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ABSTRACT OF THE THESIS 

GIS for Mapping of Lane-Level Data and Re-Creation in Real Time for 
Navigation 

by 

Behlul Zoeb Sutarwala 

 

Master of Science, Graduate Program in Electrical Engineering 
University of California, Riverside, March 2011 

Dr. Jay A. Farrell, Chairperson 
 

Advanced navigation systems for advanced driver assistance systems for 

safety of vehicle occupants and for autonomous vehicles require high 

accuracy digital maps. These maps should contain enough attributes and 

precision to be able to guide the vehicles within their lanes. Along with these 

digital maps we also require them to process the data in real time. In this 

Thesis we will design a geodatabase for such a lane-level digital map using a 

nodal approach. We collect decimeter accuracy data by using a datalog 

vehicle (Rover). We followed GIS practices for database development and 

use GIS management tools such as ArcGIS. In the second half of the thesis 

we implemented a Human Machine Interface for an Advanced Drive 

Assistance System. This system will query data from the geodatabase and 

process it to graphically display on screen the vehicle and the lane-level map 

of the region around it. It will also display a predicted vehicle position to  
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notify drivers of future lane departures. We tested this system along the 

Interstate 80 in the Donner Lake Region where it was a part of a Snow Plow 

Guidance Project implemented by UCR for CALTRANS.    
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Chapter One: Introduction 

 

1.1 Background 

Navigation systems based on Global Positioning System (GPS) are 

commercially available and can pin-point our position with an accuracy of 

approximately 20 meters. These are used in vehicles to help plan a route and 

guide the driver to the desired destination.   

Advanced applications in vehicle navigation systems to assist drivers have 

been undertaken by the Transit Vehicle and Automation (VAA) program. 

These include lane departure warning systems [9], [16], [18] which reduce 

the chance of accidents, the intelligent cruise control [19] and lane-level 

driver guidance [12] which helps reduce excessive and last minute lane 

changes.   

Vision systems have been used with GPS receivers to develop a lane 

departure warning system [21] but these fail if the lane markers are not 

visible.  

We intend to further improve these automotive navigation systems so that 

we increase safety of the vehicle occupants.  
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1.2 Motivation 

The motivation for this project was to improve vehicle occupant safety. If we 

can convey to the driver of the motor vehicle, the current vehicle position 

and the predicted vehicle path for the next few seconds, he would have more 

time to correct himself if required in order to avoid an accident. For example, 

it would be extremely helpful to Snow Plow drivers who have little or no 

visual confirmation of road or lane edges. Such an Advanced Driver 

Assistance System (ADAS) could also be used as an early warning system for 

lane departure. 

1.3 Aim 

We want to design an Advanced Driver Assistance System which would 

convey the current vehicle position and the predicted path to the driver. To 

do so, we need to determine the current vehicle state [position, attitude, 

speed] and the predicted vehicle path and then display this information along 

with a lane-level map of region surrounding the vehicle. 

To find the current vehicle state, we use a GPS receiver with carrier phase 

differential corrections and an Inertial Measurement Unit [1]. From this we 

calculate the predicted vehicle path. 

To display the map around the vehicle we need a digital map containing lane-

level data. This map, when queried should be able to supply information in 

real time. We also need to be able to process data from the maps to display 

in real time and hence the need for the database to be concise. 
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Current maps do not contain enough lane-level data to be able to locate the 

position of the vehicle in the lane due to the unavailability of decimeter 

accuracy positional data [26]. Since, we have a system to collect positional 

data with centimeter level accuracy and create maps with decimeter accuracy 

[3], we use this data to create our own maps. The approach to database 

design and tools used is discussed in detail in Chapter 2.    

Once we have built the digital map of the desired roadway network, we need 

to query this database in real time and convey to the driver this information 

along with the predicted vehicle path. This would enable the driver to take 

corrective steps in order to avoid an accident. This step is discussed in 

Chapter 3. 

Figure 1 shows the general workflow of our implementation. It shows the 

offline section, non-real time which is the building of the lane-level maps with 

decimeter accuracy and the online section, real time system to access maps 

and display information in real time.  
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Figure 1: Implementation Flow of our ADAS. 
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Chapter Two: GIS for Mapping Lane-level Data 

2.1 GIS for Transportation. 

Geographical Information Systems (GIS) are systems which are used to 

capture, analyze, interpret and manage data related to their location. It is 

the merging of cartography, statistical analysis, and database technology. In 

general a GIS system creates a database with the positional data of a certain 

area and some statistical attributes in that area. For example it may store, 

the Latitude, Longitude, Altitude (positional data) for the center of each city 

and the daily temperatures corresponding to them. Such a database created 

with reference the geographical position is known as a geodatabase.   

GIS is widely used in the design of transportation systems like road, rail and 

water networks. This branch of GIS is commonly known as GIS-T i.e. GIS for 

Transportation.  
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2.2 GIS Management Software  

We require two main functionalities in our decimeter accuracy lane-level 

maps: 

1. A scalable database with tools to maintain the maps. 

2. Ability to retrieve data within a small region in real time. 

To build and maintain our maps we had a few choices of available GIS tools. 

Table 1 provides a selected list of such tools we considered to build our 

digital maps.  

GIS Management 

Software 

Features 

TransCAD  
•  It is an application for public transport applications.  

• In addition to point, line, polygon and raster image layers 
in a GIS map, it also supports route system layers.  

• It possesses tools for creating, manipulating and 
displaying routes.  

• TransCAD uses network data structure to support routing 
and network optimization models.  

• Trip generation, mode choice and traffic assignment 
models that support transportation planning and travel 
forecasting are supported.  

• It also has a set of dynamic segmentation and linear 
referencing tools for managing highways and other 
networks.  

ArcGIS • It is considered to have the most amount functionality 
when it comes to use in Transportation applications. 
 

• It comes with software extensions like Network Analyst, 
which can be used to make a network of trajectories. 
 

• It can store vector and raster data in shape files. It can 
also store data in a proprietary relational database 
management system (RDBMS) format called Geodatabase. 
 

• It has the capability to export the geodatabase to PostGRE 
SQL, MS SQL Server. 
 



7 
 

GRASS  
• It is a free, open source GIS, capable of handling vector 

(topological), raster, image processing and graphic data.  
 

• It can be used on Mac OS, Windows and Linux platforms.  
 

• It was released under the GNU-GPL license.  
 

• The software is interfaced through a GUI using an internal 
GUI or by plugging into GRASS via Quantum GIS, which is 
available for free.  
 

• The latest release of the software introduced new 
topological 2-D and 3-D vector engine and support for 
vector network analysis.  
 

• Attributes for the features are managed in a ‘.dbf’ file or 
an SQL-based DBMS such as MySQL, Postgre SQL / 
PostGIS and SQLite. 
  

Microsoft MapPoint  
•  It is a program created by Microsoft to allow users to 

view, edit and integrate maps.  

• Visualization and analysis of the custom data is possible.  

• Many of Microsoft’s acquisitions have supplemented data 
and feature integration.  

• It includes all the functionality of the most recent version 
of streets and trips i.e. a consumer mapping software.  

• This software also integrates with other Microsoft products 
like MS Office and a VBA interface, allowing automation of 
MapPoint environment.  

• The latest edition of the software has GPS integration 
features.  

• This software is essentially aimed at business users.  

Table 1: A few GIS Management Softwares and their features.[29] 

After our initial review of the capabilities of each of the above software we 

realized none of them would be able to deliver data in real time for a query 

from our display program. Hence we decided to use one of these tools to 

build our geodatabase and to export it to another database management tool 

which can be queried in real time. Some of these are listed in Table 2. 
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Database Management Software Cost / Features 

SQL Server Free : Express Edition – Database Size Limit 1GB 

Paid : Enterprise or Personal Edition – No size limit, 

Product Support  

Postgre SQL Free : Open source, RDBMS 

MySQL Free : Open source, RDBMS 

Table 2: Database Management Software 

The database management software listed in Table 2, all support spatial 

databases, i.e. they are optimized to store and query objects in space for 

example points, lines polygons, etc.  

After evaluating the functionalities of the GIS Management Software in Table 

1 and their compatibility with Database Management Software in Table 2, we 

chose ArcGIS, for the following reasons: 

1. It provided extensive tools to insert features into the geodatabase 

and to maintain roadway networks. 

2. It had the capability to export the completed geodatabase to Microsoft 

SQL Server. 

3. A student license version of ArcInfo, an ArcGIS package with 

extensions that supports the above was available to us for a low cost 

of approximately $200. 

 

 

 



9 
 

2.3 Preparation of Geodatabase 

We will use the “Nodal Approach” as described in [4] to represent the 

roadway network in our geodatabase. This is done in three steps. 

1. Acquire data representing lane centerlines with centimeter accuracy. 

2. Fit the data to a trajectory depicting the lane centerlines with 

decimeter accuracy. 

3. Store the data in a manner that: 

• It represents each lane on a road 

• We can reproduce the lane trajectory from this data with 

decimeter accuracy. 

• We can query this data in real time. 

Steps 1 and 2 are part of a separate project being carried out under Prof. 

Farrell. In this thesis, we will describe in detail Step 3. 

2.3.1 Data Collection 

We acquire data using a Carrier Phase Differential GPS (CPDGPS) aided INS 

system [1][11]. This system is referred to as the Rover is mounted on a 

vehicle. The vehicle is driven along a lane, with best efforts to keep the 

vehicle on the center of that lane. The carrier phase differential corrections 

are transmitted by the Base system. Both the Base and Rover systems run 

on software implemented in C++ on a computer running the Ubuntu flavor of 

Linux. Even though the data collected using the CPDGPS system has 
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centimeter level accuracy, human error is introduced due to the driver trying 

to keep the vehicle on the center of the lane. This data is collected at 15Hz. 

Both the base and rover software were developed at the Controls and 

Robotics Lab at UCR under the guidance of Prof. Jay Farrell.  

2.3.2 Trajectory Fitting 

The data acquired in Section 2.3.1 is dense positional data, which is not 

uniformly distributed as it depends on the speed of the vehicle. The slower 

the vehicle, the denser our data is. To efficiently store this lane centerline 

data, we need to store points at sparser intervals which can represent this 

data with decimeter accuracy. We fit this data to a trajectory depicting the 

lane centerlines. We use the trajectory fitting code developed by Prof. Farrell 

in MATLAB. This takes place in two steps. First we plot all the positional data 

to visually check the integrity of the raw data. Then we cross reference this 

data with the timings we wrote down during data collection and parse the 

data into different sections for each lane. We now plot this again on screen 

one lane or one section of a lane at a time and remove the points which 

seem to be obviously corrupted. This is done by using the function 

‘parse_data4traj.m’.  

Then we use this data to fit a Hermite spline through it using least squares to 

generate nodes for each lane using the ‘traj_fit.m’ function. This is explained 

in detail in [3][4]. 
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The data for each lane is stored as a sequence of nodes with each node 

having different attributes to describe the lane.  

2.3.3 Node Attributes 

Each node has certain attributes required to recreate the lanes with 

decimeter accuracy. The table below shows a few sample nodes and 

attributes which we used to create the geodatabase. 

Node 
No. 

Latitude 
(Deg.) 

Longitude 
(Deg.) 

Altitude 
(m) 

Yaw 
(rad)  

Grade Curvature Arclength 
(m) 

1 D:39 
M:20 
S:20.5938 

D:-120 
M:20 
S:55.035 

2177.36 1.207 0.023 0.0001 1.00 

2 D:39 
M:20 
S:21.7752 

D:-120 
M:20 
S:50.949 

2177.76 1.217 -0.006 0.0001 105.39 

3 D:39 
M:20 
S:22.9446 

D:-120 
M:20 
S:46.86 

2178.91 1.207 -0.012 0.0000 209.78 

Table 3: Table showing the nodes and node attributes for a lane with 3 nodes 

(Latitude and Longitude are stored in decimal degrees. They are listed as DMS for 

representation purposes) 

The first three parameters i.e. latitude, longitude and altitude give us the 

positional data in the geodetic ECEF plane. Even though we fit the data in the 

tangent plane we transform it to the ECEF frame before we build the 

database. This allows us to use the same database for different base 

locations.  

‘Yaw’ is defined by the angle between the lane trajectory at that point and 

the true north and is represented in degrees. 

‘Grade’ is defined as the inclination of the road with reference to the local 

tangent plane. 
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‘Curvature’ is defined as the rate of change of the unit tangent vector at that 

point. 

‘Arclength’ is the distance travelled along the lane trajectory from the 

beginning of this section of the lane to the current node. 

The sequence of nodes for each lane is stored in a comma separated value 

(‘.csv’) file. 

For verification purposes we also create Keyhole Markup Language (KML) 

files which are XML-based files for expressing geographic data. They are used 

to display geographic data in any Earth browsers such as Google Earth. We 

generate two types of KML files, one that contains nodes that will be inserted 

into the geodatabase and one which contains a dense set of points generated 

between each of the nodes using a Hermite polynomial[3][4]. 

2.3.4 Verification using Google Earth 

Now that we had a list of nodes for each lane along with their attributes, we 

projected these in Google Earth by importing the ‘.kml’ created above with 

the same nodes. We made sure that the lanes and roads were consistent 

with the background on Google Earth. A sample projection of few lanes is 

shown in Figure 2(a) and 2(b). In these figures, the yellow place marks 

depict the position of the nodes and the red line is the generated trajectory 

using the node attributes. 
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Figure 2(a) 

 

Figure 2 (b) 

Figure 2: KML files generated using the nodes and the calculated points using the 

Hermite Spline.  
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2.3.5 Database Design 

Until now we have processed data for a single lane segment and stored it as 

a list of nodes. Now, we need to include this as a part of a roadway network 

and store the data from all lanes in a database that can be queries in real 

time. As discussed in section 2.2, we used ArcGIS 9.3 as our GIS database 

management tool and MS SQL Server as for real time database access. We 

created a map in ArcMap by importing nodes and their attributes for each 

lane generated in section 2.3.2. Figure 3 shows a map created with two 

lanes. 

 

Figure 3: Map created using ArcGIS. 

Now we used ArcCatalog to create a geodatabase. After which we inserted all 

the lanes on our map into the geodatabase. 



15 
 

It consisted of a separate table for each lane stored. There were numerous 

other tables created. We only used one other table called ‘SDE_layers’ which 

contained spatial information like the maximum and minimum values of the 

latitude and longitude of each lane. 

We differentiated our roads and lanes by the nomenclature of each of these 

lanes. Our lanes and thus tables in the geodatabase were named in the 

format 

   ABC_DIR_123_R 

where, ‘ABC’ represents the name of the road e.g. ‘I80’; ‘DIR’ represents the 

direction in which the road is heading e.g. ‘EASTBOUND’; ‘123’ represents 

the lane number starting from the left most lane as ‘1’ and ‘R’ is an addition 

only present in the right most lanes. As you can see the different attributes 

of the table name for a lane are separated by ‘_’. This is used to differentiate 

the roads and lanes during rendering. The above example would generate a 

table name as ‘I80_EASTBOUND_1’ for a road with multiple lanes or 

‘I80_EASTBOUND_1_R’ for a road with only 1 lane. 

A step by step guide to importing data into ArcGIS to build a geodatabase is 

described in Appendix A. 

2.4 Conclusion 

Following the procedure described above, we have built a lane-level map, 

with decimeter accuracy, of the surveyed area and stored it in a geodatabase 

in ArcGIS. This database is then exported into an MS SQL Server database to 

allow real time data access. 
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Chapter Three: Re-Creation of Maps in Real Time for Navigation 

3.1 Introduction 

What are Real Time Systems? 

Real Time Systems are systems in which the outcome is guaranteed in a 

fixed amount of time. This time could be 10 minutes or 10 milliseconds. As 

long as it is guaranteed to complete an assigned task before a deadline it is a 

real time system. This time varies depending on the application. 

Why do we need real time navigation systems? 

The commercially navigation systems available in the present day help us 

plan the route of our journey, and re-route us in case of human error 

resulting in missing a turn. Some systems also give us information on the 

number of lanes on the road we are travelling on and direct us to certain 

lanes for safe and comfortable driving. Some ADAS systems also give us 

information on the current lane the vehicle is driving along and have lane 

departure warning [26]. But what these systems lack is the ability to inform 

the driver about the vehicle’s current position within the lane. We have 
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discussed in Chapter 2, that we use the Rover to acquire positional data with 

centimeter accuracy. Using this data along with the lane-level geodatabase 

with decimeter accuracy we can convey to the driver his position in the lane. 

As an additional feature we will also calculate the predicted vehicle path as 

discussed in section 3.9  

To improve vehicle safety by informing the driver about his position within a 

lane, it is ijmperative to also deliver this information fast enough so that the 

driver has enough reaction time. Also such a system would need a high 

refresh rate as circumstances can change quickly. For example, a vehicle 

travelling at 65 mph covers a distance of 2.9 meters per second. If we design 

system which updates information to the driver at 10Hz, he would have 

travelled distance 

� = 290��
10 = 29�� 

 

before he gets updated with his position. For our evaluation purpose we 

refreshed our system at this rate. Also, our designed system flagged the user 

if it could not deliver information at this rate. Hence, we designed a soft real 

time navigation system. 
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3.2 Our Approach 

To deliver relevant information to the driver, our display screen would 

require the following: 

1. An object representing the vehicle on screen. 

2. A map of the region around the vehicle representing lanes. 

3. A compass showing us the direction of motion of the vehicle. 

4. A predicted path and a predicted vehicle position for the object. 

5. Textual data representing the vehicle state and the integrity of our 

data. 

To display the above listed items we had considered a few graphics libraries 

such as Qt, DirectX, Flash and OpenGL. After a brief evaluation of their 

features and complexity, and discussion with students who had used them, 

we chose OpenGL for its processing speed and comparatively easy learning 

curve. We chose to write our program on a Windows based platform in Visual 

Studio to make use of the MSDN libraries for SQL Server database access. I 

initially wrote the program in C#, but switched to C++; since I needed help 

debugging the program and it was the language Prof. Farrell knew. 

To deliver the above listed information on screen we require two sets of 

data: 

1. Vehicle State  (Position, Velocity, Acceleration). 

2. Lane-level map of the region near the vehicle.  
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We receive the vehicle state from a CPDGPS aided INS system, similar to 

the one used in data collection. This gives us the vehicle position with 

centimeter accuracy. This data is transmitted to our display program from 

the Rover via the serial port. We discuss the vehicle state transmitted and 

serial port connection in detail in section 3.3. 

Once we know the current position of the vehicle, we query the database 

built in Chapter 2 and receive data representing the lane-level map of the 

surrounding region. We then process this data to display the required items 

to the driver. A flowchart of this process is shown in figure 4. The rest of this 

chapter discusses the various steps taken in order to construct our graphical 

display. 
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3.3 Current Vehicle State 

The current vehicle state is transmitted to our display program from the 

rover. This data is then stored in an object of class ‘Vehicle_Data’. These 

steps are discussed in the following subsections.    

3.3.1 Data Transmission and Flow Control 

We transmitted vehicle data from the rover to our computer through the 

serial port operating at a Baud rate of 38400 bits/sec, 8 data bits and 1 stop 

bit. 

A vehicle data packet consisted of 39 bytes. The first two bytes were header 

bytes fixed as ‘AA’ and ‘BB’, followed by 36 bytes containing vehicle 

information. The last remaining byte was the checksum. The checksum was a 

simple sum of the 36 bytes preceding it.  

The 36 vehicle information data was distributed in the following manner: 

Bytes No. Total 

Bytes 

Data 

Type 

Vehicle Parameter Units Accuracy 

Level 

1-8 8 Double Latitude  Radians Cm 

9-16 8 Double Longitude Radians Cm 

17-20 4 Float Altitude Meters Cm 

21-24 4 Float Yaw Radians .001 rad 

25-28 4 Float Vehicle Speed - North 
Component 
 

Meters/sec Cm/s 

29-32 4 Float Vehicle Speed - East 
Component 
 

Meters/sec Cm/s 

33-36 4 Float Rate of change of Yaw Radians/sec .01 rad/s 

Table 4: Vehicle State data transmitted from rover to HMI. 
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3.3.2 Data Reception and Storage 

The data packet as described in 3.3.1 is transmitted from the rover. It is 

received by our program and stored in a buffer. The buffer is then traversed 

to search for the header. Once found the next 36 bytes are added to create a 

checksum. If this sum is same as the 39th bit of the received data packet we 

know our data is accurate. We then proceed to parse the vehicle data and 

store it. It will be used subsequently to query the database and display 

information. 

We have written a class called ‘Vehicle_Data’ which holds all data pertaining 

to the vehicle. The data is read from the serial port by the function 

‘Read_veh_data()’ contained in the class ‘DataPort’ which handles the serial 

port communication. 

3.4 Reference Frames 

The display window consists of: 

1. A Navigation Box, within which we will display the digital map, vehicle 

position and the predicted vehicle path. 

2. A compass with an arrow pointing to North. 

3. Textual Data 

The current position of our vehicle in the display window is always fixed, 

while the lane-level map and the predicted path are redrawn continuously. 
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Figure 5 shows the reference frames related to our display screen. These 

frames are defined as follows: 

 Body Frame: Assuming that the roll and pitch of the vehicle are equal to 

zero, the body frame x-y plane is parallel to the geodetic tangent plane with 

the origin defined by the vehicle position. 

   

 

 

 

 

 

 

Figure 6: Reference frames in the display program 

 

GL Frame: The GL frame is 2-D frame on the display window with its origin 

at the center of the display window. It has its x co-ordinate pointing to the 

	
� 

�
� 

Navigation Box (NavBox) 

Display Window 


������ 
	� 

�� 

	� 

�� 

Figure 5: Reference frames in the display program 
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right of the screen. OpenGL uses certain units to transform desired co-

ordinates to pixel units. We address these units as GL units for our program. 

NavBox Frame: The NavBox frame has the same orientation as the GL 

frame and has its origin at the center of the navigation box. The box is drawn 

in blue. This NavBox is drawn such that it displays the map for a distance of 

27 m. in the direction of motion of the vehicle and 20 m. in the direction 

perpendicular to it. 

The NavBox is centered at a fixed location [-10, 0] GL units in the GL frame 

with its x and y axis aligned to that of the GL frame. Hence the 

transformation from the NavBox frame to the GL frame is given by 

�	
�
�
�� = 	 �	�

��� +	�−100 � 

This fixed location is stored in the ‘NAVBOX_CENTER_REF’ array in our 

program.  

In the NavBox frame the current vehicle position is fixed at [0, -30] GL units 

and the x-axis of the body frame aligns with the y-axis of the NavBox frame. 

Therefore, points in the body frame are transformed to the NavBox frame as 

�	�
��� = ���� ∗	 �	�

���� +	 � 0−30� 

where,																																											��� =	  cos	(% 2& ) sin	(% 2& )
sin	(% 2& ) cos	(% 2& )* 
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3.5 Database Query for Lane-level maps 

The database queried in two steps. 

1. Query database to get a list of nearby roads/lanes. 

2. Query each lane, in order to retrieve nodes. 

These steps are discussed in the next two sub-sections. 

3.5.1 Creating Database Query For Nearby Roads/Lanes 

The goal of the first database query is to get a list of roads/lanes which are in 

close proximity to the vehicle. The database contains a table called 

‘SDE_layers’ which contains the maximum and minimum values of the 

latitude and longitude of each lane present in the entire database.  

We create a query to fetch the roads in a box of size GEOBOX_LAT x 

GEOBOX_LON (apprx. 100m x 100m in our program) with the vehicle at its 

center. The following line of code creates this query string. 

String ^query = "SELECT table_name FROM SDE_layers WHERE  

maxy >= "+ Convert::ToString((LLA_veh[0]-GEOBOX_LAT/2)*rad2deg) +   "AND 

miny<="+Convert::ToString((LLA_veh[0]+GEOBOX_LAT/2)*rad2deg) + "AND maxx >= 

"+Convert::ToString((LLA_veh[1]-GEOBOX_LON/2)*rad2deg) + "AND minx <= 

"+Convert::ToString((LLA_veh[1]+GEOBOX_LON/ 2)*rad2deg); 

‘GEOBOX_LAT’ and ‘GEOBOX_LON’ are constants defined in the class 

‘SQL_Conn’. The above query is created in the initial part of the 
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GetDrawData() function, which handles the entire process from querying all 

data and then calling functions to display it on screen. 

3.5.2 Querying Database For Individual Lane Data 

Now that we have a list of lanes in close proximity to the vehicle, we need to 

query each lane and draw it to the display window. We store the lane names 

in an array road_names[] and query all data from the tables for the related 

lanes using a query 

“SELECT * FROM road_names[i]”. 

3.6 Interpretation and Filtering of lane level data 

A table containing information for a particular lane is queried and the 

information for each node is read sequentially. Once we have two nodes 

available we use the Hermite polynomial to calculate points in between these 

two nodes using the function ‘ComputeHermiteCurve()’and render a dashed 

line using the function ‘DrawArc()’ which invokes the required functions from 

the OpenGL library. During this process we also store the tangents at each of 

the generated points. This line depicts the center of the lane and the color of 

the dashed line depicts the vehicles direction of motion in comparison to 

lawful direction.  

If the yaw of the vehicle is within +/-1 radian of the trajectory, we assume 

the lane to be in the same direction of motion as the vehicle and draw it 

green; otherwise we draw it as red. Therefore lanes for traffic travelling in 

the opposite direction are always red. 
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We continue drawing each section of the lane until the entire lane is drawn 

and move on to the next lane.  

3.7 Drawing Lane Edges and Lane Dividers 

The lane name is parsed to determine the road name and the lane number. If 

the current lane is lane number 1, we draw the left edge of the lane by 

projecting each of the calculated points between two nodes to the left at an 

angle perpendicular to the trajectory tangent at that point and by a distance 

which is half of the lane width. This is mathematically expressed as 

+,-./0_.23. = 	+, + 4562 7 ∗ �−sin	(89:)			cos	(89:)� 
Where Pt are the points calculated on the lane trajectory and ‘psi’ is the yaw 

of the trajectory at that point. 

If it is the right edge we project and draw on the right hand side as well.  

+,;<3=0_.23. = 	+, + 4562 7 ∗ � 			sin	(89:)−cos	(89:)� 
The lane edges are drawn as solid yellow lines.   

If we have two lanes on the same road, we want to draw the lane divider line 

between them. To achieve this we first need to calculate the lane width. The 

lane width is computed by finding the distance between the points on each 

trajectory that is closest to the vehicle. This computation is described in 

section 3.8. 
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When we have the reference points at minimum distance from the vehicle for 

two adjacent lanes, we calculate the distance between these points and 

determine this to be the lane width. 

We then draw the lane divider lines as dashed white lines connecting the 

points projected from the rightmost lane. These points are computed as  

+,-�>._2<�<2.; = 	+, + 4562 7 ∗ �−sin	(89:)			cos	(89:)� 
 

3.8 Compute Point on Trajectory at Minimum Distance to the Vehicle 

Figure 6 shows a trajectory γ(s) defined by nodes A and B with A = γ(0), 

where ‘s’ is the arc length travelled along the trajectory from A towards B. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Computing a point on a trajectory which is at min. distance to the vehicle. 
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We start by defining, 

    A@ = A,6:,ℎ	9@ = 0 
Let,    B< =	 DE(F)

DF |FHFI 

ℎ< = J −	A< 

Where V is the vehicle position and A< is a point on the trajectory. 

9<K@ =	9< +	B< ∗ ℎ< 

A< = 	L(9 + :) 
We repeat the above steps till (B< ∗ ℎ<) < 0.01 m. 

 

Hence, the last point A<computed is the closest point on the trajectory to the 

vehicle. This algorithm is implemented in ‘GetArcLengthatMinDist()’ in the 

Traj_Data class. 

 

3.9 Display current and predicted vehicle position 

The current vehicle position is always fixed at a point on the screen. The 

lanes are drawn in reference to it. The vehicle is always travelling towards 

the top of the screen. The dimensions of the vehicle are specified by 

constants ‘VEHICLE_LENGTH’ and ‘VEHICLE_WIDTH’. The current vehicle 

position is depicted by a red rectangle.  

The predicted vehicle position is drawn in blue and the path followed by the 

vehicle to reach there is drawn as a white line. The vehicle is shown 3 
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seconds or 20 meters, whichever is less, in the future. The path followed by 

the vehicle is calculated as follows: 

We first calculate the distance travelled by the vehicle in 3 seconds as 

Distance (Dist) = Speed of vehicle (V) x 3 secs 

We compare this distance with 20 meters and determine the time steps at 

which we want to draw our path. If Distance > 20m. then we calculate the 

time step as  

�, = 	 20
J ∗ M 

where, N is the number of points in between the current vehicle position and 

the predicted one. If not we determine the time steps as 

�, = 	 3M 
Define,                                N6O = P89 
Where, ‘P89’ is the angle between the vehicles direction of motion and the 

direction at the point on the trajectory which is nearest to the vehicle 

Now we calculate the predicted path using the algorithm: 

For i=1:N 

 N6< = N6<Q@ +	RS ∗ �, 	
 9< = 9<Q@ + 	�, ∗ J ∗ cos(N6<) 	
 �_9< = �_9<Q@ + �, ∗ J ∗ sin(N6<) 
Where, RS  is the rate of change of the yaw of the vehicle; N6< represents the 

instantaneous yaw of the vehicle and [9<, �_9<] is the predicted position of the 

vehicle relative to the Frenet frame, which is a tangent plane that has its     
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x-axis aligned to the tangent at a point on the trajectory nearest to the 

vehicle and its origin at the position of the vehicle. In Figure 7, [s, d_s] 

represent the Frenet frame with ‘s’ parallel to the Tangent ‘T’ at a point on 

the lane centerline closest to the vehicle.   

 

Figure 7: Compute Predicted Vehicle Path 

This algorithm is implemented in the function ‘DrawPredictedPath()’.  



32 
 

3.10 Display Compass 

The compass is drawn in the right hand corner of the screen as a blue circle 

with a red arrow which is always pointing to the north. This is implemented 

in ‘DrawCompass()’. 

3.11 Display Textual Data 

Textual data is rendered on the right hand of the screen and displays the 

vehicle state. It also shows us the status of our SQL Database Connection 

and the integrity of our data transmitted from the serial port.  

3.12 Conclusion 

The system designed by us displayed to the driver the vehicles current and 

predicted vehicle position relative to the lanes on the road the vehicle is 

currently on. We updated our vehicle state and refreshed our display at 

10Hz.  
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Chapter Four: Applications 

4.1 Snow Plow Guidance 

The navigation system described above was designed as a part of a Snow 

Plow Guidance Project for California Transportation Systems. In June 2010, 

we gave a final demonstration to CALTRANS of our system. It was a two 

week process wherein we setup our base station and surveyed all lanes along 

the I80 between Donners Lake exit at the east end and the Big 

Bend/Rainbow Road exit at the west end in Week 1. We processed this data 

and built a geodatabase at the end of the week. Week 2 was spent editing 

the database, replacing sections which were not believed to be of decimeter 

accuracy. The results for the same projected in Google earth are shown 

below.  Figure 8 shows a map in of the region surveyed on I-80. 

Figure 9 shows us two trajectories in each direction for a smaller area.  
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Figure 8: Region on I-80 between Donners Lake Exit and Big Bend Exit.

Figure 9: Lane-level trajectory curve fit on I-80 
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In figure 10, we can see the display window on the computer screen showing 

us the current vehicle position as a red rectangle. It shows us that we are 

near the right edge of the lane which can be confirmed by looking ahead 

from the windshield. The predicted vehicle position can be observed as a blue 

rectangle and the path followed as a solid white line. 

 

Figure 10: A photograph of the navigation system working in real time
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Chapter Five: Conclusions and Future Work 

We were successful in developing an Advanced Driver Assistance System 

which informed the driver of his position within the lane and the predicted 

vehicle path. In order to do so we built lane-level digital maps with decimeter 

accuracy and accessed them in real time.  

The system we built operated in real time but we could not guarantee this 

operation. A problem we could see arising is if our database access was slow 

due to large amounts of data. To solve this issue, we could write a multi-

threaded program instead of our sequential program with one thread 

dedicated to receiving data from rover, another to querying data from the 

geodatabase and a third to display this data. In effect if we have a large 

query window, i.e. we query an area of a 100m x 100m around the vehicle 

and we display only 30m x 30m, we could query the database at lower rate 

and still maintain a real time system.  

Improvements in Geodatabase 

Design: The geodatabase design could be improved to incorporate much 

larger datasets. In our design we have a separate table for a list of nodes for 
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each lane. We could add another layer to first query roads and then lanes 

within each road.   

Adding node attributes: We could store more attributes in the 

geodatabase like Landmark storage for better position estimation when used 

with vision systems or laser scanners. If we have high performance 

computing systems we could also make use of storage of images along the 

road. This would be especially useful in Snow Plow Guidance during 

whiteouts.  

Speed Assistance 

We could assist users by suggesting safe speeds at that particular time on 

the roads that one is on. This would be helpful in hilly areas where we need 

to continuously monitor our speeds through turns. It could also suggest 

acceleration or deceleration to drivers to improve fuel economy.  

3D Rendering 

The graphics displayed by us our two dimensional. We could use 3D graphics 

to improve user experience which would further lead to rendering of the 

neighboring terrain. We could also overlay satellite imagery onto our map to 

provide more information to the driver. 
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Appendix A 

Steps to build a geodatabase using ArcGIS from a list of XLS files, each 

containing Nodes and Its Attributes for a lane. 

1. You will need ArcGIS installed on your computer running with the ArcINFO 

license suite.  

2. Browse to the ArcGIS Menu in the Start Menu panel and open ArcMap. 

Once the program is open you will be asked if you want to open an existing 

map or create a new one. We will create a new map. 

3. Next go into the Tools Menu and select the ‘Add XY Data’ tool as shown 

below 

 

 

4. Now we will have a window as shown below. 
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5. Click edit and select the WGS 1984 parameters as shown below 
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6. Next we browse to the XLS file we want to add and select the table within 

it as shown below 

 

 

 

7. We select the X data (Longitude) as F2 (Field 2) and Y data (Latitude) as 

F1 (Field 1). The prompt window thus looks like follows: 
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8. Next we start ArcCatalog from the Start Menu. 

9. We browse to the folder we want to setup the new geodatabase in. 
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Then we right-click and select New --� File Geodatabase as shown below. 

 

 

 

 

10. Now, we go back to ArcMap and right-click on the Traj$ files one at a 

time, and select Data ---� Export as shown below  



48 
 

 

 

 

 

 

 

11. We browse the our geodatabase created using ArcCatalog and select it. 

When prompted if we want to add the trajectory in the geodatabase onto our 

map as a layer, we select yes. 
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12. After this step we will have duplicate layers for each trajectory in our 

map, one from the geodatabase and one from the XLS table. We go ahead 

and remove the one from the XLS table. 
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Appendix B 

Instructions to Transfer the Geodatabase in ArcGIS to Microsoft SQL Server. 

1. We go to ArcCatalog and select the Add Database Server as shown below.  

  

We add our SQL Server database name for example “.\SQLEXPRESS” to 

ArcCatalog if this is the first time we are transferring a geodatabase.  

2. Next we right click on the server and create a new Geodatabase. 

3. Lastly, we right click on this new geodatabase on the SQL Server and 

select to Import. We then browse to our geodatabase created from maps and 

select to import all feature classes. 

4. This completes the transfer from the ArcGIS database to the MS SQL 

Server. 




