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ABSTRACT OF THE DISSERTATION

Stress in the Lithosphere from Non-Tectonic Loads
with Implications for Plate Boundary Processes

by

Karen Marie Luttrell

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2010

Professor David Sandwell, Chair

Stress in the lithosphere from non-tectonic loads is calculated, making use of

semi-analytic Fourier models.  Sources of non-tectonic stress include coastal

lithospheric bending in response to the rise in eustatic sea level since the Last Glacial

Maximum, lithospheric rebound and pore pressure changes in response to the

intermittent load of Ancient Lake Cahuilla in the Salton trough, stress sustained through

the formation and long-term support of local short-wavelength topography, and

topography created by the ejecta debris from impact craters on the surface of the icy
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Galilean satellites.  Stresses from time varying surface water loads are calculated along

major plate boundaries globally to determine to what extent, if any, these loads

influence the major tectonic processes at work in plate boundary regions, such as the

earthquake cycle on major faults.  It is determined that the stress perturbations from

these loads are generally an order of magnitude smaller than the tectonic stress

accumulation rate.  Their ability to noticeably affect the seismic cycle is therefore

restricted to specific circumstances including when the tectonic loading rate is

particularly low, such as along secondary plate boundary fault structures, when the non-

tectonic loading rate is particularly high, such as in the case of catastrophic flooding

events, or when the fault in question is already critically stressed to a near-failure level.

Stresses from local topography are calculated along the global mid-ocean ridge and

along the Chilean subduction megathrust.  The predicted orientations of these stresses

are compared to a presumed ridge-normal and transform-strike-slip faulting regime or

the focal mechanism of a single large earthquake, respectively.  Quantitative constraints

for the coincident tectonic stresses are subsequently established with implications for

the strength of the plate boundary faults and the necessity of particular topographic and

bathymetric features.
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Chapter 1

Introduction

1.1  Preface

2010 has been a year full of reminders of the destructive power of earthquakes.

On January 12, 2010 a magnitude 7.0 earthquake occurred near Port-au-Prince, Haiti.

The consequent collapse of buildings killed more than 200,000 people, injured an

additional 300,000, and left 1.3 million people displaced from their homes.  On

February 27, 2010 a magnitude 8.8 earthquake occurred off the coast of Maule, Chile,

resulting in the deaths of at least 521 people.  To date, the Maule event is the fifth

largest earthquake since modern recording began, and the largest in this region since

the great magnitude 9.5 Chile earthquake in 1960.  On April 4, 2010, Easter Sunday, a

magnitude 7.2 earthquake occurred near the base of the Sierra El Mayor mountain

range south of Mexicali in Baja California, Mexico.  Ground motions were felt

throughout southern California, USA, including 40 seconds of moderate shaking in

San Diego, causing many people to wonder if this was the long expected rupture of the

southern San Andreas fault.

The regular occurrence of large earthquakes serves as a reminder that the earth

is a dynamic continuously deforming body.  The physical quantity driving this

deformation is stress, a tensor measure of forces applied to a three dimensional body.
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The characterization and quantification of individual sources of stress is an important

part of understanding the earth system as a whole.

1.2  Plate tectonics

Plate tectonics is the governing theory of geophysics.  It describes the strong

outer layer of the earth, or lithosphere, as a patchwork of individual tectonic plates that

float upon and slip freely over the relatively fluid asthenosphere.  Plate boundaries

may be divided into three categories, based on the relative motion of the two

contacting plates.  Divergent margins are rifting zones where new crust is formed from

upwelling mantle material.  They are located throughout the oceans and in a few

continental regions where spreading is initiating.  Convergent margins are collision

zones that may result in either an oceanic plate subducting beneath a continent (such

as along the west coast of South America) or two continents colliding to uplift a new

mountain range (such as the Himalayas of southern Asia).  Transform margins occur

where two plates slide past one another without much vertical motion, such as the San

Andreas fault in California.

Earthquakes generally occur along active plate boundaries, and each type of

plate boundary is characterized by a particular dominant style of faulting, though

multiple faulting styles may be present in any plate boundary region.  Faulting style

depends on the relative orientation of the three principal stresses:  the most

compressive stress, the least compressive stress, and an intermediate stress (Figure

1.1).  Normal faulting occurs when the most compressive is the vertical stress, thrust
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or reverse faulting occurs when the least compressive stress is the vertical stress, and

strike-slip faulting occurs when the intermediate stress is the vertical stress.

The physical processes that drive tectonic plates and form the stress field of the

lithosphere are largely governed by thermal buoyancy and the force of gravity.

Uplifted material at ridges has positive gravitational potential energy that induces an

outward gravity sliding force and contributes to seafloor spreading.  At convergent

margins, older cold oceanic lithosphere is negatively buoyant and subducts beneath

less dense continental lithosphere with a sinking slab pull force.  In some regions, the

base of the lithosphere is mechanically coupled to viscous convection cells in the

mantle asthenosphere creating a basal traction that may either drive or inhibit plate

motion.

These comprise the main tectonic sources of stress that control the location,

style, and plate velocity of each boundary.  Much is known about their orientation

Figure 1.1  Style of faulting and principal stress orientation associated with three
types of plate boundary.  Small arrow couples show direction of block motion on
either side of the fault.
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from field observations of deformation indicators, from observations of current motion

from modern geodetic methods such as GPS (Global Positioning System) and InSAR

(Interferometric Synthetic Aperture Radar), and from seismic observations of

earthquake focal mechanisms.  Less is known about the absolute magnitude of these

stresses, but constraints may be constructed through the accurate calculation of local

variations in the stress field from non-tectonic sources (for example, the weight of a

mountain is well known from its mass and the pull of gravity).  Additionally, local

plate boundary attributes, such as the exact timing of the earthquake cycle on a

particular fault or the specific geometry of a plate boundary region, may be influenced

by other non-tectonic sources of stress.  It is the characterization and quantification of

these non-tectonic loads that motivates this research.

1.3  Non-Tectonic sources of stress

1.3.1  Time varying surface loads

Stress in the lithosphere from non-tectonic loads may be separated into two

categories:  time varying loads that are applied to the surface, and the emergent load of

building and supporting surface topography.  A time varying load consists of the

deposit or removal of any material with significant mass from the planet surface.  This

may include loads of sediment or other rock material, but often involves the

distribution of water mass.  A primary example of this is the Milankovitch climate

cycle in which water mass is transferred between the oceans and the polar ice caps on

a 10,000 year timescale.  The uniform increase in load at the oceans but not on the

continents in addition to the unloading at the melted polar ice caps causes the shape of
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the earth to change in response to this mass redistribution.  At every continental

shoreline around the globe, the strong lithosphere will flex in response to this step

load, a physically local effect but one that occurs globally.

Several coastlines coincide with major plate boundaries, and it is possible that

the additional coast-perpendicular compression and extension from plate bending

could sufficiently clamp or unclamp a fault in the region so as to promote or inhibit

the earthquake cycle of that fault.  If this were the case, it could help resolve some

persistent discrepancies between observations of modern day fault slip rates and fault

slip rates of the geologic past.  In chapter 2, a model of lithospheric bending stress is

developed to calculate the response to the rise in eustatic (global mean) sea level since

the Last Glacial Maximum ~21,000 years ago.

A second example of a time varying load of water on the surface is the filling

and emptying of large lakes.  Ancient Lake Cahuilla was a large paleolake that

intermittently formed in the Salton trough throughout the late Holocene, controlled by

periodic diversions of the Colorado River due to the buildup of sediment in its delta.

At its highstand, the weight of Lake Cahuilla would cause the land to flex and subside,

and its subsequent desiccation would cause the land to rebound to its pre-lake

elevation.  The southern end of the San Andreas fault terminates in the middle of Lake

Cahuilla, and it is possible that the bending stresses in response to the weight of the

water, as well as the increase in pore pressure resulting from the hydration of the crust,

were sufficient to affect the seismic cycle of the San Andreas and other faults in the

region.
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The southern San Andreas fault has been the source of regular large

earthquakes throughout the entire period for which we have a sediment record (a little

over a thousand years).  However the last major rupture on this fault was more than

300 years ago.  The questions of whether or not the southern San Andreas fault is

“overdue” for a large earthquake, and if so, why the change in behavior, are areas of

active research.  The study presented in chapter 3 seeks to quantify the magnitude of

stress perturbations from Lake Cahuilla on regional faults, particularly on the southern

San Andreas, to determine if the lakes of the past could have played an active role in

the timing of paleoearthquakes.

As part of this study, it was necessary to gather observations of the modern

Figure 1.2  Ancient Lake Cahuilla shoreline in the Salton trough.
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elevation of indicators of the paleoshoreline of Lake Cahuilla (Figure 1.2).  Because

the highstand of the lake was known to be at a single elevation, the modern differences

in the elevation of these points helps to constrain the physical parameters involved in

modeling the stresses associated with rebound.  Some observations were available

from previous studies, but most were obtained from fieldwork carried out in the winter

of 2006 specifically for this investigation.  This involved identifying shoreline

indicators through a combination of remote sensing and field observations, and taking

multiple precise campaign GPS measurements of each of these features.  Details of

this field study may be found in the appendix of chapter 3.

1.3.2  Topography loads

The second category of stress from a non-tectonic load is the stress that is

required to build and support local topography (Figure 1.3).  An accurate calculation

of the magnitude and orientation of this stress field may help constrain the absolute

magnitude of plate driving forces.  This is accomplished by comparing the short-

wavelength variations in the stress orientation predicted by a model of local

topographic support with observations of in situ total stress orientation.  The size of

the long-wavelength tectonic stress components can then be determined as the portion

of the stress field that must be added to the local topographic variations in order to

satisfy the stress orientation observations.

The success of this study hinges on the ability to accurately compute the short-

wavelength stress field.  This stress field is presumed to be primarily related to the

topographic variations over the same wavelength. At an active mature plate boundary,
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topography of this wavelength indicates the accumulation of strain released through a

variety of ongoing inelastic deformation processes.  If the rheologic form of these

processes approximates elastic-perfectly-plastic failure, such that the topography is

indicative of the critical transition between sustained elastic stress and dissipated

plastic stress, then the short-wavelength variations in stress state may be calculated as

those supporting the topographic load on a thick plate with an elastic rheology.

The first step of this calculation is to derive the spectral Green’s function for

the response of a finite-thickness elastic plate to non-identical but laterally coincident

point loads on its surface and base, representing the simplest possible topographic

load.  This derivation is presented in the appendix of chapter 4 and involves reframing

the relevant differential equations in terms of a single scalar potential that must satisfy

Figure 1.3  Global topography and bathymetry.
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the biharmonic equation.  This equation is then analytically solved, making use of a

computer algebra system.  The analytically derived point load solution is then

convolved in the Fourier domain with the true two-dimensional shape of the loads at

both the surface and base of the plate to obtain the full three-dimensional six-

component stress tensor anywhere inside the plate.

The next step of this calculation is the determination of the shapes of the load

of topography at the surface of the plate and the supporting buoyant load at the base of

the plate, as well as the determination of the appropriate mechanical parameters

describing the plate.  The surface load is determined from observations of topography

and bathymetry.  The plate thickness is generally taken to be that of the crust such that

the base load can be identified with the Moho (the contact between crust and mantle

material).  The shape of the buoyant load at the Moho can be determined through

flexural analysis, tuning the parameters of crustal thickness, crustal density, and

effective elastic thickness with observations of the gravity field.  A summary of this

method of gravity analysis is presented in appendix B of chapter 5.

The calculation of the local stress field associated with topography has many

potential applications, two of which are presented here.  In chapter 4, stress variations

derived from coastal accretionary wedge topography in the vicinity of the February

2010 Maule, Chile earthquake are used to determine a lower bound on the shear

traction supported by the megathrust fault in the rupture region, using the earthquake

focal mechanism as the observation of in situ stress orientation across the entire

ruptured fault plane.  This lower bound of tectonic shear stress is then compared with

a model of stress released along the fault plane constrained by observations of
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coseismic surface displacement from GPS and InSAR.  The relative magnitude of

these two independent estimates of tectonic shear stress has implications for the

strength of the fault.

A second application involves calculating the stress from short-wavelength

ridge-transform topography along the global mid-ocean ridge. In this study, a normal

stress regime is assigned to all spreading ridge segments, while a strike-slip regime is

assigned to all transform segments.  This is a slightly more complicated problem in

that many individual observations of stress orientation must be simultaneously

satisfied.  However this intricacy also allows more rigorous constraints to be placed on

the magnitude of the components of tectonic stress.  Particularly, it allows a full

constraint to be placed on the magnitude of stress acting in the ridge parallel direction.

The simultaneous analysis of all mid-ocean ridge plate boundaries and subregions

permits a comparison between margins in different geographic regions and with

different spreading rates.  Details of this study may be found in chapter 5.

The final study presented here deals in a similar way with the topography

created by impact craters on the hard icy outer surface of Europa, one of Jupiter’s

largest moons, and one of the few planets known to be currently tectonically active.

Previous observations had measured the diameter and crest elevation of large debris

craters.  These observations can be related to a characteristic flexural wavelength and

amplitude of deformation supported by bending moments within a thin strong plate of

ice.  By positing that the sustained crater topography is as high as can be supported by

the strength of the ice shell, the observed pattern of crater dimensions can be used to

constrain the yield strength envelope of the outer shell of Europa.  The thickness of the
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rigid brittle-deforming portion is of particular interest because it has many

implications for constraining the major processes of planetary dynamics.  Details of

this study, conducted in an early exploratory phase of the dissertation research and

included here for completeness, may be found in chapter 6.

1.4  Conclusions

1.4.1  Summary of results

The calculations of bending stress associated with the rise in eustatic sea level

determined that normal stress resolved on nearshore faults is perturbed by a few

megapascals over the duration of the loading.  In most instances, this is slow enough

that ocean loading will not perceptibly alter the seismic cycle.  However there are two

circumstances in which ocean loading may affect the seismic cycle.  Secondary fault

structures in plate boundary regions are likely to be affected because they are subject

to the same ocean loading stress perturbation, but the tectonic loading rate on these

faults is considerably lower than on the primary plate boundary strands.  Consequently

the perturbation from ocean loading is relatively higher.  Also, in cases where sea

level rise is much faster than the eustatic rate, such as in the catastrophic flooding of

the Black Sea, the same normal stress perturbation is applied in a much shorter time.

This particular flooding event very likely triggered ruptures along the entire length of

the nearby North Anatolian fault.

Calculations of bending stress in response to the intermittent load of lake

Cahuilla on the southern San Andreas fault reveal that resolved Coulomb stress is

perturbed by a few tenths of a megapascal.  This is a large enough stress that it could
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directly trigger the San Andreas fault if it had already been tectonically loaded to a

near critical value, but not large enough to noticeably advance or delay the next

rupture if the loading occurs in an early or intermediate phase of the seismic cycle.

The two independent estimates of tectonic shear stress in the vicinity of the

Maule, Chile earthquake, from observations of stress released in an earthquake and

from calculations of stress required to sustain present day topography, are of

comparable magnitude, a few megapascals.  This suggests that the seismic cycle

relieves a quantity of stress similar to the minimum value of tectonic stress, consistent

with a weak megathrust fault.  These observations are consistent with previous studies

that have estimated low shear stress and a low coefficient of friction for the

megathrust in this region.

Estimates of tectonic stress at mid-ocean ridges are generally correlated with

spreading rate, with higher tectonic stresses being required at slower spreading ridges

and lower stress required at faster spreading ridges.  Particularly, slower spreading

ridges require a non-zero ridge-parallel extension of ~4-8 megapascals, while faster

spreading ridges require ridge-parallel extension near zero.  In addition to these

quantitative constraints, this research suggests that the bathymetric lows in the rift

usually associated with transform offsets at mid-ocean ridges are a necessary feature

for the long-term activity of an oceanic transform fault.

1.4.2  Future research

Recent seismic observations in the Salton Sea discovered a series of northeast

trending normal faults off the southern terminus of the San Andreas fault.
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Additionally, these normal faults show offsets that occur during the periodic

inundations of Lake Cahuilla.  As a follow up to the calculations presented in chapter

2 that consider the direct effect of Lake Cahuilla on the southern San Andreas fault, a

two-phased connection may be explored in which the inundation of Lake Cahuilla

triggers rupture on one or more normal faults within the lake.  The stress response of

these ruptures may in turn have a larger effect on the southern San Andreas fault,

sufficient to trigger or advance rupture on even a partially loaded fault.  This research

is the subject of an ongoing collaboration.

The study of time varying surface loads may be extended to consider other

surface loads, particularly those related to climate phenomena.  This may include

seasonal precipitation cycles that add surface loads in the form of mountain snowpack,

water levels in mountain lakes and other catchment basins, and increased groundwater

heads.  It may also include longer-timescale climate variations, such as the El Niño-

Southern Oscillation and the Pacific Decadal Oscillation, both of which have been

shown to affect precipitation and influence the growth and retreat of glaciers.  These

loads have the potential to affect not only the earthquake cycle of major plate

boundary faults but also the onset of periods of volcanic unrest.  This research is the

subject of a planned postdoctoral project.

The calculation of stress from topography for the purpose of constraining

tectonic stress magnitude can readily be applied to other regions.  Specifically, models

of topographic stress may be compared to the coseismic rupture of the magnitude 7.9

earthquake near Chengdu, Sichuan province, China on May 12, 2008.  This

investigation has the potential to yield particularly interesting results as the moment
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release from the earthquake is in an oblique-thrust sense.  The spatial pattern of

rupture style may correspond to the small-scale stress variations associated with local

topography.  Along the San Andreas fault, a model of small-scale stress from

topography may be combined with a model for tectonic stress accumulation and

compared to available observations of in situ stress orientation.  In some regions, the

sum of these two stress components may be sufficient to explain the stress

orientations, while in other regions an additional physical mechanism of stress may be

required.  These projects are the subject of proposed future collaborations.
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Chapter 2

Ocean Loading Effects on Stress at Near Shore Plate Boundary Fault

Systems

Abstract

Changes in eustatic sea level since the Last Glacial Maximum create a

differential load across coastlines globally.  The resulting plate bending in response to

this load alters the state of stress within the lithosphere within a half flexural

wavelength of the coast.  We calculate the perturbation to the total stress tensor due to

ocean loading in coastal regions.  Our stress calculation is fully 3-D and makes use of

a semi-analytic model to efficiently calculate stresses within a thick elastic plate

overlying a viscoelastic or fluid halfspace.  The 3-D stress perturbation is resolved into

normal and shear stresses on plate boundary fault planes of known orientation so that

Coulomb stress perturbations can be calculated.  In the absence of complete

paleoseismic indicators that span the time since the Last Glacial Maximum, we

investigate the possibility that the seismic cycle of coastal plate-boundary faults was

affected by stress perturbations due to the change in sea level.  Coulomb stress on

onshore transform faults, such as the San Andreas and Alpine faults, is increased by

up to 1 to 1.5 MPa respectively, promoting failure primarily through a reduction in

normal stress.  These stress perturbations may perceptibly alter the seismic cycle of

major plate boundary faults, but such effects are more likely to be observed on nearby
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secondary faults with a lower tectonic stress accumulation rate.  In the specific

instance of rapid sea level rise at the Black Sea, the seismic cycle of the nearby North

Anatolian fault was likely significantly advanced.

2.1  Introduction

Global mean (eustatic) sea level is temporally subject to many processes.  The

largest is the Milankovitch cycle whereby water mass is periodically transferred

between the global ocean (high sea level) and solid ice buildup at the poles (low sea

level).  The Last Glacial Maximum (LGM) ended about 21 ka, and since that time

eustatic sea level has risen ~120 m [Peltier, 2004; Peltier and Fairbanks, 2006] at a

rate of up to 1.25 cm/yr, reaching its approximate current level 4 ka (Figure 2.1).  As

sea level rose, the extra water acted as an additional vertical load to the ocean basins,

but not to the continents.  In response to this uneven load, the lithosphere at all

coastlines globally flexed about the edge of the load at the shoreline.

Many previous studies have focused on the subsidence of ocean basins in

Figure 2.1  Eustatic sea level since the Last Glacial Maximum relative to present day
level [Peltier and Fairbanks, 2006].
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response to sea level rise as a way of constraining rheologic models of earth structure

[e.g., Lambeck and Chappell, 2001; Lambeck et al., 2002a; Peltier and Drummond,

2008], but these analyses are not repeated here.  Instead, this study focuses on the

stresses induced in the near-shore lithosphere as it flexes about coastlines globally.

These flexure-induced stresses cause a perturbation to the total stress state in the

lithosphere within half a flexural wavelength of the coast, both offshore and onshore

(Figure 2.2).

It is possible that the change in the lithospheric stress state from ocean loading-

induced flexure impacted the ongoing tectonic processes in coastal regions,

particularly where the coastal region overlaps a plate boundary or other feature of

geophysical interest.  It is therefore the principal aim of this study to investigate the

potential impact to plate boundary processes, particularly the shear faulting cycle,

from the perturbing stress from sea level rise since the LGM.  If we assume this stress

perturbation is independent of other sources of stress in a region, we may make this

determination by calculating the stress of a flexing thick plate resolved onto a

particular fault plane.

Estimates of fault slip rate from geologic and geodetic methods show

consistent discrepancies [e.g., Bennett et al., 2004; Matmon et al., 2005].  Several

studies have addressed this discrepancy by adjusting either the geologic or geodetic

rate with the hope of reconciling the two numbers [e.g., Bennett et al., 2004; Hetland

and Hager, 2006; Oskin et al., 2007].  Other studies, however, have suggested that the

difference in the geologic and geodetic estimates of fault slip rate may be revealing

subtle details of the long-term faulting process [e.g., Chery and Vernant, 2006; Dolan
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et al., 2007; Hampel and Hetzel, 2006; Hetzel and Hampel, 2005; Luttrell et al.,

2007].  If the stress perturbations from ocean loading throughout the Milankovich

cycle are large enough, they may influence the seismic cycle of coastal faults

sufficiently that the slip rate and recurrence interval of earthquakes on those faults

would be perceptibly altered.  This would be an example of a physical process external

to the seismic cycle affecting the faulting process.  There are not currently many

paleoseismic indicators that sufficiently span the time since the LGM in a way that

would allow these predictions to be rigorously tested, though a few studies do offer

some observations of long-term fault behavior [e.g., Rockwell et al., 2009].  We

therefore present a model-based analysis of the stress changes ocean loading is likely

to create and the impact such perturbations would have on observable paleoseismic

indicators, so as to better understand the influence sea level rise may have on long-

term plate boundary behavior.

Several studies have addressed the response of the earth to surface loads of

water that come and go over various time scales and investigated their role in seismic

triggering.  The seasonal response to meters of precipitation in Japan and the

Himalayas alters stress by a few kPa and has been shown to affect seismicity rate

[Bettinelli et al., 2008; Bollinger et al., 2007; Heki, 2001; Heki, 2003].  The filling of

new reservoirs with tens of meters of water can trigger seismicity not only from the

immediate elastic response but also from the temporal flow of pore fluids in the crust,

which may perturb stress by a few tens of kPa for several years after filling [e.g.,

Gahalaut et al., 2007; Simpson et al., 1988].  In a few cases, hundreds of meters of

water removed as entire lakes empty affect stresses both by altering the pore pressure
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Figure 2.2  (a) Schematic of thick plate flexure about coastline due to an ocean load.
Red and blue bars show direction of maximum (extension) and minimum
(compression) principal stresses from flexure about coastline.  The short black lines
show the location of an onshore and offshore vertical fault as well as a near-shore
shallow dipping fault, and the dotted lines represent the surface trace of these faults.
Ocean loading will perturb stress on an offshore or onshore (b) vertical strike-slip fault
differently from a shallow-dipping coastal dip-slip fault (c).  For vertical strike-slip
faults, the normal stress component is dominant.  For a shallow dipping dip-slip fault,
the shear stress component may also play a role.
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in the crust and inducing flexure in the lithosphere.  These changes alter stress by a

few MPa over thousands of years [Hampel and Hetzel, 2006; Hetzel and Hampel,

2005] or a few hundred kPa over hundreds of years [Luttrell et al., 2007] and can

affect the slip rate of nearby faults.  On the largest and longest scale, glacial rebound

following the removal of kilometers of ice may alter stresses tens of MPa for many

thousand years following unloading and can reactivate seismicity on previously

dormant faults [e.g., Grollimund and Zoback, 2000; Ivins et al., 2003; Johnston et al.,

1998].  Additionally, there have been numerous investigations of regional subsidence

and flexure associated with sea level rise that have not calculated the perturbing

contribution to the stress state [e.g., Ivins et al., 2007; Kendall et al., 2003; Lambeck

and Purcell, 2005].  The load considered in this study acts over the same time period

as polar ice cap melting, but it has a smaller amplitude and is more widespread since

the change in sea level is global.  The largest flexure-induced stresses are present only

within a flexural wavelength of the coastline, generally a few hundred km.  For this

reason, our analysis more closely resembles the cases of local lake unloading than

widespread glacial rebound.

In the sections that follow, we develop the model used to calculate bending

stress from ocean loading globally and the method of resolving this into Coulomb

stress on a particular fault plane.  We then more closely examine the stress predictions

at two coastal transform boundaries (San Andreas fault and Alpine fault) and a near-

shore subduction boundary (Cascadia subduction zone).  We also examine a special

instance of ocean loading stress on a coastal transform in response to a very rapid sea
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level rise (North Anatolian fault).  Finally, we discuss the implications of our

calculations for the understanding of long-term fault behavior.

2.2  Methods

2.2.1  Plate bending stress from ocean loading

The stress perturbation from ocean loading is just one component of the total

stress tensor in a region.  In addition to the lithostatic stress that increases with depth

and remains constant over time, a region is also subject to the broad tectonic stress that

drives plate motions and changes over geologic timescales (106  yr ).  The ocean

loading component we calculate changes on the timescale of the Milankovitch cycles

(104 −105  yr ).  Local stresses associated with the earthquake cycle of a particular

fault evolve over the timescale of the recurrence interval of that fault (102 −104  yr ).

Because all of these sources of stress act over very different timescales, we can

calculate their effects independently from one another and add them linearly to get the

total stress σ ij , as seen below,

σ ij = ρgz( )Iij + τ ij
tectonic + τ ij

ocean loading + τ ij
faults (2.1)

where ρ  is the density, g  is gravity, z  is the vertical coordinate, I ij  is the identity

matrix, and τ ij  represents a stress deviation from the lithostatic state from various
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sources.  We can therefore calculate the effect of stress change from ocean loading

Δτ ij
ocean loading  on the total stress Δσ ij  without needing to specify forms for the regional

tectonic or local earthquake cycle stresses (hereafter we shall refer to stress

perturbation from ocean loading as Δτ ij ).  This is only possible because the ocean

loading strains are small so we can assume a linear stress-strain relationship.

We model stress perturbations from ocean loading by first calculating the full

3-D stress tensor from a vertical surface load in a thick elastic plate overlying a

Maxwell viscoelastic halfspace.  The plate is both uniformly thick and uniformly

strong.  We make no assumptions about the orientations of the principal axes of the

stress tensor, nor do we assume any of the six Cartesian stress components are zero,

particularly τ xz ≠ τ yz ≠ 0 .  The calculations are done using a semi-analytic Fourier

model [Luttrell et al., 2007; Smith and Sandwell, 2004] such that vertical

displacements and derivatives are calculated from analytic solutions and horizontal

displacements and derivatives are calculated in the Fourier domain (see Appendix for

a summary of model details).  This is equivalent to calculating the analytic Green’s

function response to a point load and then convolving that response with the true 2-D

shape of the load.  The semi-analytic model is advantageous because use of the 2-D

Fast Fourier Transform allows fast model calculations with true load geometry.

However the rheologic vertical stratification is necessarily simple to allow an analytic

vertical solution.  Also, the horizontal wavelength of the load distribution is

numerically restricted to be less than the width of the grid used for computation.  This
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model has previously been benchmarked against known analytic solutions [see Luttrell

et al., 2007].

For the model input, we use a eustatic sea level curve since the LGM that takes

into account multiple local data sets from around the world as well as a model of

isostasy to account for changes in basin volume as the lithosphere flexes under the

weight of the water (Figure 2.1) [Peltier, 2004; Peltier and Fairbanks, 2006].  The

bathymetry of the seafloor is determined from the new SRTM30_PLUS global

topography/bathymetry grid [Becker et al., 2009], which is particularly accurate in

shallow coastal areas (depth < 300m) where ship soundings are abundant.  The true

load geometry, therefore, is known exactly.  This exact load shape is input into our

model without simplification, accounting for the migration of the shoreline as sea level

rises.

As previously mentioned, the assumption that these stress components add

linearly to the regional background state of stress (Eq. 2.1) allows us to study the

stress perturbations induced by ocean loading without having to specify anything

about the other sources of stress present in a region.  We are primarily interested in the

change in stress over time, not the absolute stress state itself.  Therefore, we generally

take the initial stress to be that at the time of the LGM, though this choice is of course

arbitrary and we could equally examine any time period of interest.

For the elastic plate, we assume a Young’s modulus of 70 GPa and a Poisson’s

ratio of 0.25.  The only two model parameters to consider are the thickness of the

elastically strong plate h  and the viscosity of the underlying halfspace η .  However,

because the eustatic sea level rise is so gradual, any time delay in the flexural response
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due to the viscous asthenosphere would be negligible for a viscosity of 1020  Pa s  or

less (corresponding to a Maxwell relaxation time of about 200 yr).  The asthenosphere

viscosity in a plate boundary region is typically less than 1020  Pa s  by as much as two

orders of magnitude [e.g., James et al., 2000; Lambeck and Purcell, 2005].  In general,

therefore, we examine the fully relaxed response, equivalent to an elastic plate over a

fluid halfspace.  (A special case of rapid ocean loading is treated in Section 2.3.4).

The choice of plate thickness is important because h  affects the flexural

rigidity and flexural wavelength.  Consequently, a thicker bending plate will affect a

larger area around the coastline, whereas stresses in a thinner plate will be more

localized.  Global post-glacial rebound studies generally suggest a plate 65 km or

thicker is appropriate for continents and a 50 km thick plate is appropriate for ocean

basins [e.g., Lambeck and Chappell, 2001; Lambeck et al., 2002b], but along

tectonically active coastal margins a thinner plate of 40 km or less may be more

appropriate [e.g., James et al., 2000].  For the purposes of this study we examine stress

perturbations in a plate of intermediate thickness, h = 50 km , corresponding to a

flexural wavelength about 500 km.  The magnitude of the stress perturbations also

depends on the depth of observation within the plate relative to the plate thickness

( z h ), with larger bending stresses near the surface and smaller stresses closer to the

center of the plate (see Appendix).  We choose an observation depth of 10 km, which

is a typical seismogenic depth on the transform faults considered here and is

approximately the depth of the base of the elastic zone of the Cascadia subduction

zone [Fluck et al., 1997].
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The extent to which a fault in a coastal region is affected by plate bending

stresses from ocean loading depends not only on the thickness of the flexing plate, as

mentioned above, but also on the shape of the coastline and the location of the

boundary.  We calculated the fully relaxed global stress perturbation in a 50 km thick

plate due to 120 m of sea level rise, using the exact shape of the ocean basin without

any simplification of the coastline.  The maximum shear stress, σ1 − σ 3( ) 2 , where

σ1  and σ 3  are the maximum and minimum principal stresses, is shown in Figure 2.3

and gives an idea of the “size” of the stress perturbation, allowing a simple

comparison of the effects of geography.  The areas of greatest potential stress

perturbation are within a few hundred km of the coast, both on- and offshore [Kendall

et al., 2003], where an optimally oriented fault could experience a 1.2 MPa change in

shear stress in addition to a pressure change of similar magnitude.  Anywhere a

tectonic plate boundary (shown as red lines) coincides with a coastline, there is the

potential for the faults associated with that boundary to be influenced by the rise in sea

level.  Far offshore features like mid-ocean ridges and deep ocean subduction zones

are unaffected by ocean loading (Figure 2.3b) because the ocean load is uniform there

and no bending stresses are induced.  A coastal subduction zone may or may not be

affected depending on its proximity to the coast.  An onshore transform fault,

however, such as the San Andreas, North Anatolian, or Alpine fault, is well positioned

to experience large stress perturbations from ocean loading.

Bending stresses from ocean loading are particularly pronounced in regions

where the narrow strips of water or land have a width equal to about half the flexural
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Figure 2.3  (a) Maximum shear stress perturbation from ocean loading on a 50 km
thick plate.  Optimally oriented faults could experience up to a 1.2 MPa change in
shear stress at all coastlines globally in addition to a pressure change of similar
magnitude.  Tectonic plate boundaries (red) in coastal regions may be affected by the
stress perturbations.  (b) Deep sea subduction zones will not be affected by ocean
loading, but near-land subduction zones may be affected depending on their proximity
to the coast.  (c) In narrow gulfs where the width of the water load is close to half the
flexural wavelength, bending stress magnitude may be higher.  (d) Loading on
multiple sides of a narrow land mass of width close to half the flexural wavelength
also concentrates the bending stress, resulting in higher magnitudes.
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wavelength.  In these cases, the geometry of the load concentrates the stress of

bending.  This is the case at the Red Sea (Figure 2.3c), where the 250 km width of the

gulf happens to correspond to the half flexural wavelength of a 50 km thick plate,

making the maximum shear stress there larger than it is a comparable distance

offshore in the open ocean.  This stress concentration is less pronounced, however,

when a thinner plate is used to calculate bending stresses, which is likely more

appropriate in a rifting zone.  Similarly, stress on a narrow strip of land such as the

islands of New Zealand or Japan may be as much as fifty percent larger than stress a

comparable distance inland from a continental coastline if their width is similar to the

half flexural wavelength (Figure 2.3d).  Again, however, this stress concentration

phenomenon is sensitive to the choice of model plate thickness.  Though the coastal

stresses from ocean loading are present globally, we shall focus in this study on the

San Andreas fault (SAF), Alpine fault, North Anatolian fault (NAF), and Cascadia

subduction zone (CSZ) systems as representatives of major transform and subduction

boundaries under different loading conditions.

2.2.2  Ocean loading stress on plate boundary faults

We use the above model to calculate the perturbation to the six components of

the 3-D Cartesian stress tensor Δτ ij .  We interpret the 3-D change in stress by

calculating differential Coulomb stress resolved on a fault plane of known orientation,

Δτ c  [e.g., King and Cocco, 2001; King et al., 1994].



28

Δτ c = Δτ s + µ fΔτ n (2.2)

In this equation, µ f  is the effective coefficient of friction and Δτ n  and Δτ s  are the

normal and shear stresses from the perturbing stress tensor Δτ ij  on a plane with

normal vector ni , defined as in Fialko et al. [2005] as

Δτ n = Δτ ijninj (2.3)

Δτ s = Δτ ijnit j . (2.4)

where we use the standard summation notation, such that a variable with a single

subscript i  or j  is a vector, a variable with two subscripts ij  is a tensor, and a

repeated index indicates summation over the spatial coordinates.  Calculating normal

stress requires only a choice of the normal to the plane ni , but calculating shear stress

requires choosing both the orientation of the plane and the direction within the plane

in which the shear stress is resolved ti .  This will generally be the expected direction

of slip on a fault so for the strike-slip SAF, ti  is horizontal along strike, but for the

oblique-thrust CSZ, ti  dips in the direction of convergence 69º east of north [Demets

et al., 1990; Demets et al., 1994].  A positive or negative change in Coulomb stress

indicates that failure along that plane would be promoted or inhibited such that the

timing of the subsequent rupture on that fault would be advanced or delayed.  Normal

stress is positive in extension and negative in compression, while the sense of stress
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indicated by positive and negative shear stress is context dependent.  However, we

choose the sign such that a positive change in either normal or shear stress always

increases Coulomb stress, and vice versa.  It is worth noting that in regions where

normal stress perturbation dominates, the effect on Coulomb stress will be mitigated

by the coefficient of friction, but shear stress perturbations have a direct effect on

Coulomb stress independent of the coefficient of friction.

The sign and magnitude of the Coulomb stress perturbation on a fault is

influenced both by the orientation and presumed sense of slip on that fault and the

orientation of the principal stresses of the ocean loading perturbation Δτ ij .  The

intermediate principal stress σ 2  is generally parallel to the coast.  Near the shoreline

the maximum (extension) and minimum (compression) principal stresses, σ1  and σ 3 ,

are perpendicular to the coast and plunge roughly 45º away from and toward the

ocean, respectively, in the top half of the plate (Figure 2.2a).  Further onshore, the

principal stresses rotate slightly toward the land, while further offshore they rotate

slightly away from the land.  Change in normal stress resolved on a vertical onshore

fault is extensional because the maximum principal stress is more horizontal (Figure

2.2b, right).  Conversely, normal stress on an offshore fault becomes more

compressional (Figure 2.2b, left).  For a vertical strike-slip fault the change in shear

stress is much smaller than the change in normal stress.  For a shallow dip-slip fault,

however, shear stress may be large enough to contribute to Coulomb stress

perturbation (Figure 2.2c).  The sense of the change in shear stress will depend on the

dip of the fault relative to the orientation of the principal stresses.  Shear stress on a
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coastal fault dipping toward the land is perturbed in a normal shear sense as long as

the dip of the fault is shallower than the dip of the compressional principal stress.

2.3  Results

2.3.1  Eustatic ocean loading at the San Andreas system

The San Andreas fault system accommodates 40 mm/yr of right lateral slip,

approximately 80 % of the relative Pacific – North American plate motion [e.g.,

Demets et al., 1990; Fay and Humphreys, 2005].  The principal strand of the fault runs

within 100 km of the coastline along most of its 500 km length.  We calculate the

stress change at 10 km depth within a 50 km thick plate in response to 120 m of sea

level rise.  Figure 2.4a shows the regional variations in normal stress resolved on a

vertical fault plane striking 50º west of north, the mean trend of the SAF and the

various subparallel auxiliary faults that make up the plate boundary.  As expected, the

regional effect of ocean loading on vertical faults is extension (positive normal stress)

onshore and compression (negative normal stress) offshore.  These zones of perturbed

stress have magnitudes up to 1.5 MPa and follow the coastline, coinciding with the

flexural bulge onshore and flexural moat offshore.  Stress on a vertical fault running

along the shoreline would be perturbed very little by ocean loading.  Offshore faults

such as those in the borderland of southern California would experience normal

compression due to sea level rise.  Based on the location of the fault trace, the central

and southern portions of the SAF would experience more normal extension than the

northern SAF and some smaller faults like the Hayward, San Jacinto, and Elsinore

faults could experience similar or greater stress perturbations.
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The SAF is not, of course, a single plane but rather has significant variation in

strike and dip in the central and southern segments (Figure 2.4c).  It dips southwest in

the central section, north of the “big bend”, and dips northeast south of the “big bend”

[Scheirer et al., 2007].  We calculate the normal, shear, and Coulomb stresses resolved

on the main SAF strand applying Eq. (2.2 – 2.4), using the varying orientation and

assuming a horizontal in-plane shear direction.  Because the strike of the fault roughly

Figure 2.4  (a) San Andreas region ocean loading perturbation to normal stress
resolved on a vertical plane striking 50º W of N.  Actual SAF trace shown (thick black
line).  Positive and negative normal stress represent extensional and compressional
perturbations, respectively.  (b) Normal (blue), shear (green), and Coulomb stress (red)
resolved onto the actual SAF plane with varying orientation (c) along its length.
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follows the shape of the coastline, variations in the dip of the fault have greater

influence on stress than variations in strike, decreasing the magnitude of the normal

stress (Figure 2.4b).  Along the strike-slip SAF, normal stress is about four times

larger than shear stress and is the dominant component of Coulomb stress.  Assuming

an effective coefficient of friction of µ f = 0.6 , Coulomb stress along the SAF is

perturbed by 0.5 – 1 MPa, promoting failure.

A Coulomb stress increase of 1 MPa during the time of eustatic sea level rise

corresponds to a loading rate increase of 0.1 kPa/yr, a factor of 300 smaller than the

tectonic loading rate of around 30 kPa/yr [Smith and Sandwell, 2003].  Over a 300-

year seismic cycle, ocean loading would contribute about 30 kPa Coulomb stress.

This very small increase in the loading rate on the main fault strand will not noticeably

speed up the seismic cycle.  However a change in normal stress of 1 MPa or greater

may noticeably weaken (strengthen) the coastal faults onshore (offshore) during times

of high sea level relative to times of low sea level.  This will be particularly noticeable

if fault strength is generally low (10 MPa or less) and remains constant over many

seismic cycles.  We would expect to see onshore faults have a shorter recurrence

interval in recent times than during the LGM, possibly observable on the main strand

of the SAF but more likely on the various subparallel secondary faults in the region.

Simultaneously, slip on offshore faults would be inhibited, making the recurrence

interval longer in recent times relative to the LGM.
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2.3.2  Eustatic ocean loading at the Alpine Fault system

Most coastal regions of continents will behave similarly to the San Andreas

region when bending in response to a rise in sea level.  In areas where loading occurs

on either a narrow strip of ocean or around a narrow strip of land of width comparable

to half the flexural wavelength, however, the resulting bending stresses may be

amplified due to the geometry of the load.  One example of this is at the North and

South Islands of New Zealand, which are approximately 200 km wide.  The region is

tectonically complicated because the islands mark the transition between the Pacific

plate subducted beneath the Australian plate in the north and the Australian plate

subducted beneath the Pacific in the south.  The 480 km long Alpine fault is the main

expression of this plate boundary on the South Island, accommodating 27 ± 5 mm/yr

of dextral strike-slip and 0 – 12 mm/yr of fault normal shortening, about 75 % of the

total Pacific-Australia plate motion predicted by global models [Norris and Cooper,

2001].

At the northern South Island, the Alpine fault splays into several subparallel

faults in the Marlborough Fault System, each accommodating some portion of the slip

budget, the largest of which is the Hope fault, carrying 23 mm/yr of strike slip.

Additionally as much as 4.1 mm/yr of strike-slip may be accommodated on the Porters

Pass fault, which runs parallel to the Alpine fault east of the Southern Alps and has

produced several large (M > 7) earthquakes in the Holocene, though there have been

no historic ruptures on this fault [Howard et al., 2005].  The orientation of these faults

varies significantly along strike.  At the far south, the Alpine fault is mostly a single

steeply dipping segment, and almost purely strike slip.  In central South Island, the
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Alpine consists of many right-stepping segments, dipping ~50º to the southeast, and

has a large convergent component.  Further north, the faults of the Marlborough

system are vertical and dextral [Robinson, 2004].

Figure 2.5a shows the regional variations in normal stress in response to 120 m

sea level rise using the same model parameters as in the previous section and resolved

on a vertical fault plane striking 55º east of north.  In general, onshore regions

experience an extensional perturbation to normal stress whereas offshore regions

experience additional compression, just as in the previous section.  The magnitude of

the onshore perturbation, however, may be up to 2.4 MPa, which is sixty percent

greater than the normal stress perturbation in the SAF region.  This is due to the island

Figure 2.5  (a) New Zealand region ocean loading perturbation to normal stress
resolved on a vertical plane striking 55º E of N.  Actual Alpine fault trace shown
(thick black line).  Positive and negative normal stress represent extensional and
compressional perturbations, respectively.  (b) Normal (blue), shear (green), and
Coulomb stress (red) resolved onto the Alpine fault plane with varying orientation (c)
along its length.
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being loaded on both sides and being the right width such that the bending effects

from each coast overlap and add constructively.  Along the trace of the Alpine fault

(Figure 2.5 b and c) bending stress magnitude varies.  In the southern South Island, the

Alpine fault runs very near the coastline in the nodal region, such that the perturbation

in normal stress on a steeply dipping fault is 1 MPa or less.  In the central South Island

the fault has a shallower dip, which tends to decrease the normal stress perturbation,

but the fault trace also runs inland, closer to the onshore flexural bulge.  The normal

stress perturbation in this section is therefore about 1.2 MPa.  In the northern

Marlborough faults region, change in normal stress is large both because the faults are

located in the flexural bulge and because these faults are nearly vertical, such that

normal stress is perturbed up to 2 MPa or more in this section.

Assuming a coefficient of friction of µ f = 0.6  and taking into account the

shear stress effects due to changes in the strike of the fault relative to the strike of the

coastline, Coulomb stress along the fault is perturbed by 0.5 – 1.0 MPa.  This is

similar to the Coulomb stress perturbation at the SAF, so again we expect that this

change will be insignificant compared to the tectonic loading rate.  However because

the normal stresses are higher, particularly in the inland sections of the South Island, it

is possible that the strength of the Marlborough faults and Porters Pass faults would be

decreased during times of high sea level leading to increased seismic activity and

perhaps average slip rate relative to times of low sea level.
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2.3.3  Eustatic ocean loading at the Cascadia subduction system

A third type of coastal plate boundary geometry to consider is the case of a

very shallow dipping subduction zone in which the seismogenic zone of the main fault

may straddle both sides of the coastline.  The Cascadia subduction zone in the Pacific

Northwest forms the main boundary between the subducting Juan De Fuca plate and

the overriding North America plate.  The leading edge of subduction roughly follows

the coastline about 100 km offshore, and the base of the locked zone is downdip at a

depth around 10 km (Figure 2.6) [Fluck et al., 1997; Wang et al., 2003].  Using the

same parameters as in the previous sections, we calculate the fully relaxed stress

change in response to 120 m of sea level rise and resolve normal stress onto a plane

dipping 15º to the east and striking 5º west of north.  Normal stress is perturbed by up

to 0.6 MPa, but in an opposite sense on different parts of the fault.  On the shallow

offshore portion, failure is inhibited by increased compression, whereas on the

downdip extension of the fault beneath the continent failure is promoted by extension

on the fault.

The magnitude of normal stress perturbation along the CSZ is about half the

magnitude of the perturbation along the SAF to the immediate south, principally

because of the shallow dip of the fault.  Note, however, that for a similar locking depth

the area of a 15º dipping fault will be 3.8 times greater than the area of a vertical fault,

so the change in integrated fault strength could be greater at a subduction zone than on

a transform fault.  The shear stress perturbation along the CSZ is larger than along the

SAF, mostly because the sense of shear on the CSZ is thrust motion as opposed to

strike-slip, and tends to inhibit failure along the coastline.  A smaller coefficient of
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friction in this region, µ f = 0.4  [Goldfinger et al., 2008], makes the Coulomb stress

perturbation at 10 km depth near the shoreline about -0.4 MPa inhibiting failure,

smaller than at either the SAF or AFNZ and corresponding to a stress perturbation rate

of –0.04 kPa/yr, much smaller than the tectonic loading rate.  Because the fault zone

straddles the coastline, the relative strengthening and weakening of different sections

of the fault could possibly lead to a shift in the type of rupture on the CSZ.  When sea

level is high, the CSZ would preferably fail in deeper segments below the continent,

whereas in times of low sea level, the CSZ would preferable rupture the shallower

offshore portions of the fault zone.

Figure 2.6  (a) Cascadia region ocean loading perturbation to normal stress resolved
on a plane striking 5º W of N and dipping 15º E.  CSZ surface trace and approximate
location of fault plane at 10 km depth are shown (thick black lines).  Positive and
negative normal stress represent extension and compression, respectively.  (b) Normal
(blue), shear (green), and Coulomb stress (red) resolved onto the actual CSZ plane at
10 km depth with varying orientation (c) along its length.
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2.3.4  Rapid sea level rise at the Black Sea

Thusfar we have considered stress perturbations from the steady and gradual

increase of eustatic sea level since the LGM.  There are, however, cases where water

levels, either globally or locally, rose significantly faster than the global post-LGM

average.  In these instances, the more rapid loading may have had a greater impact on

the seismic cycle of nearby faults.  In particular, we consider the case of the

inundation of the Black Sea, which may have impacted the seismic cycle of the nearby

North Anatolian fault.

At the LGM, the connection between the Black Sea and the global ocean was

blocked.  The subsequent water level of the sea was isolated from eustatic sea level

rise until the two reconnected sometime around 10 ka before present.  The exact

timing and mechanism of reconnection are the subject of ongoing research, but it is

generally agreed that shortly before marine reconnection the level of the Black Sea

was significantly low (-100 m).  Following reconnection the water level rose ~70 m to

the level of the global ocean within a few years to a few hundred years [e.g.,

Chepalyga, 2007; Hiscott et al., 2007; Major et al., 2006; Ryan, 2007; Ryan et al.,

1997].  Either way, loading at the Black Sea happened at least an order of magnitude

faster than in the global ocean.  The strike-slip North Anatolian fault (NAF) lies within

100 km of the southern coast of the Black Sea and is well located to be affected by the

rapid water level rise (Figure 2.7a).
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When calculating stresses from a more rapidly increasing load, the time

evolution of the stress response becomes dependent more on the viscous relaxation

rate of the asthenosphere rather than on the loading rate.  Initially we assume a thick

elastic plate over a viscoelastic halfspace with a shear modulus of µ = 28 GPa  and a

Maxwell relaxation time τm = 2η µ  of 50 yr, corresponding to viscosity

Figure 2.7  (a) North Anatolian region perturbation to normal stress following
inundation of the Black Sea resolved on a vertical plane striking E - W.  Actual NAF
trace shown (thick black line).  Positive and negative normal stress represent extension
and compression, respectively.  (b) Normal (blue), shear (green), and Coulomb stress
(red) resolved onto the actual NAF plane with varying orientation (c) along its length.
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η = 2.2 ×1019  Pa s .  Full relaxation from the sudden Black Sea rise should be

complete within five Maxwell times, or about 250 yrs, though eustatic sea level rise

would continue to perturb stress at the NAF.  Figure 2.7a shows the fully relaxed

regional normal stress from 70 m of inundation calculated on a vertical plane striking

East-West at 10 km depth within a 50 km thick elastic plate, and Figure 2.7b shows

the normal, shear, and Coulomb stress perturbations along the NAF assuming a

vertical plane with varying strike (Figure 2.7c).  The change in normal stress along the

NAF is positive with a maximum magnitude of 0.8 MPa.  Along most of the NAF the

shear stress contributions are relatively minor, so the maximum Coulomb stress

perturbation is about 0.5 MPa promoting failure, assuming the coefficient of friction

µ f = 0.6 .  Offshore, the stress perturbations have the opposite sign but an even larger

magnitude.

When averaged over the full 5τm  relaxation time, this suggests an additional

Coulomb stress rate of 2 kPa/yr, more than an order of magnitude greater than the

eustatic perturbation rate.  A viscoelastic material, however, will respond even more

rapidly soon after the load is emplaced and will retard with time.  The immediate

elastic response to the Black Sea filling increases Coulomb stress along the NAF by

about 75 kPa. There is also much uncertainty in the appropriate halfspace viscosity for

this region.  If η  were larger, the rapid loading rate would be offset by the slower

stress evolution, and the perturbation to Coulomb stress rate on the NAF would more

resemble that of eustatic loading on the SAF.  However if η  were smaller by a factor

of three, the Maxwell relaxation time would be reduced to about 17 years and the
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Coulomb stress rate on the NAF would increase by an average 7.2 kPa/yr following

inundation.  This is about a quarter of the tectonic loading rate.  If this were the case, it

would certainly impact the seismic cycle, especially immediately after loading,

bringing the NAF significantly closer to failure.

It is possible that soon after the Black Sea level rose all portions of the NAF

would have ruptured, regardless of where they had been in their seismic cycle.  This

could have initiated fault behavior similar to that seen today in which temporally close

large earthquakes rupture nearly the entire span of the NAF within about a century

[e.g., Hartleb et al., 2006].  Since the time of this water level rise, around 30 seismic

cycles have elapsed, so the NAF synchronized rupture we see today is unlikely to be

in continued response to the Black Sea increase.  But if the paleoseismic record could

be extended back to the time of the Black Sea filling, we should be able to clearly

observe a marked difference in faulting behavior during the period after Black Sea

level rise.

2.4  Discussion

The ultimate way to test these predictions would be to compare them to a set of

paleoseismic data that spanned the last glacial cycle.  The paleoseismic observations

would need to show either specific ruptures or mean recurrence interval with enough

temporal resolution to be able to distinguish between activity at the LGM, activity in

the early Holocene, and activity in the late Holocene.  If a record were long enough,

we would expect to see, e.g., an increase in onshore transform fault activity since the

LGM.  Unfortunately, complete datasets spanning this interval are largely unavailable.
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Some paleoseismic records at the SAF or NAF may go back a few thousand years

[e.g., Fumal et al., 2002; Hartleb et al., 2006], but these are unable to yield any

information about the effect of changing sea level because this is still after the global

oceans reached modern levels.  In the Dead Sea region, a long paleoseismic record

showing some earthquake clustering exists for the late Pleistocene [Marco et al.,

1996], but no datasets span the time since the LGM.  Recent paleoseismic studies at

the Manteigas-Bragança fault in northern Portugal identified a cluster of events 14.5 –

11 ka [Rockwell et al., 2009].  This sinistral fault lies 120 km inland and has a very

low slip rate (< 1 mm/yr), and the increase in activity coincides with the most rapid

sea level rise.  As such, these ruptures may have been promoted by the extra

extensional stress provided by bending in response to the seawater load.

Perhaps the most temporally consistent paleoseismic indicators come from

some locations, such as at the CSZ, where a marine turbidite record may be used as a

proxy for earthquake record [Goldfinger et al., 2003].  Because these rely on offshore

sediment cores, they tend to be more complete and extend further back than

paleoseismic records from trenching.  The record from offshore Cascadia extends 9 ka

and it is tempting to look for an ocean loading signal in these data.  In fact, Goldfinger

et al. [2008; 2003] do calculate a different recurrence interval for the northern SAF

and CSZ over the last 3ka (τ r ~ 215 yr ) versus the last 9ka (τ r ~ 260 yr ).  If these

differences were real, they would suggest that the seismic cycle at the northern SAF

and CSZ sped up slightly as sea level rose, which would be consistent with our

prediction that flexure in response to sea level rise promotes failure onshore.  However

these observations are not robust and the authors themselves caution against drawing
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any conclusions about long-term fault behavior from this dataset.  Future paleoseismic

studies may be able to either extend existing records to the late Pleistocene, or further

establish records on very low-slip faults, thus providing a record that could better test

for the influence of sea level rise on plate boundary behavior.  For the time being,

however, the question of “was ocean loading important” remains unclear.

Instead we focus on the question “could ocean loading have been important”?

There are two ways to interpret the calculated change in Coulomb stress.  If faults are

weak, i.e. they consistently slip when accumulated shear stress reaches a low threshold

value (~ 10 MPa) [e.g., Zoback et al., 1987], then either increasing or decreasing the

normal stress on the fault by a megapascal or more through the process of ocean

loading could be an important change that modulates fault behavior.  As sea level rises

and falls in response to the Milankovitch cycles, the normal stress on coastal faults

will also vary cyclically, promoting onshore fault failure when ocean levels are high,

inhibiting onshore fault failure when ocean levels are low, and vice versa for offshore

faults.  Indeed, if a record of plate boundary activity spanning the Pleistocene were

available, we would expect cyclically enhanced and muted failure of coastal faults

following the oscillating ocean loading.  If, however, faults are very strong or fault

strength has little consistency beyond a few seismic cycles, variations in stress

accumulation rate may be more important, in which case the few pascals per year

difference will probably not noticeably alter the seismic cycle at plate boundary faults.

In either case, because the ocean loading perturbation to normal stress is

relatively uniform across the flexural bulge, we expect all the faults in a plate

boundary region to experience roughly the same bending stress from ocean loading.
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Any perturbation to the seismic cycle would be more evident on a secondary fault

structure with a low tectonic loading rate than on the principal strand of the plate

boundary.  Thus in the San Andreas region, for example, we expect ocean loading to

noticeably promote failure on the faults of the eastern California shear zone or the Los

Angeles basin but to inhibit failure on the Garlock fault due to its orientation and sense

of slip.  It is also possible that coastal faults at passive continental margins could be

influenced, or even reactivated, by ocean loading.

We can extend the analysis of the SAF, Alpine fault, and CSZ presented here

to infer the effect of sea level rise in other regions.  In general, we expect seismic

activity to increase onshore and decrease offshore.  Particularly, we expect muted

activity in regions where the ocean load is narrow, such as in the fledgling rift zones or

other narrow gulfs, and enhanced activity in regions where the ocean load surrounds a

narrow strip of land, such as at the Italian peninsula, the islands of Japan, or the

isthmus of Central America.  This amplification of the ocean loading effect depends

upon the features having a width comparable to half the flexural wavelength of the

bending plate, and will therefore vary from region to region.  At coastal subduction

zones we might anticipate a cyclic shift between deep and shallow activity following

the variations in sea level.  This effect ought to be particularly noticeable on the

islands of Japan, which both override a subducting plate and are loaded by changes in

sea level on multiple sides.

The model calculations presented in this study are dependent upon the choice

of some physical parameters.  A thicker plate would result in more widespread stresses

of smaller magnitude, and vice versa.  A more or less viscous halfspace has
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ramifications for the temporal importance of the loading rate relative to the relaxation

rate, as discussed in the previous section.  We have assumed a halfspace viscosity

corresponds to a single relaxation time, regardless of the wavelength of the load.  Such

an assumption may be a simplification of the true physics involved in viscous

relaxation, but it is appropriate in this case because the load primarily consists of a

single wavelength, that of the flexural wavelength of the plate.  We have also assumed

the thick plate is a perfect elastic solid, corresponding to a Poisson’s ratio of 0.25, but

this number may be higher.  We compared the model output for a Poisson’s ratio of

ν = 0.25  and ν = 0.5 , corresponding to an incompressible elastic solid, and found that

increasing the Poisson’s ratio increases the magnitude of all the stresses by about

twenty percent.  Since the stress patterns produced also do not change, the overall

effect of a variation in Poisson’s ratio is small and would not alter the interpretation of

the modeled stresses.  The model presented here is particularly well suited for

calculating stresses from relatively small, short-wavelength loads, such that a flat earth

approximation is valid and the physical processes involved can be acceptably

characterized as linear.  As such, it would be inadequate for investigation of broader

loads such as post-glacial rebound in the polar regions, where additional physics

would be required.

There have also been certain simplifications of loading processes in that while

focusing on the loading of water mass accumulated in the oceans, we have neglected

any mass unloading caused by ice melting that happens over the same time period.

While the large scale continental ice sheets may be far enough removed from most

active plate boundaries to affect the ocean loading process, there may have been
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considerable ice mass stored in mountain glaciers that existed in proximity to coastal

plate boundaries.  Had we included this additional source of onshore unloading,

offshore compression and onshore extension would still be predicted for coastal

regions, only the magnitude of onshore extension would increase by an amount related

to the size and proximity of the glacier.  In such a case, activity at onshore faults

would be even greater at sea level highstands relative to the times of glacial maximum

and an observable signal would be even more likely.

Another implication of this study is a reemphasis that a seismic cycle can be

modulated by factors external to it.  The consistent discrepancies in fault slip estimates

from geologic and geodetic methods may be reconcilable as the various estimation

methods evolve and improve.  However, persistent discrepancies may reveal actual

temporal variation in instantaneous slip rate [Bennett, 2007] and thus subtle details of

the long-term faulting process, including the transfer of plate boundary slip between

different active fault strands.  Stress perturbations from sea level rise and their effect

on seismic cycles could be significant enough that a geologic estimate of slip rate

estimated over this time period would be expected to differ from a modern geodetic

slip rate.  At onshore transform boundaries such as the SAF, Alpine Fault, or NAF, we

would generally expect vgeologic < vgeodetic .  Again, this ocean loading-induced slip rate

discrepancy would be more pronounced on low-slip secondary faults than on principal

plate boundary strands.  When trying to understand long-term fault system behavior,

we find it may be at least as important to consider stresses external to the system as to

consider subtle seismic cycle stresses internal to the system.  Particularly we

reemphasize the ability of climate systems to interact with tectonic systems.
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2.5  Conclusions

We have investigated the theoretical role of eustatic sea level changes in

modulating the seismic cycle at coastal plate boundary systems.  Sea level rise induces

bending about coastlines globally, reducing the magnitude of normal stress so as to

“unclamp” onshore faults and promote failure while altering normal stress on offshore

faults so as to inhibit failure.  A nearshore transform fault will experience a 1 – 2 MPa

change in normal stress over this time period, promoting failure onshore and inhibiting

it offshore, corresponding to a change in Coulomb stress accumulation rate of ~ 100

Pa/yr.  This rate is about 100 times smaller that the tectonic loading rate on major plate

boundaries and will therefore not alter the stress buildup on a fault.  However, the total

magnitude of normal stress change may perceptibly weaken or strengthen coastal

faults, particularly if the background fault strength is low and remains constant over

many seismic cycles, thus altering the quantity of tectonically accumulated stress

required for the fault to rupture.

For coastal transform faults, those onshore will be weaker during periods of

high sea level (such as today) relative to periods of low sea level (such as during the

LGM), corresponding to a more rapid seismic cycle.  Offshore transform faults will be

relatively stronger when sea level is high, with less activity relative to times of low sea

level.  It is possible that these non-tectonic influences on the seismic cycle could be

detected at major plate boundary faults such as the SAF or AFNZ.  However it is more

likely that the influence of plate bending in response to ocean loading would be

observable on secondary faults with a much lower tectonic loading rate.  In locations



48

where sea level rise was much faster than the global average, such as in the

catastrophic flooding of the Black Sea, the same normal stress perturbation of up to 1

MPa develops over a much shorter period of time, determined by the relaxation time

of the asthenosphere.  Following this event, the Coulomb stress accumulation rate on

the onshore North Anatolian Fault increased by as much as 2 kPa/yr for a few hundred

years.  This rapid decrease in fault strength would likely have encouraged all segments

of the NAF to rupture soon after the load was emplaced, though it is unlikely that this

pattern of rupture would persist over tens of seismic cycles to be related to the

synchronicity of NAF ruptures observed today.

2.6  Appendix

We calculate the full 3-D stress tensor from a vertical surface load on a thick

elastic plate overlying a Maxwell viscoelastic halfspace.  The model is semianalytic in

that we convolve the response of a unit point load on a thick elastic plate overlying a

viscoelastic halfspace with the true load distribution in the Fourier domain.  It is this

delta function response that we now further derive.

The 3-D problem is solved analytically in the vertical and time dimensions

z,t( )  while the solutions in the horizontal dimensions x, y( )  are developed in the

Fourier transform domain.  This semianalytic method allows us to take full advantage

of the convolution theorem and the numerical efficiency of the Fast Fourier

Transform, while maintaining an arbitrarily complex surface load distribution.  The

disadvantage is that the rheology is restricted to stacked homogeneous layers.
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The original solution of the Boussinesq problem [Boussinesq, 1885] was for

vertical tractions on a homogeneous elastic halfspace.  Steketee [1958] used this

solution to balance the anomalous vertical tractions resulting from a force couple

model.  Smith and Sandwell [2004] followed these methods to develop a solution for

vertical tractions on an elastic plate over a viscoelastic halfspace, again using the

solution to correct anomalous vertical tractions resulting from a force couple model.

Luttrell et al. [2007] adapted this Boussinesq-like vertical traction calculation to

calculate displacement and stress in the lithosphere near the southern San Andreas

fault in response to the time varying load of Ancient Lake Cahuilla.

We develop the solution in two parts (for further details of development and

testing, see Smith and Sandwell [2004]).  First, we derive the solution for displacement

and stress in a layered elastic halfspace (homogeneous layer with Lamé parameters µ1

and λ1  over a homogeneous elastic halfspace with Lamé parameters µ2  and λ2 ).

Second, we use the Correspondence Principle to simulate viscoelastic behavior in the

lower halfspace by allowing the effective shear modulus µ2  to vary with the time

elapsed since loading t  relative to the Maxwell time of the halfspace τm .

2.6.1 Normal traction on a layered elastic halfspace

Following the method of Steketee [1958], we let displacement and stress be a

function of the Galerkin vector potential Γ i ,

ui = Γ i,kk −αΓ k ,ki , (2.A1)
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τ ij = λ 1−α( )δ ijΓ l ,kkl + µ Γ i,kkj + Γ j ,kki( ) − 2µαΓ k ,kij , (2.A2)

where α  is a constant yet to be determined and stress τ ij  has been related to strain and

displacement ui  through an elastic constitutive equation with Lamé parameters λ  and

µ .  Note that we use the standard summation notation, such that a variable with a

single subscript is a vector, a variable with two subscripts is a tensor, a repeated index

indicates summation over the spatial coordinates, and an index following a comma

indicates differentiation with respect to that spatial coordinate.  Because our point

source is a purely normal traction on the free surface of a layered halfspace, it turns

out that we need only retain the third component of the Galerkin vector, such that

Γ x = Γ y = 0  and Γ z = Γ , which we shall now call the Galerkin potential.

The equilibrium equations for a body in the absence of internal body forces or

acceleration are τ ij , j = 0 .  When we write these as a funtion of Galerkin potential, we

find that with a clever choice of α = λ + µ( ) λ + 2µ( ) , the Galerkin potential must

satisfy the biharmonic equation ∇4Γ = 0 .  After taking the 2-D horizontal Fourier

transform of this equation, the solution form is recognized as

Γ k,z( ) = A + Cz( )e2π k z − B + Dz( )e−2π k z , (2.A3)

where k = kx
2 + ky

2  is the horizontal wavenumber and A, B,C, D( )  are coefficients

to be determined by the boundary conditions.  Our layered model consists of an elastic
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layer of thickness h  ( z  positive up) over an elastic halfspace, and the solution will

require a Galerkin potential for each layer related to stress and displacement by the

elastic moduli of that layer (Γ1,µ1,λ1,α1  in the upper layer, Γ2 ,µ2 ,λ2 ,α2  in the lower

halfspace).

There are three boundary conditions that must be met for our layered elastic

halfspace: (1) a normal traction τ applied  is applied at the free surface and is partially

balanced by a gravitational restoring force, but shear tractions must be zero;

τ zz1 z=0
= −τ applied + ρ1gW1 z=0

τ xz1 z=0
= τ yz1 z=0

= 0
(2.A4)

(2) all components of displacement and stress must be continuous across the boundary

between the layer and the halfspace (note that we have shifted notation for

displacement such that ux = U , uy = V , and uz = W );

U1 z=−h = U2 z=−h

V 1 z=−h = V2 z=−h

W1 z=−h = W2 z=−h

          

τ xz1 z=−h
= τ xz2 z=−h

τ yz1 z=−h
= τ yz2 z=−h

τ zz1 z=−h
= τ zz2 z=−h

(2.A5)

(3) at infinite depth, all stress and displacement components must go to zero.
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τ xz2 z→∞
= τ yz2 z→∞

= τ zz2 z→∞
= 0

U2 z→∞
= V2 z→∞

= W2 z→∞
= 0

(2.A6)

The boundary conditions (2.A4-2.A6) can be rewritten in terms of the Galerkin

potential (2.A1-2.A3) resulting in a set of equations with eight coefficients,

A1, B1,C1, D1( )  and A2 , B2 ,C2 , D2( ) .  The third boundary condition is solved by

ensuring B2 = D2 = 0 , so we are left finally with six coefficients A1, B1,C1, D1, A2 ,C2( )

and six equations

τ xz1 z=0
= 0

τ zz1 z=0
= −τ applied + ρ1gW1 z=0

            

U1 z=−h = U2 z=−h

W1 z=−h = W2 z=−h

τ xz1 z=−h
= τ xz2 z=−h

τ zz1 z=−h
= τ zz2 z=−h

. (2.A7)

(Note that there is some redundancy in the algebra because we are describing a

solution with cylindrical symmetry in a Cartesian coordinate system).  We

algebraically solve this system of equations using the computer algebra capabilities of

MATLAB (see Smith and Sandwell [2004, Appendix A] for the solutions to the

coefficients A1, B1,C1, D1, A2 ,C2( ) ).  MATLAB also delivers C-code for the rather

complicated algebraic forms that can be directly used in computation, although the

code does need to be modified to ensure that there are no growing exponential

functions to cause numerical problems.  We can then use Eq. (2.A1-2.A3) to calculate
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stress and displacement as a function of kx , ky , z , and τ applied kx ,ky( ) , the Fourier

transform of the applied load, and inverse Fourier transform to get numerical solutions

for the stress and displacement components in the space domain.

Because the horizontal dimensions are solved in the Fourier domain, the

horizontal boundary conditions require that stress and strain be periodic.  We deal with

this by tapering the edges of our flat earth grids to zero, thus ensuring periodicity in all

directions.  This means that we are restricted to examining features of interest of

characteristic wavelength smaller than the length of the grid.  For a typical regional

grid of 2048x2048 elements at a grid spacing of 30 arcseconds (~ 1 km), this means

we are limited to features with characteristic wavelength less than ~ 1000 km.  This

resolution is sufficient since we are focused on the coastline transitions along a

specific segment of a plate boundary.

2.6.2 Including time dependence with a Maxwell viscoelastic model

A viscoelastic Maxwell body is made up of an elastic element and a viscous

element connected in series.  Its constitutive equation is

 
ε =

1
µ
σ +

1
η
σ , (2.A8)

where σ  and ε  are stress and strain respectively, µ  and η  are the shear modulus and

viscosity respectively, and the over dot indicates the time derivative.  Making use of
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the Correspondence Principle, we take the Laplace transform of (2.A8) (where s  is

the Laplace domain variable) and solve for stress

σ s( ) =
µs

s + µ
η

ε s( ) . (2.A9)

If we let the effective shear modulus be

µ2 s( ) =
µ s( )s

s + µ
η

, (2.A10)

we can then write

σ s( ) = µ2 s( )ε s( ) , (2.A11)

which is in the same form as an elastic constitutive relation.  Note that when we solve

for an effective lower shear modulus µ2 , we must also solve for an effective Lamé

parameter λ2  so that the bulk modulus of the halfspace remains constant.

We can analytically inverse Laplace transform (2.A10) and get
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µ2 t( ) = µ e
−

t
τm

2 − e
−

t
τm

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

, (2.A12)

where we have assumed a single Maxwell relaxation time τm  for the material

regardless of the wavelength of the load, defined by

τm =
2η
µ

. (2.A13)

So given a time since loading and a Maxwell relaxation time, we can compute the

effective Lamé parameters of the lower halfspace and then use those in the layered

elastic solutions for stress and displacement.

2.6.3 Model benchmarks

The end member cases of this model have been benchmarked against known

solutions.  The elastic half space end member should match the analytic displacement

solutions of Love [1929], and the elastic plate over a fluid end member should

approximate the numerical displacement and stress solutions for flexure of a thin

elastic plate [Turcotte and Schubert, 2002].  The model has been found to be in good

agreement with both sets of solutions [Luttrell et al., 2007; Smith and Sandwell,

2004].  Additionally, we present here contours of the fully-relaxed stress components

as a function of depth and distance perpendicular to a straight coastline, parallel to the
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y-axis, that has been loaded on one side (x < 0) by 120 m of water (Figure 2.A1).  All

three components of normal stress are in compression underneath the load and in

extension “onshore” in the top half of the plate, with stronger magnitudes near the

Figure 2.A1  Contours of stress components, in units of MPa, as a function of depth
and distance perpendicular to a coastline that has been loaded on one side by 120 m of
water and allowed to fully relax.  Horizontal normal components of bending stress
perpendicular to (a) and parallel to (b) shoreline.  (c) Vertical normal component of
bending stress.  (d) Vertical normal component of bending stress plus stress from a
buoyant mantle deflection.  (e) Vertical shear stress component perpendicular to the
shoreline (note the other two shear stress components τ xy  and τ yz  are negligible for a
straight coastline oriented along the y-axis).  (f) Maximum shear stress induced by
bending stresses across the coastline.
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surface, away from the nodal plane.  The component of vertical shear stress

perpendicular to the coastline is maximized in a narrow zone at the coastline and is

stronger in the middle of the plate than at the surface.  The maximum shear stress,

σ1 − σ 3( ) 2 , where σ1  and σ 3  are the maximum and minimum principal stresses,

reflects the patterns of the other stress components with high magnitudes near the

surface offshore and onshore, and high magnitudes at depth at the coastline.  When

computed for an elliptical disc-shaped load of the same dimensions, these stress

components match those published in Ivins et al. [2003], Klemann and Wolf [1998],

and Johnston et al. [1998], though we note the vertical normal stress τ zz  of those

models corresponds to the vertical normal stress of our bending model with an

additional stress due to the buoyancy of the deflected mantle, τ zz + ρmgW .

2.7  Acknowledgements

We thank B. Bills, T. Rockwell, B. Smith-Konter, and B. Meade for their helpful

conversations and feedback in the development of this manuscript.  Thoughtful

reviews by E. Ivins, K. Heki, and an Associate Editor greatly improved the

manuscript.  This research was supported by the NASA Earth and Space Science

Fellowship Program and by the National Science Foundation (EAR 0811772).

Chapter 2, in full, is a reprint of the material as it appears in Luttrell, K., and D.

Sandwell (2010), Ocean loading effects on stress at near shore plate boundary fault

systems, Journal of Geophysical Research, 115, B08411, doi:10.1029/2009JB006541.

The dissertation author was the primary investigator and author of this paper.



58

2.8  References

Becker, J.J., D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J.
Factor, S. Ingalls, S.H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer,
J. Von Rosenberg, G. Wallace, and P. Weatherall (2009), Global Bathymetry and
Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Marine Geodesy, 32
(4), 355-371, doi: 10.1080/01490410903297766.

Bennett, R.A. (2007), Instantaneous slip rates from geology and geodesy, Geophysical
Journal International, 169 (1), 19-28, doi: 10.1111/j.1365-246X.2007.03331.x.

Bennett, R.A., A.M. Friedrich, and K.P. Furlong (2004), Codependent histories of the
San Andreas and San Jacinto fault zones from inversion of fault displacement rates,
Geology, 32 (11), 961-964.

Bettinelli, P., J.P. Avouac, M. Flouzat, L. Bollinger, G. Ramillien, S. Rajaure, and S.
Sapkota (2008), Seasonal variations of seismicity and geodetic strain in the Himalaya
induced by surface hydrology, Earth and Planetary Science Letters, 266 (3-4), 332-
344, doi:10.1016/j.epsl.2007.11.021.

Bollinger, L., F. Perrier, J.P. Avouac, S. Sapkota, U. Gautam, and D.R. Tiwari (2007),
Seasonal modulation of seismicity in the Himalaya of Nepal, Geophysical Research
Letters, 34 (L08304), doi:10.1029/2006GL029192.

Boussinesq, J. (1885), Application des Potentiels a l’Etude de l’Equilibre et du
Mouvement des Solides Elastiques, 508 pp., Gauthier-Viallars, Paris.

Chepalyga, A. (2007), The Late Glacial Great Flood in the Ponto-Caspian Basin, in
The Black Sea Flood Question: Changes in Coastline, Climate, and Human
Settlement, edited by V. Yanko-Hombach, A. Gilbert, N. Panin, and  P. Dolukhanov,
pp. 63-88, Springer, Dordrecht, The Netherlands.

Chery, J., and P. Vernant (2006), Lithospheric elasticity promotes episodic fault
activity, Earth Planet. Sci. Lett., 243 (1-2), 211-217.

Demets, C., R.G. Gordon, D.F. Argus, and S. Stein (1990), Current Plate Motions,
Geophys. J. Int., 101 (2), 425-478.

Demets, C., R.G. Gordon, D.F. Argus, and S. Stein (1994), Effect of Recent Revisions
to the Geomagnetic Reversal Time-Scale on Estimates of Current Plate Motions,
Geophysical Research Letters, 21 (20), 2191-2194.

Dolan, J.F., D.D. Bowman, and C.G. Sammis (2007), Long-range and long-term fault
interactions in Southern California, G e o l o g y , 3 5  (9), 855-858, doi:
10.1130/G23789A.1.



59

Fay, N.P., and E.D. Humphreys (2005), Fault slip rates, effects of elastic heterogeneity
on geodetic data, and the strength of the lower crust in the Salton Trough region,
southern California, J. Geophys. Res., 110 (B09401).

Fluck, P., R.D. Hyndman, and K. Wang (1997), Three-dimensional dislocation model
for great earthquakes of the Cascadia subduction zone, Journal of Geophysical
Research-Solid Earth, 102 (B9), 20539-20550.

Fumal, T.E., M.J. Rymer, and G.G. Seitz (2002), Timing of large earthquakes since
AD 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms
Oasis, near Palm Springs, California, Bull. Seismol. Soc Am., 92 (7), 2841-2860.

Gahalaut, K., V.K. Gahalaut, and M.R. Pandey (2007), A new case of reservoir
triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India,
Tectonophysics, 439 (1-4), 171-178, doi: 10.1016/j.tecto.2007.04.003.

Goldfinger, C., K. Grijalva, R. Burgmann, A.E. Morey, J.E. Johnson, C.H. Nelson, J.
Gutieerrez-Pastor, A. Ericsson, E. Karabanov, J.D. Chaytor, J. Patton, and E. Gracia
(2008), Late Holocene rupture of the northern San Andreas fault and possible stress
linkage to the Cascadia subduction zone, Bulletin of the Seismological Society of
America, 98 (2), 861-889, doi: 10.1785/0120060411.

Goldfinger, C., C.H. Nelson, and J.E. Johnson (2003), Holocene earthquake records
from the Cascadia subduction zone and northern San Andreas Fault based on precise
dating of offshore turbidites, Annu. Rev. Earth Planet. Sci., 31, 555-577, doi:
10.1146/annurev.earth.31.100901.141246.

Grollimund, B., and M.D. Zoback (2000), Post glacial lithospheric flexure and
induced stresses and pore pressure changes in the northern North Sea, Tectonophysics,
327 (1-2), 61-81.

Hampel, A., and R. Hetzel (2006), Response of normal faults to glacial-interglacial
fluctuations of ice and water masses on Earth's surface, J. Geophys. Res., 111
(B06406).

Hartleb, R.D., J.F. Dolan, O. Kozaci, H.S. Akyuz, and G.G. Seitz (2006), A 2500-yr-
long paleoseismologic record of large, infrequent earthquakes on the North Anatolian
fault at Cukurcimen, Turkey, Geological Society of America Bulletin, 118 (7-8), 823-
840.

Heki, K. (2001), Seasonal modulation of interseismic strain buildup in northeastern
Japan driven by snow leads, Science, 293 (5527), 89-92.

Heki, K. (2003), Snow load and seasonal variation of earthquake occurrence in Japan,
Earth Planet. Sci. Lett., 207 (1-4), 159-164.



60

Hetland, E.A., and B.H. Hager (2006), Interseismic strain accumulation: Spin-up,
cycle invariance, and irregular rupture sequences, Geochemistry Geophysics
Geosystems, 7.

Hetzel, R., and A. Hampel (2005), Slip rate variations on normal faults during glacial-
interglacial changes in surface loads, Nature, 435 (7038), 81-84.

Hiscott, R., A. Aksu, P. Mudie, M. Kaminski, T. Abrajano, D. Yasar, and A. Rochon
(2007), The Maramara Sea Gateway since ~16 ky BP: Non-catastrophic causes of
Paleoceanographic Events in the Black Sea at 8.4 and 7.15 ky BP, in The Black Sea
Flood Question: Changes in Coastline, Climate, and Human Settlement, edited by V.
Yanko-Hombach, A. Gilbert, N. Panin, and  P. Dolukhanov, pp. 63-88, Springer,
Dordrecht, The Netherlands.

Howard, M., A. Nicol, J. Campbell, and J.R. Pettinga (2005), Holocene
paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand, New
Zealand Journal of Geology and Geophysics, 48 (1), 59-74.

Ivins, E.R., R.K. Dokka, and R.G. Blom (2007), Post-glacial sediment load and
subsidence in coastal Louisiana, Geophysical Research Letters, 34 (L16303),
doi:10.1029/2007GL030003.

Ivins, E.R., T.S. James, and V. Klemann (2003), Glacial isostatic stress shadowing by
the Antarctic ice sheet, Journal of Geophysical Research-Solid Earth, 108 (B12),
2560, doi:10.1029/2002JB002182.

James, T.S., J.J. Clague, K.L. Wang, and I. Hutchinson (2000), Postglacial rebound at
the northern Cascadia subduction zone, Quaternary Science Reviews, 19 (14-15),
1527-1541.

Johnston, P., P. Wu, and K. Lambeck (1998), Dependence of horizontal stress
magnitude on load dimension in glacial rebound models, Geophys. J. Int., 132 (1), 41-
60.

Kendall, R., J.X. Mitrovica, and R. Sabadini (2003), Lithospheric thickness inferred
from Australian post-glacial sea-level change: The influence of a ductile crustal zone,
Geophysical Research Letters, 30 (9), 1461, doi:10.1029/2003GL017022.

King, G.C.P., and M. Cocco (2001), Fault interaction by elastic stress changes: New
clues from earthquake sequences, in Advances in Geophysics, Vol. 44, pp. 1-38.

King, G.C.P., R.S. Stein, and J. Lin (1994), Static Stress Changes and the Triggering
of Earthquakes, Bull. Seismol. Soc Am., 84 (3), 935-953.

Lambeck, K., and J. Chappell (2001), Sea level change through the last glacial cycle,
Science, 292 (5517), 679-686.



61

Lambeck, K., T.M. Esat, and E.K. Potter (2002a), Links between climate and sea
levels for the past three million years, Nature, 419 (6903), 199-206.

Lambeck, K., and A. Purcell (2005), Sea-level change in the Mediterranean Sea since
the LGM: model predictions for tectonically stable areas, Quaternary Science
Reviews, 24 (18-19), 1969-1988.

Lambeck, K., Y. Yokoyama, and T. Purcell (2002b), Into and out of the Last Glacial
Maximum: sea-level change during Oxygen Isotope Stages 3 and 2, Quaternary
Science Reviews, 21 (1-3), 343-360.

Love, A.E.H. (1929), The stress produced in a semi-infinite solid by pressure on part
of the boundary, Proc. Roy. Soc. Lond. A, 228, 377-420.

Luttrell, K., D. Sandwell, B. Smith-Konter, B. Bills, and Y. Bock (2007), Modulation
of the earthquake cycle at the southern San Andreas fault by lake loading, J. Geophys.
Res., 112 (B08411), doi:10.1029/2006JB004752.

Major, C.O., S.L. Goldstein, W.B.F. Ryan, G. Lericolais, A.M. Piotrowski, and I.
Hajdas (2006), The co-evolution of Black Sea level and composition through the last
deglaciation and its paleoclimatic significance, Quaternary Science Reviews, 25 (17-
18), 2031-2047.

Marco, S., M. Stein, A. Agnon, and H. Ron (1996), Long-term earthquake clustering:
A 50,000-year paleoseismic record in the Dead Sea Graben, J. Geophys. Res., 101
(B3), 6179-6191.

Massonnet, D., and K.L. Feigl (1998), Radar interferometry and its application to
changes in the earth's surface, Reviews of Geophysics, 36 (4), 441-500.

Matmon, A., D.P. Schwartz, R. Finkel, S. Clemmens, and T. Hanks (2005), Dating
offset fans along the Mojave section of the San Andreas fault using cosmogenic Al-26
and Be-10, Geological Society of America Bulletin, 117 (5-6), 795-807.

Norris, R.J., and A.F. Cooper (2001), Late Quaternary slip rates and slip partitioning
on the Alpine Fault, New Zealand, Journal of Structural Geology, 23 (2-3), 507-520.

Oskin, M., L. Perg, D. Blumentritt, S. Mukhopadhyay, and A. Iriondo (2007), Slip rate
of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the
Eastern California Shear Zone, J. Geophys. Res., 112 (B03402).

Peltier, W.R. (2004), Global glacial isostasy and the surface of the ice-age earth: The
ice-5G (VM2) model and grace, Annu. Rev. Earth Planet. Sci., 32, 111-149, doi:
10.1146/annurev.earth.32.082503.144359.

Peltier, W.R., and R. Drummond (2008), Rheological stratification of the lithosphere:
A direct inference based upon the geodetically observed pattern of the glacial isostatic



62

adjustment of the North American continent, Geophysical Research Letters, 3 5
(L16314), doi:10.1029/2008GL034586.

Peltier, W.R., and R.G. Fairbanks (2006), Global glacial ice volume and Last Glacial
Maximum duration from an extended Barbados sea level record, Quaternary Science
Reviews, 25 (23-24), 3322-3337.

Robinson, R. (2004), Potential earthquake triggering in a complex fault network: the
northern South Island, New Zealand, Geophys. J. Int., 159  (2), 734-748, doi:
10.1111/j.1365-246X.2004.02446.x.

Rockwell, T., J. Fonseca, C. Madden, T. Dawson, L.A. Owen, S. Vilanova, and P.
Figueiredo (2009), Paleoseismology of the Vilariça Segment of the Manteigas-
Bragança Fault in Northeastern Portugal, in Palaeoseismology: Historical and
Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment,
edited by K. Reicherter, A.M. Michetti, and  P.G. Silva, pp. 237-258, doi:
10.1144/SP316.15, The Geological Society of London, London.

Ryan, W.B.F. (2007), Status of the Black Sea Flood Hypothesis, in The Black Sea
Flood Question: Changes in Coastline, Climate, and Human Settlement, edited by V.
Yanko-Hombach, A. Gilbert, N. Panin, and  P. Dolukhanov, pp. 63-88, Springer,
Dordrecht, The Netherlands.

Ryan, W.B.F., W.C. Pitman, C.O. Major, K. Shimkus, V. Moskalenko, G.A. Jones, P.
Dimitrov, N. Gorur, M. Sakinc, and H. Yuce (1997), An abrupt drowning of the Black
Sea shelf, Marine Geology, 138 (1-2), 119-126.

Scheirer, D., G. Fuis, and V. Langenheim (2007), Constructing a Model of a Dipping
Southern San Andreas Fault, Southern California, Eos Trans. AGU, 88(52), Fall Meet.
Suppl.

Simpson, D.W., W.S. Leith, and C.H. Scholz (1988), Two Types of Reservoir-Induced
Seismicity, Bull. Seismol. Soc Am., 78 (6), 2025-2040.

Smith, B., and D. Sandwell (2003), Coulomb stress accumulation along the San
Andreas Fault System, J. Geophys. Res., 108 (B6), 2296.

Smith, B., and D. Sandwell (2004), A three-dimensional semianalytic viscoelastic
model for time-dependent analyses of the earthquake cycle, J. Geophys. Res., 109
(B12401), doi:10.1029/2004JB003185.

Steketee, J.A. (1958), On Volterra's dislocations in a semi-infinite elastic medium,
Can. J. Phys., 36, 192-205.

Turcotte, D.L., and G. Schubert (2002), Geodynamics, 456 pp., Cambridge Univ.
Press, New York.



63

Wang, K., R. Wells, S. Mazzotti, R.D. Hyndman, and T. Sagiya (2003), A revised
dislocation model of interseismic deformation of the Cascadia subduction zone, J.
Geophys. Res., 108 (B1), 2026, doi:10.1029/2001JB001227.

Zoback, M.D., M.L. Zoback, V.S. Mount, J. Suppe, J.P. Eaton, J.H. Healy, D.
Oppenheimer, P. Reasenberg, L. Jones, C.B. Raleigh, I.G. Wong, O. Scotti, and C.
Wentworth (1987), New Evidence on the State of Stress of the San-Andreas Fault
System, Science, 238 (4830), 1105-1111.



64

Chapter 3

Modulation of the earthquake cycle at the southern San Andreas

fault by lake loading

Abstract

Changes in the level of Ancient Lake Cahuilla over the last 1500 years in the

Salton Trough alter the state of stress by bending the lithosphere in response to the

applied lake load and by varying the pore pressure magnitude within the crust.  The

recurrence interval of the lake is similar to the recurrence interval of rupture on the

southern San Andreas and San Jacinto faults, both of which are partially covered by

the lake at its highstand.  Furthermore, four of the last five ruptures on the southern

San Andreas fault have occurred near a time of substantial lake level change.  We

investigate the effect of Coulomb stress perturbations on local faults due to changing

level of Lake Cahuilla to determine a possible role for the lake in affecting the timing

of fault rupture.  Coulomb stress is calculated with a 3-D model of an elastic plate

overlying a viscoelastic half-space.  Plate thickness and half-space relaxation time are

adjusted to match observed vertical deformation since the last lake highstand.  The

lake cycle causes positive and negative Coulomb stress perturbations of 0.2 - 0.6 MPa

on the southern San Andreas within the lake, and 0.1 - 0.2 MPa on the southern San

Andreas outside the lake.  These Coulomb stress perturbations are comparable to
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stress magnitudes known to have triggered events at other faults along the North

America-Pacific plate boundary.

3.1  Introduction

The San Andreas Fault system forms part of the boundary between the North

American and Pacific plates, accommodating a total of about 40 mm/yr of right lateral

slip [e.g., Fay and Humphreys, 2005].  The southern portion of the San Andreas Fault

system lies in the Salton Trough, a broad region of Southern California that includes

the southern San Andreas Fault (SAF), the southern San Jacinto Fault (SJF), the

Imperial Fault (IF), and the Salton Sea.  The Salton Trough is also a transitional

tectonic regime between opening motion along a constructive plate margin in the Gulf

of California and transform motion along the SAF system.  This complex tectonic

setting has the potential to produce large earthquakes, but the last 300 years have seen

no major ruptures on the SAF and SJF, and only one major earthquake on the IF

[Fialko, 2006; Fumal et al., 2002; Gurrola and Rockwell, 1996; Shifflett et al., 2002;

Thomas and Rockwell, 1996].

The exact timing of a rupture on a fault is complicated and difficult to predict.

However, the general readiness of a fault to fail can be characterized by the state of

stress on that fault and changes to that stress, expressed through the Coulomb failure

criteria [e.g., King et al., 1994].  Non-tectonic perturbations to the state of stress on a

fault may also alter the Coulomb stress, and thus the timing of the next event.  In

Japan, the changing vertical load of seasonally snow-covered mountains produces

seasonal subsidence and seismicity [Heki, 2001; Heki, 2003].  On a much longer
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timescale, flexure of the lithosphere beneath the Fennoscandian ice sheet in the North

Sea has been proposed as a mechanism to modulate stresses, affecting faulting style

and seismicity [Grollimund and Zoback, 2000].  Another non-tectonic source of stress

perturbation, acting over intermediate timescales, is the vertical load caused by the

filling and emptying of surface lakes.   

In this study we wish to investigate the feasibility of stress perturbations at the

Salton Trough in response to Ancient Lake Cahuilla influencing the timing of rupture

on nearby faults.  Numerous studies have used vertical surface deformation in

response to lake loads to constrain subsurface rheology [e.g., Bills et al., 2007; 1994;

Kaufmann and Amelung, 2000], but few have examined their effect on faulting.  Other

studies have shown that induced seismicity may occur in response to reservoir level

changes, either by direct response of elastic stress following loading, or by delayed

increase of pore pressure and decrease of effective normal stress [e.g., Simpson et al.,

1988].  Hetzel and Hampel [2005] and Hampel and Hetzel [2006] examined

lithospheric rebound in response to unloading in the Great Basin by the regression of

Lake Bonneville and considered two mechanisms that affect the earthquake cycle.

The direct removal of mass decreases vertical stress causing a decrease in slip rate on

the normal Wasatch Fault.  Lithospheric rebound following the removal of mass alters

horizontal stress promoting a faster slip rate.  They found the combination of these

mechanisms explain a Late Pleistocene increase in slip rate on the Wasatch and

adjacent normal faults.  Both the temporal and spatial scales of lake change we

consider in this study are between those of reservoirs and Lake Bonneville.  As such,
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Figure 3.1  Ancient Lake Cahuilla region showing approximate location of the ancient
shoreline (13 m above sea level), San Andreas Fault (SAF), San Jacinto Fault (SJF),
and Imperial Fault (IF).  Other local faults not mentioned in the text are shown as
dotted lines for reference.  Sites of shoreline elevation surveys from this study are
shown as red squares.  Sites from Larson [1990] are shown as blue circles.  Site
numbers correspond to Table 3.1.  Locations of SCIGN continuous GPS stations
within Ancient Lake Cahuilla are shown as yellow triangles (Table 3.2).
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we consider both the effects of 3-D lithosphere deformation and of changes in pore

pressure, but we consider only lithospheric rebound to be time-dependent.

3.1.1  Ancient Lake Cahuilla

Ancient Lake Cahuilla is a freshwater lake (180 km x 50 km) that has

periodically formed when the Colorado River drained north into the Salton Trough

region of southern California instead of along its current course South through

northern Mexico into the Sea of Cortez.  At times of its highstands at 13 m above sea

level [Waters, 1983], Lake Cahuilla extended from present-day Indio, California in the

north to Cerro Prieto, Baja California Norte, Mexico in the south (Figure 3.1) covering

parts of the southern SAF, SJF, and IF to a maximum depth of 90 m.

The direction of flow of the Colorado River is controlled by the deposition of

sediment at the river delta, which over time builds to form a natural dam.  When

enough sediment is deposited that the river is blocked from its southern course to the

sea, flow turns northward into the Salton Trough and Lake Cahuilla forms quickly,

filling in just 20 years to its maximum height of 13 m, controlled by the height of the

sill at the southernmost edge [e.g., Gurrola and Rockwell, 1996; Thomas and

Rockwell, 1996; Waters, 1983].  When in time the northern course becomes blocked

by sediment, the Colorado resumes southern flow and the lake evaporates and

becomes fully dry in approximately 60 years.  The timing and duration of the last four

lake highstands over the last 1300 years was studied by dating organic material from

outcrop lake sediments and constraining these estimates to match the historical record

(Figure 3.2) [Gurrola and Rockwell, 1996; Sieh and Williams, 1990; Waters, 1983].
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Waters [1983] presents evidence for at least three clear highstands between the years

AD 700 and 1500; furthermore Gurrola and Rockwell [1996] find three partial or total

lakefall events between AD 1500 and 1700, represented in Figure 3.2 as a single

falling event at the time the most recent lake began falling, between AD 1675 – 1687.

While geologists do not yet agree on the timing and duration of even the most recent

highstand, the changes in the volume of the lake are well constrained by the

topography of the basin and the height of the sill.  The most recent, though minor,

change in lake level is the historically documented formation of the man-made Salton

Sea in 1906, at a present-day elevation of 71 m below sea level [see Oglesby, 2005

and references therein].

Figure 3.2  Lake level history from Waters [1983] (solid line) and Gurrola and
Rockwell [1996] (dashed line), including the formation of the Salton Sea in 1906.  The
history used for models in this study is shown with a thick grey line.  The last five
southern SAF ruptures [Fumal et al., 2002], last three southern SJF ruptures [Gurrola
and Rockwell, 1996], and last two IF ruptures [Thomas and Rockwell, 1996] are also
shown.
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3.1.2  Salton Trough earthquakes

The recurrence interval of the filling and draining of Lake Cahuilla is similar to

the recurrence interval of major ruptures on the Southern SAF of 260 ± 100 years

[Shifflett et al., 2002] and documented activity on the SJF [Gurrola and Rockwell,

1996] (Figure 3.2).  The occurrence of five ruptures on the southern SAF have been

estimated between AD 1641-1711, 1450-1555, 1170-1290, 840-1150, and 770-890

with best averaged estimates of 1676, 1502, 1231, 982, and 825 respectively [Fumal et

al., 2002; Sieh and Williams, 1990].  The identification of these events at multiple

sites along the SAF suggests that each of these was a major event rupturing at least the

southernmost 200 km of the SAF.  The last three ruptures on the southern SJF

occurred between 1440 and 1637, 1280 and 1440-1640, and 820 and 1280 [Gurrola

and Rockwell, 1996].  The most recent event is known to have occurred just before the

~1480-1660 inundation of Lake Cahuilla (T. Rockwell, personal communication,

2006) (see Figure 3.2).  None of these events were historically recorded; all have been

inferred from paleoseismology.  The most recent major event on the IF was the

historically recorded 1940 Imperial Valley earthquake ( Mw = 7.0 ).  Prior to that, an

event has been identified late within the last highstand of Lake Cahuilla.  No other

major slip events are observed in the available sediment record (since AD 1450)

[Thomas and Rockwell, 1996].

The similar recurrence intervals between lake level changes and major

earthquakes could be mere coincidence.  However, it is possible that there is a

physical connection between the two phenomena.  One possibility is that vertical
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motions associated with the major ruptures cause changes in the outflow direction of

the Colorado River.  In this case, the ruptures trigger the lake level changes.  A

second, more interesting possibility is that the change in stress due to the vertical load

of the lake volume trigger the major events.  It is the feasibility of this second possible

connection that we explore in this study.  If this model is correct, it could greatly

impact our understanding of ruptures along the southern SAF system.  In addition, one

could calculate whether changing the configuration of the Salton Sea as proposed by

the Salton Sea Authority (http://www.saltonsea.ca.gov/) would increase or decrease

the probability of a major rupture on the southern SAF, which is believed to be late in

the seismic cycle [Fialko, 2006].

3.2  Changes in normal stress due to lake level changes

Slip on the upper locked portion (2 – 12 km) of a transform fault may be

triggered by a reduction in fault stability, commonly characterized by a change in

Coulomb stress [e.g., King and Cocco, 2001; King et al., 1994; Reasenberg and

Simpson, 1992],

σ c = σ s − µ fσ n . (3.1)

This includes both tectonic shear loading, in which deep slip gives rise to shear stress

 accumulation σ s , and fault strength, equal to the coefficient of friction µ f  times the

effective normal stress on the fault plane 

� 

σ n .  We propose that changes in lake level
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modulate the earthquake cycle by changing the effective normal stress on major fault

planes at seismogenic depth.  We consider two types of perturbation to normal stress:

those induced solely from the weight of the surface load, and those induced because

the load is a fluid that interacts with a porous crust.

3.2.1  Lithosphere bending model

Immediately after Lake Cahuilla fills, the Earth will respond to the weight of

the surface load approximately as an elastic half-space.  The spatial variations in the

vertical load are defined by the lake depth, which is known from the topography of the

Salton Trough.  Convolving this load with the analytic flexure solution for the point

response of an elastic half-space [Love, 1929] provides the exact displacement and

stress.  Larson [1990] calculated the displacement and stress due to changes in the

level of Lake Cahuilla on an elastic half-space and found only small Coulomb stress

changes at seismogenic depth (~10 kPa).  Since this is 15 times smaller than shear

stress associated with induced seismicity at other reservoirs, that study concluded that

it is unlikely that this stress could trigger seismic activity.  However, Larson [1990]

also showed that the elastic half-space model provided a poor fit to the lake rebound

data derived from present-day shoreline measurements.  A thin elastic plate flexure

model with an elastic thickness of about 40 km could better explain the shoreline

rebound data.

Figure 3.3a is a diagram of the lithosphere response to a vertical load

considered in this study.  A lake load having width comparable to the flexural

wavelength of the elastic plate is applied.  Initially the Earth responds as an elastic
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Figure 3.3  (a) Schematic representation of Coulomb stress variation by lithosphere
flexure under a vertical load of lake water.  Tick marks indicate faults inside and
outside the lake boundary.  In regions of compression, faults experience negative
Coulomb stress perturbation, inhibiting failure.  In regions of extension, faults
experience positive Coulomb stress perturbation, promoting failure.  (b) Schematic
representation of Coulomb stress variation by change in pore pressure due to lake level
change showing crust with pore pressure and no lake (left), crust with increased pore
pressure in the presence of a lake (middle), and crust with unchanged pore pressure in
the presence of a lake (right).  An increase in lake level increases Coulomb stress,
promoting failure.  (c) Time evolution of Coulomb stress perturbation on a fault within
the lake after a rise in lake level over ten half-space relaxation times (τm ).  Pore
pressure (thick grey line) responds instantaneously by increasing Coulomb stress.
Plate flexure (dashed black line) has a small elastic response (instantaneous)
increasing Coulomb stress, followed by a viscoelastic response (time dependent)
decreasing Coulomb stress by a magnitude on the order of the increase caused by
changes in pore pressure.  The combined effects (thick grey and black line) are most
important within the first five relaxation times after a change in lake level.
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half-space, but when the duration of the load exceeds the relaxation timescale of the

asthenosphere, the plate bends.  Consider a fault running parallel to the shoreline as

shown in Figure 3.3a.  At a seismogenic depth, for example 5 km, the downward

flexing of the plate landward of the shoreline will cause extension (a decrease in

normal stress), whi1le the upward flexing of the plate within the lake will cause

compression.

We can calculate the magnitude of a Coulomb stress perturbation from a

change in water-level load by convolving the response of a unit point load on a thick

elastic plate overlying a viscoelastic half-space with the true load distribution.  We

calculate the full 3-D problem semi-analytically using a method developed by Smith

and Sandwell [2003; 2004].  For both the plate and the half-space, we assume a

Young’s modulus of 70 GPa, a Poisson’s ratio of 0.25, and a mantle material density

of 3300 kg m-3.  The free parameters that we vary are elastic plate thickness H , half-

space Maxwell relaxation time (τm = 2η µ  where η  and µ  are the viscosity and

shear modulus, respectively), and vertical load history.  In the case of vertical loading

by changing levels of water, the load 

� 

ρwgh(x,y)  is known exactly in both spatial

extent and magnitude because the topography is exactly known.

We check the full 3-D model by considering a 2-D thin-elastic-plate

approximation.  The 3-D response should approximately match the thin elastic plate

solution at infinite time and the elastic half-space solution at zero time.  The vertical

deflection W x( )  of a thin elastic plate of flexural rigidity 

� 

D [N m] and flexural

parameter 

� 

α  [m] in response to a step function vertical load of magnitude 

� 

V0  [N m-2]
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is found by integrating the line-load solution [Turcotte and Schubert, 2002, equation

3-130] from the shoreline (x = 0) to infinite distance into the lake.  The result is

W x( ) =
V0α

4

8D
1− e− x α cos

x
α

⎛
⎝⎜

⎞
⎠⎟

sign x( ) , (3.2)

where we have removed the mean deflection.  The horizontal (normal) stress due to

this load at a distance 

� 

z0 above the nodal plane is

σ xx =
3V0α

2

H 2

z0

H
⎛
⎝⎜

⎞
⎠⎟

e− x α sin
x
α

⎛
⎝⎜

⎞
⎠⎟

sign x( ) . (3.3)

Figure 3.4 compares the analytical thin-plate flexure solution (dashed curves)

for stress and displacement with the numerically calculated thick-plate flexure solution

(solid curves).  Figure 3.4a shows the applied step load of magnitude equivalent to 1 m

of mantle density material, such that we expect a vertical displacement of 1 m beneath

the load.  Both the vertical deflection (Figure 3.4c) and the horizontal stress (Figure

3.4d) are antisymmetric about the edge of the step load at 

� 

x = 0 .  The thick-plate

solution shows almost exactly the same behavior as the thin-plate solution.  There is a

minor difference at the coastline where the thick-plate solution shows an undulation

due to local 3-D elastic stress effects.  There is one major difference between the two

solutions; the thin-plate solution has no horizontal displacement U x( )  (Figure 3.4b),

while the thick-plate solution has a net negative motion near the coastline.  The good
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Figure 3.4  Displacement and stress of an elastic plate in response to a step water
load.  Solid line represents numerically calculated thick-plate flexure solution used
throughout this study.  Dashed line represents the analytic thin-plate flexure solution
(Equations 3.1 and 3.2).  Both solutions are calculated for a 30 km plate.  Horizontal
axis shows distance from edge of lake load.  Vertical axis shows (a) applied water
load, (b) horizontal surface displacement U x( ) , (c) vertical surface displacement
W x( ) , and (d) horizontal (normal) stress σ xx x( )  at seismogenic depth (5 km).  The
thin-plate flexure solution predicts no horizontal displacement.  The thick-plate flexure
solution shows an undulation in horizontal stress at the coastline due to local 3-D
elastic stress effects.
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overall match between these solutions for vertical displacement and horizontal stress

suggests that the thin-plate solution is adequate. However, the thick-plate solution also

includes a viscoelastic response to accurately model the loading history.  Moreover, it

can accurately accommodate realistic coastlines.  Computations of both solutions

require the same amount of computer time.

To provide a spatially accurate loading history, we use high-resolution (1 km)

topography.  Land elevations were derived from the Shuttle Radar Topography

Mission data [http://www2.jpl.nasa.gov/srtm/] while elevations within the Salton Sea

were derived by interpolating between digitized contours of bathymetry.  The accurate

topography accounts for the horizontal shifts in the coastline as lake level rises.

Displacement and stress are computed at 1 km grid spacing and Coulomb stress is

calculated on a vertical fault plane striking 45º West of North, the general trend of the

SAF system.

3.2.2  Effect of pore pressure

With the addition or removal of a load of water on the crust, the loading

material interacts with the loaded material creating additional stresses.  The presence

of water in a fault may, for example, affect the coefficient of friction µ f  by altering

fault minerals.  In our analysis, we assume a constant coefficient of friction, µ f = 0.6

[Byerlee, 1978].  The lake load may also alter the stress on a fault by changing the

effective normal stress, illustrated in Figure 3.3b.  The effective horizontal normal

stress 

� 

σ n  on a fault is the difference between the inward pressure (primarily
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lithostatic) and the outward pore pressure due to the water-filled crust.  If the lake

level is increased by h and the water is free to percolate to seismogenic depth, then in

time the pore pressure at that depth will increase by an amount Δp = ρwgΔh  to reach

hydraulic equilibrium, where p  is pore pressure, 

� 

ρw  is the water density (1000 kg m-

3), and g  is the acceleration of gravity (9.8 m s-2).  This is equivalent to the “drained”

pore pressure [e.g., Roeloffs, 1988a; Roeloffs, 1988b].  However, the system may not

be able to reach equilibrium if, for example, the pore spaces in the crust are not fully

connected to seismogenic depth.  In this case, the change in normal stress due to lake

rise is

Δσ n = −γρwgh , (3.4)

where γ ∈ 0,1[ ]  is a dimensionless parameter describing the ability of pore fluids to

percolate at depth (γ = 0  for no fluid movement to depth, γ = 1 for hydrostatic pore

pressure change at depth).  The maximum magnitude of the direct Coulomb stress

change is Δσ c = µ fρwgh .  For the 90 m of lake level change associated with Lake

Cahuilla and pore pressure fully able to penetrate to seismogenic depths (γ = 1), the

increase in Coulomb stress will be 500 kPa.

Though we use the equilibrated change in pore pressure, we assume that the

time required for the crust to reach this equilibrium is much less than the timescale of

lithospheric rebound.  Thus we treat changes in pore pressure at depth as concurrent

with lake level changes.  This simplifies the problem to one relaxation time rather than
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two.  Under this assumption, the predicted rate of change of Coulomb stress at a time

of lake level change is an upper bound, as is the magnitude of Coulomb stress

perturbation.  Another simplifying assumption we make is to neglect lateral flow of

pore fluids, such that beneath the lake, change in pore pressure is directly proportional

to the change in water level directly above, and outside the lake there is no change in

pore pressure.  Including lateral flow would make the spatial pattern of predicted

stress change more diffuse across lake shorelines.

3.2.3  Total effect of lake change on Coulomb stress

Both the direct pore pressure and indirect plate bending effects should be

considered when calculating the change in Coulomb stress induced by Lake Cahuilla.

It is interesting to note that the spatial and temporal variations in stress at seismogenic

depth will be rather complex functions.  If the fault is beneath the lake, the pore-

pressure effect will cause a step-increase in Coulomb stress, but this will decay to near

zero after several viscoelastic relaxation times because of downward flexure of the

plate (Figure 3.3c).  A fault far from the lake that is not influenced by the direct

hydrostatic effect will experience only the indirect effect of increasing Coulomb stress

as the plate bends.  A fault running between the high and low shorelines will

experience a complicated time variation in stress because the shoreline changes

position by up to 100 km as the lake fills.  At seismogenic depth, Coulomb stress

change due to plate bending is about equal in magnitude and opposite in sign to

Coulomb stress change due to an increase in pore pressure.
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3.3  Deformation and rebound: finding a best-fitting model

To constrain the model parameters of plate thickness ( H ) and relaxation time

(τm ), we measured the vertical rebound of the Lake Cahuilla area since the last lake

fall by measuring the current elevation of observed ancient shoreline features (see

Appendix).  The ancient shoreline elevation data collected from our survey are shown

in Table 3.1a, along with data published in Larson [1990] (Table 3.1b).  Data in Table

3.1a were collected with a GPS receiver measuring height above the reference

ellipsoid (WGS84) and corrected to height above sea level with the GEOID03 model

[http://www.ngs.noaa.gov/GEOID/GEOID03/].  The ellipsoidal heights were

estimated by 1 Hz instantaneous positioning [Bock et al., 2000] of the field GPS

receiver relative to the known geodetic coordinates of California Real Time Network

(CRTN – http://sopac.ucsd.edu/projects/realtime/) sites.  Data in Table 3.1b from

Table 3.1a  Location and elevation (relative to GEOID03) of Lake Cahuilla shoreline
sites measured in this study.

Number in
Figure 3.1 Location Latitude Longitude Elevation ± Error

(m)
1 Cerro Prieto 32.448 -115.223 10.323 ± 0.299
2 Mexicali 32.582 -115.642 11.486 ± 0.387
3 Yuha Basin 32.753 -115.798 13.205 ± 0.083
4 Dry Wash 32.887 -115.745 12.862 ± 0.084
5 Superstition Hills 33.023 -115.766 11.773 ± 0.178
6 Elmore Ranch 33.063 -115.814 16.754 ± 0.391
7 Fish Creek Mountains 33.009 -116.006 12.079 ± 0.060
8 Salton City 33.266 -116.006 13.877 ± 0.379
9 Travertine Rock 33.391 -116.058 12.331 ± 0.146

10 La Quinta 33.637 -116.280 11.788 ± 0.056
11 Salt Creek Fan 33.452 -115.729 13.845 ± 0.047
12 Gas Line Road 33.277 -115.499 12.416 ± 0.086
13 Southeast Sand Bar 32.932 -115.285 11.841 ± 0.459
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Larson [1990] were collected by leveling to known benchmarks that denote height

above sea level.  We find that the two approaches agree very well, and that the largest

uncertainty in the shoreline height measurement is related to identification of the

shoreline marker.  (See Appendix).

We computed models of the vertical rebound due to lake loading for a plate

thickness between 10 and 100 km and a half-space relaxation time between 20 yrs and

200 yrs (corresponding to half-space viscosity η = µτm / 2  of 1019 – 1020 Pa s, given a

shear modulus µ = 28 GPa ).  For each of these possible models, we compared the

values of deformation expected at each of the 21 sites from Table 3.1 with the

observed elevations above sea level.  We can only detect the pattern and relative

amplitude of the deformation; we cannot calculate the absolute elevation, thus our

model has three free parameters:  the plate thickness, the relaxation time, and an

absolute vertical offset between the model-predicted and observed elevations.

We computed the sum of squared residuals, where zmi  and zoi  are the modeled

and observed elevations at each point, εi  is the error of each observed measurement,

Table 3.1b  Location and elevation of Lake Cahuilla shoreline sites from Larson
[1990].

Number in
Figure 3.1 Description Latitude Longitude Elevation ± Error (m)

14 A 32.55 -115.55 12.2 ± 0.1
15 C 32.87 -115.79 12.7 ± 0.1
16 F 32.89 -115.74 12.8 ± 0.1
17 D 33.16 -115.95 12.7 ± 0.1
18 G 33.25 -116.03 13.1 ± 0.1
19 B 33.70 -116.19 12.2 ± 0.1
20 H 33.41 -115.82 13.8 ± 0.1
21 E 33.32 -115.60 12.7 ± 0.1
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and N  is the total number of points (21),

χ 2 =
1
N

zmi − zoi( )2

εii=1

N

∑ , (3.5)

and found no single best-fitting model (Figure 3.5a).  Contours of misfit as a function

of H ,τm( )  reveal a trade-off between plate thickness and relaxation time (i.e., half-

space viscosity).  A thinner plate can fit the data well with a more viscous half-space,

while a thicker plate requires a less viscous half-space to fit the data equally well.

Figure 3.5b shows the field-observed elevations from Table (3.1a) and (3.1b)

(diamonds and squares, respectively) along with their error bars plotted against the

expected present-day model-predicted elevation for two equally best-fitting models,

( H = 20 km,τm = 90 yr ) and ( H = 35 km,τm = 30 yr ) (blue and red, respectively).

It is possible to further constrain the model H ,τm( )  pairs by examining the

vertical velocity that each predicts for today.  For long relaxation times (thin plates),

we expect that the Salton Trough would still be experiencing significant rebound from

the last lake highstand, however this constraint depends heavily on the timing of the

last lake fall.  We identified four continuous GPS receivers from the Southern

California Integrated GPS Network (SCIGN) [Hudnut et al., 2002] that are well within

the bounds of Lake Cahuilla and would experience near-maximum uplift since the last

lake fall (see Figure 3.1).  Table 3.2a gives the locations and current vertical velocities

of these sites (http://sopac.ucsd.edu/cgi-bin/refinedJavaTimeSeries.cgi).  We also
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Figure 3.5  (a) Contours of χ 2  misfit for models with different H ,τm( )  values.
Circles show H ,τm( )  pairs that fit the observed elevation data equally well.  X’s show
H ,τm( )  pairs that predict vertical velocity today much higher than the observed

velocity.  (b) Predicted vs. observed shoreline elevation at points given in Table 3.1.
Observed elevation and error bars from this study (diamonds) and Larson [1990]
(squares) is plotted on the vertical axis.  Horizontal axis represents predicted elevation
at each site calculated for two models with an equally low χ 2  value:  a thinner plate
( H = 20 km ) with a more viscous half-space (τm = 90 yr ) (blue), and a thicker plate
( H = 35 km ) with a less viscous half-space (τm = 30 yr ) (red).  Diagonal black line
shows a perfect fit between observed and predicted elevation.
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calculate the vertical velocity that each best-fitting H ,τm( )  model pair predicts today

at each SCIGN site (Table 3.2b).  The predominant vertical signal in this region is

subsidence from the Salton Trough opening.  Knowing the magnitude of Salton

Trough subsidence, both expected from modeling (maximum -4 mm/yr, [Smith and

Sandwell, 2003]) and observed from geodesy (~ -1 mm/yr, Table 3.2a), we determine

that if the lake area were rebounding at anything more than a rate of 5 mm/yr, we

would be able to observe the rebound at these four SCIGN sites.  Hence all models

that predict vertical uplift greater than 5 mm/yr at these points can be discounted

(Figure 3.5a).  This leaves us with two H ,τm( )  pairs to consider as model end

members: ( H = 25 km,τm = 70 yr ) and ( H = 35 km,τm = 30 yr ).  It is important to

note that other non-tectonic signals, for example a subsidence signal due to

groundwater pumping for agriculture, could mask the rebound signal.  However a

groundwater signal would be more localized than the broad rebound deformation

signal, so if such a signal had large enough amplitude to mask significant rebound, we

would not expect agreement at the four SCIGN sites.  We are therefore confident that

no significant lake rebound is occurring today in the Salton Trough.

Around the lake, low rebound is expected at the far south and north and high

rebound is expected in the east and west, closest to the deepest part of the lake (the

Table 3.2a  Location and present-day vertical velocity observed at four SCIGN sites.
SCIGN site dhlg slms crrs ivco
Latitude 33.390 33.292 33.070 32.829
Longitude -115.788 -115.978 -115.735 -115.507
Observed velocity (mm/yr) -1.7 -1.3 -1.8 -3.1
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current Salton Sea).  The lowest point is the sill site at Cerro Prieto, shown in bold in

Figure 3.5b.  This is the single most important site because its elevation essentially

sets the magnitude of the entire modeled rebound.  It also has the second largest misfit,

and no model we consider is able to fit both this point and the points closer to the

present day Salton Sea.  Our estimation of the sill elevation is consistent with other

estimates [e.g., Oglesby, 2005], and the next lowest point at Mexicali (40 km

northwest) is also lower than the models predict.  It is possible that a geothermal plant

near Cerro Prieto is causing local subsidence and making the measured sill height

anomalously low.  However the observation that both Cerro Prieto and Mexicali are

low suggests a plate of uniform thickness may not be appropriate in the spreading

region.  The bulk of the data do not support the magnitude of rebound suggested by

the sill point.

The point with the worst misfit is the highest at Elmore Ranch.  We do expect

a large amount of rebound here because of its close proximity to the deepest part of

the lake load, but there are other points at which equally high rebound is expected that

Table 3.2b  Present-day vertical velocity predicted at four SCIGN sites by five best-
fitting model H ,τm( )  pairs.
Model H ,τm( ) Predicted velocity at SCIGN site (mm/yr)

dhlg slms crrs ivco
H = 15 km,τm = 100 yr a 15.6 14.8 16.2 10.8
H = 20 km,τm = 90 yr a 10.7 10.3 11.1 8.1
H = 25 km,τm = 70 yr 5.2 5.1 5.4 4.2
H = 30 km,τm = 50 yr 1.1 1.1 1.1 0.9
H = 35 km,τm = 30 yr 0.02 0.02 0.02 0.02

a Models predicting uplift greater than 5 mm/yr (untenable)
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have a much lower elevation and smaller misfit (e.g. Superstition Hills, Salton City,

Larson points 17, 20, and 21).  This leads us to believe that either 1) the feature we

measured at this point was not created by the most recent Lake Cahuilla highstand, 2)

there are other tectonic sources of deformation at this location (e.g., interaction with

an unmapped fault), or 3) we did measure the correct features but plate

inhomogeneities (e.g., variable thickness, dike upwellings, cracks in the plate) are

making this area rebound more than predicted.  The effect of excluding the two

furthest outlying points from our fit would be that the data would prefer a slightly

thicker plate over a slightly more viscous half-space.  The effect on the level of

Coulomb stress perturbation on the SAF would be very small (e.g., 0.1 MPa

difference).

3.4  Stress at Lake Cahuilla

Before we consider fault stress perturbations due to real loading history, it is

instructive to examine the response to a single lake cycle.  Figure 3.6a shows the

pattern of Coulomb stress for a vertical fault plane parallel to the SAF, due to the rise

of the lake at time t = 0τm  and the fall of the lake at t = 10τm  for a plate thickness

H = 30 km  at 5 km depth.  Figure 3.6b shows the Coulomb stress perturbation

predicted at Bombay Beach, CA at the southern end of the SAF and within the

boundaries of Lake Cahuilla, likely subject to pore pressure changes.  Figure 3.6c

shows Coulomb stress perturbation at Indio, CA, further north along the SAF and

outside the shoreline of Lake Cahuilla, beyond the region affected by pore pressure
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Figure 3.6  (a) Coulomb stress perturbations due to a single cycle of lake formation
and desiccation.  The lake fills at 0τm , remains full, and falls at 10τm .  Negative
Coulomb stress decreases the likeliness of rupture.  Locations of Bombay Beach, CA
(B) and Indio, CA (I) on the SAF are also shown. (b) Perturbation of Coulomb stress
at Bombay Beach, within Lake Cahuilla.  (c) Perturbation of Coulomb stress at Indio,
outside of Lake Cahuilla.
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variations.  (Location of Bombay Beach (B) and Indio (I) is shown in the last frame of

Figure 3.6a.)  At 0τm , the pore pressure effect proportional to the depth of the lake is

the dominant signal.  By 2τm  much of the pore pressure effect has been negated by the

bending of the lithosphere. The plate bending response is fully relaxed by 6τm .  At

10τm , the lake load is removed and the Coulomb stress within the lake drops

significantly, however outside of the lake, the Coulomb stress increases slightly due to

the elastic response of the lithosphere.  By 16τm  the lithosphere is fully relaxed again.

As part of our analysis, we considered the difference in stress between treating lake

changes as instantaneous and treating them as gradual, as suggested by Waters [1983]

(Figure 3.2).  We found the difference in total Coulomb stress perturbation is small,

but the difference in Coulomb stress rate is more significant.  Fluid effects rather than

rebound effects dominate the early stress behavior after a lake level change, so

neglecting time-dependent lake level change affects stress in essentially the same way

as neglecting time-dependent pore pressure response, a scenario previously discussed

(see Section 3.2).

We calculate Coulomb stress perturbation due to the lake history shown in

Figure 3.2, between A.D. 700 – 2000.  Figure 3.7a shows Coulomb stress at Bombay

Beach for a lithosphere with hydrostatic pore pressure (γ = 1) for end member models

( H = 25 km,τm = 70 yr , blue) and ( H = 35 km,τm = 30 yr , red).  Over this period,

perturbations of ± 0.4 – 0.6 MPa are expected. Figure 3.7b shows Coulomb stress at

Bombay Beach without the effect of pore pressure (γ = 0 ).  The perturbations in

Coulomb stress are, in general, smaller and less sudden.  Figure 3.7c shows Coulomb
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stress at Indio, outside of the Lake Cahuilla shoreline and away from the effects of

pore pressure.  The perturbation magnitude is much smaller (0.2 MPa) due to

Figure 3.7  Coulomb stress perturbation from AD 700 - 2000 at (a) Bombay Beach
within the lake with full pore pressure effect (γ = 1), (b) Bombay Beach with no pore
pressure effect (γ = 0 ), and (c) and Indio outside of the lake with no pore pressure
effect.  Blue and red lines show stress from models with ( H = 25 km,τm = 70 yr ),
and ( H = 35 km,τm = 30 yr ), respectively.  Thick grey line shows timing of the lake
level changes and black stars show timing and error of the last five Southern SAF
ruptures (see Figure 3.2).
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increased distance from the deepest load.

Figure 3.8a shows the regional difference in Coulomb stress from Lake

Cahuilla (not including tectonic stress) between the most recent two southern SAF

ruptures (1502 and 1676) calculated for ( H = 25 km,τm = 70 yr ).  During this time,

the entire Lake Cahuilla region experiences an increase in modeled Coulomb stress.

Figure 3.8  Coulomb stress perturbation in MPa between the last two Southern SAF
ruptures (a and c) and since the most recent rupture (b and d) for two plausible model
H ,τm( )  pairs: ( H = 25 km,τm = 70 yr , a and b), and ( H = 35 km,τm = 30 yr , c and

d).  Positive Coulomb stress perturbation promotes failure, negative inhibits failure.
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Coulomb stress at Bombay Beach on the SAF increases by 0.2 – 0.6 MPa depending

on the effect of pore pressure.  The SJF and IF experience smaller stress increases of

0.2 - 0.4 MPa.  Figure 3.8b shows the stress perturbation since the last rupture.  Within

the lake, stress decreases due to the pore pressure effect.  Around the lakeshore,

particularly at the SJF, stress increases.  Figures 3.8c and 3.8d show Coulomb stress

perturbation between the last two ruptures and since the most recent rupture calculated

for ( H = 35 km,τm = 30 yr ).  The main differences between the two model

predictions are 1) the magnitudes tend to be higher for the shorter relaxation time, and

2) the plate deformation effect is broader for the thicker plate.

3.5  Discussion of Lake Cahuilla stress relevance

The magnitude of Coulomb stress perturbation due to the changes in the level

of Lake Cahuilla is, as expected, about 10 times smaller than tectonic loading that

occurs between major earthquakes.  It is, however, of comparable size to other effects

that have been suggested to enact triggering.  The postseismic deformation following

the 1992 Landers earthquake, for example, led to Coulomb stress changes of 0.1 - 0.2

MPa in the vicinity of the 1999 Hector Mine earthquake, contributing to its failure

[Freed and Lin, 2001].  Stress perturbation following lake level changes is certainly

large enough to contribute to the stress budget on a given fault, but it is likely to only

make an observable difference to faults that are critically stressed from tectonic

loading (late in the seismic cycle).
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We would expect events to be triggered at times of increasing Coulomb stress

following great tectonic loading (~ 1 recurrence interval since the last event).  This

could happen either: 1) shortly after lake level rise, due to an increase in pore pressure,

or 2) in the time after a lake fall, due to fault-normal extension.  Conversely, during

times of low or falling Coulomb stress, we expect periods of quiescence.  Four of the

last five events are near times of lake level change, however it is difficult to draw firm

conclusions about a physical connection due to the large error bars in both lake history

and timing of paleo-events.

Better constraints are needed for both fault slip history and lake level history to

determine if lake loading has been important in the real history of Salton Trough

seismicity.  For ruptures that occur near times of lake level change, knowing whether

the rupture happened before, during, or after lake transition is key to understanding a

possible causal relationship.  In addition, knowing the date of a paleo-event (either

seismic or lake related) to within one half-space relaxation time and understanding

which lake falls were complete or partial will help refine the influence of lithospheric

bending.  We also expect that perturbations in Coulomb stress would trigger higher

quantities of smaller events (M < 5) in addition to affecting the timing of very large

events (M > 7).  If the paleo-activity level were known with certainty, it would be an

additional source of information to evaluate the lake loading effect.

There has recently been much discussion in the literature about the need to

reconcile fault slip rates interpreted from geologic measurements with those

interpreted from geodetic ones [see Bennett et al., 2004; Matmon et al., 2005, and

references therein]. There are two timescales that affect the earthquake cycle: the
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earthquake recurrence interval, which may be tens to thousands of years, and the

Maxwell relaxation time, which may be tens to hundreds of years.  Any perturbation

of the earthquake cycle over longer geologic time periods requires another physical

mechanism beyond those considered part of the earthquake cycle.  It is over these

longer timescales that fault slip rates along the San Andreas system seem to vary.

Mechanisms that have been proposed to reconcile slip rate discrepancies include:

transfer of slip rate between the SAF and the SJF [Bennett et al., 2004], use of a more

realistic rheology and rupture history [Hetland and Hager, 2006], higher geologic slip

rate by finding more paleo-slip on faults [Oskin et al., 2007], actual variations in slip

rate caused by variations in fault strength and loading rate [Chery and Vernant, 2006],

and actual variation in slip rate by changing normal stress in response to a vertical load

[Hampel and Hetzel, 2006; Hetzel and Hampel, 2005].  The results of this study

suggest that slip rate may in fact vary over timescales greater than or equal to the

recurrence interval.  Our hypothesis that lake loads modulate the earthquake cycle is a

tenable explanation rooted in well-understood physics, and could be extended to

include other vertical loads on a broader spatial scale such as the differential load of

rising sea level on a plate boundary.

An interesting result of this analysis is the implications it suggests to the

current Salton Sea.  To control salinity and water elevation at the Salton Sea, a mid-

lake dam has been proposed by the Salton Sea Authority to isolate the northern and

southern portions of the lake, just north of Bombay Beach, which would involve some

drawdown of lake level.  Figure 3.9 shows the Coulomb stress perturbation today due

to the 1906 formation of the Salton Sea, including the effect of pore pressure.  The
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highest stresses of 0.1 MPa are within the lake itself.  This model, with

( H = 35 km,τm = 30 yr ), predicts only a slight decrease in Coulomb stress around the

margins of the lake.  While the stresses associated with the Salton Sea are smaller than

those associated with Ancient Lake Cahuilla, our analysis suggests the possible

seismic impact of sudden changes in lake level should be considered in addition to the

hazards of a dam nearby a major active fault.

This analysis makes two simplifying assumptions about pore pressure resulting

from lake level change.  First, it assumes that pore fluids can move vertically but not

horizontally.  Including horizontal flow would make the effect of pore pressure more

diffuse, decreasing its influence within the lake and increasing its influence outside the

lake boundary.  Second, we assume that the changes in pore pressure occur

instantaneously at all depths along a fault.  Percolation of pore fluids is likely to be a

time dependent diffusive process.  The error incurred by neglecting this time

Figure 3.9  Coulomb stress response in kPa since formation of the Salton Sea in 1906.
Maximum perturbation amplitude is ~ 90 kPa.
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dependence will depend on its relation to the time dependence of lithospheric

relaxation.  If the fluid-flow relaxation time is much shorter than subsurface relaxation

time from this load, then instantaneous fluid flow is a reasonable simplification.  If the

fluid-flow timescale is comparable to or longer than that of subsurface relaxation, then

their combined Coulomb stress perturbation magnitude may be smaller by up to an

order of magnitude.

Modeling lithospheric bending with an elastic plate over a viscoelastic half-

space is certainly a simplification of real subsurface rheology.  This model does not

include variations in viscosity as the geotherm increases with depth or variations in

plate thickness expected in a complex tectonic region.  Investigations at Lake

Bonneville [Bills et al., 1994] and Lake Lahontan [Bills et al., 2007], 900 km to the

northeast, inverted rebound data for viscosity and layer thickness of 7 – 10 layers and

observed distinct upper crust, lower crust, and upper mantle viscosities (1024 Pa s, 1018-

19 Pa s, and 1020-18 Pa s respectively).  However the rebound signal at those lakes is 10s

of m, more than an order of magnitude larger than the signal at Lake Cahuilla where

rebound data are best fit by a 25 – 35 km plate over a halfspace of viscosity 1019 Pa s.

Investigations of deformation following the 1938 filling of Lake Meade, 300 km to the

north-northeast, found the 0.2 m pattern of subsidence could be fit equally well by a

two-layer model (30 km elastic crust over viscoelastic half-space with viscosity 1018

Pa s) and a three-layer model (10 km elastic upper crust and a 20 km viscoelastic

lower crust with viscosity > 1020 Pa s over a viscoelastic half-space with viscosity 1018

Pa s) [Kaufmann and Amelung, 2000].  Increasing model complexity to include 10

viscoelastic layers minimally affected the fit to rebound data.  The results of these
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studies suggest that while Lake Cahuilla rebound data are likely insufficient for

detailed analysis of subsurface rheology, they are satisfactory for estimating first-order

rheologic parameters for the purpose of calculating bending stresses.

3.6  Conclusion

We have explored the possibility of stress changes due to changes in pore

pressure and isostatic rebound in response to the transient existence of Lake Cahuilla

affecting the earthquake cycle on nearby faults by hastening or delaying rupture.  Over

the last 1300 years of lake rise and fall, Coulomb stress on the southern SAF has been

perturbed 0.2 – 0.6 MPa within the lake and 0.1 – 0.2 MPa outside the lake.  This

stress perturbation is an order of magnitude smaller than Coulomb stress associated

with tectonic loading.  Therefore, lake perturbations are likely to modulate the

earthquake cycle only when faults are near critically stressed.  Though the similarity in

recurrence interval for the southern SAF and the filling/falling of Lake Cahuilla is

intriguing and the lake-related mechanisms of stress perturbation are non-trivial, firm

conclusions cannot be made without better constraints on the paleo history for the

Salton Trough region.

3.7  Appendix

3.7.1  Geological field studies

The following are descriptions of the field studies carried out between January

2006 and January 2007 around the Ancient Lake Cahuilla shoreline.  Sites were



98

identified and features measured using a variety of techniques, each described here

along with their respective sources and magnitudes of error.

We made extensive use of a dual-frequency GPS receiver (Ashtech Z-12)

sampling at 1 Hz to estimate precise ellipsoid heights of a number of site locations

relative to the known geodetic coordinates of California Real Time Network (CRTN)

sites, where coverage was available (http://sopac.ucsd.edu/projects/realtime/).  In other

locations we set up temporary 1 Hz base stations.  Using the Geodetics RTD software

in post-processing mode, we estimated receiver coordinates by instantaneous

positioning, as described by Bock et al. [2000], of about 15-60 minutes of 1 Hz data

collected at each field site.  In this approach, each epoch of 1 Hz GPS observations of

field receiver and CRTN site(s) are analyzed independently to estimate a series of 3-D

geodetic coordinates, which are then averaged using robust statistics.  Ellipsoid

heights are converted to elevations (geoid/orthometric heights) using the GEOID03

model [http://www.ngs.noaa.gov/GEOID/GEOID03/].

3.7.1.1  Surveys of tufa-covered cliffs

Along the western side of Lake Cahuilla there are several locations where the

lake was bounded by high cliffs at the edge of the Fish Creek and Santa Rosa

Mountains.  During lake highstand, tufa deposits (layers of CaCO3  deposited in warm

freshwater in the presence of blue-green algae [e.g., Nelson et al., 2005; Oglesby,

2005]) form along the cliffs at and below the waterline.  These watermarks exist today

and are easily recognized as the line between the dark outer deposit growth and the

bare rock underneath.  We measured this at three sites (Fish Creek Mountains,
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Travertine Rock, and La Quinta).  In some sections, there were two tufa substances on

the rocks:  1) an older, more friable beige layer that covered the rocks to a higher

level, and 2) a more recent sturdy black layer that covered the beige layer up to a

height of a few feet below the height of the beige layer.  The beige layer may represent

a previous highstand at a different level, or perhaps deposits from early in the lake

highstand from before it subsided.  For this study, we measured the height of the

sturdy black layer of tufa.  Though regionally the tufa line is quite flat, at close range

there is some variation in its height depending on, for example, erosion since

deposition, degree of shelter, and local wave energy.  Since we were looking for the

highest stand of the lake, we measured the height of the highest tufa within each 10-ft

section.

The heights were determined by using a leveling scope to sight to a particular

feature to determine its height above the nearby GPS receiver.  The processed GPS

height is relative to the WGS84 reference ellipsoid and has an error of less than 5 mm.

At each point, the height of the feature relative to the receiver was added to the GPS

height above WGS84 and the GEOID03 correction to determine feature height above

sea level.  For each site, a single elevation was determined as the median of the local

maximum measurements and the error is half the interquartile range.

3.7.1.2  Survey at Gas Line Road

Aerial photos of the Gas Line Road site show distinct color changes parallel to

the expected shoreline location reoccurring periodically westward (toward the Salton

Sea).  We surveyed the highest (most eastward) color change visible in the aerial
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photos and found a mostly-flat region with small (1 - 2 m) hills.  We observed a

regional delineation in the appearance of surface rocks, parallel to the 13-m National

Elevation Data Set (NED) contour (approximate expected location of the Lake

Cahuilla shoreline).  Toward the Salton Sea, surface rocks were well-rounded, grey in

color, and had a typical size of a few inches.  Away from the Salton Sea, surface rocks

were jagged, pink in color, and of the same typical size.  We interpreted the well-

rounded rocks as having spent much more time in water compared to the jagged rocks,

and we interpreted the transition point between rounded and jagged rocks as the

highest point where Lake Cahuilla waters were able to round the stones existing on its

shore.  A few hundred meters to the north, the color change visible in aerial photos no

longer marks a transition between two types of rocks.  Rather, it marks a transition

between well-rounded, grey-colored pebbles and hard-packed sand with no pebbles on

the surface.  We measured the height of these features by taking GPS measurements at

three locations along a 700 m stretch of shoreline and using a leveling scope to sight

horizontally from the GPS stations to 10 other points exactly on the edge of the

shoreline feature.

3.7.1.3  Stationary surveys of constructional berms

Constructional sand berms are formed around lake edges by deposition of

sediment carried by currents within a lake [e.g., Adams et al., 1999; Currey, 1982].

Their crest is at or near the elevation of the lake.  At four sites (Mexicali, Dry Wash,

Elmore Ranch, and Salt Creek Fan) we identified the sand berms at the shoreline from

their lighter color in aerial photography and LANDSAT images.  In the field, we



101

measured the elevation of the berm crest, away from vehicle tracks and other human

demolition of the feature.  The actual survey was conducted in the same manner as the

Gas Line Road survey, sighting from a feature to a stationary GPS receiver with a

leveling scope.  Post analysis, we found the error involved with knowing the elevation

of the berm crest is tolerably small (< 0.1 m).  The biggest problem with these sites is

constraining the relationship between berm crest elevation today and water level at the

time of lake highstand (see below).

3.7.1.4  Mobile surveys of constructional berms

At four sites (Yuha Basin, Superstition Hills, Salton City, and Southeast

Sandbar) sand berms were identified in the same manner as the stationary survey sites

(see above) but were measured in a different way.  In an attempt to expedite the

survey, we mounted a GPS receiver sampling at 1 Hz on a low stable rolling platform

that could be pulled by hand along and across the crest of a berm, ideally yielding

many more data points, all at the desired elevation over a much shorter time.  Post

analysis however, we found that in a linear mobile survey, the desired elevation signal

is somewhat masked by coexistent and unrelated dips and bumps in topography which

would be easily avoided in a static survey.  Thus the potential advantage of more data

was nullified by the noise in that data, leading to larger errors (0.1 – 0.5 m) in

elevation measurements at these sites.  As with the stationary berm surveys, this error

does not include the difficulty in constraining the relationship between berm crest

elevation today and water level at the time of lake highstand (see below).
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3.7.1.5  Cerro Prieto

The sill point at the southern end of Lake Cahuilla is the single most important

point for establishing the magnitude of vertical rebound.  To establish its location and

elevation, we first examined contours of Shuttle Radar Topography Mission (SRTM)

and National Elevation Data Set (NED) topography.  While the NED 13-m contour

closes south of Mexicali, Mexico, the SRTM 13-m contour is open between Lake

Cahuilla and the Sea of Cortez.  According to SRTM topography (3 minute

resolution), Lake Cahuilla is only isolated from the Sea of Cortez at elevations at or

below 10.0 ± 0.299 m by a narrow 2 km wide strip of land east of Cerro Prieto

volcano.  NED likely has considerable errors outside of the US so we used remotely-

derived SRTM for our analysis.  However, the SRTM may have broad errors in

elevation.

We verified the accuracy of the SRTM elevations by comparing it with both

Geoscience Laser Altimeter System (GLAS) tracks (vertical resolution < 2 cm,

[Fricker et al., 2005]) crossing the sill and GPS tracks taken from a receiver mounted

to the roof of a vehicle driving across the sill region (this study).  Based on these

comparisons, we determined SRTM elevation requires a uniform offset correction of

0.323 m in the vicinity of the sill.

3.7.2  Suggestion for improvement of data

With improved accuracy and abundance of rebound measurements, we could

acquire a more complete picture of the spatial extent and magnitude of Coulomb stress

perturbations on faults in the study region.  Currently, our least reliable data are those
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at sand berm sites.  One way to improve our understanding of these sites would be to

have LIDAR coverage with which to conduct a statistical analysis of the height, width,

and extent of the berms.  We were able to explore this potential method at Durmid

Hill, a region of tectonic uplift on the SAF east of the Salton Sea.  During Lake

Cahuilla highstands, portions of it stood above the water level as an island, and it was

covered by the B4 Airborne Laser Swath Mapping (ALSM) topography survey, flown

along the SAF and SJF with 0.5-m footprint resolution and 0.1 m height accuracy

[Bevis et al., 2005].  In these data and in the field, we observe concentric recessional

terraces spreading out from the hill.  In a histogram of the relevant section of

topographic data, we were able to identify these terraces as distinct peaks because of

the extra land at these elevations.  If we had similar data around the Lake Cahuilla

shoreline at each local setting, we could use statistical analyses to better understand

the diffusive processes involved in berm profile evolution.

In contrast to sand berm sites, tufa sites are much easier to identify and

measure with small error for several reasons: 1) unlike berms and sorted surface rocks,

tufa deposits change very little over 300 years, 2) tufa deposits extend along the entire

length of the host cliff allowing for maximum redundancy in sampling, and 3) tufa

deposits have little local variation in elevation.  However, the greatest limitation in our

shoreline elevation survey is the unknown relationship between the current elevation

of a measured feature and the water elevation at the time of lake highstand.  In the

case of sand berms, this error is caused by erosion and diffusion so that the height of

the feature today is likely not the same as it was at the time of the lake highstand.  In

the case of tufa deposits, this error is caused by the fact that the high line of tufa may
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form slightly higher or lower than the actual water level.  We expect errors of this sort

to be, at most, a few meters and count them as the most significant source of noise in

our data
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Chapter 4

Estimates of stress drop and crustal tectonic stress from the February

27, 2010 Maule, Chile earthquake: Implications for fault strength

Abstract

The great February 27, 2010 Mw 8.8 earthquake off the coast of southern Chile

ruptured a 606 km length of subduction zone.  In this study we make two independent

estimates of shear stress in the crust in the region of the Chile earthquake.  First, we

use a coseismic slip model constrained by geodetic observations from InSAR and GPS

to derive a spatially variable estimate of the change in static shear stress along the

ruptured fault.  Second, we use a static force balance model to constrain the crustal

shear stress required to support observed accretionary wedge topography and the stress

orientation indicated by the earthquake focal mechanism.  This includes the derivation

of a semi-analytic solution for the stress field exerted by surface and Moho topography

loading the crust.  We find that the deviatoric stress exerted by topography is

minimized in the limit when the crust is considered an incompressible elastic solid,

with a Poisson’s ratio of 0.5.  This places a lower bound on the critical stress state

maintained by the crust supporting plastically deformed accretionary wedge

topography.  We estimate the shear stress change from the Maule event ranged from

–6 MPa (stress increase) to 14 MPa (stress drop), with a maximum depth-averaged

shear stress drop of 4 MPa.  We separately estimate that the plate driving forces acting
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in the region, regardless of their exact mechanism, must contribute at least 15 MPa

trench-parallel compression, and trench-perpendicular compression must exceed

trench-parallel compression by at least 12 MPa.  This corresponds to a depth-averaged

shear stress of at least 7 MPa.  The comparable magnitude of these two independent

shear stress estimates is consistent with the interpretation that the section of the

megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle

relieving much of the total sustained shear stress in the crust, and an equal portion of

plate-driving stress being transmitted through the mantle.

4.1  Introduction

On February 27, 2010 an earthquake of magnitude 8.8 struck off the coast of

Maule, Chile.  At least 500 people were killed and damage to homes was widespread

across the region in the aftermath of the mainshock and subsequent aftershocks

[National Earthquake Information Center of the U.S. Geological Survey, hereafter

referred to as NEIC].  This event represents the latest release of strain energy built up

along the locked megathrust zone created by the Nazca plate subducting beneath the

South American plate at a rate of 70 mm/yr.

Low stress drops and the absence of a strong fault-related heat flow anomaly

along the San Andreas fault in California suggest that the stress stored and released

over the seismic cycle is much lower than the large in situ stresses that are both

observed in borehole measurements and predicted from laboratory faulting

experiments [e.g., Byerlee, 1978; Scholz, 2000; Zoback, 2000].  These observations

may be reconciled if faults in general, or perhaps the SAF specifically, are weak with a



111

coefficient of friction ~0.1.  However other lines of evidence, such as the angle

between the principal stress axes and a particular fault trace, have led to inconsistent

interpretations of fault friction [Hardebeck and Michael, 2004].  At subduction zones,

observations of the reactivation of outer rise normal faults have shown that while these

faults are weaker than newly formed faults, they still have coefficient of friction of

0.6, in line with the predictions of laboratory experiments [Billen et al., 2007].

Previous studies have estimated the shear stress at subduction zone

megathrusts by balancing tectonic driving stress with lithostatic pressure from

topography.  Lamb [2006] estimated the mean shear stress required to support the

elevation of the high Andes at ~37 MPa and ~15 MPa in northern and southern Chile

respectively, consistent with estimates from previous thermal modeling studies in

megathrust regions.  Of this stress, approximately even portions were transmitted

through the crust and mantle.  Seno [2009] used a similar force balance method and

estimated that mean shear stress along subduction zones is generally tens of

megapascals, with the value in northern Chile on the higher end of that range, greater

than 80 MPa.  Zhong and Gurnis [1994] used a dynamic model of developing trench

topography to estimate shear stress on subduction faults in the range of 15 to 30 MPa.

Other studies have used observations of present-day topography to constrain the

effective coefficient of friction on subduction thrusts to be less than 0.2 [Cattin et al.,

1997] or 0.03 to 0.09 [Lamb, 2006].

In this study we provide independent estimates of both the stress change on the

rupture surface from a major earthquake and the minimum crustal tectonic stress

required to support the topography immediately above that fault.  The complete
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InSAR coverage over the rupture area of the Maule event provides a unique

opportunity to derive a detailed slip model needed to estimate the spatially variable

stress change from the event.  In addition, we present a new formulation to directly

estimate the minimum 3-D stress field exerted by local surface and Moho topography,

constrained by gravity observations.  We can then determine the minimum value of

stress in the crust applied by tectonic forces required to both offset the stress exerted

by topography and maintain a stress field orientation consistent with that of the stress

released in the earthquake.  This idea is similar to previous studies that have estimated

tectonic stress by balancing the loading of topography [e.g., Lamb, 2006], but it has

the advantage of deriving its estimate from the short-wavelength topography

immediately above the ruptured megathrust region.  In this way, the estimate more

directly samples the stress in the crust at the seismogenic portion of the subduction

zone, rather than relying on stress beneath the high Andes being transmitted several

hundred kilometers back to the shallow megathrust region.  By estimating both of

these quantities independently, we have the opportunity to, in this one instance, make

a direct comparison of the stress released in a major earthquake with a lower bound on

the absolute stress present in the crust.  In doing so, we are able to constrain the

fraction of seismic stress release relative to total stress in the crust and discuss the

implications for the strength of the megathrust fault in the Maule area.

4.2  Minimum stress drop from the February 2010 Maule earthquake

The coseismic displacement from the 2010 Maule, Chile earthquake was

observed in unprecedented detail using interferometric synthetic aperature radar
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(InSAR).  Several factors contribute to the quality of these observations.  First, scene

pairs acquired with the Advanced Land Observatory Satellite (ALOS) have improved

coherence relative to those acquired from satellites operating a shorter wavelength

radar.  Second, recent processing advances allow interferograms to be made from

scenes acquired in ScanSAR mode.  This is especially important because the

descending passes made days after the mainshock were recorded in ScanSAR mode

and record the deformation along the entire coastline in a single track.  Third, because

the region of interest is a shallow dipping subduction zone, spatial variations in

coseismic slip on the fault are better mapped onto spatial variations in surface

displacement than they are when using InSAR to look at, for example, horizontal slip

on a vertical fault plane.  However, this also means the shallowest portions of the fault

lie offshore where displacement is unobservable by InSAR.  Because interferometry is

unable to determine the absolute line of sight displacement, observations of coseismic

displacement from a network of GPS stations in the region are required to constrain

the absolute offset.  (These interferograms were first published in Tong et al. [2010]

and are available, along with the slip model results, online at

ftp://topex.ucsd.edu/pub/chile_eq/chile_insar.zip).

Tong et al. [2010] inverted these geodetic data to model coseismic slip on a

single dipping plane 670 km long by 260 km wide, approximating the geometry of the

shallow megathrust with a strike N 16º E and a 15º dip to the east.  The inversion

assumes an isotropic homogeneous elastic half-space [Fialko, 2004; Okada, 1985] and

resolves in-plane slip onto rectangular patches approximately 20 km by 20 km.  The

model shows that slip occurred primarily in two patches (Figure 4.1a), predominantly
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Figure 4.1  (a) Coseismic slip model from joint inversion of GPS and InSAR data
(Tong et al. [2010]).  The magnitude and direction of slip (hanging wall motion
relative to foot wall) are indicated by the colored squares and white bars respectively.
The yellow star shows the location of the epicenter, and dashed gray line indicates the
Moho at ~40 km depth.  A non-negativity constraint was applied in the inversion of
the geodetic data to allow only thrust and right-lateral strike slip.  (b) RMS fit of
inverted slip model to geodetic observations (squares) and peak stress drop of stress
change derived from slip model (circles) as a function of nondimensional model
roughness parameter.  Peak stress drop location is at the main slip asperity north of the
hypocenter.  Increasing model roughness decreases misfit and increases peak stress
drop.  Models with roughness parameter above 10 provide an acceptable fit to
geodetic data, while models with roughness parameter above 25 cannot be justified
with geodetic observations.  This corresponds to a likely peak stress drop between 14
and 22 MPa.  The filled symbols indicate the roughness value of the stress change
model shown in Figure 4.3a.  We interpret this as a lower bound of stress drop
estimated from geodetic inversion.
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in the up-dip direction with a small component of right-lateral motion.  The largest slip

of 17 m occurred in a patch north of the epicenter, while a smaller patch south of the

epicenter slipped up to 11 m. The geodetic moment release of this model is 1.53 x 1022

Nm (Mw 8.72), compared with the seismic moment of 1.8 x 1022 Nm [NEIC].  The

smaller geodetic moment is probably due to an underestimate of slip where there is a

lack of observations offshore. Interestingly, the model indicates that coseismic slip is

confined above the Moho (~ 35 - 45 km [Sick et al., 2006; Yuan et al., 2002]), a result

that is robust to variations in assumed fault geometry [Tong et al., 2010].

We compute the static shear stress drop from the earthquake based on the

interpolated slip model using a Fast Fourier Transform (FFT) method [Andrews, 1980;

Ripperger and Mai, 2004] that neglects  the effect of the free surface boundary

condition for inclined faults.  This method has usually been used on vertical fault

planes, so we tested its efficacy on a simple shallow dipping thrust fault by comparing

the static stress drop of the FFT method with that of an exact half-space formulation

[Okada, 1992].  We found the effect of neglecting the half-space boundary condition

was at most about twenty percent near the top edge of the fault (0-3 km depth), with

the disagreement between the two solutions decreasing with depth.  Below 5 km

depth, the static stress drop estimations from the FFT and half-space methods agree

fairly well.  We then estimated the static shear stress drop in the dip-slip direction

from the full slip model (Figure 4.1a) using the FFT method.  Stress drop resolved in

the strike-slip direction may be safely neglected since the coseismic slip was

dominated by thrust motion.
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Both the fit of the slip model to the geodetic observations and the estimated

static stress drop depend on the roughness of the slip model, i.e., the second derivative

of slip on the fault plane (Figure 4.1b).  The ~20 km resolution of our slip model is

limited by the resolution of the geodetic inversion, such that increasing model

roughness only improves fit to the data up to a certain point, beyond which the data

can no longer justify the increase in model complexity.  As slip model roughness

increases, the calculated peak static stress drop also increases as the patches of slip and

stress release become more localized.  We therefore identify a range of acceptable slip

models that provide a reasonable fit to the geodetic observations.  This corresponds to

a range of likely peak stress drop, though strictly it is a lower bound on the possible

stress drop.  Figure 4.3a shows a stress drop model from within this range.  The static

stress change varies approximately from 14 MPa (stress drop) to –6 MPa (stress

increase) over the fault plane.  As expected the variation of the static stress drop

follows the variation of the slip model and a significant portion of the stress drop is

contributed from thrust motion at the northern asperity.

4.3  Minimum tectonic stress estimate from topography

Topography formation is subject to many different processes.  In the region of

the Maule earthquake, the topography may be divided by wavelength into two

portions.  The long-wavelength topography across the coast of South America (i.e.

wavelengths greater than 2π  times the depth of compensation) is dominated by the

rise from the offshore subduction trench to the high Andes and is supported by a

combination of isostatic compensation and dynamic buoyancy due to convecting
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upper mantle material.  The short-wavelength topography (i.e. wavelengths less than

~350 km) in the megathrust region is dominated by an accretionary wedge of material

scraped from the subducting slab.  This wedge is built through processes of plastic

deformation such that the state of stress supporting this topography is maintained at

the level of critical failure [Dahlen, 1990].  The height of this critical wedge

topography is limited by the portion of the lithosphere that can sustain shear stress (i.e.

the depth to the brittle-ductile transition).  Based on the observation of Tong et al.

[2010] that coseismic slip for the Maule earthquake appears to be negligible below the

fore-arc Moho, we infer that the stress state of critical plastic failure is sustained

throughout the crust in this region and that the height of the short-wavelength

topography is related to this critical stress level.

We can calculate the three-dimensional stress state exerted by the load of this

short-wavelength topography at the surface of a uniformly thick plate and the

corresponding short-wavelength buoyant load from the shape of the Moho, which can

be inferred from gravity observations (Figure 4.2, Appendix A).  We measure the

critical stress in the crust by calculating the second invariant of the deviatoric stress

tensor, i.e., the Von Mises stress.  We show in Appendix A that the smallest deviatoric

stress the wedge topography could exert in the crust is that in which the surface

topography (and its corresponding Moho topography) acts as a load on an

incompressible elastic plate.  For topography at wavelengths comparable to the crustal

thickness, this gives a lower bound on the size of the deviatoric stress sustained by the

deformed crust.  If the plastic deformation processes of topography formation preserve
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the volume of the undeformed crust, then the in situ stress state at this wavelength may

be equal to the stress state exerted by the load of topography.

However, we know more about the stress state than simply that it supports the

observed topography.  The orientation of the in situ stress tensor in the ruptured fault

region is represented by the centroid moment tensor solution of the Maule event

[NEIC].  By adding a regionally-uniform horizontal stress field (representing the

depth-averaged tectonic plate-driving stress in the crust) to the minimum topography-

supporting stress tensor, we can determine the smallest magnitude of additional stress

required to align the stress field in that region with the in situ stress orientation

indicated by the earthquake focal mechanism.  The absolute magnitude of the tectonic

stress, regardless of the physical processes generating that stress, must be at least this

big.  When resolved onto the dipping megathrust fault plane, this provides a minimum

Figure 4.2  schematic illustration of megathrust geometry showing the locked
seismogenic zone between the subducting slab and the continental crust.  3-D
calculation of minimum stress required to support the short-wavelength topography is
calculated in the region within the dashed box.  Inset schematic shows a thick plate
loaded by surface and Moho topography, the geometry used in the 3-D stress
calculation.
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estimate of the depth-averaged shear stress along the crustal plate interface.

In order to calculate the stress state exerted by topography, the surface

topography and bathymetry [Becker et al., 2009] is first high-pass filtered using a

cosine taper between spherical harmonics 100 and 140 (corresponding to wavelengths

between 300 km and 400 km).  The shape of the Moho is related to the surface

topography by flexure, constrained by observations of the gravity anomaly in the

region that have also been high-pass filtered [continent region from Pavlis et al., 2008;

ocean region from Sandwell and Smith, 2009].  For a 40 km thick crust, consistent

with the estimates of Yuan et al. [2002], Sick et al. [2006], and the CRUST 2.0 model

[Laske et al., 2001], the ~250 mGal anomaly across the region is fit to an RMS of 33

mGal with an elastic thickness of 3 km and a density of 2500 kg/m3.  This density is

likely lower than the bulk density of the crust in this region, but because the

calculation of topography stress depends only on the product of density and

topography, any set of elastic thickness and crustal density parameters that sufficiently

reproduces the gravity is an adequate representation of the spatial distribution of the

load at the Moho.

We calculate the minimum stress required to support topography along the

locked interface between the subducting slab and the overriding crust, using the same

fault geometry as the coseismic stress drop model in the previous section.  The

orientation of the minimum stress tensor along this plane is shown in Figure 4.3b,

where the stress state at each point is represented as a lower-hemisphere projection

“beachball”, with the tension principal stress axis oriented through the shaded

quadrants and the pressure axis oriented through the unshaded quadrants.  The
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compatibility of the computed stress field at each point with the stress orientation

indicated by the Maule event can be quantified by assigning each location a goodness-

of-fit value ξ ∈ 0,1[ ]  (indicated by the color of the shaded quadrant of each beachball)

such that

 
ξ =

0 if model and event stress regimes differ
v1

model ⋅ v1
event + v2

model ⋅ v2
event + v3

model ⋅ v3
event( ) 3 else

⎧
⎨
⎪

⎩⎪
(4.1)

where  
vi

model  and  
vi

event  are the eigenvectors (principal stress axes) of the 3-D stress

tensor of the model and event respectively.  The definition of stress regime involves

the plunge angle of each principal stress axis, following the convention of the World

Stress Map catalog [e.g., Zoback, 1992].  The mean of this parameter over each

location on the faultplane ξ  tests the fit of each modeled stress field.

The minimum stress needed to support the surface and Moho topography does

not predict the focal mechanism of the Maule event:  the mean fit across the faultplane

is ξ = 0.198 .  Offshore in the trench region, the minimum stress state is generally in a

thrust regime, while onshore in the coastal foothills it is in a normal or strike-slip

regime.  When this topography-only stress state is resolved into reverse-slip shear

stress on the megathrust fault plane (Figure 4.3b), we observe that the regions in

which shear stress is negative (indicating that reverse slip is not favored) strongly

correspond to the regions in which the topography-exerted stress orientation is not in a

thrust regime.
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Figure 4.3  (a) Static shear stress change from Maule, Chile earthquake derived from
slip model shown in Figure 1.  Positive (negative) shear stress values correspond to
stress release (build up).  Focal mechanism from the Maule event is shown with a line
to the mainshock hypocenter.  (b) magnitude (shading) and orientation (beachballs) of
minimum deviatoric stress field exerted by surface and Moho topography on the crust.
Magnitude is indicated as the dip-slip shear stress resolved onto the same dipping fault
plane as in (a), using the same color scale.  Positive (negative) shear stress values
indicate reverse (normal) dip-slip motion preferred.  3-D orientation of stress tensor
indicated by lower-projection beachballs calculated at depth along the dipping fault
plane.  Color of shaded quadrants indicates goodness-of-fit parameter ξ , describing fit
to focal mechanism of the Maule event.  (c) Orientation of smallest stress field capable
of both supporting short-wavelength topography and maintaining stress orientation
consistent with that of the Maule event throughout rupture region.  Color of shaded
quadrants again indicates value of ξ .  Stress field consists of that shown in (b) with an
additional 27 MPa compression at 95º EofN and 17 MPa compression at 5º EofN.
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To reconcile this stress mismatch, we add a regionally uniform horizontal

stress field, representing the sum of any applied long-wavelength tectonic forces,

consisting of three free parameters (two principal horizontal stress magnitudes and an

orientation angle of the axes), to the minimum topography-supporting stress field.  We

search this parameter space and define the conditions that maximize ξ , the fit

between the model stress field and the Maule event.  There are two requirements in

order for the combined stress field to be aligned with that of the earthquake.  First,

there must be a trench-parallel compression of at least 15 MPa above lithostatic

pressure.  Second, trench-perpendicular compression must exceed trench-parallel

compression by at least 12 MPa for a total of at least 27 MPaof trench-perpendicular

compression.  Any added stress that satisfies both of these conditions will result in a

properly oriented thrust-regime stress field along the entire megathrust faultplane.

The orientation of the stress field that includes the smallest satisfactory

additional stress (15 MPa compression at 5º EofN and 27 MPa compression at 95º

EofN) is shown in Figure 4.3c.  The mean fit of the stress field orientation improves to

ξ = 0.914  with the additional stress, indicating that most of the faultplane is now in a

stress field consistent with the orientation of the Maule event.  Though the strike and

regime of the theoretical fault planes fit well, the theoretical dip angle does not align

perfectly with the actual fault dip because our calculation has no knowledge of the

pre-existing plane of weakness that is the subducting slab interface.  Also, the oblique

rake of the focal mechanism is only fit well in the shallowest portions of the fault

where the vertical shear stress components are of comparable size to the normal stress
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components.  Deeper in the crust, where these stress components are smaller, the

slightly counterclockwise-rotated stress orientation with non-oblique theoretical rake

provides the best fit, as defined in equation 4.1, to the actual oblique focal mechanism.

A trench-perpendicular compression of 27 MPa resolved onto a 15º dipping

plane corresponds to 7 MPa of resolved reverse-slip shear stress.  This balances the

minimum value of the topography-only shear stress, ensuring that the total stress field

favors reverse dip-slip over normal dip-slip.  However ensuring a thrust regime

throughout the faultplane requires trench-parallel compression to exceed vertical

compression.  The 15 MPa of trench-parallel compression corresponds to the largest

amount by which the vertical normal stress (σ zz ) exceeds the trench-parallel normal

stress (~σ yy ) across the faultplane.  In order to maintain a properly oriented stress

field, the regional driving tectonic stress must maintain at least 12 MPa deviatoric

stress.

4.4  Discussion

The stress drop of a single earthquake can vary widely, from ~ 10-1 to 102 MPa

[e.g., Allmann and Shearer, 2009; Hardebeck and Aron, 2009].  The peak value of our

slip model-derived estimate at 14 MPa is on the higher end of this range, well above

the 3-4 MPa median stress drop estimated from the corner frequency of the seismic

spectra for a global catalog of events.  However the depth averaged stress drop

estimate of 4 MPa may be a better quantity to compare with seismic estimates of stress

drop.  This depth-averaged estimate is consistent with previous observations that
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intraplate earthquakes deep in the subducted slab in Chile have a higher stress drop

around 9 MPa, while interplate earthquakes along the contact megathrust zone

between the plates have a lower stress drop around 3 MPa [Leyton et al., 2009].

Previous studies have disagreed over whether there is any correlation between event

stress drop and event magnitude, depth, or regime.  Larger stress drops have been

associated with thrust events along the San Andreas fault in California [Hardebeck

and Aron, 2009], but a global study of stress drops found rather that stress drop is

larger for strike-slip events than thrust events, though it could be that some of the

assumptions of a seismic estimation of stress drop (e.g., a circular slip patch, constant

rupture velocity) break down for very large earthquakes [Allmann and Shearer, 2009].

The comparison of our crustal tectonic stress estimate with our stress drop

estimate from the Maule event has some implications for our understanding of fault

strength in the region.  A stress drop larger than the tectonic stress estimate would be

unphysical because the earthquake cannot relieve more stress than it has accumulated,

therefore it would be an indication that the tectonic stress estimate was too low.  If the

minimum crustal tectonic stress was much larger than the earthquake stress drop, this

would indicate that in this portion of the Chilean subduction zone the stress

perturbations associated with the earthquake cycle involve only a fraction of the

absolute stress in the lithosphere, consistent with a “strong” fault.  If the tectonic stress

and stress drop are of similar size, then this could indicate that the seismic cycle does

relieve the bulk of the above-lithostatic stress carried in the lithosphere, consistent

with a relatively “weak” fault.
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In order to directly compare resolved dip-slip shear stress estimates, we must

take the depth average of the modeled earthquake stress change through the crust (top

40 km depth, or 154 km along dip).  The along-fault depth-average shear stress drop at

the northern asperity is about 4 MPa, compared with at least 7 MPa resolved tectonic

shear stress required to support topography.  If these numbers represent the actual

stresses sustained by the fault and relieved through the seismic cycle, then our

estimates indicate a fairly weak crustal fault in which major earthquakes relieve much

of the total stress.  In this case, the bulk of the plate driving stress would be

transmitted across the plate boundary through the mantle.  A weak crustal fault would

be consistent with modeling studies that indicate a low effective coefficient of friction

(less than 0.2) is required on subduction thrust faults in order to be consistent with

observations of forearc topography [Cattin et al., 1997; Lamb, 2006].  However,

because these are both strictly minimum estimates we cannot say for sure that the

Chilean subduction thrust is weak.  We rather conclude that the only way the Chilean

subduction thrust can be strong is if the tectonic stress magnitude in the crust is much

larger than the minimum stress required to sustain the observed topography and stress

regime, meaning a substantial portion of plate driving stress is transmitted through the

crust.

Our tectonic mean crustal shear stress estimate is a minimum for two reasons.

First, the assumption of material incompressibility calculates the stress state with the

smallest possible deviatoric stress that the topography as a load could exert, such that

our calculation of the short-wavelength stress is a minimum.  However such an

assumption may be appropriate when considering the support of short-wavelength
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topography.  Dahlen [1981] proposed that the deviatoric stress in unflexed regions of

oceanic lithosphere is the minimum state required to support topography and found

that this corresponded to the case of an incompressible material, though this was not

explicitly stated.  If this is the case, then our calculation may closely estimate the

variations in the magnitude of sustained stress at this wavelength.

The second reason our mean crustal shear stress estimate is a minimum is

because we have made no assumptions about the forces responsible for advancing the

slab toward subduction.  Any stress responsible for net plate motion that is sustained

through the crust must be in addition to the minimum long-wavelength stress we have

identified as necessary to support the observed topography and stress regime.  It is

interesting that our minimum estimate of crustal shear stress is about half that of

previous estimates of tectonic shear stress throughout the entire plate that focused on

the balance of long-wavelength topography with tectonic stress [Lamb, 2006; Seno,

2009; Zhong and Gurnis, 1994].  This could indicate that plate strength is equally

proportioned through the crust and mantle, but with the mantle portion being

principally responsible for gross plate motion and the crustal portion primarily

maintaining the topography and seismogenic cycle.

We observe that the slip distribution from this event occurred just north of the

extent of the slip from the 1960 event [Barrientos and Ward, 1990].  This is in a

region with a high positive gravity anomaly, particularly in comparison to the region

of the 1960 event further south.  This appears inconsistent with the observations of

Song and Simon [2003] that great earthquakes tend to occur in regions of strongly

negative trench parallel gravity anomaly (TPGA) while regions of high TPGA should
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be relatively quiescent.  It is possible that the processes governing the spatial variation

in frictional properties that may be responsible for prior observations of this

correlation across several subduction zones globally are not operating in this region.

More likely the gravity high present here onshore and along the coast is indicative of

the transition to continental crust, such that the observations of Song and Simon [2003]

are limited to the offshore near-trench portions of subduction zones.

4.5  Conclusions

In this study we have made two independent estimates of shear stress in the

crust in the region of the Mw 8.8 Maule, Chile earthquake.  In the first, we have

combined observations from InSAR and GPS to develop a coseismic slip model for

the event and used this model to calculate the spatially variable static shear stress

change along the fault from the rupture.  We estimate the stress change from this event

varied between –6 MPa (stress increase) to 14 MPa (stress drop).  When averaged

through the crust, this corresponds to a maximum shear stress drop of 4 MPa.

In the second, we have calculated the stress field exerted by surface and Moho

topography loading the crust and have related that to the critical stress level sustained

in the support of the accretionary wedge topography in the rupture region.  We

observe that long-wavelength plate-driving forces, regardless of their exact

mechanism, must contribute at least enough stress in the crust to both support the

observed topography variations and ensure the 3-D orientation of the stress field is

consistent with that indicated by the focal mechanism of the Maule event.  We can

therefore identify the following constraints on the tectonically applied stress in the
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crust at this location:  trench-parallel compression must be at least 15 MPa, and trench

perpendicular compression must exceed trench parallel compression by at least 12

MPa for a total of at least 27 MPa of trench-perpendicular compression.  When

resolved into dip-slip shear stress on the subduction fault plane, this corresponds to a

mean crustal shear stress of at least 7 MPa.

The comparable magnitudes of these two independent estimates suggests that

the seismic cycle relieves a quantity of stress similar to that required to sustain the

observed topography and stress orientation, consistent with a weak megathrust fault.

The fault may be stronger if the additional driving stress responsible for gross plate

motion is transmitted through both the crust and mantle, as opposed to solely through

the mantle.  These observations are consistent with previous studies that estimate a

low coefficient of friction for subduction faults as well as low mean shear stress along

the subduction interface of southern Chile in particular.  Detailed geodetic imaging of

the coseismic slip from the Maule event as well as the development of a force balance

model derived specifically to constrain the magnitude of crustal tectonic stress has

allowed us to specifically investigate the stress state in a narrow geographic region.

We are thus able to place strict lower bounds on the absolute magnitude of the

deviatoric stress in the lithopshere at this location.

4.6  Appendix

4.6.1  Method and boundary conditions

This appendix contains the derivation of the 3D stress field generated by top

and bottom loading of an elastic plate of thickness h .  Solutions to the Boussinesq
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problem for balancing vertical tractions on a surface were originally developed for an

elastic halfspace [Boussinesq, 1885; Steketee, 1958].  More recently, similar methods

have been followed to derive solutions for balancing vertical tractions on the surface

of an elastic plate overlying a viscoelastic halfspace[Luttrell and Sandwell, 2010;

Luttrell et al., 2007; Smith and Sandwell, 2004].  Here we again follow the approach

of Steketee [1958] to solve a Boussinesq-like problem in which we apply two distinct

loads to the surfaces of an elastic plate.

The model is semianalytic in that the Green’s function stress from a vertical

point load at the top and bottom of the plate is analytically derived (below) and then

numerically convolved with the actual 2-D shape of the load to get the 3-D stress field.

This method of calculation is advantageous because it is numerically efficient, though

it does require the vertical structure of the model earth to be simple.  The loads at the

top and bottom of the plate ( f x, y( )  at z = 0  and g x, y( )  at depth z = h , respectively)

may be arbitrarily intricate and need not be related, though Moho shape is generally

related to surface topography through flexure.  The only restrictions on the loads come

from the Fast Fourier Transform convolution, which requires that the zero-

wavenumber component of the force be zero and that the computational region be

wider than the longest wavelength we are interested in.  The compensation of very

long-wavelength loads can be adequately described by thin plate flexure, while the

compensation of short-wavelength loads can be described by an elastic halfspace.  We

are primarily interested in the intermediate-wavelength loads between these domains.

The response of a plate to a vertical point load is radially symmetric, therefore

only four boundary conditions are needed to describe the system.  Shear tractions must
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vanish at the surfaces and vertical normal tractions are defined by the applied loads.

We treat the distributed loads as horizontally varying but applied at a single depth.

 σ xz
x,0( ) = 0 (4.A1.1)

 σ xz
x,h( ) = 0 (4.A1.2)

 σ zz
x,0( ) = − f x( ) (4.A1.3)

 σ zz
x,h( ) = −g x( ) (4.A1.4)

Stress is positive in extension and negative in compression, and z  is positive up.  If

 f
x( )  and  g

x( )  are positive numbers, both applied normal stresses are compressive

(negative).  Note that despite the inherent radial symmetry of the problem, we

continue the derivation in Cartesian coordinates for simplicity, and note here that

additional boundary conditions requiring the other vertical shear stress σ yz  also vanish

are appropriate but redundant.  Numerical FFTs are done in Cartesian coordinates on a

global one-minute Mercator-projected grid divided into strips of latitude, and

individual strips are merged using a cosine taper to reduce any effect from latitude

seams.
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4.6.2  Stress in a thick elastic plate

As in Luttrell and Sandwell [2010], we let displacement and stress be a

function of the Galerkin vector potential Γ i ,

ui = Γ i,kk −αΓ k ,ki , (4.A2)

σ ij = λ 1−α( )δ ijΓ l ,kkl + µ Γ i,kkj + Γ j ,kki( ) − 2µαΓ k ,kij , (4.A3)

where α  is a constant yet to be determined and stress above the lithostatic state σ ij

has been related to strain and displacement ui  through an elastic constitutive equation

with Lamé parameters λ  and µ .  Note that we use the standard summation notation,

such that a variable with a single subscript is a vector, a variable with two subscripts is

a tensor, a repeated index indicates summation over the coordinates, and an index

following a comma indicates differentiation with respect to that coordinate.  Because

the applied point loads are purely normal and applied on a horizontal free surface, we

need only retain the third component of the Galerkin vector, such that Γ x = Γ y = 0

and Γ z = Γ , which we call the Galerkin potential.

When the equilibrium equations for a body in the absence of internal body

forces or acceleration σ ij , j = 0  are written in terms of the Galerkin potential, we find

that by letting α = λ + µ( ) λ + 2µ( ) , the Galerkin potential must satisfy the
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biharmonic equation ∇4Γ = 0 .  After taking the 2-D horizontal Fourier transform of

this equation, the solution form is recognized as

 
Γ

k , z( ) = A + Bβz( )eβz + C + Dβz( )e−βz , (4.A4)

where 
 
β = 2π


k = 2π kx

2 + ky
2  is the horizontal wavenumber and A, B,C, D( )  are

coefficients to be determined by the boundary conditions (equation 4.A1).

We may now express the components of the stress tensor (equation 4.A3) in

terms of the Young’s modulus E , Poisson’s ratio ν , horizontal wavenumber, and the

Galerkin potential coefficients.  The stress components relevant to the boundary

conditions (equation 4.A1) are

 
σ xz


k , z( ) = −iπ kx

Eβ 2

1−ν 2

A + B 2ν + βz( )( )eβz +

C + D −2ν + βz( )( )e−βz

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(4.A5.1)

 
σ zz


k , z( ) = Eβ 3

2 1−ν 2( )
−A + B 1− 2ν − βz( )( )eβz +

C + D 1− 2ν + βz( )( )e−βz

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(4.A5.2)

This system of four equations and four unknowns can now be solved using a computer

algebra system (Mathematica).  The coefficients of the Galerkin potential are found to

be
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Φ =
ν 2 −1

Eβ 3 1+ 2β 2h2 − cosh2βh( ) (4.A6.1)

 

A = Φ
f

k( ) −2ν 2βh + sinh2βh( ) + −2ν 1− cosh2βh( )− 2β 2h2( )⎡⎣ ⎤⎦ +

g

k( ) 4ν βhcoshβh + sinhβh( ) + 2 1− 2ν( )βhsinhβh⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A6.2)

 

B = Φ
f

k( ) 1− cosh2βh( ) + 2βh + sinh2βh( )⎡⎣ ⎤⎦ +

g

k( ) 2βhsinhβh − 2 βhcoshβh + sinhβh( )⎡⎣ ⎤⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(4.A6.3)

 

C = Φ
f

k( ) −2ν 2βh + sinh2βh( )− −2ν 1− cosh2βh( )− 2β 2h2( )⎡⎣ ⎤⎦ +

g

k( ) 4ν βhcoshβh + sinhβh( )− 2 1− 2ν( )βhsinhβh⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A6.4)

 

D = Φ
f

k( ) 1− cosh2βh( )− 2βh + sinh2βh( )⎡⎣ ⎤⎦ +

g

k( ) 2βhsinhβh + 2 βhcoshβh + sinhβh( )⎡⎣ ⎤⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(4.A6.5)

When substituted back into equations 4.A4 and 4.A3, the six components of

the stress tensor can be written as

 

σ xx kx ,ky , z( ) = f

k( ) kx

2


k

2 Cf − Sf( ) − 2νSf

ky
2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+g

k( ) kx

2


k

2 Cg − Sg( ) − 2νSg

ky
2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A7.1)
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σ yy kx ,ky , z( ) = f

k( ) ky

2


k

2 Cf − Sf( ) − 2νSf
kx

2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+g

k( ) ky

2


k

2 Cg − Sg( ) − 2νSg
kx

2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A7.2)

 
σ zz kx ,ky , z( ) = f


k( ) −Cf − Sf⎡⎣ ⎤⎦ + g


k( ) −Cg − Sg⎡⎣ ⎤⎦ (4.A7.3)

 

σ xy kx ,ky , z( ) =
kxky

k

2 f

k( ) Cf − Sf + 2νSf⎡⎣ ⎤⎦ + g


k( ) Cg − Sg + 2νSg⎡⎣ ⎤⎦{ } (4.A7.4)

 
σ xz kx ,ky , z( ) =

ikx
k

f

k( ) ′Sf + g


k( ) ′Sg⎡⎣ ⎤⎦ (4.A7.5)

 
σ yz kx ,ky , z( ) =

iky
k

f

k( ) ′Sf + g


k( ) ′Sg⎡⎣ ⎤⎦ (4.A7.6)

where 
 


k = kx ,ky( )  is the horizontal wavenumber, ν  is Poisson’s ratio, and depth

dependence for the normal stress components and the horizontal shear stress

components is given by the transfer functions

Cf =
2β 2hζ coshβz − βzsinhβz − βzsinhβ h +ζ( )

1+ 2β 2h2 − cosh2βh
(4.A8.1)
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Cg =
2β 2hz coshβζ − βζ sinhβζ − βζ sinhβ h + z( )

1+ 2β 2h2 − cosh2βh
(4.A8.2)

Sf =
2βhsinhβz + coshβz − coshβ h +ζ( )

1+ 2β 2h2 − cosh2βh
(4.A8.3)

Sg =
2βhsinhβζ + coshβζ − coshβ h + z( )

1+ 2β 2h2 − cosh2βh
(4.A8.4)

where z  is the depth from the top of the plate and ζ = h − z  is the distance from the

bottom of the plate.  The transfer functions related to the bottom load 
 
g

k( )  are depth-

inverted versions of those related to the top load 
 
f

k( ) , such that any occurrence of z

and ζ  are interchanged.  The transfer functions for the vertical shear stress

components are related to those in equation 4.A8 by derivatives with respect to depth,

such that

′S f ,g( ) = − 1
β

d
dz

C f ,g( ) + S f ,g( )⎡⎣ ⎤⎦ . (4.A9)

4.6.3  Benchmarks of limit cases

We numerically compared the stress solutions above to those of Love [1929]

for a point load in an elastic halfspace, and confirmed that stress calculations match to
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within a factor of 10−3 .  We also show that in the long wavelength limit, these

solutions reduce to the 2D stress solutions for a thin elastic plate in which topography

is exactly Airy compensated, such that g x, y( ) = f x, y( ) .  We can simplify the full 3-D

solution for the Airy compensation case where g x, y( ) = f x, y( ) , such that the stress

solution given in equations 4.A7 – 4.A9 reduces to

 

σ xx = f

k( ) kx

2


k

2 C − S[ ]− 2νS
ky

2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A10.1)

 

σ yy = f

k( ) ky

2


k

2 C − S[ ]− 2νS kx
2


k

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(4.A10.2)

 
σ zz = f


k( ) −C − S[ ] (4.A10.3)

 

σ xy = f

k( ) kxky

k

2 C − S + 2νS[ ] (4.A10.4)

 
σ xz = i kx

k
f

k( )S ' (4.A10.5)

 
σ yz = i

ky
k

f

k( )S ' , (4.A10.6)
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with transfer functions given by

C = βζ coshβz + βz coshβζ
sinhβh + βh

(4.A11.1)

S = sinhβz + sinhβζ
sinhβh + βh

(4.A11.2)

′S = − 1
β

d
dz

C + S[ ] (4.A11.3)

In the limit as β → 0 , the transfer function for the vertical shear stresses ′S

approaches zero, while the transfer functions for the horizontal shear stress and normal

stresses, C  and S , both approach 1 2 .  The long wavelength stresses, therefore,

become

 

σ xx = − f

k( )ν ky

2


k

2 , (4.A12.1)

 

σ yy = − f

k( )ν kx

2


k

2 , (4.A12.2)
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σ xy = f

k( )ν kxky


k

2 , (4.A12.3)

with the applied load 
 
σ zz = − f


k( )  and the vertical shear stresses σ xz = σ yz = 0 .  These

are the Cartesian stresses for a load within a thin elastic plate [e.g., Dahlen, 1981].

Based on these three benchmark comparisons, we are confident that the more general

3-D solution is correct.

4.6.4  Minimum deviatoric stress in a loaded elastic plate

The solutions of equation 4.A7 serve as Green’s functions allowing the full 3-

D stress tensor to be computed by a simple convolution in the Fourier domain.  We

seek the conditions for which the deviatoric stress given by this solution is minimized.

The second invariant of the deviatoric stress tensor τ ij = σ ij −
1
3
σ kk  is given by

IIτ =
1
6

σ xx − σ yy( )2
+ σ xx − σ zz( )2 + σ yy − σ zz( )2⎡

⎣
⎤
⎦ +σ xy

2 +σ xz
2 +σ yz

2 (4.A13)

In terms of the transfer functions of equations 4.A8-4.A9, this becomes

 

IIτ =
1
3

3 f

k( )Cf + g


k( )Cg( )2

− 3 f

k( ) ′Sf + g


k( ) ′Sg( )2

+ f

k( )Sf + g


k( )Sg( )2

1− 2ν( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(4.A14)
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which is minimized when ν = 1 2 , corresponding to an incompressible elastic solid.

Dahlen [1981] similarly showed that in the 2-D case, the second invariant of the

deviatoric stress from Airy compensated topography at mid-ocean ridges was

minimized for ν = 1 2 , though this was never explicitly stated.  Our analysis extends

the results of Dahlen [1981] to three dimensions.  Note that the form of the second

invariant is the same as the stress used to define the von Mises yield condition.

Therefore if the material has an elastic-plastic rheology and it has been stressed to its

yield strength, then the minimum stress used in our models is also the maximum stress

that can be maintained in the crust.

The dimensionless Green’s functions for an Airy compensated load

 
g

k( ) = f


k( )  on an incompressible elastic plate at depth z =

h
4

 are shown in Figure

4.A1.  The wavenumbers have been scaled by the plate thickness h  and the stress

components have been scaled by the applied load 
 
f

k( ) .  In the long-wavelength

(zero-wavenumber) limit, the vertical shear stresses are zero and the vertical normal

stress is the same as the size of the applied load.  At this same limit, the horizontal

stress components no longer depend upon the size of the horizontal radial

wavenumber 
 


k , but rather only depend upon the relative sizes of the two horizontal

wavenumber components kx  and ky , consistent with stress in a thin elastic plate.  In

the short-wavelength (infinite-wavenumber) limit, all stress components go to zero.
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Fortran code to calculate the 3-D stress field due to an arbitrary surface

topography load is provided at  the following ftp location

(ftp://topex.ucsd.edu/chile_topo_stress).

Figure 4.A1  Contours of Green’s functions for each 3D stress tensor component
assuming an Airy compensated load 

 
g

k( ) = f


k( )  on an incompressible elastic plate

ν =
1
2

 at depth z =
h
4

.  Dimensionless horizontal wavenumber is scaled by the plate

thickness h , and the dimensionless stress values are scaled by the size of the load

 
f

k( ) .  The Green’s functions of the vertical shear stress components σ xz  and σ yz  are

purely imaginary, so the imaginary component is plotted.
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Chapter 5

Constraints on 3-D stress in the crust from support of mid-ocean

ridge topography

Abstract

The direction of crustal stresses acting at mid-ocean ridges is well

characterized, but the magnitude of these stresses is poorly constrained.   We present a

method by which the absolute magnitude of these stresses may be constrained using

seafloor topography and gravity.  The topography is divided into a short-wavelength

portion, created by rifting, magmatism, and transform faulting, and a long-wavelength

portion associated with the cooling and subsidence of the oceanic lithosphere.  The

short-wavelength surface and Moho topography are used to calculate the spatially

varying 3-D stress tensor in the crust by assuming that in creating this topography, the

deviatoric stress reached the elastic-plastic limiting stress; the Moho topography is

constrained by short-wavelength gravity variations.  Under these assumptions, an

incompressible elastic material gives the smallest plastic failure stress associated with

this topography.  This short wavelength topographic stress generally predicts the

wrong style of earthquake focal mechanisms at ridges (i.e., normal) and transform

faults (i.e. strike-slip).  However, the addition of an in-plane regional stress field is

able to reconcile the combined crustal stress with both the ridge and transform focal

mechanisms.  By adjusting the magnitude of the regional stress, we determine a lower
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bound for in situ ridge-perpendicular extension of 25 to 40 MPa along the slow-

spreading mid-Atlantic ridge, 40 to 50 MPa along the ultra slow-spreading ridges in

the western Indian ocean, and 10 to 30 MPa along the fast-spreading ridges of the

southeastern Indian and Pacific oceans.  Furthermore we constrain the magnitude of

ridge-parallel extension to be between 4 to 8 MPa in the Atlantic ocean, -1 to 7 MPa in

the western Indian ocean, and –1 to 3 MPa in the southeastern Indian and Pacific

oceans.  These observations suggest that a deep transform valley is an essential feature

of the ridge-transform spreading center.

5.1  Introduction

The more than 50,000 km long global mid-ocean ridge is the morphologic

result of rifting, magmatism, and transform faulting associated with seafloor spreading

driven by plate tectonic forces.  The magnitude of the resistive stresses needed to

produce spreading and the associated topography is poorly constrained, especially

along the remote ocean ridges where in situ stress measurements are largely

unavailable [Heidbach et al., 2008].   Bathymetry and gravity are two global data sets

that could be used to constrain crustal stress in the spreading environment.  To first

order, the cross sectional shape of the spreading axis has either an axial valley or axial

high depending on spreading rate and magma supply [Macdonald, 1982; Small and

Sandwell, 1994].  Along slower spreading ridges, the axial valley is often shallower at

the center of a ridge segment and systematically deepens towards the adjacent ridge-

transform intersections [Blackman and Forsyth, 1989].  First order ridge segments are

usually oriented perpendicular to the spreading direction and are offset by transform
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faults with a characteristic spacing that also depends on spreading rate [Macdonald et

al., 1988].  Second-order offsets in some cases overlap and curve toward one another

in the overlapping section.  Most of these features seem to be spreading rate dependent

[e.g., Chen, 1992; Chen, 1996; Dick et al., 2003; Purdy et al., 1992; Sandwell and

Smith, 2009; Small and Sandwell, 1994].

In regions where adjacent offset ridges are connected by an orthogonal

transform fault, that transform often coincides with a deep valley [Gregg et al., 2007].

These deep oceanic transform valleys exhibit some of the steepest topography

gradients anywhere on Earth’s surface.  It has long been the subject of debate whether

transform faults at mid-ocean ridges are necessarily inherited structures from the pre-

rifted plate or whether these features can evolve emergently from the processes that

incite ridge development [e.g., Choi et al., 2008; Gerya, 2010; Oldenburg and Brune,

1972; Sandwell, 1986].  Though recent studies have been able to identify emergent

origins for a ridge-transform spreading morphology, none have reproduced the

consistently deep topography of transforms.

While much is known about the orientation of the stress field at mid-ocean

ridges, less is known about its magnitude.  Primary observations of principal stress

axes indicated by focal mechanisms show that the stress field at mid-ocean ridges is

primarily 2-D and dominated by ridge-perpendicular extension.  However

Gudmundsson [1995] showed that various morphological characteristics of ridge-

transform systems are better explained when the long-wavelength component of stress

at mid-ocean ridges is one of biaxial extension, with both ridge-perpendicular and

ridge-parallel stresses, rather than uniaxial extension in the ridge-perpendicular
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direction alone.  Possible origins of this ridge-parallel component include thermal

stress [Choi et al., 2008; Sandwell, 1986], flexural stress response to changes in

spreading direction [Pockalny et al., 1996], and plane stress resulting from isostatic

compensation of the long-wavelength topography [Neves et al., 2004].  Several studies

have worked to constrain the ratio of ridge-normal stress to transform shear stress

using the observations of ridge axis curvature towards a ridge-transform intersection

[e.g., Grindlay and Fox, 1993; Phipps-Morgan and Parmentier, 1984], and more

recent models have related the ratio of ridge-parallel thermal stress to ridge-

perpendicular spreading-induced stress to spreading-rate dependent expressions of

ridge-transform intersection morphology [Choi et al., 2008].  While these forward-

modeling studies help identify and describe the physical mechanisms guiding the

evolution of ridge transform systems, they generally only refer to relative stress

quantities and are unable to constrain the absolute magnitude of stress.

The aim of this study is to establish absolute constraints on the size of the long

wavelength stress field along the entire global mid-ocean ridge, both the ridge-

perpendicular and ridge-parallel components.  We do this by estimating the absolute

stress field associated with short-wavelength variations in bathymetry, including the

ridge crest, median valley, and low transform valley.  This estimate assumes that

spreading plate boundary topography is critically strained beyond the plastic limit such

that the actual stress state is the minimum deviatoric stress necessary to support the

topography [e.g., Dahlen, 1981], which is an end member of the stress in a thick

elastic plate loaded by topography.  Part of this calculation also involves a global

gravity flexure analysis to determine the variation of the elastic thickness parameter
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along the global mid-ocean ridge and constrain the strength of the brittle oceanic

lithosphere.

Based on this stress estimate, we may place absolute upper and lower

constraints on the magnitude of long-wavelength ridge-parallel stress, whether in

compression or extension, and an absolute lower bound on the magnitude of ridge-

perpendicular extension.  We do this by requiring the total deviatoric stress field along

ridge or transform segment to be in a normal or strike-slip stress regime, respectively,

consistent with the observations of earthquake focal mechanisms.  The dominant

factor in this analysis is the relative depth of the ridge and transform bathymetry

across a particular region, but it is also sensitive to other local bathymetric features

such as the presence of flanking bathymetric highs and the curvature of spreading

segments at ridge-transform intersections.

Through our analysis we find a spreading rate dependence for the long-

wavelength stress components such that the strength of the oceanic lithosphere, the

magnitude of ridge-parallel extension, and the magnitude of ridge-perpendicular

extension are all systematically higher at slower spreading centers and lower at fast

spreading centers.  Another result of our analysis is the suggestion that the low

bathymetry observed at transform zones is a necessary feature of ridge-transform

morphology, playing an important part in the mechanics of the region. The absolute

magnitude of plate boundary forces has implications for efforts at modeling specific

regional processes.
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5.2  Short- and long-wavelength stress at ridges and transforms

A mid-ocean ridge consists of alternating segments of uplifted spreading ridge

axis with stress in a normal regime and low, slipping transforms with stress in a strike-

slip regime.  If we initially assume that principal axes of the 3-D in situ stress tensor

are aligned so that they are approximately vertical σ v , ridge-perpendicularσ⊥ , and

ridge-parallel  σ  , then the stress state at the normal ridge axis requires

 σV < σ  < σ⊥ (5.1)

while the stress state at the transform offsets requires

 σ  < σV < σ⊥ (5.2)

where stress is positive in extension.  We then divide the stresses into a short-

wavelength topography-related component σ topo  and a long-wavelength plate-driving

component Δσ , and find

 σVtopo < σ topo + Δσ  < σ⊥ topo + Δσ⊥ (5.3)

at the ridges and

 σ topo + Δσ  < σVtopo < σ⊥ topo + Δσ⊥ (5.4)
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at the transforms.  If we then assume the long-wavelength stress components are

uniform across adjacent ridge and transform segments, then by calculating the

components of short-wavelength topography stress we can place the following

constraints on the size of the long-wavelength stress components:

 
σVtopo − σ topo( )ridge

< Δσ  < σVtopo − σ topo( )transform
(5.5)

 

Δσ⊥ > σ topo + Δσ  − σ⊥ topo( )ridge

Δσ⊥ > σVtopo − σ⊥ topo( )transform

(5.6)

The condition on the ridge-perpendicular stress can always be met by increasing its

value.  Therefore this analysis can only place a lower bound on ridge-perpendicular

stress.  The ridge-parallel component, however, is constrained on both sides by the

topography stress components at the ridge and transform segments.  To first order,

both constraints are satisfied when the depth of the transform valley exceeds the depth

of the ridge axis (axial valley or axial high).  However, they are also sensitive to other

local bathymetric features, such as the presence of flanking bathymetric highs and the

curvature of spreading segments, because it is the difference between the vertical and

ridge-parallel components of the short-wavelength stress variations that makes up the

key constraint.
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The first step to estimating these bounding stress values is to divide the in situ

stress field in the lithosphere into a short-wavelength component and a long-

wavelength component.  The unknown long-wavelength portion is comprised of all

the stresses resulting from plate driving, including ridge push, slab pull, basal traction,

etc., and may be safely assumed to be regionally homogeneous over the scale of

individual adjacent ridge-transform segments, ~300 km or less.  Specifically at the

mid-ocean ridge, this long-wavelength component may be identified with the ridge

push force.  (It is most convenient to consider the lithostatic component of the stress

field separately from the deviations from the lithostatic state, and any reference to the

total stress field or long-wavelength component of the stress field throughout this

study should be interpreted as the total or long-wavelength portion of the non-

lithostatic component of the stress field.)  The short-wavelength component of the in

situ stress field consists of all the local processes of buoyant uplift, failure by brittle

faulting or magmatic extension, gradual thermal cooling, etc., that define the

individual characteristics of each ridge, transform, or non-transform offset segment.

Though the long- and short-wavelength physical mechanisms may not be truly

independent over geologic time, at a given instant (e.g., the present day) we may

calculate their effects independently and superpose them linearly to infer the in situ

stress state.

We assume that the short-wavelength (segment scale or less) variations in the

stress field are expressed in the topographic features in the same spectral band, such

that the stress field variations at this wavelength may be uniquely identified by the

topographic structure.  At mid-ocean ridges, the topographic features in this



153

wavelength band include the ridge crests, the axial highs or valleys, the low transform

valleys and fracture zones, and the adjacent transform-flanking ridges.  These features

form over time through a complicated sequence of brittle and plastic deformation

events that can be difficult to forward-model [e.g., Buck et al., 2005; Chen, 1996;

Macdonald et al., 1996; Menard, 1984; Pockalny et al., 1996].  However, regardless

of the exact nature of this deformation, we assume that deformation at the active mid-

ocean ridge plate boundary has reached a critical plastic limit such that the topography

could not be any greater, and any additional applied stress would result in gross plate

motion.

We must then determine the stress field that is supporting the short-wavelength

topography, assuming it has reached a plastic limit.  The height of the topography is

set by the depth to the brittle-ductile transition, as only stresses in the brittle portion of

the lithosphere will be sustained long-term.  In the oceans, this transition is coincident

with the 600º C isotherm which, depending on spreading rate and the presence of any

hydrothermal cooling processes, may be as shallow as 3 km or as deep as 13 km [e.g.,

Gregg et al., 2007], but largely coincides with the thickness of the crust near spreading

ridges [Buck et al., 2005].  For our purposes, therefore, the Moho may be considered

the depth of compensation for this topography, such that all short-wavelength

topography-supporting stress is sustained above this depth.  If we assume that oceanic

crust deforms according to an elastic-perfectly-plastic rheology, then the stress state

supporting the observed topography at the critical elastic-plastic transition may be

calculated by considering the elastic plate stresses associated with that topography.
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We calculate the short-wavelength stress variations from topography within a

finite thickness elastic plate that is loaded at its surface and base using a semi-analytic

model (see Appendix A).  The surface load is the weight of the observed short-

wavelength topography, including the weight of the seawater above.  The base load is

that of the buoyant forces acting at or near the depth of compensation, including

principally the compositional buoyancy above the actual Moho but also including any

thermal buoyancy acting at these scales.  As a force balance problem, the weight of the

surface topography must be supported either by the buoyancy at the depth of the Moho

or by the strength of the oceanic crust.  For plastic failure, the critical quantity is the

second invariant of the deviatoric stress tensor, sometimes known as the Von Mises

stress.  For an elastic stress state, this invariant quantity depends only on the applied

loads and the Poisson’s ratio of the material.  A material with a Poisson’s ratio of 0.5,

corresponding to an incompressible elastic solid, has the smallest possible Von Mises

stress associated with a given load [Luttrell et al., 2010].  Because we intend to

establish firm constraints on the absolute magnitude of the in situ stress state at the

mid-ocean ridge, we proceed by calculating the stress state in an incompressible

material so that the lower bounds we calculate may be taken as a firm minimum.

We can then use the pattern of local stress variations to determine constraints

on the size of the long-wavelength stresses, as in equations 5.5 and 5.6.  Figure 5.1

illustrates this schematically.  The gray shaded bathymetry shown is from a region of

the southern mid-Atlantic ridge.  The colored regions are defined by contours of high-

pass filtered bathymetry at a 300 m interval, such that the high red regions are at least

300 m above the low blue regions and at least 600 m above the very low purple
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regions.  At both the low ridge axis and transform valley, the stress state from

topography would be in a thrust regime with orientation determined by the geometry

of the adjacent high topography.  The long-wavelength stress across the entire region

is likely one of ridge-perpendicular extension with a normal regime.  This extension

must be large enough that the total regime at the ridge axis is normal, but not so large

that the total regime at the transform also becomes normal.

Figure 5.1  Schematic of short- and long-wavelength stress orientations at mid-ocean
ridge and transform segments.  Gray shaded bathymetry shown for a small region of
the south Atlantic (within subregion 14 in Figure 5.2).  Contours of high-pass filtered
bathymetry are shown as shaded regions, with red, blue, and purple indicating high,
low, and very-low regions respectively.  Contour interval is 300 m.  Black line
indicates the plate boundary.  Schematic focal mechanisms illustrate the individual
orientations of short- and long-wavelength stress components, as well as the total
stress, at both ridge and transform segments.
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5.3  Methods

We begin by identifying the wavelengths of topography that can be related to

the stress state in the crust.  We high-pass filter the bathymetry [Becker et al., 2009]

and gravity data [Sandwell and Smith, 2009] between spherical harmonics 100 and

140, corresponding to wavelengths between 300 and 400 km.  This is long enough to

include all the flexural features of the lithosphere, but short enough to remove the

effects of any deep mantle processes.  We then determine the best single depth

location and approximate shape of the buoyant load at the depth of compensation by

Figure 5.2  Spreading rate along the global mid-ocean ridge [DeMets et al., 2010] and
plate boundaries and subregions considered in this study.  The numbers in each box
correspond to the regions listed in Tables 5.1 and 5.3.  Labels correspond to major
tectonic plates:  NOAM – North American, EURA – Eurasian, SOAM – South
American, AFRC – African, ANTA – Antarctic, INDI – Indian, AUST – Australian,
PCFC – Pacific, NAZC – Nazca, and COCO – Cocos.
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calculating the gravity field from a plate whose base load is related to the surface load

through flexure (Appendix B; [Watts, 2001]).  Modeled gravity is then compared to

gravity observations at locations that are both within 30 km of the plate boundary and

where bathymetry data are from ship soundings, to ensure the compared gravity fields

are derived from independent data.  We identify the optimal values of crustal density

and elastic thickness for each spreading plate boundary individually, as well as for

several plate subregions divided based on spreading behavior (Figure 5.2 and Table

5.1).

With these regional parameters, we estimate the spatial variation in the 3-D stress field

by calculating the stress tensor throughout a thick elastic plate loaded by high-pass

filtered bathymetry on the surface and by a deformed buoyant short-wavelength Moho

at 7 km depth.  The six components of the 3-D stress tensor are calculated using a

semi-analytic model consisting of an analytically-derived Green’s function for surface

point loads convolved with the actual 2-D shape of the loads (Appendix A).  A strong

elastic plate with small but finite thickness loaded in this way is subject to large

bending stresses that can obscure the bathymetry-related features we are attempting to

isolate.  For this reason, we integrate the stress components over the plate depth,

which eliminates the horizontal compression and extension bending stresses that are

approximately anti-symmetric with depth.  The vertical shear tractions associated with

bending, which are approximately symmetric with depth, are also reduced through this

averaging.
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We calculate the transitional failure stress associated with the sustained

topography as the square root of the second invariant of the deviatoric component of

this depth averaged stress tensor (Von Mises stress).  This critical failure stress ranges

from near zero in the flattest least-deformed regions (e.g., along the East Pacific Rise)

to about 70 MPa in the steepest regions along deep transform valleys (e.g., the

Romanche or Udintsev valleys), where the deviatoric stress must be quite large to

Figure 5.3  (a) Smallest plastic failure stress associated with short-wavelength
topography, measured by the square root of the second invariant of the deviatoric
stress field.  (b) bathymetry along a portion of the southern mid-Atlantic ridge (within
subregion 14 in Figure 5.2) with focal mechanisms from the WSM catalogue
[Heidbach et al., 2008].
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sustain the high load gradient.  Figure 5.3a shows the critical plastic failure stress in a

region of the southern mid-Atlantic ridge.  Failure stress is ~25 MPa in the deep

narrow transform valley, ~15 – 20 MPa at the ridge-transform intersections, and 5 –

10 MPa along the spreading ridge axis.

These depth-averaged short-wavelength variations in the stress field are used

to constrain the magnitude of the total stress field.  We add a spatially-uniform

horizontal 2-D stress field to the bathymetry-supporting stress field and determine the

stress regime at each point, defined by the relative plunge angles of the principal stress

axes (see Table 5.2), as in the World Stress Map project [Zoback, 1992].  We consider

two sources of observations of the stress regime along the mid-ocean ridge.  In the

first, we assume that the appropriate regime along the entire length of every spreading

ridge axis segment is normal, while the appropriate regime along all offset transform

segments is strike-slip.  The endpoints of each ridge and transform segment are

digitized from gravity and bathymetry data [Sandwell and Smith, 2009] and the sample

Table 5.2  World Stress Map regime assignment criteria [after Zoback, 1992]

Regime Plunge φ  of
pressure axis

Plunge φ  of
intermediate axis

Plunge φ  of
tension axis

normal φ > 52º φ < 35º
oblique

normal/strike-slip 40º < φ < 52º φ < 20º

φ < 40º φ > 45º φ < 20ºstrike-slip
φ < 20º φ > 45º φ < 40º

oblique
thrust/strike-slip

φ < 20º 40º < φ < 52º

thrust φ < 35º φ > 52º
undefined any other configuration
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locations along each segment are interpolated at a regular interval (~10 km), resulting

in ~8000 observations of stress regime evenly sampling the entire mid-ocean ridge.

The clear advantage of this dataset is that it gives a complete and uniform sampling of

the global mid-ocean ridge.  The disadvantage is that it a priori presumes the stress

regime based on a morphology that requires some subjective judgment to define.  We

quantitatively define the fit between the regimes of a modeled stress field and the

observed stress regimes with a goodness of fit parameter ξ ∈ 0,1[ ] ,

ξ =

1 if model and observation stress regimes match

0.25
if observed stress regime is strikeslip and model
stress regime is oblique normal/strike-slip

0 else

⎧

⎨
⎪⎪

⎩
⎪
⎪

(5.7)

The second observation set we consider is the information in the World Stress

Map (WSM) catalogue [Heidbach et al., 2008].  Along the mid-ocean ridge, this

consists of 881 earthquake focal mechanisms, a subset of which are shown in Figure

5.3b.  The advantage of this dataset is that it is based on observations of a direct in situ

stress-related event (earthquake) rather than a presumed in situ stress-related process

(deformation and formation of the ridge axis).  Another advantage is that it includes

information on the full 3-D orientation of the stress field, and can thus better constrain

our calculations.  The first major disadvantage is that the observations are not evenly

distributed: slow-spreading regions tend to have many more large earthquakes than

faster-spreading regions.  The second major disadvantage is that because the
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observations are located using seismic waves at stations far away from the events, they

are subject to a mislocation error of up to 20-40 km [Pan et al., 2002].  This

mislocation is large enough that, e.g., a strike-slip earthquake that occurred on a

transform valley could appear to be located off the plate boundary where the stress

regime may be quite different.  Because of these key limitations, we restrict our use of

the WSM focal mechanisms to qualitative comparison and rely on the assigned ridge-

transform stress regime for quantitative constraints.

The additional 2-D stress is defined by three parameters:  the two

perpendicular principal stresses and the orientation angle of those stresses.  Initially

we allowed the orientation angle to vary freely, but found no evidence that an

orientation other than ridge-perpendicular and ridge-parallel was warranted.  For the

remainder of the analysis, we therefore focus on constraining the magnitude of long-

wavelength stress aligned with the spreading direction at each point, defined by the

MORVEL plate motions [DeMets et al., 2010].

For each added long-wavelength stress field, we define a value of ξ  at each

point along the plate boundary and take the average value at all the ridges or

transforms within a region or subregion separately, to get ξridge  and ξtransform .  We then

average these two values to get ξ , the parameter of fit for each region.  This

averaging is important because the true constraint on the size of the long-wavelength

stress depends upon the simultaneous fitting of both ridge and transform data.

Averaging the fits to each individually adjusts for a region having a disproportionate

quantity of ridge or transform observations.
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Figure 5.4  Contours of mean model fit at both ridges and transforms (ξ ) as a
function of added ridge-perpendicular and ridge-parallel stress (Δσ⊥  and  Δσ 
respectively) for each plate boundary and subregion.  Contour interval is 0.05.
Quantitative fit is defined as in equation 5.7.  Constrained values of Δσ⊥ ,  Δσ  , and

ξmax  for each region are summarized in Table 5.3 and Figure 5.7.
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Figure 5.5  Mean model fit at ridges (blue), transforms (green), and both (red) over
each plate boundary and subregion as a function of long-wavelength ridge-parallel
stress ( Δσ  ), assuming a ridge-perpendicular extension of 100 MPa.  Horizontal black
line indicates the threshold value for determining the range of best-fitting stress,
0.98 ξmax .  Vertical lines capped with right- and left-pointing arrows indicate the
minimum and maximum value of  Δσ   that optimizes model fit at both ridges and
transforms.
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Figure 5.6  Mean model fit at ridges (blue), transforms (green), and both (red) over
each plate boundary and subregion as a function of long-wavelength ridge-
perpendicular stress (Δσ⊥ ), assuming the optimal ridge-parallel extension value in
each region, listed in Table 5.3.  Horizontal black line indicates the threshold value for
determining the minimum ridge-perpendicular stress, 0.98 ξmax .  Vertical line capped
with right-pointing arrows indicates the minimum value of Δσ⊥  that optimizes the fit
at both ridges and transforms.
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5.4  Results

Figure 5.4 shows contours of the mean fit ξ  at each plate boundary and

subregion as a function of the long-wavelength ridge-perpendicular and ridge-parallel

stresses (Δσ⊥  and  Δσ  ).  At most of the regions, there is an easily discernable

maximum ξ  contour with a defined minimum ridge-perpendicular value and defined

minimum and maximum ridge-parallel values.  Because the constraint on Δσ⊥

depends upon the determined value for  Δσ   (equation 5.6), we first determine the

constraint on  Δσ   by examining a profile of ξ  versus  Δσ   at a value of

Δσ⊥ = 100 MPa  (Figure 5.5).  For each region, the blue and green curves show the

value of ξ  averaged over all the ridges and transforms, respectively, within that

region.  In most regions, some ridge-parallel extension is required to bring all the ridge

points in to a normal stress regime.  This is an effect of the deep median valleys at

some ridge segments, evidenced by the stronger need for ridge-parallel extension at

slower spreading regions like AFRC-ANTA than at faster spreading regions like

PCFC-NAZC.  In the absence of any ridge-parallel stress, most regions fit at least half

of the defined transform points, with successively more being fit as ridge-parallel

stress becomes more compressive.

The true test of our model is its ability to simultaneously accurately predict

regions of ridge normal and transform strike-slip stress regimes.  The red line in

Figure 5.5 is the average of ξridge  and ξtransform , which weights the ridge and transform

fits evenly and compensates for any regional difference in the relative abundance of
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ridge or transform segments.  In most regions this curve reaches a clear broad

maximum value ξmax  somewhere in the range of 0-10 MPa ridge-parallel extension.

We define the width of this maximum as the range of  Δσ   values for which

ξ > 0.98ξmax .  This threshold is indicated by the horizontal black line, and the

Table 5.3  Best mean model fit, with corresponding range of long-wavelength ridge-
parallel stress and minimum ridge-perpendicular stress.

Number in
Figure 5.1 Plate Boundary ξmax  Δσ   (MPa) Δσ⊥  (MPa)

1 Whole earth 0.606 2-5 35
2 NOAM-EURA 0.619 4-8 25
3 NOAM-AFRC 0.638 4-7 25
4 SOAM-AFRC 0.602 4-5 35
13 SOAM-AFRC 1 0.569 5 40
14 SOAM-AFRC 2 0.616 5 25
5 SOAM-ANTA 0.701 9-10 40
6 AFRC-ANTA 0.723 -1-6 50
15 AFRC-ANTA 1 0.686 1-7 50
16 AFRC-ANTA 2 0.762 -1-7 45
7 a AFRC-INDI 0.536 3-9 a 15 a

8 a AUST-ANTA 0.521 -10-3 a 15 a

17 AUST-ANTA 1 0.643 2 15
18 AUST-ANTA 2 0.651 2-3 15
19 AUST-ANTA 3 0.592 -7- -2 35
20 a AUST-ANTA 4 0.541 -10-25 a 0 a

9 PCFC-ANTA 0.673 1-2 35
21 PCFC-ANTA 1 0.583 2-3 40
22 PCFC-ANTA 2 0.625 0-1 15
23 PCFC-ANTA 3 0.793 1 30
24 PCFC-ANTA 4 0.770 -1-0 10
10 PCFC-NAZC 0.670 0 5
11 PCFC-COCO 0.654 0-1 30
12 NAZC-ANTA 0.563 1-8 20

a denotes regions with ξmax < 0.550 , such that constraints on  Δσ   and Δσ⊥  are
unreliable
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satisfying  Δσ   range is indicated by the vertical black lines capped with right- and

left-pointing arrows.  The values of  Δσ   and ξmax  for each plate boundary and

subregion are listed in Table 5.3.  In most regions,  Δσ   is constrained to a narrow

range of slightly extensional stress values.  In three regions, AFRC-INDI, AUST-

ANTA, and AUST-ANTA 4 (regions 7, 8, and 20), ξmax  is 0.550 or

below, indicating that in these regions there is no single long-wavelength stress that

can be added to our calculated topographic stress and satisfactorily simultaneously fit

the expected regime of both ridge and transform regions.  Because the models fail in

these regions, they are subsequently omitted from the rest of the analysis.  The only

region which requires ridge-parallel compression is AUST-ANTA 3 (region 19),

consisting of the intermediate-fast spreading discordant section of the plate boundary.

Once the values of  Δσ   have been determined, we can evaluate profiles of ξ

versus Δσ⊥  at the best value of  Δσ   for each region.  In Figure 5.6, the blue and

green lines again show profiles of ξridge  and ξtransform  respectively, and the red line

shows their average.  Generally, ξ  increases rapidly with Δσ⊥  up to a point, after

which it tapers to a maintained maximum level ξmax .  Once again we define the

threshold for determining the value of Δσ⊥  such that ξ > 0.98ξmax , indicated by the

horizontal black line in each region subplot.  The vertical black line with right-

pointing triangle endcaps indicates the minimum Δσ⊥  value at which this threshold is

reached (values summarized in Table 5.3).  In general, ridge-perpendicular extension
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Figure 5.7  Summary of regional variation of (a) ξmax , (b) long-wavelength ridge-
parallel stress ( Δσ  ) range, and (c) minimum ridge-perpendicular stress (Δσ⊥ ).
(Values given in Table 5.3).  Values of  Δσ   and Δσ⊥  are not shown for AFRC-INDI,
AUST-ANTA, and AUST-ANTA 4 (regions 7, 8, and 20) because these regions with
ξmax < 0.550  are poorly constrained.
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must be at least 5 – 50 MPa to simultaneously fit the regime at both ridges and

transforms.

The constrained values of ξmax , Δσ⊥ , and  Δσ   are summarized in Figure 5.7.

Examining these results, we begin to notice a relationship between the constrained

stress magnitude and spreading rate.  The slower-spreading mid-Atlantic segments

generally require 4 – 8 MPa ridge-parallel extension, while the faster-spreading

Pacific segments generally require 0 – 3 MPa ridge-parallel extension, or even slight

compression.  Once again we notice the unusual result of the discordant zone of

AUST-ANTA 3 requiring 2 – 7 MPa ridge-parallel compression.  Constraints on the

ridge-perpendicular component are somewhat more varied.  The slow-spreading

Atlantic segments require at least 25-40 MPa ridge-perpendicular extension and the

ultra-slow spreading regions of the AFRC-ANTA plate boundary require at least 45-

50 MPa extension.  The faster-spreading Pacific segments are more varied, requiring

5-40 MPa ridge-perpendicular extension.

Figure 5.8 clarifies the relationship between spreading rate and elastic

thickness, Δσ⊥ , and  Δσ  .  A clear decrease in elastic thickness is observed with

spreading rate down to ~2 km at 70 mm/yr, after which the dependence tapers off,

such that the fastest spreading regions still maintain finite strength with a 2 km elastic

thickness.  One exception seems to be the 8 km elastic thickness predicted for the

PCFC-COCO plate boundary.  The ridge-parallel stress shows a similar pattern of

decreasing with spreading rate up to about 80 mm/yr, and then leveling off around 0

MPa for faster spreading regions.  In this case, the clear exception is again the strong
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Figure 5.8  Spreading rate versus (a) elastic thickness, (b) range of ridge-parallel
stress ( Δσ  ), and (c) minimum ridge-perpendicular stress (Δσ⊥ ) for each plate
boundary and subregion.  (Values given in Tables 5.1 and 5.3).  The value of  Δσ 
plotted in (b) is the midpoint of the acceptable range.
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Figure 5.9  Spatial distribution of stress regime for topographic stress variations added
to various long-wavelength stress fields, for the same area as shown in Figure 5.3.
Thrust, strike-slip, and normal regime indicated by red, yellow, and blue respectively.
Oblique thrust and oblique normal regime indicated by orange and green respectively.
Black regions indicate the regime of the stress orientation is undefined.  (Regime
definition criteria are summarized in Table 5.2).  (a) Stress regime from short-
wavelength topography alone with no additional long-wavelength stress.  Stress
regime with (b) insufficient Δσ⊥  (15 MPa) and (c) minimum sufficient Δσ⊥  (25
MPa).  Stress regime with minimum sufficient Δσ⊥  and (d) too little  Δσ   (2 MPa),
(e) optimal  Δσ   (5 MPa), and (f) too much  Δσ   (10 MPa).  WSM focal mechanisms
shown atop best-fitting total stress field (e), with strike-slip regime predicted at low
transform offsets and normal regime predicted nearly everywhere else.
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compression required by the discordant zone in the southern ocean.  The trend is less

pronounced for ridge-perpendicular stress, but it still shows a steady decrease in

minimum Δσ⊥  value through 90 mm/yr.

It is illustrative to examine the predicted stress regime along the plate

boundary in mapview.  Figure 5.9 shows the predicted stress regime for the same

small region of the southern mid-Atlantic ridge computed from short-wavelength

topography plus a range of long-wavelength tectonic stress fields.  Regime is color

coded with blue and yellow indicating normal and strike-slip regimes, red indicating

thrust regime, green and orange indicating oblique normal and oblique thrust regimes,

and black indicating a regime unable to be classified by the criteria in Table 5.2.  For

topography stress alone (Figure 5.9a), the lowest regions are in a thrust or strike-slip

regime, while much of the flanking seafloor is in an unclassifiable orientation.  This is

due to the large vertical shear stresses associated with a bending plate.  As Δσ⊥

increases, the slightly off-axis regions attain a normal regime, but the predicted strike-

slip regime is still too widespread (Figure 5.9c).  As  Δσ   increases, the ridges become

more consistently normal until an optimal balance is found between a normal regime

at the ridge axes and a strike-slip regime at the transform valleys, flanked by narrow

transitional regions of oblique normal-strike-slip regime (Figure 5.9e).  As  Δσ 

continues to increase, the entire region is moved into a normal regime (Figure 5.9f).
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5.5  Discussion

Several studies have used numerical models to identify the processes required

to initiate new plate spreading and form the pattern of mostly-perpendicular ridge and

transform segments observed throughout the modern ocean [Gerya, 2010].  However,

though such models can reproduce the characteristic segment spacing and spreading

rates associated with various types of plate spreading, including the uplifted

topography of ridge flanks, they have not reproduced the bathymetric lows of the

transform offsets.  This suggests that transform valleys are not necessarily a part of

spreading initiation, but rather may play an important role in maintaining a transform

offset once initiated.  It could be that as a ridge transform system is developing, those

protero-offsets that coincide with deep bathymetry, formed by any active inelastic

deformation process at that time, are the offsets that persevere, while those whose

formation does not coincide with a bathymetric valley are preferentially abandoned.

Thus bathymetric valleys, though not necessarily present at the initiation of plate

spreading, may be an important part of the development of a mature ridge-spreading

system.

Though the calculations presented here do not account for preexisting fault

structures, the orientation of the fault planes at the normal ridge axis align with the

planes of maximum shear stress of the predicted 3-D stress tensor.  However, the

predicted planes of maximum shear stress at transform offsets, even though the regime

is strike-slip, strike 45º away from the observed transform.  The orientation of these

transform segments is primarily defined by the preexisting need to connect the broken

ends of the spreading axis, forcing the fault to be aligned with principal extension in
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the ridge-perpendicular direction.  This observation agrees with previous studies

suggesting that oceanic transform faults sustain very low shear stresses and may be

poorly seismically coupled [e.g., Behn et al., 2002].

A curious result is that the discordant zone of the Australian-Antarctic plate

boundary seems to require ridge-parallel compression in order to simultaneously fit

the stress regime at both ridges and transforms.  An alternative interpretation of this

constraint is that the ridges require large ridge-parallel extension (15 MPa or more) in

order to bring even the ridges into a normal stress regime.  With this much ridge-

parallel extension, none of the transforms would remain in a strike-slip regime.  This

model result is likely a reflection of the anomalously low bathymetry in this region

[e.g., Forsyth et al., 1987; Holmes et al., 2010], related to an anomalously low

temperature and magma supply.

The regions of AFRC-INDI, AUST-ANTA, and subregion AUST-ANTA 4 are

the locations where the predictions of this model are least successful.  These

subregions make up a long section of ridge in the eastern Indian ocean spreading at an

intermediate rate.  Model indications suggest that ridges at AFRC-INDI require non-

zero ridge-parallel extension, but that transforms at this plate boundary require non-

zero ridge-parallel compression.  These two non-compatible conditions may reflect the

presence of lower ridge topography with a deep axial valley in the northern section of

this plate boundary contrasted with rugged topography with densely-spaced fracture

zones in the southern section.  Model results at AUST-ANTA may also be divided into

two sections by the slope of ξridge  as a function of  Δσ   (Figure 5.5).  The western half
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(regions 17 and 18) requires the ridge-parallel extension (or compression) to be near

zero in order to fit both the ridges and transforms.  The eastern half (regions 19 and

20), including the discordant zone, exhibits a much shallower slope of ξridge , requiring

a much higher extension in order to fit all the ridge points, but also allowing many of

the ridge points to be fit even with ridge-parallel compression.  This is principally

indicative of the great variety of ridge-transform morphology along this plate

boundary.

5.6  Conclusions

We have demonstrated that the rapid variation in stress regime between

spreading ridge and transform segments may be forward modeled as the sum of two

stresses: a long-wavelength regionally uniform tectonic driving stress and a short-

wavelength regionally varying stress related to the support of observable bathymetric

features.  The short-wavelength stress variations may be calculated as those of the

critical elastic-plastic failure transition, measured by the second invariant of the

deviatoric stress.  This plastic failure stress ranges from 0 – 70 MPa, depending on the

ruggedness of the bathymetry.  Along most spreading plate boundaries, we are able to

satisfactorily model the observed variations in stress regime between normal ridges

and strike-slip transforms.  This suggests that short-wavelength bathymetry features,

particularly a transform valley that is deeper than the nearby ridge axis topography,

may be a necessary feature for the long-term endurance of an oceanic transform fault.
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We further use the calculations of the short-wavelength component to place

constraints on the 2-D long-wavelength plate driving stress, and thus on the total in

situ stress tensor.  We find that ridge perpendicular extension globally must exceed the

sustained critical yield stress of deformation by at least 10 – 30 MPa of extension

along fast spreading ridges, 25 – 40 MPa extension along slow spreading ridges, 40 –

50 MPa extension along ultra-slow spreading ridges.  Additionally, we determine that

ridge-parallel stress along fast-spreading segments must be near zero, between 1 MPa

compression and 3 MPa extension.  Ridge-parallel stress along slow segments must be

between 4 – 8 MPa extension, and ridge-parallel stress along ultra-slow segments must

be between 1 MPa compression and 7 MPa extension.

5.7  Appendix A: calculation of 3-D stress in a thick elastic plate

The 3-D stress throughout a loaded thick elastic plate may be calculated semi-

analytically by numerically convolving the 2-D shape of the surface and base loads

with an analytically calculated Green’s function response of a thick elastic plate to

non-identical point loads.  For the full derivation of this Green’s function, see the

Appendix of Luttrell et al. [2010].  The solution is summarized here.

Given an arbitrary surface load f x, y( )  at z = 0  and an arbitrary Moho load

g x, y( )  at depth z = h  loading an elastic plate (Figure 5.A1), the six components of

the stress tensor can be calculated in the Fourier domain by
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σ zz kx ,ky , z( ) = f


k( ) −Cf − Sf⎡⎣ ⎤⎦ + g


k( ) −Cg − Sg⎡⎣ ⎤⎦ (5.A3)

Figure 5.A1  Schematic of elastic plate with thickness h  with arbitrarily shaped non-
identical loads at the surface  f

x( )  and base  g
x( ) .
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σ xy kx ,ky , z( ) =
kxky

k

2 f
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iky
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f
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k( ) ′Sg⎡⎣ ⎤⎦ (5.A6)

where 
 


k = kx ,ky( )  is the horizontal wavenumber, ν  is Poisson’s ratio.  Depth

dependence for the normal stress components and the horizontal shear stress

component is given by the transfer functions

Cf =
2β 2hζ coshβz − βzsinhβz − βzsinhβ h +ζ( )

1+ 2β 2h2 − cosh2βh
(5.A7)

Cg =
2β 2hz coshβζ − βζ sinhβζ − βζ sinhβ h + z( )

1+ 2β 2h2 − cosh2βh
(5.A8)

Sf =
2βhsinhβz + coshβz − coshβ h +ζ( )

1+ 2β 2h2 − cosh2βh
(5.A9)

Sg =
2βhsinhβζ + coshβζ − coshβ h + z( )

1+ 2β 2h2 − cosh2βh
(5.A10)
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where 
 
β = 2π


k  is the radial wavenumber, z  is the depth from the top of the plate,

and ζ = h − z  is the distance from the bottom of the plate.  The two transfer functions

related to the bottom load 
 
g

k( )  are depth-inverted versions of those related to the top

load 
 
f

k( ) , such that any occurrence of z  and ζ  are interchanged.  The transfer

functions for the vertical shear stress components are related to those in equations

5.A7 – 5.A10 by derivatives with respect to depth, such that

′S f ,g( ) = − 1
β

d
dz

C f ,g( ) + S f ,g( )⎡⎣ ⎤⎦ . (5.A11)

These solutions reduce to those of Love [1929] in the elastic halfspace limit and match

the 2-D solutions in the long wavelength limit as β → 0 .

Equations 5.A1-5.A6 serve as Green’s functions allowing the full 3-D stress

tensor to be computed by a simple convolution in the Fourier domain.  The second

invariant of the deviatoric stress tensor τ ij = σ ij −
1
3
σ kk  is given by

IIτ =
1
6

σ xx − σ yy( )2
+ σ xx − σ zz( )2 + σ yy − σ zz( )2⎡

⎣
⎤
⎦ +σ xy

2 +σ xz
2 +σ yz

2 (5.A12)

In terms of the transfer functions 5.A7-5.A11, this becomes
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which is minimized when ν =
1
2

, corresponding to an incompressible elastic solid.

Dahlen [1981] similarly showed that in the two-dimensional case, the second invariant

of the deviatoric stress from Airy compensated topography at mid ocean ridges was

minimized for ν =
1
2

, though this was never explicitly stated.  Our analysis extends

the results of Dahlen [1981] to three dimensions.

5.8  Appendix B: gravity analysis

Calculation of the stress state sustaining short-wavelength bathymetry

variations requires both observations of the surface bathymetry, from satellite and ship

tracks [Becker et al., 2009], and an estimate of the buoyant load acting at the base of

the finite-thickness elastic plate.  This buoyancy may be derived from heterogeneities

in either thermal structure or composition, either of which result in a density anomaly

indicated in observations of gravity [Sandwell and Smith, 2009].  We use these gravity

observations to determine a reasonable structure for the shape of the buoyant load at

the base of the lithosphere [e.g., Watts, 2001].  We model the shape of the buoyant

load as a filtered version of the surface load, with support of the surface topography

coming from a combination of Airy compensation and the flexural strength of the
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elastic plate, effectively tuning the shape of the Moho with the elastic thickness of the

crust.

We calculate the gravity anomaly using the first two terms of the gravity expansion

of Parker [1972] for a homogeneous single-layer crust of density ρc  overlying a

homogenous mantle of density ρm  such that the total anomaly gtotal = gsurface + gMoho .

The gravity anomaly at the surface, z = zs , is given by

gsurface = ftopoGρce
−β aobs− zs( ) (5.B1)

where G  is the gravitational constant, ftopo  is the load of topography, aobs  is the

altitude of observation (in this case, the sea surface at z = 0 ), and 
 
β = 2π


k  is the

radial wavenumber.  The gravity anomaly at the Moho, z = h + zs , is given by

gMoho = ftopoG ρc − ρm( )Φe−β aobs−h− zs( ) (5.B2)

where the transfer function Φ  is given by

Φ =
−ρc

ρm − ρc

1+
Dβ 4

g ρm − ρc( )
⎡

⎣
⎢

⎤

⎦
⎥

−1

(5.B3)

where g  is the mean surface gravity, and the flexural rigidity D  depends on the

elastic thickness Te , Young’s modulus E , and Poisson’s ratio ν  as
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D =
ETe

3

12 1−ν( ) (5.B4)

For our gravity calculations, we use a mean ocean depth of 3 km, a mantle

density of 3300 kg/m3, a Young’s modulus of 70 GPa, and a Poisson’s ratio of 0.5.

The choice of Poisson’s ratio is made to be consistent with the stress calculations of

this study (Appendix A) and has little impact on the gravity analysis, as it only appears

within the flexural rigidity such that the difference in gravity anomaly of a material

with ν = 0.25  and ν = 0.5  is about 7%.  There are two parameters that we allow to

vary: the density and elastic thickness of the crust.  We use a crustal thickness of 6.5

km [Laske et al., 2001], recognizing that the gravity-topography transfer function is

relatively insensitive to crustal thickness at the short wavelengths considered here.

We calculate the global gravity field for a crustal density between 2400 - 3000

kg/m3 and elastic thickness between 0 - 20 km.  We then compare the model with the

high-pass filtered gravity data only at points where the bathymetry data are from ship

soundings and that are within 30 km either side of the ridge or transform segment

[Sandwell and Smith, 2009].  These precautions ensure that our analysis is focused on

the plate boundary and that the observed and model gravity are largely derived from

independent data.  We then calculate the RMS misfit, defined as

RMS =
gi

observation − gi
model( )2

i=1

N

∑
N

, (5.B5)
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Figure 5.B1  Contours of RMS misfit between gravity model and data for each plate
boundary and subregion as a function of crustal density and elastic thickness.  Contour
interval is 0.5 mGal.  Black circle indicates the absolute lowest RMS value.  Black star
indicates best model with crustal density 2800 kg/m3. Optimal parameters for each
region and their corresponding RMS values are listed in Table 5.1.
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Figure 5.B2   RMS misfit between gravity model and data for each plate boundary
and subregion as a function of elastic thickness, assuming a crustal density of 2800
kg/m3.  Red star indicates lowest elastic thickness value that minimizes RMS.
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for the global mid-ocean ridge and for each plate boundary separately (Figure 5.2),

and determine the best fitting values of crustal density and elastic thickness (Table 5.1,

Figure 5.B1).  As usual, we find there is a tradeoff to gravity fit between density and

elastic thickness.  Though the strict minimum RMS often corresponds to the highest

considered density (3000 kg/m3), we find the difference in RMS from a density of

2800 kg/m3 is negligible and select this as our preferred crustal density.

We then determine the most suitable elastic thickness for each region (Figure

5.B2).  In regions where the minimum RMS is broad and spans several elastic

thickness values, we select the smallest suitable value.  Generally the optimal elastic

thickness ranges from 2 - 8 km.  The fast-spreading sections of the mid-ocean ridge in

the Pacific ocean require a smaller elastic thickness of 2 km, while the slower-

spreading sections of the mid-Atlantic ocean are fit with a higher elastic thickness, ~5

km.  The ultra-slow boundaries in the southwestern Indian ocean are strongest, with a

best elastic thickness of 7 km.  These values generally agree with those of Cochran

[1979], who found gravity profiles across the mid-Atlantic ridge to be best fit with a

crustal density of 2600 kg/m3 and an elastic thickness of 9 km, while profiles across

the East Pacific Rise required a smaller elastic thickness.  At plate boundaries NOAM-

EURA, SOAM ANTA, AUST-ANTA 4, and PCFC-ANTA 1 (regions 2, 5, 20, and

21), the constrained gravity observations are particularly sparse.  However the

optimized parameters from these limited data are consistent with those of neighboring

regions, so we use these parameters without additional correction.
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Chapter 6

Strength of the Lithosphere of the Galilean Satellites

Abstract

Several approaches have been used to estimate the ice shell thickness on

Callisto, Ganymede, and Europa.  Here we develop a method for placing a strict lower

bound on the thickness of the strong part of the shell (lithosphere) using measurements

of topography.  The minimal assumptions are that the strength of faults in the brittle

lithosphere is controlled by lithostatic pressure according to Byerlee's law and the

shell has relatively uniform density and thickness.  Under these conditions, the

topography of the ice provides a direct measure of the bending moment in the

lithosphere.  This topographic bending moment must be less than the saturation

bending moment of the yield strength envelope derived from Byerlee's law.  The

model predicts that the topographic amplitude spectrum decreases as the square of the

topographic wavelength.  This explains why Europa is rugged at shorter wavelengths

(~10 km) but extremely smooth, and perhaps conforming to an equipotential surface,

at longer wavelengths (> 100 km).  Previously compiled data on impact crater depth

and diameter [Schenk, 2002] on Europa show good agreement with the spectral

decrease predicted by the model and require a lithosphere thicker than 2.5 km.  A

more realistic model, including a ductile lower lithosphere, requires a thickness greater



196

than 3.5 km.  Future measurements of topography in the 10 to 100 km wavelength

band will provide tight constraints on lithospheric strength.

6.1  Introduction

Three of the four Galilean Satellites of Jupiter have significant quantities of

water and are referred to as icy satellites [Pappalardo et al., 1999; Showman and

Malhotra, 1999]. Galileo spacecraft magnetometer data from Europa indicate a near-

surface conductive layer [Kivelson et al., 2000] suggesting that a liquid ocean lies

beneath an ice shell.  The thickness of the ice shell is of chief importance for the

understanding of geologic processes on the Galilean satellites, the search for

astrobiological activity on Europa, and the planning of future spacecraft missions.

The ice shell is believed to be rheologically layered (Figure 6.1a) consisting of a

strong upper layer, or lithosphere, and possibly a convecting lower layer [Goldsby and

Kohlstedt, 2001; McKinnon, 1999; Nimmo et al., 2003b].  Here we investigate a new

method for estimating the integrated strength of the lithosphere by measuring

topographic moment.  The new strength estimates provide a strict lower bound on the

thickness of the lithospheres of Callisto, Ganymede, and Europa although they do not

provide an estimate of the total shell thickness of these satellites.

Ice shell thickness is usually estimated in one of three ways [Billings and

Kattenhorn, 2005].  The first approach uses models of heat transport along with

estimates of internal heat generation to determine the thickness of the ice shell.

Thermal studies on Europa yield total shell thicknesses ranging from 2-5 km

[Thomson and Delaney, 2001] to 4 km [Ruiz, 1997] to 10-20 km [McKinnon, 1999] to
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30 km [Wang and Stevenson, 2000].  The second approach compares observed

topography with the flexural response of a thin elastic plate to an assumed initial load

to determine the thickness of the plate [Watts, 2001].  For the terrestrial planets, the

thickness of the elastic plate is about half of the total lithospheric thickness. Europa’s

elastic plate thickness has been estimated at 100-500 m [Williams and Greeley, 1998]

to 4 km and 6 km [Figueredo et al., 2002; Nimmo et al., 2003a] yielding total shell

thickness of 15 km [Nimmo et al., 2003a].  Effective elastic plate thickness estimates

on Ganymede are 0.15-1.7 km [Nimmo and Pappalardo, 2004; Nimmo et al., 2002].

A third approach to estimating shell thickness involves examining the morphologic

transitions of impact craters and relating these to rheologic transitions at depth.

Estimates of Europa’s total shell thickness range from greater than 3-4 km [Turtle and

Pierazzo, 2001] to 19-25 km [Schenk, 2002].

Here we develop a fourth approach to estimating the strength and minimum

thickness of just the lithosphere.  This involves comparing the bending moment

needed to support topography with the maximum bending moment that the lithosphere

is capable of supporting.  Topography of satellites or planets having thin lithospheres

can be supported either by a local compensation mechanism (e.g., Airy or Pratt) or by

the strength of the lithosphere.  On the terrestrial planets, compositional stratification

enables a mix of compensation mechanisms so other information such as gravity and

reflection seismology is needed to establish the dominant mechanism [Watts, 2001].

However, since the lithospheres of the Galilean satellites are largely homogeneous,

lithospheric strength may be the dominant support mechanism.  On Earth, studies of

plate bending at subduction zones show that the critical measure of lithospheric
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strength is the topographic bending moment which can be calculated from the

topography of the trench and outer rise [Goetze and Evans, 1979].  The trench/outer

rise topography would collapse if the overall strength of the lithosphere, or saturation

bending moment, is less than the topographic bending moment [McAdoo et al., 1978].

Thus measurements of topography provide a strict lower bound on lithospheric

strength.

We use a similar approach to estimate the saturation bending moment of the

lithosphere on the Galilean satellites.  We assume that topography initially caused by

large impact craters or tectonic processes induces stresses that exceed the strength of

the lithosphere and have a bending moment greater than the long-term, saturation

bending moment of the lithosphere.  The lithosphere relaxes under the load to achieve

stable topography in a state of moment saturation.  We compare estimates of

topographic bending moment derived from studies of impact craters [Schenk, 2002] to

end-member models of lithospheric strength to determine a lower bound for the

lithospheric thickness.  These bounds are in agreement with flexural studies of Europa

[e.g., Figueredo et al., 2002] and also provide insights into the lithospheric properties

of Ganymede and Callisto.

An interesting feature of moment saturation analysis is that it predicts a

particular form for the topographic spectrum.  At wavelengths greater than the

lithospheric thickness, the amplitude of the topography decreases as the square of the

wavelength; this simple model explains why Europa appears smooth at large

horizontal scales yet rough at small scales.  At wavelengths less than the lithospheric

thickness, the slope of the topography is limited by the angle of repose of the ice.  The
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combined spectrum has a shape that depends only on the saturation bending moment.

Using this spectrum we simulate the topography of Europa and compare artificial

profiles with actual topographic profiles derived from stereo topography [Schenk and

Pappalardo, 2004].  We also convolve the synthetic topography with a series of

averaging filters to investigate the practical sampling characteristics an altimeter

mission would need in order to detect tidal fluctuations or variations in the

equipotential surface (geoid) height.

6.2  Saturation bending moment and yield strength envelope models

When the lithosphere is subjected to a small bending moment it flexes with a

curvature that is linearly related to the applied moment [Turcotte and Schubert, 2002].

The thin elastic plate flexure model is only valid in this linear regime.  As the applied

moment is increased, stresses on the top and bottom of the lithosphere exceed the

strength of the material and a plastic hinge develops [McAdoo et al., 1978].

Eventually the lithosphere becomes moment-saturated so that the curvature of the

hinge continues to increase without an increase in applied moment.  At this point the

thickness of the elastic core of the plate goes to zero [McNutt and Menard, 1982].  The

magnitude of the saturation moment is a measure of the overall strength of the

lithosphere.  Moment saturation commonly occurs at ocean trenches on the Earth

where lithosphere is permanently bent prior to subduction into the mantle [Levitt and

Sandwell, 1995; McNutt and Menard, 1982].  The nearly complete failure of the plate

is evident as deeply penetrating normal faults that develop in the outer trench wall

[Masson, 1991].  Topographic profiles across the trench and outer rise provide a direct
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measure of the applied bending moment that can be compared with the rheological

saturation bending moment [Brace and Kohlstedt, 1980; Goetze and Evans, 1979].

The strength of the lithospheric versus depth, or yield strength envelope,

depends on pressure, temperature, and strain rate.  In the upper lithosphere, strength is

controlled primarily by the increase in lithostatic pressure with depth which inhibits

sliding along preexisting fault planes according to Byerlee's law [Byerlee, 1978]. As

temperature increases in the lower part of the lithosphere, yielding occurs by ductile

flow and strength decreases with depth [Goetze and Evans, 1979].  While laboratory

experiments have been partially successful in constraining the ductile rheology of the

lower lithosphere [Kirby, 1983] the ultimate test for tenability of a rheologic model is

whether the integrated yield strength is capable of supporting the observed

trench/outer rise topography.

Here we apply the same concepts to the lithospheres of the icy Galilean

satellites.  Cold dry ice undergoes brittle yielding similar to that of the terrestrial

lithosphere.  Beeman [1988] has conducted frictional sliding experiments on very cold

(77-115 K) saw-cut ice cores and established a frictional sliding relationship that is

specific to ice with a coefficient of friction value of 0.69 (i.e., Byerlee's Law for ice).

The strength of the lower ductile portion of the lithosphere is highly uncertain

[Goldsby and Kohlstedt, 2001] and depends on unknown parameters such as grain

size, thermal gradient, strain rate, and activation energy.  Given this uncertainty, we

consider two cases.  In the first case (mirrored model), the strength of the lower

ductile layer decreases linearly with depth and mirrors the strength of upper brittle
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layer (Figure 6.1b). The yield stress envelope for this case is [Brace and Kohlstedt,

1980; Watts, 2001]

Δσ comp =
−Cρgz z < h

2

−Cρg h − z( ) z > h
2

⎧
⎨
⎩

Δσ ten =
αCρgz z < h

2

αCρg h − z( ) z > h
2

⎧
⎨
⎩

(6.1)

where 

� 

ρ  is the density of the ice (980 kg·m-3), 

� 

g  is gravity (1.3 m·s-2), 

� 

h  is the

thickness of the lithosphere, and the dimensionless factors 

� 

C = 2.6 and 

� 

α = 0.3 are

constants resulting from our use of Byerlee’s law for ice (compare with 

� 

C = 4  and

� 

α = 0.2  for most types of rock [e.g., Watts, 2001].  In the second case (ice sheet

model), strength increases with depth in the brittle layer and abruptly goes to zero as

one would find for a brittle ice sheet floating on a liquid ocean. This case has a yield

strength envelope given by

Δσ comp = −Cρgz
Δσ ten = αCρgz

. (6.2)

For a prescribed lithospheric thickness h, the ice sheet model will support the

maximum topographic moment.  Thus given a topographic moment, this model

provides an absolute lower bound on lithospheric thickness.

In addition to the shape of the yield strength envelope, the saturation bending

moment also depends on the sign of the curvature - whether the lithosphere is flexed
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concave up or concave down.  When the lithosphere is flexed concave down, such as

at a subduction zone, the top portion of the lithosphere undergoes tension (weaker)

while the bottom part undergoes compression.  In concave up flexure, such as under a

seamount, the top portion of the lithosphere is in compression (stronger); this usually

results in a larger saturation bending moment due to the shape of the strength

Figure 6.1  (a) Ice shell consists of a strong lithosphere overlying a possibly-
convecting weak ice layer.  The lithosphere has a brittle upper layer and a strong
ductile lower layer.  (b) Yield strength envelope models for concave up bending.
Mirrored model (above) represents a plausible lithosphere (Eq. 6.1).  Ice sheet model
(below) represents the strongest possible lithosphere (Eq. 6.2).  Compressional
deviatoric stress is negative, extensional stress is positive. Dotted line shows nodal
plane depth 

� 

z0 for a moment-saturated plate, heavy black line shows stress state of a
moment-saturated plate, and shaded sections indicate stress state for a plate with low
and high curvatures.
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envelope.  Saturation moment is found by integrating yield strength times moment arm

over depth (Eq. 6.3).

� 

Ms = Δσ yield z − z0( )dz
0

h∫ . (6.3)

For concave up bending, 

� 

Δσ yield = Δσ comp  above the nodal plane, or neutral unstrained

surface, and 

� 

Δσ yield = Δσ ten  below the nodal plane.  For concave down bending the

roles of tensile yield stress and compressive yield stress are reversed.  The moment

arm 

� 

z − z0( ) is the distance above or below the nodal plane.  We assume there is no net

horizontal force on the lithosphere so the nodal depth, 

� 

z0, is found by requiring the

integral of stress over depth equal zero (Eq. 6.4).

� 

Δσ yielddz +
0

z0∫ Δσ yielddz = 0
z0

h∫ . (6.4)

The nodal depth will depend on both the sign and magnitude of the lithosphere

curvature.  At low curvature, 

� 

z0 will be close to 

� 

h /2 .  As curvature increases, 

� 

z0 will

drift away from 

� 

h /2  to reach an extreme value when the lithosphere reaches moment

saturation.  The relation between saturation nodal depth and 

� 

h , given in Table 6.1,

depends on both the geometry of the yield strength envelope and the sign of the

curvature.  For a moment-saturated lithosphere with ice sheet yield strength envelope,

the location of 

� 

z0 is highly asymmetric with respect to bending direction, located near

the center of the concave up lithosphere and near the bottom of the concave down
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lithosphere.  A moment-saturated lithosphere with mirrored yield strength envelope

has a 

� 

z0 location that is symmetric with regard to the direction of bending located

significantly away from the center of the lithosphere.

Having identified two yield strength envelopes of interest and their four

possible saturation nodal depths, we calculate the saturation bending moment using

equation 6.3.  For all cases above the saturation moment is proportional to the

lithostatic pressure 

� 

ρgh  times lithosphere thickness squared times a dimensionless

factor 

� 

γ  that depends on the shape of the yield strength envelope and the sign of

lithosphere curvature (Eq. 6.5).

� 

Ms = γρgh3. (6.5)

Table 6.1  Depth to nodal plane 

� 

z0 in moment-saturated plate as a function of plate
thickness 

� 

h  for four different cases.
Concave up Concave down

Mirrored model
(brittle and strong ductile)

� 

z0 = α
2 1+ α( )

h = .34h

� 

z0 = 1− α
2 1+ α( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
h = .66h

Ice sheet model
(brittle only)

� 

z0 = α
1+ α

h = .48h

� 

z0 = 1
1+ α

h = .88h

Table 6.2  Dimensionless geometric factor 

� 

γ , depending only on the5.8 constants

� 

C = 2.6 and 

� 

α = 0.3 from Byerlee’s Law for ice.
Concave up Concave down

Mirrored

� 

γ = C 1
8
α − 1

6 2
α

3
2

1+ α( ) 1
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 0.053

� 

γ = −C 1
8
α − 1

6 2
α

3
2

1+ α( ) 1
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= −0.053

Ice Sheet

� 

γ = C 1
3
α − 1

3
α

3
2

1+ α( ) 1
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 0.135

� 

γ = −C 1
3
− 1

3
1

1+ α( ) 1
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= −0.107
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The geometric factor 

� 

γ  for the four cases is given in Table 6.2.  For an ice sheet model

of thickness 

� 

h , the magnitude of the saturation bending moment is greater for concave

up bending than for concave down bending because the lithosphere is stronger in

compression than in tension and brittle strength increases dramatically with depth.  For

a mirrored model of the same thickness, the magnitude of the saturation moment is

independent of bending direction and is about half the value of the concave down ice

sheet model.

6.3  Maximum observed topographic bending moment

A unique feature of the Galilean satellites, and in particular Europa, is that the

density of the icy shell is nearly uniform (< 5% density variation) [Schenk and

Pappalardo, 2004].  On the Earth and other terrestrial planets, the lithosphere is

comprised of a lower density crust underlain by a higher density mantle.  Since both

layers are imbedded within the relatively strong elastic layer, long-wavelength

topography can be supported by Airy compensation.  On Europa, topography at

wavelengths greater than about 1000 km could be maintained over long timescales by

significant shell-thickness variations if the rheology of the shell is non-Newtonian

[Nimmo, 2004].  At wavelengths shorter than about 100 km, however, the horizontal

pressure gradients between the weak ductile ice layer at the base of the shell and the

liquid water below will cause the base of the shell to flatten on relatively short

timescales [Nimmo, 2004; O'Brien et al., 2002; Stevenson, 2000].  These properties

have important consequences for how topography is physically supported.  Because
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Airy compensation is unlikely on the Galilean satellites, especially over horizontal

length scales less than 100 km [Nimmo, 2004], topography must be supported by an

alternative mechanism.  It is possible to support a few hundred meters of topography

through Pratt compensation if the shell thickness is > 15 km [Schenk and Pappalardo,

2004].  For this analysis, however, we consider the integrated strength of the

lithosphere as the primary support mechanism so that we may explore the possibility

of thinner (< 10 km) shells and put an absolute lower bound on shell thickness.

As shown in many investigations on Earth, the appropriate parameter to

characterize strength of a plate is the saturation bending moment which is the integral

of the yield strength over depth times the distance to the flexural nodal plane [Goetze

and Evans, 1979] (see previous section).  Bending moment can also be measured from

the observed topography without knowledge of the plate material or yield strength

profile.  In the case of trench flexure, the bending moment depends on the integral of

the vertical topographic load 

� 

gρw x( )  times the moment arm 

� 

x − x0( )

� 

Ms = γρgh3 (6.6)

where 

� 

x0  is the first zero crossing outboard of the trench axis.  This is a simple

integration of topography with no unknown model parameters; the results depend only

on the location of the zero crossing.

We show next that the topographic spectrum of the Galilean satellites can be

used to estimate the bending moment of the lithosphere.  Conversely, given the

saturation bending moment of the lithosphere (previous section), one can derive an



207

upper bound on the topographic spectrum. In the case of real Galilean topography

there may not be a dominant flexural wavelength as in the case of trench flexure so we

first consider the case of arbitrary topography to develop a general expression for the

moment.  We then consider the case of cylindrically symmetric topography to

calculate an approximate moment associated with impact craters of a given depth and

diameter [Schenk, 2002].

Consider an event such as a meteorite impact or other tectonic process that

instantaneously creates topography 

� 

a(x)  with a bending moment greater than the

saturation bending moment of the lithosphere (Figure 6.2a).  Over geologic timescales

the lithosphere will relax by an amount 

� 

w(x) to support this initial topographic load.

The final topography, which can be observed, will be the sum of the initial topography

and the plate deflection 

� 

t(x) = a(x) + w(x) (Figure 6.2b).  The standard thin-plate

moment balance equation is used to calculate the plate deflection from the applied

topographic load [e.g., Turcotte and Schubert, 2002]:

� 

−∇2M x( ) + ρgw x( ) = −ρga x( ) (6.7)

where 

� 

M  is the bending moment and 

� 

ρ  is the  density of the ice.  Note that this

analysis does not assume a linear relationship between moment and curvature as in the

case of elastic plate flexure.  Because the base of the ice shell is flat on long timescales

there is no contribution to the restoring from the ice/water interface. The solution to

Equation (6.7) in the Fourier domain is
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� 

M k( ) = − ρg
2π k( )2 T k( ) (6.8)

where 

� 

T k( )  is topography in the wavenumber domain, 

� 

kx = 1 λx , 

� 

ky = 1 λy , and

� 

k = kx
2 + ky

2 .  This relationship between bending moment and observed topography

is independent of rheology and only depends on the gravitational restoring force.  This

is directly analogous to equation 6.6 where the trench/outer rise topography is used to

estimate bending moment.

Equation 6.8 has some exciting implications.  First, if one had complete

topographic measurements of the icy satellites, then the bending moment could be

calculated directly without having to assume values for unknown parameters.

Moreover, if the lithosphere has a spectrally uniform saturation bending moment, then

Figure 6.2  Response of the lithosphere to an initial topographic load.  (a)
Topographic load 

� 

a(x)  applied to an initially unbent plate (dashed line represents
nodal plane).  (b) Observed topography 

� 

t(x)  following relaxation is the sum of the
applied topography 

� 

a(x)  and the bending response 

� 

w(x).
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the topographic spectrum must decrease as the wavelength squared.  This could

explain why Europa appears smooth on global scales yet quite rugged on local scales

(~10 km).  Second, at intermediate and perhaps long wavelengths, the topography of

Europa may conform to an equipotential surface of gravity so topographic

measurements could provide direct measurements of geoid height.  These could be

used to search for the gravitational signatures of volcanoes at the bottom of Europa's

ocean, for example.

We test the saturation moment prediction of Equation (6.8) through a

comparison of impact crater topography on the icy Galilean satellites [Schenk, 2002].

Craters shapes are highly variable so we approximate their topography 

� 

t(r) (Eq. 6.9)

using a radially symmetric Bessel function of the first kind (Figure 6.2)

� 

t r( ) = A0J0 2πk0r( ) (6.9)

where 

� 

r  is radial distance, 

� 

k0 is a characteristic radial wavenumber and 

� 

A0 is the

central amplitude.  Taking the Hankel transform of equation 6.9, substituting into

equation 6.8, and then taking the inverse Hankel transform we obtain the topographic

bending moment as a function of radius (Eq. 6.10).

� 

M r( ) = − ρg
2πk0( )2 A0J0 2πk0r( ) (6.10)
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The maximum bending moment magnitude occurs at the center of the crater

where

� 

J0 0( ) = 1, and has a value given by

� 

Mmax = ρg
2πk0( )2 A0 (6.11)

We follow the convention of Schenk [2002] to define crater depth as the vertical

distance between the central minimum and the first maximum and crater diameter as

the horizontal distance between the two maxima (Eq. 6.12).

depth = 1.4028A0

diameter =
3.8317
πk0

(6.12)

Combining equation 6.11 and equation 6.12, provides a relationship between crater

depth, crater diameter, and maximum bending moment

� 

depth = 20.5958 4Mmax

ρg
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
diameter2 . (6.13)

Although a single wavenumber Bessel function may seem like a crude approximation

to the shape of the topography of an impact crater, we have found through simulations

that the topographic moment is dominated by the amplitude of the longest wavelength
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component.  In other words, adding complicated short wavelength topographic

structure will have negligible effect on maximum moment.

6.4  An upper bound on the topographic spectrum from the yield

strength envelope

Before applying these concepts to the icy Galilean satellites it is instructive to

test the approach using subduction zone data on the Earth.  Levitt and Sandwell [1995]

estimated topographic moment across 37 trench and outer rise flexures.  Rather than

numerically integrate the noisy topographic data, they first fit the topographic profiles

with a thin elastic plate flexure model and then integrated the best-fit model to

estimate the moment (Eq. 6.6).  Their results (Figure 6.3a) show that the topographic

moment increases nearly linearly with lithospheric age, which is explained by a

combination of thickening and strengthening of the lithosphere as it cools.  The

measured moments are then compared to the saturation bending moment computed

from a yield strength envelope consisting of a brittle layer following Byerlee’s law and

a power law ductile flow using a half-space cooling model [Goetze and Evans, 1979].

In all but three of the cases, the topographic moment of the trench is less than the

model saturation bending moment suggesting that the cooling model and rheology are

in accordance with the data.

Figure 6.3b shows the trench measurements of outer rise height (analogous to

crater depth) versus flexural wavelength (analogous to crater diameter),

� 

λ = 2πα = 1 k  where 

� 

α  is the flexural parameter [Watts, 2001].  The model curves
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are calculated by combining Equations (6.5) and (6.8) to relate lithosphere thickness 

� 

h

to wavelength 

� 

1 k  using the 

� 

γ  value of a mirrored yield strength envelope.  While the

mirrored model is a crude approximation to the actual Earth, it provides an

informative check on a well-understood data set.  The comparisons show that older

lithosphere (triangles and circles) generally require a thicker plate than younger

lithosphere (asterisks and squares).  The thicknesses are in good agreement with the

flexural modeling estimates [Levitt and Sandwell, 1995].  The success of this simple

Figure 6.3  (a) Topographic moment (symbols) across 37 trench and outer rise
profiles on the Earth [Levitt and Sandwell, 1995].  Saturation moment (solid curve),
based on a yield strength envelope model, increases with age as the lithosphere cools
and thickens.  All but three of the observed moments fall below the saturation moment
curve.  (b) Outer rise height and flexural wavelength of the same 37 profiles.
Saturation moment contours (solid curves) for a lithosphere with mirrored yield
strength envelope (Figure 6.1b).  Saturation moment and lithospheric thickness
increase with age, as expected for Earth.
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formulation on Earth data suggests it can be applied to the icy satellites where

topographic information is far more limited.

To apply these concepts to the icy Galilean satellites we need to examine

topographic features that are moment-saturated and have a dominant characteristic

wavelength.  The best published data set for this purpose is impact crater depth (rim to

floor) versus diameter (rim to rim) [Schenk, 2002].  For small craters (< 5 km in

diameter) there is a nearly linear relationship between crater depth and diameter that is

consistent with a maximum ice slope of 17˚.  Schenk [2002] interpreted all of these

small craters as having a simple morphology suggesting that they did not penetrate the

lithosphere.  Larger craters (> 10 km) have more complex morphology suggesting

they penetrated partially (complex crater) or entirely through the lithosphere (central

pit or dome crater) [Schenk, 2002].

We propose that crater depth is limited by the minimum of two competing

mechanisms - the 17˚ maximum slope and the saturation bending moment.  Figure 6.4

compares impact crater data from Callisto, Ganymede, and Europa with contours of

lithosphere thickness calculated by combining equations (6.5) and (6.13) using

� 

γ = 0.135 , the value of an ice sheet yield strength envelope with concave up bending.

For Callisto and Ganymede (Figure 6.4a, 6.4b), there is no clear upper bound on the

crater data; rather a range of thickness 2-10 km fits the data.  The lack of a single

thickness for the upper bound can be explained in three ways: i) the true thickness is

greater than 10 km and the crater topographies do not represent moment saturation; ii)

the thickness varies with location; iii) the thickness has changed with time so some

craters formed while the lithosphere was thick while others formed while the
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lithosphere was thin.  Note that the Earth data show a similar dispersion that is due to

thickening of the lithosphere with age.

The relationship between crater depth and diameter is notably different on

Europa (Figure 6.4c).  Crater depth peaks at a diameter of about 8 km and then falls

roughly following the 2-km thick lithosphere.  The peak in the observed crater depth

(~800 m) is not as large as the model peak (~1500 m) possibly because the thin plate

approximation breaks down in this wavelength band.  Nevertheless there is good

Figure 6.4  Impact crater depth versus crater diameter (after Schenk [2002]).  Dotted
line shows 17º slope limit for small diameter craters.  Solid curves are crater depth
predicted by a moment-saturated lithosphere having the ice sheet yield-strength
envelope. Large diameter craters on (a) Callisto and (b) Ganymede are supported by a
lithosphere thickness ranging from 2-10 km.  Large diameter craters on (c) Europa are
supported by a minimum 2.5 km thick lithosphere.  The more realistic mirrored model
requires a minimum 3.5 km thick lithosphere.
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agreement between these simple models and the available data suggesting Europa’s

lithosphere is no thinner than 2.5 km. The more realistic mirrored model requires a

thickness greater than 3.5 km.  The most important feature of this comparison is the

decreasing crater depth with increasing diameter, especially for diameters > 20 km.

This spectral decrease is consistent with the apparent blue topographic spectrum of

Europa; it appears smooth at intermediate wavelengths (100 km - 1000 km) but quite

rough at smaller scales (2 - 20 km).  In contrast, most rocky planets, e.g. Venus, Earth,

and Mars have a red topographic spectrum [Bills and Lemoine, 1995].

6.5  Discussion

One of the interesting predictions of this method is that it places an upper

bound on the topographic spectrum of Europa.  This has important tectonic and

practical consequences.  From a tectonics perspective, any long wavelength

topography that exceeds this bound [e.g., Murias Chaos "Mitten", Figueredo et al.,

2002] must be supported either by local compensation, due to nonuniform tidal

heating [Ojakangas and Stevenson, 1989], or by convective activity in the weak

ductile ice beneath the lithosphere.  From a practical perspective, the upper bound on

the amplitude spectrum can be used to design topographic sampling strategies for

measuring tides, long-wavelength topography due to shell thickness variations, and

geoid height in regions not dominated by Airy-compensated topography.

Existing topographic grids are not large enough for accurate spectral analysis

and also have long-wavelength errors due to the inaccuracies in the stereo-DEM

generation process.  Moreover, spectra produced from a 1-D profile do not accurately
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represent the true 2-D spectrum, especially when the spectrum is blue.  Therefore we

explore the tectonic and practical consequences of the predicted topographic spectrum

by generating synthetic topography that has bending moment less than or equal to the

saturation moment observed in Figure 6.4c and surface slopes less than or equal to

17º.  This is accomplished using a statistical approach by first generating random

topography uniformly distributed in wavenumber domain, and then forcing it to

conform to the model spectrum of Figure 6.4c.

An important issue on Europa is whether on not density variations within the

shell are required to explain the observed topography in the 20 - 100 km wavelength

band.  Schenk and Pappalardo [2004] have proposed that intermediate-scale

topography (~20-100 km) must be supported by Pratt isostasy since the bottom surface

of the ice shell will become flat, erasing any perturbations, over a relatively short

timescale (105 years) [Nimmo , 2004; Stevenson, 2000] making Airy isostasy

impossible.  They in turn use this argument to rule out the possibility of a thin-shelled

Europa.  Here we show that Pratt isostasy is not required, although still possible,

because the 20km-scale topography could be supported by the strength of the shell.

Figure 6.5a shows a 200 km long profile of topography on Europa taken from the

Conamara Chaos region of relatively large amplitude topography.  The topography

data comes from a stereo-controlled photoclinometry Digital Elevation Model

produced by Schenk and Pappalardo [2004] and has a standard deviation of 77 m and

a maximum slope of 16º.  Figure 6.5b shows a profile taken from our synthetically

derived topography, bounded by a 17º slope and the saturation moment corresponding

to a 3 km thick ice sheet model lithosphere.  The two profiles have similar peak to
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trough amplitude and visually similar spectrum.  This analysis suggests that Pratt

isostasy is not required to explain the 20 km-scale topography since it can also be

supported by the strength of the lithosphere.  However, if one were to observe

topography outside the saturation moment limit, then another mechanism of support

such as local isostasy or convection would be needed.

A second important issue on Europa is how best to measure the long-

wavelength topographic variations due to tides, shell thickness variations, and geoid

height.  Proposed instruments include a laser altimeter profiler, which has excellent

absolute height accuracy but poor spatial sampling, and a synthetic aperture radar

interferometer that can measure a wide swath but has inferior height accuracy.  Tidal

fluctuations are estimated to be as large as 30 m [Greenberg et al., 2002; Moore and

Schubert, 2000] on a global scale (~10,000 km wavelength).  To learn something new

about generation of heat by tidal dissipation will require understanding the phase lag

Figure 6.5  (a) Topographic profile from Conamara Chaos region of Europa with
standard deviation 77 m and maximum slope 16º [Schenk and Pappalardo, 2004].  (b)
Synthetically derived topography with standard deviation 77 m and maximum slope
17º.  Maximum moment along this profile corresponds to a 3-km thick plate.
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of the tide relative to the gravitational forcing functions so perhaps a 1-m accuracy

will be needed.  Another possible feature of interest is the shape of the planet’s

equipotential surface, or “geoid”, caused by mass variations at the floor of Europa's

ocean.  If the ocean and ice shell are in isostatic equilibrium at long wavelengths (>

200 km), it may be possible to measure the height of the geoid with an altimeter.

Altimeters have been used to measure the geoid over areas of permanent ice cover on

the Earth [Laxon and McAdoo, 1994].  The expected geoid signal can be crudely

estimated by placing a large uncompensated volcano at the base of a 100 km deep

ocean.  A volcano having mass comparable to Mauna Loa (Hawaii) or Haemus

Montes or Euboea Montes (Io) [Schenk and Bulmer, 1998] produces a geoid bump 1 -

10 m tall and 400 km across.  Thus both the tidal signal and the geoid signal are about

100 times smaller than the RMS of the topography of Europa so the question is  - what

is the best way to sample and average the topography to extract the small-amplitude

long-wavelength signals from the shorter-wavelength topographic "noise"?

To assess the possibility of measuring topography to a 1 m vertical accuracy at

long wavelengths, we investigate the end member strategies for sampling and

averaging of a synthetic topography grid with the model spectrum of Figure 6.4c.

(Note the tidal fluctuations can also be detected at crossover points of altimeter

profiles and our analysis does not consider this type of sampling.)  The laser altimeter

has 200 m diameter footprint and 200 m along-track sampling.  The swath altimeter

has the same 200-m by 200-m resolution but samples a swath 10 km wide (i.e., 50

pixels wide).  Of course, the swath data can be averaged across-track to reduce the

topographic noise by a factor of ~5 but this still does not achieve the desired accuracy
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of 1 m.  Additional noise reduction is gained by Gaussian-averaging the profiles along

the satellite track.  Figure 6.6 shows the level of vertical accuracy achieved by the two

instruments by along-track averaging.  The laser-altimeter achieves the 1-m threshold

at an averaging wavelength of 1000 km.  This sampling is adequate for resolving the

10,000-km wavelength tides but inadequate for detecting the geoid expression of a

large ocean floor volcano.  The swath altimeter achieves the 1-m threshold at a

wavelength of 700 km.  In this case the tidal signal is resolved but only the longer-

wavelength components of the ocean floor volcano could be resolved.  It must be

emphasized that these results rely on the assumption that all topography is supported

by the strength of the lithosphere.  This assumption is likely to be invalid at some

points on Europa’s surface.  Any long-wavelength topography having amplitude > 1 m

that is supported by an Airy, Pratt, or convective mechanism will mask the tidal and

Figure 6.6  Vertical accuracy of sampled topography versus wavelength of averaging.
Solid and dashed lines are for profile instrument (200 m width) and swath instrument
(10 km width) respectively.  A 1 m vertical resolution is required to study geoid and
tide variations.



220

geoid signals.  In this case a crossover analysis will be needed to extract the tidal

signal and the geoid signal will be immeasurable.

6.6  Conclusions

Saturation moment analysis is a useful companion to existing methods of

estimating lithosphere thickness.  Rather than relying on estimates of specific material

properties that are poorly constrained, it instead makes a more fundamental estimation

of the first-order behavior of the general material by selecting the shape of the

lithosphere’s yield strength envelope.  By using the strongest possible yield strength

envelope, an absolute lower bound on lithospheric thickness can be established.

Moment analysis also gives a more robust estimate of lithosphere thickness since it

simultaneously incorporates multiple features of multiple length scales to constrain its

estimates rather than a single feature of a single scale.

Craters of large diameter (> ~10 km) on Callisto and Ganymede exhibit

multiple topographic moments, as do trenches at subduction zones on Earth, indicating

a range of lithosphere thicknesses.  We conclude that lithosphere thickness on these

satellites in the vicinity of these impact craters either i) varies in the range of a few km

to ~10 km or ii) is everywhere thicker than 10 km (or some combination of the two).

These estimates are significantly larger than previous estimates of effective elastic

plate thickness.  Craters on Europa coincide with a single observed topographic

moment for large craters (diameter > ~6 km) suggesting a lithosphere thickness

greater than 2.5 km in the vicinity of the craters.  This estimate lies between the
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thinner effective elastic thickness estimates of Williams and Greeley [1998] and

thicker estimates of Figueredo et al. [2002] and Nimmo et al. [2003a].

The impact crater depth/diameter relationship on Europa is consistent with a

moment saturation model having a blue spectrum.  This model explains why Europa

appears smoother at long wavelengths than it does at short wavelengths.  This

spectrum can be used to statistically create synthetic topography grids much larger

than the DEMs available from current data.  Simulation of topography with this

spectrum reveals that observed chaos topography can be supported by the strength of

the lithosphere and do not require Pratt isostasy as a mechanism of support as has been

suggested.  Large synthetic topography grids allow us to examine intermediate

wavelength characteristics and consider possible sampling strategies for an altimeter at

Europa.  Observation of geoid height and new understanding of tides requires 1 m of

vertical resolution unobscured by small-scale topography.  A 10 km swath instrument

would require along track averaging of 700 km to achieve this resolution and a 200 m

spot profiling instrument would require along track averaging on the order of 1000

km.
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