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Abstract
Previous neuroimaging studies have suggested similar neural activations for word reading in

native and second languages. However, such similarities were qualitatively determined

(i.e., overlapping activation based on traditional univariate activation analysis). In this study,

using representational similarity analysis and an artificial language training paradigm, we quanti-

tatively computed cross-language neural pattern similarity to examine the modulatory effect of

proficiency in the new language. Twenty-four native Chinese speakers were trained to learn

30 words in a logographic artificial language for 12 days and scanned while performing a seman-

tic decision task after 4-day training and after 12-day training. Results showed that higher profi-

ciency in the new language was associated with higher cross-language pattern similarity in

select regions of the reading network.
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1 | INTRODUCTION

Learning to read one or more foreign languages has become increas-

ingly important in this era of globalization. One of the fundamental

questions about bilingualism is how words in the native and second

languages are represented in the brain. Most neuroimaging studies

have revealed similar activations in the prefrontal cortex, temporopar-

ietal cortex, and occipitotemporal regions when reading in native and

second languages (Buchweitz, Shinkareva, Mason, Mitchell, & Just,

2012; Liu, Hu, Guo, & Peng, 2010; Nakada, Fujii, & Kwee, 2001;

Wartenburger et al., 2003), especially at the word level (Briellmann

et al., 2004; Cao, Tao, Liu, Perfetti, & Booth, 2013; Kim et al., 2016;

Mei et al., 2015b; Nelson, Liu, Fiez, & Perfetti, 2009; Van de Putte, De

Baene, Brass, & Duyck, 2017; Videsott et al., 2010; Xue, Dong, Jin,

Zhang, & Wang, 2004). Other studies, however, have reported differ-

ences in certain regions (Jamal, Piche, Napoliello, Perfetti, & Eden,

2012; H. Liu & Cao, 2016; Y. Liu, Dunlap, Fiez, & Perfetti, 2007; Sun

et al., 2015; Tham et al., 2005). For instance, Tham et al. (2005) found

that the neural activations for Chinese and English words differed in a

number of brain regions when Chinese–English bilinguals performed a

homophone matching task. Specifically, distinct activations for Chi-

nese were found in the bilateral frontal lobe, right occipital lobe, and

left temporal lobe, while distinct activations for English were found in

the bilateral frontal and parietal lobes.

Further studies have suggested that proficiency in second lan-

guage plays an important role in determining the similarities and†Huiling Li and Jing Qu contributed equally to this study.
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differences in neural activations between native and second languages

(Bowden, Steinhauer, Sanz, & Ullman, 2013; Cao et al., 2013; Gao

et al., 2017; Ojima, Nakamura, Matsuba-Kurita, Hoshino, & Hagiwara,

2011; Ojima, Nakata, & Kakigi, 2005; Rossi, Gugler, Friederici, &

Hahne, 2006; Stein et al., 2009; Wartenburger et al., 2003). For exam-

ple, a number of studies have found that bilinguals with higher

second-language proficiency showed more native-like brain proces-

sing mechanisms when reading words in second language, compared

to second-language learners with lower proficiency (Cao et al., 2013;

Gao et al., 2017; Stein et al., 2009).

Although much is known about how words in native and second

languages are represented in the brain, previous studies mainly used

traditional univariate activation analysis, which determines the degree

of similarity in neural activation qualitatively based on the co-

activation or activation differences between native and second lan-

guages. Such an approach has missed rich representational space

information (Kriegeskorte & Kievit, 2013). For example, a recent study

found that word reading in native and second languages showed acti-

vations in common regions, but different activation patterns in the

same regions when multi-voxel pattern analysis was conducted (Xu,

Baldauf, Chang, Desimone, & Tan, 2017). Therefore, multivariate

approaches (e.g., representational similarity analysis, RSA)

(Kriegeskorte, Mur, & Bandettini, 2008) are needed to quantify neural

pattern similarity between native and nonnative languages

(e.g., second and third languages). Moreover, it is unclear how non-

native-language experience modulates neural pattern similarity

between native and nonnative languages.

The modulatory effect of language experience has typically been

studied by comparing two groups of bilinguals with different levels of

proficiency in second language (Cao et al., 2013; Gao et al., 2017;

S. Y. Kim, Liu, & Cao, 2017; Wartenburger et al., 2003). Such compari-

sons are likely to be confounded by factors such as learning methods

(different methods might have been used to attain different levels of

proficiency) and individual differences (different levels of proficiency

might have resulted from cognitive differences). To control for those

confounding factors, this study used a well-designed artificial lan-

guage paradigm, in which all participants were instructed to learn

words in a new language using the same procedure for the same

amount of time. This paradigm allows us to examine the changes in

cross-language pattern similarity as a result of learning the new

language.

Specifically, we trained 24 Chinese college students to learn an

artificial language, which was created by borrowing visual forms and

phonologies of 30 Korean Hangul characters. These artificial language

words were then assigned arbitrary meanings using 30 pictures of

objects that belong to two semantic categories (i.e., man-made and

natural objects). The same two semantic categories were used for Chi-

nese and English words in this study. The training lasted for 12 days.

After 4- and 12-day training, participants were scanned while per-

forming a semantic decision task, which has been widely used in read-

ing research (Daselaar et al., 2002; Guo & Burgund, 2010; Hulten,

Vihla, Laine, & Salmelin, 2009; Whatmough, Verret, Fung, &

Chertkow, 2004; Wu et al., 2009), especially when studying neural

representations of native and second languages in bilinguals (Ding

et al., 2003; Illes et al., 1999; Xue et al., 2004).

The modulatory effect of proficiency in the new language was

examined by comparing pattern similarity between Chinese and

artificial language across the two learning sessions [i.e., after 4-day

training (lower proficiency) and after 12-day training (higher profi-

ciency)]. In this analysis, pattern similarity between Chinese and

English words was included to control potential time-related vari-

ances across the two learning sessions. In addition, we also exam-

ined the modulatory effect of language proficiency by comparing

pattern similarity between Chinese and English (higher proficiency)

with that between Chinese and artificial language (lower profi-

ciency). Both whole-brain RSA and ROI-based RSA were used.

Whole-brain RSA was used to detect all potential brain regions

showing the modulatory effect of language experience on cross-

language pattern similarity, while ROI-based RSA was used to fur-

ther confirm whether the effect of language experience occurred in

brain regions critically involved in word reading, including the bilat-

eral inferior frontal gyrus (i.e., pars opercularis and pars triangu-

laris), inferior temporal gyrus, fusiform gyrus, and angular gyrus

(Binder, Desai, Graves, & Conant, 2009; Borghesani et al., 2016;

Dehaene & Cohen, 2011; Fischer-Baum, Bruggemann, Gallego,

Li, & Tamez, 2017; Liuzzi et al., 2017; Taylor, Rastle, & Davis,

2013). We expected that higher proficiency in the new language

(as well as in English as second language) was associated with

higher cross-language pattern similarity within brain regions for

word reading.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-four college students (11 males, mean age = 19.46, SD =

0.93, range = 18–22) participated in the study. All participants were

native Chinese speakers and had learned English as second language

for at least 10 years. Their proficiency in the two languages was self-

evaluated on a 7-point scale (1 = “quite poor,” 7 = “highly proficient”).

The average ratings were 5.5 (SD = 1.06) for Chinese and 3.47 (SD =

0.69) for English. Thus, participants were unbalanced Chinese–English

bilinguals with intermediate proficiency in English.

None of participants had prior experience of Korean language. All

participants were strongly right-handed, as assessed by Snyder and

Harris's handedness inventory (Snyder & Harris, 1993). They had nor-

mal or corrected-to-normal vision. None of the participants had a his-

tory of head trauma and neurological or psychiatric illness. Each

participant gave a written informed consent before the experiment.

The study was approved by the IRB of School of Psychology at South

China Normal University.

2.2 | Materials

Thirty Chinese words, 30 English words, and 30 artificial language

words were used in this study. For each type of words, half of the

stimuli represented man-made objects, and the other half represented

natural objects. The Chinese words were selected from a Chinese

database (Cai & Brysbaert, 2010). They were medium- to high-
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frequency (mean = 56.83 per million, SD = 49.29), and consisted of

2–3 units (mean = 3, SD = 0.69) and 6–9 strokes (mean = 7,

SD = 1.23).

The English materials were selected from the MRC Psycholin-

guistic Database (http://websites.psychology.uwa.edu.au/school/

MRCDatabase/uwa_mrc.htm). These words were also medium- to

high-frequency words (mean = 54.63 per million, SD = 33.53), and

contained 3–6 letters (mean = 4.5, SD = 1.11). Before the main

experiment, 10 Chinese college students were instructed to evalu-

ate the familiarity of all English words on a 5-point scale. The

scores were higher than 4 (4.6 � 0.24), suggesting Chinese partici-

pants were familiar with those English words.

The artificial language was created by adopting the visual forms

and sounds of 30 Korean Hangul characters. They were assigned

arbitrary meanings through pictures of 30 different objects (half are

natural objects and the other half are man-made objects)

(Figure 1a). These words were composed of 2–3 units and 5–9

strokes to match with Chinese words in visual complexity. The

sounds of the artificial language words were in the same length

(600 ms) and loudness.

2.3 | Training procedure

In this study, we trained participants to learn the visual forms,

sounds, and semantics of the artificial language for 12 days, about

1 hr per day. Several learning tasks were used to facilitate the

acquisition of the artificial language by using a computerized

program. The tasks included character learning, phonological

choice, semantic choice, free learning, naming with feedback, fast

matching, and fast naming.

The first five tasks were used over the 12-day training. Specifi-

cally, participants had to learn and associate each artificial language

visual word with its sound and meaning in the character learning

task, and were asked to choose the correct sound/meaning out of

four to match the target word in the phonological/semantic choice

task. The free learning task was designed to relearn any words that

participants had difficulties in the phonological/semantic choice

tasks. During naming with feedback task, participants were asked

to read a word aloud followed by its correct pronunciation. After

Day 4, two speed tasks were additionally designed to facilitate the

efficient access to the phonologies and semantics of artificial lan-

guages words. In the fast matching task, participants were asked to

match 10 visual words with 10 pictures as fast and accurately as

possible. The fast naming task required participants to read

10 words or name 10 pictures as fast and accurately as possible. It

should be noted that all training tasks were designed to facilitate

the acquisition of visual forms, phonologies, semantics, and their

associations. Although the meanings of artificial language words

consisted of two categories of objects (i.e., man-made and natural

objects), participants were not explicitly instructed to categorize

the words based on their meanings during training. In other words,

artificial language training in this study focused on lexical learning,

but not category learning.

FIGURE 1 Experimental design and behavioral performance. Participants received artificial language training (a) for 12 days (1 hr per day). (b) A

semantic decision task was administered after 4-day training and after 12-day training. (c) Reaction time and accuracy of artificial language words
increased with training. Error bars represent the standard error of the mean [Color figure can be viewed at wileyonlinelibrary.com]
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2.4 | fMRI task

Participants were scanned twice, one after the 4-day training and

another after the 12-day training. Day 4 was chosen for the first fMRI

scan based on the behavioral performance of another small sample

(3 Chinese college students) in a preliminary experiment (Supporting

Information Figure S1). Specifically, on Day 4, the learning curves

became smooth and participants mastered most of the artificial lan-

guage words (the mean accuracy was 84.4% for the word naming

task). The relatively high behavioral performance during the first scan

would minimize the possibility that the differences in pattern similarity

across the two learning sessions reflected the differences between

known and unknown words, rather than the effect of language

proficiency.

During scanning, participants performed a semantic decision task.

They were instructed to judge whether the meaning of the presented

word was a man-made object or a natural object (Figure 1b). In the

semantic decision task, three types of stimuli (i.e., Chinese, English,

and artificial language words) were included. Each type of stimuli con-

sisted of 30 items and each item was presented for three times.

A rapid event-related design was used for the fMRI scan. The

stimuli were pseudorandomly presented, and the sequences of the tri-

als were optimized with OPTSEQ2 (http://surfer.nmr.mgh.harvard.

edu/optseq/). There were two functional runs in each scan. Each run

began with a 6 s blank screen. Each word was presented for 3 s, fol-

lowed by a fixation varying randomly from 2 to 6 s (mean = 3 s) to

improve design efficiency (Dale, 1999). In total, each run contained

135 trials and lasted for 816 s.

2.5 | MRI data acquisition

All MRI images were collected using a 3.0 T Siemens MRI scanner in

the MRI Center at South China Normal University. Functional images

were acquired with a single-shot T2*-weighted gradient-echo EPI

sequence. The specific scanning parameters were: TR = 2,000 ms,

TE = 25 ms, flip angle = 90�, FOV = 192 × 192 mm, matrix size = 64

× 64, and slice thickness = 3.5 mm. Thirty-five contiguous axial slices

parallel to the anterior commissure-posterior commissure plane were

obtained to cover the whole brain. A T1-weighted, three-dimensional,

gradient-echo pulse-sequence was used for anatomical MRI with the

following parameters: TR = 2,300 ms, TE = 3.24 ms, flip angle = 9�,

FOV = 256 × 256 mm, matrix size = 256 × 256, and slice thickness =

1 mm. One hundred and seventy-six sagittal slices were acquired to

provide a high-resolution structural image of the whole brain.

2.6 | Image preprocessing and statistical analysis

Image processing was carried out using the FEAT (FMRI Expert Analy-

sis Tool) Version 6.00, part of FSL (FMRIB's Software Library, http://

www.fmrib.ox.ac.uk/fsl). The first three volumes in each time series

were discarded to remove nonequilibrium effects of T1. The remain-

ing images were then realigned, and no translational movement

parameters exceeded 1 voxel in any direction for any participant or

run. All imaging data were spatially smoothed using a Gaussian kernel

of 5 mm full-width-half-maximum (FWHM) and then temporally fil-

tered by using a nonlinear high-pass filter with a 60 s cutoff. The

functional images were registered to standard Montreal Neurological

Institute (MNI) space using a two-step registration from functional to

the MPRAGE structural image to MNI-template (Jenkinson & Smith,

2001). Registration from MPRAGE structural image to the standard

MNI space was further refined using FNIRT nonlinear registration

(Andersson, Jenkinson, & Smith, 2007a, 2007b).

At the first level, the data were modeled using the general linear

models for each participant, for each learning session, and for each

run. The onsets and durations (3 s) of the events were convolved with

the double-gamma hemodynamic response function to generate the

regressors used in the general linear model. To improve statistical sen-

sitivity, the six motion parameters and temporal derivatives were

included as covariates of no interest. Fixations served as the baseline

condition. The contrast images for the three conditions (i.e., Chinese

words, English words, and artificial language words) were computed

separately for each run, learning session, and participant.

A second-level analysis was performed on the four runs in the

two scans to get the averaged activation in each scan by using a

fixed-effects model. These data were then entered into the third-level

analyses. In these analyses, we firstly computed the group activation

for Chinese, English, and artificial language words after the 12 days

training, and performed a conjunction analysis to reveal common acti-

vations across the three types of words, using the procedure sug-

gested by Nichols, Brett, Andersson, Wager, and Poline (2005).

Specifically, group activation maps for the three types of words were

thresholded individually at p < .001, and then binarized and multiplied

to reveal brain regions that were significantly activated for all three

conditions. Then, we performed a two-way (language: Chinese,

English, and artificial language; learning session: Day 4 and Day 12)

analysis of variance (ANOVA) to examine the training effect. Follow-

up simple-effect analysis was used to compute the differences across

the three languages, and differences between Day 4 and Day 12 for

each language. A random-effects model with FLAME stage 1 only was

used in the third-level analysis (Beckmann, Jenkinson, & Smith, 2003;

M. Woolrich, 2008; Woolrich, Behrens, Beckmann, Jenkinson, &

Smith, 2004). Unless otherwise stated, all reported group images were

thresholded with a voxel-level threshold of p < .001 and a cluster

probability of p < .05, corrected for whole-brain multiple comparisons

using the Gaussian random field theory (Worsley, 2001).

2.7 | Representational similarity analysis

To examine the effect of language experience on the cross-language

pattern similarity, we further computed neural pattern similarity using

both whole-brain representation similarity analysis (RSA) and ROI-

based RSA. In both analyses, we first re-estimated the above men-

tioned first-level models with unsmoothed data.

In whole-brain RSA, a searchlight method was used to locate

brain regions (Kriegeskorte et al., 2008; Xue et al., 2013). At each

voxel, activation patterns were extracted from the spherical ROI with

a radius of 4 mm centered on that voxel (Kriegeskorte, Goebel, &

Bandettini, 2006), separately for Chinese, English, and artificial lan-

guage words. Pearson correlation analysis was used to compute

cross-language pattern similarity (i.e., pattern similarity between Chi-

nese and English words, and that between Chinese and artificial
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language words). These correlation coefficients were then trans-

formed into Fisher's z-scores. The searchlight method was conducted

at participants' native space, separately for each run. The results were

then transformed into standard space and concatenated across runs.

The brain maps of individual participants were spatially smoothed at

5 mm FWHM and were then subjected to random-effect group analy-

sis. To examine the validity of representational similarity analysis, we

also computed within-language and between-language pattern simi-

larity by correlating activation patterns across the two runs. Within-

language pattern similarity was calculated by averaging pattern

similarity of all within-language pairs and between-language pattern

similarity was calculated by averaging pattern similarity of all

between-language pairs.

To confirm that the modulatory effect of the proficiency of non-

native languages occurred in brain regions critically involved in word

reading, we further performed ROI-based RSA. In this analysis,

10 brain regions that have been repeatedly reported to be involved in

word reading were defined as regions of interest (ROIs). They included

four regions in the inferior frontal gyrus [the bilateral pars opercularis

(PO) and bilateral pars triangularis (PT)], four regions in the occipito-

temporal areas [the bilateral fusiform gyrus (FG) and inferior temporal

gyrus (ITG)], and two regions in the temporoparietal cortex [bilateral

angular gyrus (AG)] (Binder et al., 2009; Bolger, Perfetti, & Schneider,

2005; Dehaene & Cohen, 2011; Mei et al., 2010; Price, 2012; Taylor

et al., 2013). Anatomical ROIs were defined based on Harvard-Oxford

probabilistic atlas (Maximal Probability Threshold: 25%) within FSL.

Within each ROI, we extracted averaged voxel-wise activation pattern

across all stimuli in each condition and in each run for each partici-

pant. Then, we used Pearson correlation analysis to compute cross-

language pattern similarity across the three types of words on the

averaged activation patterns across stimuli (Qu et al., 2017; Xue et al.,

2010). All correlation coefficients were transformed into Fisher's

z-scores and averaged across the two runs in each scan.

3 | RESULTS

3.1 | Training improved behavioral performance on
artificial language words

Behavioral results showed that participants correctly responded to

89.6% and 93.9% artificial language words after 4-day and 12-day

training, respectively, suggesting our training was effective. We fur-

ther conducted two-way repeated-measure ANOVAs to examine the

behavioral differences across the three types of materials and across

the two learning sessions. For reaction time, the main effect of mate-

rial was significant [F(2, 46) = 364.79, p < .001]. Post hoc compari-

sons revealed that the reaction time for Chinese words was shorter

than that for English words, which was in turn shorter than the reac-

tion time for artificial language words (Figure 1c). The main effect of

learning session was also significant [F(1, 23) = 31.18, p < .001]. Spe-

cifically, the reaction time significantly decreased from Day 4 to Day

12. Furthermore, the reaction time for artificial language words

decreased more than that for Chinese words and English words

[material-by-learning-session interaction: F(2, 46) = 7.44, p = .002],

because of extensive training on artificial language words.

Similar results were found for accuracy. The main effect of mate-

rial was significant [F(2, 46) = 21.67, p < .001]. The accuracy of artifi-

cial language words was lower than that of Chinese words and English

words (ps < .05), but there was no difference between Chinese words

and English words (Figure 1c). In addition, the material-by-learning-

session interaction was significant [F(2, 46) = 7.62, p = .001]. Simple

effect analysis revealed that the accuracy of artificial language words

was lower on Day 4 than Day 12 [F(1, 23) = 11.14, p = .003], but

there were no differences across the two learning sessions for Chi-

nese and English words [Chinese words: F(1, 23) = 0.03, p = .864;

English words: F(1, 23) = 0.25, p = .622]. These results suggest that

training improved proficiency in artificial language word reading, and

that the level of proficiency was lower in artificial language relative to

native language (i.e., Chinese) and second language (i.e., English).

3.2 | Neural activations for Chinese, English, and
artificial language words across the two learning
sessions

We first conducted the whole-brain analysis to explore neural activa-

tions of Chinese, English, and artificial language words after the

12-day training. Results showed that the three types of words elicited

similar activation patterns in brain regions for general cognitive con-

trol (i.e., anterior cingulate cortex and bilateral middle frontal gyrus)

(Abutalebi & Green, 2007; Seo, Stocco, & Prat, 2018; Sierpowska

et al., 2018) and for word reading (i.e., the bilateral inferior frontal

gyrus, occipitoparietal cortex, and occipitotemporal cortex) (Bolger

et al., 2005; Cattinelli, Borghese, Gallucci, & Paulesu, 2013; Price,

2012) (Figure 2a–c). The common activations in those regions were

confirmed by a conjunction analysis (Figure 2d).

We further conducted a language-by-learning-session ANOVA on

the imaging data to examine the training effect and the language

effect (Supporting Information Figure S2). Results showed that the

main effect of language was significant in the bilateral cingulate gyrus,

prefrontal cortex, occipitoparietal cortex, occipitotemporal cortex, and

angular gyrus. Post hoc comparisons revealed that artificial language

words elicited greater activation in the bilateral cingulate gyrus, infe-

rior frontal gyrus, middle frontal gyrus, superior parietal lobule, inferior

temporal gyrus than did Chinese words and English words, whereas

Chinese and English words elicited more activation in the bilateral

medial frontal cortex and angular gyrus. English words elicited greater

activation in bilateral occipital cortex than did Chinese words, whereas

Chinese words elicited greater activation in bilateral fusiform gyrus

than did English words (Supporting Information Figure S3). These

results suggest that more cognitive resources were required to pro-

cess the newly acquired artificial language words relative to words in

familiar languages. Neither the main effect of learning session nor the

language-by-learning-session interaction was significant in any

regions.

To detect the subtle effects of training, we directly compared the

neural activations after 4-day training with those after 12-day training

separately for the three types of words. Results showed that com-

pared with Day 4, artificial language words elicited less activations in
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the bilateral occipitotemporal cortex and occipitoparietal cortex in

Day 12. No regions showed significant changes in activation for Chi-

nese words and English words (Supporting Information Figure S4).

3.3 | Artificial language training enhances pattern
similarity between native language and artificial
language

Before examining the effect of language training on pattern similarity,

we first needed to establish validity of RSA in our study by comparing

within-language pattern similarity with between-language pattern

similarity across the two runs. For both Days 4 and 12, whole-brain

RSA showed that within-language pattern similarity was higher than

between-language pattern similarity in a wide neural network, includ-

ing the anterior cingulate cortex, bilateral prefrontal gyrus, occipito-

temporal areas, and occipitoparietal cortex (Supporting Information

Figure S5). No regions showed higher between-language pattern simi-

larity than within-language pattern similarity. These results suggest

that the representational similarity analysis used in this study had

good validity.

To examine the effect of the proficiency in nonnative languages

on cross-language neural pattern similarity, we performed both

whole-brain and ROI-based representational similarity analysis (RSA).

We first compared pattern similarity between Chinese and artificial

language words (C–A) on Day 4 with that on Day 12. Results showed

that artificial language training enhanced C–A pattern similarity in sev-

eral regions, including the bilateral orbital frontal cortex, superior

occipital gyrus, right middle frontal gyrus, and superior parietal lobule

(Figure 3a). After subtracting the pattern similarity between Chinese

and English words (C–E), the bilateral superior occipital gyrus

remained significant. The bilateral orbital frontal cortex was addition-

ally activated when a liberal threshold was used (p < .01, whole-brain

corrected). In addition, we compared neural pattern similarity of C-E

FIGURE 2 Brain activations for (a) Chinese words, (b) English words, and (c) artificial language words after 12-day training. (d) Conjunction

analysis showed that the three types of words elicited similar activation in the typical reading network. All activations were thresholded at

p < .001 (whole-brain corrected) and overlaid onto the group-averaged anatomical map. R = right [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 The effect of language experience on cross-language

pattern similarity. (a) Results showed that artificial language training
enhanced pattern similarity between Chinese words and artificial
language words in several regions, including the bilateral orbital
frontal cortex, superior occipital gyrus, right middle frontal gyrus, and
superior parietal lobule. (b) Pattern similarity between Chinese and
English words was higher than that between Chinese and artificial
language words in the anterior cingulate cortex, bilateral inferior
frontal gyrus (extending to precentral gyrus), left superior parietal
lobule, and right superior occipital gyrus. R = right [Color figure can
be viewed at wileyonlinelibrary.com]
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(higher proficiency) with that of C–A (lower proficiency) after 12-day

training. Results showed that pattern similarity of C–E was higher

than that of C–A in the anterior cingulate cortex, bilateral inferior

frontal gyrus (extending to precentral gyrus), left superior parietal lob-

ule, and right superior occipital gyrus (Figure 3b).

To ensure that language experience specifically enhanced cross-

language pattern similarity within brain regions for word reading, we fur-

ther conducted ROI-based RSA. As described in Methods, 10 brain

regions for word reading were defined as ROIs. In this analysis, we per-

formed two-way (comparison: C–E and C–A; learning session: Day 4 and

Day 12) repeated-measures ANOVA to directly compare pattern similar-

ity of C–E with that of C–A, and compare pattern similarity of C–A

across the two learning sessions. As shown in Figure 4 and Table 1, the

main effect of comparison was significant in eight ROIs, including

the left pars opercularis [F(1, 23) = 31.21, p < .001], right pars opercu-

laris [F(1, 23) = 42.23, p < .001], left pars triangularis [F(1, 23) = 23.51,

p < .001], right pars triangularis [F(1, 23) = 18.89, p < .001], left inferior

temporal gyrus [F(1, 23) = 37.50, p < .001], right inferior temporal gyrus

[F(1, 23) = 14.64, p = .001], and left angular gyrus [F(1, 23) = 36.71,

p < .001], right angular gyrus [F(1, 23) = 13.92, p = .001]. Specifically,

pattern similarity of C–E was higher than that of C–A in those regions

for word reading. A significant main effect of learning session was found

only in the inferior temporal gyrus [F(1, 23) = 6.33, p = .019].

More importantly, seven ROIs showed significant comparison-by-

learning-session interaction [left pars opercularis: F(1, 23) = 4.95,

p = .036; left pars triangularis: F(1, 23) = 9.29, p = .006;

right fusiform gyrus: F(1, 23) = 5.1, p = .034; left inferior temporal gyrus:

F(1, 23) = 15.51, p = .001; right inferior temporal gyrus: F(1, 23) = 4.69,

p = .041; and left angular gyrus: F(1, 23) = 9.01, p = .006; right angular

gyrus: F(1, 23) = 6.37, p = .019]. Simple-effect analysis revealed that pat-

tern similarity of C–A increased accompanying training in the left pars

opercularis [F(1, 23) = 4.94, p = .036], left inferior temporal gyrus [F

(1, 23) = 6.48, p = .018], right inferior temporal gyrus [F(1, 23) = 8.55,

p = .008], left angular gyrus [F(1, 23) = 9.26, p = .006], and right angular

gyrus [F(1, 23) = 6.13, p = .021], whereas that of C–E did not change

between the two training sessions (Supporting Information Table S1).

These results provide direct evidence for the modulatory effect of

nonnative-language experience on pattern similarity between native and

nonnative languages in brain regions for word reading.

In the above analysis, neural responses across the three presenta-

tions for each word were averaged to get higher signal-to-noise ratio

of BOLD signals. To examine whether the improvement of cross-

language pattern similarity with training was consistent across the

three presentations, we further computed pattern similarity of C–A in

Day 4 and in Day 12, separately for the three presentations.

Repetition-by-learning-session ANOVA showed that the main effect

of learning session (i.e., the enhancement of pattern similarity) was

less robust, but was still evident in the left pars opercularis, angular

gyrus, and bilateral inferior temporal gyrus (Supporting Information

Table S2 and Figure S6). Although pattern similarity of C–A decreased

within increasing repetition in 6 of 10 ROIs, none of ROIs showed sig-

nificant repetition-by-learning-session interaction (all ps > .1). These

results suggest that the enhancement of cross-language pattern simi-

larity with training was consistent across the three presentations.

3.4 | Changes in pattern similarity during training
were associated with improvement in behavioral
performance

Finally, we conducted correlational analyses to examine the associa-

tions between neural pattern similarity and behavioral performance.

Results showed that changes in pattern similarity from Day 4 to Day

12 were associated with improvement in behavioral performance.

Specifically, more changes of pattern similarity between Chinese

words and artificial language words in the bilateral pars triangularis,

and right pars opercularis were associated with greater improvement

(accuracy) for artificial language words in the semantic decision task

(Figure 5). It is worth noting that there were two participants showing

FIGURE 4 Cross-language pattern similarity in the 10 predefined ROIs. (a) The upper panels show results of 5 ROIs in the left hemisphere,

(b) while the lower panels show results in the right hemisphere. AG = angular gyrus; FG = fusiform gyrus; ITG = inferior temporal gyrus;
PO = pars opercularis; and PT = pars triangularis. CA = pattern similarity between Chinese and artificial language words; CE = pattern similarity
between Chinese and English words
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slight decreases in accuracy from Day 4 to Day 12 (0.08 and 0.07),

perhaps because of forgetting or interference or instability in mea-

surement. To exclude the possibility that the brain–behavior relation-

ship was driven by those two participants, we performed additional

correlational analyses by excluding data of those two participants. The

correlation coefficients remained significant in all three regions (left

pars triangularis: r = .65, p = .001; right pars triangularis: r = .55,

p < .01; right pars opercularis: r = .56, p < .01).

4 | DISCUSSION

Using an artificial language training paradigm and representational

similarity analysis, this study aimed to investigate whether lexical

learning in a language led to neural pattern similarity with word read-

ing in native language. Consistent with previous studies (S. Y. Kim

et al., 2017; Mei et al., 2015b; Sun et al., 2015; Xue et al., 2004), this

study found that different languages were generally processed in

common regions, such as the anterior cingulate cortex, bilateral pre-

frontal cortex, occipitoparietal cortex, and occipitotemporal cortex.

Furthermore, training reduced neural activations in bilateral occipito-

temporal cortex for artificial language words, but not for words in

native (i.e., Chinese) and second languages (i.e., English). More impor-

tantly, we found that higher proficiency in the nonnative language

(i.e., second and third languages) was associated with higher pattern

similarity between native and nonnative languages. These results sug-

gest that pattern similarity between words in native and nonnative

languages reflect proficiency in the latter.

Previous neuroimaging studies on bilingualism have generally

revealed that common regions are activated during word reading in

native and second languages (Berken et al., 2015; Chee, Tan, & Thiel,

1999; S. Y. Kim et al., 2017; Kovelman, Baker, & Petitto, 2008; Marian

et al., 2007; Wong, Yin, & O'Brien, 2016; Xue et al., 2004). Further

studies have observed that learners with higher second-language pro-

ficiency showed more native-like brain processing mechanisms (Cao,

2015; Cao et al., 2013; S. Y. Kim et al., 2016; Ojima et al., 2005; Rossi

et al., 2006; Stein et al., 2009). Nevertheless, these studies mainly

used the traditional univariate activation analysis to compute neural

activity at the level of individual voxels, and consequently missed the

information of multi-voxel neural pattern. Here, by adopting represen-

tational similarity analysis that computes multi-voxel pattern similarity

(Kriegeskorte et al., 2008), our study quantitatively examined neural

pattern similarity between native and nonnative languages. Specifi-

cally, we first conducted whole-brain RSA to examine the modulatory

effect of proficiency in nonnative languages on the cross-language

pattern similarity. Results showed that pattern similarity of C–A

increased with training in the bilateral prefrontal cortex and occipito-

parietal cortex. In addition, pattern similarity of C–E (higher profi-

ciency) was higher than that of C–A (lower proficiency) in the anterior

cingulate cortex, bilateral inferior frontal gyrus, left superior parietal

lobule, and right superior occipital gyrus. Next, the enhancement of

cross-language pattern similarity was specifically confirmed in regions

for word reading by using ROI-based RSA. Specifically, pattern similar-

ity of C–E was higher than that of C–A in the bilateral inferior frontal

gyrus, inferior temporal gyrus, and angular gyrus. Furthermore, by

comparing pattern similarity between the two learning sessions for

C–A and C–E separately, we found that artificial language training

enhanced pattern similarity of C–A in bilateral inferior temporal gyrus,

angular gyrus, and left pars opercularis, whereas that of C–E did not

change. Finally, the modulatory effect of non-native-language profi-

ciency was further confirmed by the results of brain–behavior correla-

tional analysis. We found that the changes in C–A pattern similarity in

the bilateral inferior frontal gyrus were associated with improvement

in behavioral performance. These results converge to suggest that

proficiency in nonnative languages enhances neural pattern similarity

between native and nonnative languages.

It is worth noting that although the increased cross-language pattern

similarity was consistently observed in both whole-brain and ROI-based

RSA, we did not find increased activations induced by training in any

brain regions. On the contrary, univariate activation analysis showed that

training reduced activations for artificial language words in the bilateral

occipitotemporal and occipitoparietal cortex, probably because of

increased familiarity with artificial language words (Ischebeck et al.,

2004; Kronbichler et al., 2007; Twomey et al., 2013). Those inconsistent

TABLE 1 Summary statistics of the comparison-by-learning-session ANOVA

ROIs

Interaction Main effect of comparison Main effect of learning session

F P F P F P

Left

Angular gyrus 9.01 .006** 36.71 <.001*** 3.72 .066

Fusiform gyrus 0.94 .342 0.26 .616 0.48 .493

Inferior temporal gyrus 15.51 .001** 37.50 <.001*** 1.19 .287

Pars opercularis 4.95 .036* 31.21 <.001*** 2.89 .103

Pars triangularis 9.29 .006** 23.51 <.001*** 1.24 .276

Right

Angular gyrus 6.37 .019* 13.92 .001** 2.18 .153

Fusiform gyrus 5.10 .034* 3.16 .089 0.03 .860

Inferior temporal gyrus 4.69 .041* 14.64 .001** 6.33 .019*

Pars opercularis 2.32 .141 42.23 <.001*** 3.12 .091

Pars triangularis 0.74 .398 18.89 <.001*** 0.70 .410

*p < .05; **p < .01; ***p < .001.
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results between univariate and multivariate analyses are likely a reflec-

tion of the advantages of RSA over univariate activation analysis. Specifi-

cally, the univariate activation analysis typically uses spatially smoothed

images and treats each voxel independently, and consequently loses

fine-grained pattern information (Haxby, 2012; Haynes, 2015), while

multivariate methods (e.g., RSA) compute patterns of neural activity

across multiple voxels, which are thought to reflect neuronal population

codes (Mur, Bandettini, & Kriegeskorte, 2009). The multivariate methods

are sensitive to voxel-level variance within participants (Davis et al.,

2014), and are able to detect fine-grained pattern differences even if

there are no regional-average differences (Mur et al., 2009). Consistent

with this view, previous studies have revealed that multi-voxel patterns

differ across conditions without differences in mean activation in

several cognitive domains such as cognitive control (Esterman, Chiu,

Tamber-Rosenau, & Yantis, 2009; Tamber-Rosenau, Esterman, Chiu, &

Yantis, 2011) and language (Xu et al., 2017).

Our results of increased pattern similarity accompanying the lexi-

cal learning in a new language are consistent with previous findings of

cross-language interactions during word reading in bilinguals. Previous

studies have revealed that native language experience can shape the

neural mechanisms underlying second-language learning and proces-

sing (Cao et al., 2013; S. Y. Kim et al., 2017; Mei et al., 2015b; Nakada

et al., 2001; Nelson et al., 2009; Tan et al., 2003). Specifically, it has

been revealed that Chinese speakers recruit the left middle frontal

gyrus (Y. Liu et al., 2007; Tan et al., 2003) and bilateral occipitotem-

poral regions (Nelson et al., 2009) to process English, which is differ-

ent from English speakers (Bolger et al., 2005; Price, 2012; Tan, Laird,

Li, & Fox, 2005). Similarly, one recent study has found that Chinese

speakers and English speakers differ in the involvement of addressed

and assembled phonologies in learning a new language (Mei et al.,

2015b). Those findings suggest that the human brain applies the neu-

ral network of native language to learn and process words in second

language (Perfetti et al., 2007; Perfetti & Liu, 2005). On the other

hand, learning to read a second language also affects the neural mech-

anisms of native language (Mei et al., 2014; Mei et al., 2015a; Parker

Jones et al., 2012; Timmer, Ganushchak, Ceusters, & Schiller, 2014;

Zou et al., 2012). For example, it has been reported that, compared to

English speakers without experience on Chinese, English speakers

with Chinese experience recruit bilateral posterior fusiform gyrus to

process English words, which is similar to the way Chinese characters

are processed by Chinese speakers (Mei et al., 2015a). These two lines

of research suggest that native language interacts with second lan-

guage during the acquisition of second language words, which leads

to common neural mechanisms of words in native and nonnative lan-

guages. From this perspective, our findings of increased cross-

language pattern similarity might have resulted from the

cross-language interactions during the learning of a new language.

Consistent with this view, there is evidence that proficiency in second

language modulates the involvement of the native-language neural

network in the processing of second language (Cao et al., 2013).

Our results of increased pattern similarity seem to contradict with

the findings of one recent study (Xu et al., 2017). Xu et al. investigated

how different languages were represented in the brain of Chinese-

English bilinguals using multivariate pattern analyses (MVPA). They found

that native and second languages were processed in common regions

but in distinguishable neural patterns of activity. Two differences

between Xu et al.’s and our study might account for the inconsistent

results. First, the two studies adopted different tasks. Xu et al. used an

implicit reading task (i.e., same-different judgment task) which empha-

sizes perceptual processing, while our study adopted an explicit reading

task (i.e., semantic decision task) which requires heavy engagement of

semantic processing. One prevalent model of bilingual representation

(i.e., the Revised Hierarchical Model) has proposed that the native and

second languages share a common conceptual system (i.e., semantics),

but their lexical forms (i.e., orthography and phonology) are represented

separately (J. F. Kroll & Stewart, 1994; J. F. Kroll, van Hell, Tokowicz, &

Green, 2010). Consistent with this model, neuroimaging studies have

consistently observed common activations for the two languages when

semantic tasks are used (Ding et al., 2003; Illes et al., 1999; Xue et al.,

2004), even for low-proficiency second-language learners (Xue et al.,

2004), but less consistent results have been reported when tasks focus-

ing on other aspects (e.g., phonology, grammar) are used (Feng, Chen,

Zhu, He, & Wang, 2015; H. Liu et al., 2010; Saur et al., 2009; Tham et al.,

2005). Therefore, inconsistent results might be accounted by the task

differences. Future studies should directly examine the task effect on

cross-language neural pattern similarity. Second, the two studies differed

FIGURE 5 The correlations between neural pattern similarity and behavioral performance on the semantic decision task. Changes in pattern

similarity between Chinese words and artificial language words in the bilateral pars triangularis, and right pars opercularis were positively
associated with the improvement in accuracy of artificial language words in the semantic decision task. LPT = left pars triangularis; RPT = right
pars triangularis; RPO = right pars opercularis
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in the methods in data analysis. Xu et al.'s study used MVPA to discrimi-

nate the two languages, whereas our study used representational similar-

ity analysis to explore the neural pattern similarity between the two

languages and the modulatory effect of proficiency. In other words, Xu

et al. focused on the differences between native and second languages,

whereas our study focused on their similarities. Therefore, inconsistent

results might be accounted by the differences in our foci and associated

data analytical strategies.

Given that the fMRI task (i.e., semantic decision task) required

participants to categorize the artificial language words based on

their meanings, it is possible that the enhancement of cross-

language pattern similarity reflects the effect of category learning

instead of language proficiency. Previous studies have revealed

that category learning shapes the pattern similarity across stimuli.

Specifically, category learning leads to more similar responses to

stimuli from the same category and more dissimilar responses to

stimuli from different categories (De Baene, Ons, Wagemans, &

Vogels, 2008; Sigala & Logothetis, 2002). Furthermore, there is evi-

dence that patterns of representational similarity become increas-

ingly similar across different categorization tasks (i.e., rule-based

and information-integration categorization tasks) after extensive

training (Soto, Waldschmidt, Helie, & Ashby, 2013). Our results of

the increased cross-language pattern similarity were not likely to

reflect the category-learning effect for two reasons. First, all learn-

ing tasks used in this study focused on lexical learning without any

explicit requirement of categorization. The semantic decision task

requiring categorization was only performed twice for the two fMRI

scans separated by 8 days. Second, both pattern similarity of C–A

and that of C–E would increase if limited practice on categorization

did affect the cross-language pattern similarity. Contrary to this

expectation, we only observed the enhancement of pattern similar-

ity for C–A, but not for C–E.

There are two limitations that should be addressed in the future.

First, unlike natural language, the artificial language used in this study

was limited in its vocabulary size and morphology, and it lacked syn-

tax. Such differences might limit the generalization of our findings to

natural languages to some extent, although researchers have found

high positive correlations between natural language learning and arti-

ficial language learning (Ettlinger, Morgan-Short, Faretta-Stutenberg, &

Wong, 2016). Therefore, future research should test the modulatory

effect of second-language proficiency on the cross-language pattern

similarity in the course of natural language acquisition. Second, in

addition to proficiency level, age of acquisition (AOA) may also affect

the cross-language pattern similarity. For example, using univariate

activation analyses, previous neuroimaging studies have revealed that,

compared with late bilinguals, early bilinguals showed more similar

activation patterns for the two languages (Berken et al., 2015; K. H.

Kim, Relkin, Lee, & Hirsch, 1997; Wartenburger et al., 2003). Partici-

pants in this study were all college students with small variations in

age, and consequently precluded us from examining the AOA effect.

Future studies should investigate the AOA effect by comparing the

cross-language pattern similarity in early bilinguals with that in late

bilinguals.

5 | CONCLUSION

In conclusion, using an artificial language training paradigm and repre-

sentational similarity analysis, this study revealed that higher profi-

ciency in nonnative languages was associated with higher pattern

similarity between native and nonnative languages.
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