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Expression Equivalence Checking
Using Interval Analysis

Mohammad Ali Ghodrat, Student Member, IEEE, Tony Givargis, Member, IEEE, and Alex Nicolau, Member, IEEE

Abstract—Arithmetic expressions are the fundamental building
blocks of hardware and software systems. An important problem
in computational theory is to decide if two arithmetic expressions
are equivalent. However, the general problem of equivalence
checking, in digital computers, belongs to the NP Hard class of
problems. Moreover, existing general techniques for solving this
decision problem are applicable to very simple expressions and
impractical when applied to more complex expressions found in
programs written in high-level languages. In this paper, we pro-
pose a method for solving the arithmetic expression equivalence
problem using partial evaluation. In particular, our technique is
specifically designed to solve the problem of equivalence checking
of arithmetic expressions obtained from high-level language
descriptions of hardware/software systems. In our method, we
use interval analysis to substantially prune the domain space
of arithmetic expressions and limit the evaluation effort to a
sufficiently limited set of subspaces. Our results show that the
proposed method is fast enough to be of use in practice.

Index Terms—Expression equivalence, interval analysis, mutual
exclusion.

I. INTRODUCTION

ARITHMETIC expressions are the fundamental building
blocks of hardware and software systems. In hardware,

arithmetic expressions form the core of datapath designs. In
software, arithmetic expressions form the core of basic blocks.
A fundamental problem in computational theory is to decide if
two expressions are equivalent [2], [3]. In hardware and software
systems, expression equivalence is uniquely characterized by
operating on finite precision integers. Furthermore, the general
problem of equivalence checking, as related to hardware and
software systems, belongs to the NP Hard class of problems [1].

Efficiently solving the equivalence problem between two
arithmetic expressions will have a profound impact in the areas of
formal verification [4], complex code generation and technology
mapping [5], resource scheduling [6], code transformation [7],
synthesis technologies [8], and compiler techniques [9].

In this paper, we propose a method for solving the expression
equivalence problem using partial evaluation. In our method,
we use interval analysis [10] to substantially prune the domain
space of arithmetic expressions and limit the evaluation effort
to a limited set of subspaces. We call this method domain space
partitioning. Our results show that the proposed method is fast
enough to be of use in practice.
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As another application for domain space partitioning, we can
consider mutual exclusion. Mutual exclusion is a special in-
stance of the equivalence checking problem. Here, if and
are two arithmetic expression, we say that and are mutu-
ally exclusive if the condition is false for all values of

and . We say that and are not mutually exclusive
if, for at least some point in the domain of or , the expres-
sion evaluates to true. This is indeed the problem of
equivalence checking. If and are two conditional expres-
sions (e.g., and ), we say that and are
mutually exclusive if the condition evaluates to false
for all points in the domain of and .

We note that the domain space partitioning method described
in this paper can help advance the state of the art in behavioral
synthesis tools, reconfigurable computing methodologies,
extensible processors, very long instruction word (VLIW), and
multiple-processor-on-a-chip compilers, and high-level pro-
gram validation and verification. As an example, we can take
advantage of the fact that the Boolean value of a conditional
expression in a program, determining the true/false execution
paths, can be statically analyzed using the domain space par-
titioning method to determine cases when one or the other of
the true/false paths are guaranteed to execute. Consequently,
in such cases, code is generated to bypass the evaluation of
the conditional expression. In instances when the bypass code
is faster to evaluate than the conditional expression, a net
performance gain is obtained.

The remainder of this paper is organized as follows. In
Section II, we show previous related work. In Section III, we
formulate the problem of expression equivalence. In Section IV,
we give our solution for this problem when we have only one
simple arithmetic expression. In Section V, we extend our
solution for more complex arithmetic expressions which have
Boolean operators also. In Section VI, we present our experi-
mental results. Finally, in Section VII, we give our conclusion.

II. PREVIOUS WORK

Most of the work on equivalence checking is done in the do-
main of formal verification. The most commonly used methods
to do formal verification of circuits use binary decision dia-
grams (BDDs) [11] and their derivatives, namely ordered BDD
(OBDD), ordered functional decision diagrams (OFDDs), mul-
titerminal BDD (MTBDD), binary moment diagram (BMD),
edge-valued BDD (EVBDD), multiplicative BMD (*BMD),
and Taylor expansion diagrams (TEDs) [12]. These approaches
differ mainly in bit- versus word-level scope and composition
rules.

1063-8210/$20.00 © 2006 IEEE
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BDD, OBDD, and OFDD are bit-level decision diagrams,
while the rest are word-level decision diagrams (bit-level deci-
sion diagrams represent Boolean functions

, while word-level decision diagrams represent
integer-valued functions ). These deci-
sion diagram-based approaches also differ in the type of
decomposition rule used, specifically, Shannon (BDD, OBDD,
and K*BMD), positive-Davio (OFDD and K*BMD), or
negative-Davio (K*BMD). Among those decision diagrams
that are word-level, a further difference is in the place where
the integer weights are inserted, either in leaves (i.e., MTBDD
and BMD) or edges (i.e., EVBDD, *BMD, and K*BMD). A
detailed survey of BDD and its derivatives can be found in [13].
Finally, TEDs use Taylor series expansion for decomposing
algebraic and Boolean expressions [12].

Another approach used in formal verification is using in-
teger linear programming (ILP), where both arithmetic and
Boolean operators are linearized to reach to an instance of ILP
problem [14].

Due to exponential complexity, bit-level decision diagrams
are only applicable to simple Boolean expressions and are not
feasible when applied to arithmetic expressions. Word-level de-
cision diagrams can be applied to simple arithmetic expressions
(e.g., datapath segments [15]), however, they can only be used
to determine the equivalence of arithmetic expressions. Con-
versely, our method, in addition to checking equivalence, can
also partition the domain space into regions and define the arith-
metic relations (e.g., less than, greater than, and equal to) present
in those regions.

In related work, Wakabayashi et al. [16] have used the no-
tion of a condition vector to find mutual exclusion between two
Boolean conditions. Two conditional expressions are mutually
exclusive if it can be shown that they can never be evaluated to
true at the same time. Likewise, Juan et al. [17] have proposed
condition graphs, a form of syntax pattern matching, to find mu-
tual exclusion between two restricted Boolean conditions. Fur-
ther, Li et al. [18], [19] have used a timed decision table (TDT)
to find three possible types of mutual exclusion between a pair
of conditional expressions, namely, structural, behavioral, and
dataflow. Also, Xie et al. [20] used a branch labeling method to
find the mutual exclusion properties between two Boolean ex-
pressions. Finally, Camposano [6], in his path-based scheduling
technique, has proposed a method for determining mutual ex-
clusion based on an exhaustive traversal of all paths in a control
flow graph.

The problem of mutual exclusion between two Boolean con-
ditions, as solved previously, is a special case of the problem
solved in our study. The main limitation of existing works in
this area is the restriction imposed on the grammar and the lack
of support for mixed arithmetic and Boolean expressions. The
problem solved in our work applies to general arithmetic ex-
pressions with arbitrary complexity.

Zhou et al. [21] have proposed a formal verification system,
called conditional term rewriting on attribute syntax trees
(ConTRAST), for verifying the equivalence between two dif-
ferently synthesized datapaths. In their approach, they maintain
attributes (e.g., real bounds) associated with each node of the
syntax trees of the two datapaths and combine this with term

rewriting to establish equivalence. Their approach differs from
ours in that they focus on computation precision of real values
as an element of comparison.

Cheung et al. [22] have used bit-slicing of BDDs to estab-
lish equivalence between two expressions. The main limitation
of their approach is scalability, as representing general and ar-
bitrary arithmetic expressions as a BDD is not feasible in terms
of space and time requirements.

III. PROBLEM DEFINITION

An arithmetic expression is formed over the language ( , ,
, integer-constant, integer-variable). A simple condition is in

the form of . Here, and are
arithmetic expressions and ROP is a relational operator (e.g.,

, , , , , ). Without loss of generality, we can assume
all simple conditions to be of the form of . This
normalization is achieved by converting
to . Hence, is called
a normalized simple condition. For the remainder of this paper,
we refer to a normalized simple condition as a simple condition.

We define an -dimensional space to be a box-shaped re-
gion defined by the Cartesian product

. In a simple condition, all integer-constants and in-
teger-variables are assumed to be bounded between and

values.1 Hence, the domain of a simple condition with
integer-variables is an -dimensional space

defined by the Cartesian product
.

Given a simple condition with integer-variables
, the domain space partitioning problem

for a simple condition is to partition the domain space of into
a minimal set of -dimensional spaces with each
space having one of true, false, or unknown truth values. If
space has a truth value of true, then evaluates to true for
every point in space . If space has a truth value of false,
then evaluates to false for every point in space . If space
has a truth value of unknown, then may evaluate to true for
some points in space and false for others.

For example, consider . Let us
assume and . Therefore, the domain of

is a two-dimensional (2-D) space defined by the Cartesian
product . Fig. 1 shows the partitioned domain
space and the corresponding truth values for this example using
our solution to the domain space partitioning problem.

The problem of equivalence checking can be reduced to that
of arithmetic expression evaluation which can be solved by an
instance of the domain space partitioning problem. To determine
if two expressions and are equivalent, we form the new
expression . Next, we run the domain space parti-
tioning algorithm on . If the output of the domain
space partitioning contains a space with unknown truth value,
we evaluate every point in that space to resolve the true/false
values. Each point in turn becomes a new space. and
are equivalent if and only if the resulting domain space contains
no false space. We give our solution to the domain space parti-
tioning problem for a simple condition in Section IV.

1Typically, in a computer system, min andmax values are determined by the
width of the processor datapath.
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Fig. 1. Partitioned domain of C : 2x + x + 4 > 0.

A complex condition is either a simple condition or two com-
plex conditions merged using logical operators (e.g., , , and
). Specifically, computes the negation of the complex con-

dition ; computes logical-and of complex condi-
tions and ; and computes logical-or of complex
conditions and .

The domain of a complex condition with integer-vari-
ables is an -dimensional space defined by the
Cartesian product .

Similar to the domain space partitioning problem for simple
conditions, given a complex condition with integer-variables

, the domain space partitioning problem for
complex conditions is to partition the domain space of into
a minimal set of -dimensional spaces with each
space having one of true, false, or unknown truth value. If
space has a truth value of true, then evaluates to true for
every point in space . If space has a truth value of false, then

evaluates to false for every point in space . If space has
a truth value of unknown, then may evaluate to true for some
points in space and false for others.

The general problem of equivalence checking between two
expressions and with bounded variables2 can be
expressed in terms of the domain space partitioning problem for
complex conditions. As an example, consider checking equiva-
lence between and . Further,
let us assume and are 3-b two’s complement integers. We
can construct the following complex condition:

2The ability to bound integer variables is necessary when considering hard-
ware/software implementations.

Fig. 2. Space partitioning strategy.

Here, evaluates to true, for values
of and where and are equivalent. The re-
maining expressions (i.e., , , ,
and ) evaluate to true when and are within
the 3-b two’s complement bounds. To establish equivalence,
we solve the domain space partitioning problem and check that
the entire region is marked as true. We give our solution to the
domain space partitioning problem for a complex condition in
Section V.

IV. DOMAIN SPACE PARTITIONING FOR SIMPLE CONDITION

A. Overview

Our overall domain space partitioning strategy is depicted in
Fig. 2. On input, the arithmetic expression of the simple condi-
tion is parsed to obtain an equivalent polynomial representation.
Then, we operate on the polynomial and obtain a set of mini-
mally sized spaces (root-spaces) that contain the roots of that
polynomial, as outlined in Section IV-C. Given the root-spaces
for the polynomial, the entire domain of the polynomial can
be partitioned into a number of disjoint spaces. This is accom-
plished by extending the boundaries of each root-space to the
limits of the entire domain to establish the borders between the
disjoint spaces (see Section IV-D). After partitioning the do-
main space, each disjoint space not overlapping with any of the
root-spaces, can be evaluated separately. This is done by picking
an arbitrary point in it and evaluating the simple condition (see
Section IV-E). Finally, when two -dimensional spaces have the
same truth value and share common borders, then these
two spaces can be merged (see Section IV-F). This will result in
the evaluated and partitioned domain space which is the output
of the domain space partitioning problem.

We first show the main steps of our methodology on a
simple example shown in Fig. 3. Details of each step are
given in subsequent sections. In Fig. 3, an instance of the
domain space partitioning problem for the simple condition

is solved. Fig. 3(a) shows the domain
space of the expression. Fig. 3(b) shows the
resulting root-space ( ) after running the root-space
computation step. In other words, there is at least one integer
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Fig. 3. Simple condition 4x + 5x � 20 > 0. (a) Initial domain space.
(b) Root-space computation. (c) Partitioning. (d) Evaluation. (e) Merging.

root for the expression in (e.g.,
). Fig. 3(c) shows the output of the parti-

tioning step, i.e., the four spaces in the partitioned domain
space. Fig. 3(d) shows the result of the evaluation step for each
space in the partitioned domain space. For evaluation, one point
in each space has been selected, condition
is evaluated, and the resulting truth value is assigned to that
space. Finally, Fig. 3(e) shows the result of the merging step
on the partitioned and evaluated domain space. Here, the two
upper spaces which are neighbors and both are true are merged
and one larger true space is resulted.

B. Parsing

Any arbitrary arithmetic expression can be rewritten as an
-variable polynomial with degree using the general form

shown in

(1)

For example, the expression of Fig. 1 can
be rewritten as (zero coef-
ficient terms not shown) with and . We describe
the remaining domain space partitioning steps in the following
subsections.

C. Computing Root-Spaces

During this phase, we operate on an -variable polynomial
and obtain a set of minimally sized spaces (root-spaces) that

contain the roots of , as outlined in Algorithm 1. We achieve
this by finding the roots of using interval analysis [10]. Let us
first give an overview of the interval analysis technique.

A real interval of the form represents all possible values
in the range to . The operations (i.e., , , , and ) can be
defined on two real intervals and as

(2)

(3)

(4)

.
(5)

Next, we describe our strategy (Algorithm 1) for computing
the root-spaces. Algorithm 1 operates as follows:

Algorithm 1 Compute Root-spaces

1: Input: a -variable polynomial
2: Output: a set of minimally sized root-spaces
3:
4: { }
5:
6: while do
7: { is in the form of }
8:
9: for all do
10: convert to a polynomial with as the only
variable and ( )
11:
12: for all do
13: if ( ) then
14:
15: {Intersect new root with previous

one}
16: {replace

with }
17: end if
18: end for
19: end for
20: if then
21:
22: end if
23: end while
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24: for all do
25: convert to smallest bounding integer space

26: end for

1) Initialization Phase (lines 3–5): We start by creating
a single root-space that covers the entire domain of .
Specifically, is an -dimensional space with each dimension
initialized to the interval . Clearly, the roots of
(if any) are within , however, may not be minimally sized.
To minimize , we push onto a queue to be processed by
the iterative phase of the algorithm. In our running example

( and ),
is initialized to .

2) Iterative Phase (lines 6–23): We pop a space from the
queue and split into smaller spaces .
If , then cannot be minimized,
thus we add to the output list of root-spaces . If

, then we push onto
the queue and discard . This process iterates until the
queue is empty. This phase proceeds as follows:

a) As long as the queue is not empty, we pop a space from
the queue and clear a flag called changed (lines 7–8).

b) For each variable in , we compute a single variable
polynomial by setting all variables ( ) to the
corresponding intervals . Next, we solve using any
root finding algorithm (e.g., the Newton–Raphson Method
[23]), implemented using interval analysis to obtain a set of
one or more disjoint root-spaces (i.e., roots, line 9–11). In
our running example, is computed twice during the run
of the loop starting on line 9. In the first round, with as
the variable, is . Since is a
polynomial of degree 1, we compute the root as .

c) We compare each of to the present value of
in space , namely, . If any root is not equal
to , we create a new space and push it onto the queue
for further processing. Moreover, we set the flag changed
to signal that should not be recorded in the output set
(lines 12–18). In our running example, root
is not equal to , thus we create a new space

.

d) Once steps b) and c) are completed, if the flag changed is
not set, cannot be further minimized, thus we push it on the
output set (lines 20–22).

As an optimization, we use a method to help reach to shorter
intervals for each root space computed in step 2 of our
algorithm. Shorter interval helps in faster convergence for
the algorithm. Specifically, if a root space contains 0
(i.e., ) we divide it into three intervals ,
[0, 0] and . For example, in the running example, after
computing the root for , we reach to the interval .
Then, we divide this interval into three disjoint intervals

, [0, 0], and [1, 5] to be pushed on the queue for
processing during the following iteration of the algorithm. If

does not contain 0, then we may divide it into three

TABLE I
ROOT-SPACES OF 2x + x + 4

Fig. 4. Root-spaces of 2x + x + 4.

intervals , , and
. But this approach needs a terminating

condition based on the size of the space.

3) Quantization Phase (lines 24–26): Finally, we convert each
root-space in the output set to the smallest bounding integer
space. Table I gives the final output set for our running
example. This result is shown graphically in Fig. 4. All the
shaded areas are the root-spaces, and, as shown in Fig. 4, the
equation passes through all of them.

D. Partitioning

Given the root-spaces for an expression (corresponding
to a normalized simple condition ROP 0), the entire do-
main of can be partitioned into a number of disjoint spaces.
This is accomplished by extending the boundaries of each root-
space to the limits ( and ) of the entire domain to es-
tablish the borders between the disjoint spaces. For our running
example, the boundary points for and

for (see Table I) partition the entire do-
main space as shown in Fig. 5. In Fig. 5, the root-spaces are
shown in shaded color.

For each disjoint space and not overlapping with any
of the root-spaces, it must be the case that evaluating the cor-
responding expression for any point in will yield only posi-
tive results or only negative results, but not both (otherwise,
would contain a root and thus will have an overlap with one of
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Fig. 5. Partitioned spaces for 2x + x + 4.

the root-spaces). In Fig. 5, all spaces that are not shaded have
this property. For example, the point (3, 3) in space
will make the expression positive. Furthermore,
this is true for all of the points in space .

E. Evaluation

After partitioning the domain space, each disjoint space ,
and not overlapping with any of the root-spaces, can be eval-
uated separately. This is done by picking an arbitrary point in

and evaluating the simple condition . This will yield either
a true or a false result. Accordingly, space can be marked as
true or false. For a disjoint space , and overlapping with
one of the root-spaces, such evaluation can not be performed,
therefore, must be marked as unknown. For example, eval-
uating with the arbitrary point (3, 3) in
space yields a true value, thus, the entire space

is marked as true (see Fig. 6). Conversely, evalu-
ating with the arbitrary point in
space yields a false value, thus, the entire
space is marked as false (see Fig. 6).

F. Merging

When two -dimensional spaces have the same truth value
and share common borders, then these two spaces can
be merged. For example, in Fig. 6, space and

share the common border and thus
can be merged into a single space .

In our proposed technique (i.e., Fig. 2), the overall running
time is bounded by the running time of the merging step. Given

disjoint -dimensional spaces, a brute-force approach can be
used to solve the merging problem. To do so, we take each pair
of spaces (i.e., ) and look for common borders (i.e.,

) for a total cost of . Here, in the worst case,
one pair of spaces may be merged, reducing the total number of
spaces to . Then, the process repeats times, until a single
space remains. Thus, the total running time takes .
The dimensionality is the number of variables in the simple
condition and is usually small (e.g., less than 8) for manually
written programs. Hence, the effective running time of the brute-
force merging algorithm is .

Fig. 6. Evaluated subspaces for 2x + x + 4 > 0.

Fig. 7. Merged spaces for 2x + x + 4 > 0.

Alternatively, we can use a divide-and-conquer heuristic to do
this in . The idea is to subdivide the disjoint sets into two
equal clusters and recursively merge each cluster. In turn, each
of these two clusters will be broken further until the size of the
cluster is less than or equal to two. There are exactly

such leaf clusters, and merging a leaf cluster takes ,
for a total of . The above procedure would, in the worst
case, merge a single pair during each iteration, reducing the total
number of clusters to . Repeating, as long as some clusters
have merged, would take iterations. Thus, the final run
time is bounded by .

Fig. 7 shows the result of merge operation on Fig. 6.
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Fig. 8. Solution strategy for domain space partitioning for complex condition.

Fig. 9. DAG representation.

Fig. 10. Partitioned domain spaces for leaf nodes.

Fig. 11. Merge rules for operators &&, k, and !.

Fig. 12. Applying logical not operator (!) to leaf nodes.

Fig. 13. Applying logical and operator (&&) to leaf nodes.

Fig. 14. Partitioned domain space representation using R-tree.

V. DOMAIN SPACE PARTITIONING FOR COMPLEX CONDITION

Our overall strategy for solving the domain space partitioning
problem for complex conditions is depicted in Fig. 8. The steps
involved include parsing, evaluating leaf nodes, and domain
space propagation/merging. These steps will be described in de-
tail in the following sections.
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Fig. 15. Merging and propagation of spaces for Fig. 10. (a) Initial state./ (b) After applying ! operator. (c) After merging using &&. (d) After merging using k.

TABLE II
OPERATION COMPLEXITY FOR MEDIABENCH APPLICATIONS

A. Parsing

To capture a complex condition, we use a DAG representa-
tion with internal nodes of types ( , , ) and leaf nodes of
type simple conditions. As mentioned in Section III, the simple
condition is captured as a multivariable polynomial ROP 0. As
a running example, consider the complex condition

( ) and its DAG
representation shown in Fig. 9.

B. Evaluating Leaf Nodes

Each leaf node in the DAG representation is a simple condi-
tion and is evaluated as outlined in Section IV. Specifically, each
leaf node in the DAG representation corresponds to one instance
of the domain space partitioning problem for simple conditions.
Fig. 10 shows the partitioned domain spaces for the leaf nodes
of our running example.

TABLE III
RESULTS FOR MEDIABENCH APPLICATIONS

C. Domain Space Propagation and Merging

After computing the partitioned domain spaces for leaf nodes,
merging of these domain spaces is performed according to the
rules listed in Fig. 11. These rules define how two sets of domain
spaces are combined under the logical operators (i.e., , ,
and ).

For the logical not operator ( ), the truth value of a space
marked as true or false is inverted. A space marked as unknown
is unchanged. Fig. 12 shows the DAG representation after ap-
plying logical not operator ( ) to the ( ) leaf node.

For the logical and operator ( ), the merging is performed
on those spaces that have an overlap region. Let us assume that
and are two partitioned domain spaces. Let us further assume
that and are two overlapping spaces in those do-
mains. If space is theoverlappingspacebetween and , then

will be added to the result of the logical and. The truth value of
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TABLE IV
PARTIAL LIST OF SYNTHETIC SIMPLE CONDITION EXAMPLES

is computed using the merge rules given in Fig. 11. This pro-
cedure is shown in Algorithm 2. Fig. 13 shows an example of the
logical and merging of two partitioned domain spaces. In Fig. 13,
two spaces and are overlapping and their overlap is space

, with its truth value set to false. In the same way, the overlap of
two spaces and is space , with its truth value set to true.

Algorithm 2 Logical-AND Space Merging-Exhaustive Method

1: Input: Partitioned domain spaces and
2: Output: Merged domain space
3: for all do
4: for all do
5: {Compute the intersection of the two

subspaces}
6: if ( ) then
7: {See

Fig. 11}
8:
9: end if
10: end for
11: end for
12:
13: return

Algorithm 2, with two nested for loops, has running
time. To improve on this algorithm, instead of comparing all the
pairs of spaces in each domain space to see if they are over-
lapped or not, we use the R-tree data structure [24] to make the
search job faster. An R-tree as defined in [24] is a height-bal-
anced tree suitable for handling spatial data in multidimensional
spaces. Fig. 14 shows a partitioned domain space and the way
it is represented using the R-tree structure.

Algorithm 3 uses the R-tree data structure to make Al-
gorithm 2 faster. Specifically, Algorithm 3 uses an R-tree
representation of the domain spaces to efficiently find all
overlapping regions. The running time of Algorithm 3 is

.
Finally, the logical or operator can be performed in a way

similar to the logical and operator outlined above.

Algorithm 3 Logical-AND Space Merging-Using R-tree

1: Input: Partitioned domain spaces and

2: Output: Merged domain space

3:

4: for all do

5:

6: for all do



GHODRAT et al.: EXPRESSION EQUIVALENCE CHECKING USING INTERVAL ANALYSIS 839

TABLE V
PARTIAL LIST OF SYNTHETIC COMPLEX CONDITION EXAMPLES

7: {Compute the intersection of the two
subspaces}

8: {See
Fig. 11}

9:
10: end for
11: end for
12:
13: return

Using the not logical operator and the merge algorithms for
logical operations and and or, the DAG representation is recur-
sively merged in a bottom-up traversal. Fig. 15 shows the result
of merging the spaces of Fig. 10 in three steps. Fig. 15(a) shows
the initial state after evaluating the leaf nodes, Fig. 15(b) shows
the result after applying the operator and Fig. 15(c) and (d)
shows the result after merging using and operators.

VI. EXPERIMENTS

We tested our tool, using two different approaches. In the first
approach, we picked some random simple and complex con-
ditions from Mediabench [25] applications. In the second ap-
proach we evaluated our tool using some synthetic examples
with more aggressive combination of supported arithmetic and
logical operators. The results of these two sets of experiments
are in the following subsections.

A. Mediabench Examples

In our first set of experiments, we randomly selected a number
of simple and complex conditions from Mediabench applica-
tions [25]. Table II gives some basic statistics for the selected
conditions, namely, the total number of simple and complex
conditions (#Exp), average number of variables per condition
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Fig. 16. Time versus number of spaces: #Var: = 4.

Fig. 17. Time versus number of spaces: #Var: = 5.

(Avg. #Var), average number of arithmetic operations per con-
dition (Avg. #Arith), average number of logical operations per
condition (Avg. #Logic), and the average CPU time for evalu-
ating a condition (Time).

Table III shows the ratio of truth values for Mediabench ex-
amples, as computed by our technique. On the average, about
92.7% of the whole domain of each condition is evaluated to true
or false and about 7.30% is evaluated to unknown. Note that the
portion of the domain space that is evaluated to true or false (i.e.,
92.7%), represent the amount of pruning (with respect to evalu-
ating the condition for all possible domain values) achieved by
our algorithm. Conversely, the portion of the domain space that
is evaluated to unknown (i.e., 7.30%) would require exhaustive
evaluation to resolve the truth value of the condition. In cases
where we have large unknown spaces, what can be done is as fol-
lows: if the space is evaluated to un-
known, we can divide it into smaller spaces by dividing each
of the interval in space into two interval
and , and then apply the domain space par-
titioning algorithm for each resulting space separately.

Fig. 18. Time versus number of spaces: #Var: = 3, #Rel Op = 2, and
#Logic Op = 1.

Fig. 19. Time versus number of spaces: #Var: = 3, #Rel Op = 3, and
#Logic Op = 2.

B. Synthetic Examples

In our second set of experiments, we evaluated our tool using
some synthetic examples with a more aggressive combination
of supported arithmetic operators. We generated a total of 500
synthetic single and complex conditions; of those, a partial list
is presented in Tables IV and V. Tables IV and V give some
basic statistics for the synthetic simple and complex conditions,
namely, the actual example (Single/Complex Condition), the
generated number of unmerged spaces (#Spaces), and the CPU
time for evaluating the synthetic single or complex condition
(Time). In our strategy for generating these examples, we con-
sidered the number of variables ranging from 1 to 5, the number
of arithmetic operations ( , , ) from 1 to 5, the number of
relational operators from 2 to 3 and the number of logical oper-
ators from 1 to 2. The variables in expressions are 32-b integer.

Figs. 16 and 17 show the CPU time for running our algorithm
on those simple condition examples with four or five variables.

Figs. 18–21 show the CPU time for running our algorithm
on those complex condition examples with three or fpir vari-
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Fig. 20. Time versus number of spaces: #Var: = 4, #Rel Op = 2, and
#Logic Op = 1.

Fig. 21. Time versus number of spaces: #Var: = 4, #Rel Op = 3, and
#Logic Op = 2.

ables, two or three relational operators, and one or two logical
operators. Our results show that the CPU time for running our
algorithm is proportional to the number of spaces into which the
domain of the condition that is being evaluated is partitioned.

The number of spaces depends on the complexity of the
arithmetic expression and the number of variables in it. Fig. 22
shows the dependency between the number of variables and
the number of spaces for four equations ,

, , and
. As the number of variables

increases, the number of spaces increases exponentially and
so does the time for running the domain space partitioning
algorithm. Our experiments show that our heuristic can be
applied on those kind of arithmetic equations which have at
most eight number of variables, and this is fair enough for
typical expressions found in software/hardware designs.

Fig. 22. Number of variables versus number of spaces.

VII. CONCLUSION

In this paper, we have proposed a method for solving the ex-
pression equivalence problem using partial evaluation. In our
method, we used interval analysis to substantially prune the do-
main space of arithmetic expressions (and conditional expres-
sions) and limited the evaluation effort to a sufficiently small
number of minimally sized spaces within the domain of the ex-
pression. Then, we extend the technique to incorporate arbitrary
use of logic operators and, or, and not within arithmetic expres-
sions. Our results show that the proposed method is fast enough
to be of use in practice.

For future work, we plan to first add the division operator to
our grammar. For this, we can use the notion of rational polyno-
mials ( ) and extend interval arithmetic accordingly by ap-
plying domain space partitioning method to and individ-
ually and merging the spaces. Next, we can easily extend our
grammar to include the shift operators ( , ), because both
of these can be implemented using multiplication and division.
Finally, we plan to consider bit-wise logical operators perhaps
by considering mapping of these operators to the previously de-
fined arithmetic operators.
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