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This paper addresses itself to the reliability benefit of geograph­

ically dispersed wind turbine generators. Electricity produced from 

wind machines experiences wide fluctuations of output at a given site. 

Yet the value of electricity is a function of its reliability. We 

typically want electricity available at demand. Pricing schedules have 

traditionally valued firm power, that is, reliably available power, much 

more highly than "dump power;" that is, power which is available inter­

mi ttently on an "if and when l1 basis. The conventional wisdom on wind 

power suggests that it is unrealistic to expect that wind generation 

will be sufficiently reliable to displace conventional capacity. For 

example, a recent report expresses the situation as follows: 

Because it is not possible to accurately predict when 
wind energy will be available, it is usually not 
practical to assign capacity credit to wind units ... 
For the majority of utilities, it will be necessary to 
provide conventional generating facilities as backup 

(21) 

While such conclusions may be valid for analysis of individual sites, 

the main thesis of this paper is that geographical dispersal improves 

aggregate reliability. If the wind is calm at some sites, we can count on 

it blowing at others. This means that capacity credit, that is, the dis­

placement of conventional capacity, is reasonable to expect from an array 

of wind generators spread over a large region. 

To examine this thesis we need to outline the methodology required for 

such assessments and examine data to estimate the magnitude of the dispersal 

benefit. It is important to emphasize that the analyses presented here are 

preliminary. The limitations in data and methodology wi 11 be discussed at 

some length. The greatest uncertainties are due to lack of adequate wind 

resource data. In particular, we need to know how dependent the wind speed 

at one site is on the wind speed at another. This dependence is called the 

statistical correlation. In general the lower this dependence, the more 

reliable an array of dispersed wind generators will be. At present we do 

not know too much about th~ wind speed correlations, so our analysis can 

only present a styli zed vision of the subject that is limited to a small 

number of sites. Nonetheless there is enoug~ data to allow the formulation 

of interesting questions and the statement of preliminary results. 
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There are also significant problems of method. To address our 

problem we must marry statistical meteorology with utility methods 

of assessing power generation reliability. If we do not make some 

simplifying assumptions, our analysis will drown in a sea of data 

requirements and endless computation. For conceptual purposes as well, 

we must find ways of identifying the major variables and labelling 

our final results . 

We will find that reliability is gained from geographical dispersal, 

but that there are several limitations on this benefit. Two of the most 

important limitations are the saturation of regional wind diversity 

and the barrier of large penetrations. The first effect, saturation of 

diversity, says that as the region examined increases in size, the marginal 

benefit decreases. For our data we will find that northern California 

sites aggregate to only slightly poorer reliability than arrays which 

encompass the entire Pacific Coast region. This is consistent with a 

similar study of German data which found diminishing marginal benefit 

f 1 d . d . (15) o arger an larger WIn regImes. 

The second limitation, the barrier of large penetrations, results 

from the statistical fact that wind speed correlations never diminish 

entirely. This fact means that an array of wind generators will act as 

a single unit in some sense. As more and more such generators are added 

to a system, i.e ., as the penetration increases, the array requires a 

larger and larger backup. Since the array reliability is never perfect, 

large penetrations will be marginally less effective in meeting demand. 

In a sense this diseconom), of scale which has plagued some of the large­

unit conventional technologies will also limit wind arrays. (13) For 

our data we will find this barrier appearing when wind is roughly 25 

percent of the generator mix. 

Beoause this subject is complex and not widely understood, we will 

begin with a quick tour through the methodology. This will simplify the 

real problems but provide some perspective on the analysis required. 

After this we will discuss California data. The limitations of the data 

will allow us to highlight some additional methodology questions and 

give estimates of the magnitude of dispersal benefits. 
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2. METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOAD PROBABILITY 
AND BACK AGAIN 

2.1 The Basic Steps 

Wind energy is available intermittently. To represent the varia­

bility in some compact form, it is useful to use a cumulative frequency 

distribution. In Figure 1 we show such a graph for a single site and 

a large array. A given point on such a graph associates to a certain 

level of power the frequency with which power up to that level is 

available. Thus the median value for the single site in Figure 1 is 

about 300 kW for 2000 kW of generating capacity . For comparison the 

array value for a frequency of 50 percent (the median) is about 650 kW 

per 2000 kW of capacity. Notice that we can only compare array output 

over the number of sites in the array. 

The data represented in Figure la~e the first kind of input for a 

capacity credit analysis . There are many problems associated with 

getting such data. First, the wind speed data which are presently 

available are typically collected at heights below that proposed for 

large wind generators. They must be scaled up for analysis, and that 

is an uncertain process. For array output curves such as that shown 

in Figure 1 we need data on the correlation of wind speed among sites. 

A brute force calculation can be done if there are good data for all 

sites. There are also some relatively simple approximations which can 

be made to array performance. One such technique, developed by 

C.G. Justus and associates at Georgia Institute of Technology, will be 

employed in our data analysis for California. (11) 

Assuming that wind power frequency data for an array are available, 

the next step in the process is the convolution of this resource with 

the generators used in the utility system of interest. The calculation 

of capacity credit is done in the context of a power system generation 

reliability model. The most common of such models is the Loss-of-Load 

Probability (LOLP) calculation. This index measures the probability of 

load being in excess of resources. Generators are represented probabilis­

tically in such models by means of a single unavailability parameter, the 

forced outage rate. This is a reasonable portrayal of conventional unit 



- 4-

1500 

~ 1000 

500 

20 40 60 80 100 120 

Probability (power ~ x kW) 

XBL 785 - 778 

Figure 1. Power Frequency Dis tribution: 
Array vs. Singl e Site 



u .J , 
. .i ( , 

: 

-5 -

performance; either they are on or off. More recently this representation 

has been augmented to allow for partial unavailability which can be 

frequent but usually involves only a small fraction of unit capacity. 

The curves of Figure I are not easily made compatible with the standard 

generator models. To capture the full variability of wind power, many 

"states of availability" and their probabilities are required. Moreover, 

the wind power from an array will act as an aggregate. Each wind unit 

cannot be treated as an independent random variable. In the LOLP calcu­

lation each conventional unit is assumed independent. Since the wind 

generation is correlated, its representation in the LOLP analysis must 

show this. 

After the wind power is given a many-state power availability repre­

sentation, it can be included with conventional resources to calculate 

LOLP. An example calculation is shown graphically in Figure 2. In this 

graph we plot LOLP as a function of load for a base case and a case with 

a large penetration of dispersed wind generators . For utility planning 

purposes an LOLP objective, the reliability constraint, is imposed. 

When forecasted load exceeds this specified level, it is a signal for 

additional capacity requirements. The criterion shown in Figure 2 is 

one version of the ubiquitous but unmotivated "one day in ten years" 

rule of thumb. 

To address the question of capacity credit for wind arrays, we need 

a common currency in which we can trade off different types of generation. 

The most useful numeraire for such purposes is a notion known in the 

technical literature as the Effective Load Carrying Capability (ELCC). 

This is just the distance between the base case maximum load and the load 

for the case with wind generation measured at the LOLP equal to the risk 

criterion. Any unit added to a base system will shift the risk curve to 

the right. The magnitude of the shift (ELCC) is a function of unit size, 

forced outage rate, and system characteristics. We can say that one 

supply alternative displaces another if the ELCC for each is the same. 

There are, of course, other ways to achieve capacity displacement at 

constant reliability. These involve backup generation. For example, 

wind machines can be added in some array configuration di splacing other 

resources with greater ELCC, then gas turbines can be added to the system 

to restore equal ELCC for the two options. This will involve a greater 

economic burden than the simple case with just pure dispersal. 
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2.2 Optimization of Various Kinds 

Starting with the basic tools of a wind power frequency curve and 

LOLP model one can ask a variety of questions. Clearly there is more 

than one way to construct a wind array. In the simple calculations to 

foll ow we will assume that all sites are weighted equally. As pene­

tration increases we are just adding more machines at the known locations. 

This is partly a data constraint in our case, but even with wHat we know 

array performance could be improved by adding more machines at favorable 

sites. The problem simply is to identify what favorable means in this 

context. If we had negatively correlated sites, they would be favorable. 

Negative correlation means that when it is windy at site A it is calm 

at B and vice versa. Such perfect complementarity has yet to appear in 

the data. If it existed, then about half the array capacity should be 

sited at locations that were negatively correlated with the remaining 

sites . We will see in section 3 that there is a tradeoff between high 

mean wind speed and low positive correlation for array design. Our 

data provide anecdotal but not conclusive insight into this tradeoff. 

Wind regimes that are optimal for power reliability mayor may not 

coincide with administrative districts which currently exist. The 

dispersal benefit suggests that coordination over large areas is 

desirable. Small municipal utility systems would probably be unable to 

capture the diversity. The same is probably true for most typical 

utility service areas. Large geographically diverse service areas, such 

as that of the Pacific Gas and Electric Company, encompassing most of 

northern California, may well be near optimal in size from this point 

of view. In section 4 we will examine the question of whether the 

wind resource diversity as we know it today provides a justification 

for integrating all the California utilities into a regional pool. 

Th . .. f' d d' (14 , 20) IS questIon IS 0 In epen ent Interest. 

Our discussion of capacity credit and the previous remarks about 

the inability of municipal utilities to capture a geographical economy 

of scale are not conclusive arguments for centralized exploitation of 

wind energy. An institutionally decentralized implementation of wind 

machines could still benefit from geographical dispersal if an appropri­

ate mechanism for allocating mutual aid or backup responsibility can 
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be found. Existing power pool agreements are a model of such arrange­

ments. Responsibility and benefit are allocated to members on the 

basis of investment share and the statistical performance of equipment. 

Similar tools could be brought to bear in the management of a regional 

"wind pool." More thoruugh discussion of such arrangements can be found 

elsewhere. (14) For our purposes it is important to know that a variety 

of so ~ ial and institutional configurations can capture the geographical 

scale economy of dispersal, if an appropriate statistical foundation 

can be found to characterize the resource. 

There are, of course, many other kinds of optimization involved in 

integrating wind arrays into an electric energy system besides array 

design and the optimization of social administration of the resource. 

Machine design, for example, is guided by principles of optimal resource 

management. It is important from the systems viewpoint, however, to 

realize that implementing large wind arrays may require redesign of 

other elements in the power system. In particular these regions with 

substantial hydro resources may find significant opportunities for 

matching wind energy output fluctuations with hydro dispatch for a 

smoother total output. Such an operating strategy would probably 

justify investment in additional turbines for "shaping" of the hydro 

resource to fit the wind regime. These issues, which are part of the 

ultimate integration problem, lie beyond our more simple task of illustrat­

ing the dispersal benefit with sample data. It is to that task that we 

now must turn. 

3. WIND DATA AND MODELS FOR ARRAY CHARACTERIZATION 

3.1 Introduction 

Our study of wind diversity in California derives almost entirely 

from the research of C. G. Justus and associates at Georgia Institute 

of Technology. (10,11,12) The scope and limitations of this work are 

important to understand before particular results are discussed. Justus 

has attempted to model the performance of large wind turbine generators 

such as those proposed by the Department of Energy. To develop a profile 

of wind speed frequency distribution at the sites analyzed, the data from 
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6m must be scal ed up to the 60m hub-height of the proposed DOE machines. 

Justus does this by means of some empirical scaling laws associated with 

the parameters of the Weibull probability distri but ion. This dist ribu­

tion is particularly useful for wind power anal ys is, but one must rely 

on ersatz data for the task at hand. To estimate the error in the sca ling 

laws, a sensitivity analysis should be done using additional upper air 

data. Our method uses estimates of array re liability that are conservative. 

Justus uses data for Pacific Coast sites l is ted in Table 1; seasona l 

variation in mean wind speed is given in Tabl e 2 . Among the California 

sites, five of the six are in Pacific Gas and Electric Company's service 

area. Although there are some dat a for more promising sites than tho se 

studied by Justus (Pt . Arena and San Gorgonio Pass, see re f erence 3), 

and it was recorded at more appropriate height s, only six months of dat a 

are available. This compares to fiv e years for mos t of the Justus sites. 

Since our primary interest is in geograhpical correlations, we mus t rely 

upon the larger data set. Because there is a l arge number of dat a points, 

we can have reasonable confidence in the correlation coefficients. In 

Table 3, we summarize data on the summer average correlation among 

California station pa irs . Recall that the correlation coeffic i ent is a 

measure of linear dependence that varies between +1 (perfect corre lation) 

and -1 (complete inverse correlation). For compar i son we also tabulate 

average monthly spatial cross correlations for the ent ire Pacific Coast 

array. More detailed data are given in Appendix 1. 

As we might expect, Table 3 shows rather high correlation among 

sites that are close geograhpically. Thus Sacramento and Stockton show 

summer correlations of .49. Conversely s ites which are relatively remote 

from one another show lower correlation. San Franci sco and Re d Bluff 

have correlations of .23. The southern California sit e, Sandburg, shows 

low correlations with the northern California station s . In the summer 

these average about .10. 

3.2 Weibull Approximation Model 

It would be useful to have a simpl e mod e l that uses the correlation 

coefficient and a few other parameters to characterize wind arrays. 
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Table 1 

West Coast Sites 

ACV Arcata, CA SAC Sacramento, CA 

AST Astoria, OR SCK Stockton, CA 

BFL Bakersfield, CA SOB Sandberg, CA 

EUG Eugene, OR SEA Sea ttle/Tacoma, WA 

MHS Mt. Shasta, CA SFO San Francisco, CA 

NUO Sunnyvale, CA SLE Salem, OR 

OTH North Bend, OR SMP Stampede Pass, WA 

POX Portland, OR SMX Santa Maria, CA 

RBL Red Bluff, CA SXT Sexton Summit, OR 

ROM Redmon, OR 

Note : California correlation data available only for BFL, SAC, 
SFO, SCK, RBL, SOB · 
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Table 2 

Mean Wind Speed (m/ s) at 60 m (197 ft) Hub-Height for Pacific Sites 

Winter Spring Summer Fall Annual 

AST 7.2 5.6 6.1 6.0 5.8 

BFL 4.8 6.0 6.0 5 .1 5.5 

EUG 6.4 5.5 6.0 5.8 5.5 

OTH 7.1 6.3 7 . 9 6 . 7 6.3 

RBL 6.6 6.2 6.3 6.3 5.8 

ROM 6.2 5.2 6 . 0 5.8 5.2 

SAC 5.1 5.7 6.5 4.9 5.7 

SCK 5.8 6.6 7.0 5.7 6.3 

SOB 9 .0 9 .5 7.6 8.0 8 .5 

SEA 6.8 6.1 5.8 6 .1 6.2 

SFO 5.8 8.1 8.5 6 . 7 7.3 

SMP 7.9 7.4 7.2 7 . 2 7.5 

SMX 5.7 4.8 5.7 4.9 

SXT 7.9 7.3 6.2 6.8 7.8 

AVG 6.5 6.5 6.7 6 .1 6.2 
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Table 3 

Average Spatial Cross Correlation of Wind Speed: California Sites* 

BFL SAC SFO SCK RBL SOB 

BFL . 35 .40 .37 .32 .17 

SAC .30 . 49 .29 .01 

SFO .44 .23 .19 

SCK .30 .08 

RBL .07 

SOB 

*See Appendix 1, July and August values averaged. 

Pacific Coast Array Summer Correlation averages 
.25. 
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One such model has been developed by Justus. It approximates array 

performance based on data for a single representative site. For our 

analysis we rely on data for Sacramento. Individual sites and arrays are 

characterized by the two parameters of the Weibull distribution, a 

shape factor, k, and a scale factor, c. Once these parameters are 

specified, the probability of power output less than or equal to some 

value P. is given by 
J 

Pr[P < P.] 
- J 

= 
k 

1 - exp[-(Vj/c) ] (1) 

where V. is defined by 
J 

V. = [(P ./P) - a]V /b 
J J r r 

(2 ) 

for P rated power of wind turbine generator 
r 

V = rated speed of wind turbine generator, and where 
r 

parameters a and b are empirical constants estimated 

by Justus ll for the Pacific Coast region to be a =-0.42 

and b == 1.14. 

In our numerical calculations we use data for machines characterized by 

P = 2000 kW, V 
r r 10.6 m/s. Equation (2) is just a linear approximation 

to the cubic power curve. 

To use this model to test for the sensitivity of dispersal benefit 

to the region considered, we need an expression for the dependenc e of 

the array Weibull parameters on correlation coefficient. This is given 

by (3) and (4) below. Equation (3) expresses the relationship between 

the standard deviation of array wind speed frequency and both the 

standard deviation of the representative site speed distribution and the 

average array correlation coefficient . 

°A 

where °A 

°T 

P 

n 

2 - }1/2 {OT[l + (n - l)p]/n (3) 

standard deviation of array wind speed di s tribution 

standard deviation of representative site wind speed 
distribution 

average array wind speed cro ss correlation coefficient 

number of sites in array 
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Equation (4) relates the Weibull shape factor k to a and v, the mean 

wind speed. This relation holds for both arrays and individual sites, 

k = (a/v)-1.086. (4) 

Equation (4) is an empirical approximation to the theoretical relation­

ship between k and a/v given by 

[r(l + 2/k)/r2( 1 + l/k)] - 1 

For the sake of completeness, we writ e down an expression for the Weibull 

scale factor c as a function of k and v, as follows 

c yv/r(l + l/k) (5) 

where y is an empirical adjustment f ac tor found to be about 1.02-1 . 03 . 

3.3 Fitting the Weibull Model to Pacific Coast Array 

We begin using equations (1) and (2) to characterize the performance 

of Justus' Pacific Coast wind turbine array . We want to know if the 

simple model is a good approximation to numer ical simulation of large 

arrays. In Table 4 we list data for summer diurna l variations in array 

output. The data on mean power and mean wind speed are simulated; they 

comes from reference 11. We also tabul a t e array Weibull par amet ers . 

These parameters used in equations (1) and (2) ought to be able to 

reproduce approximately the mean power and wind speed r esult s from 

numerical calculation. 

We make the t es t indirectly. If the Weibull distribution were 

symmetric, then the mean power would have probability equal to . 50, 

i . e. , the mean and median coincide. Bur y(2) shows that t he Weibull is 

symmetric for k = 3. 6, which is quite close to our va lues . We can use 
o 

a simple formula to calculate the median wind speed, v; namely 

o 
v = c(ln 2)1/k 
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Table 4 

Pacific Coast Array - Diurnal Power Variations: Summer 

Hour Data Source 
13 16 19 

Mean Power 840 kW 1054 805 Table C_6 11 

Mean Wind Speed 8.0 mls 8.8 7.8 Table 712 

Weibu11 Parameters 
by Month 

July 73 c 9.21 10 . 11 9.29 

k 3.13 3.77 3.53 

July 75 c 10.27 9.42 

k 3.78 3.86 

August 71 c 9.00 9.85 8.61 

k 3.52 3.99 3.67 

August 72 c 9.40 9.99 9.08 

k 3.34 3.86 3.55 

August 74 c 9.21 9.68 8.77 

k 3.13 3.78 2.87 

August 75 c 9.30 9.76 8.65 

k 3.33 3.36 2.99 

Summer Average c 9.22 9.94 8.97 

k 3.29 3.36 3.41 

Pr[x .::. fJ] .47 .47 .46 

Median Wind Speed: 8.3 mls 8.9 ml s 8.1 mls 
(estimated) 
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Putting in our parameters we find median wind speeds that are 1 to 4 

percent higher than the mean. Since our Wei bull shape parameter k takes 

values less than 3.6, the distribution is skewed slightly to the right. 

Hence the median should be less than the mean, but only slightly. (2) 

Our data also show that the cumulative probability of the mean power 

ranges from .46 to .47. The combination of these errors could be as 

much as 10 percent. For our purposes later we will rely principally 

on the 4:00 p.m. data, where the error is about 5 percent. This can 

give us reasonable confidence in the accuracy of (1) and (2) at least in 

this region. 

It is more difficult to assess the accuracy of the Weibull model 

in the tail of the distribution. In some sense this is a more critical 

region for LOLP calculations. At this point we can only point out a 

potential difficulty in accuracy, but we do not have the tools to assess 

its import. Clearly this question can be answered by more simulation 

studies. 

It is worth observing in passing that the diurnal variation data 

shows rather large output for afternoon performance. The range of 

800-1000 kW per 2000 kW of capacity is 40-50 percent of rated capacity . 

This will be important in our capacity credit calculations. For now 

it remains to explore the use of equations (3)-(5) in the construction 

of various array power distributions. This is the subject to which we 

know turn. 

3.4 California Arrays: Building Up from the Bottom and Down from 
the Top 

In Figure 1 we show two power output frequency distributions, one 

representing average conditions at Sacramento, California, the other 

representing the summer average performance of Justus' Pacific Coast 

array. It is useful in understanding the dispersal effect to build 

up arrays incrementally . This will illustrate how reliability increases 

and helps develop intuition for the tradeoffs involved. In the calcu­

lations which follow attention is focused on summer conditions. The 

rationale for this limitation will be discussed more fully in section 4, 
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but it is based primarily on the summer peaking electric demand behavior 

which is characteristic of California. (16) 

Our procedure is to use Sacramento as the "representative site" 

and gradually add additional sites to our arrays. From estimates 

developed in (10) we have Weibull parameters for Sacramento of k = 1 . 98, 

c = 6.32. This is scaled up to 60 m. From equation (4) we can calculate 

a standard deviation of the wind speed distribution at this siie. For 

array construction we use equation (3) and Table 3 to scale the array 

wind speed standard deviation. Then the data in Table 2 allow: us to 

calculate v, the mean array wind speed. This goes back into equations 

(4) and (5) to yield array Weibull parameters. Then equations (1) and 

(2) allow us to calculate a table of cumulative power frequency. This 

can be displayed graphically as in Figure 1. The table corresponding 

to the single site curve in Figure 1, Sacramento, is given in Table 5 

below . 

Table 5 
Sacramento : Power Output Variations 

Pr[P < 1000 

Pr[P < 800 

Pr[P < 600 

Pr[P < 400 

Pr[P < 200 

Pr[P < 100 

kW] 

kW] 

kW] 

kW] 

kW] 

kW] 

== .84 

.77 

.67 

= .57 

== .44 

. 38 

In Table 6 we tabulate average power frequency distributions for 

seven array configurations during the summer. In general, as the 

number of sites increases, so does reliability. We will see that 

for utility system planning purposes, it is the behavior at lower 

power output levels which is crucial. In this regard it is interest­

ing to pay particular attention to Case 7, the entire Pacific Coast 

Array. The mean summer wind speed over the whole array is less than 

that of most combinations of California sites. But the behavior at 

low output levels is better. This is due to low correlation among a 

significant number of sites. 
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Tab l e 6 

Ca l ifornia Sub-Arrays: Average Summer Power Frequency Distribution 

Case 1 
-Sacrament o v :=: 6 . 75 mls Pr [P < 1000 kW ] :=: .72 

Stockton p :=: . 49 800 :=: .62 

k :=: 2.42 600 . 50 

c :=: 7.77 400 :=: .38 

100 .22 

50 . 20 

Case 2 

Baker sfield v :=: 6.5 mls Pr[P < 1000 kW] :=: . 76 

St ockton p :=: .40 800 :=: . 65 

Sacramento k :=: 2.61 600 .53 

c 7 .46 400 .40 

200 .27 

Case 3 

Stockton v :=: 7 . 3 mls Pr [P < 1000 klV ] .66 

Sacrament o p :=: .41 800 .53 

San Francisco k 2 . 96 600 .40 

c 8 . 38 400 . 28 

200 . 18 

Case 4 

Bakersfie l d v :=: 7.0 mls Pr[P < 1000 kW] :=: . 71 

Stockton p . 39 800 .58 

Sacramento k 2.98 600 :=: .44 

San Francisco c 8 . 00 400 .31 

200 .20 
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Table 6 (continued) 

California Sub-Arrays: Average Summer Power Frequency Distribution 

Case 5 

Red Bluff v = 7.1 mls Pr[P < 1000 kW] .70 

San Francisco p = .34 800 .56 

Sacramento k = 3.15 600 .42 

Stockton c = 8.09 400 .29 

200 .18 

Case 6 

Red Bluff v 6.9 mls Pr[P < 1000 kW] .73 

Sacramento p = .35 800 . 60 

Stockton k 3.15 600 .45 

Bakersfield c = 7.86 400 .31 

San Francisco 200 .19 

Case 7 

Pacific Coast Array v = 6.7 mls Pr[P < 1000 kW] = .80 
(13 sites) 

p = .25 800 .65 

k = 3.88 600 = .47 

c 7.55 400 = .30 

200 .16 

100 .11 
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Detailed examination of Table 6 shows the tradeoff between array 

mean wind speed (v) and average correlation coefficient (p). Consider 

cases (3) and (4). Case (3) involves three sites (Stockton, Sacramento 

and San Francisco). The power frequency distribution shows a little 

better reliability than the array composed of the same three sites plus 

Bakersfield, which is case (4). Adding Bakersfield to the case (3) 

array reduces both mean wind speed and average correlation coefficient . 

The former decreases by about 4 percent, the latter by about 5 percent . 

Looking at case (5) we find slightly better availability than case (3). 

In case (5) we add Red Bluff to the case (3) array instead of Bakersfield . 

In this case mean wind speed falls only about 3 percent, and correlation 

coefficient falls about 17 percent. 

It would also be useful to characterize California array performance 

with respect to diurnal variation in output as Table 4 does for the whole 

Pacific Coast array. To do this we must scale down from the large system 

to the smaller ones of interest. We cannot use the "building up" approach 

which we used for our summer average calculations because there is no 

base case data on a single representative site. Nonetheless equations 

(1)-(5) are sufficiently flexible so that a simple scaling procedure is 

possible. This procedure is outlined and sample calculations are 

presented in Table 7 . 

A summary of selected distributions is shown in Figure 3. Our next 

problem is to decide how to use our abundance of data for capacity credit 

calculations. 

4.0 CAPACITY CREDIT FOR WIND ARRAYS: FORMULATING THE PROBLEM 

4.1 The Coincidence Hypothesis 

Our first problem in array analysis is the selection of the appropriate 

data. Do we use averages? What is the limitation of restricting attention 

to the summer period? What guidelines are there to help us avoid just 

simulating all available data with brute force methods? The principle 

we will follow is essentially the conventional wisdom in power system 

studies. What matters for power system reliability is the coincidence 

in the power availability and the peak demand. Let us call this principle 

the coincidence hypothe~is. 
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Table 7 

Power Frequency Distribution 
4:00 p.m. Summer 

Case 1 

Pacific Coast Array v 8.S m/s Pr [P < 1400 kW] .70 
(Table 4) 

k = 3.76 1200 .57 

c 9.94 1000 = .43 

SOO .31 

600 = .20 

400 = .12 

200 .06 

Case 2 

Pacific Gas and v = 9.0 m/s Pr [P < 1000 kW] .44 
Electric Company k 3.03 SOO .33 Sites = = 

c lQ.2S 600 = .24 

400 .16 

200 = .10 

Case 3 

All Caifornia Sites v 9.17 m/s Pr[P < .1 000 kW] .40 

k 3.45 SOO .29 

c = 10.40 600 .20 

400 .12 

200 .07 

Scaling Methodology. From equation (3) we know the ratio of an 
array wind speed standard deviation to that of a representative 
site. This is expressed in terms of the pair of llUlIlbers (n,p) , 
where n is the number of array sites and P is the average correla­
tion coefficient. We calculate this ratio for the Pacific Coast 
Array (n=13, p=.25) and get the value 0.555. Doing the same for 
case 2 (n=5, p=.35) we get the value .693. Therefore we know that 

0PG / 0 'f ' .693/.555 1 . 249 &E PaCl lC Coast Array 
We calculate 0p 'f' C t A from equation (4) using the known aCl lC oas rray 
values of k=3.76 and v=S.8. This gives 0p ' f' C A = 2.60, aCl lC oast rray 
and therefore 0PG&E = 3.246. We calculate the value of the Weibull 

parameter k using equation (4) again, but this time we reestimate v 
for the sites in question. This is done by averaging the mean values 
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Table 7 Footnote (continued) 

in Table 2. For PG&E data this yields v = 6.86 compared to the array 
average 6.7 m/s. Using a linear scaling ratio we get a 4:00 p.m. 
v = (6.86/6.7)8.8 = 9.0 m/s. Now returning to equation (4) we get 
k = (9.0/3 . 246)1.086 = 3.03. From equation (5) we get c = 10.28. 

A similar procedure is used to derive the parameters for case 3. 
For this case n = 6, P = .27. The l a tter value is calculated from 
Table 3. 
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The coincidence hypothesis is more than just folklore. Recent 

studies of other intermittent electric technologies have verified the 

importance of this measure. General Electric Company, in a study of 

photovoltaic power plants, found that degree of coincidence in peak 

load and insolation was a significant parameter. (8) This coincidence 

requirement refers to hourly correspondences. Seasonal coincidence 

is assumed. This is the rationale for our looking at summer data only. 

But the hourly scale requires that we focus on diurnal variation. 

Therefore the daily average data of Tabl e 6 is too coarse a measure. 

For our purposes the appropriate data is given in Table 7. The summer 

time peak in California is typicall y around 3 :00 p.m. (16) The diurnal 

variations in array output are compared to the demand curve of the 

Pacific Gas and Electric Company in Figure 4. This shows good coin­

cidence with our 4:00 p.m. data. 

This choice of power frequency di s tribution is reasonable provided 

we believe that significant mismatch between loads and resources would 

not emerge at some other time. There are a number of potential problems 

here. For example, Figure 4 shows a growing gap between 9:00 p.m. and 

midnight. This mismatch is probably not inherent in the wind regime and 

could be ameliorated with more sophisticated si ting. Data for the 

San Bernardino Mountains, for example, shows virtually an antisymmetric 

wind patternto Figure 4 with a minimum at 4:00 p.m., increasing in the 

evening. (18) Moreover, General Electric in another study(7) sugges ts 

that high wind speed regimes typically have a diurnal pattern which 

complements the lower wind speed pattern we have illustrated in Figure 2. 

Figure 5 shows this change as average energy increases. Thus for the 

purposes of illustration it is not unreasonable to accept the 4:00 p.m_ 

power frequency distribution as the basic data to be used in analysis 

of summer conditions. 

An interesting potential problem is the emergence of a winter peak 

shortfall. Table 2 shows that the northern California s ites have a 

somewhat lower mean wind speed in winter compared to summer (5_6 m/s 

vs. 6.9 m/s). An estimate of when a problem might emerge can be derived 

from a comparison of the summer/winter peak load different ial and the 

effective load-carrying capability of a wind array . In section 4_3 

below we will present results on ELCC for various penetrations of wind 
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turbines. If these values of ELCC were greater than the difference 

between summer and winter peak loads, then poorer performance in winter 

would threaten reliability at the winter peak . For the Pacific Gas and 

Electric Company service area, the winter peak is typically more than 

2000 MW below the summer peak. Our results in section 4.3 will show 

that ELCC in this system will not be likely to exceed such a number . 

Therefore winter risks would not emerge under our assumptions. Of 

course, the question deserves more analysis than these brief remarks. 

But that is beyond the scope of the present effort. 

4 . 2 A Map from Power Frequency to Generator Models 

We have argued briefly in section 2.1 that the translation of a 

wind power frequency distribution into a representation for LOLP 

analysis is non-trivial. The basic problem is that the power behavior 

of wind generators cannot be captured in two or three discrete states 

which is the typical model for thermal units. Indeed, it has been 

shown that even for thermal units LOLP accuracy is improved by using a 

multi-state model rather than collapsing behavior into an "on-off" 

model . (1,13) The general rule here is a version of "the-more-the­

merrier." That is, accuracy improves as the number of states increases. 

There is, of course, a point of diminishing returns. To limit compu­

tational complexity we will use an eight-state model which is described 

below . In Appendix 2 we present data which supports this choice. 

Before describing our transformation from a continuous distribution 

to the eight-state model, it is worth emphasizing that we need to mode l 

the low output end of the distribution more finely than the high output 

side. This thesis is also supported by data discussed in Appendix 2. 

However, there is an intuitive rationale for our procedure that is 

useful to discuss. LOLP, our measure of risk and reliability, is 

naturally more sensitive to big failures than small ones. The risk of 

using wind power for electricity is the risk of lulls in the wind. 

Even slight winds are better than no winds at all. The thesis which 

states that low output is critical captures the importance of marginal 

winds. At a time of risk anything is a whole lot better than nothing. 

For a numerical argument supporting this thesis, see Appendix 2. 
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Let us consider case 2 from Table 7. We will select eight states 

from the infinite possibilities and use interval estimates to charac­

terize the probability of the state at the bottom of the interval. 

For example, if we use the case 2, Table 7 data and look at the 

interval between 200 and 400 kW, we find that the probability of power 

in this interval is .06. This is just the difference between Pr[P ~ 400] 

and Pr[P ~ 200] or . 16 - .10 = .06. This rule is conservative. It throws 

out all output between 200 and 400 kW and counts it all as just 200 kW. 

In Table 8 below we show our generator model for this case . 

Table 8 

PG&E 4:00 p.m. Summer Wind Generator Model 

State (X. ) Pr [P < X.] Prob[State X. ] = Pr[X. < P < X. 1] 
1 - 1 1 1 1+ 

0 • OS .07 

100 .07 . 03 

200 .10 .06 

400 .16 .08 

600 .24 .09 

800 .33 .11 

1000 .44 .30 

1600 .74 .26 

A final note should be addressed to the question of the penetration 

of the wind array in the power system. In our analysis we scale the 

generator representation linearly with penetration. Thus a 2000 ~v pene­

tration in PG&E would be modelled by the states listed in Table 8 where 

each state had units of megawatts. For a 4000 MW penetration each state 

would have units of twice that number of megawatts. As the penetration 

grows the gap between states gets larger; that is, the grain of the 

representation gets coarser. This plus the linear scaling assumption 

may introduce problems that require further research. 
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4.3 Results from LOLP Calculations 

We have asked the following question about California wind arrays. 

Does the better reliability of the statewide wind resource (Table 7, 

case 3) compared to PG&E area (Table 7, case 2) mean more capacity 

credit for statewide implementation? To answer this question we first 

must calculate ELCC. We use a standard LOLP model (22) and data on 

the characteristics of the California electric generation system. (19) 

The results of these calculations are presented in Table 9. 

PG&E 

(1) 

(2) 

(3) 

(4 ) 

(5) 

Wind 

ELCC 

Base 

turbine capacity 

Table 9 

Wind Array ELCC 

hydro-thermal capacity 16,354 MW 

Penetration (= 1/(1 + 3)) 

Ratio of (2) to (1) 

California Utilities Pooled 

(1) Wind turbine capacity 

(2) ELCC 

(3) Base hydro-thermal capacity 39,492 MW 

(4 ) Penetration (= 1/(1 + 3)) 

(5) Ratio of (2) to (1) 

2000 MW 4000 MW 5000 MW 

530 MW 700 MIIJ 740 MW 

11% 20% 23% 

.265 .175 .148 

4000 MW 8000 MW 10000 MW 

680 tvlW 1190 MW 1240 MW 

9% 17% 20% 

.170 .149 .124 

The data in Table 9 do not provide an unambiguous answer to our 

question. Clearly the hypothetical California pool can carry more 

load with wind turbines than the PG&E service area alone. However, 

the ratio of ELCC to wind turbine capacity is better for PG&E. This 

measure is a better indicator of effectiveness than just ELCC. The 

results suggest the conclusion we began with; namely, that for these data 

the diversity benefit reaches diminishing returns when we go beyond 

northern California. This result is not conclusive, of course. Better 

array design, more and better wind correlation data, and so on could 

change the outcome. The methodological conclusion of interest is that 
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even when wind output reliability is better in one region, ELCC is 

dependent on the characteristics of the systems in question. 

4.4 Capacity Credit 

Capacity ' credit in our case means the amount of conventional 

capacity which can be displaced by wind generation. Our ELCC calcula­

tions form the basis for making this comparison. What we need to know 

is the ELCC of competing alternatives. As should be clear by now ELCC 

is a function of unit size, forced outage rate and the power system 

in question. We will consider 800 MW coal plants in the PG&E system 

first, since these are being proposed. PG&E forecasts a . 12 forced 

outage rate for such units when they mature (aft er 4 years). (17) 

Using that value, ELCC would be about 475 ~~. EPRI, however, estimates 

a forced outage rate of .197. (5) At that level of performance, ELCC 

would be approximately 380 MW. An intermediate value of .1 5 yields 

ELCC of 430 MW. These numbers are derived in Appendix 3 . 

Another way to view the question is to ask wha t kind of thermal 

generator do the arrays act like . This qu es tion is answered by using 

the LOLP output and fitting a thermal model to it. We do this a l so in 

Appendix 3. From that analysis we find that our Tab l e 9 results are 

approximated by assuming that 2000 ~~ of wind turbines behaves in 

this context like an 800 MW generator with a .10 for ced outage rate. 

This says that one of PG&E's coal plants could be displ aced by a large 

wind array . Depending on actual performance of such plants, i.e., if 

they were as bad as the EPRI estimate, both of the proposed Fossi l 1 

and 2 units could be displaced. 

These results change when we look a t a hypothe tical poo l of a ll 

California utilit ies. For this purpose let us consider a 1000 MW 

plant with a forced outage rate of .1 5. From Appendix 3 we find that 

such a unit would have ELCC equal to about 606 MW. Two such units 

would be displac ed by about 8000 MW of wind turbine capacity. The ratio 

of wind generator capacity to conventional capaci t y di sp l aced is thus 

about four to one in this case. That compares t o someth i ng l ess than 

three to one in the PG&E case . This is another way of seeing the 
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diminishing returns to implementing statewide pooling of the wind 

resource. Perhaps with better data this conclusion would change . 

Finally it should be noticed that Table 9 illustrates the barrier 

of large penetrations. The PG&E data show an increase of only 40 MW 

in ELCC for the last 1000 ~~ of wind turbine capacity. On a relative 

basis the situation is worse for the statewide case. These results 

suggest that we are near a limit. It is not clear if the limit is 

inherent in the resource or only in our limited data. Even if it is 

the latter, it is likely that this barrier will remain; only its 

frontier will recede. 

5.0 THE RESEARCH HORIZON 

Modelling the reliability of wind arrays is still a primitive 

subject. There is a great need for additional wind resource data. We 

need to know the time variation of correlations, more details on 

different wind regimes, and the influence of differing machine parameters. 

Even with our present scanty knowledge, it seems plausible to assert that 

our main thesis has been supported. Wind arrays can displace conventional 

capacity with reliability . 

The present inquiry forms part of a larger subject, the integration 

of intermittent resource technologies into an electric energy system. 

Our discussion has focused only on the problem of relatively small pene­

trations. Large penetration analysis will require a look at hydro 

optimization, other resource complementarities and the role of storage. 

This is a large and fruitful area of study which will help determine the 

future of economic viability of emerging technologies. 
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SMX . 138 . 238 .202 

RBL . 092 

SOB .154 . 177 .162 206 . 154 . 106 
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APPENDIX 2 

GENERATOR MODELS FOR WIND ARRAYS 

With the introduction of large generators into power systems, there 

has been increasing interest in modelling the performance of such units 

by more sophisticated methods than the two-state, "on-off" models. It 

has been found that generator representations which use the weighted 

average or equivalent forced outage rate produce results which understate 

reliability. (1,13) Therefore multi-state models have been found more 

preferable. These results have significance for modelling wind arrays 

because such configurations tend to act like large generators. Their 

output characteristics are even more "spread out" than the big thermal 

units; i.e., they operate at partial capacity most of the time . 

To evaluate the accuracy of the eight-state model displayed in 

Table 8, we ran some sensitivity cases. These were designed to test the 

significance of adding more states to the representation and to es timate 

the impact of using many states on the low output side. The two alternate 

representations are given in Table A. 

Table A 

Alternate Models of PG&E Array: Summer 4:00 p.m. 

Eleven-State Model 
Eight-State Model 

Hi gh Output Sensitivity 
State Probabil i ty State Probability 

0 .07 0 .16 

100 .06 300 . 11 

300 .07 600 .14 

500 .08 900 .1 6 

700 .10 1200 .15 

900 . 11 1500 .09 

1100 .11 1700 .07 

1300 .09 1900 .1 5 

1500 .09 

1700 .07 

1900 .15 
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We present the results of the LOLP calculations in Table B for the 

base case (no wind array) and the three models of a 2000 MW array. The 

program used is a standard calculation based on the algorithm described 

in reference 22 . The data on the base system is characterized in 

reference 19. The results confirm the thesis that the representation 

of the low output side is critical. Both the eight-state mod e l 

from Table 8 and the eleven-state model agree well. The eight-state 

model which is sensitive to high output performance but aggregates on 

the low side is about 100 MW more conservative. This model does the 

kind of averaging which has been shown to have conservative bias. The 

difference between the two other models is insignificant. It is less 

than 10 percent in LOLP, which corresponds to about 5 ~~. 

Table B 

LOLP Results 
--------------------------------------

Load 
(GW) 

14.00 
14.10 
14.20 
14.30 
14.40 
14.50 
14.60 
14.70 
14.80 
14.90 
15.00 
15.10 
15.20 
15.30 
15 .40 
15.50 
15.60 
15.70 

Base Case 
(no wind) 

2 . 38xlO- 3 

3. 65xlO- 3 

5.75xlO- 3 

8.99xlO- 3 

1.36xlO- 2 

1. 98xlO- 2 

2 . 7lxl 0- 2 

3.54xlO- 2 

4.66xlO- 2 

6.38xI0- 2 

8. 94xl 0- 2 

1.24xlO- 1 

1.67xlO- 1 

2.13xlO- 1 

2.56xlO- 1 

2.96xlO- 1 

3. 41xlO- 1 

4. 03xl 0- 1 

Table 8 

3.18xlO- 4 

4.90xlO- 4 

7 .4 6xlO- 4 

1.20xlO- 3 

1.85xlO- 3 

2.80xlO- 3 

4 .08xlO- 3 

5.75xlO- 3 

7 . 93xlO- 3 

1.09xlO- 2 

1.52xlO- 2 

2.12xlO- 2 

2.95xlO- 2 

3.98xlO- 2 

5.22xlO- 2 

6.64xlO- 2 

8.25xlO- 2 

1.02xlO- 1 

ll-State 

3.36xlO- 4 

5.19xlo- 4 

-4 8.12xlO 
1.27xlO- 3 

1.96xlO- 3 

2.94xlO- 3 

4.23xlO- 3 

5 .8 8xlO- 3 

8.06xlO- 3 

1.llxlo- 2 

- 2 1. 56xl 0 
2. 17xlO- 2 

2 . 98xl 0 - 2 

3.98xlo- 2 

5.14xlO- 2 

6.45xlO- 2 

7 .98xlO- 2 

9.84xlO- 2 

8-State 
High Side 

Sensitivity 

4.79xlo- 4 

- 4 7.43xlO 
1.17xlO- 3 

1.82xlO- 3 

- 3 2.78xlO 
4.11xlO- 3 

5 . 78xlO- 3 

7.89xlO- 3 

1.08xlO- 2 

1.49xlO- 2 

2.09xlO- 2 

2.90xlo- 2 

-2 3.95xlO 
5.18xlO- 2 

6.55xlO- 2 

8.07xlO- 2 

9.88xlO- 2 

1.21xlO- 1 
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APPENDIX 3 

GARVER ' S SLOPE-m TECHNIQUE: A LINEAR APPROXIMATION TO ELCC 

A useful tool for evaluating ELCC where some simulation has already 

been done is the linear approximation to LOLP introduced in reference 6. 

This technique has achieved widespread acceptance in the power industry . 

We write down the equation, define the variables and apply it to some 

of our results. The main parameter to be estimated in this equation is 

the slope of the risk (LOLP) curve. Garver derives the following expres­

sion 

where 

ELCC = 
clm C - m In[(l - r) + re ] 

c nominal generator rating 

m characteristic slope of LOLP curve 

r generator forced outage rate 

To calculate m we look at a curve of LOLP vs. load and find the 

distance in MW between the risk criterion (1 day in 10 years) and 

e = 2.718 times that risk. Recall ing that 1 day in 10 years has the 

interpretation of 8.5 -3 x 10 , we can interpolate from Table B, Appendix 

and find that m = 260 for the base PG&E system. Now we can use Garver's 

2 

equation to calculate ELCC for an 800 ~m unit on the PG&E system as a 

function of forecasted forced outage rate. In section 4.4 we considered 

three projected forced outage rates. Table C shows the ELCC corresponding 

to each . 

Table C 
ELCC for PG&E 800 MW Unit 

FOR 

I' n 

.12 

.15 

.197 

/ I' t · f .. 

ELCC 

475 

430 

380 

(. n , , 
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Simulation of a hypothetical pool of all Cal i fornia generation resources 
-3 yields a value of m := 400 MW at the same risk level (8.5xlO ). We find 

that a 1000 MW unit in such a system with FOR := .15 will have ELCC := 

606 MW. 

It is difficult to apply Garver ' s equation to wind arrays because 

we would have to collapse the behavior to a sing l e forced outage rate. 

Appendix 2 argues t hat this is l ikely to be biased conservatively . 

We can, however, use Garver ' s equation in a post-facto way to give con ­

ceptual insight into the performanceof arrays. By this I mean we can 

take the resu l ts of simulation and find values of c and r which fit those 

results. This will yield the thermal equivalent referred to in 4.4. 

An important further reason why the Garver equation cannot be used 

predictively is that the value of the parameter m changes with wind 

penetration. In Table 0 we give these changes in m for the PG&E system, 

repeat the data from Table 9 on ELCC and show the ELCC values calculated 

by fitting c and r to these results . 

Table 0 

Two - State Linear Approximation to ELCC 

Wind Turbine Capacity 2000 MW 4000 MW 5000 MW 

ELCC (simulated) 530 MW 700 MW 740 tvmr 

Slope-m value 310 MIIJ 320 MW 340 MW 

Equivalent Unit Size 800 MW 1600 MW 2000 MW 

Estimated FOR .10 .10 . 10 

Estimated ELCC 553 MW 718 MW 731 MW 
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