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A GENERALIZED DEFINITION OF THE POLYCHORIC

CORRELATION COEFFICIENT

JOAKIM EKSTRÖM

Abstract. The polychoric correlation coefficient is a measure of association for or-

dinal variables which rests upon an assumption of an underlying joint continuous dis-

tribution. More specifically, in Karl Pearson’s original definition an underlying joint

normal distribution is assumed. In this article, the definition of the polychoric correla-

tion coefficient is generalized so that it allows for other distributional assumptions than

the joint normal distribution. The generalized definition is analogous to Pearson’s def-

inition, and the two definitions agree under bivariate normal distributions. Moreover,

the polychoric correlation coefficient is put into a framework of copulas which is both

mathematically and practically convenient. The theory is illustrated with examples

which, among other things, show that the measure of association suffers from lack of

statistical robustness.

Key words and phrases. Polychoric Correlation Coefficient, Contingency Table, Measure of Associa-

tion, Ordinal Variables.
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2 JOAKIM EKSTRÖM

1. Introduction

The polychoric correlation coefficient is a measure of association for ordinal variables.

It was first proposed by Karl Pearson in year 1900, and throughout his career, Pearson

was an advocate of the statistical method.

A measure of association is, loosely, a function which maps a pair of random variables

to a subset of the real line. The first and likely most well-known measure of association

is the ordinary linear correlation. The linear correlation was first envisioned in year 1888

by Francis Galton, who originally named it co-relation. Galton (1888) claimed that the

proposed measure of association was particularly useful for the study of social problems,

such as the relationship between poverty and crime. More than a hundred years later,

though, it is safe to say that the study of association between variables indeed is of

fundamental interest in nearly every scientific discipline.

Ordinal variables, also called ordered category variables, are variables whose values are

ordered, but cannot be added or multiplied. For example, the extent to which a person

experiences an emotion, values a product, or agrees to an opinion are usually thought

of as inherently ordinal variables. Ordinal variables can also occur as a consequence

of difficulties in measurement. Numerical variables are sometimes considered as merely

ordinal if the measurements are blurred to such an extent that it only is meaningful

to compare values in terms of order. Ordinal variables are common in, for example,

medicine and the social sciences.

Data for pairs of ordinal variables are often presented in the form of contingency tables.

Each value of an ordinal variable represent either a row or a column, and frequencies or

relative frequencies are shown in corresponding cells. Sometimes the marginal frequencies

are printed in a separate row and column. The historically prominent smallpox data set,

from Pearson (1900), is shown in Table 1.

Measures of association for ordinal variables is a subject that has been studied from the

very infancy of modern statistics. In the 7th article in the seminal series Mathematical

contributions to the theory of evolution, Pearson (1900) proposed what later became

Table 1. Karl Pearson’s smallpox recovery data.

Recovery Death

Vaccinated 1562 42 1604

Unvaccinated 383 94 477

1945 136 2081

Pearson’s chi-square test for independence

χ2
obs = 176 p-value < 0.0001

Source: Metropolitan Asylums Board:

Small-pox epidemic 1893. (Pearson, 1900)
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known as the polychoric correlation coefficient. The fundamental idea is to think of

the two ordinal variables as having an underlying joint normal distribution, and that

the contingency table consequently is a result of a double discretization of the joint

distribution, see Figure 1 for an illustration. The polychoric correlation coefficient is the

linear correlation of the postulated joint normal distribution.

According to Pearson’s colleague Burton H. Camp (1933), Pearson considered the

polychoric correlation coefficient as being one of his most important contributions to the

theory of statistics. However, the polychoric correlation coefficient suffered in popularity

because of the difficulty in its computation. Throughout his career, Pearson published

statistical tables aimed at reducing that difficulty (Camp, 1933), reflecting an interest in

promoting a wider adoption of the polychoric correlation coefficient among practitioners.

There are several theories why Pearson for the purpose of the definition of the poly-

choric correlation coefficient chose the family of bivariate normal distributions. Central

to Pearson’s thinking was the idea of the ordinal variables having continuous underlying

distributions, and at the time the normal distribution was prevalent. In fact, according

to Pearson & Heron (1913) there were no other continuous bivariate distribution that

up until the time had been discussed effectively. Furthermore, Pearson (1900) was pri-

marily interested in applications in the fields of evolution and natural selection, which

is evident from the article’s title, and such variables were generally assumed to be nor-

mally distributed. Pearson’s mentor Francis Galton even had a philosophical argument

why all variables in nature ought to be normally distributed. Also, the parameter of

the parametric family of bivariate normal distributions happens to be a measure of as-

sociation, and this in combination with other nice properties makes the choice of the

bivariate normal distribution most convenient.

Of course, not all continuous bivariate distributions are normal. Pearson & Heron

(1913) addresses this apparent weakness, and claims that for the purpose of the poly-

choric correlation coefficient, divergence between the actual joint distribution and the

normal distribution is hardly ever of practical importance. It is not mentioned how

Pearson & Heron arrived at this conclusion. In the present article, it will be shown that

the distributional assumption in fact has a profound impact on the polychoric correla-

tion coefficient. For example, for Pearson’s smallpox data set, Table 1, the polychoric

correlation coefficient ranges from 0.9, to 0, to −0.2, only because of changes of the

distributional assumption. Correspondingly, the conclusions of the association analysis

ranges from near perfect positive association, to statistical independence, to negative

association between the two ordinal variables only as a consequence of changes of the

distributional assumption. So contrary to Pearson’s intuition, it will be seen that the

distributional assumption is indeed of profound importance for the purpose of the poly-

choric correlation coefficient.

1.1. Bibliographical summary. Originally, Pearson (1900) studied the special case

of association between dichotomous variables, i.e. 2 × 2 contingency tables. The com-

putation of the coefficient amounts to the solving of an integral equation involving the
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bivariate standard normal density function. So-called tetrachoric series were used as a

means to solve the integral equation, and the use of such is, in all likelihood, the rea-

son why the measure of association, for 2× 2 contingency tables, became known as the

tetrachoric correlation coefficient.

Ritchie-Scott (1918) extended the tetrachoric correlation coefficient to general ordi-

nal variables. The extension is not trivial because for general r × s contingency tables,

a solution to an analogous integral equation does in general not exist. Ritchie-Scott’s

suggestion was to dichotomize the ordinal variables in all possible ways, calculate a tetra-

choric correlation coefficient for each dichotomization, and then to compute a weighted

average of those so obtained tetrachoric correlation coefficients. The weighted average

was subsequently called the polychoric correlation coefficient.

Tallis (1962) suggested that a polychoric correlation coefficient could be fitted to

the contingency table with respect to a multiplicative loss function referred to as a

likelihood. Martinson & Hamdan (1971) merged the idea of Tallis (1962) with the works

of Pearson and Ritchie-Scott, along with some computational simplifications. Martinson

& Hamdan (1971) also provided some additional suggestions of loss functions. Moreover,

Olsson (1979) suggested a slightly modified approach, allowing for reclassifications. All

of the above was done under the assumption of an underlying joint normal distribution.

Quiroga (1992) and Roscino & Pollice (2006) suggested a polychoric correlation co-

efficient with a mixture of an independent bivariate skew-normal distribution and a

bivariate normal distribution, and a bivariate skew-normal distribution, respectively, as

underlying distributional assumptions. However, the theories are not fully developed,

e.g. they provide neither results on existence, nor that the definitions agree for bivariate

normal distributions.

1.2. Outline of the present article. The aim of the present article is to generalize

the definition so that the polychoric correlation coefficient can be computed under other

distributional assumptions than the normal distribution. The generalization makes it

possible to explore the extent to which the polychoric correlation coefficient depends on

the distributional assumption. Using the generalized definition, statistical robustness

properties will be evaluated.

The generalization is made in analogy with Pearson’s original definition, and the

generalized definition is shown to agree with Pearson’s definition under a joint normal

distribution assumption. Extensive results on existence and uniqueness of a polychoric

correlation coefficient in various circumstances are provided. Moreover, the generalized

polychoric correlation coefficient is put into the framework of copulas, a framework which

is both mathematically suitable as well as convenient in practice.

It is briefly discussed how a goodness-of-fit analysis can yield further information on

the association between the ordinal variables. When in doubt, different distributional

assumptions can be tested. Furthermore, consideration of goodness-of-fit can enrich the

association analysis with an analysis of, for example, possible tail dependence.
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In Section 2, the framework of ordinal variables is discussed, and the polychoric cor-

relation coefficient is presented with its assumptions formalized. In Section 3, the gen-

eralized definition is introduced along with some results on existence and uniqueness of

a polychoric correlation coefficient for a given family of bivariate distributions. Further-

more, it is shown that the generalized definition agrees with the conventional definition.

Section 4 contains suggestions for goodness-of-fit tests, and Section 5 contains examples

to illustrate the use of the generalized definition. And finally, the article is concluded

with Section 6.

2. The polychoric correlation coefficient

2.1. Ordinal variables. Ordinal variables are variables whose values are ordered but

cannot in general be added, multiplied, or otherwise acted on by any binary operator

save projection. In the framework of Kolmogorov’s definition of random variables, an

ordinal variable is a measurable function from a probability space Ω to some sample

space, C. The sample space C = {c1, c2, . . . } is totally ordered, i.e. for any ci and cj it

holds that either ci ≼ cj , ci ≽ cj , or both. But characteristically, the sample space is

not equipped with any binary operation. The equality notation ci = cj is shorthand for

ci ≼ cj and ci ≽ cj , and the strict notation ci ≺ cj is shorthand for ci ≼ cj and ci � cj .

In the present context, what the elements of C represent is not of interest. The

elements may represent colors, opinions, species, or anything else, but the only char-

acteristic that is of relevance in this statistical context is the ordering. Therefore, all

elements that have the same order are considered equal. Let [c]C denote the equivalence

class {x ∈ C : x = c}, and let ⌊c⌋C denote the lower half-space {x ∈ C : x ≼ c}. The

index C is sometimes omitted when the ordered set is clear from the context.

Since the concern of the analysis is the equivalence classes [ci], for an ordinal variable

X : Ω → C it is assumed without loss of generality that the strict inequalities c1 ≺ c2 ≺
c3 ≺ · · · hold. That this can be assumed is clear when considering that one always

can map each equivalence class to any element of the class, relabel them if necessary,

and then get a totally ordered set for which the strict inequalities hold. The values of

an ordinal variable are sometimes referred to as categories, the ordinal variable as an

ordered categorical variable, and the cardinality of the sample space as the number of

categories.

Let X and Y be the two ordinal variables whose association is to be studied, and

denote their numbers of categories r and s, respectively. Let the cumulative marginal

probabilities be denoted u0, u1, . . . , ur for X, i.e. u0 = 0, ur = 1 and ui = P (X ≼ ci), and

v0, v1, . . . , vs for Y . The marginal probabilities are denoted ∇ui and ∇vj , respectively.

The symbol ∇ can be interpreted as a difference operator, yielding ∇ui = ui − ui−1 =

P (X = ci).

The joint distribution of X and Y is often illustrated with an r× s contingency table,

where the values of X and Y are labeling, in correct order, the columns and rows and

the joint probabilities are printed in the corresponding cells. The joint probabilities are
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sometimes denoted with a double index, each referring to a value of one of the ordinal

variables. In the present article, however, the joint probabilities will be denoted with

single index, p1, . . . , prs, each index referring to a specific cell of the contingency table.

The way the in which the cells of the contingency table is enumerated is unimportant. For

example, the cells could be enumerated column-wise, row-wise, or via Cantor’s diagonal

method.

As always, Kolmogorov’s axioms imply that the joint probabilities are elements of the

unit interval, I = [0, 1], and that they sum to one. It is sometimes necessary to separate

the two cases where the cumulative marginal probabilities, (ui, vj), are elements of the

boundary and the interior of the unit square, I2, respectively. Because it is closed, the

unit square is the disjoint union of its boundary and its interior, I2 = ∂I2 ∪ Int(I2).

If X and Y are statistically independent, then the joint probabilities are the products

of the marginal probabilities. Given a sample, independence can be tested with, e.g., the

Pearson chi-square test. An example of such a test is shown in Table 1. If X and Y are

found to be statistically dependent, then it is often of interest to estimate some measure

of association. The polychoric correlation coefficient is one such measure of association,

especially defined for ordinal variables.

2.2. Pearson’s definition. The fundamental idea of the polychoric correlation coeffi-

cient, as presented in Pearson (1900), is to think of the ordinal variables as discretized

random variables with a joint normal distribution. Pearson likely visualized the con-

tingency table with the bell-shaped bivariate normal density function standing on top

of it. The discretization cuts the domain of the bivariate normal density function into

rectangles corresponding to the cells of the contingency table, see Figure 1 for an il-

lustration. Since the ordinal variables are both scale and origin free, and the family of

normal distributions is closed under linear transformations, the normal distribution can

without loss of generality be set to standard normal. Changing the parameter value

of the bivariate standard normal distribution will change the shape of the bell-shaped

bivariate normal density function, and hence the probability masses over the rectangles

that results from the discretization. The polychoric correlation coefficient is the parame-

ter value for which the volumes of the discretized bivariate standard normal distribution

equal the joint probabilities of the contingency table, i.e. the parameter value for which

the probability measures, as induced by the bivariate standard normal distribution, of

the rectangles resulting from the discretization equal the joint probabilities of the contin-

gency table. The parameter value of the bivariate standard normal distribution equals,

of course, the linear correlation of the two jointly normally distributed random variables.

The fundamental assumption is formalized as follows.

Assumption A1. The two ordinal variables are, into r and s ordered categories re-

spectively, discretized random variables with a joint normal distribution.
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Figure 1. Illustration of the domain of the standard normal density

function being discretized by the dotted lines into a 4 × 4 contingency

table.

It follows from Assumption A1 that the joint normal distribution must be discretized

such that the marginal probabilities of the discretized bivariate standard normal distri-

bution equal the marginal probabilities of the contingency table. Thus, the rectangles

resulting from the discretization of the joint normal distribution are all of of the form

[Φ−1(ui−1),Φ
−1(ui)] × [Φ−1(vj−1),Φ

−1(vj)], where Φ−1 is the inverse of the univariate

standard normal distribution function. Create such rectangles for all i = 1, . . . , r and

j = 1, . . . , s, enumerate them in the same way as the joint probabilities p1, . . . , prs, and

denote them A1, . . . , Ars.

Under Assumption A1 it should also, ideally, hold that the joint probabilities of the

discretized joint normal distribution equal the joint probabilities of the ordinal variables.

Hence, the equation ∫
Ak

ϕρ dλ = pk,

where ϕρ is the bivariate standard normal density function with parameter ρ and λ is

the Lebesgue measure, should hold for all k = 1, . . . , rs. Note that the left hand side

of the equation above is the probability measure of the rectangle Ak, as induced by the

postulated underlying distribution. The left hand side is often called the volume of the

rectangle Ak and is here denoted Φρ(Ak). Using vector notation, the equalities above

can be written

(Φρ(A1), . . . ,Φρ(Ars)) = (p1, . . . , prs) . (1)

The polychoric correlation coefficient, rpc, is defined as the solution ρ to Equation (1).

If all cumulative marginal probabilities (ui, vj) are elements of the boundary of the unit

square, ∂I2, then any value of ρ will satisfy Equation (1). In this case, however, the the

polychoric correlation coefficient is defined to be zero, in part because of a reasoning of

presuming independence until evidence of association is found.
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Originally, Pearson (1900) studied the case of dichotomous variables, i.e. 2 × 2 con-

tingency tables. In the 2 × 2 case, a unique solution of Equation (1) always exists. In

other cases a solution does in general not exist.

Proposition 1. For every 2 × 2 contingency table, a unique solution to Equation (1)

exists, and the polychoric correlation coefficient is consequently well defined for all 2× 2

contingency tables.

Proof. See Ekström (2008). �

Proposition 2. If one of the numbers of categories is greater than 2 and the other is

greater or equal to 2, then a solution to Equation (1) does in general not exist.

Proof. Assume that one of the numbers of categories, r, say, is greater than 2 and the

other, s, is greater than or equal to 2. Take the contingency table for which the joint

probability corresponding to the second category of both ordinal variables is zero and

the other joint probabilities are equal to (rs− 1)−1. Because the normal distribution is

elliptic, no value of ρ can then satisfy Equation (1). Thus, the statement is proved by

counter-example. �

2.3. Methods of fitting a coefficient. If a solution to Equation (1), the defining

relation of the polychoric correlation coefficient, does not exist then it can still be argued

that Assumption A1 basically is valid, for example based on a reasoning of fixed sample

sizes or a reasoning of noisy observations. One could also argue that Assumption A1 is

approximately true, i.e. that the underlying joint distribution of the ordinal variables is

approximately normal in some sense.

From this point of view it is natural to look for some best compromise value of the

parameter ρ of Equation (1), or more specifically a best fit with respect to a loss function.

A distance between the vectors of (1) is suitable because if a unique solution exists

such a loss function has a unique global minimum which corresponds to the solution.

Thus, a best fit with respect to such a loss function will yield the solution of Equation

(1) whenever a solution exists. Moreover, a distance is non-negative, geometrically

interpretable, and hence suits the intuitive notion of a loss function.

The usual Lp norm, ||x||p = (
∑

xpi )
1/p, is in many ways natural. Denote the vector

on the left hand side of Equation (1) by Φρ and the vector on the right hand side by p.

The fitted polychoric correlation coefficient with respect to the Lp norm is then defined

as

r(p)pc = argmin
ρ∈ [−1,1]

||Φρ − p||p . (2)

The L2 norm, in particular, is interpretable as the Euclidean distance and its minimum,

r
(2)
pc , corresponds to the method of least squares.

Martinson & Hamdan (1971) suggested the multiplicative loss function

r(MH)
pc = argmin

ρ∈ [−1,1]
−

rs∏
k=1

(Φρ(Ak))
pk , (3)
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based on a likelihood argument. Olsson (1979) suggested a similar approach, but one

which allows for reclassifications. While the loss function of Equation (3) is not non-

negative, it is bounded from below and continuous. However, values of the loss function

of (3) are not geometrically interpretable. For more loss function suggestions see, e.g.,

Martinson & Hamdan (1971).

If the global minimum of a loss function is not unique, then from a view of presuming

statistical independence until evidence of association is found the global minimum with

least absolute value should be chosen as fitted polychoric correlation coefficient. If two

distinct global minima share the least absolute value |a|, say, then the fitted polychoric

correlation coefficient can be expressed as ±a.

The loss functions of Equations (2) and (3) are both differentiable, bounded from

below, and since the bivariate normal distribution is differentiable in the parameter the

minimum can be found by method of differential calculus.

3. A generalized polychoric correlation coefficient

The aim of this section is to define a generalized polychoric correlation coefficient

analogous to Pearson’s definition, hence based on Equation (1), that allows for other

distributional assumptions than the joint normal distribution. First, a few aspects need

to be considered.

3.1. Preliminaries. The family of bivariate standard normal distributions is parame-

terized by the linear correlation coefficient ρ. But for other families of bivariate distribu-

tions, the parameter may not be a measure of association by and of itself. Furthermore,

other families of bivariate distributions may not have a linear dependency structure,

something which compromises the suitability of the linear correlation. The Spearman

grade correlation is a measure of association which can measure all types of monotonic

association.

The Spearman grade correlation is the linear correlation of the grades of the two

random variables, i.e. the percentiles of the two random variables. More precisely, for

random variables U and V with marginal distribution functions F and G, the Spearman

grade correlation ρS is the linear correlation between F (U) and G(V ). The Spearman

grade correlation is the population analog of Spearman’s rank correlation coefficient,

which was proposed by Charles Spearman (1904). The latter fact is also the reason

for the grade correlation’s name. However, according to Pearson (1907) the idea of

correlation of percentiles was first introduced by Francis Galton. The Spearman grade

correlation has good properties in the sense that it satisfies Scarsini’s axioms for measures

of concordance (Scarsini, 1984). For example, it is invariant under strictly increasing

transformations of each of the two random variables U and V .

In the present setup, copulas are most fitting. A copula is a function that couples

a joint probability distribution function to its standard uniform marginal distribution

functions. More formally, a copula C : I2 → I is a function which has non-negative

volume for all rectangles, and satisfies boundary conditions C(u, 0) = C(0, v) = 0 and
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C(u, 1) = u, C(1, v) = v. The fact that a copula couples a joint probability distribu-

tion to its standard uniform marginal distribution functions is the statement of Sklar’s

theorem (see e.g. Nelsen, 2006). Because the Spearman grade correlation is invariant

under strictly increasing transformations of the random variables, it can be expressed as

a function of their copula. More precisely, if the two random variables are continuous

and have copula C, then the Spearman grade correlation can be expressed as

ρS(C) = 12

∫
I2
Cdλ− 3. (4)

Among all copulas, three especially noteworthy ones are W (u, v) = max(u+ v− 1, 0),

Π(u, v) = uv, and M(u, v) = min(u, v). These copulas correspond to perfect negative

association, independence, and perfect positive association between the two random

variables, respectively, and are called the minimum, the product, and the maximum

copula. For all (u, v) ∈ I2, it holds thatW (u, v) ≤ Π(u, v) ≤ M(u, v), i.e. the inequalities

hold everywhere. The relation C1 ≤ C2 everywhere implies an ordering between the two

copulas C1 and C2. Many families of copulas are totally ordered, i.e. for any two members

C1 and C2 it either holds that C1 ≤ C2 everywhere or C1 ≥ C2 everywhere. Moreover,

if it for every α ≤ β holds that Cα ≤ Cβ everywhere or Cα ≥ Cβ everywhere, then the

family of copulas is called totally ordered and directed.

For a continuous univariate distribution function F , the inverse may not exist. How-

ever, since the function is continuous the preimage of each one-point set in the range

I is a non-empty closed set in the domain. And with the equivalence relation x ∼ y

if F (x) = F (y), the preimages constitute equivalence classes. By choosing an element

from each equivalence class, a function that is sufficiently similar to an inverse, for the

purposes of this article, can be constructed. Therefore, let the quasi-inverse of a con-

tinuous univariate distribution function be defined by F (−1)(0) = maxF−1({0}), and
F (−1)(y) = minF−1({y}) for y > 0. The fact that all preimages has a minimum and

maximum element follows since each one-point set is closed and F is continuous. For

every continuous random variable U with distribution function F , F (−1)F (U) is defined

and equals U with probability one.

3.2. The generalized definition. The generalized polychoric correlation coefficient is

defined analogously to Pearson’s definition, but with the exception that the assumption

of a joint underlying normal distribution is relaxed. Instead of being a member of

the family of normal distributions, the postulated underlying distribution is allowed to

be a member of any family of continuous bivariate distributions. The assumption is

formalized as follows.

Assumption A2. The two ordinal variables are, into r and s ordered categories re-

spectively, discretized random variables with a joint distribution belonging to the family

of continuous bivariate distributions {Hθ}θ∈Θ.
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Appropriately, Assumption A2 reduces to Assumption A1 if the family of bivariate

normal distributions is assumed. That the underlying joint distribution is assumed

to be continuous is mostly a matter of convenience. Any distribution function can be

arbitrarily well approximated by a continuous distribution function. But also, the idea of

an underlying continuous distribution was central to Karl Pearson’s view of the measure

of association for ordinal variables.

Let F and G denote the marginal distribution functions of the joint distribution

H. Like in Section 2.2, rectangles [F (−1)(ui−1), F
(−1)(ui)]× [G(−1)(vj−1), G

(−1)(vj)] are

created for all i = 1, . . . , r and j = 1, . . . , s, enumerated in the same way as the joint

probabilities p1, . . . , prs, and denoted A1, . . . , Ars.

For a general bivariate distribution function H, the probability of a such distributed

random vector being an element of the rectangle A = [a, b]× [c, d] is equal to H(a, c)−
H(a, d) − H(b, c) + H(b, d). That probability is called the volume of the rectangle A,

and is here denoted H(A). In analogy with the reasoning in Section 2.2, it should

under Assumption A2 ideally hold that the joint probabilities of the discretized bivariate

distribution equal the joint probabilities of the ordinal variables. Hence it should hold

that

(Hθ(A1), . . . , Hθ(Ars)) = (p1, . . . , prs) . (5)

Note that Equation (5) also appropriately reduces to Equation (1) if the family of bi-

variate standard normal distributions is assumed.

Since the solution θ of Equation (5) in general is not a measures of association, the

value θ is by and of itself not of much interest. Instead the generalized polychoric

correlation coefficient is based on the Spearman grade correlation of Hθ. And in order

to make the generalized and the conventional definitions agree for the family of bivariate

normal distributions, a result from Pearson (1907) must be utilized. Consequently, the

generalized polychoric correlation coefficient is defined as

rpc = 2sin(ρS(Hθ)π/6),

for the solution θ to Equation (5). If all cumulative marginal probabilities (ui, vj) are

elements of the boundary of the unit square, ∂I2, then the generalized polychoric corre-

lation coefficient is defined to be zero, in agreement with the reasoning in Section 2.2.

By Proposition 2, a solution θ to Equation (5) does in general not exist. Then,

again in analogy with Section 2.3, a parameter can be fitted with respect to some loss

function. For example, let θ̂(p) be the parameter fitted with respect to the Lp distance,

cf. Equation (2), then the such fitted polychoric correlation coefficient is defined as

r
(p)
pc = 2sin(ρS(Hθ̂(p))π/6).

3.3. Agreement between the two definitions. A generalization must agree with

what is generalized wherever the latter is defined. In this subsection a generalized

polychoric correlation coefficient is first shown to exist, and then shown to agree with

Pearson’s definition under a joint normal distribution assumption.
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Proposition 3. For any contingency table for which at least one point, (ui, vj), of the

cumulative marginal probabilities is not an element of the boundary of the unit square,

∂I2, and any family of continuous bivariate distributions {Hθ}θ∈Θ, a fitted polychoric

correlation coefficient exists if and only if the family {Hθ}θ∈Θ is non-empty.

Proof. Assume that at least one point (ui, vj), for i = 1, . . . , r and j = 1, . . . , s, is not an

element of ∂I2 and that a fitted polychoric correlation coefficient exists. Then, there is

some best fit θ̂ to (5) with respect to some loss function. Thus, the family of continuous

bivariate distributions {Hθ}θ∈Θ has at least one element Hθ̂ and is therefore non-empty.

Conversely, assume that the family of continuous bivariate distributions {Hθ}θ∈Θ is

non-empty. Then, because all volumes and joint probabilities are finite, the loss function

is defined for at least one parameter-value. Hence some global minimum of the loss

function exists and therefore a fitted polychoric correlation coefficient exists. �

The following corollary is needed for Theorem 5.

Corollary 4. Under a joint normal distribution assumption, a fitted polychoric corre-

lation coefficient exists for every contingency table.

By the next theorem, the generalized and the conventional definitions agree wherever

the conventional definition is defined, and therefore the generalized polychoric correlation

coefficient is a generalization in the true sense of the word.

Theorem 5. Under a joint normal distribution assumption, the generalized and the

conventional definitions of the polychoric correlation coefficient agree.

Proof. Let temporarily the conventional polychoric correlation coefficient be denoted

rcpc and the generalized polychoric correlation coefficient be denoted rgpc. If for all

i = 1, . . . , r and j = 1, . . . , s, the points (ui, vj) are elements of ∂I2, then by both

definitions the polychoric correlation coefficient is zero, so here the definitions clearly

agree.

If at least one point (ui, vj) is not an element of ∂I2, then the conventional polychoric

correlation coefficient rcpc is the best fit to (1) with respect to some loss function. For

the generalized version under a normal distribution assumption, Equation (5) reduces to

Equation (1). Thus, rcpc is also the best fit to (5) with respect to the same loss function.

But for the bivariate normal distribution it holds that ρS(Φρ) = 6/πarcsin(ρ/2) (Pearson,

1907). Therefore if follows after inserting the arcsine expression into the definition of

the generalized polychoric correlation coefficient that rgpc = rcpc. So, by construction

one may say, the definitions agree here as well. �

3.4. The copula formulation. If the marginal distribution functions of the postulated

underlying continuous joint distribution are standardized to standard uniform via the

quasi-inverses F (−1) and G(−1), the standardized joint distribution is a copula. The

cost of the standardization is that all moments of the marginal distribution functions

are lost, but since the Spearman grade correlation is invariant under strictly increasing
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transformations it will not affect the measure of association. Therefore, for this purpose

the standardization comes at no cost. The gains are substantial, though, since the need

for computing quasi-inverses is eliminated.

By the following proposition, for continuous bivariate distributions the left-hand side

of Equation (5) can be expressed as volumes of a copula. And since the inverse of the

marginal distribution functions of a copula is the identity operator, the rectangles are

written without quasi-inverses of the marginal distribution functions.

Proposition 6. Suppose the bivariate distribution function H has continuous marginal

distribution functions F and G, 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1, then for each

rectangle A = [F (−1)(a), F (−1)(b)]× [G(−1)(c), G(−1)(d)] there is a unique copula C such

that

H(A) = C(B),

where B is the rectangle [a, b]× [c, d].

Proof. Assume that H has continuous marginal distribution functions F and G. By

Sklar’s theorem, there exists a unique copula C such that H(x, y) = C(F (x), G(y))

for all (x, y) ∈ I2. Because the quasi-inverses are well defined, change of variables

yield H(F (−1)(u), G(−1)(v)) = C(F (−1)F (u), G(−1)G(v)) = C(u, v). The statement then

follows by the definition of the volume of a rectangle. �

Instead of considering the bivariate distribution {Hθ} that was assumed in Assump-

tion A2, it is often more convenient to consider its corresponding family of copulas

{Cλ}. In the copula framework, the rectangles A1, . . . , Ars are of the more simple form

[ui−1, ui]× [vj−1, vj ]. With the change of notation, Equation (5) is written

(Cλ(A1), . . . , Cλ(Ars)) = (p1, . . . , prs) ,

and the polychoric correlation coefficient is written rpc = 2sin(ρS(Cλ)π/6) for the solu-

tion λ to the equation above.

3.5. Existence and uniqueness for 2× 2 tables. Originally, Pearson (1900) studied

association for dichotomous variables, i.e 2 × 2 contingency tables. As mentioned, the

polychoric correlation coefficient for this special case is sometimes called the tetrachoric

correlation coefficient. For the generalized version, there are some existence and unique-

ness results corresponding to Proposition 1, i.e. existence and uniqueness of a solution

to Equation (5) for every contingency table, and hence existence of a unique polychoric

correlation coefficient.

Because a 2×2 contingency table has four elements which sum to one, every such table

is fully determined by the triple (u1, v1, p1), where p1 is the joint probability correspond-

ing to the first categories of both dichotomous variables. Moreover, as a consequence

of Kolmogorov’s axioms the inequalities max(u1 + v1 − 1, 0) ≤ p1 ≤ min(u1, v1) hold.

Throughout this subsection, results will be stated and proved for copulas. But as a con-

sequence of Proposition 6, the results hold for all bivariate distributions that correspond
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to a copula, which includes all families possible under Assumption A2. In this sense, the

word copula can here be considered equivalent to continuous bivariate distribution.

The following is a necessary and sufficient condition for existence and uniqueness of

a solution to Equation (5) for every contingency table, and hence for the polychoric

correlation coefficient to be well defined.

Theorem 7. The polychoric correlation coefficient is well defined for the family of cop-

ulas {Cλ}λ∈Λ if and only if for every contingency table (u1, v1, p1) there exists a copula

C ∈ {Cλ} such that Equation (5) holds, and if Cα and Cβ are two copulas such that

Equation (5) holds then ρS(Cα) = ρS(Cβ).

Proof. Assume that for every contingency table (u1, v1, p1) with (u1, v1) ∈ Int(I2) there

exists a copula C ∈ {Cλ}λ∈Λ such that (5) holds, and if Cα and Cβ are two copulas such

that (5) holds then ρS(Cα) = ρS(Cβ). It will be shown that for any contingency table

the set of polychoric correlation coefficients R is a one-point set, which implies that for

every contingency table a unique polychoric correlation coefficient exists and, hence, is

well defined.

Take any contingency table (u1, v1, p1) and let g : Λ → [max(u1+v1−1, 0),min(u1, v1)]

be the function defined by g(λ) = Cλ(u1, v1). Furthermore, let h : Λ → [−1, 1] be

defined h(λ) = ρS(Cλ) and let f : [−1, 1] → [−1, 1] be defined f(x) = 2sin(xπ/6). Then

rpc ∈ R = f ◦ h ◦ g−1({p1}). By assumption, g−1({p1}) is non-empty and h ◦ g−1({p1})
is a one-point set. And since f is a homeomorphism, f ◦ h ◦ g−1({pa}) = R is also a

one-point set. Thus, the polychoric correlation coefficient exists and is unique. For a

contingency table with marginal probabilities (u1, v1) ∈ ∂I2, the polychoric correlation

coefficient is identically zero, so in this case a unique coefficient always exists. Hence, for

every contingency table the polychoric correlation coefficient exists and is unique, and

thus it is well defined.

Conversely, assume that the polychoric correlation coefficient is well defined for the

parametric family of copulas {Cλ}λ∈Λ. Then for every contingency table, R is a one-

point set. Take any contingency table (u1, v1, p1) with (u1, v1) ∈ Int(I2), and consider

the construction R = f ◦ h ◦ g−1({p1}). Since f is a homeomorphism, f−1(R) is a

one-point set. By construction f−1(R) = h ◦ g−1({p1}). Thus, g−1({p1}) is non-empty,

so for every contingency table there exists a copula C ∈ {Cλ} such that Equation (5)

holds. Also, since h ◦ g−1({p1}) is a one-point set it must hold that if Cα and Cβ are

two copulas such that Equation (5) holds then ρS(Cα) = ρS(Cβ). �

The following result is a sufficient condition which is convenient in many situations.

A family of copulas {Cλ}λ∈Λ is defined to be strictly ordered and directed if for every

α < β it holds that Cα < Cβ or Cα > Cβ everywhere on Int(I2).

Theorem 8. If the assumed family of copulas has limits W and M , is continuous in the

parameter, and is strictly ordered and directed, then the polychoric correlation coefficient

is well defined for all 2× 2 contingency tables.
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Proof. Because {Cλ}λ∈Λ has limits W and M , for any (u1, v1) ∈ I2 there are parameters

λ1 and λ2 in Λ̄ such that Cλ1(u1, v1) = max(u1+v1−1, 0) and Cλ2(u1, v1) = min(u1, v1).

Since {Cλ} is continuous in λ, by the intermediate value theorem there exists a copula

Cλ such that Cλ(u1, v1) = p1 for every p1 ∈ [max(u1 + v1 − 1, 0),min(u1, v1)]. Because

{Cλ} is strictly ordered and directed, the solution is unique. Thus, by Theorem 7, the

polychoric correlation coefficient is well defined. �

Corollary 9. Under a joint normal distribution assumption, the polychoric correlation

coefficient is well defined for all 2× 2 contingency tables.

Many commonly used copula families, for instance the Clayton family, are totally

ordered and directed but not strictly ordered and directed. For a family of copulas that

has limits W and M , is continuous in the parameter, and is totally ordered but not

strictly ordered, a polychoric correlation coefficient exists but is in general not unique.

However, the set of polychoric correlation coefficients is a closed interval and, moreover,

for any other contingency table with the same marginal probabilities, the polychoric

correlation coefficient is not an element of that interval. Thus, the sets of polychoric

correlation coefficients constitute equivalence classes.

By mapping each equivalence class to an element of the same class, the polychoric

correlation coefficient is made well defined for the totally ordered and directed families

of copulas. From the perspective of presuming statistical independence until evidence of

association is found, it is natural to map the equivalence class to the element with least

absolute value. The following theorem is key.

Theorem 10. If the assumed family of copulas has limits W and M , is continuous in

the parameter, and is totally ordered and directed, then for all 2×2 contingency tables the

set of polychoric correlation coefficients is a non-empty closed interval. Moreover, the

polychoric correlation coefficient for any other contingency table with the same marginal

probabilities is not an element of that interval.

Proof. For contingency tables with marginal probabilities (u1, v1) ∈ ∂I2, the polychoric

correlation coefficient is identically zero. So here the set of polychoric correlation coeffi-

cients is clearly a non-empty closed interval. Moreover, for such marginal probabilities

it holds that max(u1+v1−1, 0) = min(u1, v1), so there exists no other contingency table

with the same marginal probabilities.

Take any contingency table (u1, v1, p1) with (u1, v1) ∈ Int(I2). Assume that the

parametric family of copulas {Cλ}λ∈Λ is continuous in λ, totally ordered and directed,

and has limits W and M . Since {Cλ} is continuous in λ and has limits W and M , by

the intermediate value theorem there exists a solution to (5). Thus, the set of polychoric

correlation coefficients R is non-empty.

To show that R is a closed interval, let g : Λ → [max(u1 + v1 − 1, 0),min(u1, v1)] be

the function defined by g(λ) = Cλ(u1, v1), let h : Λ → [−1, 1] be defined h(λ) = ρS(Cλ)

and let f : [−1, 1] → [−1, 1] be defined f(x) = 2sin(xπ/6). Then R = f ◦ h ◦ g−1({p1}).
Because {Cλ} is continuous in λ and totally ordered and directed, g is continuous and
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monotonic. Since the one-point set {p1} ⊂ R is closed, the preimage g−1 ({p1}) is closed
and since {p1} is connected and g is monotonic, g−1 ({p1}) is connected. It is clear

from the relation α, β ∈ Λ, α ≥ β, in the definition of a totally ordered and directed

copula family that Λ is a subset of R. Thus, g−1 ({p1}) is a closed interval. Because Cλ

is continuous and monotonic in λ and
∫
I2 Cλdλ is continuous and monotonic in Cλ, h

is continuous and monotonic. And since f is a homeomorphism, the set of polychoric

correlation coefficients R is also a closed, non-empty interval.

To complete the proof, suppose that (u1, v1, p̃1) is another contingency table with

the same marginal probabilities, i.e. p̃1 ̸= p1. By the fact that Equation (5) reduces to

C(u1, v1) = p1 for 2× 2 contingency tables, it follows that C(u1, v1) ̸= C̃(u1, v1), where

C̃ is the copula that solves Equation (5) for the contingency table (u1, v1, p̃1). Because

the copula family is totally ordered, and all copulas are continuous,
∫
I2 Cdλ ̸=

∫
I2 C̃dλ,

and hence the sets h ◦ g−1({p̃1}) and h ◦ g−1({p1}) do not meet. And because f is a

homeomorphism, the polychoric correlation coefficient for (u1, v1, p̃1) is not contained in

R = f ◦ h ◦ g−1({p1}). �

Under the hypotheses of Theorem 10, the polychoric correlation coefficient is chosen

to be the unique element of the closed interval with least absolute value.

4. Goodness-of-fit

As is stated in Proposition 2, a solution to Equation (5) may not exist. While this for

many purposes should be considered a downside, it opens up the possibility of comparing

different distributional assumptions based on goodness of fit, with respect to some loss

function. This provides the possibility of testing different distributional assumptions

and use the results for the enhancement of the association analysis.

While a comprehensive study of goodness-of-fit tests for ordinal variables is beyond the

scope of this article, examples in Section 5 will illustrate how an analysis of goodness

of fit can enhance the association analysis. Under the null hypothesis, as stated in

Assumption A2, an acceptance region for a goodness-of-fit test statistic can be created.

The acceptance region should contain the value of the test statistic under a perfect fit

and the test should have as high statistical power as possible, given some fixed type-

I error probability α. The exact type-I error probability is in practice often difficult

to compute, and is therefore often approximated either by means of an asymptotical

approximation or by simulation.

The Pearson chi-square test statistic,

Q = n

rs∑
k=1

(
Hθ̂(Ak)− pk

)2
Hθ̂(Ak)

, (6)

where n is the sample size, is asymptotically χ2
rs−1−k-distributed, where k is the number

of parameters estimated, under the null hypothesis as stated in Assumption A2. How-

ever, the approximation is often rather poor for small sample sizes, in the sense that

the actual type-I error probability is appreciably higher than intended. Making matters
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worse, the approximation error also depends on the vector Hθ̂. One textbook rule of

thumb for an acceptable approximation is that the sample size, n, should be greater

than 10/minHθ̂.

By method of simulation, acceptance regions can be created such that the difference

between intended and actual type-I error probabilities can be made arbitrarily small. In

the present setup, the computational demands of simulation of acceptance regions are

modest. Therefore, approximation of acceptance regions by simulation is generally to

recommend since it yields better control of the actual type-I error probability.

While the Pearson chi-square test statistic is asymptotically χ2-distributed, it weighs

rectangles by the inverse of the probability under the null hypothesis. Consequently,

rectangles with near zero probability under the null hypothesis are given near infinite

weight. In practice, therefore, the test commonly rejects or accepts the null hypothesis

exclusively on the basis of whether the observed joint probabilities of the ordinal variables

corresponding to such rectangles is zero or non-zero. As an effect, the statistical power

is often low.

In the examples of Section 5, the L2-norm has been chosen as test statistic (cf. Equa-

tion (2)),

T = ||Hθ̂ − p||2.

The L2-norm is similar to Pearson’s chi-square test statistic with the difference that

all rectangles are weighted equally. While the L2-norm may not have the best possible

statistical power, it apparently does have some power based on the examples of Section 5.

Because it is a norm, the test statistic is zero if and only if there is a perfect fit, and

as a distance it suits the intuitive notion of a test statistic based on a loss function.

The acceptance region is the interval [0, c], with the critical value c, for a given sample

size, type-I error probability, and Hθ̂ vector, being found by simulation under the null

hypothesis. The simulated critical value, c, converges to the true critical value with

probability one as the simulation size goes to infinity by the strong law of large numbers.

5. Examples

In this section, examples are used to illustrate how the distributional assumption can

impact the conclusion of the association analysis. Moreover, goodness-of-fit p-values are

used to enhance the association analysis with an analysis of the dependency structure

of the ordinal variables’ postulated underlying joint distribution.

5.1. Distributional assumptions. All families of continuous bivariate distributions

used in this section are copula families. Listed in Table 4 are six copula families that

have limits W and M , are continuous in the parameter, and are ordered and directed.

The copula families are quite common and have a mix of properties suitable for the

examples of this section.

The family of Gaussian copulas is the family of copulas corresponding to bivariate

normal distributions. It is strictly ordered, and has a monotonic dependency structure,
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i.e. the association is similar conditioning on any value of either variable. The family of

Student copulas is based on the multivariate t-distribution and is also strictly ordered.

The Student copula has a symmetric tail dependency structure, i.e. the association is

stronger in the tails than in the center of each marginal distribution function. The family

of Frank copulas is a strictly ordered copula family which has a monotonic dependency

structure.

The family of Clayton copulas is a totally ordered copula family. The Clayton copula

is asymmetric and has a left tail dependency structure, i.e. the association is strongest

in the left tails of the marginal distribution functions. The family of copulas denoted

Nelsen-(2) is the copula denoted (4.2.2) in Nelsen (2006), though there is neither a name

for this copula family nor any reference on it, therefore the notation. The Nelsen-(2)

copula is asymmetric and has a right tail dependency structure. Notably, the product

copula, Π, which implies independence of the random variables, is not a member of this

family. Lastly, the Genest-Ghoudi family of copulas is also totally ordered, and has an

asymmetric right-tail dependency structure.

5.2. Examples of 2× 2 contingency tables. In Table 2, polychoric correlation coef-

ficients have been calculated for eight 2× 2 contingency tables. The contingency tables

have been chosen so as to illustrate differences in the coefficient caused by changes of

distributional assumptions. Both contingency tables in the first row of Table 2 have

marginal probabilities (0.5, 0.5). The right contingency table has a solution M , which is

a member of all four copula families, thus the polychoric correlation coefficients represent

perfect positive association under all four distributional assumptions. The left contin-

gency table has a solution Π, but Π is not a member of the Nelsen-(2) copula family. So

for this contingency table the polychoric correlation coefficients differ. By Theorem 10,

there is a solution for the Nelsen-(2) copula family, and that solution gives a slightly

negative polychoric correlation coefficient. However, for this row of contingency tables,

the choice of distributional assumption seems to have a modest impact on the polychoric

correlation coefficient.

In the second row of Table 2, there are two contingency tables with marginal probabil-

ities (0.8, 0.8) and (0.8, 0.2), respectively, that both have Π as a solution. Since Π is not

a member of the Nelsen-(2) copula family, this copula family has another solution. Note-

worthy here is the fact that, because this copula family has an asymmetric dependency

structure, the polychoric correlation coefficients have different absolute values. Under

the Nelsen-(2) distributional assumption, the polychoric correlation coefficient of the left

contingency table represents strong positive association while the polychoric correlation

coefficient of the right contingency table represents near independence.

In the third row of Table 2, the two contingency tables also have marginal probabilities

(0.8, 0.8) and (0.8, 0.2), respectively. In this row, however, both contingency tables have

a zero element. Under the monotonically dependent Gaussian and Frank distributional

assumptions, these contingency tables have solutions W and M respectively, implying
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Table 2. Contingency tables with generalized polychoric correlation co-

efficients under four distributional assumptions.

0.25 0.25
Gaussian: 0.00

0.5 0
Gaussian: 1.00

Frank: 0.00 Frank: 1.00

0.25 0.25
Clayton: 0.00

0 0.5
Clayton: 1.00

Nelsen-(2): −0.07 Nelsen-(2): 1.00

0.64 0.16
Gaussian: 0.00

0.16 0.64
Gaussian: 0.00

Frank: 0.00 Frank: 0.00

0.16 0.04
Clayton: 0.00

0.04 0.16
Clayton: 0.00

Nelsen-(2): 0.70 Nelsen-(2): −0.04

0.6 0.2
Gaussian: −1.00

0.2 0.6
Gaussian: 1.00

Frank: −1.00 Frank: 1.00

0.2 0
Clayton: −0.41

0 0.2
Clayton: 0.88

Nelsen-(2): 0.00 Nelsen-(2): 0.87

0.08 0.12
Gaussian: 0.44

0.68 0.12
Gaussian: 0.44

Frank: 0.46 Frank: 0.46

0.12 0.68
Clayton: 0.65

0.12 0.08
Clayton: 0.29

Nelsen-(2): −0.30 Nelsen-(2): 0.81

perfect association. But under the asymmetrically tail dependent Clayton and Nelsen-

(2) distributional assumptions, the polychoric correlation coefficients do not represent

perfect association. In fact, under the Nelsen-(2) distributional assumption, the left

contingency table has polychoric correlation coefficient zero, representing independence.

Under the Clayton distributional assumption, the polychoric correlation coefficient of the

left contingency table represents weak negative association. In order to understand of

the difference, recall that the Clayton copula family has a left tail dependency structure

while the Nelsen-(2) copula family has a right tail dependency structure. The polychoric

correlation coefficients of the right contingency table in the third row represent strong

positive association under both Clayton and Nelsen-(2) distributional assumptions.

Lastly, in the fourth row of Table 2 the two contingency tables have marginal prob-

abilities (0.2, 0.2) and (0.8, 0.8), respectively. Note here that the contingency tables are

symmetric. Under the Gaussian and Frank distributional assumptions, these contin-

gency tables have the same solutions, since the copula families have symmetric depen-

dency structures. However, under the asymmetric Clayton and Nelsen-(2) distributional

assumptions, the contingency tables have different solutions. Because the Clayton cop-

ula family has a left tail dependency structure and the Nelsen-(2) copula family has a
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right tail dependency structure, the polychoric correlation coefficient of the left contin-

gency table represents strong association under the Clayton distributional assumption,

but weak association under the Nelsen-(2) distributional assumption. And for the right

contingency table vice versa. Remarkable here is also the fact that the polychoric cor-

relation coefficient of the left contingency table represents negative association under

the Nelsen-(2) distributional assumption, but positive association under the Clayton

distributional assumption.

The conclusion of the discussion of Table 2 is that the distributional assumption can

have a profound impact on the polychoric correlation coefficient, and thus, that the poly-

choric correlation coefficient is not robust to changes of the distributional assumption. In

fact, the polychoric correlation coefficient seems to be quite the opposite of robust. The

polychoric correlation coefficient can represent perfect association or independence, pos-

itive or negative association, or anything in between, only as a consequence of a change

of distributional assumption. Moreover, another conclusion is that large differences tend

to occur for distributions that have different dependency structures. The Gaussian and

Frank copula families both have a monotonic dependency structure, and under these

two distributional assumptions differences tend to be small.

5.3. Examples of r×s contingency tables. In Table 3, a 5×5 contingency table with

survey data is shown. Also in the table are p-values for the L2-norm goodness-of-fit test

described in Section 4. The survey was conducted on statistics students and they had

to consider a number of statements and answer whether they agreed strongly, agreed,

neither agreed nor disagreed, disagreed, or disagreed strongly. In Table 3 statement X is

I feel that I must perform well in statistics, and statement Y is I do not like mathematical

formulae. Note that statement Y is written with negation. Here, again, the Martinson-

Hamdan loss function fails. For all distributional assumptions the polychoric correlation

coefficients, fitted with the L2-norm loss function, are slightly negative, suggesting that

on average, students that do not like mathematical formulae are a bit more anxious

about their performance. However, because of the following reasons, that conclusion is

actually erroneous.

From the goodness-of-fit p-values, the bivariate normal distribution does not fit the

contingency table at the 5% level, whereas the Clayton copula does. This suggests

that the underlying joint distribution is asymmetrically left tail dependent. Thus, on

average, students that disagree to either statement tend to agree to the other statement,

while on average, students that agree to either statement relate to the other statement

just as the average student. Assuming the bivariate normal distribution, the analyst

will erroneously conclude that students that do not like mathematical formulae do not

feel that they have to perform as well in statistics. Assuming the left tail dependent

Clayton copula, on the other hand, the conclusion is that the joint distribution is weakly

associated in its left tail, but nearly independent in its right tail. Hence, students

that like mathematical formulae tend to, on average, feel that they must perform well in

statistics, while for students that do not like mathematical formulae there is no particular
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Table 3. Survey of undergraduate statistics students.

Y

Disagree Agree

X

Disagree 0 7 0 0 3

3 10 25 10 3

18 84 80 47 7

40 54 65 43 10

Agree 43 29 29 14 10

Copula r
(MH)
pc p-value r

(2)
pc p-value

Gaussian −.18 .03 −.23 .01

Frank −.18 .01 −.16 .00

Clayton −.16 .12 −.31 .14

Nelsen-(2) .82 .00 .20 .00

Genest-G. .39 .00 −.08 .00

Note. Contingency table with polychoric correlation co-

efficients and goodness-of-fit p-values. Statement X is

I feel that I must perform well in statistics , and state-

ment Y is I do not like mathematical formulae.

relationship. This example illustrates how the analyst gets additional information from

the goodness-of-fit p-values.

6. Conclusions

The definition of the polychoric correlation coefficient has been generalized so that, in

addition to the bivariate normal distribution, a large class of continuous bivariate distri-

butions can be assumed as the underlying joint distribution. The generalized definition

is analogous to Karl Pearson’s original definition, and the two definitions agree under a

joint normal distribution assumption.

The generalized definition makes it possible to evaluate the statistical robustness of the

polychoric correlation coefficient. Pearson & Heron (1913) claimed that for the purpose

of the polychoric correlation coefficient, divergence between the actual joint distribution

and the normal distribution is hardly ever of practical importance, i.e. claiming ideal

statistical robustness properties. However, in the article there are no details on how

they were able to come to that conclusion. Examples in Section 5 point towards a

different conclusion, that the polychoric correlation coefficient in fact has poor statistical

robustness properties.

The lack of statistical robustness must be considered a weakness of the polychoric

correlation coefficient. For ordinal variables it is without prior knowledge difficult make
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an assertion about the specific distribution function of a postulated underlying distribu-

tion. A practical solution in this case is to do the association analysis under a number of

distributional assumptions, and then choose a distribution based on an analysis of good-

ness of fit. For 2 × 2 contingency tables, however, a large class of families of bivariate

distributions have guaranteed perfect fit, and therefore the goodness-of-fit circumvention

does not work.

On the other hand, because of its assumption of an underlying joint distribution,

the generalized polychoric correlation coefficient makes it possible to analyze the depen-

dency structure of the postulated underlying distribution. An analysis of goodness of fit

can provide valuable information on possible deviation from the monotonic dependency

structure, such as for example symmetric or asymmetric tail dependence. All in all, the

polychoric correlation coefficient has both strengths and weaknesses. Consequently, the

discussion on the optimal measure of association for ordinal variables will continue.
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