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Abstract

How is it that humans can solve complex planning tasks so
efficiently despite limited cognitive resources? One reason is
its ability to know how to use its limited computational re-
sources to make clever choices. We postulate that people learn
this ability from trial and error (metacognitive reinforcement
learning). In this work, we systematize models of the underly-
ing learning mechanisms and enhance them with more sophis-
ticated additional mechanisms. We fit the resulting 86 models
to human data collected in previous experiments where differ-
ent phenomena of metacognitive learning were demonstrated
and performed Bayesian model selection. Our results suggest
that a gradient ascent through the space of cognitive strategies
can explain most of the observed qualitative phenomena, and
is, therefore, a promising candidate for explaining the mecha-
nism underlying metacognitive learning.

Keywords: metacognitive learning, planning, strategy discov-
ery, cognitive modelling, reinforcement learning

Introduction

Humans frequently face complex problems that require plan-
ning long chains of actions to accomplish far-off objectives.
A search tree can represent the space of potential future
actions and outcomes, which expands exponentially as the
length of the sequences increases. While exponential growth
in computational power enables current trends in artificial in-
telligence, the cognitive capabilities of the human mind are
much more constrained. So, how is it possible that people
can still plan so efficiently? One potential explanation is that
meta-reasoning, the ability to reason about reasoning, might
help people to accomplish more with less computational ef-
fort (Griffiths et al., 2019). In the context of planning, this
means making wise choices about when and how to plan,
that is whether and how to efficiently make use of limited
cognitive resources (resource-rationality) (Lieder & Griffiths,
2020). However, according to Russell and Wefald (1991), op-
timal meta-reasoning is often regarded as an intractable prob-
lem. This raises the question of how people can nonetheless
solve the intractable meta-reasoning problem. One possibil-
ity is that people learn an approximate solution via trial and
error, an idea known as metacognitive reinforcement learn-
ing (Lieder & Griffiths, 2017; Krueger, Lieder, & Griffiths,
2017; Lieder, Shenhav, Musslick, & Griffiths, 2018). This
idea has been used in earlier research to explain how people
learn to select between various cognitive strategies (Erev &
Barron, 2005; Rieskamp & Otto, 2006; Lieder & Griffiths,
2017), how many steps to plan ahead (Krueger et al., 2017)3

and when to exercise how much cognitive control (Lieder et
al., 2018). In the context of planning, previous work sug-
gests that metacognitive reinforcement learning adapts peo-
ple’s planning strategies to their environments (Jain, Call-
away, & Lieder, 2019; He, Jain, & Lieder, 2021b) and adapts
how much planning they perform (He, Jain, & Lieder, 2021a).
While previous work each focused on explaining individual
aspects of metacognitive learning with a small set of mod-
els, none of the models was tested to explain both aforemen-
tioned observed qualitative phenomena in the context of plan-
ning. In addition, previous findings paint a rather inconsistent
and even contradictory picture of how people learn planning
strategies, with different articles arguing for different learning
mechanisms (Jain, Gupta, et al., 2019; He et al., 2021a).

Therefore, in this work, we investigate whether there is one
metacognitive reinforcement learning model that can largely
explain both observed phenomena of adaptation to environ-
ment structures and adapting the amount of planning to its
cost and benefits. Our contribution is two-fold: i) We sys-
tematically compare existing models on data collected in em-
pirical experiments, and ii) we extend existing models to sys-
tematically formalize plausible alternative assumptions and
all of their possible combinations. This led to 86 different
models, which we fit using maximum likelihood criterion and
compare using Bayesian model selection, as well as perform
model simulation. The winning model gives us an indication
of the underlying mechanisms of how people learn planning
strategies.

This line of research contributes to the larger goal of under-
standing metacognitive learning. It also provides a founda-
tion for training programs aiming to improve human decision-
making and to help people overcome maladaptive ways of
learning planning strategies.

Background

To model the mechanism of metacognitive learning, we take
inspiration from reinforcement learning algorithms and use
the framework of meta-decision-making, which we will now
briefly introduce and explain how they can be combined into
a framework called metacognitive reinforcement learning.

Reinforcement learning

Previous studies suggest that human learning is motivated
by reward and penalties gained through trial and error (Niv,
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2009), which builds the foundation of reinforcement learning
algorithms that learn to predict the potential reward from per-
forming a specific action a in a specific state s. This estimate
QO(s,a) is updated according to the reward prediction error 9,
which is the difference between actual and expected rewards:

Q(s,a)<—Q(s,a)—0c-5 (1)

where Q denotes the Q-value (Watkins & Dayan, 1992) and
o is the learning rate.

Meta-decision-making

The brain is supposedly equipped with multiple decision sys-
tems that interact in various ways (Dolan & Dayan, 2013;
Daw, 2018). The model-based system, in contrast to Pavlo-
vian and model-free systems, allows for flexible reasoning
about which action is preferable but demands a process for
deciding which information should be considered for a given
decision. Therefore, an important part of deciding how to
decide is to efficiently balance decision quality and deci-
sion time, known as meta-decision-making (Boureau, Sokol-
Hessner, & Daw, 2015). The problem of meta-decision-
making has been recently formalized as a meta-level MDP
(Krueger et al., 2017; Griffiths et al., 2019):

Meta = ($7 CU {J—}; Tmetmrmeta) y 2)

where belief states b; € B denotes the model-based de-
cision system’s beliefs about the values of actions. The
computations of the decision system (cy,c2,---) probabilis-
tically determine the temporal development of those belief
states by,by,--- according to the meta-level transition prob-
abilities Tieta(br,¢r,bs11). The meta-level reward function
Fmeta (D1, ¢/) encodes the cost of performing the planning op-
eration ¢; € C and the expected return of terminating plan-
ning (¢, = 1) and acting based on the current belief state b;.
Reinforcement learning algorithms, such as Q-learning (see
Equation 1), can be used to solve this meta-level MDP.

Metacognitive reinforcement learning

Finding efficient planning strategies can be formalized as
solving a meta-level MDP for the best meta-level policy
(Griffiths et al., 2019). However, as it is often computation-
ally intractable to solve meta-decision-making problems op-
timally, we will assume that the brain approximates optimal
meta-decision-making through reinforcement learning mech-
anisms (Russell & Wefald, 1991; Callaway, Gul, Krueger,
Griffiths, & Lieder, 2018) that attempt to approximate the op-
timal solution of the meta-leve]l MDP defined in Equation 2
by either learning to approximate the optimal policy directly
(He et al., 2021b) or by learning an approximation to its value
function (Jain, Callaway, & Lieder, 2019).

Experiments

To test the ability of our models to explain different aspects
of metacognitive learning, we used data from previous work
that examined several aspects of it in the domain of planning.

Round Score:
1/35 $47.00

Click on the nodes to reveal their values.
Move with the arrow keys.

Figure 1: Exemplary trial of the planning task

He et al. (2021b) and He et al. (2021a) recruited 382 par-
ticipants on CloudResearch and utilized the Mouselab-MDP
paradigm (Callaway, Lieder, Krueger, & Griffiths, 2017) to
design two experiments where participants were asked to per-
form 35 repeated trials of a planning task (see Figure 1). The
goal in the experiment was to collect a high score, which sig-
nals the adaptiveness and resource-rationality (Lieder & Grif-
fiths, 2020) of the participant at a given trial. The rewards are
initially hidden but can be revealed by clicking on the nodes.
Each click has a cost. Participants’ clicks were recorded as
they indicate planning operations that people perform to esti-
mate the values of alternative future locations.

Adaptation to different environment structures In the
first experiment, 174 participants were evenly randomly al-
located to one of three conditions, where the environment
structure rendered either long-term planning (examining the
farthest nodes), short-term planning (examining immediate
nodes) or best-first search planning (starting with examining
immediate and middle nodes and continue to examine other
nodes according to the most promising ones) most beneficial.
Analysis based on the collected click sequences suggested
that people gradually learn to use the corresponding adaptive
strategies for each environment.

Adaptation of the amount of planning depending on the
costs and benefits of planning The second experiment in-
dicated that people do learn how much to plan. For this, 208
participants were assigned to one of four different conditions,
each differed in the benefit (high vs. low) and cost (high vs.
low) of planning. Their number of clicks indicated whether
participants learned to adapt their amount of planning de-
pending on the condition.

Models and methods

The models of metacognitive learning we test in this article
have three components: i) the representation of the planning
strategies that the learning mechanism operates on, ii) the ba-
sic learning mechanisms, and iii) additional attributes. The
following three sections introduce these components as well
as describe how the models were fit and selected.
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Mental representation of planning strategies

The planning strategies were modelled as softmax policies
that depend on a weighted combination of 56 features (Jain
et al., 2022). For instance, one group of features was related
to pruning (Huys et al., 2012), which was associated with
giving a negative value to consider a path whose predicted
value was below a specific threshold. Therefore, using this
representation, a person’s learning trajectory can be described
as a time series of the weight vectors that correspond to their
planning strategies in terms of those features.

Basic learning mechanisms

We considered three possible basic learning mechanisms:
learning the value of computation, gradient ascent through
the strategy space, forming a mental habit, and no learning.
All learning mechanisms approximate the meta-level Q-value
by a linear combination of the features mentioned above and
a set of learned weights:

56
Ometa(brs ) = Y. wi- fi(be.cx), 3
=t

To compromise between exploitation and exploration, the ac-
tions are chosen probabilistically, maximising the predicted
action value, by using the softmax rule (Williams, 1992)
P(ck|br, Ometa) < eXp(Ometa(br,cx)/T) where T is the inverse
temperature parameter.

Learning the value of computation According to the
Learned Value of Computation (LVOC) model, people learn
how valuable it is to perform each planning operation de-
pending on what is already known (Krueger et al., 2017).
That is people discover and change their strategy continu-
ously by learning to predict the values of planning operations.
The weights in Equation 3 are learned by Bayesian linear re-
gression of the bootstrap estimate O(by,cx) = rmeta(bx,ck) +
Z;i]/ljyk'fj(bkﬁ_l,Ckﬁ_l) which is the sum of the imme-
diate meta-level reward and the anticipated value of the
future belief state byy; under the present meta-level pol-
icy. The predicted value of by;; is the scalar product of
the posterior mean y; of the weights w given the observa-
tions from all preceding planning operations and the features
f(bks1,ck+1) of bry1 and the cognitive operation ¢y that
the current policy picks given state. To make the k™ plan-
ning operation, n weight vectors are sampled from the poste-
rior distribution P using a generalized Thompson sampling
W,(Cl),--- ,W,((n) ~ P(w|Ey), where the set £, = {e1, -, e}
contains the meta-decision-maker’s experience from the first
k meta-decisions. Each meta-level experience ¢; € Ey is a tu-
ple (b, hi,Q(bi,cisp;)) containing a meta-level state, the se-
lected planning operation in it, and the bootstrap estimates of
its Q-value. The arithmetic mean of the sampled n weight
vectors is then used to predict the Q-values of each poten-
tial planning operation ¢ € C according to Equation 3. The
LVOC model therefore has the following free parameters: p,

. . 2 . . . .
the mean vector uprior and variance Sorior of its prior distri-

bution N (W; prior; Opyior - 1) 0n the weights w, the number of
samples n and the inverse temperate T.

Gradient ascent through the strategy space According to
the REINFORCE model (Jain, Callaway, & Lieder, 2019;
Williams, 1992), people adjust their planning strategy di-
rectly using gradient ascent through the space of possible
planning strategies. When a plan is executed according to
policy Ty and its outcomes are observed, the weights w rep-
resenting the strategy are adjusted in the direction of the gra-
dient of the return, which is the sum of the rewards on the
chosen path minus the cost of the performed planning opera-
tions:

[
W%WJrOL'ZV_l'Vmem(bncz)’lenTCw(Ct|bt), 4

t=1

v s the discount factor, and O is the number of planning oper-
ations executed by the model on that trial. The learning rate o
is optimised using state-of-the-art optimizer ADAM (Kingma
& Ba, 2014). The model has three free parameters: o, y and
7T that are fit separately for each participant. The weights are
initialised randomly.

Mental habit formation This model assumes that the
only mechanism through which people’s planning strategies
change is the formation of mental habits. Following Miller,
Shenhav, and Ludvig (2019) and Morris (2022), this model
assumes that people’s propensity to perform a (type of) plan-
ning operation increases with the number of times they have
performed it in the past. This is implemented as a softmax
decision rule applied to a weighted sum of frequency-based
features, including the number of previous clicks on the same
node, the same branch, and the same level, respectively.

Non-learning model This model does not perform any pa-
rameter updates and does not use habitual features.

Extensions

We augmented the REINFORCE and LVOC models
with three optional components: a two-stage hierarchical
meta-decision-making process (hierarchical meta-control),
metacognitive rewards for generating valuable information
(pseudo-rewards), and deliberating about the value of termi-
nation when taking an action (fermination deliberation).

Hierarchical meta-control Previous research suggests that
foraging decisions are made by two distinct decision systems:
the ventromedial prefrontal cortex and the dorsal anterior cin-
gulate cortex (Rushworth, Kolling, Sallet, & Mars, 2012).
We, therefore, developed an extension that first decides
whether to continue planning (Stage 1) and if yes, selects the
next planning operation according to either the LVOC or the
REINFORCE model (Stage 2). For Stage 1, our models con-
sider three potential decision rules. Each decision rule is a
tempered sigmoid function 6(x,t) = (14¢~7)~! (Papernot,
Thakurta, Song, Chien, & Erlingsson, 2021). In each case,
the function’s argument x is a different function f(IM) of the
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expected sum of rewards along the best path according to the
information observed so far (IM = max; E[R(path) | b)).
Concretely, the three stopping rules compare IM against a
fixed threshold, a threshold that tracks the outcomes of previ-
ous trials, and a threshold that decreases with the number of
clicks, respectively.

Fixed threshold This decision rule probabilistically ter-
minates planning when the normalized value of IM reaches

the threshold 1), that is P(C = L | b) = & (H —n,r),

where Vi, and vy are the trial’s lowest and highest possible
returns, respectively.

Decreasing threshold Building on the observation that the
threshold of the resource-rational planning strategy decreases
with the number of clicks (Callaway, Lieder, et al., 2018),
this decision rule adjusts the threshold based on the number
of clicks made so far (n.), thatis: P(C= 1 |b) =c(IM—e*+
el ne,T), where a and b are the free parameters.

Threshold based on past performance This decision rule
models the idea that people learn what is good enough from
experience. Concretely, this decision rule assumes that the

~ P
threshold M ~ N\ (m, m)

erage m of their previous scores, that is P(C = L | b) =
o(IM — M), 1), where n is the number of trials and 1 is a free
parameter. The probability distribution of the threshold is de-
rived from the assumption that the threshold is an average of
noisy memories of previous scores.

is a noisy estimate of the av-

Pseudo-rewards The central role of reward prediction er-
rors in reinforcement learning (Schultz, Dayan, & Montague,
1997; Glimcher, 2011) and the dearth of external reward in
metacognitive learning (Hay, 2016) indicate that the brain
might accelerate the learning process by producing additional
metacognitive pseudo-rewards that convey the value of the
information produced by the last planning operation. Con-
cretely, the pseudo-reward (PR) for transitioning from belief
state b, to b, is the difference between the expected value of
the path that the agent would have taken in the previous belief
state b, and the expected value of the best path in the new be-
lief state b1 1: PR(by,¢,b11) = IE[RTEle |br1] — IE[Ran |Dr+1]
where T, (s) = argmax,IE,[R | 5,4] is the policy the agent will
use to navigate the physical environment when its belief state
is b, and R is the expected value of the sum of the external re-
wards (e.g., the sum of rewards collected by moving through
the planning task) according to the probability distribution b.

Termination deliberation If people engaged in rational
metareasoning (Griffiths et al., 2019), they would calculate
the expected value of acting on their current belief b from
the information it encodes (termination deliberation). Alter-
natively, people might learn when to terminate through the
same learning mechanism through which they learn to select
between alternative planning operations (no termination de-
liberation).

Model fitting

Combining the basic learning mechanisms with the model at-
tributes resulted in 86 different models. We fitted all models
to 382 participants from both experiments by maximizing the
likelihood function of the participants’ click sequences using
400 iterations of Bayesian optimization (Bergstra, Yamins, &
Cox, 2013). The likelihood of a click sequence is the product
of the likelihood of the individual clicks.

Model selection

To select the model that best explains the observed behavior,
we estimated the expected proportion of people who are best
described by a given model (r) and the exceedance probabil-
ity ¢ that this proportion is significantly higher than the cor-
responding proportion for any other model by using random
effect Bayesian model selection (BMS) (Rigoux, Stephan,
Friston, & Daunizeau, 2014). To obtain the equivalent con-
clusions for groups of models that share some feature, we
performed family-level Bayesian model selection (Penny et
al., 2010). To ensure robustness and reproducibility, we used
bootstrapping (Wehrens, Putter, & Buydens, 2000), that is,
we fitted the models twice and used the results to generate
1000 synthetic data sets. The BMS results were averaged
across all bootstrap samples.

Results

An overview of the 86 models and corresponding features as
well as the code can be found in https://osf.io/wz9uj/.

Comparing all models for all participants

To examine which of the learning mechanisms can best ex-
plain human behavior, we grouped the models into 4 model
families: non-learning, mental habit, LVOC, and REIN-
FORCE models. We found that the model family whose
members provided the best explanation for the largest num-
ber of participants was REINFORCE (see Table 1), which
explained about 43.82% of the participants better than mod-
els from other model families. The second most successful

Table 1: Family-level BMS
for learners

Table 2: Family-level BMS
for learners

Model family

r 0 Model family r
Non-learning 03T  0.01
0
0

Non-learning  0.25
Mental habit  0.07

LVOC 0.21
REINFORCE 0.47

Mental habit  0.07
LVOC 0.18
REINFORCE 043 0.99

—_ 0 O O

model family was the non-learning model. It provided the
best explanation for 30.87% of the participants, which was
mainly driven by the high proportion of participants who did
not show any signs of learning. Therefore, to examine the
actual learning behavior, for the remaining analysis, we fo-
cused on participants who demonstrated learning. That is,
participants who changed their planning strategies at least
once in the first experiment and participants whose plan-
ning amount changed significantly during the second exper-
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iment (determined using the Mann-Kendall test of trend; all
S > 105 for increasing trend, all S < —57 for decreasing trend,
all p < .05). This led to the selection of 224 participants
(58.64%).

Comparing all models for learners

Family-level BMS for the remaining participants showed a
decrease in the proportion of participants best explained by
the non-learning model to 24.92%. REINFORCE models
now explained the data from 47.41% of the learners better
than the other models (see Table 2).

Table 3: Model-level BMS of the learning models that
achieved r > 0.05 for all learners across both experiments.

Model r [}
Plain REINFORCE 0.10  0.79
REINFORCE with PR 0.08 0.10
REINFORCE with TD 0.05 0.03
REINFORCE with PR and TD 0.05 0.01
Plain LVOC 0.06 0.02

Comparing the learning models individually across both
experiments, plain REINFORCE provided the best explana-
tion for the highest proportion of participants, followed by its
variants and the plain LVOC model (see Table 3).

To shed more light on whether the additional model at-
tributes contribute towards explaining human metacognitive
learning, we conducted BMS family-level comparing mod-
els with and without the model attributes across both experi-
ments. The results suggested that more than half of the partic-
ipants are better explained by models without pseudo-reward
(o pPr = 0.61, 040 pr = 0.99), without termination delibera-
tion (rpoTp = 0.61,0n0 D = 0.99) and without hierarchical
meta-control (1o gr = 0.75,¢no ur = 1, 7R = 0.25,05% =0).
The plain REINFORCE learning mechanism explained the
largest proportion of participants (see Table 4 and 5), again
followed by its variants in Experiment 1 and variants of
LVOC with pseudo-reward and termination deliberation in
Experiment 2 (see Table 6).

Yet, almost 40% of participants did appear to leverage
pseudo-rewards (rpr = 0.39,¢pr = 0.01) and termination de-
liberation (rrp = 0.39,¢1p = 0.01), respectively. Comparing
the difference in Bayesian Information Criterion (Schwarz,
1978) between the REINFORCE model with pseudo-rewards
and its plain version for all learners revealed substantial ev-
idence for its presence in 106 out of 224 participants and
substantial evidence for its absence in 118 other participants.
Conducting the same analysis for termination deliberation re-
sulted in 87 participants in favor of it, while 137 were better

Table 4: Family-level BMS
for Experiment 1

Table 5: Family-level BMS
for Experiment 2

Model family r 0 Model family r )

Table 6: Model-level BMS of the models that achieved r >
0.05 for Experiments 1 and 2

Exp Model r 0
I Plain REINFORCE 0.13  0.56
1 REINFORCE with PR 0.10  0.07
1 REINFORCE with TD  0.07 0.04
2 Plain REINFORCE 0.10 035
2 REINFORCE with PR 0.08 0.09
2
2

LVOC with TD 0.06 0.17
LVOC with PR 0.06 0.16

fitted by plain REINFORCE. A y? test comparing the propor-
tion of participants whose data is better explained by a model
with pseudo-rewards (42% vs. 37%, x*(3) = 0.73,p = .86)
and with termination deliberation (35% vs. 31%, x*(3) =
3.02, p =.39) between the two experiments yielded no signif-
icant differences. Therefore, the difference between the learn-
ing behavior of people regarding pseudo-reward and termina-
tion deliberation could not be explained by situational factors,
but might rather be due to inter-individual differences.

Robustness The model selection results were highly ro-
bust. For all reported r-values, the width of the 95% con-
fidence intervals was at most +0.01. At the family-level,
REINFORCE models provided the best explanation for the
largest proportion of participants in 99% of all bootstrap
samples, and the plain REINFORCE was the best individual
model in 95% of all bootstrap samples.

How well can our best models capture the
qualitative changes in people’s planning strategies?

While our analysis indicated the existence of inter-individual
differences regarding the additional model enhancements,
there was agreement on REINFORCE being the most promis-
ing basic learning mechanism. Therefore, to examine, how
well plain REINFORCE can explain all phenomena observed
in both experiments, we simulated participants’ behavior in
the three conditions of Experiment 1 and the two conditions
of Experiment 2 with the fitted model parameters'. Figure 3
shows the increasing trend in the predicted level of resource-
rationality over time across both experiments (Mann-Kendall
test: all § > 245 and p < .01 for both models and partici-
pants). This shows that REINFORCE could capture the ob-
served increase in adaptiveness.

Figure 2 displays the proportion of adaptive planning
strategies in the first experiment. To determine whether a par-
ticipant used an adaptive planning strategy on a given trial,
we inspected the first click in each trial, which signals what
kind of strategy has been used. First click on the farthest node
signals the adaptive far-sighted strategy in the first condition;
first click on an immediate node signals the near-sighted strat-
egy in the second condition, and first click on the immedi-
ate and middle nodes signals the best-first-search in the third
condition. REINFORCE captured that people learned to in-

LVOC 041 0.09
REINFORCE 0.59 091

LVOC 019 0
REINFORCE 0.81 1

IRor the visualizations, we refitted the model with a higher num-
ber of optimization iterations as it affected the model performance.
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trials for both experiments

creasingly more often rely on adaptive strategies in the condi-
tion, where far-sighted planning is beneficial (see Figure 2a,
Mann-Kendall test: increasing proportion of adaptive strate-
gies for both the model and participants; all § > 395, p < .01)
as well as when the environment favored near-sighted plan-
ning (see Figure 2b; increasing trend for participants and RE-
INFORCE: § > 263, p < .01). Moreover, the model captured
that participants appeared to use increasingly fewer adaptive
strategies in the environment that preferred best-first-search
planning (see Figure 2c; § < —377;p < .01).2

REINFORCE also partly captured the participants’ learn-
ing behavior in Experiment 2. For the conditions where plan-
ning was beneficial, the model correctly predicted that the
amount of planning would increase significantly over time
(see Figure 3a; Mann-Kendall test: S = 506,p < .01). For
the condition where planning is less beneficial, the model
predicted that the number of clicks would decrease to a
nearly optimal level (see Figure 3b, Mann-Kendall test: S =
—332, p < .01). Participants learned to decrease their amount
of planning to an even greater extent and converged on plan-
ning less than the resource-rational strategy. This indicates
that participants experience an additional cost that is not yet
captured by our models.

2This might reflect shortcomings of the rule He, Jain, & Lieder
(2021) used to classify people’s strategies in this environment.

across 35 trials for Experiment 2

Discussion and further work

In this article, we tested 86 computational models of how
people learn planning strategies against data collected in two
experiments that tested different characteristics of metacog-
nitive learning, namely the adaptation to different environ-
ment structures and the adaptation to different levels of plan-
ning costs based on the proportion of adaptive strategies, the
achieved score and the amount of planning. Overall, we
found consistent evidence that the learning mechanism RE-
INFORCE can largely capture the observed phenomena, like
learning far-sighted, near-sighted, best-first search planning
strategies and adjusting the amount of planning to its cost
and benefits. Moreover, some people seemed to learn from
self-generated pseudo-rewards for the value of information,
and some people seemed to deliberate about the value of ter-
mination whereas others do not. This suggests the prevalence
of inter-individual differences, which can be subject for future
work. In addition, the high proportion of non-learning models
despite filtering for learning participants indicates that there
is still room for improvement. For example, planning might
incur cognitive costs above and beyond the cost of acquir-
ing information (Felso, Jain, & Lieder, 2020; Callaway et al.,
2022). Therefore, further work can improve our models by
incorporating these additional costs into the reward signals
that the models learn from.
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