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Autism spectrum disorders (ASD) are heterogeneous yet highly heritable 

neurodevelopmental disorders characterized by atypical social behavior, delayed and/or 

abnormal verbal and nonverbal communication, as well as unusual repetitive behaviors and 

restricted interests. In vivo neuroimaging studies have consistently reported reductions in 

functional and structural connectivity of large-scale brain networks and recent genetic and 

neurobiological work suggests that ASD are related to altered synaptic and local-circuit 

connectivity. This dissertation seeks to provide insight into the neurobiological basis of ASD by 

using a network approach and by characterizing risk factors to ultimately aid in the development 

of more effective diagnostic tools and biologically-based treatments and interventions. 

In chapter 1, we examine functional connectivity of brain systems involved in social and 

emotional processing in ASD during an emotion-processing task. We use the amygdala and 

right inferior frontal gyrus, pars opercularis, as seeds in whole-brain functional connectivity 

analyses. We show that ASD is related to reduced integration within and segregation between 

distinct functional systems, which indicates that brain networks may partially reflect immature 

patterns of connectivity
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In chapter 2, we examine intrinsic functional connectivity with resting-state fMRI (rsfMRI) 

and structural connectivity with diffusion tensor imaging  (DTI) using a complex network 

approach. Using graph theoretical methods, we show that pairwise differences in functional 

connectivity are reflected in network level reductions in modularity and local efficiency, yet 

higher global efficiency. Structural networks displayed lower levels of white matter integrity and 

atypical age-related changes in global efficiency. By combining functional and structural network 

properties we further show that there is an age-related imbalance between structure and 

function in ASD.  

In chapter 3 we examine the neural correlates of an established autism risk 

polymorphism in Met receptor tyrosine kinase (MET). We show that this polymorphism is a 

potent modulator of key social brain circuitry in children and adolescents with and without ASD 

as MET risk genotype was associated with atypical fMRI activation and deactivation patterns to 

social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in 

temporo-parietal regions known to have high MET expression, particularly within the DMN.  
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INTRODUCTION 

Autism is a pervasive neurodevelopmental disorder that affects one in 88 individuals 

(CDC report, 2012). A variety of overlapping heritable disorders, including autism, Asperger’s 

syndrome and PDD-NOS, fall under the umbrella classification of autism spectrum disorder 

(ASD). Kanner (1943) originally described three core features that are still used in current 

autism diagnosis: impaired reciprocal social interactions, abnormal language acquisition and 

usage, as well as restricted interests and repetitive behaviors. Beyond these core features, 

there is significant clinical heterogeneity, particularly with variable onset and progression of 

symptoms, comorbidity with other neurologic and psychiatric disorders, and response to 

interventions (Dawson et al., 2002). Despite these deficits, evidence suggests that individuals 

with ASD have preserved or enhanced processing in certain domains such as sensory 

perception (Jones et al., 2009; Ashwin et al., 2009), increased attention to details (Smith et al., 

2009), and an enhanced ability to analyze rule-based systems for predicting the behavior of 

inanimate objects (Baron-Cohen et al., 2002; 2009). In contrast, individuals with ASD show 

impairments in executive processes and in synthesizing complex sensory input to arrive at a 

“big picture” understanding of their environment, likely contributing to the classical deficits in 

social communication and reciprocal social interactions. While dysfunctional reciprocal 

interactions are the core behavioral manifestations of ASD, clinical heterogeneity as well as 

enhanced cognitive functioning in particular domains should be accounted for in any complete 

etiologic and neurodevelopmental account of ASDs. 

A comprehensive model, explaining all core deficits of ASD and accounting for the 

broader autism phenotype, is not fully developed. Yet, an emerging hypothesis, based on multi-

dimensional research spanning genes to behavior, posits that deficits in reciprocal social 

behavior may result from dysfunctional long-range connections between brain regions that are 

highly evolved in humans (Just et al., 2004; Courchesne & Pierce, 2005; Geschwind & Levitt, 
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2007; Mundy et al., 2009). From a developmental perspective, this model suggests that 

disruption in the initial architecture and connectivity of local circuits constrains the experience-

dependent changes that normally allow for the reorganization of connections, to create stable 

long-range connections during development. This “developmental disconnection” model also 

provides an explanation for the preservation or enhancement of certain cognitive functions, such 

as enhanced visual and auditory discrimination. This enhanced function could be the result of 

increased local network connectivity stemming from both faulty initial circuitry and inefficient 

long-range connectivity. For example, disconnection of dorsolateral prefrontal and anterior 

cingulate cortex from sensory association areas – necessary for joint attention early in infancy – 

may lead to a cascade of events preventing the development of language and typical social 

behavior (Mundy et al., 2009). The failure to establish normative connections between these 

regions may simultaneously allow for increased connectivity within sensory association cortices, 

leading to enhanced sensory discrimination and increased attention to detail. While this model 

serves as an initial framework for understanding autistic symptomatology it is clear that much 

more work needs to be done to bridge the gaps between different levels of autism research. 

 

Task Based fMRI and Functional Connectivity Studies 

Functional MRI (fMRI) studies of high-functioning individuals with ASD have consistently 

reported hypoactivation in brain regions involved in a variety of tasks that tap into social 

cognition (see Pelphrey and Carter, 2008, for review). Abnormal activity has been reported in 

specialized regions such as the amygdala (e.g. Dalton et al., 2005), fusiform gyrus (e.g., Schultz 

et al., 2005), inferior frontal gyrus (e.g., Dapretto et al., 2006) and medial prefrontal cortex (e.g., 

Castelli et al., 2002). Individuals with autism also fail to show normal deactivation patterns in 

networks such as the default mode network (DMN; Kennedy et al., 2006; Di Martino et al., 

2009), which is implicated in social cognitive and theory of mind processes (Raichle et al., 2001; 
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Andrews-Hanna et al., 2010). This array of findings in different brain regions highlights the need 

for characterization of ASD as a disorder involving the interactions of multiple brain systems, as 

ASD is not likely to be understood in terms of disruption in a single brain region or system. 

Multiple neuroimaging studies of autism have examined functional connectivity (i.e., 

correlated activity) between different brain regions in ASD, finding functional underconnectivity 

between brain regions during the performance of a variety of different cognitive tasks, including 

language processing (Just et al., 2004), emotion processing (Kleinhans et al., 2008), working 

memory (Koshino et al., 2007; Kana et al., 2007), motor function (Mostofsky et al., 2009), or 

visuospatial processing (Villalobos et al., 2005). Just et al. (2004) suggested that widespread 

underconnectivity could be related to all higher-level cognitive deficits observed in autism. 

However, other studies have characterized ASD as a disorder of “altered” or “abberant” 

connectivity, given findings of overconnectivity within thalamo-cortical (Mizuno et al., 2006) and 

striato-cortical circuits (Turner et al., 2006; Di Martino et al., 2011) suggesting a more complex 

pattern. These findings support network dysfunction, yet highlight the need to examine 

connectivity within and between different systems. 

 

Intrinsic Functional Connectivity 

Functional brain imaging studies have demonstrated that, even in the absence of an 

overt cognitive task, there exist synchronized low frequency spontaneous fluctuations in 

neuronal activity across different brain networks (Biswal et al., 1995; see Fox and Raichle, 

2007, for review). These networks undergo increasing integration (i.e. increasing long-range 

within network connectivity) and segregation (i.e. reduced connectivity between networks) 

across typical development (TD; Fair et al., 2007a, 2008, 2009; Kelly et al., 2009; Supekar et 

al., 2009; Stevens et al., 2009; Dosenbach et al., 2010). Recent studies characterizing intrinsic 
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fluctuations in ASD have consistently found that task-independent (i.e., intrinsic) functional 

connectivity, including interhemispheric (Anderson et al., 2010; Dinstein et al., 2011) and DMN 

connectivity is reduced in ASD (Cherkassky et al., 2006; Kennedy, 2008; Weng et al., 2010; 

Assaf et al., 2010). Thus evidence suggests that intrinsic connectivity networks in autism show 

an altered pattern of connectivity that may reflect an “immature” development of these networks. 

 

Structural Connectivity 

Diffusion tensor imaging (DTI) measures the axonal architecture of the brain indirectly by 

measuring the diffusion of water. DTI can be used to quantify white matter integrity by 

characterizing the shape and direction of diffusion in the brain. Several studies have used DTI to 

examine white matter microstructure in individuals with ASD. Barnea-Gorealy et al. (2004) first 

reported reduced white matter integrity as measured by decreased fractional anisotropy (FA) in 

frontal and temporal regions, while additional studies have subsequently reported reduced FA in 

individuals with ASD in the corpus callosum (Alexander et al., 2007; Keller et al., 2007; Shukla 

et al., 2010), internal capsule (Keller et al., 2007; Cheng et al., 2010; Shukla et al., 2010), frontal 

(Sundaram et al., 2008) and temporal regions (Lee et al., 2007). Increasing FA has been 

consistently observed across typical development (e.g., Lebel et al., 2008), again suggesting 

that the aberrant pattern of connectivity observed in individuals with ASD may reflect less 

‘mature’ (or delayed) development.  

 

Complex Network Science 

Recent developments in the quantitative analysis of complex networks have been 

applied to brain network organization (see Bullmore and Sporns, 2009, for review). Graph 

theory, which describes complex systems as a set of “nodes” (i.e., brain regions) and “edges” 
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(i.e., connections between brain regions) has characterized the brain as a complex hierarchical 

modular network exhibiting robust levels of local and global efficiency (i.e., small-world 

properties; Watts and Strogatz, 1998) that can be quantitatively characterized using graph 

theoretical methods (Rubinov et al., 2009). Despite the array of regional and systems level 

findings in ASD, it is unclear how these alterations influence the entire brain when conceived of 

as a network of several hundred interacting regions composing multiple integrated and 

segregated systems since no studies have used graph theory to examine functional or structural 

brain networks in ASD. 

 

Combining Structure and Function 

Recent work in neurotypical adults has begun to directly relate structural and functional 

connectivity between brain regions. Defining structural connectivity through fiber tracts between 

brain regions and functional connectivity as timeseries correlations between brain regions, 

Hagmann et al. (2008) found a strong correspondence between structural connectivity and rs-

fcMRI in the same participants. While functional connectivity is more variable and can be 

detected for brain regions that are not structurally connected, it appears as though functional 

connectivity is somewhat constrained by anatomical structure. Recent studies found that during 

typical development, measures of functional connectivity and structural connectivity become 

more correlated within the default mode network (Supekar et al., 2010) and across the entire 

brain (Hagmann et al., 2010). No studies to date have used DTI and rs-fMRI to compare 

connectivity across both modalities in ASD, or to compare structural and functional network 

properties. 
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Genetics of ASD 

Several lines of evidence suggest that ASDs are among the most heritable of all 

neuropsychiatric disorders. Twin studies show 50 to 90 percent concordance in monozygotic 

twins and 1 to 30 percent in dizygotic twins (Bailey et al., 1995; Le Couteur et al., 1996; 

Hallmayer et al., 2011). Sibling recurrence risk is at least 25 times the population risk 

(Fombonne et al., 2003). There is a consistent segregation of quantitative sub-threshold traits 

(i.e., the broader autism phenotype) in family members similar to that found in probands (Bishop 

et al., 2004). This occurrence in family members of probands and within the general population 

has been termed the broader autism phenotype. Despite this clear heritability, finding the genes 

involved has been a relatively arduous process, hampered by clinical heterogeneity, complex 

genetics, and gene-environment interactions. The current understanding of autism genetics 

points to a combination of multiple rare duplications, deletions, mutations, common variants and 

environmental factors accounting for ASD symptomatology and heterogeneity. Defined 

mutations, genetic syndromes, and de novo copy-number variations (CNVs) are believed to 

have large effects and to account for 10 to 20 percent of ASD cases (Abrahams & Geschwind, 

2008). Common inherited functional variants in a variety of genes are believed to have smaller 

additive effects (Levitt & Campbell, 2009). Pathway analyses suggest that proteins involved in 

neuronal migration, cellular adhesion, synaptogenesis and intracellular signaling are implicated 

in autism risk. The neural pathways forged by these candidate genes indicate that dysfunction in 

neural connectivity and activity-dependent synaptic plasticity underlies the etiology of ASDs.  

 

Imaging Genetics 

Imaging genetics research, which links genetic variation to functional and structural 

characteristics of the brain (i.e., endophenotypes), has begun to shed insight on neurobiological 



 

	
  

7 

disorders such as Alzheimer’s disease and schizophrenia (Hariri & Weinberger, 2003; Roffman 

et al., 2006; Stein et al., 2010).  An endophenotype is a feature that is associated with illness in 

a population, is heritable, is primarily state-independent, and co-segregates with illness in 

families (Gottesman et al., 2003). Low frequency spontaneous fluctuations measured from 

resting state functional connectivity MRI (rs-fcMRI) in the DMN and measures of fractional 

anisotropy were found to be heritable (Glahn et al., 2010; Chiang et al., 2010; Kochunov et al., 

2010), suggesting these are good endophenotypes.  

An array of neuroimaging studies linking genetic variants with regional activity and 

functional integration in genes such as ApoE (Bookheimer et al., 2000; Brown et al., 2011), 

5HTTLPR (Hariri et al., 2002; Pezawas et al., 2005), and COMT (Egan et al., 2001; Buckholtz et 

al., 2007) have given insight into the biological basis of these neuropsychiatric disorders. These 

candidate risk genes, as well as newly discovered candidate ASD risk genes, have relatively 

well-known neurobiological mechanisms of action and gene expression patterns. Therefore, 

specific predictions about candidate risk genes’ role in neural pathways can be made prior to in 

vivo imaging studies. Given the vast clinical heterogeneity, and only recent identification of 

common variants linked to ASD, it is not surprising that few imaging studies to date have 

focused on ASD risk genes (Raznahan et al., 2009; Meyer-Lindenberg et al., 2008; Scott-Van 

Zeeland et al., 2010). For heritable neuropsychiatric disorders, ASD in particular, an approach 

that relates common risk variants to structural and functional connectivity is ideal, not only 

because it gives us insights into the neurobiological basis of the disorder, but also because it 

can lead to the establishment of intermediate phenotypes, potentially aiding in new gene 

discovery and valid sub-groups for targeted and biologically-based treatments.  

 

MET Receptor Tyrosine Kinase (MET) as an ASD Candidate Gene 
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        One of the most well characterized molecular signaling pathways implicated in autism is 

the ERK/PI3K signaling pathway. This pathway signals through the Met Receptor Tyrosine 

Kinase (MET) and has pleiotropic roles in multiple organ systems including the gastrointestinal, 

immune and central nervous systems (Levitt and Campbell, 2009). In the brain, MET regulates 

multiple downstream signaling pathways that are crucial for neuronal processes such as axonal 

guidance, neuronal migration and activity-dependent synapse formation (Bill and Geschwind, 

2009). In addition to MET, this signaling pathway includes multiple autism candidate genes such 

as PTEN and the genes responsible for Neurofibromatosis and Tuberous Sclerosis, which are 

syndromic disorders that have high rates of ASD diagnoses.  

In the primate, MET is enriched in excitatory neurons and their axons projecting from 

subcortical limbic forebrain structures, including the amygdala (Judson et al., 2009), as well as 

from temporal and parieto-occipital cortices to target regions during synaptogenesis and axon 

outgrowth (Judson et al., 2010; Eagleson et al., 2011). MET displays a strong differential 

expression pattern between tempero-parieto-occipital and frontal cortex (Judson et al., 2010). 

Interestingly, MET transcript and protein expression in temporal cortex is reduced in individuals 

with ASD (Campbell et al., 2007) and MET’s fronto-temporal differential expression pattern is 

diminished in individuals with ASD (Voineagu et al., 2011). In order to characterize MET’s role in 

local neuronal circuits, Met was conditionally knocked out in a mouse model of ASD (Judson et 

al., 2009, 2010; Qiu et al., 2011). In these cKO mice, neuronal morphology and activity in layer 

2/3 pyramidal cortical neurons is altered. Basal dendritic spine volume is increased (Judson et 

al., 2009) and local connectivity in specific subcortico-cortical circuits is upregulated two fold in 

both cKO and heterozygote mice relative to wild type (Qiu et al., 2011). 

Common and rare variants in MET have been associated with ASD in multiple 

independent cohorts (Campbell et al., 2006, 2008; Jackson et al., 2009; Sousa et al., 2009; 



 

	
  

9 

Marshall et al., 2008; Thanseem et al., 2010; Pinto et al., 2010). A common variant (rs1858830) 

in the promoter region of MET associated with autism risk (Campbell et al., 2006, 2008; Jackson 

et al., 2009) was shown to reduce MET mRNA in vitro (Campbell et al., 2006). Similar to 

individuals with ASD, healthy control subjects who carry this risk allele have lower levels of the 

MET protein in their temporal cortices (Campbell et al., 2007). Furthermore, this promoter 

variant has been shown to moderate autism phenotypes, whereby individuals with ASD who 

carry this risk allele have more severe social and communication phenotypes than those who do 

not  (Campbell et al., 2009). These convergent genetic, clinical, and developmental 

neurobiology findings make the MET promoter variant a well-poised candidate for investigation 

by in vivo human brain imaging studies. 
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CHAPTER 1: Altered Integration and Segregation of Distributed Neural Systems 

Underlying Social and Emotional Information Processing 

 

Abstract 

 

A growing body of evidence suggests that autism spectrum disorders (ASDs) are related 

to altered communication between brain regions. Here we present findings showing that ASD is 

characterized by a pattern of reduced functional integration as well as reduced segregation of 

large-scale brain networks. Twenty-three children with ASD and 25 typically-developing 

matched controls underwent fMRI while passively viewing emotional facial expressions. We 

examined whole-brain functional connectivity of two brain structures previously implicated in 

emotional face processing in autism: the amygdala bilaterally and the right pars opercularis of 

the inferior frontal gyrus (rIFGpo). In the ASD group, we observed reduced functional integration 

(i.e., less long-range connectivity) between amygdala and secondary visual areas, as well as 

reduced segregation between amygdala and dorsolateral prefrontal cortex. For the rIFGpo 

seed, we observed reduced functional integration with parietal cortex and increased integration 

with right frontal cortex as well as right nucleas accumbens. Finally, we observed reduced 

segregation between rIFGpo and the ventromedial prefrontal cortex. We propose that a 

systems-level approach – whereby the integration and segregation of large-scale brain networks 

in ASD is examined in relation to typical development – may provide a more detailed 

characterization of the neural basis of ASD. 
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Introduction 

 

Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders 

characterized by atypical social behavior, delayed and/or abnormal verbal and nonverbal 

communication, as well as unusual patterns of repetitive behaviors and restricted interests. 

While the neurobiological basis for ASD remains largely unknown, it has been hypothesized that 

disruption of the initial architecture and connectivity of local circuits in individuals with ASD may 

alter the experience-dependent maturation of large-scale brain networks required for integrative 

processing (Belmonte et al. 2004; Just et al. 2004; Courchesne and Pierce 2005; Geschwind 

and Levitt 2007; Mundy et al. 2009). Thus, developmental abnormalities in ASD may prevent 

the typical reorganization of neuronal connections into functionally integrated networks that are 

crucial for facilitating complex social behavior.      

Functional neuroimaging studies have generally focused on differences in regional brain 

activation among individuals with ASD while processing social and emotional stimuli. More 

specifically, abnormal activity has been reported in specialized regions or networks such as the 

amygdala (emotion processing; e.g., Baron-Cohen et al. 1999; Dalton et al. 2005), fusiform 

gyrus (face processing; e.g., Schultz et al. 2005. Pierce et al. 2004), superior temporal sulcus 

(biological motion; e.g., Pelphrey and Carter 2008), inferior frontal gyrus (mirror neuron system; 

e.g., Dapretto et al. 2006; Oberman and Ramachandran 2007), medial prefrontal cortex (theory 

of mind; e.g., Castelli et al. 2002; Wang et al. 2007), and precuneus (default mode network; 

e.g., Kennedy and Courchesne 2008b). A recent meta-analysis of functional activation studies 

in ASD identified areas consistently hypoactivated during social and emotional information 

processing which included amygdala, inferior frontal gyrus, and higher order association areas 

such as medial prefrontal cortex (Di Martino et al. 2009). Additionally, the meta-analysis found 

that individuals with ASD tended to hyperactivate primary sensory areas such as postcentral 
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gyrus, superior temporal gyrus and inferior occipital gyrus. Hyperactivation of primary sensory 

areas and hypoactivation of association areas may reflect a bottleneck of information flow that 

prevents appropriate integration of incoming sensory information important for social behavior. 

While regional characterizations of brain dysfunction in ASD have informed our initial 

understanding of the neurobiological underpinnings of this disorder, a systems-level approach 

that characterizes communication within and between different brain networks should provide 

further insight. 

In recent years, neuroimaging studies of autism have begun to focus on functional 

connectivity between different brain networks. In an early baseline glucose metabolism study 

using Positron Emission Tomography (PET), Horwitz et al. (1988) first reported reduced 

correlations among frontal and parietal cortices in individuals with autism. Later, in a theory of 

mind PET study involving mental attributions of animated shapes, Castelli et al. (2002) found 

reduced connectivity between extrastriate visual cortex and the superior temporal sulcus in 

adults with ASD. They suggested that dysfunction in the interaction between higher and lower 

order perceptual processes may be related to the behavioral manifestations of autism. In a later 

fMRI study, Just et al. (2004) found reductions in connectivity strengths between higher-level 

association areas engaged during a sentence comprehension task in high-functioning 

individuals with ASD. Although their analyses found reduced connectivity in relatively few of the 

many pairwise connections examined, the authors proposed that the underdevelopment of 

integrative circuitry as indexed by widespread anterior-posterior underconnectivity could be 

responsible for all higher-level cognitive deficits in autism. Further studies in individuals with 

ASD have supported this claim, reporting evidence of underconnectivity between task activated 

regions, particularly for fronto-parietal connections, during tasks involving working memory 

(Koshino et al. 2005), visuomotor coordination (Villalobos et al. 2005), visual imagery (Kana et 
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al. 2006), executive functioning (Just et al. 2007), response inhibition (Kana et al. 2007), face 

processing (Kleinhans et al. 2008), and theory of mind (Kana et al. 2009).  

Recent imaging studies performed in the absence of an overt cognitive task (i.e., during 

“resting-state”) have established that synchronized, low frequency (<0.1 Hz) spontaneous 

fluctuations in neuronal activity are present across different brain regions (Biswal et al. 1995; 

see Fox and Raichle 2007, for review). These findings suggest that the brain is intrinsically 

organized into several large-scale interactive functional networks during both rest and task 

conditions (Calhoun et al. 2008, Smith et al. 2009). A growing number of resting-state studies 

examining the default mode network (DMN; Raichle et al. 2001) have reported reduced 

connectivity in this network in individuals with ASD (Cherkassky et al. 2006; Kennedy and 

Courchesne 2008; Monk et al. 2009; Weng et al. 2010; Assaf et al. 2010). Dysfunction of the 

DMN in ASD is consistent with the social deficits observed in ASD and the DMN’s known role in 

social cognition (e.g. Iacoboni et al. 2004, Andrews-Hanna et al. 2010). However, the DMN 

does not function independently of other systems and is unlikely to be the only affected system 

in autism given the array of both social and cognitive impairments as well as non-DMN brain 

regions implicated in the disorder. 

Although there have been consistent reports of reduced fronto-parietal connectivity in 

ASD during both rest and task (e.g. Just et al. 2007; Kennedy and Courshesne 2008), other 

studies have found evidence of overconnectivity within thalamo-cortical (Mizuno et al. 2006) and 

striato-cortical circuits (Turner et al. 2006; Di Martino et al. 2010), as well as greater cortico-

cortical connectivity (Noonan et al. 2009; Shih et al. 2010). Thus, in contrast with a general 

underconnectivity theory, it has been argued that underconnectivity is likely not a general 

feature of the autistic brain; rather, it may depend on the specific regions and networks being 

examined as well as the networks engaged by the task being performed. 
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 In parallel with reports of altered functional connectivity in autism, investigators have 

begun to map the typical development of functional brain networks (see Uddin et al. 2010, for 

review). Using a variety of methodological approaches, several groups have reported that 

during development, functional brain networks show increases in long-range functional 

connectivity among nodes of a given network (i.e. functional integration) as well as reduced 

local (i.e. intralobar) positive connectivity among nodes in different networks (i.e. functional 

segregation; Fair et al. 2007a, 2008, 2009; Kelly et al. 2009; Supekar et al. 2009; Stevens et al. 

2009; Dosenbach et al. 2010). Studies in neurotypical individuals have also highlighted the role 

of functional segregation as measured through anticorrelations between distinct brain networks 

(Fox et al. 2005, 2009; Fransson et al. 2005; Kelly et al. 2008; Stevens et al. 2009). Most 

prominently, the internally-directed default mode or “task negative” network has been shown to 

display an anticorrelated relationship with the externally-directed “task positive” or attentional 

control network. Increased anticorrelations (i.e., reduced connectivity), interpreted as increasing 

segregation, between these networks have been observed across typical development (Stevens 

et al. 2009) and in adults who displayed superior behavioral performance (Kelly et al. 2008; 

Hampson et al. 2010). Despite recent controversy regarding the proper interpretation of 

anticorrelations (Murphy et al 2009, Fox et al. 2009; see a discussion of this issue in 

Supplemental Materials) it has been suggested that investigating functional segregation, as 

measured by antagonistic relationships between large-scale networks, such as the default mode 

and task positive networks, may provide a better understanding of the neural basis of social 

communication deficits in ASD than functional integration alone (Uddin and Menon 2009). 

However, this hypothesis has largely been unexplored (Kennedy and Courchesne, 2008). 

Although resting state studies have become the standard way to probe functional 

connectivity, examining connectivity of networks engaged during cognitive tasks should provide 

information about network functioning that is complementary to resting state and task activation 
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studies (Stevens 2009). In the present study, we sought to examine functional integration and 

segregation of large-scale brain networks involved in social and emotional information 

processing in children and adolescents with ASD by performing whole brain connectivity 

analyses of fMRI data acquired during an emotion processing task using seed regions that have 

previously been reported to display aberrant activation during socially relevant tasks.  

It is well established that the amygdala plays a central role in emotion processing 

(LeDoux 2000). Findings of dysfunctional emotional face processing (Baron-Cohen et al. 2000, 

Adolphs et al. 2001), as well as diminished amygdala functional activation (Baron-Cohen et al. 

1999; Critchley et al. 2000) led to an early theory of amygdala dysfunction in autism (Baron-

Cohen et al. 2000). Although initial studies documented amygdala hypoactivation, later 

functional studies have found amygdala hyperactivation (Dalton et al. 2005; Monk et al. 2010), 

which was related to eye fixation patterns (Dalton et al. 2005). Additional studies have 

documented structural abnormalities (Munson et al. 2006, Nacewicz et al. 2006; Schumann et 

al. 2009) as well as reduced functional connectivity between the amygdala and both the fusiform 

face area (Kleinhans et al. 2008) and the anterior insula (Ebisch et al. 2010). Thus, further 

characterization of amygdala connectivity may be useful for understanding emotion processing 

deficits in ASD.  

In addition to the amygdala’s role in emotion processing, it is known that higher order 

networks, including the mirror neuron system (MNS) and the salience network, are involved in 

social and emotional information processing. The salience or cingulo-opercular network (Seeley 

et al. 2007; Dosenbach et al. 2007) is a task positive network that includes the anterior cingulate 

and anterior insula, and has been described as being involved in regulating behavior through 

monitoring homeostatic and sensory stimuli (Craig 2009; Seeley et al. 2007). The MNS, which 

includes the inferior frontal gyrus, pars opercularis (IFGpo) and inferior parietal lobule (IPL), is 

believed to allow for simulation of shared motor representations between self and others (see 
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Rizzolati and Fabbri-Destro 2010, for review). Consistent with the hypothesized role of the 

salience network, the MNS has been hypothesized to connect higher-level association areas 

with the limbic system (including the amygdala) through the anterior insula (Jabbi et al. 2008), 

allowing for an intuitive understanding of one’s own and others’ emotions (Carr et al. 2003; 

Leslie et al. 2004). Measures of empathetic behavior and interpersonal competence have been 

found to positively correlate with activity in the IFGpo, anterior insula and amygdala (Pfeifer et 

al. 2008). Numerous studies have reported structural and functional abnormalities in these 

higher order networks in individuals with ASD (e.g., Villalobos et al. 2005; Dapretto et al. 2006; 

Hadjikani et al. 2006; Hadjikani et al. 2007; Ebisch et al. 2010). 

Given the known roles of the amygdala and IFGpo in social and emotional information 

processing, as well as consistent reports of dysfunction of these regions and associated 

systems in ASD (Di Martino et al. 2009), we used these structures as seeds for whole-brain 

connectivity analyses in children and adolescents with ASD. We chose to examine connectivity 

during an emotional face processing task known to engage these networks in order to further 

tap into the functioning of this circuitry. We predicted that children and adolescents with ASD 

would show reduced long-range functional connectivity/integration of networks examined using 

these seed regions. We also predicted that there would be reduced segregation between 

distinct functional networks in individuals with ASD as measured by increased local connectivity 

as well as reduced anticorrelations.  

 

Materials and Methods 

Participants 

High-functioning children and adolescents with autism spectrum disorders and typically 

developing (TD) children and adolescents were recruited through referrals from the UCLA 

Autism Evaluation Clinic and/or through flyers posted throughout the greater Los Angeles area. 
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Six subjects (20% of the total sample) with ASD and three TD subjects (10% of the total 

sample) were scanned but not included in analyses due to excessive head motion (>3mm 

maximum relative head motion and/or no activation in primary visual cortices). The final 

matched groups consisted of 23 high-functioning children and adolescents (two females) with 

ASD and 25 TD children and adolescents (three females). The groups did not differ significantly 

in age, head motion, Full Scale IQ, Verbal IQ, or Performance IQ as assessed by the Wechsler 

Abbreviated Scale of Intelligence - Revised (Wechsler et al. 1999) or Wechsler Intelligence 

Scale for Children - Third Edition (see Table 1.1 for sample characteristics). Although the 

groups did not significantly differ by age or IQ, these variables were included as covariates in 

additional between-group analyses to examine how they may have affected our results; these 

analyses showed that covarying for age or IQ did not alter any of the observed between-group 

differences, thus these results are not reported. For the ASD group, prior clinical diagnosis of 

autism or autism spectrum disorder was confirmed by the Autism Diagnostic Observation Scale 

(ADOS-G) and/or Autism Diagnosis Interview (ADI-R; Lord et al. 2000; Lord et al. 1994). 

Nineteen of the children with ASD met criteria for autism as defined by the ADI-R and all 

children in the ASD group met criteria for autism or autism spectrum disorder as defined by the 

ADOS. Seventeen participants with ASD and all TD participants reported no current medication 

use. For the remaining six participants with ASD, medication use was unknown. All participants 

reported no history of neurologic disorders (including head injury, stroke, tumor, seizures), 

psychiatric disorders (e.g. schizophrenia, attention-deficit/hyperactivity disorder) or other brain 

abnormalities. Subjects and parents provided written consent according to the guidelines 

specified by the Institutional Review Board at the University of California, Los Angeles. 

Experimental Design 

Participants underwent a rapid event-related fMRI paradigm in which faces with different 

emotional expressions were displayed. Subjects were asked to “just look at the expression on 
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each face.” The experimental design was the same as the observation run used in our previous 

studies in children with ASD (Dapretto et al. 2006) and typically developing children (Pfeifer et 

al. 2008; Pfeifer et al. 2011). Ten of the children with ASD and five of the TD children from 

Dapretto et al. (2006) overlapped with subjects used in this study. Subjects were presented with 

80-full color faces from the NimStim facial expressions stimulus set (Tottenham et al. 2009). 

The scan consisted of 96 events whereby each emotion (neutral, happy, sad, fearful and angry) 

as well fixation crosses (null events) were displayed for 2s with an average inter-trial interval of 

3s. The fixation crosses were displayed at eye level in order to direct attention to the eyes as 

this has previously been shown to increase fixation to the eyes and normalize activity in both 

amygdala and fusiform gyrus (e.g., Hadjikhani et al. 2004). The order of presentation of all 

events was optimized and jittered (jitter ranging from 500ms to 1500ms in 125ms increments) to 

maximize contrast detection efficiency (Wager and Nichols 2003).  

The patterns of regional activity observed in both TD and ASD children (Figure 1.2) 

closely resembled those previously obtained in prior studies using the same activation paradigm 

(Dapretto et al. 2006; Pfeifer et al. 2008; Pfeifer et al. 2011), including robust activity in visual 

cortices, amygdala, IFG, and hippocampus.  

Data Acquisition 

The MRI data were acquired on a Siemens 3.0 T Allegra MRI scanner. Stimuli were 

presented through a computer connected to a high-resolution magnet-compatible audio and 

goggle system (Resonance Technology, Inc). A 2D spin-echo scout localizing scan 

(TR=4000ms, TE=40ms, matrix size 256 by 256, 4mm thick, 1mm gap) was acquired and used 

for graphic prescription. A matched bandwidth T2-weighted high-resolution echo planar scan 

(TR=5000ms, TE=33ms, matrix size 128 by 128, FoV=20cm, 36 slices, yielding an in plane 

voxel dimension of 1.5x1.5mm, with 4mm thick slices) was acquired co-planar to the functional 

scan in order to ensure identical distortion characteristics to the fMRI scan. The functional 
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BOLD MRI scan lasted 4min 54s (TR=3000ms, TE=28ms, matrix size 128 by 128, FoV=20cm, 

36 slices yielding an in plane voxel dimension of 3x3mm with 4mm thick axial slices).  

Functional Connectivity MRI Data Analysis 

Data were analyzed using FSL version 4.1.4 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl; Smith et al. 2004) and AFNI (Analysis of Functional NeuroImages; Cox 

1996). Structural and functional images were skull-stripped using AFNI (3dskullstrip and 

3dautomask, respectively). Functional volumes were motion-corrected to the average functional 

volume with MCFLIRT using a normalized correlation ratio cost function and sinc interpolation 

(Jenkinson et al. 2002). Translations and rotations in the x, y, and z dimensions were calculated 

from volume to volume then collapsed into mean absolute (compared to the average functional 

volume) and relative (compared to the previous volume) displacements. Images were spatially 

smoothed (FWHM 5mm) and temporally high pass filtered (t > 0.01 Hz). 

Time-series statistical analysis was carried out according to the general linear model 

using FEAT (FMRI Expert Analysis Tool), Version 5.98. For each subject, we first regressed out 

nuisance covariates, including 6 rigid body motion parameters and average white matter (WM), 

cerebrospinal fluid (CSF) and global time-series. The WM and CSF time-series reflected signal 

from subject-specific regions of interest (ROIs) created using FAST (FSL’s Automatic 

Segmentation Tool). The residuals from the previous step were aligned to high-resolution 

coplanar images via an affine transformation with 6 degrees of freedom and then aligned to the 

standard Montreal Neurological Institute (MNI) average of 152 brains using an affine 

transformation with 12 degrees of freedom using FMRIB’s Linear Image Registration Tool 

(FLIRT). In order to examine whole brain connectivity with nodes of interest, we used 

anatomically-based ROIs from the Harvard-Oxford probabilistic atlas (thresholded at 25% 

probability): the bilateral amygdala (Figure 1.1 top panel, A) and the right pars opercularis, 

inferior frontal gyrus (rIFGpo, BA 44; Figure 1.1 bottom panel, A). We chose to focus on the 
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right IFGpo given that previous studies on the processing of facial affect reported greater activity 

and/or more robust group differences in this region (Dapretto et al. 2006; Hadjikhani et al. 2007; 

Uddin et al. 2008). We extracted time-series from our ROIs for each subject and correlated 

them with every voxel in the brain to generate connectivity maps for each subject and ROI. 

Individual correlation maps were converted into z-statistic maps using Fischer’s r to z 

transformation and then combined at the group level using the ordinary least squares method. 

For a complete list of anatomical regions positively and negatively connected to the seeds, as 

well as the peak voxel in MNI coordinates and Z-statistics, see Table 1.2 and Table 1.3.  

Analyses Without Global Signal Regression and With Task Regression 

To address the methodological concern related to anticorrelations and using global 

signal regression as a preprocessing step (see Murphy et al. 2009; Jones et al. 2010), we 

performed all analyses with and without global signal regression. Each of the major patterns of 

between-group differences was also present when global signal regression was not used (see 

1.3, 1.4 and Supplemental Materials for a more thorough discussion of the analysis without 

global signal regression).  

Additionally, we wanted to examine whether we could isolate connectivity differences 

that were task-dependent versus those that were due to underlying intrinsic connectivity. In 

order to do this, we ran all analyses using residuals from a general linear model (GLM) that 

included task stimulus timings for each type of emotional expression convolved with 4 basis 

functions generated with FLOBS (FSL’s Linear Optimal Basis Function) and by applying a low 

pass filter (t<0.1 Hz; Fair et al. 2007b; Jones et al. 2010). Again, we did not observe substantial 

qualitative differences with this approach (see Figure 1.5), which may reflect the fact that this 

method does not completely remove task effects and/or that measured connectivity may largely 

be due to intrinsic connectivity (see Supplemental Materials). Given that the results may be 

partially driven by the task regardless of this approach, we present all results without task 
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regression or low pass filtering (and global signal regression) and discuss group differences as 

a combination of task-related and intrinsic connectivity.  

 Thresholding and Visualization of Segregated Networks 

All within- and between-group connectivity maps were thresholded at Z > 2.3 (p < 0.01) 

and corrected for multiple comparisons at the cluster level (p < 0.05) using Gaussian random 

field theory. For between-group comparisons of connectivity maps, ASD>TD for positive 

connectivity is the same as TD>ASD for negative connectivity. Therefore, in order to identify 

and interpret four potential types of group differences (TD>ASD for regions of positive 

connectivity, TD>ASD for regions of negative connectivity, ASD>TD for regions of positive 

connectivity, ASD>TD for regions of negative connectivity), we masked the group difference 

maps by the respective TD and ASD within-group positive and negative connectivity maps.  

 

Results 

 

Bilateral Amygdala Seed  

Within-Group Positive Connectivity 

In the TD group, activity in bilateral amygdala was positively correlated with activity in 

portions of the temporal lobe including the hippocampus, inferior temporal gyrus and fusiform 

gyrus as well as basal ganglia and thalamus (Figure 1.1 top panel, B; Table 1.2). Bilateral 

amygdala activity was also correlated with activity in frontal regions including the orbitofrontal 

gyrus and IFG pars orbitalis, as well as occipital regions including the lingual gyrus, occipital 

poles and MT/V5 complex (Figure 1.1 top panel, B; Table 1.2). For the ASD group, activity in 

bilateral amygdala was positively correlated with a similar network as the TD group except for 

the bilateral occipital poles and left fusiform gyrus (Figure 1.1 top panel, C; Table 1.2). The 

ASD group also displayed positive connectivity between the bilateral amygdala and the left 
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middle temporal gyrus (Figure 1.1 top panel, C; Table 1.2). 

Within-Group Negative Connectivity 

In the TD group, activity in bilateral amygdala was negatively correlated with posterior 

regions including the precuneus/posterior cingulate, inferior and superior parietal lobules and 

frontal regions including dorsolateral prefrontal frontal cortex (DLPFC), and dorsal ACC (Figure 

1.1 top panel, B; Table 1.2). For the ASD group, activity in the bilateral amygdala was 

negatively correlated with a less extensive network that included the same regions as the TD 

group except the DLPFC and dorsal ACC (Figure 1.1 top panel, C; Table 1.2).  

Between-Group Analyses 

The TD group showed significantly more positive connectivity with bilateral MT/V5 

complex and inferior temporal/fusiform cortex (red circles in Figure 1.1 top panel, D; Table 1.2). 

The TD group also showed greater negative connectivity with DLPFC and dorsal ACC (blue 

circles in Figure 1.1 top panel, D; Table 1.2). Relative to the TD group, the ASD group did not 

show stronger positive or negative connectivity with any regions. 

Right Inferior Frontal Gyrus, Pars Opercularis (rIFGpo) Seed  

Within-Group Positive Connectivity 

In the TD group, activity in the rIFGpo was positively correlated with activity in other 

frontal regions, including the precentral gyrus, medial superior frontal gyrus, anterior insula, and 

anterior cingulate cortex (ACC), as well as with activity in the inferior and superior parietal 

lobules (Figure 1.1 bottom panel, B; Table 1.3). Activity in the rIFGpo was also correlated with 

activity in the caudate and putamen. In the ASD group, activity in the rIFGpo was positively 

correlated with a similar network as the TD group that did not include the left inferior and 

superior parietal lobules (Figure 1.1 bottom panel, C; Table 1.3). In the ASD group, activity in 

the rIFGpo was also positively correlated with activity in right lateral frontal regions as well as 

the right nucleus accumbens and thalamus (Figure 1.1 bottom panel, C; Table 1.3).  
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Within-Group Negative Connectivity 

In the TD group, activity in the rIFGpo was negatively correlated with activity in regions 

including the ventral medial prefrontal cortex (VMPFC), precuneus/posterior cingulate, left 

angular gyrus, left middle temporal gyrus and left parahippocampal gyrus (Figure 1.1 bottom 

panel, B; Table 1.2). For the ASD group, activity in rIFGpo was negatively correlated with a 

similar but less extensive network of regions that did not include the VMPFC (Figure 1.1 bottom 

panel, C; Table 1.2).  

Between-Group Analyses 

The TD group showed significantly more positive connectivity with the left inferior and 

superior parietal lobules (red circles in Figure 1.1 bottom panel, D; Table 1.3). The ASD group 

showed significantly more positive connectivity with right frontal regions and right nucleus 

accumbens (purple circles in Figure 1.1 bottom panel, D; Table 1.3). The TD group showed 

greater negative connectivity with regions in the VMPFC (blue circles in Figure 1.1 bottom 

panel, D; Table 1.3). There were no regions showing greater negative connectivity in the ASD 

group. 

 

Discussion 

Here we examined the functional organization of brain networks in children and 

adolescents with ASD, as compared with matched controls, during a passive emotional face 

processing task. We used the bilateral amygdala and the right pars opercularis as seed regions 

for whole-brain connectivity analyses since these areas have been implicated in atypical 

socioemotional and face processing in ASD. Overall, the pattern of altered connectivity we 

observed in ASD for both seeds suggest that ASD is characterized by reduced functional 

integration and segregation of large-scale brain networks. Specifically, the ASD group showed 

reduced integration between amygdala and secondary visual areas and between rIFGpo and 
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parietal cortex as well as increased positive connectivity between rIFGpo and several regions in 

right frontal cortex. Additionally, the ASD group displayed weaker negative correlations (i.e. 

reduced functional segregation) between amygdala and dorsal anterior cingulate/dorsolateral 

prefrontal cortex as well as between rIFGpo and ventromedial prefrontal cortex.  

We interpret these findings in accordance with recent studies that have begun to chart 

the typical maturation of functional brain networks across development as well as in terms of the 

known functional roles of the regions/networks positively and negatively connected with each of 

our seed regions. Additionally, given that group differences may be due to a combination of 

intrinsic and task-driven connectivity, we interpret our results in the context of previous studies 

that have carefully characterized differences in intrinsic connectivity as well as differences in 

task-related regional activation and connectivity in ASD during emotional face processing. 

Bilateral Amygdala Seed 

Positive Connectivity 

Consistent with prior reports (Pezawas et al. 2005; Stein et al. 2007; Roy et al. 2009), 

using the bilateral amygdala as a seed region for a whole-brain functional connectivity analysis, 

we found that, in typically-developing children, the bilateral amygdala was positively connected 

to a network of regions which included the hippocampus/parahippocampal gyrus, basal ganglia, 

thalamus, fusiform gyrus, orbitofrontal gyrus and ventral ACC (Figure 1.1 top panel, B). In the 

TD group, the amygdala was also positively connected with visual regions including the lingual 

gyrus, occipital poles and V5/MT complex. Although the first set of regions listed above was 

functionally connected with the amygdala in a resting state study of neurotypical adults (Roy et 

al. 2009), visual regions reported here were not correlated with amygdala activity in that study 

(in fact, they were found to be mostly anticorrelated with amygdala activity). This difference may 

reflect co-activation between the amygdala and visual areas induced by the task, considering 
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that these regions are strongly engaged by the emotional faces presented in this study 

(Dapretto et al. 2006; Pfeifer et al. 2008; see Supplemental Materials).  

Children with ASD displayed connectivity between the bilateral amygdala and each of 

the same regions as the TD group, except that they exhibited reduced connectivity with 

secondary visual areas including bilateral V5/MT complex and the right fusiform gyrus (see red 

circles in Figure 1.1 top panel, D). Reduced connectivity between secondary visual areas and 

amygdala in the ASD group is consistent with reduced connectivity between fusiform face area 

and amygdala found by Kleinhans and colleagues (Kleinhans et al. 2008). In previous face 

processing activation studies, hypoactivation of the amygdala (Critchley et al. 2000; Wang et al. 

2004;) as well as fusiform gyrus (e.g. Schultz et al. 2000; Pierce et al. 2001) have been 

consistently reported. However, amygdala and fusiform hypoactivation have been shown to be 

highly dependent on task demands (Hadjikhani et al. 2004; Wang et al. 2004), familiarity (Pierce 

et al. 2004), or time fixating on eyes (Dalton et al. 2005). In the present study (Figure 1.2), 

typically-developing children showed heightened activity in the fusiform gyrus and amygdala; 

however, post hoc analyses found no correlations between task-related activation in either the 

fusiform gyrus or amygdala and the level of fusiform-amgydala connectivity. Furthermore, 

reduced amygdala-V5/MT/fusiform connectivity was still observed in analyses where task-

related activity was regressed out (see Supplemental Materials, Figure 1.5). Thus, it is 

unlikely that between-group differences in task-related activity is driving the observed 

connectivity effect. Reduced connectivity between amygdala and secondary visual areas fits 

well with the general underconnectivity theory (Just et al. 2004) and highlights a pattern of 

reduced functional integration in a distributed network involved in processing facial affect.  

Negative Connectivity 

A network of regions was found to be negatively correlated (i.e. segregated) with activity 

in the amygdala. In the TD group, this network largely overlapped with regions previously 
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reported to be anticorrelated with activity in the amygdala (Pezawas et al. 2005; Stein et al. 

2007; Roy et al. 2009; Figure 1.1 top panel, B) including the precuneus/posterior cingulate, 

dorsal ACC, and DLPFC. Frontal regions including the dorsal ACC and DLPFC have been 

associated with cognitive processes (e.g., reasoning and rationalizing) that are deemed 

important for regulating emotional reactions stemming from the amygdala and limbic system 

(e.g. Hariri et al. 2000, 2003; Phillips et al. 2003). In a structural equation modeling study 

performed during an emotion processing task, the precuneus/anterior cingulate and dorsal ACC 

were shown to have a negative influence on amygdala activity (Stein et al. 2007). Reduced 

negative connectivity between these frontal regions and the amygdala has been found in 

affective disorders such as major depression and bipolar disorder (Almeida et al. 2009; 

Chepenik et al. 2010).  

Interestingly, while children with ASD did show a similar, although relatively weaker, 

network of regions anticorrelated with amygdala activity, they did not show anticorrelated activity 

between the bilateral amygdala and the dorsal ACC and DLPFC (see blue circles in Figure 1.1 

top panel, D). This between-group difference remained in analyses conducted without global 

signal regression (see Supplemental Materials, Figures 1.3 and 1.4). Although stronger 

negative connectivity for the typically-developing group could also be interpreted as stronger 

positive connectivity for the ASD group, given the previous literature on frontal regulation of the 

limbic system (e.g., Hariri et al. 2003; Stein et al 2007), we take this difference to more likely 

reflect stronger fronto-limbic decoupling in typically-developing children. Future studies using 

methods better suited for capturing regulatory interactions (such as psychophysiological 

interaction, PPI) may be able to more definitively address these competing accounts.  

Right Pars Opercularis (rIFGpo) Seed  

Positive Connectivity 
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Using the rIFGpo as a seed region of interest for whole-brain functional connectivity, we 

found that, in the TD group, the rIFGpo was positively connected to a network of regions largely 

resembling the task positive network that has been associated with externally directed, 

attentionally demanding tasks (Fox et al. 2005; Figure 1.1 bottom panel, B). This network 

includes the precentral gyrus, anterior insula, anterior cingulate, medial superior frontal gyrus, 

inferior/superior parietal lobule and lateral occipital gyrus. Although a finer classification of the 

task positive network might place the rIFGpo into the salience/cingulo-opercular subnetwork, as 

opposed to the fronto-parietal executive subnetwork (Seeley et al. 2007; Dosenbach et al. 

2007), our seed-based approach, using the rIFGpo as a seed region, generated connectivity 

maps resembling the entire task positive network.  

While children with ASD also displayed connectivity between the rIFGpo and a similar 

network as observed in the TD group, there was notably decreased connectivity with regions 

increasingly distant from the seed (Figure 1.1 bottom panel, C). Group differences were 

significant for regions in the contralateral parietal lobe, which included the inferior and superior 

parietal lobules (see red circles in Figure 1.1 bottom panel, D). This finding is consistent with 

multiple task-based studies (e.g. Just et al. 2004; Koshino et al. 2005; Kana et al. 2007) which 

reported reduced connectivity between frontal and parietal regions in individuals with ASD, 

supporting the underconnectivity theory (e.g. Just et al. 2004, 2007) as well as dysfunction of 

the canonical MNS (Nishitani et al. 2004; Dapretto et al. 2006; Oberman and Ramachandran 

2007). Reduced connectivity along this anterior-posterior axis is also strongly associated with an 

immature pattern of functional integration in neurotypical individuals (Fair et al. 2007a, 2008, 

2009; Kelly et al. 2009; Dosenbach et al. 2010). Given that the IFGpo is part of the functionally 

significant cingulo-opercular/salience network (Dosenbach et al. 2007; Seeley et al. 2007), our 

findings provide support for the notion that this network may be a hub of dysfunction in autism 
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(Uddin and Menon 2009; Ebisch et al., 2010) and, more specifically, that altered connectivity 

within this network may be related to socio-emotional functioning. 

The ASD group showed a pattern of greater intralobar or ‘local’ connectivity with frontal 

regions relatively proximal to the seed that included right superior frontal cortex and right lateral 

orbital cortex (see purple circles in Figure 1.1 bottom panel, D). Greater connectivity between 

the rIFGpo and other right frontal regions fits well with theoretical accounts of greater local 

connectivity in ASD (Belmonte et al. 2004; Courchesne and Pierce 2005; Geschwind and Levitt 

2007), as well as empirical findings of cortico-cortical overconnectivity in adults with ASD 

(Welchew et al. 2005; Noonan et al. 2009; Shih et al. 2010). Consistent with our findings, Shih 

et al. (2010) examined connectivity in the imitation network (Iacoboni et al. 1999; Nishitani et al. 

2004) and found aberrantly stronger connectivity between IFGpo and superior frontal cortex. 

They discussed aberrantly increased cortico-cortical connectivity as either reflecting a 

compensatory mechanism in ASD or being related to early brain growth anomalies that lead to 

aberrant segregation of functional networks. In studies of typical development, increased 

functional segregation between networks as measured by reduced local connectivity has been 

consistently found in adults compared to children (e.g. Kelly et al. 2008; Fair et al. 2009; 

Dosenbach et al. 2010). Moreover, weakening connections between nodes of different networks 

were found to be twice as powerful at predicting brain maturity than increasing functional 

integration within networks (Dosenbach et al. 2010). 

In addition to greater local frontal connectivity, the ASD group also showed greater 

connectivity than the TD group between the rIFGpo and right nucleus accumbens (see purple 

circle in Figure 1.1 bottom panel, D). Greater striato-cortical (Turner et al. 2006; Di Martino et 

al. 2010) and thalamo-cortical (Mizuno et al. 2006; Di Martino et al. 2010) connectivity have 

previously been found in adults with ASD. Thus, greater cortico-subcortical connectivity appears 

to be a robust finding in ASD that does not fit with a pattern of local/intralobar overconnectivity. 
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Turner et al. (2006) hypothesized that increased connectivity in basal ganglia-cortical circuits in 

ASD is related to executive impairments and may also reflect a compensatory mechanism 

associated with repetitive and stereotypic behaviors. Mizuno et al. (2006) speculated that 

increased thalamo-cortical connectivity in ASD might be related to increased arousal and 

sensory hypersensitivity as well as reduced sensory gating, although there is little evidence 

directly relating these alterations to specific ASD symptomatology. Interestingly, a recent 

developmental connectivity study found that subcortical-cortical connectivity is stronger in 

children compared to adults (Supekar et al. 2009). Thus, a parsimonious, although not mutually 

exclusive, explanation for each of the major patterns of aberrant connectivity reported in the 

literature, including the present study, is that they may altogether reflect the relatively 

“immature” integration and segregation of functional brain networks in ASD. While increased 

subcortico-cortical connectivity has been found in typical children compared with adults, it is still 

unclear to what extent increased subcortical-cortical connectivity in ASD may reflect immature 

vs. aberrant patterns of connectivity (Di Martino et al. 2010). 

Negative Connectivity 

A network of regions that closely resembles the task negative or default mode network 

(Raichle et al. 2001; Greicius et al. 2003) was found to be anticorrelated (i.e. functionally 

segregated) with the rIFGpo. In typically-developing children, the network of regions 

anticorrelated with activity in the rIFGpo included the precuneus/posterior cingulate, left angular 

gyrus, left parahippocampal gyrus, and VMPFC. The DMN and task positive network have been 

shown to consistently display an anticorrelated relationship (Fox et al. 2005, 2009; Fransson et 

al. 2005; Chang & Glover 2010) and despite the controversy regarding global signal regression 

and anticorrelated networks (Murphy et al 2009; Fox et al. 2009; see Supplemental Materials) 

recent work has suggested that the degree of anticorrelation between these networks is 

biologically meaningful (Kelly et al. 2008; Whitfield-Gabrieli et al. 2009; Hampson et al, 2010).  
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Children with ASD showed a similar, albeit weaker, network of regions anticorrelated 

with the right IFGpo, which included the posterior components of the DMN. In particular, the 

ASD group lacked a significant negative relationship between activity in the rIFGpo and VMPFC 

(see blue circles in Figure 1.1 bottom panel, D). Reduced anticorrelation (or increased positive 

correlation) between the task positive network and the DMN is consistent with reduced 

functional segregation between these two networks. In a developmental study, Stevens et al. 

(2009) found reductions in positive interactions between a task-positive executive control 

network and the default mode network in children as compared to adults. The authors 

suggested that increased segregation between these two networks might allow for more flexible 

processing as a function of development. Therefore, reduced segregation between these 

networks found here in ASD is also consistent with the notion that ASD is characterized by an 

“immature” pattern of functional segregation between major cognitive networks. It is interesting 

to note that Iacoboni (2006) and Uddin et al. (2007) have previously discussed how the MNS 

and DMN are “two sides of the same coin,” whereby the MNS is involved with simulation of 

physical and external aspects of self (and others) whereas the DMN is related to more internal 

and higher level mental-state attribution aspects of self (and others). Reduced segregation 

between these systems reported here in ASD and during typical development (Stevens et al., 

2009) may therefore reflect immature development of one’s internal and external 

representations of self and others. 

Our finding that the ASD group showed an anticorrelated relationship between the 

rIFGpo and the posterior portion of the DMN but not the VMPFC also suggests that the DMN 

itself is not as well connected in the ASD group. In fact, post hoc analyses (not shown) that 

used the VMPFC as an additional seed region confirmed that there was reduced functional 

integration between this frontal DMN region and the posterior parietal components of the DMN 

in our sample. In line with recent resting state studies (Kennedy and Courchesne 2008; Monk et 
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al. 2009; Weng et al. 2010; Assaf 2010), our results provide additional evidence of dysfunction 

within the DMN in ASD and further suggest that the frontal cortex may be the most immature 

link of this network in ASD. 

Conclusions and Future Directions   

By using a seed-based connectivity approach to examine communication between brain 

regions implicated in the processing of facial affect, we found several patterns of altered 

connectivity suggesting that brain networks in ASD are characterized by reduced functional 

integration and segregation. To our knowledge, this is the first study to report both decreased 

long-range connectivity and reduced functional segregation as indexed by increased local 

connectivity and reduced anticorrelations, respectively. Our findings fit well with theoretical 

accounts of altered connectivity in ASD and provide a framework whereby connectivity 

disturbances in ASD can be understood in terms of multiple interacting systems across 

development. By carefully considering methodological concerns and characterizing connectivity 

both in terms of integration and segregation, our study may help explain previously conflicting 

reports of decreased (e.g., Just et al. 2004; Weng et al. 2010) but also increased connectivity in 

autism (e.g., Noonan et al. 2009; Shih et al. 2010). More generally, our findings suggest that 

measuring connectivity of neural systems – during task performance and/or resting state – may 

provide a more sensitive marker of abnormalities in brain function in autism than focusing 

exclusively on regional activation patterns. 

Reduced functional integration and segregation of cortico-cortical and cortico-subcortical 

networks in ASD are perhaps not surprising given that ASD is a neurodevelopmental disorder 

associated with reduced engagement in social interactions. However, the extent to which 

reduced functional integration and segregation may simply reflect immature or delayed 

connectivity, as opposed to, altered connectivity that is specific to autism and/or related to 

compensatory mechanisms, remains to be determined. A recent basal ganglia resting state 
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study in ASD found that although some increased cortico-subcortical connectivity in ASD 

appeared “immature”, most of the altered connectivity appeared to reflect “developmental 

derangement” or aberrantly high subcortico-cortical connectivity (Di Martino et al. 2010). Future 

experiments, including longitudinal studies, should also focus on disentangling how a history of 

altered engagement with the environment may affect connectivity versus how early brain 

abnormalities may directly lead to altered connectivity patterns.  

A more careful examination of how cortico-cortical and cortico-subcortical connectivity 

changes across typical development as compared to ASD is also needed. The majority of 

previous connectivity studies in ASD were performed with adults with ASD, whereas our sample 

consisted of children and adolescents. A greater reduction in connectivity for adolescents with 

ASD as compared to adults with ASD has recently been observed in the DMN (Monk et al. 

2009; Weng et al. 2010), suggesting that the development of intrinsic connectivity networks 

shows a more protracted development in ASD and that differences may become subtler by 

adulthood. Future studies should more carefully investigate this possibility as well as focus on 

typical and atypical development in even younger populations, given that measures of 

connectivity can easily be acquired during resting state scans with little concern about adequate 

task performance. Importantly, resting state connectivity could also be examined in lower 

functioning individuals, a highly understudied population in the existing neuroimaging literature. 

One limitation of the present study, as well as of prior work, is the difficulty of teasing 

apart the relative contributions of task-related and intrinsic connectivity in determining the 

observed between-group differences. Although we attempted to control for attention and 

alertness, we cannot completely rule out the possibility that subtle differences in these 

behavioral variables may have contributed to the connectivity differences observed between 

typically-developing children and children with ASD. It should also be noted that, although 

resting state studies minimize task-induced connectivity, differences in covert cognition might 
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partially drive group differences (Kennedy and Courchesne 2008). Future studies that directly 

compare measures of connectivity acquired during resting state versus task performance should 

prove useful in this respect. Furthermore, the extent to which aberrant functional connectivity in 

ASD is related to underlying cortical development such as synaptic pruning, myelination or other 

processes remains largely unknown. Despite growing evidence that predisposing genetic and 

environmental factors may lead to altered neuronal migration and synaptic formation (Betancour 

et al. 2009), dysfunctional microcircuitry (Casanova et al. 2002), early brain overgrowth 

(Courchesne et al. 2003) and disordered structural connections (e.g. Herbert et al. 2004; 

Sundaram et al. 2008), little work thus far has directly linked any of these findings with altered 

functional connectivity in ASD (Scott-Van Zeeland et al. 2010). Finally, and perhaps most 

importantly, future studies in this line of research should also strive to be directly relevant to 

clinical outcomes (Fox and Greicius 2010). For example, characterizing functional brain 

networks in individuals at risk for ASD may eventually be used for earlier diagnosis or for 

developing individualized behavioral and pharmacological interventions. 

 

Supplemental Materials 

Given the somewhat conflicting findings in the autism connectivity literature, we paid 

careful attention to methodological concerns including global signal regression (Murphy et al. 

2009; Jones et al. 2010) and task regression (Fair et al. 2007; Jones et al. 2010) by analyzing 

the data with and without these options in order to determine how they affected the overall 

patterns of results.  

Global Signal Regression 

Physiological noise, such as cardiac and respiratory signals, can confound measures of 

functional connectivity (Birn et al. 2006). Thus, many groups have included the average signal 
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of the whole brain as a nuisance regressor in order to reduce the effects of non-neuronal 

fluctuations. This preprocessing step is not commonly used for task-related fMRI because it has 

been shown to produce artifactual deactivations (Aguirre et al. 1998). However, without the use 

of global signal regression (GSR), every brain region can be significantly positively correlated 

with every other brain region (Fox et al. 2009; Van Dijk et al. 2010). In seed-based connectivity 

analyses, GSR is essentially a partial correlation between brain regions that accounts for this 

global confound. However, GSR mathematically causes a shift in the distribution of correlations 

as it mandates there be an equal distribution of positively and negatively correlated voxels 

(Murphy et al. 2009; Fox et al. 2009). In seed-based connectivity analyses, GSR commonly 

produces maps with regions displaying significant negative correlations (i.e. anticorrelations). 

Recently, it has been suggested that anticorrelations should be interpreted with caution, as they 

may not necessarily reflect an antagonistic or inhibitory relationship between regions (such as 

between the task positive and task negative networks; Murphy et al. 2009). However, 

anticorrelations are still observed when utilizing methods that do not involve GSR (e.g., 

Independent Components Analysis, Beckmann et al. 2005; physiological correction; Chang and 

Glover 2009), and anticorrelations have been found to be reliable across subjects and over time 

(Shehzad et al. 2009). Additionally, anticorrelations have been shown to spontaneously emerge 

in computer simulations of brain networks (Izhikevich and Edelman 2008), and 

electrophysiological work in cats has shown anticorrelated gamma power fluctuations in 

homologues of the task-positive and task-negative systems (Popa et al. 2009). Although a 

recent study suggested that the magnitude of anticorrelations between the task positive and 

negative networks were artifacts of GSR and network size (Anderson et al. 2010), another 

recent study found that even without GSR, lower connectivity between task positive and 

negative regions during rest was associated with better working memory performance 

(Hampson et al. 2010). Thus, while it is still unclear whether a global signal masks a true 
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antiphase relationship between task positive and negative brain networks, it appears as though 

connectivity between these networks is relevant to cognitive functioning.  

Despite this controversy regarding anticorrelated brain regions, most groups (e.g. Di 

Martino et al. 2010, Dosenbach et al. 2010) continue to use GSR because it has been shown to 

maximize the specificity of positive resting-state correlations in real and simulated data 

(Weissenbacher et al. 2009), as well as improve localization of known anatomical connections 

between cortical and subcortical regions (Fox et al. 2009). However, it was also recently shown 

that the global signal is not entirely composed of non-neuronal fluctuations (Schölvinck et al. 

2010), so it is unclear to what extent artifacts are being removed vs. introduced when regressing 

out the global signal. This may be of particular concern if the global signal is distributed 

differentially between groups. For these reasons, we decided to perform all analyses with and 

without GSR and carefully interpret group differences in regions that display anticorrelations 

upon implementation of GSR. 

In our data, the within-group positive connectivity maps without GSR looked qualitatively 

similar to the within-group connectivity maps with GSR, albeit at a much higher threshold 

(Figure 1.3, A and B). However, no regions were significantly anticorrelated with the seeds for 

either group without GSR. These findings are consistent with previous reports examining the 

use of GSR (Murphy et al. 2009; Fox et al. 2009; Weissenbacher et al. 2009; Van Dijk et al. 

2010). Interestingly, the between-group results were qualitatively similar to the maps generated 

when using global signal regression and all of the major patterns of group differences were still 

observed (Figure 1.3, C). Furthermore, many of the group differences in both analyses (i.e., 

with and without GSR) were found in regions that displayed anticorrelations with the seed 

regions for analyses with GSR (or displayed the lowest correlations with the seed regions for 

analyses without GSR).  
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Although functional segregation can refer to different phenomenon depending on the 

exact literature, in the context of functional connectivity MRI, functional segregation can be 

defined as the tendency for region A and B to be not correlated with each other and to be 

correlated with different regions (i.e., region A’s friends are not the same as region B’s friends). 

Thus, one way to determine if an area is functionally segregated from a seed region is to see 

whether it has lower connectivity with the seed than the seed has with the entire brain. In 

additional post hoc analyses, regardless of whether GSR was used, the TD group displayed 

significantly lower amygdala-DLPFC/ACC connectivity compared to amygdala-whole-brain 

connectivity (Figure 1.4, A and B), as well as significantly lower rIFGpo-MPFC connectivity 

compared to rIFGpo-whole-brain connectivity (Figure 1.4, C and D). The ASD group did not 

show this pattern of functional segregation. Furthermore, the TD group displayed significantly 

stronger segregation (lower amygdala-DLPFC/ACC and rIFGpo-MPFC connectivity) than the 

ASD group regardless of whether GSR was used (Figure 1.4, A, B, C and D). Therefore, our 

interpretation of reduced functional segregation between these networks in ASD is supported by 

analyses with and without GSR. 

However, the analyses performed without global signal regression were not exactly the 

same and it is still not completely clear how many artifacts were introduced versus removed by 

this preprocessing step. The analysis with GSR did find stronger group differences than without 

GSR, and it is unclear to what extent this is related to improved signal to noise ratio versus an 

artifact of GSR. Another notable difference in results between the two methods is the absence 

of increased subcortico-cortical connectivity for the ASD group when GSR was not applied. We 

speculate that this null finding may be due to increased anatomic specificity for subcortico-

cortical connectivity when using global signal regression (Fox et al. 2009). Additionally, although 

both increased positive connectivity or reduced negative connectivity between different 

networks is consistent with reduced functional segregation, the analyses with GSR helped 
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visualize regions that were segregated (i.e. anticorrelated) from the seed regions.  For these 

reasons, we opted to report regions that displayed anticorrelations upon GSR in the results and 

discussion.  

Task Regression 

An additional source of controversy in the connectivity literature has to do with teasing 

apart how the observed altered connectivity in ASD is driven by task-induced connectivity 

versus intrinsic connectivity. Intrinsic connectivity networks comprise a large amount of variance 

in fMRI data during rest and task (Fox et al. 2006; Toro et al. 2008), persist during sleep and 

anesthesia (Horovitz et al. 2009; Greicius et al. 2008), and are differentially attenuated 

depending on the task being performed (Fransson et al. 2006). However, experimental stimuli 

will induce coactivation or connectivity in two or more regions making it difficult to determine the 

extent to which connectivity differences are driven by intrinsic or task-related connectivity. A 

recent methodological investigation concluded that estimates of disrupted functional connectivity 

in ASD were largely driven by intrinsic neuronal fluctuations (Jones et al., 2010). Some of the 

previously mentioned studies (Villalobos et al. 2005; Turner et al. 2006; Mizuno et al. 2006; 

Noonan et al. 2009; Shih et al. 2010) were performed in the context of a visuomotor task and 

the authors attempted to control for task-related contributions to functional connectivity by 

including nuisance regressors to model out task-induced covariation as well as a low pass filter. 

The authors of these studies have argued that this may be one of the reasons why they 

generally found overconnectivity in autism whereas other studies found mostly 

underconnectivity (e.g. Just et al. 2004; Just et al. 2007). A previous comparison between true 

resting state data and data from an event-related fMRI task where the task was “regressed out” 

showed that this latter approach did not yield the exact same findings as pure resting state data 

(Fair et al. 2007). While regressing out the task has been shown to change connectivity patterns 

and reduce task related effects (Jones et al. 2010), the findings of Fair et al. (2007) suggests 
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that there are nonlinear, unmodeled task effects that affect signal covariation between regions. 

Thus, regardless of whether task regression is applied, group differences in connectivity are 

likely due to a combination of intrinsic and task-related connectivity. This is also a concern in 

resting state studies, where group differences in connectivity may, in part, be related to 

differences in spontaneous cognition (Kennedy and Courchesne 2008).  

Our analyses performed with a low pass filter and with the convolved stimuli timings 

included as nuisance regressors showed that, qualitatively, these steps minimally affected our 

between- and within-group connectivity maps (Figure 1.5). This suggests that intrinsic 

connectivity accounts for the majority of observed functional connectivity and/or that task 

regression does not fully remove signal covariation due to the task. Our within group 

connectivity maps for the rIFGpo seed largely matched the task positive and task negative 

networks identified in previous resting state studies (e.g. Fox et al. 2005, 2009). This further 

suggests that intrinsic connectivity largely contributed to our connectivity results for the IFGpo 

seed, which although it is hypothesized to play a role in face processing, it is not robustly 

engaged by the passive version of this task (Dapretto et al. 2006; Pfeifer et al. 2008; Pfeifer et 

al. 2011). While the connectivity maps generated from the amygdala seed also closely match 

the networks identified in a prior amygdala resting state study (Roy et al. 2009), areas known to 

be strongly engaged by this task (i.e. amygdala and visual areas) did not show positive 

connectivity in the resting state (Roy et al. 2009) although they were strongly connected in the 

present study even when we modeled out task effects. Although non task regressed analyses 

were associated with stronger connectivity between visual cortex and amygdala for the TD 

group, both analyses still found strong connectivity between the amygdala and visual cortex 

(Figure 1.5, A). Therefore, we speculate that although intrinsic connectivity contributes to a 

large portion of connectivity for the amygdala seed, there are nonlinear task-related 

contributions to connectivity that the task regression and low pass filtering could not remove. 
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Accordingly, we interpret our findings as being related to intrinsic connectivity as well as task-

related connectivity.  
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Figure 1.1. Bilateral amygdala (top panel) and right Inferior frontal gyrus, pars opercularis 
(rIFGpo; bottom panel) connectivity. (A) The Harvard Oxford bilateral amygdala (25% 
probability) and rIFGpo (25% probability) used as seed regions and displayed on the 1 mm 
MNI152 T1 standard brain. (B) Typically-developing (TD) within-group connectivity maps, (C) 
autism spectrum disorder (ASD) within-group connectivity maps, and (D) direct between-group 
contrasts rendered on the Inflated PALS B12 brain using CARET and on the 1 mm MNI152 T1 
standard brain using AFNI. Maps are thresholded at Z > 2.3 (p < 0.01) with correction for 
multiple comparisons applied at the cluster level (p < 0.05). Red circles highlight areas of 
greater positive connectivity with the seed region for the TD group. Blue circles highlight areas 
of greater negative connectivity with the seed region for the TD group. Purple circles highlight 
areas of greater positive connectivity with the seed region for the ASD group. 
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Figure 1.2. fMRI Activation maps. Using FSL’s FEAT, the five sets of emotional faces and null 
events were modeled with a convolved double gamma HRF according to the GLM. The contrast 
of all emotional faces vs. null event was brought to the group level using a mixed effects 
analysis with FLAME (FMRIB's Local Analysis of Mixed Effects). The typically developing group 
(A) and Autism Spectrum Disorder group (B) robustly activated visual areas, thalamus, basal 
ganglia, hippocampus and amygdala as well as smaller clusters in the inferior frontal gyrus 
(IFG) and medial prefrontal cortex (MPFC). (C) Some group differences in activation were 
observed in secondary visual areas including fusiform gyrus, amygdala, IFG and MPFC. All 
Activation maps are thresholded at Z > 1.7, corrected for multiple comparisons except within the 
IFG and amygdala. 
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Figure 1.3. Whole brain connectivity analyses performed with and without global signal 
regression (GSR). Connectivity maps for global signal regression and no global signal 
regression for A) typically developing within group B) Autism Spectrum Disorder within group 
and C) direct between group contrasts. Z-statistics we rendered on the Inflated PALS B12 brain 
using CARET. Within group maps are thresholded at Z > 2.3 for within group maps with global 
signal regression, Z > 5.0 (p < 0.0000003) for within group maps without global signal 
regression, Z > 1.7 (p < 0.05) for between group contrasts, and corrected for multiple 
comparisons at the cluster level (p < 0.05).  
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Figure 1.4. ROI analyses performed with and without global signal regression (GSR). A) 
Amygdala-DLPFC/ACC and Amygdala-WholeBrain connectivity with GSR for typically 
developing (TD) and Autism Spectrum Disorder (ASD) ASD groups. B) Amygdala-DLPFC/ACC 
and Amygdala-WholeBrain connectivity without GSR for TD and ASD groups. C) rIFGpo-MPFC 
and rIFGpo-WholeBrain connectivity with GSR for TD and ASD groups. D) rIFGpo-MPFC and 
rIFGpo-WholeBrain connectivity without GSR for TD and ASD groups. *  p < 0.05, ** p < 0.01, 
***  p < 0.001, **** p < 0.0001. 
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Figure 1.5. Whole brain connectivity analyses performed with or without task regression and 
bandpass filtering. Connectivity maps without task regression and with task regression and 
bandpass filtering for A) typically developing within group B) Autism Spectrum Disorder within 
group and C) direct between group contrasts. Z-statistics we rendered on the Inflated PALS B12 
brain using CARET. Within group maps are thresholded at Z > 2.3 for within group maps with 
global signal regression, Z > 1.7 (p < 0.05) for between group contrasts, and corrected for 
multiple comparisons at the cluster level (p < 0.05).  
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CHAPTER 2: Altered Functional and Structural Brain Network Organization in Autism 

 

Abstract 

Structural and functional underconnectivity have been reported for multiple brain 

regions, functional systems, and white matter tracts in individuals with autism spectrum 

disorders (ASD). Although recent developments in complex network analysis have established 

that the brain is a modular network exhibiting small-world properties, network level organization 

has not been carefully examined in ASD. Here we used resting-state functional MRI (n=42 ASD, 

n=37 Typically Developing; TD) to show that children and adolescents with ASD display 

reduced short and long-range connectivity within functional systems (i.e., reduced functional 

integration) and stronger connectivity between functional systems (i.e., reduced functional 

segregation), particularly in default and higher order visual regions. Using graph theoretical 

methods, we show that pairwise group differences in functional connectivity are reflected in 

network level reductions in modularity and clustering (local efficiency), but shorter characteristic 

path lengths (higher global efficiency). Structural networks, generated from diffusion tensor MRI 

derived fiber tracts (n=51 ASD, n=43 TD), displayed lower levels of white matter integrity and 

modularity in ASD. TD and ASD individuals exhibited similar levels of correlation between raw 

measures of structural and functional connectivity (n=35 ASD, n=35 TD). However, a principal 

component analysis combining structural and functional network properties revealed that the 

balance of local and global efficiency between structural and functional networks was reduced in 

ASD, positively correlated with age, and inversely correlated with ASD symptom severity. 

Overall, our findings suggest that modeling the brain as a complex network will be highly 

informative in unraveling the biological basis of ASD and other neuropsychiatric disorders. 
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Introduction 

Autism spectrum disorders (ASD) are increasingly prevalent neurodevelopmental 

disorders (Kim et al. 2011) characterized by atypical social behavior, including deficits in 

receptive and expressive language, theory of mind, and mental flexibility. Findings of functional 

underconnectivity between brain regions in individuals with ASD relative to matched controls 

have been reported as they perform a variety of cognitive tasks (see Schipul et al., 2011, for 

review). Multiple studies have found that task-independent (i.e., intrinsic) functional connectivity, 

including interhemispheric (Anderson et al., 2011a) and default mode network (DMN) 

connectivity is also lower in ASD (e.g., Kennedy et al., 2008). Further supporting an 

underconnectivity theory, diffusion tensor imaging (DTI) studies have found reductions in 

structural white matter integrity across most major tracts (see Vissers et al., 2011, for review). 

In addition to reports of reduced functional connectivity within major networks (i.e., 

functional integration), connectivity between different networks (i.e. functional segregation) is 

altered in ASD (Rudie et al., 2011). Functional brain networks become simultaneously more 

integrated and segregated during typical development (e.g., Fair et al., 2009) and white matter 

integrity increases during development (e.g., Lebel et al., 2012), suggesting that brain networks 

in ASD may reflect ‘immature’ or aberrant developmental processes. 

Despite this array of regional and systems level findings in ASD, it is unclear how these 

alterations might be reflected at a network level where the brain is modeled as a network of 

hundreds of interacting regions composing several integrated and segregated systems. Graph 

theory, which describes complex systems as a set of “nodes” (i.e., brain regions) and “edges” 

(i.e., connections between nodes), has characterized the brain as a complex network with a 

hierarchical modular organization consisting of several major functional communities (i.e., 

visual, sensorimotor, default mode, and attentional systems; see Wang et al., 2010, for review). 

Structural and functional brain networks exhibit robust levels of local and global efficiency (i.e., 
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small-world properties; Watts and Strogatz, 1998) that can be quantitatively characterized using 

graph theoretical methods (Bullmore et al., 2009; Rubinov et al., 2009). Structural and functional 

graph theoretical studies have begun to map how local and global network properties change 

during development (Fair et al., 2009; Hagmann et al., 2010), aging (e.g., Meunier et al., 2009) 

and in diseases such as schizophrenia (e.g., Bassett et al., 2008) and Alzheimer’s (e.g., 

Supekar et al., 2008). 

In this study we sought to compare functional and structural connectivity in children and 

adolescents with ASD relative to typically developing (TD) children by characterizing local and 

global graph theoretical metrics of structural and functional networks using a recently validated 

264-region functional parcellation scheme (Power et al., 2011). We sought to first compare 

simpler network connections and then characterize higher-level network properties including 

clustering, characteristic path length, small worldness and modularity. Additionally, since 

structural connectivity has been shown to correlate with functional connectivity (Hagmann et al., 

2008; Honey et al., 2009), we wanted to determine whether structure-function correlations 

differed between groups and how functional and structural network properties relate to each 

other across development in TD and ASD individuals.  

 

Materials and Methods 

Subjects 

High-functioning children and adolescents with ASD, as well as TD children and 

adolescents, were recruited through UCLA’s Center for Autism Research and Treatment 

(CART) and flyers posted throughout the greater Los Angeles area. Individuals with metal 

implants, psychiatric or neurologic disorders, structural brain abnormalities, or known genetic 

conditions were excluded from participation. Informed consent and assent to participate was 

obtained prior to assessment according to protocols approved by the UCLA Institutional Review 
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Board (IRB). Verbal, performance, and overall intelligence were assessed for each participant 

using the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1991) or the full 

Wechsler Intelligence Scale for Children (WISC; Wechsler 1999). High-functioning children with 

ASD had a prior clinical diagnosis of autism based on criteria from the Diagnostic and Statistical 

Manual of Mental Disorders (DSM IV), which was confirmed with the Autism Diagnostic 

Observation Scale (ADOS-G; Lord et al., 2000) and/or Autism Diagnostic Interview (ADI-R; Lord 

et al., 1994). 

A total of 60 individuals with ASD (52 males, 8 females) and 45 TD individuals (38 

males, 7 females) were included in either the DTI, resting state or combined resting state/DTI 

final matched datasets (Table 2.1). After excluding subjects with excessive head motion, the 

resting state sample included 42 ASD subjects and 37 TD subjects and the DTI sample included 

51 ASD subjects and 43 TD. Both structural and functional data were available for 35 ASD and 

35 TD subjects. The three sets of matched groups did not significantly differ based on age, sex, 

mean/maximum head motion, or full-scale, verbal and performance IQ (Table 2.1).   

Twenty-two individuals with ASD and one TD individual reported the use of one or more 

psychotropic medications. One TD subject was using a psychostimulant. Of the subjects in our 

ASD sample, 12 were taking psychostimulants, 5 were taking sympatholytics, 9 were taking 

atypical antipsychotics, 9 were taking selective serotonin reuptake inhibitors, 3 were taking 

selective norepinephrine reuptake inhibitors, 3 were taking an atypical antidepressant, and 2 

were taking anticonvulsants. There were no significant differences (ps > 0.30) between 

medicated and unmedicated ASD individuals for each of the functional and structural measures 

described in the following sections. 

  

MRI Data Acquisition 

All resting-state fMRI and DTI scans were acquired on a Siemens 3T Trio at UCLA. A 
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scout localizing scan was collected to help prescribe the orientation of the scans. Next, a 

matched bandwidth T2-weighted high-resolution echo planar scan was acquired co-planar to 

the functional images, which ensures identical distortion characteristics for registration purposes 

(Siemens 3T Trio: TR=5000ms, TE=34ms, matrix size: 128x128, 19.2cm FoV, 36 4-mm thick 

slices with an in-plane voxel dimension of 1.50x1.50mm). In a single session, subjects were 

asked to relax and keep their eyes open while a fixation cross was displayed on a white 

background for 6 minutes (T2*-weighted functional images: TR=3000ms, TE=28ms, matrix size 

64x64, 19.2cm FoV, 34 4-mm thick slices (no gap) with an in-plane voxel dimension of 

3.0x3.0mm). The DTI sequence consisted of 32 scans with different diffusion-weighted 

directions (b=1000 s/mm2), three scans with no diffusion sensitization, at b=0, and an additional 

six scans at b=50 s/mm2. Other parameters were TR=9500ms, TE=87ms, GRAPPA on, 

FOV=256mm, with 75 slices, yielding an in-plane voxel dimension of 2x2mm with 2-mm thick 

axial slices, total scan time=8min 1sec.  

 

Resting State fMRI Preprocessing 

Imaging data were analyzed using FSL version 4.1.4 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl; Smith et al., 2004) and AFNI (Analysis of Functional NeuroImages; Cox 

et al., 1996). Structural and functional images were skull-stripped using AFNI (3dskullstrip and 

3dautomask). Functional volumes were motion corrected to the mean functional volume with 

MCFLIRT (Motion Correction using FMRIB's Linear Image Registration Tool) using a normalized 

correlation ratio cost function and sinc interpolation (Jenkinson et al., 2002). Translations and 

rotations in the x, y, and z dimensions were calculated from volume to volume and averaged to 

generate mean and max relative displacement values, which did not significantly differ between 

the final matched groups (Table 2.1). Subjects with a single displacement greater than 2.5 mm 

(13 ASD and 5 TD) were excluded prior to further analyses and not included in totals for the 
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final samples. Images were spatially smoothed using a Gaussian kernel of FWHM 5mm and 

band pass filtered (0.1 Hz > t > 0.01 Hz). The 6 rigid body motion parameters and average white 

matter (WM), cerebrospinal fluid (CSF), and global time-series and their temporal derivatives 

were then regressed out of the data. The WM and CSF time-series reflected signal from 

subject-specific regions of interest created using FAST (FSL’s Automatic Segmentation Tool). 

Given recent concerns regarding the effect of motion in resting state fMRI connectivity (Power et 

al., 2012; Van Dijk et al., 2011), in addition to matching the groups by mean and maximum 

relative head motion, we also regressed out individual volumes with large signal intensity 

changes (i.e., motion spikes) by creating additional nuisance regressors that modeled individual 

time points with greater than half of a standard deviation change in global signal intensity.  

 

Resting State fMRI Connectivity Matrix Construction 

One major methodological hurdle in graph theory approaches to neuroimaging is how to 

define the nodes of the network (Wang et al., 2009; Zalesky et al., 2010; Craddock et al., 2011; 

Power et al., 2011). Most groups have used anatomical atlases (e.g. He et al., 2007) or 

individual voxels (e.g., van den Huevel et al., 2008) as nodes. However, anatomical atlases 

include relatively large regions that are likely to contain multiple functional regions, which can 

distort/obscure true properties of the network by mixing distinct signals (Butts et al., 2009; Smith 

et al., 2011; Craddock et al., 2011; Power et al., 2011). Conversely, voxel-wise parcellation 

approaches can be biased by artificially strong local connections (Power et al., 2011; 2012). A 

whole brain parcellation scheme was recently created based on a large meta-analysis of fMRI 

studies combined with whole brain functional connectivity mapping (Power et al., 2011). This set 

of 264 putative functional regions was shown to more accurately represent the information 

present in the network relative to voxelwise and atlas-based parcellation approaches. Therefore, 

we chose this set of 264 regions for whole brain parcellation. For each subject, 5-mm radius 
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spheres based on the MNI coordinates of these 264 regions (Power et al., 2011) were 

registered to functional space (12 DOF, affine, correlation ratio cost function) through 

registration from the MNI 152 template to the high-resolution echo-planar (12 DOF, affine, 

mutual information cost function) using FSL’s Linear Image Registration Tool (FLIRT). We then 

correlated timeseries between each of the 264 brain regions and z-transformed correlation 

coefficients in order to generate 264x264 whole brain functional connectivity matrices for each 

subject. Graph theoretical metrics and statistics were computed with Matlab (The Mathworks, 

Natick, MA) using the Brain Connectivity Toolbox (Rubinov et al., 2009). 

To determine the most stable number of modules, the Louvain modularity algorithm 

(Blondel et al., 2008) was run 100 times on the average unthresholded functional connectivity 

matrix. The order of nodes in the functional connectivity matrix was then reorganized based on 

its modular organization (Figure 2.1A). In order to interrogate raw differences in connection 

strengths between the two groups, two-sample t-tests were performed for every z-transformed 

connection strength value (Figure 2.1C). The significance was set at p < 0.05, uncorrected, for 

these initial exploratory analyses. If there was significantly lower connectivity in a connection for 

the ASD or TD group (vs. the other group) that had an average correlation value below zero, it 

was categorized as stronger negative connectivity for that group (as opposed to stronger 

positive connectivity for the other group, which is mathematically equivalent). The number of 

connections differing between groups was assessed for each of the identified modules both for 

within-module positive connections and between-module negative connections (Figure 2.1D). 

Numbers of within-module positive and between-module negative connections differing between 

groups were compared and displayed as a function of the connection’s average z-transformed 

correlation value (Figure 2.2A) and Euclidean distance between regions (Figure 2.2B).   

 

Resting State fMRI Connectivity Graph Theoretical Analyses 
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As there is no rationale for using a particular cutoff for functional connectivity strength to 

determine whether an edge exists in a functional network, we compared local and global 

network properties over a range of functional connection thresholds. Thresholding a network 

based on correlation strength can yield different network sparsities (number of existing edges 

divided by number of possible edges), which influence network properties and can bias a 

comparison of graph metrics between groups. In fact, we found that at higher z-correlation 

thresholds the TD group had a higher average sparsity (Figure 2.3A). Therefore, we chose to 

equalize network sparsity between subjects by taking an equivalent percentage of the strongest 

positive connections for each subject and binarizing the network weights before calculating 

graph theoretical metrics. We examined functional network properties between 15% and 32% 

sparsity. The upper threshold of 32% was chosen because the weakest edge it includes 

corresponds to a z-transformed correlation coefficient of 0.15, which is the minimum correlation 

needed to be statistically significant (p < 0.05) across 120 volumes. At lower sparsity levels, 

network properties begin to break down as the network becomes fragmented. Therefore, we 

chose 15% sparsity (corresponding to a minimum average z-transformed correlation of 0.34) as 

the low end of the range based on the requirement that all individual subject graphs be fully 

connected (Figure 2.3B). 

We focused on 6 global graph theoretical metrics (see Rubinov et al., 2009 for formulas 

of these metrics). These metrics were: clustering coefficient (CC), which measures how much 

neighbors of a node are connected to each other and is closely related to local efficiency; 

characteristic path length (CPL), which is the average number of edges needed to get from any 

node in the network to any other node in the network and is inversely related to global 

efficiency; normalized CC and CPL (lambda and gamma), which are calculated as a ratio of CC 

or CPL to the average CC or CPL of 100 simulated random networks with equivalent numbers 

of nodes and edges; small worldness, which is the ratio of lambda to gamma (Watts et al., 
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1998); and modularity, which refers to the existence of subgraphs or distinct communities within 

the network as a whole.  Modularity Q values represent the proportion of within-module edges in 

the network minus within-module edges calculated from a similar random network (Newman 

2006). Since Q values can vary based on random differences in module assignments from run 

to run, Q values were averaged over 100 iterations of the algorithm. All metrics were averaged 

across 15% to 32% sparsities in 1% increments to generate average values for each metric. 

Two sample t-tests were performed on these metrics between subjects at each sparsity level 

and for averaged metrics (Table 2.2, Figure 2.3C-H). For each node, clustering coefficients, 

participation coefficients and betweenness centrality were averaged across sparsity levels for 

each subject and compared between groups (Figure 2.4A). Betweenness centrality measures 

how often the shortest path goes through a given node while participation coefficients reflect 

how much a node interacts with nodes in different communities (Guimera et al., 2005). 

Differences in nodal metrics are shown at more stringent (False Discover Rate: q < 0.05; 

Benjamini et al., 1995) and less stringent thresholds (p < 0.05, uncorrected).  

 

Diffusion MRI Preprocessing 

Subjects with excessive motion (greater than 8 volumes with motion artifacts) were not 

included in final samples (6 ASD, 3 TD). Additionally, individual volumes with gross motion 

artifacts (i.e., exceeding 2mm displacement) were identified and excluded from further analysis. 

MCFLIRT was used to quantify mean and maximum relative motion (Table 2.1); while, motion 

and eddy current correction was performed on the diffusion-weighted images using 

eddy_correct in FMRIB’s Diffusion Toolbox (FDT). Dtifit was used to fit a diffusion tensor model 

to the data at each voxel and calculate voxelwise Fractional Anisotropy (FA) values for each 

subject. Whole brain deterministic tractography was then performed using the fiber assignment 

by continuous tracking (FACT) algorithm (Mori et al., 2002) in Diffusion Toolkit 



 

	
  

58 

(http://trackvis.org/dtk). Tractography was carried out propagating fibers from each voxel with a 

maximum turn angle of 50 degrees. Fibers were smoothed using a spline filter and fibers shorter 

than 5mm were excluded.  

 

Diffusion MRI Fiber Connectivity Matrix Construction 

We used the same set of 264 coordinates from Power et al. (2011) to generate 10mm 

radius spheres in MNI space. Dilating spheres to 10mm radii (relative to 5mm radii spheres for 

functional nodes) ensured inclusion of nearby white matter fibers given that nodal coordinates 

were centered in grey matter. These 264 masks were transformed to each subject’s diffusion 

space (12 DOF, affine, correlation ratio cost function) through registration to the hires image (12 

DOF, affine, mutual information cost function). In order to generate edges between nodes of 

structural networks, the number of fibers connecting each region were counted. A fiber was 

defined as connecting two regions if one fiber endpoint terminated within one region and the 

other endpoint terminated within the other region. This process was repeated using all 264 

regions as seeds in order to derive a 264x264 whole brain structural connectivity matrix for each 

subject, using custom software written for this purpose (UCLA Multimodal Connectivity 

Package; http:/ /github.com/jbrown81/umcp). Additionally, average FA and mean diffusivity (MD) 

were calculated for each connection. 

The Louvain modularity algorithm (Blondel et al., 2008) was run 100 times on the 

average unthresholded fiber connectivity matrix to determine the most stable number of 

modules. The order of nodes in the fiber connectivity matrix was reorganized based on their 

modular organization (Figure 2.5A). Two sample t-tests (p < 0.05, uncorrected for initial 

exploratory analyses) were performed on fiber counts, FA, and MD for every connection after 

masking by connections that have an average of 5 or more fibers (5.75% of all possible 

connections; Figure 2.5B,C). Connections differing between groups for number of fibers and 
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MD were compared as a function of average fibercount and Euclidean distance. 

 

Structural Connectivity Graph Theoretical Analyses 

For structural networks, we examined the same 6 global network properties as functional 

networks (CC, CPL, lambda, gamma, small worldness and modularity Q values) averaged 

between 5% and 8.5% sparsity in 0.5% increments. A sparsity level of 5% represented the 

minimum sparsity level at which every subject’s graph was fully connected (Figure 2.6A) and 

8.5% represented the average unthresholded sparsity of all subjects structural matrices (Figure 

2.6B). Two sample t-tests were performed on these metrics between subjects for averaged 

metrics as well as at each sparsity level.  

 

Correlation Between Fiber Count and Functional Connectivity Strengths 

Fiber counts of every connection with an average of at least 5 fibers were correlated with 

functional connectivity strengths for each of the 35 ASD and 35 TD subjects (Figure 2.7). 

Additionally, fiber count/functional connectivity correlations were computed for within- and 

between-module connections and specifically for within-module connections with lower levels of 

functional connectivity as identified in Figure 2.1C. These structure-function correlations were z 

transformed, then compared between groups (with two-sample t-tests). 

 

Principal Component Analysis of Functional and Structural Network Properties 

We ran an exploratory principal component analysis (PCA) on the six average functional 

global graph metrics and the six average structural graph global metrics across all 70 subjects 

with PASW Statistics 18, Release Version 18.0.3 (SPSS, Inc., Chicago, IL). Values for the first 

four components were computed for each subject through regression, compared between 

groups (two sample t-test), and correlated with chronological age after regressing out mean 
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relative motion (Table 2.3; Figure 2.8A,B). The two components that significantly differed 

between groups were also tested for correlation with symptom severity (as measured by the 

social and communication subscales of the ADOS and ADI) within the ASD group after 

regressing out mean relative motion and age (Table 2.3; Figure 2.8C-F).  

 

Graph Renderings and Visualizations 

Renderings were generated from scripts in the UCLA Multimodal Connectivity Package 

(http://github.com/jbrown81/umcp) and through the UCLA Multimodal Connectivity Database 

(http://umcd.humanconnectomeproject.org), which use matplotlib 

(http://matplotlib.sourceforge.net) and networkX (http://networkx.lanl.gov). 

 

Results 

Functional Connectivity Matrices  

Over the course of 100 runs of the modularity algorithm on the average functional 

connectivity matrix, four communities were detected over 90% of the time. The order of nodes in 

the matrix was reorganized to reflect its community structure for the connectivity matrix 

averaged across all subjects (Figure 2.1A). The four communities corresponded to visual, 

sensorimotor and default systems as well as a largely frontal system corresponding to the task 

positive control/attention network (color boxes in Figure 2.1A and displayed in 3D brain space 

in Figure 2.1B).  

We first examined raw differences in the connectivity matrices by directly comparing 

correlation strengths between groups for each connection (Figure 2.1C) and separating 

differences based on within- and between-community connections. We found that the TD group 

exhibited 5.4 times as many stronger (p < 0.05, uncorrected) within-module positive connections 
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as the ASD group (Figure 2.1C,D). This was most pronounced in the default (265 (10.1%) 

connections stronger for TD group vs. 15 (0.5%) stronger for ASD), visual (107 (7.5%) 

connections stronger for TD group vs. 7 (0.5%) stronger for ASD) and sensorimotor systems (84 

(2.5%) connections stronger for TD group vs. 33 (1.0%) stronger for ASD; Figure 2.1D, left). 

There were a similar number of stronger within-module connections for the attention/control 

network (34 (2.3%) connections stronger for TD group vs. 41 (2.3%) stronger for ASD). 

Additionally, the TD group exhibited 4.4 times as many stronger (p < 0.05, uncorrected) 

negative (i.e., weaker) between-module connections. This was most prominent for connections 

between other systems and the default (670 (4.8%) for TD>ASD vs. 152 (1.1%) for ASD>TD) 

system, but was also true for visual (383 (3.4%) for TD>ASD vs. 135 (1.2%) for ASD>TD), 

sensorimotor (479 (3.2%) for TD>ASD vs. 154 (1.0%) for ASD>TD), and attention (276 (2.4%) 

for TD>ASD vs. 165 (1.5%) for ASD>TD) systems (Figure 2.1D, right). 

We sorted within and between-module differences as a function of average correlation 

strengths (Figure 2.2A). Connections where the TD group had stronger positive within-module 

connectivity tended to have higher average correlation strengths than connections where the 

ASD group had stronger within-module connectivity (TD = 0.26+/-0.19, ASD = 0.16+/-0.17, p = 

0.0002). Between-module connections where the TD group had stronger negative connectivity 

were more negative than the connections where the ASD group had stronger negative 

connections (TD = -0.16+/-0.09, ASD = -0.08+/-0.06, p < 0.0001). We found no significant 

differences (all p > 0.25) for the average Euclidean distance of connections that differed 

between groups for stronger positive within-module connectivity or stronger negative between-

module connectivity (Figure 2.2B). 

 

Functional Connectivity Graph Metrics 
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There were group differences in nearly all graph theoretical metrics for functional 

networks over a range of network sparsities (Figure 2.3) and averaged across sparsity levels 

(Table 2.2). Clustering coefficient was significantly lower in the ASD group (Figure 2.3C) and 

although lambda was lower in the ASD group at higher sparsity levels (Figure 2.3D), there was 

only a trend for lower average gamma. Both CPL and gamma were lower in the ASD group over 

the entire range of sparsities (Figure 2.3E,F) and averaged across sparsity levels (Table 2.2). 

Both TD and ASD subjects had functional networks in the small world range (the ratio of lambda 

to gamma being greater than 1.2). However, small worldness was not significantly different 

between groups. Modularity (Q values) was significantly lower in the ASD group at every 

sparsity level and averaged across sparsity levels (Figure 2.3H). 

Given the differences in global metrics for CC, CPL and modularity, we compared nodal 

clustering coefficients, participation coefficients (Guimera et al., 2005) and betweenness 

centrality measures between groups averaged over the same range of thresholds (Figure 2.4). 

We report the number of nodes with significant between-group differences (p < 0.05 

uncorrected and FDR corrected; q < 0.05, p < 0.0013). ASD subjects had lower nodal CC in 21 

visual (4 FDR: right occipital fusiform gyrus and left and right inferior lateral occipital cortex), 20 

default (3 FDR: medial prefrontal cortex, ventromedial prefrontal cortex and left frontal orbital 

cortex), and 10 sensorimotor nodes (1 FDR: left superior parietal lobule; Figure 2.4A). 

Participation coefficients were higher for the ASD group in 26 default (3 FDR: medial prefrontal 

cortex and left frontal orbital cortex), 10 sensorimotor (3 FDR: left postcentral gyrus, left superior 

parietal lobule and brainstem) and 9 attention (0 FDR) nodes (Figure 2.4B). There were no 

differences in nodal betweenness centrality that survived FDR correction. 
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Structural Connectivity Matrices  

The Louvain modularity algorithm detected between 8 and 10 communities for the 

average fiber connectivity matrix over 100 runs. Nine communities were detected in over 80% of 

the runs and these communities corresponded to sets of lateralized nearby brain regions 

(Figure 2.5B). The average fiber structural connectivity matrix for all TD and ASD subjects is 

shown in Figure 2.5A after reordering the nodes by community structure. 

We first examined the connectivity matrices by directly comparing the number of fibers, 

average FA, and average MD values for each connection between groups after masking for 

regions that contained an average of at least 5 fibers (corresponding to 5.75% of all possible 

connections). We found that the ASD group had 4.2 times as many connections with 

significantly (p < 0.05, uncorrected) more fibers than the TD group (106 ASD>TD vs. 25 

TD>ASD; Figure 2.5C). We also found that the ASD group had 1.6 times as many connections 

with lower FA (67 TD>ASD vs. 41 ASD>TD) and 6.2 times as many connections with higher MD 

(112 ASD>TD vs. 18 ASD>TD; Figure 2.5D).  

The average number of fibers or Euclidean distance of the connection did not differ for 

connections where the ASD group had more fibers compared to connections where the TD 

group had more fibers (Number of fibers: TD>ASD = 30.0+/-26.6, ASD>TD = 26.3+/-25.9, p = 

0.53; Euclidean distance: TD>ASD = 25.9 +/-12.8, ASD>TD = 34.8+/-26.3, p = 0.11). 

Connections where the TD group had higher white matter integrity (lower MD) had a higher 

average number of fibers than connections where the ASD group had higher white matter 

integrity (ASD>TD = 32.5+/-28.8, TD>ASD = 11.8+/-6.0, p = 0.003), but did not differ based on 

Euclidean distance (ASD>TD = 30.3+/-21.5, TD>ASD = 35.2+/-7.5, p = 0.34). 
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Structural Connectivity Graph Metrics 

 Although gamma (normalized characteristic path length) was similar for structural and 

functional networks (~1.2 for structural vs. ~1.1 for functional), lambda (normalized clustering 

coefficient) was much higher in structural networks (~5.4 for structural vs. ~2.2 for functional). 

Therefore, structural networks displayed higher levels of small worldness compared to 

functional networks in both TD and ASD groups. Measures for average structural CC, gamma, 

CPL, lambda and small worldness did not significantly differ between groups (Table 2.2). 

However, modularity Q values were higher in the TD group at all sparsity levels (Figure 2.6C). 

Given previous reports of modularity decreasing with age and global efficiency increasing with 

age in structural networks (Hagmann et al., 2010), we ran post-hoc analyses correlating these 

metrics with chronological age in each group. Higher modularity in the TD group was actually 

driven by the younger TD participants, whereby, controlling for motion, modularity was 

significantly negatively correlated with age in the TD group (r = -0.41, p = 0.008; Figure 2.6D) 

yet was only trending toward a negative correlation with age in the ASD group (r = -0.24, p = 

0.08) although the interaction was not significant (p = 0.37). Similarly, there were no group 

differences for CPL or lambda, but age was negatively correlated with CPL and lambda in the 

TD group (controlling for motion: CPL: r = -0.34, p = 0.03; lambda r = -0.31, p = 0.04), and CPL 

and lambda were positively correlated with age in the ASD group (controlling for motion: CPL: r 

= 0.22, p = 0.12; gamma: r = 0.16, p = 0.25; Figure 2.6F) whereby there was a significant group 

by age interaction for CPL (p = 0.01) and gamma (p = 0.02). 

 

Structure-Function Correlation 

When comparing correlations between fiber counts and functional connectivity strength 

between groups, we found that both groups exhibited moderate, yet highly significant (all 
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subjects p < 0.001), levels of structural-functional connectivity correlations (TD r = 0.32+/-0.03, 

ASD r = 0.32+/-0.04, p = 0.77 for the group difference). Furthermore, there were no group 

differences when structure-function correlations were assessed for both within- and between-

functional module connections (Within-module: TD r = 0.28+/-0.04, ASD r = 0.28+/-0.05, p = 

0.98 for the group difference; between-module TD r = 0.28+/-0.05, ASD r = 0.26+/-0.05, p = 

0.32 for the group difference) or specifically for within-module connections exhibiting lower 

levels of functional connectivity (TD r = 0.30+/-0.12, ASD r = 0.31+/-0.11, p = 0.77 for the group 

difference). 

 

Principal Component Analysis of Structural and Functional Metrics 

To identify key factors underlying correlated graph metrics and to better understand 

relationships between structural and functional network properties, we entered the six functional 

and six structural average global graph metrics for all 70 subjects into an exploratory principal 

component analysis. The first four components explained 88% of the variance in the data 

(Table 2.3). The first component (accounting for 33.9% of the variance) broadly weighted 

functional metrics positively and structural metrics negatively. This component was significantly 

lower in the ASD group (covarying for mean head motion, p = 0.009) and negatively related to 

symptom severity, as measured by the ADI social subscale (covarying for age and mean head 

motion, r = -0.4, p = 0.01; Figure 2.8C). The first component was also positively correlated with 

age in both groups (covarying for mean motion; All r = 0.24, p = 0.04, TD r = 0.28, p = 0.11, 

ASD r = 0.30, p = 0.08; Figure 2.8A). The second component weighted all functional and 

structural metrics positively, and although it did not differ between groups, there was a 

significant interaction with age (covarying for mean head motion; p = 0.02), whereby the second 

component was significantly positively correlated with age in the ASD group (r = 0.35, p = 0.04) 

and slightly negatively correlated with age in the TD group (r = -0.24, p = 0.16). The third 
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component, positively weighting functional CC/modularity and negatively weighting functional 

CPL, did not differ between groups. The fourth component, positively weighting structural 

modularity and negatively weighting structural CPL, was significantly lower in the ASD group (p 

= 0.007) and was negatively correlated with symptom severity as measured by the ADOS social 

and communication subscales (covarying for age and mean head motion, ADOS social: r = -

0.46, p = 0.005, Figure 2.8E; ADOS communication: r = -0.36, p = 0.05, Figure 2.8F). 

 

Discussion 

Previous neuroimaging studies on ASD have reported reduced functional and structural 

connectivity both within and between specialized brain systems (Vissers et al., 2012), 

suggesting ASD is a network disorder (Muller et al., 2007). Here we expand upon previous 

findings of lower functional and structural connectivity in ASD by characterizing higher-level 

network properties using tools derived from the physics of complex networks (Rubinov et al., 

2009). We report alterations in community organization of functional networks, as well as in the 

balance of local and global efficiency within and between structural and functional networks in 

children and adolescents with ASD relative to their typically-developing counterparts. 

 

Functional Connectivity Alterations 

We detected robust reductions in positive functional connectivity within major functional 

systems (i.e., functional integration) in individuals with ASD. Reduced functional connectivity 

was most prominent in the default system, consistent with multiple studies that have found 

reduced DMN connectivity in ASD (Kennedy et al., 2008; Weng et al., 2010; Assaf et al., 2010). 

However, we also found weaker connectivity within visual (largely secondary areas) and 
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sensorimotor systems, supporting more widespread alterations in functional connectivity as 

found by Villallobos et al. (2005), Mostofsky et al. (2009), and Anderson (2011b). Relatively few 

alterations were observed in the frontal attention/cognitive control network, which might reflect 

relatively intact cognitive skills in high-functioning individuals with ASD (Kennedy et al., 2008).  

Interestingly, individuals with ASD also show reduced negative (i.e., more positive) 

connectivity between systems. Consistent with previous findings in the task positive and default 

mode networks in ASD (Rudie et al., 2011), weaker negative connectivity between communities 

suggests that specific functional systems are less distinct or functionally segregated from one 

another. Although there is some controversy regarding the proper interpretation of negatively 

correlated brain regions when using global signal regression (GSR; Murphy et al., 2009; Fox et 

al., 2009), anticorrelations are detected without GSR (Chang et al., 2009; Anderson et al., 

2011c; Smith et al., 2012) and GSR maximizes the specificity of positive resting-state 

correlations in real and simulated data (Weissenbacher et al., 2009; Fox et al. et al., 2009). 

Interestingly, reduced negative connectivity was recently shown to be useful for diagnostic 

classification of autism in analyses without GSR (Anderson et al., 2011b). Therefore, although it 

is unclear whether widespread differences in negatively connected regions are exaggerated by 

GSR, differences in negative connectivity between distinct functional systems are likely 

important for understanding ASD neurobiology.  

Although most previous functional connectivity studies of ASD have reported 

underconnectivity of long-range (i.e., anterior-posterior or interhemispheric) connections, it has 

also been widely hypothesized that ASD may be related to overconnectivity of short-range 

connections (Belmonte et al., 2004; Courchesne et al., 2005; Geschwind & Levitt et al., 2007). 

Previous neuroimaging studies have found increased short-range connections in neurotypical 

children versus adults (Fair et al., 2009; Supekar et al., 2009) but findings are somewhat mixed 

in individuals with ASD (Paakki et al., 2010; Shukla et al., 2010). Consistent with a recent study 
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(Anderson et al., 2011b) we found that even short-range functional connections are reduced in 

ASD. Of course, this does not exclude the possibility that local connections at the neuronal or 

minicolumnar level could be enhanced in ASD (Casanova et al., 2002).  

In examining graph metrics of functional networks, we found that individuals with ASD 

had lower clustering (i.e., local efficiency), especially in nodes within the default systems and 

secondary visual areas. Individuals with ASD displayed a less robust modular organization (i.e., 

communities were less distinct) and there was a tendency for nodes in the default and 

sensorimotor systems to interact more with other communities as measured by higher nodal 

participation coefficients. Finally, we found that functional brain networks in individuals with 

autism had shorter average path lengths (i.e., higher levels of global efficiency) as well as 

normalized characteristic path lengths. Randomly connected networks tend to have short path 

lengths (Sporns et al., 2011) suggesting the possibility that higher global efficiency in functional 

networks may simply reflect a less organized or more random distribution of functional edges. 

This is consistent with a study finding decreased complexity or increased randomness in 

resting-state fMRI timeseries of individuals with ASD (Lai et al., 2010).  

Previous functional graph theory studies in typical development (Supekar et al., 2009; 

Fair et al., 2009) did not find differences in local or global efficiency between children and 

adults. However, our findings in ASD are reminiscent of developmental differences, as previous 

developmental studies report similar differences in the integration and segregation of functional 

systems. Therefore, although functional networks in ASD may be ‘immature’ in some ways (i.e., 

reflect an earlier developmental stage) they may also be fundamentally different from a network 

perspective. 

 

Structural Connectivity Alterations 

For structural connectivity measures derived from diffusion MRI, we found reduced 
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integrity in short- and long-range white matter tracts in ASD in line with previous studies (e.g., 

Shukla 2010). We found more robust differences in MD than FA, which has been reported in 

several previous DTI studies (Sundaram et al., 2008; Groen et al., 2010). Interestingly, despite 

the fact that white matter integrity was generally reduced, we found evidence for increased fiber 

counts in ASD, which may relate to early reports of increased regional white matter (Herbert et 

al., 2004) and more recent reports of increased fiber counts in certain tracts in ASD (Pugliese et 

al., 2009). Although white matter integrity is lower in children compared to adults, fiber counts 

increase during development (Lebel et al., 2012). Therefore, like functional networks, some 

alterations in ASD may reflect immaturity, while other alterations are likely to reflect aberrant 

processes. 

Structural networks displayed high levels of local and global efficiency in both the TD and 

ASD groups. Given previous reports of decreasing modularity and increasing global efficiency of 

structural networks with development (Hagmann et al., 2010), we examined the relationship 

between age and modularity/global efficiency in each group. We found that in the TD group, 

modularity sharply decreased with age whereas global efficiency increased with age. In the ASD 

group, modularity decreased at a slower rate and, contrary to findings in the TD group, global 

efficiency actually decreased with age. It should be noted that global efficiency in structural 

networks likely reflects a different underlying substrate than global efficiency in functional 

networks given the physical wiring costs of structural networks. Thus, despite similar levels of 

local and global efficiency in structural networks across both groups, it appears as though 

network efficiency does not appropriately shift from a more local to a more distributed pattern 

during development in individuals with ASD.  

 

Relationships Between Structure and Function 

When relating structural and functional connectivity, we found that measures of fiber 
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counts and functional connectivity strength were moderately positively correlated in both groups 

with no group differences regardless of whether the connections were within or between 

modules or whether we only included connections with lower levels of functional connectivity. 

This finding, in addition to the fact that we generally saw higher fiber counts, suggests that 

alterations in functional connectivity in ASD are not directly related to alterations in fiber 

organization. 

Interestingly, when we extracted the principal components underlying structural and 

functional network properties, we found that the largest underlying factor inversely weighted 

structural and functional network properties. This component inversely weighted local and global 

efficiency (i.e., positively weighted both CC and CPL) within functional and structural networks 

and was positively correlated with age. Although preliminary, this finding suggests that structural 

networks become more globally efficient, yet less locally efficient, during development while 

functional networks display a relative inverse pattern. This component was reduced in ASD and 

inversely related to social and communicative behavior, suggesting that the balance between 

structural and functional network properties is related to social impairments in ASD. Further 

highlighting differential age-related trajectories for functional and structural network properties, 

the second component, which positively weighted both structural and functional metrics, 

decreased with age in the TD group while it increased with age in the ASD group. Finally, the 

fourth component, which positively weighted local and global efficiency in structural networks, 

was reduced in ASD and inversely related to social and communicative symptom severity. 

Therefore, an underlying factor positively influencing both local and global efficiency in structural 

networks may also relate to disrupted social behavior in ASD. 

 

Future Directions and Conclusion  
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Future studies should characterize younger and/or lower functioning individuals with ASD 

since our findings are limited to high-functioning children and adolescents with ASD. For 

example, studies examining infants at high risk for ASD may be useful for developing 

biomarkers to aid in earlier diagnosis and treatment. Future studies may also benefit from 

advances in imaging acquisition (Feinberg et al., 2010), more flexible modeling approaches 

(Smith et al., 2012), and large-scale studies involving collaboration between institutions (Biswal 

et al., 2010). Additionally, comparisons with other neuropsychiatric disorders, and teasing apart 

underlying mechanisms such as genetic risk factors (Scott-Van Zeeland et al., 2010; Brown et 

al., 2011; Dennis et al., in press) will all be crucial for a more complete characterization of brain 

network abnormalities in ASD. 

To our knowledge, this is the first study to use complex network analyses to examine 

both structural and functional brain networks in autism. We found significant reductions in local 

efficiency and modularity within several functional networks. ASD children and adolescents also 

displayed atypical age-related changes in the balance of local and global efficiency between 

structural and functional networks. Further, this imbalance was related to the severity of socio-

communocative deficits in individuals with ASD. Our findings suggest that complex network 

modeling of structural and functional brain organization will yield a better understanding of the 

neural basis of ASD and other neuropsychiatric disorders. Ultimately, a more cohesive 

framework for understanding brain alterations in ASD may inform the design of more 

sophisticated diagnostic tools and targeted interventions.  
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Figure 2.1. Functional network organization. (A) Average functional connectivity matrix 
reorganized by its modular organization with colored boxes around each of the four 
communities (visual=blue, sensorimotor=red, attention/control=cyan, default=yellow). (B) Three 
dimensional sagittal and axial views of the functional graph in anatomical space displaying top 
2% of connections and nodes colored by community. (C) Functional connectivity matrix group 
differences (p < 0.05 uncorrected) displaying typically developing (TD) > Autism Spectrum 
Disorder (ASD) for positive (red), ASD>TD for positive (orange), TD>ASD for negative (blue) 
and ASD>TD for negative (green). (D) Numbers of TD>ASD and ASD>TD between group 
connections differing for within group positive connections (left) and between group negative 
connections (right). 

 

 

 

 

 



 

	
  

76 

 

Figure 2.2. Distribution of functional connectivity differences. (A) Numbers of connections with 
significant group differences for typically developing (TD) > Autism Spectrum Disorder (ASD; 
black) and ASD>TD (white) displayed as a function of average connectivity strength across all 
subjects and (B) average Euclidean distance for within-module connections (left) and between-
module connections (right). 
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Figure 2.3. Graph theoretical metrics of functional networks. (A) Average and standard error for 
TD (red) and ASD (blue) number of components, (B) minimum correlation coefficient for edges, 
(C) clustering coefficient, (D) gamma, (E) characteristic path length, (F) lambda, (G) small 
worldness and (H) modularity Q values as a function of network sparsity. Number of 
components and minimum correlation strength are shown between 1% and 50% network 
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sparsity in 1% increments while other network properties are displayed between 15% and 32% 
network sparsity in 1% increments (equivalent to minimum correlation values of 0.34 and 0.15). 
Significant between group differences (p < 0.05) are indicated by *. 

 

 

 

 

 

 

Figure 2.4. Nodal differences in clustering and participation coefficients. (A) Two dimensional 
axial and sagittal views of the functional graph in anatomical space displaying top 5% of 
connections with nodes colored by community organization (left columns) and radii proportional 
to average and significant between group differences (p < 0.05 in grey, FDR corrected q < 0.05 
(p < 0.0013) in black; right column) for nodal clustering (TD>ASD) and (B) participation 
coefficients (ASD>TD).  
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Figure 2.5. Structural network organization. (A) Average structural connectivity matrix 
reorganized by its modular organization. (B) Three dimensional sagittal and axial views of the 
structural network in anatomical space displaying top 2% of connections. (C) Structural 
connectivity matrix group differences (p < 0.05, uncorrected) displaying typically developing 
(TD) > Autism Spectrum Disorder (ASD) for fiber counts and (D) mean diffusivity in the 
connectivity matrix and in 3D brain space. 
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Figure 2.6. Graph theoretical metrics of structural networks. (A) Average and standard error for 
TD (red) and ASD (blue) number of components, (B) minimum fiber count for edges, (C) 
modularity Q values, (E) gamma as a function of network sparsity. Number of components and 
minimum correlation strength are shown between 1% and 12% network sparsity in 0.5% 
increments while other network properties a displayed between 5 and 8.5% sparsity in 0.5% 
increments. Significant between group differences (p < 0.05) are indicated by *. (D) Modularity 
and (F) gamma residuals after regressing out mean and relative values are displayed as a 
function of age in the TD (gray) and ASD (black) groups.  
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Figure 2.7.  Structure-function correlations. (A) Average functional connectivity and (B) 
structural fiber connectivity matrices after reorganizing by modular organization for functional 
networks. Correlation between structure and function for group average connections with a 
minimum average of 5 fibers. 
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Figure 2.8. Relationships between principal components of structural and functional network 
properties, age and ASD symptom severity. (A) Component 1 and (B) Component 2 residuals 
after regressing out mean motion are displayed as a function of age in the TD (gray) and ASD 
(black) groups. (C) Residuals of component 1 after regressing out mean motion and age are 
displayed as function of the Autism Diagnostic Interview (ADI) communication and (D) social 
subscales. (E) Residuals of component 4 after regressing out mean motion and age are 
displayed as a function of the Autism Diagnostic Observation Schedule (ADOS) social and (F) 
communication subscales. 
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CHAPTER 3: Autism Risk Variant in MET Impacts Functional and Structural Brain 

Networks 

Abstract 

As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a 

crucial next step is to determine how these risk factors impact brain structure and function. With 

three converging lines of evidence, we show for the first time that a replicated ASD risk allele in 

the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry 

in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI 

activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced 

functional and structural connectivity in temporo-parietal regions known to have high MET 

expression, particularly within the default mode network. Notably, these effects were more 

pronounced in individuals with ASD. These findings highlight the need to integrate genetic and 

neuroimaging data in order to elucidate the biological basis of complex neuropsychiatric 

disorders such as ASD. 
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Introduction 

Over the past decade significant strides have been made toward understanding the 

genetic basis of autism spectrum disorder (ASD; see Geschwind, 2011 and State & Levitt, 2011 

for review), one of the most heritable psychiatric disorders (Bailey et al., 1995; Rosenberg et al., 

2009; Hallmayer et al., 2011). Yet, due to the complexities of both ASD genetic architecture and 

brain-behavior relationships, great challenges remain in delineating how ASD risk genes shape 

the circuits underlying social behavior. Brain imaging studies have demonstrated that individual 

variation in task-based functional MRI activation patterns, resting state functional connectivity 

(rs-fcMRI), and structural connectivity measures have a strong genetic component (Chiang et 

al., 2010; Kochunov et al., 2010; Fornito et al., 2011; Glahn et al., 2010; Koten et al., 2009) and 

are altered in ASD (see Di Martino et al., 2009 and Schipul et al., 2011 for review). Thus, 

neuroimaging endophenotypes are ideal tools for bridging the gap in our understanding of how 

genetic risk impacts brain circuitry. Yet, both behavioral and imaging phenotypes in ASD 

present significant heterogeneity, sometimes leading to discrepant findings (Müller et al., 2011). 

A critical question then is how genetic variability underlies phenotypic heterogeneity, and 

consequently, whether stratifying by common functional genetic risk factors can inform our 

understanding of the neurobiology of ASD.  

Multiple genes encoding proteins in the ERK/PI3K signaling pathway have been 

implicated in syndromic and idiopathic causes of ASD (Levitt and Campbell, 2009). This 

pathway can be activated by receptor tyrosine kinases, including the Met Receptor Tyrosine 

Kinase (MET), which has been identified and replicated as an ASD risk gene (Judson et al., 

2011a). In the forebrain, MET gene and protein expression is highly regulated in excitatory 

projection neurons during synapse formation (Judson et al., 2009; Judson et al., 2011b). MET is 

expressed widely in the mouse neocortex (Judson et al., 2009), but in monkeys (Judson et al., 

2011b) and humans (Mukamel et al., 2011) it is limited to restricted regions of temporal, 
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occipital and medial parietal cortex, suggesting a role in the development of circuits underlying 

the processing of socially relevant information. The clinical relevance of MET cortical expression 

has been exemplified by post-mortem brain studies, whereby individuals with ASD displayed 

50% lower levels of MET protein in superior temporal gyrus (Campbell et al., 2007), and did not 

display the same temporo-frontal differential expression pattern as control subjects (Voineagu et 

al., 2011).  

Common and rare variation in MET has been associated with ASD across multiple 

independent cohorts (Pinto et al., 2010; Marshall et al., 2008; Thanseem et al., 2010; Jackson 

et al., 2009; Sousa et al., 2009; Campbell et al., 2008; Campbell et al., 2006). The ‘C’ variant of 

rs1858830, located in the promoter region of MET, is associated with ASD risk (Campbell et al., 

2006; Campbell et al., 2008; Jackson et al., 2009). This risk allele is functional as it reduces 

gene transcription in vitro (Campbell et al., 2006) and correlates with lower levels of MET 

transcript and protein in the temporal cortex of healthy control subjects (Campbell et al., 2007; 

Heuer et al., 2011). Furthermore, this risk variant moderates the severity of social symptoms in 

ASD whereby individuals with ASD who carry this risk allele have more severe social and 

communication phenotypes than those who do not (Campbell et al., 2010).  

The neurobiological correlates of the impact of reduced MET expression in humans have 

been recently examined in Met conditional knockout (Met-cKO) mice (Judson et al., 2009; 

Judson et al., 2010; Qiu et al., 2011). Neocortical pyramidal neurons in Met-cKO mice exhibited 

altered dendritic architecture and increased spine head volume (Judson et al., 2010), as well as 

a concomitant increase in local interlaminar excitatory drive onto corticostriatal neurons (Qiu et 

al., 2011). This finding of upregulated local-circuit connectivity is highly relevant as it is 

consistent with current theorizing regarding increased local circuit connectivity and decreased 

long-range connectivity of brain networks in individuals with ASD (Belmonte et al., 2004; 

Courchesne and Pierce, 2005; Geschwind and Levitt, 2007). Given histopathological findings of 
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disordered minicolumn organization (e.g., Casanova et al., 2002), it has been proposed that 

local over-connectivity arising from a loss of appropriate lateral inhibitory control may ultimately 

constrain the typical development of long-range cortical networks in ASD. MRI evidence of long-

distance underconnectivity using structural and functional MRI is extensive. For example, 

reduced functional connectivity in distributed brain networks in ASD has been reported across a 

variety of cognitive tasks (e.g. Castelli et al. 2002; Just et al., 2004; Villalobos et al., 2005; 

Kleinhans et al., 2008) and when measuring task-independent (intrinsic) connectivity for 

interhemispheric (Dinstein et al., 2011; Anderson et al., 2011b) and anterior-posterior 

connections (Cherkassky et al., 2006; Kennedy and Courchesne, 2008; Monk et al., 2009; 

Weng et al., 2010; Assaf et al., 2010; Rudie et al., 2011), including the default mode network 

(DMN; Raichle et al., 2001). The DMN is involved in socio-emotional processing including 

mentalizing and empathizing, which are classically impaired in individuals with ASD. 

Additionally, several diffusion tensor imaging (DTI) studies have reported reduced white matter 

integrity of anterior-posterior and interhemispheric tracts in ASD (Barnea-Goraly et al., 2004; 

Alexander et al., 2007; Sundaram et al., 2008; Cheng et al., 2010; Shukla et al., 2011; Barnea-

Goraly et al., 2010). 

Based on the convergent genetic, clinical, and neurobiological findings regarding MET-

mediated ASD risk, we hypothesized that the MET promoter variant would be a powerful 

moderator of socially relevant functional and structural neuroimaging endophenotypes. We 

tested this prediction by examining the relationship between MET risk genotype and functional 

activation patterns to social stimuli (i.e., emotional facial expressions), long-range DMN 

functional connectivity, and the integrity of major white matter tracts in which MET is highly 

expressed. Additionally, we hypothesized that the MET promoter variant would help address 

ASD heterogeneity by clustering a unique subset of individuals with the diagnosis, such that 
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individuals with ASD and MET risk alleles would exhibit the greatest alterations in structural and 

functional endophenotypes. 

Results 

A total of 162 children and adolescents including 75 with an ASD and 87 who were 

typically developing (TD) contributed data to one or more of the three neuroimaging 

experiments (Table 3.1). This included a task-based fMRI experiment involving the passive 

observation of emotional faces (N=144), a resting state fMRI scan (N=71), and a diffusion-

weighted scan (N=84). DNA was extracted from saliva samples and the MET variant, 

rs1858830, was genotyped by direct resequencing. Individuals carried 0, 1, or 2 of the 

rs1858830 C “risk” alleles. There were three genotype groups: a CC homozygous risk group 

(30.2% of sample), a CG heterozygous risk group (49.4% of the sample), and a GG 

homozygous non-risk group (20.3% of the sample). Thus, the terminology (i.e., “risk” versus 

“non-risk” group) used hereafter refers to both TD and ASD individuals with specific MET 

genotypes. Genotypes observed Hardy-Weinberg Equilibrium (χ² = 0.001, p = 0.973) and in this 

sample we did not observe an enrichment of the risk allele in individuals with ASD (Fisher’s 

exact test, p = 0.654). However, it should be noted that our sample consisted of high functioning 

individuals with ASD and prior studies have shown an enrichment of the MET risk allele 

particularly in the most highly impaired individuals with ASD (Campbell et al., 2010). 

In each of the three datasets, genotype groups did not differ by age, gender, head 

motion, IQ, or ASD diagnoses; similarly, there were no differences between diagnostic groups in 

age, gender, or head motion (Table 3.1). However, consistent with prior reports (Campbell et 

al., 2010), ASD homozygous risk and heterozygous risk groups had significantly higher levels of 

social impairment (Autism Diagnostic Observation Scale, ADOS, Lord et al., 2000, social 

subscale, p=0.001) than the ASD homozygous non-risk group. IQ did not differ between the 
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ASD homozygous non-risk group and all TD groups (homozygous risk, heterozygous risk, and 

homozygous non-risk) but was significantly lower in both ASD homozygous risk and 

heterozygous risk groups; thus, we included full scale IQ as a covariate in all analyses 

examining the effect of an ASD diagnosis. Additionally, given that the inheritance pattern 

(additive, dominant, or recessive) of the genotype effect is not clearly established, we first 

focused on a direct contrast between the homozygous risk (CC) and non-risk (GG) groups 

collapsed across diagnostic status, for all datasets. After these initial whole-brain analyses, we 

used the regions differing between the homozygous risk and non-risk groups as a single region 

of interest for analyses that included the intermediate genotype group and that were stratified by 

diagnostic status. 

Functional Activation Patterns to Emotional Faces  

We performed fMRI in a cohort of 144 children and adolescents, including 78 typically-

developing (homozygous risk: N=28, heterozygous risk: N=34, homozygous non-risk: N=16) 

and 66 diagnosed with ASD (homozygous risk: N=15, heterozygous risk: N=39, homozygous 

non-risk: N=12; Table 3.1), during passive observation of faces displaying different emotions 

(angry, fearful, happy, sad, and neutral; with fixation crosses directing attention to the eye 

region as previously reported (Dapretto et al., 2006; Pfeifer et al., 2008; Pfeifer et al., 2011). We 

observed strong correlations between the MET risk allele and unique patterns of functional brain 

activity when collapsing across diagnostic category. Compared to the non-risk group (N=28), 

the risk group (N=43) displayed a pattern of hyperactivation and reduced deactivation in specific 

regions where MET is expressed in primates and humans (Mukamel et al., 2011; Judson et al., 

2011b; Figure 3.1A, Table 3.2). The risk and non-risk groups both activated primary/secondary 

visual cortices, thalamus, and amygdala; however, the risk group activated amygdala and 

striatum more robustly than the non-risk group. Additionally, the non-risk group displayed a 

pattern of widespread deactivation (i.e., reduced activity while viewing faces vs. fixation 
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crosses), most prominently in midline structures of the DMN and perisylvian regions centered on 

primary auditory cortex. In contrast, the risk group did not deactivate these regions to the same 

degree as the non-risk group (Figure 3.1A).  

To investigate the risk allele’s inheritance pattern as well as the effect of an ASD 

diagnosis, we compared the average activity across regions differing between the risk and non-

risk groups for all three genotype groups stratified into either TD or ASD subgroups. We found 

that the MET promoter variant has a differential penetrance between neurotypical and autistic 

individuals. Specifically, TD individuals with one risk allele showed a similar deactivation pattern 

to those without a risk allele (Figure 3.1B). In contrast, in individuals with ASD, one MET risk 

allele was sufficient to give rise to the atypical pattern of functional activity, showing less 

deactivation than the non-risk group. In fact, when comparing those with one risk allele, 

individuals with ASD exhibited significantly less deactivation in these regions compared to TD 

subjects.  

Default Mode Network Functional Connectivity 

To examine whether MET risk disrupts default mode network functional connectivity we 

used a sphere centered in the posterior cingulate (Fox et al., 2005) as a seed region for whole-

brain functional connectivity analyses in rs-fcMRI data in a matched sample of 33 typically-

developing and 38 children and adolescents diagnosed with ASD. In line with the functional 

activation results, the MET risk genotype significantly modulated functional connectivity such 

that those in the highest risk group, with two MET alleles (N=16) had reduced intrinsic anterior-

posterior connectivity between the medial prefrontal cortex (MPFC) and the posterior cingulate 

cortex (PCC) compared to the non-risk group (N=16; Figure 3.2A, Table 3.3). In agreement 

with the functional activation analyses, the ASD heterozygous risk group (N=24) showed a 

pattern of functional connectivity similar to that observed in the homozygous risk group, 
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whereas functional connectivity in the TD heterozygous risk group (N=15) was no different than 

the homozygous non-risk group. Collapsed across genotype, the ASD group exhibited reduced 

PCC-MPFC connectivity relative to the TD group (Figure 3.2B). This diagnostic effect was 

driven by a stronger penetrance of the MET risk allele in the ASD group as it was only observed 

in risk carriers; indeed, MET genotype explained 1.7 times as much variance in DMN 

connectivity in autistic relative to neurotypical individuals. 

White Matter Structural Connectivity 

A third line of evidence for the impact of the MET risk allele was sought by examining the 

structural integrity of white matter tracts in a cohort of 84 children and adolescents (TD: N=38, 

ASD: N=46). We found that MET risk genotype predicted marked reductions in fractional 

anisotropy (FA) across several major white matter tracts known to connect the very same 

regions previously implicated in our functional analyses. Compared to non-risk allele 

homozygotes (N=19), risk allele homozygotes (N=23) displayed lower FA in multiple major 

tracts in temporo-parieto-occipital regions that exhibit high MET expression developmentally 

(i.e., splenium of the corpus callosum, superior/inferior longitudinal fasciculus, and cingulum; 

Figure 3.3A; Table 3.4). Consistent with the observed functional connectivity patterns, in these 

tracts the MET risk allele had a stronger impact in individuals with ASD (Figure 3.3B), 

explaining nearly twice (1.9 times) as much variance in the ASD group. More specifically, ASD 

heterozygous risk allele carriers (N=25) and homozygous risk allele carriers (N=12) both 

exhibited strong reductions in FA, whereas structural connectivity was only significantly 

impacted in TD homozygous risk carriers (N=11). 

Correlation Between Imaging and Behavioral Measures: 

Within the ASD group, we correlated scores on ADOS social subscale (Lord et al., 

2000), with measures derived from the imaging analyses. Lower levels of both functional and 
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structural connectivity were significantly associated with higher levels of social impairment in the 

ASD group overall (Figure 3.4). However, as previously noted, there was also a direct 

relationship between risk genotype and increased symptom severity. Indeed, the relationship 

between brain circuitry and symptom severity was largely driven by the fact that individuals with 

ASD who have MET risk alleles have both increased symptom severity and impacted brain 

circuitry (i.e., the correlations were no longer significant when co-varying for MET risk 

genotype). 

Discussion 

In the present study, we used an imaging genetics approach to examine the impact of a 

common functional variant in MET on neuroimaging endophenotypes that are disrupted in ASD. 

We found that, irrespective of clinical diagnosis, the functional promoter ‘C’ allele of MET alters 

functional activity patterns to social stimuli, long-range DMN functional connectivity, and white 

matter integrity in specific regions that exhibit high MET expression and subserve socially-

relevant processes. This is consistent with the concept of endophenotypes, whereby a 

functional risk allele predisposing to a disorder could have a larger impact on disorder-relevant 

phenotypes than the disorder itself. Remarkably, we also found that the MET risk allele had a 

stronger impact across individuals with ASD, especially within the heterozygous risk group. 

Measures of structural and functional circuitry correlated with symptom severity, but this 

correlation was driven by the fact that MET risk genotype was associated with both increased 

symptom severity and alterations in brain circuitry. These findings suggest that MET genotype 

could be a useful means to stratify heterogeneous ASD samples. 

Functional Activation Patterns 

We first focused on functional activation patterns in response to the passive observation 

of emotional facial expressions in a large sample of 66 ASD and 78 TD subjects. The high 
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expression of MET in ventral temporal cortex, including the amygdala and fusiform gyrus, 

prompted us to test whether the C risk allele might impact activity in these regions in response 

to socially-relevant and affect-laden stimuli. Early studies of emotional face processing 

documented amydala and fusiform hypoactivation in ASD (Baron-Cohen et al. 2000; Critchley et 

al., 2000; Schultz et al. 2000). Later studies that better controlled for eye gaze (such as a 

fixation cross that directs gaze at the eyes, similar to the one used in the present study) found 

either no differences or hyperactivation in these regions (Hadjikani 2004; Peirce et al. 2004; 

Dalton et al. 2005; Monk et al. 2010). Here we found that MET risk genotype was associated 

with hyperactivation of amygdala and striatum, as well as reduced deactivation in temporal and 

midline neocortex. These areas comprise circuits that have the highest MET expression in 

developing humans and other primates (Judson et al. 2011b; Mukamel et al. 2011) and that 

exhibit structural and physiological dysfunction with reduced Met expression in mice (Judson et 

al., 2010; Qiu et al., 2011).  

Overall, the risk group showed less deactivation than the non-risk group in these 

regions. Deactivation is a less well-characterized phenomenon in fMRI, but the DMN is known 

to show signal decreases in response to a variety of tasks requiring externally directed attention 

(Raichle et al., 2001). Interestingly, task induced DMN deactivation was shown to have a 

neuronal origin (Lin et al., 2011), so it may relate to intrinsic inhibitory properties of local cortical 

circuits. Few studies have focused on differences in deactivation in ASD, but individuals with 

ASD exhibit less deactivation within regions of the default mode network (Kennedy et al. 2006), 

consistent with our findings. The auditory cortex is also known to deactivate during visual tasks 

(Laurienti et al. 2002; Mozolic et al., 2008) and, in our study, the auditory cortex exhibited the 

strongest deactivation differences between genotype groups during this visual task. These 

findings of reduced deactivation of perisylvian and DMN regions in MET risk carriers may relate 

to a failure to appropriately suppress neuronal activity, perhaps through a Met-mediated 
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enhancement of local connectivity. Future imaging and neurophysiological studies are needed 

to test this hypothesis. 

Functional And Structural Connectivity 

The fact that MET risk carriers displayed altered DMN deactivation patterns further 

prompted us to test whether the risk allele impacts intrinsic functional connectivity in this 

network, particularly since DMN connectivity is consistently disrupted in ASD (Cherkassky et al., 

2006; Kennedy and Courchesne, 2008; Monk et al., 2009; Weng et al., 2010; Assaf et al., 2010; 

Rudie et al., 2011). Indeed we found that MET risk carriers and individuals with ASD exhibited 

reductions in long-range, anterior-posterior DMN connectivity. The combination of reduced 

deactivation and connectivity supports the notion that the DMN is both less integrated with itself 

and less segregated from other neural systems in both MET risk carriers and individuals with 

ASD (Rudie et al., 2011). Additionally, these findings suggest that functional alterations in the 

DMN represent a trait marker shared in those with, or at risk for, ASD.  

Next, we examined whether structural connectivity was altered in MET risk carriers, as 

the MET protein is highly expressed during axon outgrowth in specific white matter tracts in 

primates (Judson et al., 2011b). Remarkably, the presence of the MET risk allele was 

associated with even stronger disruptions in white matter integrity than having an ASD 

diagnosis. The effects were most pronounced in temporo-parietal regions of high MET 

expression and especially within the splenium, which includes fiber pathways originating from 

the posterior cingulate/precuneus of the DMN. This hub region, implicated in all three imaging 

analyses, has been characterized as the structural core of the human connectome (Hagmann et 

al., 2008). The combined array of imaging findings is consistent with the involvement of MET in 

multiple processes, including axon guidance and synaptogenesis, which regulate circuit 

development. This polymorphism may affect structure formation and ongoing synaptic function 
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independently. Additional work is needed to tease apart structure-function relationships with 

regard to both MET-mediated and ASD-general alterations in connectivity.  

Finally, we found that structural and functional connectivity were related to autism 

symptom severity, particularly in the social domain. However, this relationship was mediated by 

the fact that the MET risk allele was associated with increased symptom severity and reduced 

functional and structural connectivity. This result, in combination with the finding that, across all 

imaging measures, TD individuals with two risk alleles exhibited more ‘atypical’ brain circuitry 

than individuals with ASD carrying no risk alleles, raises critical issues regarding the causal 

nature of altered connectivity findings in ASD. The idea that functional and structural alterations 

may at least in part reflect genetic vulnerability is also supported by recent fMRI and DTI studies 

showing greater similarity between individuals with ASD and their unaffected siblings than 

between controls and unaffected siblings (Kaiser et al., 2010; Barnea-Goraly et al., 2010; 

Spencer et al., 2011). Thus, these findings highlight the need for future studies to account for 

relevant genetic factors, such as the MET promoter variant, to parse the heterogeneity present 

in autism brain and behavioral phenotypes, and ultimately improve diagnostic or prognostic 

tools (Fox & Greicius 2010). 

Enhanced Effect of MET Risk Allele in ASD 

Our data suggest that the MET ‘C’ risk allele has a greater effect in individuals with ASD, 

likely due to the influence of other factors that shape circuits underlying social behavior. Across 

all three imaging measures, the neuroimaging phenotypes of the ASD intermediate-risk 

(heterozygote) group were similar to those observed in the high-risk (homozygote) group, 

whereas the neuroimaging phenotypes of the TD intermediate-risk group resembled those of 

the non-risk group. This is consistent with the notion that multiple genetic and/or environmental 

factors in ASD contribute to both disrupted MET expression and atypical circuitry in individuals 
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with ASD. In fact, we previously found that carriers of a common risk allele in CNTNAP2 also 

display alterations in functional connectivity (Scott-Van Zeeland et al., 2010). In addition to 

CNTNAP2 and MET modulating functional connectivity, transcription of both genes is regulated 

by FOXP2 (Vernes et al., 2008; Mukamel et al., 2011), which is known to pattern speech and 

language circuits in humans (Konopka et al., 2009). Consistent with a multiple hit model, these 

findings collectively indicate that in individuals with ASD, who likely have additional alterations in 

the MET signaling pathway, the presence of the MET promoter risk allele results in more 

severely impacted brain circuitry and social behavior. 

Relevance to ASD Connectivity Theories 

The converging imaging findings reported here provide a mechanistic link, through MET 

disruption, to the previously hypothesized relationship between altered local circuit and long-

range network connectivity in ASD (Belmonte et al. 2004; Courchesne et al., 2005; Geschwind 

and Levitt, 2007; Qiu et al., 2011). Moreover, the present results draw a striking parallel with 

alterations in neuronal architecture and synaptic functioning abnormalities found in Met-

disrupted mice (Judson et al., 2010; Qiu et al., 2011). Local circuit hyperconnectivity at the 

microcircuit level seen in conditional Met null/heterozygous mice may lead to the 

hyperactivation/reduced deactivation we observed in humans with MET risk alleles. While 

speculative at this point, this may in part account for the presence of enhanced visual and 

auditory discrimination (Baron-Cohen et al., 2009; Jones et al., 2009; Ashwin et al., 2009) or 

sensory over-responsivity, observed in some individuals with ASD (Ben-Sasson et al., 2007; 

Baranek et al., 2006). Alterations in local-circuit connectivity and/or structural connections may 

ultimately hinder the typical formation of long-range connectivity (Dosenbach et al., 2010) 

observed in both MET risk allele carriers and individuals with ASD.  

Conclusions 
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To our knowledge, this is the first report showing how an ASD risk allele predisposes to 

ASD by affecting functional activity, connectivity and white matter tract integrity in regions 

involved in social cognition. These findings have a number of broad implications. First, these 

results reveal an enhanced penetrance of a risk allele within individuals with ASD, reflecting a 

novel mechanism whereby a common functional variant, in the context of other factors related to 

ASD etiology, has a larger effect on network structure and function than in neurotypical 

individuals. Second, given that differences between ASD and controls were moderated by MET 

risk genotype, and in the case of functional activity were only revealed when the cohort was 

stratified by MET genotype, these data demonstrate the power of utilizing genetic data for 

understanding and parsing phenotypic heterogeneity in ASD. This approach may provide a 

more sensitive means to identify subgroups of individuals with particular risk alleles and brain 

circuitry, for whom targeted treatments may be developed. Finally, expanding upon our prior 

findings linking a CNTNAP2 common variant to functional connectivity (Scott-Van Zeeland et al., 

2010), the discovery that the MET risk allele has such large effects on structural and functional 

brain circuitry in typical and atypical development indicates that alterations in brain networks in 

ASD may in part reflect genetic vulnerability, or liability, rather than causal mechanisms. Taken 

together, the current results indicate that considering relevant genetic factors when interpreting 

neuroimaging data will greatly aid in understanding, and ultimately treating, ASD and other 

clinically and genetically heterogeneous neuropsychiatric disorders. 

 

Materials and Methods 

Subjects 

High-functioning children and adolescents with autism spectrum disorders (ASD) and 

typically developing (TD) children were recruited through UCLA’s Center for Autism Research 
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and Treatment (CART) and/or flyers posted throughout the greater Los Angeles area. 

Individuals with metal implants or a history of neurologic, psychiatric, brain abnormalities, or 

known genetic conditions were excluded from participation. Informed consent and assent to 

participate was obtained prior to assessment under our institutional review board (IRB) 

approved protocols. A total of 75 individuals with ASD and 87 TD individuals were included in at 

least one of the three datasets detailed in Table 3.1. Twenty-seven individuals with ASD and 2 

TD individuals reported the use of one or more psychotropic medications. One TD subject was 

using a psychostimulant and another reported using a selective serotonin reuptake inhibitor. Of 

the subjects in our ASD sample, 15 were taking psychostimulants, 5 were taking 

sympatholytics, 11 were taking atypical antipsychotics, 11 were taking selective serotonin 

reuptake inhibitors, 5 were taking selective norepinephrine reuptake inhibitors, and 1 was taking 

an atypical antidepressant. Although psychotropic medication usage differed as a function of 

diagnostic status (χ² = 30.397, p <0.001), medication usage did not differ as a function of MET 

genotype (χ² = 1.763, p = 0.414), thus it is unlikely that medication usage confounds the findings 

of the present study.  

Behavioral Measures 

Verbal, performance, and overall intelligence were assessed for each participant using 

the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1991) or the full Wechsler 

Intelligence Scale for Children (WISC; Wechsler 1999). High-functioning children with ASD had 

a prior clinical diagnosis of autism based on criteria from the Diagnostic and Statistical Manual 

of Mental Disorders (DSM IV), which was confirmed with the Autism Diagnostic Observation 

Scale (ADOS-G; Lord et al., 2000) and/or Autism Diagnosis Interview (ADI-R; Lord et al., 1994). 

Genotyping 
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Subjects provided saliva samples for genetic analysis. DNA was isolated from saliva 

using standard protocols from the OraGene Collection kit (DNA GenoTek, Ontario, Canada). 

Genotypes at rs1858830 were determined by direct sequencing, as described elsewhere   

(Campbell et al., 2007). In brief, genomic DNA was extracted from saliva specimens and 20ng 

was used as a template for a polymerase chain reaction (PCR) amplification of a 652bp 

amplicon, which includes rs1858830, using the KOD Xtreme Hot Start DNA Polymerase kit 

(EMD Chemicals, Gibbstown, NJ) by the manufacturer’s protocol. Primer sequences were: 

forward primer, GATTTCCCTCTGGGTGGTG; reverse primer, CAAGCCCCATTCTAGTTTCG. 

Thermal cycling conditions were as follows: 94º for 2m, followed by 35 cycles of 98º for 10s then 

58º for 30s then 68º for 1m, and a final extension at 68º for 7m. Agarose gel electrophoresis of 

the PCR product from a random sampling of reactions confirmed specific amplification of the 

652 bp amplicon. A 2µl aliquot of PCR product was diluted 1:10 in water, and direct sequencing 

off the reverse primer was performed using a 3730xl DNA Analyzer (Applied Biosystems, Foster 

City, CA). Sequences were aligned to the reference sequence of the plus strand of chromosome 

7 and chromatograms were visually inspected to determine genotypes using Sequencher 

version 4.10.1 (Gene Codes, Ann Arbor, MI). Genotypes were called while blinded to sample 

identity and case status, and heterozygote calls were required to have a secondary peak on 

the chromatogram with at least 50% the height of the primary peak.  

Statistical analyses on demographics and extracted imaging measures 

All statistical analyses performed on demographics and extracted 

activation/connectivity/FA values were conducted with PASW Statistics 18, Release Version 

18.0.3 (SPSS, Inc., 2009, Chicago, IL). ANOVAs (2 diagnostic groups by 3 genotype groups) 

were performed for age, full scale IQ, verbal IQ, performance IQ, mean relative head motion, 

ADOS social, communication and repetitive/restricted subscales and chi-square tests were 

performed on scanner type (functional activation only) and gender for genotype and diagnostic 
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status groups. Tests of means were performed between the intermediate-risk genotype group 

(CG), risk (CC), and non-risk groups (GG) collapsed across diagnostic status, TD and ASD 

groups collapsed across genotype, and between TD and ASD subjects within each genotype 

group. Because we performed additional analyses on the mean activity/connectivity/FA in 

regions derived from whole brain contrast maps comparing risk and non-risk groups, we do not 

report the p-values generated from further tests comparing these two groups as these would be 

inflated. 

MRI Data Acquisition 

The emotional faces functional activation scans were acquired at UCLA on a Siemens 

3T Trio (n=101) and Siemens 3T Allegra (n=43) MRI scanners using a 16 channel phased array 

coil. A similar proportion of subjects in each of the genotype groups were scanned on the two 

scanners (Table 3.1), however the diagnostic groups did differ by scanner type, thus scanner 

type was used as a covariate of no interest in the secondary analyses comparing activity 

between TD and ASD groups. All rs-fcMRI and DTI scans were acquired on a Siemens 3T Trio.  

A scout localizing scan was used for graphic prescription. Next, a matched bandwidth 

T2-weighted high-resolution echo planar scan was acquired co-planar to the functional images 

ensuring identical distortion characteristics to the fMRI scan (Siemens 3T Allegra: TR=5000ms, 

TE=33ms, matrix size 128 by 128, 20.0cm FoV, 36 4mm thick slices with an in plane voxel 

dimension of 1.56x1.56mm. Siemens 3T Trio: TR=5000ms, TE=34ms, matrix size 128 by 128, 

19.2cm FoV, 36 4mm thick slices with an in plane voxel dimension of 1.50x1.50mm). The 

emotional faces functional data acquisition consisted of 96 T2* BOLD weighted images lasting a 

total of 4min 54s (Siemens 3T Allegra: TR=3000ms, TE=25ms, matrix size 64 by 64, 20cm FoV, 

36 4mm thick slices (no gap) with an in plane voxel dimension of 3.125x3.125mm. Siemens 3T 

Trio: TR=3000ms, TE=28ms, matrix size 64 by 64, 19.2cm FoV, 34 4mm thick slices (no gap) 
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with an in plane voxel dimension of 3.0x3.0mm). In a single resting state session, subjects were 

told to relax and keep their eyes open while a fixation cross was displayed on a white 

background for 6 minutes (T2* weighted functional images: TR=3000ms, TE=28ms, matrix size 

64 by 64, 19.2cm FoV, 34 4mm thick slices (no gap) with an in plane voxel dimension of 

3.0x3.0mm). Diffusion weighted scans consisted of 32 scans with diffusion weighted directions 

(b=1000mm/s2), three scans at b=0, and an additional six scans at b=50. TR=9500ms, 

TE=87ms, GRAPPA on, FOV=256mm, 75 slices yielding an in plane voxel dimension of 2x2mm 

with 2mm thick axial slices, total scan time=8min,1s. 

Functional MRI Pre-processing 

Functional imaging data were analyzed using FSL version 4.1.4 (FMRIB's Software 

Library, www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004) and AFNI (Analysis of Functional 

NeuroImages; Cox, 1996). Structural and functional images were skull-stripped using AFNI 

(3dskullstrip and 3dautomask). Functional volumes were motion corrected to the mean 

functional volume with MCFLIRT (Motion Correction using FMRIB's Linear Image Registration 

Tool) using a normalized correlation ratio cost function and sinc interpolation (Jenkinson et al., 

2002). Translations and rotations in the x, y, and z dimensions were calculated from volume to 

volume and averaged to generate mean relative displacement values. Subjects with greater 

than 3mm displacement between any time were excluded prior to further analyses. Images were 

spatially smoothed using a Gaussian kernel of FWHM 5mm and high pass filtered (t > 0.01 Hz). 

For registration, the second functional volume was aligned to the high-resolution matched 

bandwidth coplanar images via an affine transformation with 6 degrees of freedom, then aligned 

to the standard Montreal Neurological Institute (MNI) average of 152 brains using an affine 

transformation with 12 degrees of freedom using FLIRT (FMRIB’s Linear Image Registration 

Tool). After statistical analyses were performed in subject native space, this transformation 
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matrix was applied to contrast parameter estimate and contrast variance parameter estimate 

spatial maps in order to perform group level analyses in standard space. 

Emotional Faces fMRI Task Design and Analysis 

Participants underwent a rapid event-related fMRI paradigm in which faces with different 

emotional expressions were displayed (Pfeifer et al., 2011; Pfeifer et al., 2008; Dapretto et al., 

2006). Subjects were asked to “just look at the expression on each face.” Subjects were 

presented with 80-full color faces from the NimStim facial expressions stimulus set (Tottenham 

et al., 2009). The scan consisted of 96 events whereby each emotion (neutral, happy, sad, 

fearful, and angry), as well fixation crosses (null events), were presented at eye level for 2s with 

an average inter-trial interval of 3s. The order of events was optimized and jittered (jitter ranging 

from 500ms to 1500ms in 125ms increments) to maximize contrast detection efficiency (Wager 

and Nichols, 2003). Using FSL’s FEAT (FMRI Expert Analysis Tool), time-series statistical 

analysis was carried out using FILM with local autocorrelation correction (Woolrich et al., 2001). 

The 5 sets of emotional faces and null events were modeled with a convolved double gamma 

HRF according to the general linear model. The contrast of all emotional faces versus null event 

was brought to the group level using a mixed effects analysis with FLAME (FMRIB's Local 

Analysis of Mixed Effects). We chose to focus on the contrast of all faces (including neutral) 

versus null events given that even neutral facial expressions can elicit neural responses that do 

not significantly differ from those elicited by other emotions. We directly compared whole-brain 

activation maps from the CC risk and GG non-risk groups. Whole brain Z-statistic maps for the 

CC>GG map were thresholded (Z>2.3) using correction for multiple comparisons at the cluster 

level (p<0.05) and displayed on the MNI 152 1mm standard brain (Figure 3.1A). Within-group 

maps were thresholded at Z>1.7 (uncorrected) for illustrative purposes. 
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As shown in Table 3.1, the three genotype groups did not differ by age, full scale IQ, 

verbal IQ, performance IQ, mean relative head motion, gender, or scanner type and there were 

no diagnostic differences in age, gender, or head motion. For further analysis, we extracted the 

average activity in all regions identified from the CC>GG contrast (Z>2.3, corrected) and report 

tests of means from a 2 by 3 factor ANOVA, covarying for Full Scale IQ and scanner type 

(Figure 3.1B). 

Resting-State Data Pre-processing 

In addition to all of the same pre-processing steps described above for the emotional 

faces functional scan, we band pass filtered (0.1 Hz > t > 0.01 Hz) the data and regressed out 

nuisance covariates, including 6 rigid body motion parameters and average white matter (WM), 

cerebrospinal fluid (CSF) and global time-series. The WM and CSF time-series reflected signal 

from subject-specific regions of interest (ROIs) created using FAST (FSL’s Automatic 

Segmentation Tool). Additionally, volumes with large signal intensity changes (i.e. motion 

spikes) were modeled out by creating additional nuisance regressors that modeled individual 

time points with greater than a half of a standard deviation change in global signal intensity as 

calculated by the fsl_motion_outliers script. The residuals from the previous step were aligned 

to high-resolution coplanar images via an affine transformation with 6 degrees of freedom and 

then aligned to the standard MNI average of 152 brains using an affine transformation with 12 

degrees of freedom using FLIRT.  

Resting-State Data Analysis 

Time-series statistical analysis was carried out according to the general linear model 

using FEAT, Version 5.98. In order to examine functional connectivity in the default mode 

network, time-series were extracted from a 5mm radius sphere in the posterior cingulate cortex 

centered at (-2, -39, 38), which is the peak of the combined default mode network map derived 
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from the conjunction of multiple DMN seeds (Fox et al., 2005). We correlated the average time 

series from this region with every voxel in the brain to generate connectivity maps for each 

subject. Individual correlation maps were converted into z-statistic maps using Fischer’s r to z 

transformation and then combined and contrasted at the group level using the ordinary least 

squares method. We directly compared whole-brain activation maps from the CC risk and GG 

non-risk groups. Whole brain Z-statistic maps for the GG>CC map were thresholded (Z>2.3) 

using correction for multiple comparisons at the cluster level (p<0.05) and displayed on the MNI 

152 1mm standard brain (Figure 3.2A). Within-group maps were thresholded at Z>1.7 

(uncorrected) for illustrative purposes. 

As shown in Table 3.1, the three genotype groups did not differ by full scale IQ, 

performance IQ, mean relative head motion, or gender and there were no diagnostic differences 

in age, gender, or head motion. For further analysis, we extracted the average functional 

connectivity Z-scores between the posterior cingulate seed and the medial prefrontal and frontal 

orbital regions identified from the GG>CC contrast (Z>2.3, corrected) and report tests of means 

from 2 by 3 factor ANOVA, covarying for age and Full Scale IQ (Figure 3.2B). 

DTI Pre-processing and Data Analysis 

We examined fractional anisotropy (FA) in major white matter tracts using FSL’s Tract 

Based Spatial Statistics (TBSS version 1.2; Smith et al., 2006). Individual images with gross 

motion artifacts (exceeding 2mm displacement) were identified and removed and subjects with 

excessive motion (greater than 8 volumes with >2mm motion) were excluded from further 

analysis. Motion and eddy current correction was then applied to the diffusion weighted images 

with FDT (FMRIB’s Diffusion Toolbox). FSL’s dtifit was used to fit a diffusion tensor model to the 

data at each voxel. Voxelwise values of FA were calculated from tensor maps for each subject. 

TBSS was used to perform a whole-brain voxelwise between-group FA analysis. FA maps were 
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nonlinearly registered to the FMRIB58_FA 1x1x1mm MNI standard space atlas using FNIRT 

(FMRIB’s Nonlinear Image Registration Tool). FA maps were then skeletonized and thresholded 

at 0.2 to minimize the effect of voxels at the edge of tracts. Skeletonized FA maps were then fed 

into FSL’s randomise for inference testing using voxelwise permutation tests and threshold free 

cluster enhancement (TFCE; Smith et al., 2009). We directly compared the CC risk group and 

GG non-risk group skeletonized FA maps. Results are displayed at p<0.05, fully corrected for 

multiple comparisons using TFCE. Results from the voxelwise analysis on FA skeleton were 

expanded using tbss_fill for visualization purposes and displayed on the MNI 152 1mm standard 

brain (Figure 3.3A). 

As shown in Table 3.1, the three genotype groups did not differ by full scale IQ, verbal 

IQ, performance IQ, mean relative head motion, gender, or scanner type and there were no 

diagnostic differences in age, gender, or head motion. For further analysis, we extracted the 

average FA from white matter regions identified from the GG>CC contrast (p<0.05, corrected) 

and report tests of means from 2 by 3 factor ANOVA, covarying for age and Full Scale IQ 

(Figure 3.3)
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Figure 3.1. Functional MRI activation patterns to emotional faces in MET risk carriers. A) Within 
group whole-brain activation (orange) and deactivation (blue) maps for CC “risk” group, GG 
“non-risk” group, and between groups (risk>non-risk; purple). B) Averages and standard errors 
for functional activation parameter estimates from regions in risk>non-risk contrast for each 
genotype phenotype subgroup (Full scale IQ and MRI scanner included as covariates in 2X3 
ANOVA model). *p<0.05. 
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Figure 3.2. Reduced default mode network (DMN) functional connectivity in MET risk carriers. 
A) DMN connectivity within CC “risk” group, GG “non-risk” group, and between groups 
(risk>non-risk; purple). B) Averages and standard errors for functional connectivity between 
posterior cingulate seed and medial prefrontal and frontal orbital clusters from GG>CC contrast 
for each genotype phenotype subgroup (age and IQ included as covariates in 2X3 ANOVA). 
PCC = posterior cingulate cortex. *p<0.05, **p<0.01.  
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Figure 3.3. Reduced white matter integrity in MET risk carriers. A) Results of Tract-Based 
Spatial Statistics analysis comparing fractional anisotropy (FA) in GG “non-risk” group vs. CC 
“risk” group (p<0.05, corrected). B) Averages and standard errors for FA values in tracts from 
non-risk>risk contrast for each genotype-phenotype subgroup (age and IQ included as 
covariates in 2x3 ANOVA). ***p<0.001. 

 

 

 

 



 

	
  

112 

 

 

 

 

Figure 3.4. Relationship between imaging measures and social symptoms in ASD. Correlations 
between the social subscale of the Autism Diagnostic Observation Scale (ADOS) is shown for 
functional activation parameter estimates while viewing emotional faces (first column), DMN 
functional connectivity (second column), and white matter structural connectivity (third column). 
Pearson correlation coefficients shown with p-values from a 1-tailed distribution. PCC = 
Posterior Cingulate Cortex, MPFC = Medial Prefrontal Cortex 
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CONCLUSION 

Autism is an incredibly complex neurodevelopmental disorder that has a growing impact 

on society. Although there is much we do not understand about the disorder, it is an exciting 

time in which research from genetics and cellular biology is starting to converge with in vivo 

neuroimaging studies, suggesting that autism is characterized by altered brain connectivity. This 

dissertation sought to combine the most novel and powerful data (structural, functional and 

genetic) and methods in order to more carefully pinpoint alterations in brain systems of 

individuals with ASD. Not only does this work advance how we understand brain organization in 

ASD but it also builds a foundation for the ultimate goal of this line of research, which is to 

ultimately create biomarkers that can be used as diagnostic tools to aid in the creation of 

targeted interventions that will focus on specific neurobiological pathways. 

In the study described in the first chapter, we used a seed-based whole-brain 

connectivity approach to investigate connectivity of functional systems involved in processing 

emotional faces. We found that the amygdala was less well connected with higher-order face-

processing visual areas and that anterior and posterior components of the mirror neuron system 

were less well connected with each other in ASD. These findings of reduced functional 

integration within systems are consistent with a growing body of literature reporting reduced 

long-range functional connectivity in multiple neural systems in ASD.  We also found that there 

were reduced anticorrelations between bilateral amygdala and cognitive control regions as well 

as between mirror neuron/salience regions and the medial prefrontal cortex of the default mode 

network. We were thus able to show, for the first time, that there is reduced segregation 

between functional systems in ASD as measured by reduced negative connectivity between 

systems. Given that functional networks become more integrated and segregated during typical 

development, these findings suggested the possibility that altered brain networks in ASD may 

reflect an immature or delayed pattern of connectivity. Additionally, this study carefully 
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considered methodological concerns including task regression, global signal regression and 

negative correlations. Thus, this study may help explain previously conflicting reports of 

decreased but also increased connectivity in autism. 

In the study described in the second chapter, we collected resting-state fMRI and 

diffusion MRI data in a large cohort of children and adolescents with ASD and matched 

neurotypical control subjects and used complex network modeling to examine functional and 

structural brain network organization. This approach was taken as we sought to address several 

of the limitations of the previous study, such as teasing apart the relative contributions of 

intrinsic connectivity as opposed to task-related connectivity, as well as the limitation of having 

to choose a priori seed regions. Additionally, a graph theoretical approach allowed for an 

expansion on previous findings of lower functional and structural connectivity in ASD by 

characterizing higher-level network properties. Similar to findings of our first study, we found 

that individuals with ASD display reduced integration within functional systems and reduced 

segregation between functional systems. This was true for both short- and long-range 

connections, which allowed us to reject a commonly stated, although imprecise, claim that local 

connectivity is increased in ASD, at least at the scale of several millimeters. Graph theoretical 

analysis of functional networks revealed significant alterations in the modular organization and 

efficiency of functional networks in ASD. For structural networks, we found evidence of reduced 

white matter integrity and atypical age-related trajectories for global efficiency. Finally, we 

showed that the balance of local and global efficiency between structural and functional 

networks varies with age and is disrupted in ASD. Further we showed that this imbalance was 

related to socio-communicative impairments in individuals with ASD. An issue raised by the 

findings described in the first chapter is the extent to which brain abnormalities observed in ASD 

may reflect immature or delayed connectivity, as opposed to altered connectivity that is specific 

to autism and/or related to compensatory mechanisms. In this study, by collecting a larger 
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sample and examining more measures of brain organization, we found that some aspects of 

brain networks in ASD reflect immaturity, whereas others reflect more aberrant processes. 

Consistent with immaturity, integration and segregation of known functional systems were 

reduced in ASD; however inconsistent with immaturity, we found that local connectivity, while 

enhanced in typical children compared to adults, was reduced in ASD. Furthermore, 

developmental studies have not found differences in local efficiency in modularity between 

children and adults; therefore, the functional network disruptions identified here are likely to be 

specific to the disorder. Structurally, while matter integrity was reduced in ASD and global 

efficiency did not increase with age, suggestive of immaturity, white matter volume was 

increased in ASD, which may reflect more aberrant processes. Overall, the findings of this study 

provide a more comprehensive framework whereby connectivity disturbances in ASD can be 

understood in terms of multiple interacting systems that both change across development. 

In the study described in the third chapter, we sought to address how underlying genetic 

factors may lead to brain network abnormalities in ASD. We focused on how a functional risk 

allele in the Met Receptor Tyrosine Kinase gene (MET) affects brain circuitry, predisposes to 

autism, and exacerbates social deficits in individuals with autism. Prior work has established 

that i) MET exhibits the most specific neocortical expression patterns of all genes in humans, ii) 

a 50% reduction in MET protein dramatically alters excitatory cortical neurons, and iii) a 

common autism risk variant in MET increases the severity of social symptoms in individuals with 

autism. We took a multimodal approach that included analysis of complementary functional 

MRI, resting-state functional connectivity MRI, and diffusion tensor MRI data in a large cohort of 

neurotypical and autistic children and adolescents. Remarkably, not only do our results indicate 

that this risk allele is a potent modulator of functional and structural circuitry in specific regions 

where MET is expressed, but our results also highlight a novel mechanism whereby a common 

functional variant, in the context of other factors, can have a stronger effect on brain circuits in a 
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clinical cohort. Thus, this final study provides a context for how common functional variants may 

play a role in neuropsychiatric disorders in a field that is currently dominated by rare variant 

hypotheses. These findings also have widespread implications for the field of neuroimaging, 

indicating that alterations in brain structure/function in clinical populations may reflect markers of 

genetic vulnerability (rather than causal factors), thereby suggesting that future imaging studies 

should take genetic risk factors into consideration. Additionally, this work suggests how 

incorporating genetics and in vivo measures of neural circuitry may help uncover subgroups 

with disruptions in certain biological pathways. This is a crucial step for characterizing the 

mechanisms by which genetic risk ultimately leads to atypical social behavior in individuals with 

ASD and may allow for targeted treatments and interventions. 

 

Limitations and Future Directions 

All of the experiments focused on high-functioning (IQ>75) children and adolescents with 

ASD between the ages of 8 and 17. This was due to the current characteristics of our subject 

pool, difficulties in imaging children younger than eight, and the need to limit heterogeneity. The 

participation requirements and confounding effects of intellectual disability limited our sample to 

high-functioning individuals. The high proportion of males in this population (7:1) limited our 

investigation of female versus male alterations in ASD. These constraints limit our ability to 

generalize our inferences to all individuals with ASD, because differences in age, gender and 

intelligence may relate to different patterns of brain circuitry and genotype-phenotype 

relationships. In fact, it is likely that brain abnormalities are much different in very young 

children, as autism is not usually diagnosed until around two years and there is evidence of 

early brain overgrowth and premature maturation of white matter pathways in very young 

children with ASD. Future studies should focus on typical and atypical development of functional 
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and structural brain networks in even younger populations. For example, future studies 

examining newborn infants at high risk for ASD during natural sleep may be useful for 

developing biomarkers to aid in earlier diagnosis and treatment. Additionally, future 

experiments, including longitudinal studies, should focus on disentangling how a history of 

altered engagement with the environment may affect connectivity versus how early brain 

abnormalities may directly lead to altered connectivity patterns.  

Although resting state studies minimize task-related connectivity, one limitation is that 

differences in covert cognition can influence connectivity patterns and may contribute to group 

differences. Brain networks have been shown to reconfigure during different cognitive tasks and 

future studies that directly compare measures of connectivity (seed based and graph 

theoretical) acquired during resting state and during the performance of different cognitive tasks 

should be useful in this respect.  

There are several limitations and concerns regarding the imaging genetics approach 

taken in the study described in Chapter 3. Although the findings are useful in developing a more 

mechanistic understanding of the neurobiology of the disorder, they only provide insight about 

common variation in a single candidate gene. Previous work from our lab established that 

CNTNAP2 modulates functional connectivity in a similar way as MET in typically developing 

individuals. Thus, future work should characterize the interaction/additive effects of multiple 

common and rare genetic risk variants in combination with environmental factors in the context 

of typical developmental processes. This is an increasingly relevant and feasible goal in a post 

genomic era where advances in technology and collaborative efforts are increasing the quality 

and quantity of both genetic and imaging data. Additionally, the contribution of genetic factors 

should be measured in younger ages and through longitudinal designs to further tease apart 

trajectories of individuals with different combinations of risk factors. Since we have shown that 

network alterations are present in typical individuals who simply carry risk alleles and other 
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studies have shown similarities between individuals with ASD and unaffected siblings, future 

designs should include unaffected siblings to tease apart network alterations that are simply 

related to genetic background from those which may be more primary.  

Finally, and most importantly, future studies combining imaging data and genetics 

should strive to be directly relevant to clinical outcomes. There needs to be greater emphasis on 

characterizing the individual subjects as the findings presented here and previous studies have 

focused on differences at the group level. This is largely due to a low signal to noise ratio in 

imaging data as well as large variability due to genetic and clinical heterogeneity. Focusing on 

the single individual will require advanced statistical approaches such as machine learning to 

classify individual participants. It will also require much larger datasets (both in number of 

subjects and quantity of data) to better train classifiers that will only become available through 

large-scale studies involving collaboration between institutions. 

 

Concluding Remarks 

 Autism spectrum disorder is an increasingly prevalent disorder with a large societal 

impact. ASD develops in the context of dramatic developmental changes in functional and 

structural brain organization. This thesis used a multimodal approach to characterize structural 

and functional brain networks in ASD in relation to both neurotypical development and genetic 

risk factors. We found that some aspects of altered brain organization in ASD reflect less 

mature patterns of connectivity whereas others reflect aberrant processes and that alterations 

may be partially attributable to heritable genetic factors. This work provides the foundation for 

future studies that will identify subgroups based on shared molecular pathways and unique 

neural signatures so that powerful multimodal biomarkers will eventually be used for earlier 

diagnosis or for developing individualized behavioral and pharmacological interventions. 
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