle Speed - East Meters/sec Cm/s
Component

33-36 4 Float Rate of change of Yaw | Radians/sec .01 rad/s

Table 4: Vehicle State data transmitted from rover to HMI.

21

3.3.2 Data Reception and Storage

The data packet as described in 3.3.1 is transmitted from the rover. It is
received by our program and stored in a buffer. The buffer is then traversed
to search for the header. Once found the next 36 bytes are added to create a
checksum. If this sum is same as the 39" bit of the received data packet we
know our data is accurate. We then proceed to parse the vehicle data and
store it. It will be used subsequently to query the database and display
information.

We have written a class called ‘Vehicle_Data’ which holds all data pertaining
to the vehicle. The data is read from the serial port by the function
‘Read_veh_data()’ contained in the class ‘DataPort’ which handles the serial
port communication.

3.4 Reference Frames

The display window consists of:

1. A Navigation Box, within which we will display the digital map, vehicle
position and the predicted vehicle path.
2. A compass with an arrow pointing to North.

3. Textual Data

The current position of our vehicle in the display window is always fixed,

while the lane-level map and the predicted path are redrawn continuously.

22

Figure 5 shows the reference frames related to our display screen. These

frames are defined as follows:

Body Frame: Assuming that the roll and pitch of the vehicle are equal to
zero, the body frame x-y plane is parallel to the geodetic tangent plane with

the origin defined by the vehicle position.

Display Window

Navigation Box (NavBox)

4\ YGL

ON avBoxI

XB

YB

Figure 5: Reference frames in the display program

GL Frame: The GL frame is 2-D frame on the display window with its origin

at the center of the display window. It has its x co-ordinate pointing to the

23

right of the screen. OpenGL uses certain units to transform desired co-

ordinates to pixel units. We address these units as GL units for our program.

NavBox Frame: The NavBox frame has the same orientation as the GL
frame and has its origin at the center of the navigation box. The box is drawn
in blue. This NavBox is drawn such that it displays the map for a distance of
27 m. in the direction of motion of the vehicle and 20 m. in the direction

perpendicular to it.

The NavBox is centered at a fixed location [-10, 0] GL units in the GL frame
with its x and y axis aligned to that of the GL frame. Hence the

transformation from the NavBox frame to the GL frame is given by
XGLY _ xN -10
[yGL] - [YN]+ [0]

This fixed location is stored in the ‘NAVBOX_CENTER_REF’ array in our

program.

In the NavBox frame the current vehicle position is fixed at [0, -30] GL units
and the x-axis of the body frame aligns with the y-axis of the NavBox frame.

Therefore, points in the body frame are transformed to the NavBox frame as
X
pl = (R [Fa]) + [5]

where,

RN = cos(/5) sin("/,)
B sin(/5) cos("/5)

24

3.5 Database Query for Lane-level maps

The database queried in two steps.

1. Query database to get a list of nearby roads/lanes.

2. Query each lane, in order to retrieve nodes.

These steps are discussed in the next two sub-sections.

3.5.1 Creating Database Query For Nearby Roads/Lanes

The goal of the first database query is to get a list of roads/lanes which are in
close proximity to the vehicle. The database contains a table called
‘SDE_layers’ which contains the maximum and minimum values of the
latitude and longitude of each lane present in the entire database.

We create a query to fetch the roads in a box of size GEOBOX_LAT X
GEOBOX_LON (apprx. 100m x 100m in our program) with the vehicle at its

center. The following line of code creates this query string.

String "~query = "SELECT table_name FROM SDE_layers WHERE

maxy >= "+ Convert::ToString((LLA_veh[@]-GEOBOX_LAT/2)*rad2deg) + "AND
miny<="+Convert::ToString((LLA_veh[@]+GEOBOX_LAT/2)*rad2deg) + "AND maxx >=
"+Convert::ToString((LLA_veh[1]-GEOBOX_LON/2)*rad2deg) + "AND minx <=
"+Convert::ToString((LLA_veh[1]+GEOBOX_LON/ 2)*rad2deg);

‘GEOBOX_LAT’ and ‘GEOBOX_ LON’ are constants defined in the class

‘SQL_Conn’. The above query is created in the initial part of the

25

GetDrawData() function, which handles the entire process from querying all
data and then calling functions to display it on screen.
3.5.2 Querying Database For Individual Lane Data
Now that we have a list of lanes in close proximity to the vehicle, we need to
query each lane and draw it to the display window. We store the lane names
in an array road_names[] and query all data from the tables for the related
lanes using a query

“SELECT * FROM road_names[i]”.

3.6 Interpretation and Filtering of lane level data

A table containing information for a particular lane is queried and the
information for each node is read sequentially. Once we have two nodes
available we use the Hermite polynomial to calculate points in between these
two nodes using the function ‘ComputeHermiteCurve()’and render a dashed
line using the function ‘DrawArc()’ which invokes the required functions from
the OpenGL library. During this process we also store the tangents at each of
the generated points. This line depicts the center of the lane and the color of
the dashed line depicts the vehicles direction of motion in comparison to

lawful direction.

If the yaw of the vehicle is within +/-1 radian of the trajectory, we assume
the lane to be in the same direction of motion as the vehicle and draw it
green; otherwise we draw it as red. Therefore lanes for traffic travelling in

the opposite direction are always red.

26

We continue drawing each section of the lane until the entire lane is drawn

and move on to the next lane.

3.7 Drawing Lane Edges and Lane Dividers

The lane name is parsed to determine the road name and the lane number. If
the current lane is lane number 1, we draw the left edge of the lane by
projecting each of the calculated points between two nodes to the left at an
angle perpendicular to the trajectory tangent at that point and by a distance
which is half of the lane width. This is mathematically expressed as

Iw\ [—sin(psi)
= per (). [0

2
Where Pt are the points calculated on the lane trajectory and ‘psi’ is the yaw
of the trajectory at that point.

If it is the right edge we project and draw on the right hand side as well.

Ptright eage = Pt + (%W) * [_(S:g;((gi?)]

The lane edges are drawn as solid yellow lines.

If we have two lanes on the same road, we want to draw the lane divider line
between them. To achieve this we first need to calculate the lane width. The
lane width is computed by finding the distance between the points on each

trajectory that is closest to the vehicle. This computation is described in

section 3.8.

27

When we have the reference points at minimum distance from the vehicle for
two adjacent lanes, we calculate the distance between these points and
determine this to be the lane width.

We then draw the lane divider lines as dashed white lines connecting the

points projected from the rightmost lane. These points are computed as

lw

—sin(psi)
Ptlane_divider = Pt+ (7) * [

cos(psi)

3.8 Compute Point on Trajectory at Minimum Distance to the Vehicle
Figure 6 shows a trajectory y(s) defined by nodes A and B with A = y(0),

where ‘s’ is the arc length travelled along the trajectory from A towards B.

Figure 6: Computing a point on a trajectory which is at min. distance to the vehicle.

28

We start by defining,
Al = A,Wlth 51 =0

8y (s) |
8s S=Si

Let, Ti =

h; =V — A
Where V is the vehicle position and 4; is a point on the trajectory.
Siyr = Si+ Ti* by
A= y(s+1i0)

We repeat the above steps till (T; x h;) < 0.01 m.

Hence, the last point A;,computed is the closest point on the trajectory to the
vehicle. This algorithm is implemented in ‘GetArcLengthatMinDist()’ in the

Traj_Data class.

3.9 Display current and predicted vehicle position

The current vehicle position is always fixed at a point on the screen. The
lanes are drawn in reference to it. The vehicle is always travelling towards
the top of the screen. The dimensions of the vehicle are specified by
constants ‘WVEHICLE_LENGTH’ and ‘VEHICLE_WIDTH’. The current vehicle

position is depicted by a red rectangle.

The predicted vehicle position is drawn in blue and the path followed by the

vehicle to reach there is drawn as a white line. The vehicle is shown 3

29

seconds or 20 meters, whichever is less, in the future. The path followed by
the vehicle is calculated as follows:

We first calculate the distance travelled by the vehicle in 3 seconds as
Distance (Dist) = Speed of vehicle (V) x 3 secs

We compare this distance with 20 meters and determine the time steps at
which we want to draw our path. If Distance > 20m. then we calculate the

time step as

20

dt =
VN

where, N is the number of points in between the current vehicle position and

the predicted one. If not we determine the time steps as

dt =2
N
Define, YWy = eps
Where, ‘eps’ is the angle between the vehicles direction of motion and the
direction at the point on the trajectory which is nearest to the vehicle
Now we calculate the predicted path using the algorithm:
Fori=1:N
yw; =ywi_1 + g xdt
S; = S;_1 + dt xV * cos(yw;)
d_s; =d_s;_q +dt *V xsin(yw;)
Where, g, is the rate of change of the yaw of the vehicle; yw; represents the

instantaneous yaw of the vehicle and [s;, d_s;] is the predicted position of the

vehicle relative to the Frenet frame, which is a tangent plane that has its

30

x-axis aligned to the tangent at a point on the trajectory nearest to the
vehicle and its origin at the position of the vehicle. In Figure 7, [s, d_s]
represent the Frenet frame with ‘s’ parallel to the Tangent ‘T’ at a point on

the lane centerline closest to the vehicle.

VAN

vV

Figure 7: Compute Predicted Vehicle Path

This algorithm is implemented in the function ‘DrawPredictedPath()’.

31

3.10 Display Compass

The compass is drawn in the right hand corner of the screen as a blue circle
with a red arrow which is always pointing to the north. This is implemented
in ‘DrawCompass()’.

3.11 Display Textual Data

Textual data is rendered on the right hand of the screen and displays the
vehicle state. It also shows us the status of our SQL Database Connection
and the integrity of our data transmitted from the serial port.

3.12 Conclusion

The system designed by us displayed to the driver the vehicles current and
predicted vehicle position relative to the lanes on the road the vehicle is
currently on. We updated our vehicle state and refreshed our display at

10Hz.

32

Chapter Four: Applications

4.1 Snow Plow Guidance

The navigation system described above was designed as a part of a Snow
Plow Guidance Project for California Transportation Systems. In June 2010,
we gave a final demonstration to CALTRANS of our system. It was a two
week process wherein we setup our base station and surveyed all lanes along
the I80 between Donners Lake exit at the east end and the Big
Bend/Rainbow Road exit at the west end in Week 1. We processed this data
and built a geodatabase at the end of the week. Week 2 was spent editing
the database, replacing sections which were not believed to be of decimeter
accuracy. The results for the same projected in Google earth are shown
below. Figure 8 shows a map in of the region surveyed on I-80.

Figure 9 shows us two trajectories in each direction for a smaller area.

33

§
A
A

© 2010 Google
*" Image @ 2010 DigitalGlobe
Image'USDA Farm Service Agency
i

Imagery Date: 5/24/2009 38°19'26.09" N 120°23'41.71"W elev 6623 it
Figure 8: Region on I-80 between Donners Lake Exit and Big Bend Exit.

® 2010 Google

.(GOOgle

Image USDA Farm Sevwcevﬂ_‘gency

Imagery Date: 5/24/2009 % | 1993 39°18'51.02" N 120°26'42:162" W elev 6073 ft Eye alt 76831t

Figure 9: Lane-level trajectory curve fit on I-80

34

In figure 10, we can see the display window on the computer screen showing
us the current vehicle position as a red rectangle. It shows us that we are
near the right edge of the lane which can be confirmed by looking ahead
from the windshield. The predicted vehicle position can be observed as a blue

rectangle and the path followed as a solid white line.

I B =
=
o
:
- u -
= - SN—
e T— e —————

Figure 10: A photograph of the navigation system working in real time

35

Chapter Five: Conclusions and Future Work

We were successful in developing an Advanced Driver Assistance System
which informed the driver of his position within the lane and the predicted
vehicle path. In order to do so we built lane-level digital maps with decimeter
accuracy and accessed them in real time.

The system we built operated in real time but we could not guarantee this
operation. A problem we could see arising is if our database access was slow
due to large amounts of data. To solve this issue, we could write a multi-
threaded program instead of our sequential program with one thread
dedicated to receiving data from rover, another to querying data from the
geodatabase and a third to display this data. In effect if we have a large
query window, i.e. we query an area of a 100m x 100m around the vehicle
and we display only 30m x 30m, we could query the database at lower rate
and still maintain a real time system.

Improvements in Geodatabase

Design: The geodatabase design could be improved to incorporate much

larger datasets. In our design we have a separate table for a list of nodes for

36

each lane. We could add another layer to first query roads and then lanes
within each road.

Adding node attributes: We could store more attributes in the
geodatabase like Landmark storage for better position estimation when used
with vision systems or laser scanners. If we have high performance
computing systems we could also make use of storage of images along the
road. This would be especially useful in Snow Plow Guidance during
whiteouts.

Speed Assistance

We could assist users by suggesting safe speeds at that particular time on
the roads that one is on. This would be helpful in hilly areas where we need
to continuously monitor our speeds through turns. It could also suggest
acceleration or deceleration to drivers to improve fuel economy.

3D Rendering

The graphics displayed by us our two dimensional. We could use 3D graphics
to improve user experience which would further lead to rendering of the
neighboring terrain. We could also overlay satellite imagery onto our map to

provide more information to the driver.

37

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Jay A. Farrell, Aided Navigation: GPS with High Rate Sensors, McGraw
Hill, 2008

J. Allison Butler, Designing Geodatabases for Transportation, ESRI
Press, 2008.

A. Chen, A. Ramanandan, J. A. Farrell, “High-precision lane-level road
map building for vehicle navigation: nodal approach,” IEEE/ION PLANS
2010, May, 2010.

J.A. Farrell, "Highway Lane Curve Fitting: Nodal Approach”, July 2008.
Fuguan Pan, Lixia Zhang, Fengyuan Wang, “GIS and GPS Based
Vehicle Guidance System”, ICICTA, 2008.

J.A. Farrell, "Computation of Vehicle Control State: Nodal Approach”,
July 2008.

Spatial Data Standards and GIS Interoperability, ESRI, White Paper.
R.H. Bartels, J.C. Beatty, and B.A. Barsky, “An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. Morgan
Kaufman, 1987.

J. M. Clanto, D. M. Bevly, and A. S. Hodel, “A low-cost solution for an
integrated multisensor lane departure warning system,” IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp.

47-59, March 2009.

38

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. A. Farell, H.-S. Tan, and Y. Yang, “Carrier phase GPS-aided INS
based vehicle Ilateral control,” Journal of Dynamic Systems,
measurement and Control, vol. 125, pp. 1-15, Sept 2003.

J. A. Farrell and M. Barth, The Global Positioning System And Inertial
Navigation. McGraw-Hill, 1998.

M. F. Goodchild, “"GIS and transportation: Status and challenges,”
Geolnformatica, vol. 9, no. 1, pp. 59-87, July 2000.

S. Mortensen, “USDOT’s demonstration and deployment programs on
vehicle assist and automation for bus rapid transit,” in Intelligent
Transportation Systems, 2009. Proceedings, St. Louis, MO, Oct 2009.
J. Saches-Reyes and J. M. Chac’on, “Polynomial approximation to
clothoids via s-power series,” Computer-Aided Design, vol. 35, no. 14,
pp. 1305-1313, March 2003.

I. Skog and P. H"adel, “In-car positioning and navigation technologies
- a survey,” IEEE Transaction on Intelligent Transportation Systems,
vol. 10, no. 1, pp. 4-21, March 2009.

J. WANG, S. Stefan, M. Klaus, O. Roland, J. Armin, and P. Thomas,
“Lane keeping based on location technology,” IEEE Transactions on
Intelligent Transportation Systems, vol. 6, no. 3, pp. 351-356,
September 2005.

C. K. H. Wilson, S. Rogers, and S. Weisenburger, “The potential of
precision maps in intelligent vehicles,” in IEEE International

Conference on Intelligent Vehicles, October 1998, pp. 419-422.

39

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Zhang and C. Wilson, “An integrated DGPS/DR/map system for
vehicle safety applications,” in Proceedings of the 2000 National
Technical Meeting of the Institute of Navigation, January 2000, pp.
253-257.

S. Schroedl, K. Wagstaff, S. rogers, P. Langley, and C. Wilson, “Mining
GPS traces for map refinement,” Data Mining and Knowledge
Discovery, vol. 4, no. 2, pp. 127-139, June 2000.

J. A. Farrell, “Land Vehicle Path Following Control”, July 2009.

J. Rowell, “Applying map databases to advanced navigation and driver
assistance systems,” Journal of Navigation, vol. 54, no. 3, pp. 355-
363, Sep. 2001.

Felipe Jiménez *, Francisco Aparicio, Gonzalo Estrada “Measurement
uncertainty determination and curve-fitting algorithms for
development of accurate digital maps for advanced driver assistance
systems”, Instituto Universitario de Investigacion del Automovil
(INSIA), Universidad Politécnica de Madrid, Campus Sur UPM,
Carretera de Valencia km 7, 28031 Madrid, Spain

Bendafi, H., Hummelsheim, K., Sabel, H., van de Ven, S,
“Classification of data capturing/production techniques. NextMap
Project Deliverable D 3.1”, 2000.

Miles, J.C., Chen, K.,” ITS Handbook”, second ed. PIARC, 2004.

40

[25]

[26]

[27]

[28]

[29]

Yerpez, 1., Ferrandez, F., "“Road characteristics and safety,
Identification of the Part Played by Road Factors in Accident
Generation”. INRETS, Arcueil, 1986.

EDMap Consortium, “Enhanced digital mapping project Final Report”,
2004.

eSafety Forum, “Digital Maps Working Group Final Report”. European
Commission (eSafety Forum), Brussels. 2005.

Kang Li, Han-Shue Tan , James A. Misener ,]. Karl Hedrick, “Digital
Map as a Virtual Sensor — Dynamic Road Curve Reconstruction for a
Curve Speed Assistant”, Department of Mechanical Engineering,
University of California, Berkeley, USA.

Akshay Morye, “Intelligent Roadways and GIS”, 2008.

41

Appendix A

Steps to build a geodatabase using ArcGIS from a list of XLS files, each
containing Nodes and Its Attributes for a lane.

1. You will need ArcGIS installed on your computer running with the ArcINFO
license suite.

2. Browse to the ArcGIS Menu in the Start Menu panel and open ArcMap.
Once the program is open you will be asked if you want to open an existing
map or create a new one. We will create a new map.

3. Next go into the Tools Menu and select the ‘Add XY Data’ tool as shown

below

“_Untitled - ArcMap - Arcinfo

File Edit View Bookmarks Insert Selection Tools Window Help

30 Analyst ¥ [:Z edtor Toobar * @ @@ 2 & [[0 =] | = = | @& | georeferencing ~

DEES 8 x| Eeii :ﬁ:gﬁoa:-k? QAL O@ED T O R OM S & R Lsbeing v < o

Reports.

D &F Layers Geocoding >

= P& 2dd xv Data...
.

= B 1801_EASTBOUND_1$ Events % Add Route Eyents...
.

& ArcCatalog

3 MyPlaces...
Online Services >
Macros >
Customize...
Extensions...
Styles
Options...

- o
- oo’
PO ok PRSP

.
pReas
cosssosscsces Aid 2 2R et

e

_Display [Source] Selection | ORI
prawing v K - ¢ | O~ A~ < [0 Adal vl v B 7 U A~ &~ S~ o~

Adds a new map layer based on XY events from a table -120.5 39.363 Decimal Degrees
—

4. Now we will have a window as shown below.

42

Add XY Data

A table containing X and Y coordinate data can be added to the
map as a layer

Choose a table from the map or browse for another table:
| -] =
— Specify the fields for the X and Y coordinates:

X Field: | ;’
Y Field: | LI

~ Coordinate System of Input Coordinates
Description:
|Unknown Coordinate System

>

™ Show Details g’

[V Wamn me if the resulting layer will have restricted functionality

oK | Cancel |

5. Click edit and select the WGS 1984 parameters as shown below

43

Spatial Reference Properties

XY Coordinate System
Name:
Details Look in: |@ Coordinate Systems
Name Type |
CI Geographic Coordinate Systems Folder
(O Projected Coordinate Systems Folder
Select... Select a prede)
Import a coord Name: |Geographic Coordinate Systems Add
d Import... domains from
feature datasq Show oftype: | Conrginate Systems | Cancel |
New | Createanew
N e a [

44

6. Next we browse to the XLS file we want to add and select the table within

it as shown below

Add XY Data

A table containing X and Y coordinate data can be added to the
map as a layer

Choose a table from the map or browse for another table:

Lok in: [1801_EASTBOUND_1.4s ~| e cplse|c| == a8
Name | Type l

1801_EASTBOUND _1$ Excel Table

Name: [1801_EASTBOUND_1$ it

Show of type: [T ables | Cancel

T Show Details Edt. |

IV Wam me if the resulting layer will have restricted functionality

| Cancel |

7. We select the X data (Longitude) as F2 (Field 2) and Y data (Latitude) as

F1 (Field 1). The prompt window thus looks like follows:

45

Add XY Data 2%

A table containing X and Y coordinate data can be added to the
map as a layer

Choose a table from the map or browse for another table:

1801_EASTBOUND_1$ |~ E"I
— Specify the fields for the X and Y coordinates:
X Field :
Y Field: | F1 LI

Coordinate System of Input Coordinates

Description:

Geographic Coordinate System:
Name: GCS_WGS_1984

[Show Details Edit... |

IV ‘Warn me if the resulting layer will have restricted functionality

0K Cancel |

8. Next we start ArcCatalog from the Start Menu.

9. We browse to the folder we want to setup the new geodatabase in.

46

Then we right-click and select New ---> File Geodatabase as shown below.

File Edit View Go Tools Window Help

& P BEX

BV EAPON N | @QNGED O X

Location: ~ [CAESRI

Stylesheet: | L% 5

|

x x

||§ catalog
S @c
+ (L] AKSHAY MORYE
(] arcgis
(1 a1
(1] b4b06025bff261c341 7629009
(3 ekeo00
+ (1 Coma
(1 cco1970
(3 cco1980
(1 cco1990
(3 ccoz000
(3 cco9ooo
(1 ccoslock
(1) Cwpata.qdb
(2 del
+ (1] DeLorme Docs
+ (L) Documents and Settings
(2 drivers
* Y ESPT
+ a Est 98 Copy CrHC
- 58 IR
w0 INF
o 0 kpc < Delte
#(1Ms Rename F2
CINC & pefrech

Ner
o 5 R

+(Rre . 3 personal Geodatabase
Properties...
+ (1 5ce ! Propertes

+ 3 sF12000 O Lrer.
% (3 SFiBlock Q Group Layer
% (2 5F32000
(] spoolerlogs Shapefie...
(1] StreetCD_2006 %
(2 swpro_3.09
(2 System Yolume Information
+ (] temp Toobox
i WIMJOWS (2 Arcinfo Workspace
README.txt
= dBASE Table

Z| uer_lib_sys_error.txt
+ (@ C:\AKSHAY MORYE INFO table...

+ @ C:\AKSHAY MORYE\Intro to GIS @ Coyerage...
+-(@ C:\Documents and Settings\scir

(@ C:\Documents and Settingsscirr @ nddress Locator..
+ Q C:\Documents and Settings\scim @ XML Document

Creates a new File Geodatabase

+Ju
© Q Pyt A Search...] Fie Geodatabase

“ /| |8 ArcToobox

+ @ 30 Analyst Tools

+ @ Analysis Tools

+ @ Cartography Tools

+ @ Conversion Tools

+ @ Data Interoperabilty Tools
+ §p Data Management Tools

+ § Geocoding Tools

+ @ Geostatistical Analyst Tools
+ @ Linear Referencing Tools

& @ Mobie Tools

+ @ Mukidimension Tools

+ @ Network Analyst Tools

+ @ Samples

+ @ Schematics Tools

+ @ Server Tools

+ @ Spatial Analyst Tools

+ @ Spatial Statistics Tools

+ @ Tracking Analyst Tools

01 v Favoites - Search | Results

Contents | Previe | Metadata |
Name | 1%

it
(aee Folder

N

10. Now, we go back to ArcMap and right-click on the Traj$ files one at a

time, and select Data ----> Export as shown below

47

“_Untitled - ArcMap - Arcinfo

File Edit View Bookmarks Insert Selection Tools Window Help

30 Analyst ¥ ¥

EBX

® @@ [[& W ~| | = = | §& | Georeferencing ¥

SRl 1501 _EASTBOUND_i$Ex

B copy
><_ Remove

Open Attribute Table

Joins and Relates 1>
<& Zoom To Layer
@

Yisible Scale Range »

Use Symbol Levels
Selection »

Label Features

5‘ Convert Features to Graphics...
Convert Symbology to Representation...

st ® 00 s0000®

DEeE& B X | o~ & 15842 Y &0 R Q@QQEZIO0@E@D D R OM R R T HE Lebeing G
x| " m -
a =
= £ Layers g
= @ 1801_EASTBOUND_2_R$ Events >
.
S

o'
o®
o
o
-
0t ettranyaaeee®®®®?

Properties...

View Metadata. ..

Display | Source | Selection

prawingv R (0 2 O] A~

20 |2 ¢

.
*
o
- *0®
../" ® 0nerestt®

m
l

7 |lo) Adal [0] B 7 ulAv &~ S~ o~

Save this layer's data as a shapefile or geodatabase feature class

-120.495 39.272 Decimal Degrees

11. We browse the our geodatabase created using ArcCatalog and select it.

When prompted if we want to add the trajectory in the geodatabase onto our

map as a layer, we select yes.

48

“ Untitled - ArcMap - Arcinfo

_Jﬁeiawmnwksxmmﬁembnlodsmm
 wmae| e H e 2 E @O @@ E|EE S |G B0 | E E | § | o | e [T
TS ES& @5 v | im [4&90: N | QRAXZIOPED N0 KON S &7 & Labeing v 4§ 4
E X"m B
= £ Layers .g;
= [1801_EASTBOUND_2_R§ Events »
31, b N
= 1801_EASTBOUND_1$ Events.
: 21
¥
Lo
DG Export Data E|®
b Export: |l features ~|
E, Use the same coordinate system as:
19 = (& this layer's source data
" the data frame
€ the feal o ...".o
(only tto 1 2 geodatabase) ../"’ ® 000eestt®®
Output shapefile or feature class: » .,00’.
= &'
[CAESRI\New File Geodatabase.gdb\I801_EASTBOUND_ ﬂ L ooes®
son
e
>
5
I
“orf
B 5 =
5d _Display [Source] Selection TIEEE of
Hoowns~ k& @[O0/~ Al+/ 7 [Oaa <0 <] B 7 u|Av & b~ o
1 | -120.499 39.334 Decimal Degrees

12. After this step we will have duplicate layers for each trajectory in our
map, one from the geodatabase and one from the XLS table. We go ahead

and remove the one from the XLS table.

49

Appendix B
Instructions to Transfer the Geodatabase in ArcGIS to Microsoft SQL Server.

1. We go to ArcCatalog and select the Add Database Server as shown below.

B N | SR SO U NUUN NEPUN SESUN | NESUN SN N S SN NSO NSO | NUUN - S T S S N NN N S N -

-3 ArcCatalog - Arcinfo - Database Servers\Add Database Server

Ble Edt Yew Go Tooks Window Heb

& Pd WA & A90» N aa C RN B RE
Location: [Database Servers\Add Database Server ~l

syowent [r0CSN =] o 5 5

= x x| Contents | Preview | Metadata |
+ @ L] ArcToobox
+ (@ Hiiworld + @ 30 Analyst Tooks Name: Add Database Server
1 + @ Analysis Tools e
+ (@ 1:\1. UCR GIS . =c.mq-phy Tools
+ (i@ 1:\Cobbs-Russel_Geo1S7\Labo4 + @ Conversion Tools
+ (@ 1:\Cobbs-Russel_Geo1S7\LaboS + @ Data Interoperabiity Tooks
+ (@ 1:\Geo 157\Lab04\tin
+ (@ 1:\Geo 157\LangstonLab02
:\Geo 157\LangstonLabO2iRiverside_County_LL

+ @ Linear Referencing Tools
% + @ Moble Tools
+ (@ 1:\Geo 157\LangstonL sb0S . =mm«mn Tooks
+ (@ 1:\GEO1S7 Project B Neteeok Anshat Toois
+ (@ 1:\GEO157 Project\BORR_boundaryshp-kml_etc

(@ 1:\GEO157 Project|BORR_DEM-files|BORR_DEM

(@ L\GEOI57 ProjectiBORR_DEM-flesiborr_dommask

1 (@ I\GEO1S7 Project|BORR_DEM2|BORR_DEM

+ (@ 1:\GEO157 Project|BORRRoads _StatePlane|BORRRoads_StatePlane
(@ 1:\GEO1S7 Project\TINSYpm12

+ (@ 1:Wing_Co_WA\DEMS

+ (@ 1:\Maps, Music, CVIGIS Maps

+ (@ 1:\Maps, Muskc, CVIGIS Maps!Francis Dranage.idb

Add Database Server

Add an ArcSDE Personal or Workgroup database server by typing in
the SQU Server Express instance you wish to connect to.

Database Server: [\sQUEPRESS|

Example: myserver\sgexpress

+ (@ LPROXCT

+ (@ 1:\Ruz_GEO157\iab 02\Riverside_County_SP

+ (@ 1SR : I Cancel
+ (@ \Sturdwvantv_GeolS7

+ (@ 1\TT0_GIS

(@ T:\UCR Thesis - Organized

(@ T:\UCR Thesis - Organized|GIS Maps

(@ T:WUCR Thesis - Organized\GIS MapsiLaurel Lakes
Er

+ (@ KPROXCT

» [@x
+ (@ KAESRIDATAIWORLD
S 13

project|BORR ¢ hanl_etc
+ (@ K:\SharelLizbeth-K drivelLab01-2011
+ (@ K:\shareitemplindonesi

(@ Arcweb Services
+ (38 Coordinate Systems.
+ (19 Database Connections
= (13 Database Servers

2f] Add Database Server

. w GIS Servers
+ &y Interoperabiity Connections

3 Scalar References
@\ Search Resuks

+ (g Tooboxes
% (3 Tracking Connections ¥ | Favortes [Index | Seach| Resuls
selocted

We add our SQL Server database name for example “.\SQLEXPRESS” to
ArcCatalog if this is the first time we are transferring a geodatabase.

2. Next we right click on the server and create a new Geodatabase.

3. Lastly, we right click on this new geodatabase on the SQL Server and
select to Import. We then browse to our geodatabase created from maps and
select to import all feature classes.

4. This completes the transfer from the ArcGIS database to the MS SQL

Server.

50

