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ABSTRACT OF THE DISSERTATION

Data Analysis Methods for Motion Segmentation and Material
Reflectance

by

Joshua J. Wills
Doctor of Philosophy in Computer Science

University of California San Diego, 2006

Professor Serge Belongie, Chair

Image analysis and image synthesis are the goals of computer vision and com-
puter graphics, respectively. These research areas represent the domains into which the
work presented in this dissertation fall. Specifically, we present work on three problems:
segmentation and estimation of large disparity motion, simulating the reflectance for
rough surfaces using microfacet models, and the perception of material reflectance.

We present a novel framework for motion segmentation that combines the con-
cepts of layer-based methods and feature-based motion estimation. We demonstrate our
approach on image pairs containing large inter-frame motion and partial occlusion. The
approach is efficient, and it successfully segments scenes with inter-frame disparities be-
yond the scope of previous methods. We also present an extension that accounts for the
case of non-planar motion, and applications of our method to automatic object removal
and to structure from motion.

The Bidirectional Reflectance Distribution Function (BRDF) describes the way
a surface reflects light. Microfacet reflectance models have been shown to work well
for simulating the interaction of light with a rough surface. We give an overview of
the existing techniques for reflection modeling and show how these techniques can be
extended to handle refraction in a unified framework. To this end, two new derivations
are presented for computing quantities required for refraction as well as a result that is
(to our knowledge) previously unpublished.

While BRDFs allows for a complete radiometric description of light reflecting
from a surface, they are complex mathematical objects that can be difficult to use in
practice. Our aim is to construct a low-dimensional, perceptual space for BRDFs that can
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be easily navigated. To this end, we design and carry out a comprehensive psychophysical
study of the perception of measured reflectance. This is the largest study of its kind to
date, and the first to use real material measurements. In addition, we introduce a new
multidimensional scaling (MDS) algorithm for analyzing ordinal data that unlike existing
methods is both efficient and optimal. We use the results of our study to construct a
perceptual space of these BRDFs and introduce a new method for perceptual construction
of novel BRDFs.

xv
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Introduction

The vast majority of motion pictures today contain some amount of computer
generated imagery (CGI). In many cases, artificial elements are inserted into live-action
footage to give the illusion that the scene contained both the artificial and real elements.
To achieve this type of effect, the live-action scene must be analyzed and the locations
and positions of objects in the scene as well as the camera position and properties must
be estimated. In addition, the portions of the frames that contain the artificial elements
must be synthesized taking into account the lighting of the scene, the properties of
the elements, and the position of the camera. Image analysis and image synthesis are
the goals of computer vision and computer graphics, respectively. These research areas
represent the domains into which the work presented in this dissertation fall. Specifically,
we present work on three problems:

• Large Disparity Motion Segmentation

• Microfacet-based Reflectance Models

• The Perception of Material Reflectance

While each of these problems are distinct, they share similar concepts and techniques. We
will now give an introduction to each problem followed by a discussion of the correlation
between problems.

The problem of motion segmentation requires the estimation of the motions
present in a set of images as well as a segmentation of the pixels in each image to
one of the estimated motions. Traditionally this segmentation has focused on video
sequences where the inter-frame motion is quite small, and there are many approaches
that provide satisfactory results. However, many of these techniques fail if the motion

1
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between frames is too large. This type of motion – large disparity motion – is most
commonly due to quickly moving objects and/or low frame-rate sequences. However,
there are many other situations that give rise to large disparity motion such as, camera
handoff or the registration of motion that is present in two widely separated cameras
(e.g. two surveillance cameras on opposite sides of a corner) or dynamic scene registration
(e.g. aligning images that capture the lighting of a scene to be used in rendering special
effects with same scene as it appears in a sequence shot at a different time where many
elements of the scene may have moved). The goal is to be able to find the coherently
moving objects in a scene regardless of the magnitude of the motion between frames.

The goal of reflectance models is to model the effects produced by the inter-
action of light with a surface. These effects are what make velvet look like velvet and
copper look like copper. In the case of microfacet-based reflectance models, we are
trying to capture the effects for a rough surface. The earliest reflectance models in
graphics were aimed at one of two extremes, either modeling surfaces that are extremely
smooth [87] or extremely rough [62], though many real world materials fall somewhere in
between. It is these types of materials that microfacet models were designed to simulate
and they assume that the surface can be modeled as a collection of tiny facets that are
usually assumed to be mirrors [108], though there has been work on surfaces with diffuse
facets [84]. It is the aggregate reflection from these tiny facets that give a rough surface
its reflective properties.

In many problems within computer graphics, the goal is to model the physics
of the scene (especially the physics of the interaction of light and materials) as accu-
rately as possible. However, in many problems (particularly though encountered when
synthesizing images for a motion picture) the ultimate goal is to convince the viewers
of the realism of the scene regardless of the physical or radiometric correctness. With
this in mind, it is valuable to understand the perception of reflectance and to deter-
mine what aspects of reflectance are perceptually meaningful. The problem we address
in this dissertation is the estimation of a space of reflectance for a set of materials, or
how can we arrange the set of materials in a new space such that the relative distances
between materials approximate the perceptual distances experienced by viewers, which
we capture through a set of psychophysical experiments.

As mentioned previously, we can divide these three problems into the areas
of computer vision and computer graphics with the first, motion segmentation, falling
squarely into computer vision, the second, microfacet reflectance, falling squarely into
computer graphics, and the third, the perception of reflectance, which straddles the



3

often blurry boundary between the two. Some of the similarities are quite obvious, for
example, the object of interest in both the second and third problems is a function that
models reflectance. Though most of the common themes are higher level. Two significant
components that are present in all three pieces of work are techniques for the aggregation
of data from multiple sources and the discovery of simplified representation of complex
objects.

The first, the aggregation of information, is a primary challenge in all three
problems. In our approach for motion segmentation there are two significant instances
of techniques for data aggregation: using groups of pixel correspondences to estimate
the motion present in the scene and using similarity of neighboring pixels to compute
a smooth assignment to motion layers. In the case of microfacets, this principle is
implicit as we are trying to model the net effect of reflection from many small facets,
and it is only the aggregate reflectance that is important. Aggregation in the case of our
perceptual analysis of reflectance is more explicit. Our method for capturing perceptual
data requires many subjects to view many combinations of materials, and the output of
our analysis is a representation of the data that best satisfies as many subjects for as
many materials as possible.

The second, the discovery of simplified representations of complex objects, is
common to many problems in computer vision and graphics including the three in which
we are interested. The final goal of our approach to motion segmentation is to take a
complex scene and decompose it into a handful of independent layers with associated
motions. In most cases, we simplify this further by assuming the scene can be repre-
sented by planar layers, and we search for the best approximation. Similarly, microfacet
reflectance functions work off of the assumption that while general reflectance functions
have many dimensions, they can be well approximated by a combination of much simpler
(and lower dimensional) functions. Finally, our perceptual analysis results in a low di-
mensional space that is able to capture the majority of the perceptual distances present
in our subject data.

Since the problems are relatively distinct, each problem is presented in a sepa-
rate chapter and each chapter is largely self-contained. The structure of this dissertation
is as follows: we begin with a presentation of our approach to large disparity motion in
Chapter 2, we present our work on microfacet reflectance models in Chapter 3, and our
work on the perception of material reflectance is presented in Chapter 4.
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Large Disparity Motion
Segmentation

Figure 2.1 Two consecutive frames from a saltwater aquarium webcam.

Consider the pair of images shown in Figure 2.1. These two images were cap-
tured by an aquarium webcam on a pan-tilt head. For a human observer, a brief exam-
ination of the images reveals what happened from one frame to the next: the lower fish
swam down and darted forward and the upper fish moved forward slightly; meanwhile,
the camera panned to the left about a third of the image width. Even without color
information, this is a simple task for the human visual system. The same cannot be
said for any existing computer vision system. What makes this problem difficult from
a computational perspective? There are number of complicating factors, including the
following: (1) due to the low frame rate, the motion between frames is a significant frac-
tion of the image size, (2) the moving objects are relatively small and have few features
compared to the richly textured background, (3) the poses of the fish change as they
swim, (4) because of the panning motion of the camera, the second frame has motion
blur.

4
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Finding out what went where in two frames of an image sequence is an instance
of the motion segmentation problem. Formally, motion segmentation consists of (1)
finding groups of pixels in two or more frames that move together, and (2) recovering
the motion fields associated with each group. Motion segmentation has wide applicability
in areas such as video coding, content-based video retrieval, and mosaicking. In its full
generality, the problem cannot be solved since infinitely many constituent motions can
explain the changes from one frame to another. Fortunately, in real scenes the problem
is simplified by the observation that objects are usually composed of spatially contiguous
regions, and the number of independent motions is significantly smaller than the number
of pixels. Operating under these assumptions, we propose a new motion segmentation
algorithm for scenes containing objects with large inter-frame motion. The algorithm
leverages and builds upon established techniques for robust estimation of motion fields
and discontinuity preserving smoothing in a novel combination that delivers the first
dense, layer-based motion segmentation method for the case of large (non-differential)
motions.

The structure of this chapter is as follows: we begin with a presentation of our
approach to large disparity planar motion in section 2.1, we present our extension to non-
planar motion in section 2.2, applications are presented in section 2.3, and conclusions
and future work are presented in section 2.4.

2.1 Planar Motion Segmentation

2.1.1 Introduction

Early approaches to motion segmentation were based on estimating dense op-
tical flow. The optical flow field was assumed to be piecewise smooth to account for
discontinuities due to occlusion and object boundaries, see for example [6, 13, 82]. Dar-
rell & Pentland [26] and Wang & Adelson [120] introduced the idea of decomposing the
image sequence into multiple overlapping layers, where each layer is a smooth motion
field. Weiss [124] extended this approach to account for flexible motion fields using
regularized radial basis functions (RBFs).

Optical flow based methods are limited in their ability to handle large inter-
frame motion or objects with overlapping motion fields. Coarse-to-fine methods are able
to solve the problem of large motion to a certain extent (see for example [100, 101]),
but the degree of sub-sampling required to make the motion differential places an upper
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bound on the maximum allowable motion between two frames and limits it to about 15%
of the dimensions of the image [52]. Also in cases where the order of objects along any line
in the scene is reversed and their motion fields overlap, the coarse to fine processing ends
up blurring the two motions into a single motion before optical flow can be calculated.

In this dissertation we are interested in the case of discrete motion, i.e. where
optical flow based methods break down. Most closely related to our work is that of
Torr [104]. Torr uses sparse correspondences obtained by running a feature detector
and matching them using normalized cross correlation. He then processes the correspon-
dences in a RANSAC framework to sequentially cover the the set of motions in the scene.
Each iteration of his algorithm finds the dominant motion model that best explains the
data and is simplest according to a complexity measure. The set of models and the
associated correspondences are then used as the initial guess for the estimation of a mix-
ture model using the Expectation Maximization (EM) algorithm. Spurious models are
pruned and the resulting segmentation is smoothed using morphological operations.

In a more recent work [106], the authors extend the model to 3D layers in
which points in the layer have an associated disparity. This allows for scenes in which
the planarity assumption is violated and/or a significant amount of parallax is present.
The pixel correspondences are found using a multiscale differential optical flow algo-
rithm, from which the layers are estimated in a Bayesian framework using EM. Piecewise
smoothness is ensured by using a Markov random field prior.

Neither of the above works demonstrate the ability to perform dense motion
segmentation on a pair of images with large inter-frame motion. In both of the above
works the grouping is performed in a Bayesian framework. While the formulation is op-
timal and strong results can be proved about the optimality of the Maximum Likelihood
solution, actually solving for it is an extremely hard non-linear optimization problem.
The use of EM only guarantees a locally optimal solution and says nothing about the
quality of the solution. As the authors point out, the key to getting a good segmentation
using their algorithm is to start with a good guess of the solution and they devote a
significant amount of effort to finding such a guess. However it is not clear from their
result how much the EM algorithm improves upon their initial solution.

2.1.2 Proposed Method

Our approach is based on a two stage process, the first of which is responsible
for motion field estimation and the second of which is responsible for motion layer as-
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signment. As a preliminary step we detect interest points in the two images and match
them by comparing filter responses. We then use a RANSAC based procedure for de-
tecting the motion fields relating the frames. Based on the detected motion fields, the
correspondences detected in the first stage are partitioned into groups corresponding to
each constituent motion field, and the resulting motion fields are re-estimated. Finally,
we use a fast approximate graph cut based method to densely assign pixels to their
respective motion fields. We now describe each of these steps in detail. A reference
Matlab implementation of the steps described in this section is available for download
at http://vision.ucsd.edu/motion_seg.html.

2.1.3 Interest point detection and matching

Many pixels in real images are redundant, or very similar to nearby pixels, so
it is beneficial to find a set of points that reduce some of this redundancy. To achieve
this, we detect interest points using the Förstner operator [37]. To describe each interest
point, we apply a set of 76 filters (3 scales and 12 orientations with even and odd phase
and an elongation ratio of 3:1, plus 4 spot filters) to each image. The filters, which are
at most 31 × 31 pixels in size, are evenly spaced in orientation at intervals of 15◦, and
the changes in scale are half octave. For each of the scales and orientations, we use a
quadrature pair of derivative-of-Gaussian filters corresponding to edge and bar-detectors
respectively, as in [39,54].

To obtain some degree of rotational invariance, the filter response vectors may
be reordered so that the order of orientations is cyclically shifted. This is equivalent
to filtering a rotated version of the image patch that is within the support of the filter.
We perform three such rotations in each direction to obtain rotational invariance up to
±45◦.

We find correspondences by comparing filter response vectors using the L1

distance. We compare each interest point in the first image to those in the second image
and assign correspondence between points with minimal error. Since matching is difficult
for image pairs with large inter-frame disparity, the remainder of our approach must take
into account that the estimated correspondences can be extremely noisy.

Estimating Motion Fields

Robust estimation methods such as RANSAC [33] have been shown to provide
very good results in the presence of noise when estimating a single, global transformation
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Figure 2.2 Phantom motion fields. (Row 1) Scene that consists of two squares translating
away from each other. (Row 2) Under an affine model, triplets of points that span the
two squares will incorrectly propose a global stretching motion. This motion is likely to
have many inliers since all points on the inner edges of the squares will fit this motion
exactly. If we then delete all points that agree with this transformation, we will be
unable to detect the true motions of the squares in the scene (Rows 3 & 4).

between images. Why can’t we simply apply these methods to multiple motions directly?
It turns out that this is not as straightforward as one might imagine. Methods in this vein
work by iteratively repeating the estimation process where each time a dominant motion
is detected, all correspondences that are deemed inliers for this motion are removed [104].

There are a number of issues that need to be addressed before RANSAC can
be used for the purpose of detecting and estimating multiple motions. The first issue
is that combinations of correspondences – not individual correspondences – are what
promote a given transformation. Thus when “phantom motion fields” are present, i.e.,
transformations arising from the relative motion between two or more objects, it is
possible that the deletion of correspondences could prevent the detection of the true
independent motions; see Figure 2.2. Our approach does not perform sequential deletion
of correspondences and thus circumvents this problem.
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Another consideration arises from the fact that the RANSAC estimation pro-
cedure is based on correspondences between interest points in the two images. This
makes the procedure biased towards texture rich regions, which have a large number of
interest points associated with them, and against small objects in the scene, which in
turn have a small number of interest points. In the case where there is only one global
transformation relating the two images, this bias does not pose a problem. However
it becomes apparent when searching for multiple independent motions. To correct for
this bias we introduce “perturbed interest points” and a method for feature crowdedness
compensation.

Perturbed Interest Points
If an object is only represented by a small number of interest points, it is unlikely

that many samples will fall entirely within the object. One approach for promoting the
effect of correct correspondences without promoting that of the incorrect correspondences
is to appeal to the idea of a stable system. According to the principle of perturbation,
a stable system will remain at or near equilibrium even as it is slightly modified. The
same holds true for stable matches. To take advantage of this principle, we dilate the
interest points to be disks with a radius of rp, where each pixel in the disk is added to
the list of interest points. This allows the correct matches to get support from the points
surrounding a given feature while incorrect matches will tend to have almost random
matches estimated for their immediate neighbors, which will not likely contribute to a
widely-supported warp. In this way, while the density around a valid motion is increased,
we do not see the same increase in the case of an invalid motion; see Figure 2.3.

Feature Crowdedness
Textured regions often have significant representation in the set of interest

points. This means that a highly textured object will have a much larger representation
in the set of interest points than an object of the same size with less texture. To
mitigate this effect, we bias the sampling. We calculate a measure of crowdedness for
each interest point and the probability of choosing a given point is inversely proportional
to this crowdedness score. The crowdedness score is the number of interest points that
fall into a disk of radius rc.

Partitioning and Motion Estimation
Having perturbed the interest points and established a sampling distribution

on them, we are now in a position to detect the motions present in the frames. We
do so using a two step variant of RANSAC, where multiple independent motions are
explicitly handled, as duplicate transformations are detected and pruned in a greedy
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Figure 2.3 Perturbed Interest Points. Correspondences are represented by point-line
pairs where the point specifies an interest point in the image and the line segment
ends at the location of the corresponding point in the other image. (Row 1) We see
one correct correspondence and one incorrect correspondence that is the result of an
occlusion junction forming a white wedge. (Row 2) The points around the correct point
have matches that are near the corresponding point, but the points around the incorrect
correspondence do not.

manner. The first step provides a rough partitioning of the set of correspondences
(motion identification) and the second takes this partitioning and estimates the motion
of each group (motion refinement).

First, a set of planar warps is estimated by a round of standard RANSAC and
inlier counts (using an inlier threshold of τ) are recorded for each transformation. In our
case, we use planar homography which requires 4 correspondences to estimate, however
similarity or affinity may be used (requiring 2 and 3 correspondences, respectively). The
estimated list of transformations is then sorted by inlier count and we keep the first nt

transformations, where nt is some large number (e.g. 300).
We expect that the motions in the scene will likely be detected multiple times,

and we would like to detect these duplicate transformations. Comparing transformations
in the space of parameters is difficult for all but the simplest of transformations, so we
compare transformations by comparing the set of inliers associated with each transfor-
mation. If there is a large overlap in the set of inliers (more than 75%) the transformation
with the larger set of inliers is kept and the other is pruned.

Now that we have our partitioning of the set of correspondences, we would like
to estimate the planar motion represented in each group. This is done with a second
round of RANSAC on each group with only 100 iterations. This round has a tighter
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threshold to find a better estimate. We then prune duplicate warps a second time to
account for slightly different inlier sets that converged to the same transformation during
the second round of RANSAC with the tighter threshold.

The result of this stage is a set of proposed transformations and we are now
faced with the problem of assigning each pixel to a candidate motion field.

Layer Assignment

The problem of assigning each pixel to a candidate motion field can be for-
mulated as finding a function l : I → {1, . . . ,m}, that maps each pixel to an integer
in the range 1, . . . ,m, where m is the total number of of motion fields, such that the
reconstruction error ∑

i

[I(i)− I ′(M(l(i), i))]2

is minimized. Here M(p, q) returns the position of pixel q under the influence of the
motion field p.

A naïve approach to solving this problem is to use a greedy algorithm that
assigns each pixel the motion field for which it has the least reconstruction error, i.e.,

l(i) = argmin
1≤p≤m

[I(i)− I ′(M(p, i))]2 (2.1)

The biggest disadvantage of this method as can be seen in Figure 2.4 is that
for regions with relatively constant intensity it can produce unstable labellings, in that
neighboring pixels that have the same brightness and are part of the same moving object
can get assigned to different warps. What we would like instead is to have a labelling that
is piecewise constant with the occasional discontinuity to account for genuine changes in
motion fields.

The most common way this type of problem is solved (see e.g. [124]) is by
imposing a smoothness prior over the set of solutions, i.e., an ordering that prefers
piecewise constant labellings over highly unstable ones. It is important that the prior
be sensitive to true discontinuites present in the image. In [18], for example, Boykov,
Veksler and Zabih have shown that discontinuity preserving smoothing can be performed
by adding a penalty of the following form to the objective function

∑
i

∑
j∈N (i)

sij [1− δl(i)l(j)]
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where δ(··) is the Kronecker delta, equal to 1 when its arguments are equal. Given a
measure of similarity sij between pixels i and j, it penalizes pixel pairs that have been
assigned different labels. The penalty should only be applicable for pixels that are near
each other. Hence the second sum is over a fixed neighborhood N (i). The final objective
function we minimize is

∑
i

[I(i)− I ′(M(l(i), i))]2 + λ
∑

i

∑
j∈N (i)

sij [1− δl(i)l(j)]

where λ is the tradeoff between the data and the smoothness prior.
An optimization problem of this form is known as a Generalized Potts model

which in turn is a special case of a class of problems known as metric labelling prob-
lems. Kleinberg & Tardos demonstrate that the metric labelling problems corresponds
to finding the maximum a posteriori labelling of a class of Markov random field [58].
The problem is known to be NP-complete, and the best one can hope for in polynomial
time is an approximation.

Recently Boykov, Veksler and Zabih (BVZ) have developed a polynomial time
algorithm that finds a solution with error at most two times that of the optimal solution
[19]. Each iteration of the algorithm constructs a graph and finds a new labelling of
the pixels corresponding to the minimum cut partition in the graph. The algorithm is
deterministic and guaranteed to terminate in O(m) iterations.

Besides the motion fields and the image pair, the algorithm takes as input a

Figure 2.4 Example of naïve pixel assignment as in Equation 2.1 for the second motion
layer in Figure 2.6. Notice there are many pixels that are erratically assigned. This is
why smoothing is needed.
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similarity measure sij between every pair of pixels i, j within a fixed distance of one
another and two parameters, k the size of the neighborhood around each pixel, and λ

the tradeoff between the data and the smoothness term. We use a Gaussian weighted
measure of the squared difference between the intensities of pixels i and j,

sij = exp
[
−d(i, j)2

2k2
− (I(i)− I(j))2

]
where d(i, j) is the distance between pixel i and pixel j.

We run the BVZ algorithm twice, once to assign the pixels in the image I to
the forward motion field and again to assign the pixels in image I ′ to the inverse motion
fields relating I ′ and I. If a point in the scene occurs in both frames, we expect that its
position and appearance will be related as:

M(l(p), p) = p′

M(l′(p′), p′) = p

I(M(l(p), p)) = I ′(p)

Here, the unprimed symbols refer to image I and the primed symbols refer to image I ′.
Assuming that the appearance of the object remains the same across the images, the
final assignment is obtained by intersecting the forward and backward assignments.

In this simple intersection step, occluded pixels are removed from further con-
sideration. By reasoning about occlusion ordering constraints over more than than two
frames, one can retain and explicitly label occluded pixels in the output segmentation;
see for example the recent work of Xiao and Shah [130].

1. Detect interest points in I
2. Perturb each interest point
3. Find the matching points in I′

4. For i = 1:Ns

Pick tuples of correspondences
Estimate the warp
Store inlier count

5. Prune the list of warps
6. Refine each warp using its inliers
7. Perform dense pixel assignment

Figure 2.5 Algorithm Summary
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2.1.4 Experimental Results

We now illustrate our algorithm, which is summarized in Figure 2.5, on several
pairs of images containing objects undergoing independent motions. We performed all
of the experiments on grayscale images with the same parameters1.

Figure 2.6 Notting Hill sequence. (Row 1) Original image pair of size 311× 552, (Rows
2-4) Pixels assigned to warp layers 1-3 in I and I ′.

Our first example is shown in Figure 2.6. In this figure we show the two images,
I and I ′, and the assignments for each pixel to a motion layer (one of the three detected
motion fields). The rows represent the different motion fields and the columns represent

1Ns = 104, nt = 300, rp = 2, rc = 25, τ = 10, k = 2, λ = .285. Image brightnesses are in the range
[0, 1].
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Figure 2.7 Fish sequence. (Row 1) Original image pair of size 162 × 319, (Rows 2-4)
Pixels assigned to warp layers 1-3 in I and I ′.

the portions of each image that are assigned to a given motion layer. The motions are
made explicit in that the pixel support from frame to frame is related exactly by a
planar homography. Notice that the portions of the background and the dumpsters that
were visible in both frames were segmented correctly, as was the man. This example
shows that in the presence of occlusion and when visual correspondence is difficult (i.e.
matching the dumpsters correctly), our method provides good segmentation. Another
thing to note is that the motion of the man is only approximately planar.

Figure 2.7 shows a scene consisting of two fish swimming past a fairly com-
plicated reef scene. The segmentation is shown as in Figure 2.6 and we see that three
motions were detected, one for the background and one for each of the two fish. In this
scene, the fish are small, feature-impoverished objects in front of a large feature-rich
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background, thus making the identification of the motion of the fish difficult. In fact,
when this example was run without using the perturbed interest points, we were unable
to recover the motion of either of the fish.

Figure 2.8 Flower Garden sequence. (Row 1) Original image pair of size 240×360, (Rows
2-4) Pixels assigned to warp layers 1-3 in I and I ′.

Figure 2.8 shows two frames from a sequence that has been a benchmark for
motion segmentation approaches for some time. Previously, only optical flow-based
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techniques were able to get good motion segmentation results for this scene, however
producing a segmentation of the motion between the two frames shown (1 and 30) would
require using all (or at least most) of the intermediate frames. Here the only input to the
system was the frame pair shown in Row 1. Notice that the portions of the house and the
garden that were visible in both frames were segmented accurately as was the tree. This
example shows the discriminative power of our filterbank as we were unable to detect
the motion field correctly using correspondences found with the standard technique of
normalized cross correlation. In addition, this example demonstrates the importance of
the perturbed interest points and sampling based on feature crowdedness as the correct
motions were not detected unless both of the techniques were used.

In Figure 2.9, a moving car passes behind a tree as the camera pans. Here,
only two motion layers were recovered and they correspond to the static background and
to the car. Since a camera rotating around its optical center produces no parallax for a
static scene, the tree is in the same motion layer as the fence in the background, whereas
the motion of the car requires its own layer. The slight rotation in depth of the car does
not present a problem here.

2.1.5 Discussion

In this section we have presented a new method for performing dense motion
segmentation and estimation in the presence of large inter-frame motion.

Like any system, our system is limited by the assumptions it makes. We make
three assumptions about the scenes:

1. Identifiability

2. Constant appearance

3. Dominant planar motion.

A system is identifiable if its internal parameters can be estimated given the
data. In the case of motion segmentation it implies that given a pair of images it is
possible to recover the underlying motion. The minimal requirement under our chosen
motion model is that each object present in the two scenes should be uniquely identifiable.
Consider Figure 2.10; in this display, several motions can relate the two frames, and
unless we make additional assumptions about the underlying problem, it is ill posed.
Similarly in some of the examples we can see that while the segments closely match the
individual objects in the scene, some of the background bleeds into each layer. Motion
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Figure 2.9 VW sequence. (Row 1) Original image pair of size 240 × 320, (Rows 2-3)
Pixels assigned to warp layers 1-2 in I and I ′.

is just one of several cues used by the human vision system in perceptual grouping and
we cannot expect a system based purely on the cues of motion and brightness to be able
to do the job. Incorporation of the various Gestalt cues and priors on object appearance
will be the subject of future research.

• • • • • •

Figure 2.10 Ternus Display. The motion of the dots is ambiguous; additional assumptions
are needed to recover their true motion.

Our second assumption is that the appearance of an object across the two frames
remains the same. While we do not believe that this assumption can be done away with
completely, it can be relaxed. Our feature extraction, description, and matching is based
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on a fixed set of filters. This gives us a limited degree of rotation and scale invariance.
We believe that the matching stage of our algorithm can benefit from the work on affine
invariant feature point description [76] and feature matching algorithms based on spatial
propagation of good matches [66].

Our third assumption is that the individual motion fields are predominantly
planar. This is not a strict requirement and is only needed insofar as we are able to
obtain the initial planar fits. The actual motion estimate and segmentation is based on
the more flexible spline based model.

2.1.6 Conclusion

In this section, we have presented a solution to the problem of motion segmen-
tation for the case of large disparity motion and given experimental validation of our
method. We have also presented an extension to handle non-planar/non-rigid motion
as well as applications to automatic object deletion and structure from periodic motion.
Our approach combines the strengths of the feature-based approaches (i.e., no limits
on the disparity between frames) and the the direct, optical flow-based methods (i.e.,
provides a dense segmentation and correspondences).
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Figure 2.11 Non-planarity vs. non-rigidity: The left image pair shows a non-planar ob-
ject undergoing 3D rigid motion; the right pair shows an approximately planar object
undergoing non-rigid motion. Both examples result in residual with respect to a 2D
planar fit.

2.2 Non-Planar Motion Segmentation

2.2.1 Introduction

Consider the image pairs illustrated in Figure 2.11. These have a significant
component of planar motion but exhibit residual with respect to a planar fit because
of either the non-planarity of the object (e.g. a cube) or the non-rigidity of the motion
(e.g. a lizard). These are scenes for which the motion can be approximately described by
a planar layer-based framework, i.e. scenes that have “shallow structure” [89]. In order
to extend our approach to such scenes, we propose an additional stage consisting of a
regularized spline model for capturing finer scale variations on top of an approximate
planar fit. Our approach is related in spirit to the deformotion concept in [95], developed
for the case of differential motion, which separates overall motion (a finite dimensional
group action) from the more general deformation (a diffeomorphism).

It is important to remember that optical flow does not model the 3D motion
of objects, but rather the changes in the image that result from this motion. Without
the assumption of a rigid object, it is very difficult to estimate the 3D structure and
motion of an object from observed change in the image, though there is recent work
that attempts to do this [20, 21, 109–111, 118, 129]. For this reason, we choose to do all
estimation in the image plane (i.e. we use 2D models), but we show that if the object
is assumed to be rigid, the correspondences estimated can be used to recover the dense
structure and 3D motion.

This approach extends the capabilities of feature-based scene matching algo-
rithms to include dense optical flow without the limits on allowable motion associated
with techniques based on differential optical flow. Previously, feature-based approaches
could handle image pairs with large disparity and multiple independently moving ob-
jects, while optical flow techniques could provide a dense set of pixel correspondences
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even for objects with non-rigid motion. However, neither type of approach could handle
both simultaneously. Without the assumption of a rigid scene, existing feature-based
methods cannot produce dense optical flow from the sparse correspondences, and in the
presence of large disparity and multiple independently moving objects, differential op-
tical flow (even coarse-to-fine) can break down. The strength of our approach is that
dense optical flow can now be estimated for image pairs with large disparity, more than
one independently moving object, and non-planar (including non-rigid) motion.

2.2.2 Related Work

The work related to our approach comes from the areas of motion segmentation,
optical flow and feature-based (sparse) matching.

Several well known approaches to motion segmentation are based on dense opti-
cal flow estimation [6,13,82]; in these approaches the optical flow field was assumed to be
piecewise smooth to account for discontinuities due to occlusion and object boundaries.
Wang & Adelson introduced the idea of decomposing the image sequence into multiple
overlapping layers, where each layer represents an affine motion field [120]. However their
work was based on differential optical flow, which places strict limits on the amount of
motion between two frames.

In [124], Weiss uses regularized radial basis functions (RBFs) to estimate dense
optical flow; Weiss’ method is based on the assumption that while the motion will not be
smooth across the entire image, the motion is smooth within each of the layers. Given the
set of spatiotemporal derivatives, he used the EM algorithm to estimate the number of
motions, the dense segmentation and the dense optical flow. This work along with other
spline-based optical flow methods [100, 101] however, also assumes differential motion
and therefore does not apply for the types of sequences that we are considering.

In [107], Torr et al. show that the trifocal tensor can be used to cluster groups
of sparse correspondences that move coherently. This work addresses similar types of
sequences to those of our work in that it is trying to capture more than simply a planar
approximation of motion, but it does not provide dense assignment to motion layers or
dense optical flow. The paper states that it is an initialization and that more work is
needed to provide a dense segmentation, however the extension of dense stereo assign-
ment to multiple independent motions is certainly non-trivial and there is yet to be a
published solution. In addition, this approach is not applicable for objects with non-rigid
motion, as the fundamental matrix and trifocal tensor apply only to rigid motion.
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Our work builds on the motion segmentation found via planar motion models as
in [126], where planar transformations are robustly estimated from point correspondences
in a RANSAC framework. A dense assignment of pixels to transformation layers is then
estimated using an MRF. We refine the planar estimation produced by [126] using a
regularized spline fit. Szeliski & Shum [101] also use a spline basis for motion estimation,
however their approach has the same limitations on the allowable motion as other coarse-
to-fine methods.

2.2.3 Our Approach for Non-planar Motion

When the scene contains objects undergoing significant 3D motion or deforma-
tion, the optical flow cannot be described by any single low dimensional image plane
transformation (e.g., affine or homography). However, to keep the problem tractable
we need a compact representation of these transformations; we propose the use of thin
plate splines for this purpose. A single spline is not sufficient for representing multiple
independent motions, especially when the motion vectors intersect [124]. Therefore we
represent the optical flow between two frames as a set of disjoint splines. By disjoint we
mean that the support of the splines are disjoint subsets of the image plane. The task of
fitting a mixture of splines naturally decomposes into two subtasks: motion segmentation
and spline fitting.

Ideally we would like to do both of these tasks simultaneously, however these
tasks have conflicting goals. The task of motion segmentation requires us to identify
groups of pixels whose motion can be described by a smooth transformation. Smoothness
implies that each motion segment has the the same gross motion, however, except for the
rare case in which the entire layer has exactly the same motion everywhere, there will be
local variations. Hence the motion segmentation algorithm should be sensitive to inter-
layer motion and insensitive to intra-layer variations. On the other hand, fitting a spline
to each motion field requires attention to all the local variations. This is an example
of different tradeoffs between bias and variance in the two stages of the algorithm. In
the first stage we would like to exert a high bias and use models with a high amount of
stiffness and insensitivity to local variations, whereas in the second stage we would like
to use a more flexible model with a low bias.

We begin with the motion segmentation procedure of Section 2.1.2. The output
of this stage, while sufficient to achieve a good segmentation, is not sufficient to recover
the optical flow accurately. However, it serves two important purposes: firstly it provides
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Figure 2.12 Determining Long Range Optical Flow. The goal is to provide dense optical
flow from the first frame (1), to the second (4). This is done via a planar fit (2) followed
by a flexible fit (3).

an approximate segmentation of the sparse correspondences that allows for coherent
groups to be processed separately. This is crucial for the second stage of the algorithm
as a flexible model will likely find an unwieldy compromise between distinct moving
groups as well as outliers. Secondly, since the assignment is dense, it is possible to find
matches for points that were initially mismatched by limiting the correspondence search
space to points in the same motion layer. The second stage then bootstraps off of these
estimates of motion and layer support to iteratively fit a thin plate spline to account for
non-planarity or non-rigidity in the motion. Figure 2.12 illustrates this process.

We now describe the stages of the algorithm in detail.

Detecting Dominant Planar Motion

We begin by finding planar approximations of the motion in the scene as well as
a dense assignment of pixels to motion layers. We use the motion segmentation algorithm
presented in section 2.1. An example of this is shown in Figure 2.13

Example of Planar Fit and Segmentation
Figure 2.13 shows an example of the output from the planar fit and segmen-

tation process. In this figure we show the two images, I and I ′, and the assignments
for each pixel to a motion layer (one of the three detected motion fields). The columns
represent the different motion fields and the rows represent the portions of each image
that are assigned to a given motion layer. The motions are made explicit in that the
pixel support from frame to frame is related exactly by a planar homography. Notice
that the portions of the background and the dumpsters that were visible in both frames
were segmented correctly, as was the man. The result of the spline fit for this example
will be shown in Section 2.2.4.
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Figure 2.13 Notting Hill sequence. (Row 1) Original image pair of size 311× 552, (Row
2) Pixels assigned to warp layers 1-3 in I, (Row 3) Pixels assigned to warp layers 1-3 in
I ′.

Refining the Fit with a Flexible Model

The flexible fit is an iterative process using regularized radial basis functions, in
this case Thin Plate Spline (TPS). The spline interpolates the correspondences to result
in a dense optical flow field. This process is run on a per-motion layer basis.

Feature extraction and matching
During the planar motion estimation stage, only a gross estimate of the motion

is required so a sparse set of feature points will suffice. In the final fit however, we would
like to use as many correspondences as possible to ensure a good fit. In addition, since
the correspondence search space is reduced (i.e. matches are only considered between
pixels assigned to corresponding motion layers), matching becomes somewhat simpler.
For this reason, we use the Canny edge detector to find the set of edge points in each of
the frames and estimate correspondences in the same manner as in Section 2.1.2.

Iterated TPS fitting
Given the approximate planar homography and the set of correspondences be-

tween edge pixels, we would like to find the dense set of correspondences. If all of the
correspondences were correct, we could jump straight to a smoothed spline fit to obtain
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dense (interpolated) correspondences for the whole region. However, we must account
for the fact that many of the correspondences are incorrect. As such, the purpose of the
iterative matching is essentially to distinguish inliers from outliers, that is, we would like
to identify sets of points that exhibit coherence in their correspondences.

One of the assumptions that we make about the scenes we wish to consider is
that the motion of the scene can be approximated by a set of planar layers. Therefore
a good initial set of inliers are those correspondences that are roughly approximated
by the estimated homography. From this set, we use TPS regression with increasingly
tighter inlier thresholds to identify the final set of inliers, for which a final fit is used to
interpolate the dense optical flow. We now briefly describe this process.

Thin Plate splines are a family of approximating splines defined over Rd. The
theory for Thin Plate Splines was first developed by Duchon [29, 30] and subsequently
by Meinguet [75]. Our presentation here follows follows Wahba [119].

Our task here is to construct smoothly varying functions that map pixel posi-
tions in one image to pixel positions in another. We use two splines, one each for the
x and y mappings. Let {(x1, y1), . . . , (xn, yn)} be the positions of the points in the first
image. Let the target for the first spline be given by vi and let f denote the transforma-
tion that we are trying to estimate. In two dimensions the smoothness penalty for Thin
Plate Splines is given by

J2 =
∫∫

R2

(f2
xx + 2f2

xy + f2
yy)dxdy

J2 is also known as the bending energy. The minimization is performed over the space
of functions χ whose partial derivatives of total order 2 are in L(R2), i.e., the integral of
square of every partial derivative of order 2 over R2 is bounded. Meinguet [75] provides
a detailed description of this space. The functional J2(f) defines a semi-norm over χ.

The smoothing thin-plate spline is then defined to be the solution to the fol-
lowing variational problem:

arg min
f∈χ

[
1
n

n∑
i

(vi − f(xi, yi))2 + µ

∫∫
R2

(f2
xx + 2f2

xy + f2
yy)dxdy

]
(2.2)

where the scalar µ is the tradeoff between fitting the target values vi and the smoothness
of the function f .

The null space of the penalty functional is a three dimensional space consisting
of polynomials of degree less than or equal to one, i.e., the space of all functions spanned



26

by the basis functions

φ1(x, y) = 1, φ2(x, y) = x, φ3(x, y) = y

ax + by + c, a, b, c ∈ R

Duchon [29] showed that if the points {(x1, y1), . . . , (xn, yn)} are such that the
least squares regression on φ1, φ2, φ3 is unique then the variational problem above has a
unique solution fµ and is given by

fµ(x, y) =
n∑
i

wiGi(x, y) + ax + by + c (2.3)

Here G(x, y) is the Green’s function to the twice iterated Laplacian. It is also
known as the fundamental solution to the bi-harmonic equation

∆2G = 0

where,
Gi(r) = r2 log r, r2 = (x− xi)2 + (y − yi)2

Thus the calculation of the spline fit requires the estimation of the parameters
wi and a, b, c.

Now let K be an n× n matrix with entries given by

Kij = Gi(xj , yj)

and let T be a n× 3 matrix with rows given by

Ti = [ xi yi 1 ].

Also let d be the 3-vector
d = [ a b c ]>.

Then it can be shown that the optimal value for the coefficient vector w = [wi] is given
by the solution to the matrix equations [15,88,119]
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(K + nµI)w + Td = 0 (2.4)

T>w = 0 (2.5)

This is a simple linear system that can be solved using matrix inversion. For the case of
µ = 0 we obtain the interpolating Thin Plate Spine.

The complexity of matrix inversion scales as O(n3) in the number of rows.
Thus as the number of points that we are fitting to goes up it is not practical to use
these methods on the full dataset. In our experiments we take a naive subsampling based
approach. Out of the 1200 points that we are required to fit to, we randomly subsampled
500 points and used them as the landmarks for the spline fitting procedure. We observe
that this simple approach works well in practice. A number of researchers have explored
more sophisticated and computationally attractive approaches to the problem [28,41,94,
124]. Any of these can be used as a replacement for our spline estimation procedure.

We estimate the TPS mapping from the points in the first frame to those in
the second where µt is the regularization factor for iteration t. The fit is estimated
using the set of correspondences that are deemed inliers for the current transformation,
where τt is the threshold for the tth iteration. After the transformation is estimated,
it is applied to the entire edge set and the set of correspondences is again processed
for inliers, using the new locations of the points for error computation. This means
that some correspondences that were outliers before may be pulled into the set of inliers
and vice versa. The iteration continues on this new set of inliers where τt+1 ≤ τt and
µt+1 ≤ µt. We have found that three iterations of this TPS regression with incrementally
decreasing regularization and corresponding outlier thresholds suffices for a large set of
real world examples. Additional iterations produced no change in the estimated set of
inlier correspondences.

This simultaneous tightening of the pruning threshold and annealing of the
regularization factor aid in differentiating between residual due to localization error or
mismatching and residual due to the non-planarity of the object in motion. When the
pruning threshold is loose, it is likely that there will be some incorrect correspondences
that will pass the threshold. This means that the spline should be stiff enough to avoid
the adverse effect of these mismatches. However, as the mapping converges we place
higher confidence in the set of correspondences passing the tighter thresholds. This
process is similar in spirit to iterative deformable shape matching methods [9, 22].
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I. Estimate planar motion
1. Find correspondences between I and I′

2. Robustly estimate the motion fields
3. Densely assign pixels to motion layers

II. Refine the fit with a flexible model
4. Match edge pixels between I and I′

5. For t=1:3
6. Fit all correspondences within τt

using TPS regularized by µt

7. Apply TPS to set of correspondences
Note: (τt+1 ≤ τt, µt+1 ≤ µt)

Figure 2.14 Algorithm Summary

2.2.4 Experimental Results

Figure 2.15 Face Sequence. (Row 1) The two input images, I and I ′ of size 240 × 320.
(Row 2) The difference image is show first where grey regions indicate zero error regions
and the reconstruction, T (I) is second. (Row 3) The initial segmentation found via
planar motion.

We now illustrate our algorithm, which is summarized in Figure 2.14, on several
pairs of images containing objects undergoing significant, non-planar motion. Since the
motion is large, displaying the optical flow as a vector field will result in a very confusing
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figure. Because of this, we show the quality of the optical flow in other ways, including
(1) examining the image and corresponding reconstruction error that result from the
application of the estimated transform to the original image (we refer to this transformed
image as T (I)), (2) showing intermediate views (as in [92]), or by (3) showing the 3D
reconstruction induced by the set of dense correspondences. Examples are presented that
exhibit either non-planarity, non-rigidity or a combination of the two. We show that our
algorithm is capable of providing optical flow for pairs of images that are beyond the
scope of existing algorithms. We performed all of the experiments on grayscale images
using the same parameters2.

Face Sequence The first example is shown in Figures 2.15 and 2.16. The top
row of Figure 2.15 shows the two input frames, I and I ′, in which a man moves his
head to the left in front of a static scene (the nose moves more than 10% of the image
width). The second row shows first the difference image between T (I) and I ′ where
error values are on the interval [-1,1] and gray regions indicate areas of zero error. This
image is followed by T (I); this image has two estimated transformations, one for the
face and another for the background. Notice that error in the overlap of the faces is very
small, which means that according to reconstruction error, the estimated transformation
successfully fits the relation between the two frames. This transformation is non-trivial
as seen in the change in the nose and lips as well as a shift in gaze seen in the eyes,
however all of this is captured by the estimated optical flow. The final row in Figure
2.15 shows the segmentation and planar approximation from Section 2.1.2, where the
planar transformation is made explicit as the regions’ pixel supports are related exactly
by a planar homography. Dense correspondences allow for the estimation of intermediate
views via interpolation as in [92]. Figure 2.16 shows the two original views of the segment
associated with the face as well as a synthesized intermediate view that is realistic in
appearance. The second row of this figure shows an estimation of relative depth that
comes from the disparity along the rectified horizontal axis. Notice the shape of the nose
and lips as well as the relation of the eyes to the nose and forehead. It is important to
remember that no information specific to human faces was provided to the algorithm for
this optical flow estimation.

Notting Hill Sequence The next example shows how the spline can also
refine what is already a close approximation via planar models. Figure 2.17 shows a
close up of the planar error image, the reconstruction error and finally the warped grid

2k = 2, λ = .285, τp = 15, µ1 = 50, µ2 = 20, µ3 = 1, τ1 = 15, τ2 = 10, τ3 = 5. Here, k, λ, and τp refer
to parameters in Section 2.1.2.
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Figure 2.16 Face Sequence – Interpolated views. (Row 1) Original frame I ′, synthesized
intermediate frame, original frame I, (Row 2) A surface approximation from computed
dense correspondences.

Figure 2.17 Notting Hill. Detail of the spline fit for a layer from Figure 2.6, difference
image for the planar fit, difference image for the spline fit, grid transformation.

for the scene that was shown in Figure 2.6. The planar approximation was not able to
capture the 3D nature of the clothing and the non-rigid motion of the head with respect
to the torso, however the spline fit captures these things accurately.

Gecko Sequence The second example, shown in Figure 2.18, displays a com-
bination of a non-planar object (a gecko lizard), undergoing non-rigid motion. While this
is a single object sequence, it shows the flexibility of our method to handle complicated
motions. In Figure 2.18(1), the two original frames are shown as well as a synthesized
intermediate view (here, intermediate refers to time rather than viewing direction since
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we are dealing with non-rigid motion) . The synthesized image is a reasonable guess at
what the scene would look like midway between the two input frames. Figure 2.18(2)
shows T (I) as well as the reconstruction error for the spline fit (T (I)−I ′), and the error
incurred with the planar fit. We see in the second row of Figure 2.18(2) that the tail,
back and head of the gecko are aligned very well and those areas have negligible error.
When we compare the reconstruction error to the error induced by a planar fit, we see
that the motion of the gecko is not well approximated by a rigid plane. Here, there is
also some 3D motion present in that the head of the lizard changes in both direction and
elevation. This is captured by the estimated optical flow.

Figure 2.18 Gecko Sequence. (Row 1) Original frame I of size 102 × 236, synthesized
intermediate view, original frame I ′. (Row 2) T (I), Difference image between the above
image and I ′ (gray is zero error), Difference image for the planar fit.

Figure 2.19 Rubik’s Cube. (Row 1) Original image pair of size 300 × 400, (Row 2)
assignments of each image to layers 1 and 2.

Rubik’s Cube The next example shows a scene with rigid motion of a non-
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planar object. Figure 2.19 displays a Rubik’s cube and user’s manual switching places
as the cube rotates in 3D. Below the frames, we see the segmentation that is a result
of the planar approximation. As can be seen the segmentation contains large chunks of
the background along with the Rubik’s Cube. While it is indeed desirable that the only
pixels that we segment are those belonging to the Rubik’s Cube, we must note that the
background lacks any distinguishing features making its motion truly ambiguous. Hence
without additional knowledge about the objects in the scene, any prior that we place
on the scene while segmenting it will be the cause of some mistakes. In our MRF-based
segmentation scheme we make the assumption that the layers are spatially contiguous,
this coupled with the motion ambiguity mentioned earlier results in some portion of the
background being interpreted as belonging to the same layer as the Rubik’s cube. Figure
2.20 shows T (I), the result of the spline fit applied to this same scene. The first row shows
a detail of the two original views of the Rubik’s cube as well as a synthesized intermediate
view. Notice that the rotation in 3D is accurately captured and demonstrated in this
intermediate view. The second row shows the reconstruction errors, first for the planar
fit and then for the spline fit, followed by T (I). Notice how accurate the correspondence
is since the spline applied to the first image is almost identical to the second frame.

Figure 2.20 Rubik’s Cube – Detail. (Row 1) Original frame I, synthesized intermediate
frame, original frame I ′, A synthesized novel view, (Row 2) difference image for the
planar fit, difference image for the spline fit, T (I), the estimated structure shown for the
edge points of I. We used dense 3D structure to produce the novel view.

Correspondences between portions of two frames that are assumed to be pro-
jections of rigid objects in motion allow for the recovery of the structure of the object,
at least up to a projective transformation. In [103], the authors show a sparse point-set
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from a novel viewpoint and compare it to a real image from the same viewpoint to show
the accuracy of the structure. Figure 2.20 shows a similar result, however since our corre-
spondences are dense, we can actually render the novel view that validates our structure
estimation. The novel viewpoint is well above the observed viewpoints, yet the rendering
as well as the displayed structure is fairly accurate. Note that only the set of points that
were identified as edges in I are shown; this is not the result of simple edge detection
on the rendered view. We use this display convention because the entire point-set is too
dense to allow the perception of structure from a printed image. However, the rendered
image shows that our estimated structure was very dense. It is important to note that
the only assumption that we made about the object is that it is a rigid, piecewise smooth
object. To achieve similar results from sparse correspondences would require additional
object knowledge, namely that the object in question is a cube and has planar faces.
It is also important to point out that this is not a standard stereo pair since the scene
contains multiple objects undergoing independent motion.

2.2.5 Discussion

Since splines form a family of universal approximators over R2 and can repre-
sent any 2D transformation to any desired degree of accuracy, it raises the question as
to why one needs to use two different motion models in the two stages of the algorithm.
If one were to use the affine transform as the dominant motion model, splines with an
infinite or very large degree of regularization can indeed be used in its place. However, in
the case where the dominant planar motion is not captured by an affine transform and
we need to use a homography, it is not practical to use a spline. This is so because the
set of homographies over any connected region of R2 are unbounded, and can in principal
require a spline with an unbounded number of knots to represent an arbitrary homog-
raphy. So while a homography can be estimated using a set of four correspondences,
the corresponding spline approximation can, in principle, require an arbitrarily large
number of control points. This poses a serious problem for robust estimation procedures
like RANSAC since the probability of hitting the correct model decreases exponentially
with increasing degrees of freedom.

Many previous approaches for capturing long range motion are based on the
fundamental matrix. However, since the fundamental matrix maps points to lines, trans-
lations in a single direction with varying velocity and sign are completely indistinguish-
able, as pointed out, e.g. by [107]. This type of motion is observed frequently in motion
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sequences. The trifocal tensor does not have this problem; however, like the fundamental
matrix, it is only applicable for scenes with rigid motion and there is not yet a published
solution for dense stereo correspondence in the presence of multiple motions.
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2.3 Applications

2.3.1 Automatic Object Removal

We demonstrate an application of our algorithm to the problem of video object
deletion in the spirit of [53,120]; see Figure 2.21. The idea of using motion segmentation
information to fill in occluded regions is not new, however previous approaches require
a high frame rate to ensure that inter-frame disparities are small enough for differential
optical flow to work properly. Here the interframe disparities are as much as a third of
the image width.

Figure 2.21 Illustration of video object deletion. (1) Original frames of size 180×240. (2)
Segmented layer corresponding to the motion of the hand. (3) Reconstruction without
the hand layer using the recovered motion of the keyboard. Note that no additional
frames beyond the three shown were used as input.

2.3.2 Structure From Periodic Motion

We show how to exploit temporal periodicity of moving objects to perform 3D
reconstruction. The collection of period-separated frames serve as a surrogate for multi-
ple rigid views of a particular pose of the moving target, thus allowing the use of standard
techniques of multiview geometry. We motivate our approach using human motion cap-
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ture data, for which the true 3D positions of the markers are known. We next apply our
approach to image sequences of pedestrians captured with a camcorder. Applications
of our proposed approach include 3D motion capture of natural and manmade periodic
moving targets from monocular video sequences.

Introduction

Periodic motion is ubiquitous in the physical world, from the oscillations of a
pendulum to the gallop of a horse. The periodicity of moving objects such as pedestrians
has been widely recognized as a cue for salient object detection in the context of tracking
and surveillance, see for example [25,67]. In this section we focus on the use of periodicity
for a different and, to our knowledge, novel purpose: 3D reconstruction. The key idea is
very simple. Given a monocular video sequence of a periodic moving object, any set of
period-separated frames represents a collection of snapshots of a particular pose of the
moving object from a variety of viewpoints. This is illustrated in Figure 2.22. Thus each
complete period in time yields one view of each pose assumed by the moving object,
and by finding correspondences in frames across neighboring periods in time, one can
apply standard techniques of multiview geometry, with the caveat that in practice such
periodicity is only approximate. In this section we present this idea and apply it to the
problem of estimating sparse 3D structure and dense disparity for walking humans.

The organization of this section is as follows. We review related work in Sec-
tion 4.2. In Section 2.3.2 we discuss our approach. Experimental results appear in
Section 4.3, and we conclude and discuss future work in Section 2.3.2.

Related Work

Periodicity is a kind of symmetry, and as such, its use in recovering 3D informa-
tion is related to approaches that leverage other kinds of symmetry. An early example
of work in this vein is Kanade’s method of recovering 3D shape from a single view of
a skew symmetric object [55]; more recent extensions of these ideas appear in [38, 43].
The periodicity we are concerned with is temporal; in contrast, spatial periodicity (to-
gether with homoegeneity and isotropy) has been exploited in several shape-from-texture
approaches, e.g. [40,70], in which the periodicity pertains to texture elements on the sur-
face of a curved object. While the periodicity of walking humans and animals has indeed
been used for other purposes, e.g. pedestrian detection [25], to our knowledge the present
work is the first to exploit it for 3D reconstruction.
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Figure 2.22 Illustration of periodic motion for a walking person. Equally spaced frames
from one second of footage are shown. The pose of the person is approximately the same
in the first and last frames, but the position relative to the camera is different. Thus this
pair of frames can be treated approximately as a stereo pair for purposes of 3D structure
estimation. Note that while the folds in the clothing change over time, their temporal
periodicity makes them rich features for correspondence recovery across periods.

Our Approach

In this section we describe our approach to estimating structure from periodic
motion (SFPM). In illustrating the idea, we make use of motion capture (or mocap) data
from [96]. We provide experimental results on regular video sequences in the following
section.

Estimating the Period
In the present work we specify the period of the moving target manually. A

number of approaches exist for estimating the period of a walking figure, e.g. [25]. As
our focus is on the reconstruction problem, we have not investigated the use of these
algorithms, though we do address the issue of error in the period estimation step in
Section 4.3.

Multiview Geometry across Periods
The most elementary configuration for periodic structure from motion is the

case of two views separated in time by one period. As is well known from [31, 46], the
3D structure of a rigid object can be estimated up to a projective transformation from
two uncalibrated views. The periodic motion counterpart to this is illustrated in Figure
2.23(a,b), which depicts two 2D views of mocap data spaced apart one period To in time.

In this case, the camera is stationary and the walking figure has translated
and rotated relative to the camera over the course of the period. These two views
correspond approximately to a stereo pair of a particular pose of the walking figure. The
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Figure 2.23 Illustration of structure from periodic motion using motion capture data: (a)
view at time t, (b) view at time t + To, (c) 3D reconstruction from To-separated views.

reconstruction obtained from these two views is shown in Figure 2.23(c). Since we are
using uncalibrated cameras, the reconstruction is arbitrary up to a 3D homography; our
display shows the reconstruction using a least-squares homography estimated using the
ground truth marker positions. Alternatively, if three or more views are available, one
can employ autocalibration techniques such as [69]. Partial calibration information can
also be obtained from knowledge about the scene (see e.g. [47] Ch. 18) or from known
properties of the moving target, e.g. that it is a human of a certain aspect ratio.

As is the case in standard structure from motion (SFM), the underlying ge-
ometry is only part of the problem: one must solve for correspondences between views
before estimating the structure.

Solving for Correspondences
In real video sequences, for which identified features are not available as in the

mocap data, we can appeal to methods of interest point detection and correspondence
recovery that are used in conventional SFM. In particular, we use a RANSAC-based
approach [105] on interest points extracted using the Förstner operator [37]. We perform
interest point description and matching using the method of [126], which uses the L1-
norm on the error between vectors of filter responses computed at each interest point.

In using RANSAC to estimate the epipolar geometry, we assume that the fea-
ture points on the moving object dominate those in the rest of the scene. Because of
this simplification, we do not need a separate figure/ground motion segmentation step
as preprocessing.
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Computing Dense Disparity
Once the epipolar geometry is known for an image pair, a number of dense

stereo correspondence algorithms can be applied along the epipolar lines. In this work
we use the method of [60], which is an energy minimization based method using a graph
cut approximation. The input to the algorithm is a pair of rectified images (with respect
to the object of interest) and the output is a disparity array. For rectification, we use
the algorithm described in [47], Sec. 10.12.

Experiments

Walking Person I
Figure 2.24(c) shows the sparse 3D structure recovered for the To-separated

frames of a walking person shown in Figure 2.24(a,b). A detail of the head and left
shoulder region is shown in Figure 2.24(d) from a viewpoint behind the person and
slightly to the left. Here we can see that the qualitative shape of the head relative to
the sleeve region is reasonable.

The set of points used here consists of (i) the Förstner interest points used to
estimate the fundamental matrix and (ii) the neighboring Canny edges with correspon-
dences consistent with the epipolar geometry. Many points appear around the creases in
the clothing, but this leaves several blank patches around the lower shirt and the arm.

Walking Person II
In Figure 2.25 we show an example of dense disparity estimation for another

To-separated frame pair of a walking person. The input frames are shown at the top,
followed by the rectified image pair. The estimated disparity relative to the left rectified
image is shown next; for purposes of visualization, in this figure we have manually masked
out the region corresponding to the person. The disparities are shown as a gray level,
with lighter shades indicating larger disparity. We observe that the individual’s right
leg has higher disparity than the left leg, which is consistent with their depth ordering
relative to the image plane, and that the majority of the disparity estimates for the rest
of the body fall somewhere in between these values. In the original image pair, the light
colored top of the forearm bleeds into the bright background; this corrupts the disparity
estimate in that region.

Sensitivity Study To conclude our experiments, we examine the sensitivity
of the 3D reconstruction with respect to errors in the estimate of To. For this purpose,
we again make use of the mocap data from Section 2.3.2.
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Figure 2.24 (a,b) To-separated input frames. (c) Estimated 3D structure for interest
points. (d) Detailed view of head and shoulder region viewed from behind the person.

We consider 200 frames of a regular walking sequence captured at 60 fps with
To ≈ 90 frames [96]. Each frame is a 2D projection (cf. Figure 2.23(a,b)) of the recorded
3D positions (which are accurate to 1mm) of a set of markers rigidly attached to a
subject’s body. We selected a different 2D projection of frame 100 as a reference view.
Using the reference view together with each of the previously mentioned 200 views, we
computed the 3D reconstruction and the root-mean-square (RMS) error relative to the
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Figure 2.25 (a,b) To-separated input frames. (c,d) Rectified images computed with re-
spect to estimated epipolar geometry of input frames. (e) Estimated disparity, masked
out to show region of interest containing the person.

known 3D structure at the reference frame.
The error, which is plotted in Figure 2.26(a), is computed after solving for the

least-squares homography aligning the projective reconstruction with the ground truth
marker positions at the reference frame. The periodicity is evident in the dips that
occur at ±90 frames on either side of 100. As expected, the error drops to zero at frame
100, at which point the reconstruction problem reduces to the case of exact stereo. The
plot in Figure 2.26(b) shows a detail of the reconstruction error computed for 30 frames
centered around frame 190; again the reference view is frame 100, but here the cameras
specifying the 2D projections are the same for all the views. In each plot, it is evident
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Figure 2.26 Reconstruction error vs. frame number for mocap data of a walking person
with To ≈ 90 frames. (a) RMS error in units of cm between true 3D coordinates at frame
100 and the estimated 3D coordinates using one 2D view at frame 100 and a different
2D view at each of frames 1-200. (b) RMS error for frames 175-205 relative to frame
100, this time using the same 2D view for the reference frame as for frames 1-200.

that the error grows gradually with respect to displacements around the local optimum.

Conclusion and Future Work

We have presented an approach to 3D structure estimation based on monocular
views of periodic motion. We demonstrated this approach using motion capture data
and raw footage of pedestrians. Using the motion capture data, we explored the behavior
of the reconstruction with respect to errors in the period estimation step.

The weakest part of the system is currently the correspondence estimation step.
In theory, by the definition of periodicity, the problem treated in this work is identical
to the classical SFM problem, provided the period estimate is correct. However, in prac-
tice, the correspondence problem is at least as hard as the usual stereo correspondence
problem, and is in general harder, due to appearance variations across periods. In this
regard, the correspondence problem associated with the SFPM problem lies somewhere
in between the classical correspondence problem of wide-baseline stereo and the feature
correspondence problem in 3D object recognition. We could therefore benefit from the
use of methods designed with the latter problem in mind; in work with Ivan Laptev and
Patrick Pérez [64], we have extended this approach to structure from periodic motion by
incorporating spatio-temporal interest points.
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2.4 Conclusion

In this section we begin with a summary of the chapter, followed by a discussion
of the primary contributions of the work presented in this chapter and finally a discussion
on the limitations of our method as well as future work.

2.4.1 Summary

In this chapter, we have presented a solution to the problem of motion segmen-
tation for the case of large disparity motion and given experimental validation of our
method. We have also presented an extension to handle non-planar/non-rigid motion
as well as applications to automatic object deletion and structure from periodic motion.
Our approach combines the strengths of the feature-based approaches (i.e., no limits
on the disparity between frames) and the the direct, optical flow-based methods (i.e.,
provides a dense segmentation and correspondences).

2.4.2 Primary Contributions

Motion Segmentation Framework

The contribution of this work is primarily the framework proposed for large
disparity motion that breaks the problem into three distinct stages:

1. Compute Point Correspondences This stage takes as input the two frames
and outputs a list of point correspondences where each entry in the list specifies
the location of a real world point in each of the two frames. This list will be
very noisy as point correspondences for large disparity images are very difficult
to estimate. In our work we use filter-based matching for corners to generate the
correspondences, however any matching engine may be seamlessly substituted (e.
g. the SIFT operator [68]).

2. Estimate Motion Fields This stage takes as input the list of point correspon-
dences from stage 1 and outputs a list of motions that are present in the set of
correspondences. This estimation should be robust to noise in the set of point cor-
respondences and the list of motions should be ordered according to support in the
set of correspondences. We use a RANSAC-based approach that has modifications
to prune duplicate motions that are present.
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3. Densely Assign Pixels to Motion Layers The final stage takes as input the two
frames as well as the set of detected motions. The goal is to find a segmentation
the minimizes the reconstruction error – how well the first image approximates
the second when the motions are applied to the pixels in a given layer – while
preserving the monocular smoothness in each of the frames – neighboring pixels
with similar brightness are likely members of the same object. We use a graph cut-
based algorithm that takes an explicit parameter to tradeoff the reconstruction
error and the smoothness of the assignment.

Pseudo-code for our approach to planar motion segmentation appears in Appendix A.1.

Duplicate Motion Pruning

In order to avoid the effects of phantom motions we use a two step variant
of RANSAC, where multiple independent motions are explicitly handled, as duplicate
transformations are detected and pruned in a greedy manner. The first step provides a
rough partitioning of the set of correspondences (motion identification) and the second
takes this partitioning and estimates the motion of each group (motion refinement).

First, a set of planar warps is estimated by a round of standard RANSAC and
inlier counts (using an inlier threshold of τ) are recorded for each transformation. In our
case, we use planar homography which requires 4 correspondences to estimate, however
similarity or affinity may be used (requiring 2 and 3 correspondences, respectively). The
estimated list of transformations is then sorted by inlier count and we keep the first nt

transformations, where nt is some large number (e.g. 300).
We expect that the motions in the scene will likely be detected multiple times

and we would like to detect these duplicate transformations. Comparing transformations
in the space of parameters is difficult for all but the simplest of transformations, so we
compare transformations by comparing the set of inliers associated with each transfor-
mation. If there is a large overlap in the set of inliers (more than 75%) the transformation
with the larger set of inliers is kept and the other is pruned.

Techniques for Feature-Impoverished Objects

Since our approach estimates motion based on consistency in point correspon-
dences, finding the motion of an object containing many identifiable features is quite
easy. The problem becomes more difficult for objects that have fewer features. We have
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introduced two new techniques for detecting the motion of objects with few features even
in complicated and feature-rich scenes.

The first of these techniques – Perturbed Interest Points – adds features in the
neighborhood of an interest point and allows matches to be found that will support the
true motion of the object, and the second – Sampling Based on Feature Crowdedness –
increases the likelihood of features with few neighbors being chosen during the RANSAC
stage of our algorithm.

2.4.3 Subsequent Work

Subsequent work has extended the framework presented in this chapter to han-
dle objects exhibiting 3 dimensional motion as well as to handle occlusion explicitly.

In [12], Bhat et al. extend our approach to handle rigid objects exhibiting non-
planar motion by using both planar homographies and fundamental matrices. They begin
with point correspondences from SIFT features [68] and during the motion estimation
stage the motion model (homography vs. fundamental matrix) is decided automatically
by using the simpler of the two that fits the set of correspondences in question (this
seems like a good idea with a lot of potential for mistakes - fmtx is too loose). Pixel
assignment is decided in the same manner as in our work though the matches based on
Fundamental matrices have potential matches along a line. To deal with this ambiguity
without creating a large search space, the authors use a multi-scale approach to determine
the window size for matches for each motion layer.

In [130], Xiao and Shah employ a similar framework to ours for motion seg-
mentation that is aimed at intelligently handling occlusion. They work in a different
domain in that the sequences are taken from video and do not exhibit large inter-frame
disparity. The assignment to motion layers is achieved using a similar graph-cut based
approach as in our case, but the assignment is done using a set of frames where the
number of frames is automatically determined to ensure that individual pixel disparity
does not exceed a pre-specified threshold. Occlusion is handled by explicitly labeling pix-
els as occluded during the graph-cut assignment and using the property that occlusion
assignments should obey the depth ordering of the individual layers.
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2.4.4 Limitations and Future Work

Running Time

In a effort to be as general as possible, we put no limit on the magnitude of the
allowable motion (i.e. any pixel in the first frame is allowed to match with any pixel in
the second frame). While this allows us to estimate correspondences for many possible
motions, it greatly increases the running time of our algorithm and in practice, even with
large disparity images, an individual pixel likely moves less than half of the image size
between the two frames. If we used a threshold on the maximum disparity for a single
pixel we could greatly reduce our running time.

Using a 2GHz desktop PC, the entire process for the image pair shown in
Figure 2.9 takes 12 minutes and of those 12 minutes, 10 are spent in the loop that
determines the nearest neighbor for each interest point. If the search space is limited we
could reduce this time greatly and make our approach far more practical.

Also, since we are using a fairly simple point matching approach, our set of
interest points must be quite large to ensure good matching. However, with a more
sophisticated matching approach, this set could likely be greatly reduced.

Dangling Backgrounds

One of the artifacts present in some of our results are pieces of background
that attach themselves to foreground motion layers. As we discussed in section 2.1,
these pixels are problematic because they seem to fit the motion of the other pixels in
the layer and it is only our higher level reasoning that allows us to determine that they
have been erroneously assigned. Perhaps with more than two images, we could more
accurately assign these pixels.

Occlusion Reasoning

Since we are working primarily with pairs of images, our occlusion reasoning is
very simple – we only assign pixels to motion layers if we determine that they appear in
both frames. Subsequent work has addressed this problem be incorporating information
from more frames [130], but perhaps something can still be done using only two frames
– e.g. use monocular segmentation to reason about pixels that have not been assigned
to any motion layer. This could allow for better boundary separations in many cases.
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Multiple Frames

Even though our approach is specifically designed for image pairs with large
disparity which won’t likely appear in high frame-rate video, a similar approach may
work well for high frame-rate video. Correspondences (and motion models) could be
generated using a standard point tracking algorithm [102] and then the image sequence
could be segmented using our graph-cut based approach. Since the segmentation would
likely be over many frames, we would have to include the possibility of occluded pixels.
This method would not specifically account for out of plane effects, but decompose a
video into a set of pixel trajectories that could be processed to get estimates of the
actual 3-dimensional motion of the scene.

This type of segmentation would be useful in special effects especially when
computer generated elements are going to be inserted into a complicated scene. It could
be used for motion blur in the case of very high framerate cameras as well as for object
removal (similar to the object removal presented in section 2.3. Here a scene could be
decomposed into a collection of spatiotemporal layers where individual layers could be
analyzed and manipulated independently.

Multi-pass Approaches

As we discussed in section 2.2, even objects that exhibit residual to a planar
fit may be approximated by our method. This approach could be extended to allow for
multipass approaches to motion segmentation. These passes could be with increasingly
flexible models (as in section 2.2) or increasingly higher resolution versions of the images.
This would allow for much faster matching and could allow for flexible models to be
introduced as needed.
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Reflection and Refraction in
Microfacet Reflectance Models

Microfacet reflectance models have been shown to work well for simulating
the interaction of light with a rough surface. In this chapter, we give an overview of
the existing techniques for reflection modeling and show how these techniques can be
extended to handle refraction in a unified framework. We also show that existing models
are simply special cases of this model. To this end, two new derivations are presented for
computing quantities required for refraction as well as a result that is (to our knowledge)
previously unpublished.

3.1 Introduction

The human visual system is quite proficient at discerning information about a
material by examining the way it interacts with the light in the scene. When rendering
images, we would like to model this interaction as accurately as possible to parallel the
effects seen in the real world. Take for example, Figure 3.1, which shows a rendered
image of a statue. Upon inspection, the statuette appears to be made of frosted glass.
This impression results from the way the light interacts with the surface.

There are many subtle effects that a surface has on the way light is reflected/refracted.
This is especially evident in dielectrics with rough surfaces (an example being frosted
glass). A nice benefit of physically-based approaches is that if the surface is modeled
accurately, many of these effects will be captured automatically. Notice in Figure 3.1
that there are bright regions on the back side of the statue directly opposite the light.
These arise from a focussing effect the dielectric surface has on the incoming light. If we

49
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Figure 3.1 A dragon made of frosted glass rendered using a microfacet model. For this
material, reflection and refraction for a rough surface must both be modeled. (Rendered
by Henrik Wann Jensen)

instead try to model this using an ad hoc reflectance model we would have a hard time
finding parameters that capture these types of effects.

While the range of visual effects found in nature is quite wide, here the focus
will be on what is known as geometrical optics - when the surface elements are quite
large with respect to the wavelength of light - and ignore the wave effects of light, though
there are nice reflectance models based on Gaussian hight fields [7, 49, 93] that capture
many of these effects. For a good comparison of geometrical and physical optics see [77].

Microfacet models have been shown to model the effects that roughness has on
geometrical optics quite well. These models will be the focus of this chapter. Specifically,
we would like to simply model the interaction of light on a rough surface and capture
effects resulting from reflection as well as transmission.

This chapter will be using the terms refraction and transmission interchange-
ably. While this may not be strictly correct (since refraction specifically refers to the
change in direction that light undergoes during transmission), refraction is commonly
used to refer to the counterpart to reflection and we will continue in that manner. Sim-
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ilarly, in much of the discussion about microfacets, we will be explaining it for the case
of reflection, though except where specifically stated (as in Section 3.3 which is devoted
to the case of reflection) reflection will refer to both reflection and refraction.

In this chapter, we give an overview of the existing techniques for reflection and
show how these techniques can be extended to handle refraction in a unified framework.
We also show that this technique for refraction is in fact a generalization of the reflection
models and the original models are simply special cases of this model. To this end, two
new derivations are presented for computing quantities required for refraction as well as
a result that is (to our knowledge) previously unpublished.

The structure of this chapter is as follows: we begin with an overview of rele-
vant work, in Section 3.2 we give an overview of some basic concepts and notation, in
Sections 3.3 and 3.4 we cover the cases of reflection and refraction, the geometric term
is covered in Section 3.5, importance sampling is covered in Section 3.6, and conclusions
are presented in Section 3.7.

3.1.1 Empirical Models

Some of the early models provided reasonable results but were based on purely
empirical models, which led to a number of flaws with respect to physical validity. One of
the earliest models, that of Lambert [62] presented a method where appearance is inde-
pendent of viewing direction. Since this is probably the easiest Bidirectional Reflectance
Distribution Function (BRDF) to work with, it is commonly assumed in computer vi-
sion and inverse rendering problems. However, this type of reflectance cannot result from
solely surface interactions [45].

Gouraud [42] proposed a method to interpolate shading to render curved sur-
faces and to add a degree of realism, Phong [87] used a cosine lobe to simulate a highlight
that changes with viewing direction and combined it with a diffuse (or Lambertian) term.
One problem with this model is the fact that it can reflect more light than is incident on
a surface. This isn’t always a noticeable problem in rendering when only single bounces
of light are considered, however when simulating multi-bounce phenomena, like indirect
illumination, this can lead to infinite values and poor results.

The Schlick model [90] added efficiency and accuracy to the Phong model by
incorporating Fresnel effects (and a nice technique for computing Fresnel coefficients for
the case of unpolarized light).

Another empirical model is that of Ward [122], which handles effects produced
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by anisotropic reflection. Instead of assuming an isotropic BRDF, Ward models it as an
elliptical distribution with varying degrees of eccentricity. This intuitively corresponds
to scratches on the surface.

Another problem with the empirical models is the interaction between reflec-
tion and refraction. There should be a significant focusing of the light for the case of
refraction. The models that are cased on properties of the surface will demonstrate
this focusing, however the empirical models would have to be hand-tuned to handle this
effect.

3.1.2 Microfacet models

With microfacet models the surface is assumed to be composed of many tiny
facets with some distribution over orientation. Light is reflected off of these facets and
the amount of light that is reflected is proportional to the number of facets that are
oriented in the direction required for the reflection from light to eye.

The first microfacet model is that of Torrance and Sparrow [108]. This paper
introduced the various projection factors that appear in the BRDF as well a term to
account for the shadowing of light from individual facets called a geometric term. To
simplify the calculation of this geometric term, they assumed that the surface consists of
symmetric v-grooves of infinite length in all directions - an assumption that makes this
model not physically plausible since the surface cannot be constructed [59].

Blinn [14], introduced this technique to the graphics community and presented
a conversion method for parameters used in the Phong model as well as for a different
distribution function. Since Blinn was writing for the graphics community, he presented
an algebraic formulation for the BRDF that was geared toward simple implementation.
This was especially evident in the geometric and Fresnel terms.

Cook and Torrance [24] extended the Torrance and Sparrow model to include
wavelength-dependent effects. In addition, they showed that reflectance predicted by
their model very closely matches reflectance data for a variety of materials including
metals and non-metals.

Oren and Nayar [84] extended these microfacet models for the case of diffuse
facets. Since the facets are assumed Lambertian, they are modeling more than a surface
reflection and even refer to the reflectance they model as body reflection. Because of this
and the fact that the application of this model to refraction doesn’t really make sense,
we will not go into the details of this model.
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~n global surface normal
~nf facet normal
~ωi incident direction
~ωr reflected direction
~ωt refracted direction
θi angle of incident direction (w.r.t. ~n)
θr angle of reflected direction (w.r.t. ~n)
θt angle of refracted direction (w.r.t. ~n)
θ′i local angle of incident direction (w.r.t. ~nf )
θ′r local angle of reflected direction (w.r.t. ~nf )
θ′t local angle of refracted direction (w.r.t. ~nf )
dAs infinitesimal surface area
α angle between ~nf and ~n
p(α) number of facets per dA per dω
Es irradiance of the surface
Li radiance incident on the surface
Lr radiance reflected from the surface
Lt radiance transmitted through the surface
fr BRDF
η ratio of indices of refraction (ηt/ηi)

Figure 3.2 Notation that will be used throughout this chapter.

Ashikhmin et al. [3] provide a method for surfaces whose microfacets have any
distribution and also show a method for solving for the appropriate values for the shad-
owing function. This allows a relaxation of the symmetric groove assumption made
initially in [108] and may be called physically plausible since a surface could be con-
structed. They show application of their model capturing the appearance of varying
materials (including anisotropic reflection) with success.

Koenderink et. al. [59] present a method based on thoroughly pitted surfaces.
While different and apparently difficult for refraction, there are nice points: shadowing
is easy, multiple bounces is easy.

3.2 Basics

3.2.1 Notation and Terminology

Figure 3.2 gives a summary of the notational conventions that will be employed
in this chapter.

In this section, we present definitions of radiometric terms that are useful in
the study of surface reflection. Detailed derivations and descriptions of these terms are
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given by Nicodemus et al. [79]. All directions are represented by the zenith angle θ and
the azimuth angle φ. The light source is assumed to lie in the x-z plane and is therefore
uniquely determined by its zenith angle θi, as shown in Figure 3.3. The monochromatic
flux dΦi is incident on the surface area dA, from the direction θi, and a fraction of it,
d2Φt, is reflected in the direction (θr, φr). The irradiance Es of the surface is defined as
the incident flux density:

Es =
d2Φi

dAs

The radiance Lr, of the surface is defined as the flux emitted per unit fore-shortened
area per unit solid angle. The surface radiance in the direction (θr, φr) is defined as:

Lr =
d2Φr

dAs cos θrdωr

The BRDF fr of a surface is a measure of how bright the surface appears when viewed
from a given direction, when it is illuminated from another given direction. The BRDF
is defined as:

fr(x, ~ωi, ~ωr) =
dLr

dEs

Using d2Φi = Li cos θidAsdωi, we can express this as:

fr(x, ~ωi, ~ωr) =
d2Φr

Li cos θi cos θrdAsdωidωr
(3.1)

We will use this equation in the following sections to derive BRDFs that are specific to
the cases of reflection and refraction from microfacet surfaces.

3.2.2 Important BRDF Properties

Conservation of Energy

Since light doesn’t simply disappear or appear from nowhere, we must ensure
that our BRDF doesn’t introduce or remove light from the scene. This can be simply
stated as: ∫

Ω
fr(x, ~ωi, ~ωr)d~ωid~ωr = 1

Note that this integral must be over the entire sphere Ω to account for transmission and
absorption.

This property is especially important for global illumination applications.
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Figure 3.3 Reflection from and refraction through a microfacet on a rough surface.

Helmholtz Reciprocity

Over a century ago, Helmholtz described the interchangeable role of the light
emitter and receiver with respect to reflectance. For a BRDF to be physically valid, it
must fulfill this constraint, or specifically:

fr(x, ~ωi, ~ωr) = fr(x, ~ωr, ~ωi) ∀~ωi∀~ωr

This property is particularly important when ray-tracing since the interchangeability of
the source and receiver is a core assumption to the technique.

3.2.3 Microfacet Model

Consider the geometry shown in Figure 3.3. The surface area dAs, is located
at the origin of the coordinate frame, and its surface normal points in the direction of
the z-axis. The surface is illuminated by a beam of light coming in along ~ωi. We are
interested in determining the radiance of the surface in the direction ~ωr. Only those
planar micro-facets whose normal vectors lie within the solid angle dωf are capable
of specularly reflecting light flux that is incident along ~ωi into the infinitesimal solid
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angle d~ωr. From the vectors ~ωi and ~ωr, we can determine the normal direction of the
reflecting facets, ~nf (the method for this computation is given for the cases of reflection
and refraction in the following sections).

The number of facets per unit area of the surface that are oriented within the
solid angle dωf is equal to p(α)dωf , where α is the angle between ~n and ~nf . Therefore,
the number of facets in the surface area dAs, that are oriented within dωf is equal to
p(α)dωfdAs. If we let af be the area of each facet, then the area of points in dAs, that
will reflect light from the direction ~ωr into the solid angle dωr, is equal to afp(α)dωfdAs.
The flux incident on the set of reflecting facets is determined as:

d2Φi = Lidωi(afp(α)dωfdAs) cos θ′i (3.2)

3.2.4 Distribution Function

Gaussian Distribution

The model proposed by Torrance and Sparrow [108] uses the Gaussian Distri-
bution:

P (α) =
ct√
2πσ

e−(α2/2σ2)

where ct is the normalization factor that accounts for the truncation of the distribution
to [−π/2, π/2] and is defined as:

ct =
1(

1√
2πσ

∫ π/2
−π/2 e−α/2σ2dα

)
This normalization factor can be pre-computed using the error function and is

constant for a given roughness value.

Beckmann Distribution

Beckmann and Spizzichino [8] provides a comprehensive theory for a variety
of surface conditions ranging from smooth to very rough. The distribution function
proposed and later used in [24] is:

P (α) =
1

σ2
b cos4(α)

e−(tan(α)/σb)
2

While this expression is more difficult computationally, it is already normalized so there
is no preprocessing needed.
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Figure 3.4 The different distribution functions for a single roughness value of σ = 0.2.

Von Mises Distribution

The Von Mises Distribution [34] is the circular analog to the Gaussian distri-
bution on a line. It is defined on [0, 2π) with probability density function

P (α) =
1

2πI0(σv)
ecos(α)σv

where I0 is a modified Bessel function of the first kind of order 0.
This covers the entire circle but can be made to cover only half of the circle if

used to find the probability of 2α with a correction for the roughness parameter.
The Von Mises distribution can be sampled as in [11].

Discussion

Von Mises and Beckmann are theoretically nicer since they belong on the sphere
but the Gaussian (even with truncation) is easier to compute and provides similar results.

Figure 3.4 shows plots of the different distribution functions. Notice that they
are very similar in shape, and with appropriate roughness values they can be made to
be quite close for most angles.
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3.2.5 Fresnel Effects

Fresnel terms account for the tradeoff between reflection and transmission that
occurs as the incident angle changes. As the incident angle becomes larger, more of the
light is reflected. This effect can be seen in a glass of water, the portions of the glass in
the center are virtually invisible, while around the edge reflections of the surroundings
become quite visible.

This can be approximated as [90]:

F (~ωi, ~ωt) = F0 + (1− F0)(1− cos(θ))5

where F0 is the reflectance at normal incidence:

F0 =
(

η − 1
η + 1

)2

Where η is ratio of indices of refraction, ηt/ηi. Note that the larger of the two angles (i.
e. θ = max (θi, θr)) should be used in this computation.

3.3 Reflection

Reflection is the process by which light that is incident on a surface leaves that
surface on the same side. To compute the reflectance (that is the ratio of incident to
reflected light) predicted by the microfacet model we need to compute the direction of
the facet that will reflect the light in the viewing direction and the change in solid angle
between the normal and the reflected direction. In the following sections we provide the
details of these computations as well as the resulting BRDF.

3.3.1 Computing ~nf

Since the reflection will be symmetric about the normal of the reflecting facet,
the required normal lies exactly halfway between ~ωi and ~ωr:

~nf =
~ωi + ~ωr

|~ωi + ~ωr|

this normalization constant can be computed as
√

2 + 2(~ωi · ~ωr).
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3.3.2 Change in Solid Angle

The change in solid angle that results from a change in the normal is (as proven
in [77]):

dωf =
dωr

4cosθ′i
(3.3)

3.3.3 Bidirectional Reflectance Distribution Function

If we combine Equations 3.1 and 3.2 we get the following expression for the
BRDF:

fr(x, ~ωi, ~ωr) =
Lidωi(afp(α)dωfdAs) cos θ′i
Li cos θi cos θrdAsdωidωr

=
afp(α) cos θ′i
cos θi cos θr

dωf

dωr

using the result from Equation 3.3 we get:

fr(x, ~ωi, ~ωr) =
afp(α)

4 cos θi cos θr

and including the Fresnel and geometric terms G(·), the final expression for the BRDF
becomes:

fr(x, ~ωi, ~ωr) =
G(~ωi, ~ωt)F (~ωi, ~ωt)afp(α)

4 cos θi cos θr

We will now move on to the case of refraction where light will be transmitted
between two mediums.

3.4 Refraction

Refraction (or transmission) is the process of light entering a new medium which
results in certain changes in the direction and intensity. The primary difference stems
from the fact that there are two media involved and therefore we must not ignore things
like indices of refraction.

Refraction has a greater need for a theoretical model since it would be quite
difficult to measure the effect of exactly one interface (since that would require the light
and the sensor to be in different media.

As we did in Section 3.3, we provide the details of the computations necessary
for the microfacet model as well as the resulting BRDF. In addition, we show that these
new quantities are generalization of those in Section 3.3 that take indices of refraction
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into account and show that when both rays have the same index of refraction, they
reduce to those computed for reflection.

3.4.1 Computing ~nf

Using Snell’s law we can compute the facet normal that will refract light from
direction ~ωi to ~ωt. The facet normal, ~nf , lies in the plane spanned by the incident and
the refracted vectors, and it can be calculated as follows (a proof of which appears in
Appendix A.2):

~nf =
~ωi + η~ωt√

η2 − 2η cos γ + 1
(3.4)

Note that
√

η2 − 2η cos γ + 1 =
√

η2 + 2η(~ωi · ~ωt) + 1 is the length of the vector (~ωi +

η~ωt) for any two non-colinear and normalized vectors ~ωi and ~ωt. This is also true for
the case of reflection where the numerator simplifies to ~ωi + ~ωt and the denominator
simplifies to

√
2 + 2(~ωi · ~ωt).

This result (which I have not been able to find any published account) produces
the same vector (up to a scale factor) as the method of [44]:

~nf =

 ~ωi + (~ωi + ~ωt) ηt

ηi−ηt
if ηi > ηt

−~ωt − (~ωi + ~ωt) ηi

ηt−ηi
if ηt > ηi

(3.5)

This method simplifies to:

~nf =
ηi~ωi + ηt~ωt

ηt − ηi
=
(

ηi

ηt − ηi

)
~ωi + η~ωt

While this gives the correct vector, it is not normalized and the scale factor introduced
will cause problems for the case of reflection.

This vector always points in the direction of the vector associated with the
smaller of the two indices of refraction. One test to check whether or not the refraction is
possible is to test whether or not the negative of the dot product between the computed
normal and the vector associated with the larger of the two indices of refraction is
negative. If so, the refraction is not possible. This is summarized as:

if ηi > ηt and (~nf · ~ωi) < 0 possible
if ηt > ηi and (~nf · ~ωt) < 0 possible
else impossible
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3.4.2 Change in Solid Angle

To correctly calculate the number of facets that are oriented in the correct
direction, we need to find the relation between a change in the solid angle around the
normal and the corresponding change in the solid angle around the refracted direction.
This ratio can be calculated as (a proof of which appears in Appendix A.3):

dωf =
η2 cos θ′t

(cos θ′i − η cos θ′t)2
dωt (3.6)

One special case worth considering is that of specular reflection. In this case,
θ′t = π − θ′i and η = 1 and we get:

dωf =
cos θ′i

(2 cos θ′i)2
dωt =

dωt

4 cos θ′i

which is a well-known result proven in [77]. In addition, for the case of transmission for
an interface with η=1, we get dωt = 0 which is also to be expected.

This term is also derived in [97], however the derivation is not as lucid as the
one presented in this report.

3.4.3 Bidirectional Reflectance Distribution Function

As we did in Section 3.3.3, we can express the BRDF as (with the appropriate
vector/angle substitutions):

fr(x, ~ωi, ~ωt) =
afp(α) cos θ′i
cos θi cos θt

dωf

dωt

using the result from Equation 3.6 we get:

fr(x, ~ωi, ~ωt) =
afp(α) cos θ′iη

2 cos θ′t
cos θi cos θt(cos θ′i − η cos θ′t)2

and including the Fresnel and geometric terms, the final expression for the BRDF be-
comes:

fr(x, ~ωi, ~ωt) =
η2G(~ωi, ~ωr)T (~ωi, ~ωr)afp(α) cos θ′i cos θ′t

cos θi cos θt(cos θ′i − η cos θ′t)2

Where T (~ωi, ~ωr) is the Fresnel term for transmitted light. We will consider the geometric
term G in the following section.
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3.5 Geometric Term

Since the microfacet models expect that as the projected area from a surface
patch increases, the number of visible facets (and thus reflected light) increases. For
grazing angles, this projected area becomes infinite and thus the estimated irradiance
becomes infinite. However, if we consider the interaction of facets at these grazing
angles, we see that facets are much more likely to block each other as we approach
these grazing angles. The function that models this effect is known as the geometric
term. Some of the earliest work on this term comes from the physics community and
was for general random surfaces [7, 93]. The term proposed by Torrance and Sparrow
is probably the most widely used though the assumptions required make the model
physically implausible. A more recent term was introduced by Ashikhmin et al. that
doesn’t make these limiting assumptions.

3.5.1 Torrance and Sparrow

The Torrance-Sparrow geometric term depends on two very important assump-
tions: the first is that the surface is comprised of long grooves that extend in all directions
and the second is that these grooves are symmetric – that each side of the groove is at
the same angle to the global surface normal. The first assumption is what makes the
model physically implausible since no surface can be constructed that has infinite grooves
that extend in all directions (though it is important to note that this assumption is not
inherent to this microfacet model in general, but only to this term - without this term
the Torrance-Sparrow model may be considered physically plausible). The second as-
sumption simplifies the calculations and more importantly, it makes the case of grazing
angles trivial.

Figure 3.5 shows the three types of situations we would like to capture with
the geometric term: (a) shows perfect reflection, or the case where no light is blocked by
another facet before or after the reflection, (b) shows masking, when the light is blocked
bay another facet after the reflection, and (c) shows shadowing (same as masking except
that the roles of the light and the viewing direction are exchanged), when the light is
blocked before the reflection. What is needed for each of these cases is the ratio of light
that is not blocked to the light incident on the facet. This ratio is trivially 1 for (a) and
the other two cases can be computed quite easily. Blinn [14] provides a nice derivation
for each of these cases in terms of simple dot products. For the case of masking, as
shown in Figure 3.5(b), the ratio of unblocked light to incident light, Gb(~ωi, ~ωr) can be
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Figure 3.5 Three cases for the geometric term: (a) perfect reflection, (b) masking, (c)
shadowing. This figure is reproduced after [14]

expressed as:
Gb(~ωi, ~ωr) =

2(~nf · ~n)(~ωi · ~n)
(~ωr · ~nf )

And for the case of shadowing, as shown in Figure 3.5(c), the ratio of unblocked light to
incident light, Gc(~ωi, ~ωr) can be expressed as:

Gc(~ωi, ~ωr) =
2(~nf · ~n)(~ωr · ~n)

(~ωi · ~nf )

Using these terms, we can calculate the ratio of unblocked as the minimum of
these three cases:

G(~ωi, ~ωr) = min (1, Gb(~ωi, ~ωr), Gc(~ωi, ~ωr))

One thing to notice about this geometric term is that it is independent of the
roughness of the surface. This doesn’t seem like a good property of a geometric term
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since the higher the roughness value (that is the higher the likelihood of facets with large
slopes) the more likely facets will be blocked as grazing angles are approached. Next,
we will consider a geometric term that takes roughness into account and does not rely
on the symmetric v-groove assumption.

3.5.2 Ashikhmin, Premoze and Shirley

If we do not assume that the surface is composed of v-grooves, but instead of
randomly oriented facets we can think of the geometric term as capturing the ratio of
shadowed area to projected area (though we will have to do this twice, once for shadowing
and once for masking). Ashikhmin et. al. [3] proposed a method for computing this value
that is dependent on the roughness of the surface. More precisely, this involves computing
the expected value of the shadowed area for facets according to the surface roughness
distribution:

G∗
p(~ω) =

∫
~nf∈Ω

(~ω · ~nf )p(α)dωf (3.7)

This is then computed for the incident and viewing direction and the value of Gp(~ωi, ~ωr) =

min(G∗
p(~ωi), G∗

p(~ωr)).
This expression is evaluated using numerical integration, but can be precom-

puted and, since it is quite smooth, is suitable for interpolation for a set of sample
points.

This method is quite nice theoretically since it eliminates the symmetric v-
groove assumption (which is especially important for the case of refraction where the
notion of symmetry within a groove becomes difficult when the groove will be viewed
both from above and within the surface. However, the results of this geometric term are
actually quite close to the results for the Torrance-Sparrow term and may not warrant
the extra computation for many purposes.

3.6 Importance Sampling

Importance sampling is essential for efficient rendering with a BRDFs that have
peaked distributions. In our case this happens when the roughness of the surface is low.
Unfortunately, there has not been much progress in developing techniques for importance
sampling of microfacet based models such as the Torrance-Sparrow model. The reason for
this is that the final expressions are complex and difficult to integrate analytically. One
possibility is to replace the BRDF with a simpler model such as the Lafortune model [61],
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Figure 3.6 A square light seen through a dielectric surface with roughness σ = 0.3. The
scene has been rendered using the BRDF (left) and brute-force Monte Carlo (middle)
sampling of the microfacets. On the right the intensity values along a slice through
the center of the images have been plotted for comparison. (Rendered by Henrik Wann
Jensen)

which supports importance sampling. Another option is to directly simulate the physics
of the microfacet distribution [56], which turns out to be surprisingly simple and efficient
for sampling microfacet distributions. We start with the integral for reflected radiance

Lr =
∫

~ω′∈Ω
frLi(~n · ~ω′) dω′ (3.8)

(which is just the evaluation of the BRDF over all incident directions). To evaluate this
integral, we use the fundamental assumption that the microfacets are independent and
distributed according to p(α). For simplicity, we assume that the distribution is Gaussian
and isotropic, but any p(α) can be used. To sample the BRDF, we first generate a pair
of Gaussian distributed random numbers (using the Box-Müller method [17]). We use
the length of the vector for the elevation angle and the rotation for the azimuth. These
random numbers are used to perturb the surface normal. Next, we compute the Fresnel
term for the perturbed normal direction, and use random sampling to pick either a
reflected or refracted direction. If the perturbed normal generates a valid reflected or
refracted direction then we trace a ray in this direction — otherwise the result is zero.
The resulting ray distribution accounts for both the facet distribution function, the
Fresnel term, and the change in the solid angle.

In Figure 3.6 we compare the Monte Carlo sampling method with a direct
evaluation of the BRDF for refraction of an area light source in a square. Note, how the
results match quite nicely.
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3.7 Conclusion

Microfacet models can be used to model the reflection from and the refraction
through a rough surface. In this report, we have given an overview of the existing
techniques for reflection and shown how these techniques can be extended to handle
refraction in a unified framework. We have also shown that this technique for refraction
is in fact a generalization of the reflection models. We have seen methods for computing
the distribution of incident light for both of these cases as well as a possible direction for
future research. At the cutting edge of rendering continues to approach photo-realism,
these types of modeling will become increasingly important to be able to capture the
many subtle appearance effects in the natural and man-made worlds.
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Toward a Perceptual Space for
Reflectance

The Bidirectional Reflectance Distribution Function (BRDF) describes the way
a surface reflects light. BRDFs are complex mathematical objects that, while allowing
for a complete radiometric description of light reflecting from a surface, can be difficult
to use in practice. Recently there has been interest in understanding the perception
of reflectance in a manner similar to the work done over the last two centuries on the
perception of color. The aim is to construct a low-dimensional, perceptual space for
BRDFs that can be easily navigated, similar to a perceptually uniform color space. To
this end, we design and carry out a comprehensive psychophysical study of the perception
of measured reflectance. This is the largest study of its kind to date, and the first to use
real material measurements. In addition, we introduce a new multidimensional scaling
(MDS) algorithm for analyzing ordinal data that unlike existing methods is both efficient
and optimal. We use the results of our study to construct a perceptual space of these
BRDFs and introduce a new method for perceptual construction of novel BRDFs.

4.1 Introduction

Photorealistically rendered images depend not only upon scene geometry and
illumination, but also on the material models for each object. A local model of material
reflectance is captured by a Bidirectional Reflectance Distribution Function (BRDF) [80].
There has been a great deal of progress in creating physically-based analytic BRDF
models [3, 23, 50, 108, 121] and more recently measurement driven models [74]. For each
of these reflectance models, there exists some underlying space of possible reflectances

67
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whose dimension is given by the parameters of the model. Yet, these models and their
resulting spaces do not account for the ways people actually perceive materials, e.g. which
attributes are significant and which ones are ignored. In this chapter we analyze the
perception of reflectance and introduce a methodology for deriving a space for reflectance
from results of psychophysical experiments using measured BRDF data.

The study of the perception of reflectance holds promise for both computer
graphics and vision researchers. As it stands today, a digital artist has to develop a feel
for the parameters of the various analytical reflectance models before he can use them
to produce the desired effect. This is due to the complex relationship between model
parameters and the resulting perceptual sensation. Learning this relationship is a com-
plicated and error prone process based on repeated trial and error. The challenge is even
more acute for data-driven BRDF models where the parameter space is particularly large
and unintuitive. Imagine trying to select a desired color by specifying parameters that
define a spectral density function. A perceptual space for reflectance allows computer
graphics artists to readily navigate the space of BRDFs and to work with BRDFs in a
manner similar to how they work with various color spaces. Additionally, shading is a
strong cue in human vision and an understanding of reflectance perception will give us
insight into the priors and constraints used by humans to solve various shading related
problems, e.g., shape from shading and recognition over variable and unknown lighting.

Reflectance can often be broken into two distinct components: chromatic and
achromatic. In this study we will restrict our attention to the achromatic aspects of the
BRDF, also known as gloss. Gloss was originally studied in the paper industry [51] and
has been formalized by the American Society for Testing and Materials (ASTM). The
ASTM defines gloss as “the angular selectivity of reflectance, involving surface-reflected
light, responsible for the degree to which reflected highlights or images of objects may
be seen as superimposed on a surface” [5].

We chose to consider only gloss because the largest publicly available database
of reflectance measurements (the MIT-MERL database [74]) consists of only 55 usable
isotropic BRDFs. This is a very small subset of the vast variety of reflectance functions.
Color is such a strong perceptual cue that given the sparseness of our BRDF database,
differences in color between two BRDFs will completely overwhelm differences due to
the gloss. Thus, in the following, the term BRDF will refer to the achromatic aspects of
reflectance; when we refer to the chromatic aspects, we will make specific note of it.

Our study contributes to the state of the art in perception research in computer
graphics in three ways. First, we design and implement a comprehensive study of the
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perception of measured reflectance. This is the largest study of its kind to date, and
the first to use real material measurements. Second, we develop a new multidimensional
scaling (MDS) algorithm for analyzing ordinal data. This algorithm is a replacement for
the widely used weighted non-metric MDS algorithm [16]. The new algorithm is efficient
and optimal, in that it finds the globally optimal solution in polynomial time, unlike
the algorithm it replaces. Finally we use the results of our psychophysical study to ana-
lyze the perception of the achromatic aspects of reflectance. As part of this analysis we
estimate the dimensionality of the space of reflectance perception and construct a per-
ceptually meaningful embedding of these BRDFs. We also introduce a novel perceptual
interpolation scheme that uses the embedding obtained from human subject responses
and the geometry of the space of BRDFs to provide the user with an intuitive interface
for navigating the space of reflectances and constructing new ones.

We begin with related works in section 4.2. In section 4.3 we present our
experimental framework for measuring the perception of gloss. Our new method for
analyzing perception of gloss is described in section 4.4. An analysis of our results and
our method for perceptual interpolation are provided in section 4.5. We conclude with
a discussion in section 4.6.

4.2 Related Works

With the increasing emphasis on photorealism, perception has become an active
area of research in a number of areas of computer graphics including ray distribution
for global illumination [98], tone mapping [65, 113], evaluation of translucency [36] and
perception of reflectance [86, 125]. In this section we survey some of the recent work in
computer graphics and vision science on the perception of reflectance. We refer the inter-
ested reader to [86] and [125] for a more complete survey of the historical developments
in this area.

In computer graphics the study of the perception of reflectance was pioneered
by Pellacini et al. in which they present a perceptually meaningful reparameterization of
the Ward reflectance model [86]. The authors collected perceptual data by asking sub-
jects to quantitatively rate the similarity between images generated with varying model
parameters. MDS was used on these ratings to obtain a perceptual model with two pa-
rameters. The parameters roughly correspond to Hunter’s contrast gloss and DOI gloss.
The original Ward parameters for roughness and contrast gloss are independent, while
contrast gloss depends on both specular and diffuse reflectance – most likely because the
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human visual system is sensitive to relative luminance. The study was based entirely
on a single empirical BRDF model. Our work, while similar in spirit, is based entirely
on measured reflectances and a much larger set of subjects. We also will argue in the
next section that our psychometric study based on paired comparisons is a significant
improvement over the ratings system employed by Pellacini et al.

Westlund and Meyer used appearance standards to build a new method for
representing BRDFs [125]. Each BRDF is represented by a set of two types of mea-
surements: measurements for specular gloss and haze (ratio of the specular peak to the
light a few degrees off specular) and measurements for flop (chromatic effects as seen
in pearlescent and metallic Paints). Color was measured both at specular peak and off
specular followed by interpolation in CIELAB space. The model allows for simple repre-
sentation and much simpler measurement of materials, and inherits the psychophysically
based qualities of the individual components (e.g., each step in the interval from 0 to 100
in the gloss dimension equals a uniform step in gloss space), though there is no attempt
to capture the perceptual effects of different combinations of the dimensions.

In [81], Obein et al. estimate the perceptual scaling of gloss using a series of
10 black plates1 arranged into pairs of pairs and users decided which of the two pairs
were more similar. Since they are only interested in specular gloss, they assume the data
is one dimensional and use maximum likelihood difference scaling (MLDS) [71] to get
an appropriate scaling of the data that obeys the similarities observed by the subjects.
They find that people are far more sensitive to small changes in low gloss samples and
less sensitive in intermediate and high gloss samples.

A significant milestone in the availability of measured reflectance data was the
work of [74] who followed up on the work of [72]. The authors developed a gantry and
used it to measure a number of isotropic materials. A part of this data set is now
publicly available. Our work is based on this database of measurements. As part of the
same work, the authors also developed a new reflectance model that was based on their
database of measured isotropic BRDFs. They explored both linear as well as non-linear
representations. Their model had 45 dimensions in the linear case and 14 dimensions in
the non-linear case. A user test was used to classify the BRDFs in a number categories
e.g. blueness, goldness, metalness which were used to define trait vectors which were
then used to navigate the space of BRDFs and assist a user in moving from one BRDF
to another.

1Black was chosen so the specular highlight dominates the diffuse component.
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In terms of methodology the work that is closest to ours is that of Ledda et
al. [65]. The authors examined the perceptual performance of various tone mapping
operators by doing paired comparisons on pairs of tone mapped images displayed on
two low dynamic range displays and a high dynamic range display showing the original
high dynamic range image. While similar in the methodology of collecting the data, our
analysis methods are significantly different as they are only interested in questions of
consistency and overall preferences.

The analysis of paired comparisons in statistics, the experimental paradigm
used here, has a long history in statistics, psychometrics and biometrics. This includes
work on producing rankings, measuring consistency within and across subjects and MDS
methods for ordinal data [16, 27, 57]. In this study we are particularly interested in
constructing an embedding from paired comparisons. The weighted non-metric MDS
algorithm addresses this problem, however it has a number of shortcomings the most
significant of which is that it is based on an iterative majorization procedure which can
only find a locally optimal solution to the stress minimization problem it solves. Our
work addresses this problem by formulating the ordinal MDS problem as a semidefinite
programming problem, which can be solved optimally in polynomial time. This approach
has its roots in the work on semidefinite embeddings [123] and distance function learning
from relative comparisons [91].

4.3 Experimental Framework

The aim of our experiment is to capture the perceptual similarity for varying
reflectance functions. Each participant was shown a series of triplets of rendered images
with constant geometry and illumination, but with varying BRDFs and was asked to
indicate whether the center image was more similar to the image on the left or to the
image on the right (Figure 4.1 shows a screenshot from one such test). We chose this
form of experiment, known as paired comparison, over the rating method based on a
continuous slider in [86]. Rating methods using continuous intervals have been shown to
have problems with validity and reliability and subjects usually require a fair amount of
training before the experiment [57]. In particular, each subject it seems has his or her own
internal continuous scaling function that confounds the process of integrating responses
across subjects; despite its precision, its accuracy is questionable. Paired comparisons
on the other hand offer a much simpler task and enjoy far more intra- and inter-subject
consistency.
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Figure 4.1 Screen capture from the distance comparison test. The subject is asked to
click on the appropriate button to indicate which pair appears more similar, Left: Left
+ Middle, or Right: Middle + Right. This mode of input has a number of advantages
over the conventional approach of asking the subject to provide a continuous measure of
similarity using a slider: (1) the paired comparison is a subjectively easier task, (2) the
additional information content in a human specified continuous dissimilarity measure is
of questionable value, (3) the mapping between different subjects’ similarity scales is
unknown a priori.

Figure 4.2 Example BRDFs. Six of the 55 images used in our psychophysics study.
While monochromatic, they have widely varying gloss properties. The BRDFs used
include metals, paints, fabrics, minerals, synthetics, and organic materials.

The images used in the experiment all contain the Stanford bunny [114] ren-
dered under constant illumination and viewing direction with 55 BRDFs from the MIT/MERL
BRDF database [74]. The database contains a large representative set of materials in-
cluding metals, paints, fabrics, minerals, synthetics, and organic materials. Examples of
some of these BRDFs appear in figure 4.2. We used natural illumination since it has been
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shown that subjects have more discriminative power under this type of illumination than
under simple and/or synthetic lighting [35]. We used the illumination conditions that
worked best in their experiment. We chose the bunny model because it is simple yet
provides a more varied distribution of surface normal/incident direction combinations
than a sphere. Each image was rendered under the same high dynamic range illumi-
nation using structured importance sampling [1]. As in previous work [35, 86], we used
Tumblin’s rational sigmoid [112] to map the rendered high dynamic range images to our
low dynamic range displays. The images were rendered in color and then converted to
grayscale for our experiment. Our displays have a maximum brightness of 180 cd/m2.

Previous studies on this subject had a rather small number of subjects [81,86].
As there are over 78, 000 possible triplets only a randomly sampled subset of comparisons
could be performed. Our study has 75 subjects performing 200 comparisons for a total
of 15,000 comparisons (there were a small number of repeated comparisons). None of
the authors were subjects. All subjects were unaware of the aim of the experiment and
all had normal or corrected to normal vision. The triplets were chosen at random for
each subject.

4.4 Analyzing Paired Comparisons

One of the aims of this study is to construct a Euclidean Space in which the
Euclidean distance between a pair of BRDFs corresponds to the perceptual distance
between them. This is not to say that such a space necessarily exists. Indeed there is
nothing that suggests a priori that human perception obeys the triangle law. However,
the analytical, representational and computational simplicity of a linear space is attrac-
tive enough to warrant an attempt at discovering the best fitting Euclidean embedding.

Multidimensional scaling (MDS) refers to the general task of assigning coordi-
nates to a set of objects in some Euclidean space such that a given set of dissimilarity,
similarity or ordinal relations between the points are obeyed. This assignment of co-
ordinates is also known as an embedding. The most well known of the various MDS
algorithms is classical multidimensional scaling, where the dissimilarities between points
are assumed to be actual Euclidean distances.

Let D be an n×n matrix of pairwise distances. The matrix D is symmetric with
a zero diagonal. We are interested in finding a d×n matrix X where each column xi is the
representation of the point i in Rd and Dij = ‖xi − xj‖2. Denote the inner product (or
Gram matrix) for this set of points by K = X>X. K is an n×n symmetric positive semi-
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definite matrix. Let us now abuse notation and use D2 to indicate the matrix of squared
pairwise distances K = −1

2(I− 11>)D2(I− 11>). Here, I is the n×n identity matrix and
1 is the n-vector of all ones. In light of this solution to the Classical Multidimensional
Scaling problem is straight forward. Given the eigenvalue decomposition K = UΣU>, it
follows that X = UΣ1/2. The solution so obtained is ambiguous to a global rotation.

The weighted ordinal multidimensional scaling algorithm [16] has been used in
the past to construct Euclidean embeddings from paired comparisons or ranking data.
This algorithm formulates the embedding as the minimum of a non-linear minimization
problem and uses a combination of isotonic regression and iterative majorization to find
a locally optimal solution. The algorithm has no stated time complexity or quality
guarantees associated with it. In this section we present a new ordinal MDS algorithm
that utilizes modern convex optimization theory to solve for an Euclidean embedding in
polynomial time. The solution that it returns is guaranteed to be the globally optimal
solution to the optimization problem that we formulate.

An important consideration when performing MDS is the issue of dimension-
ality, i.e., how many dimensions should the embedding exist in? Ideally we want the
embedding of the smallest possible dimension. There are a number of reasons for this.
An obvious one is computational complexity. A lower dimensional embedding is compu-
tationally easier to work with and to visualize. A more important reason however is that
we want our embedding not only to explain the observed data but also to generalize well
to unseen data. Statistical learning theory [117] informs us that for the same training
error a simpler model is expected to perform better than a more complex one and should
be preferred. For our analysis, the rank of the embedding is its complexity and thus we
prefer lower rank embeddings to higher rank ones.

While the tools presented in this section were specifically developed for our
study, we hope that they will find broader use in other psychometric and statistical
studies.

4.4.1 MDS for Paired Comparisons

We are now ready to present our method for performing multidimensional scal-
ing on relative comparisons. The method is related in spirit to the recent work on learn-
ing kernel matrices [63] and learning distance metrics from relative comparisons [91] but
significantly different so as to warrant a detailed presentation.

We begin with some notation. We use lower case italicized roman symbols
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i, j, k, . . . to indicate scalars and to index into the set of BRDFs. Lower case bold faced
symbols x indicate vectors. Upper case symbols P,Q,R, . . . are used to denote matrices.

The matrix X is used to indicate the embedding coordinates for the BRDFs.
The matrix K denotes the Gram matrix, K = X>X. K is a symmetric positive semi-
definite matrix, denoted by K � 0.

S is the set of all collected observations consisting of 3-tuples (i, j, k) where the
subject indicated that perceptually the image rendered using BRDF j was more similar
to the one rendered using BRDF i than it was to the image rendered using the BRDF
k. Let Dij denote the perceptual distance between BRDFs i and j, then

S = {(i, j, k)|Dij < Djk} (4.1)

Note that while our experiments do not provide an estimate of Dij , they do provide the
inequality relation Dij < Djk. The set S is allowed to have repetitions and inconsisten-
cies.

As in classical MDS we convert the problem into one that can be stated in
terms of the Gram matrix K.

D2
ij = ‖xi − xj‖2

2 = x>i xi − 2x>i xj + x>j xj

= Kii − 2Kij + Kjj ,

where, Kij is the (i, j)-th element of of K. Since distances by definition are always
non-negative we can without loss of generality replace the constraint Dij < Djk with
D2

ij < D2
jk, which we can then write in terms of the inner product matrix K as

Kii − 2Kij + Kjj < Kjj − 2Kjk + Kkk

Now, our general aim is to find a Gram matrix, K, that satisfies inequality
constraints of the above form for every triplet (i, j, k) that is a member of S. As we
noted earlier, K is symmetric positive semidefinite. This is a necessary and a sufficient
condition for K to be the inner product matrix for some set of points.

The set of inequality constraints above are not sufficient to determine a positive
semidefinite matrix K uniquely. This is because the relative comparison constraint has
a scale, translation and rotation ambiguity. Translating a point set in space does not
change the inter-point distances and scaling the entire point set preserves the relative
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ordering of every pair of distances. While doing nothing to change the geometry of
the solution, this can lead to numerical instabilities in the convex solver. Finally, even
though the embedding we construct is ambiguous up to a rotation as is the case with
classical MDS, the Gram matrix K is rotation invariant.

The translation ambiguity is eliminated by demanding that the embedding be
centered at the origin, i.e., ∀a = 1, . . . , n,

∑
b Xab = 0, which can be restated as

∑
a

(∑
b

Xab

)2

=0,

∑
bc

∑
a

XabXac =0,

∑
bc

Kbc =0. (4.2)

This is a linear equation in the entries of the matrix K.
Handling the scale ambiguity is a bit more complicated. To prevent the embed-

ding from collapsing into the origin, we constrain the scale of the embedding from below.
We will demand that for a relative comparison to be valid the two distances should be
different by at least 1 unit distance.

Kii − 2Kij + Kjj + 1 ≤ Kjj − 2Kjk + Kkk. (4.3)

Two things should be noted here. What was a strict inequality earlier has now been
converted into a non-strict one. Secondly, the choice of 1 as the minimum difference
between pairs of distances is arbitrary and does not affect the quality of the embedding.
The choice of any other constant would result in a uniform scaling of the embedding.
This form of the constraint only bounds the scale of the embedding from below. We
have not constrained the scale of the embedding from above yet. We will deal with this
shortly.

As we noted earlier, we are not interested in just any embedding that obeys
the data constraints, but the one with the minimal dimension. The dimensionality of
the embedding is the same as the rank of the matrix X which is in turn the same as the
rank of the matrix K. Thus in the ideal case in which we have data that is completely
noise free and there exists a Euclidean space in which it can be embedded we would like
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to solve the following optimization problem

arg min
K

rank(K)

∀(i, j, k) ∈ S Kkk −Kii + 2Kij − 2Kjk ≥ 1∑
ab

Kab = 0, K � 0 (E1)

The above formulation has two problems. First, for the optimization problem to be
feasible, there should be a positive semidefinite matrix that satisfies every relative com-
parison in the collected data. This is clearly not true in general. Second, the rank of a
matrix is a non-convex function and thus the above is a non-convex optimization prob-
lem. Indeed, minimizing the rank of a symmetric positive semidefinite matrix subject to
linear inequality constraints is an NP-hard problem [32].

To get around the first problem we introduce slack variables ξijk in every in-
equality constraint which allow for violations of the inequality and augment the objective
function to minimize the total violation:

arg min
K,ξ

∑
(ijk)∈S

ξijk + λ rank(K)

∀(i, j, k) ∈ S Kkk −Kii + 2Kij − 2Kjk ≥ 1− ξijk,

ξijk ≥ 0,
∑
ab

Kab = 0, K � 0. (E2)

This introduction of slack variables is very similar to the formulation of soft-margin
support vector machines. λ is a positive scalar that controls the tradeoff between the
violations and the rank of the matrix, i.e., the complexity of our model.

To deal with the problem of non-convexity of the objective function we use
what is now a standard tool from the convex programming literature. Instead of solving
the original problem, we solve a convex relaxation. The convex envelope of the rank of
a symmetric positive semidefinite matrix is its trace [32]. In light of this we have the
following semidefinite program (SDP).

arg min
K,ξ

∑
(ijk)∈S

ξijk + λ tr(K)

∀(i, j, k) ∈ S Kkk −Kii + 2Kij − 2Kjk ≥ 1− ξijk,

ξijk ≥ 0,
∑
ab

Kab = 0, K � 0. (E3)
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Reformulating the objective function in terms of the slack variables and the trace of the
matrix has an additional benefits. It constrains the scale of K from above since its a
minimization problem.

There is an intuitive explanation for using the trace of the matrix K as the
convex regularizer. The rank of a symmetric matrix can be restated as the number
of non-zero eigenvalues, or the L0(counting) norm of the vector of its eigenvalues. A
commonly used convex relaxation for problems involving finding the sparsest vector is
to replace the objective with the L1 norm of this vector. For a symmetric positive
semidefinite matrix the trace is exactly that, the L1 norm of the vector of eigenvalues.
Another way of interpreting the regularizer is to note that the sum of the eigenvalues
of K is the variance of the embedding. Thus it implies that for all embeddings with the
same slack violation we will choose the one that has the lowest variance.

The optimization problem (E3) is a semidefinite program (SDP). SDPs are con-
vex optimization problems that are generalizations of linear programming problems and
can be solved efficiently and optimally using interior-point methods similar to the ones
used for solving linear programs [78, 116]. Efficient solvers exist for solving SDPs [99].
Thus the proposed MDS algorithm is both efficient and optimal in the solution that it
reports.

Once K is computed, the embedding itself can be recovered from the eigende-
composition of K in the same manner as in classical multidimensional scaling as shown
in Appendix 4.4.

4.5 Experiments and Analysis

In this section we present our analysis of the human subject data. We describe
the various sources of error in a data set like ours and the results of three independent
experiments that we performed to estimate these errors. We describe the perceptual
space that results from performing MDS on the set of paired comparisons and discuss
its properties. We show how the embedding correlates with existing ASTM standard
measurements for gloss. Finally we describe a perceptual interpolation process that
allows the user to navigate the space of BRDFs and generate novel intermediate BRDFs
corresponding to their position in the perceptual space. We begin with a short discussion
of generalization error, parameter selection and k-fold cross-validation.

Despite the set of 55 BRDFs of the MIT-MERL database being a big step
forward in terms of measured data availability, this is a fraction of the space of BRDFs
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and even so we can only measure a sampling of them. It is therefore important that
care is taken before making any inferences from it. The inferences we make should
not just explain the observed data points, but their expected performance over the
unobserved portions of the space should be good as well. Only then can we be sure
that our conclusions are not just an artifact of our particular data set but say something
more general about perception. Given a set of subject responses to paired comparisons
on the same 55 BRDFs, we measure the error of an embedding as the average number
of paired comparisons that are violated if we use the pairwise distance between BRDFs
in the embedded space as our estimate of the distance between them.

The expected error of an estimator over an independent test set is called the
test error or generalization error [48]. The training error is smaller than testing error,
in fact it can be arbitrarily smaller than it. Thus, when reporting the performance
of our statistical estimates from the data, it is important to report an estimate of the
generalization error and not just the training error.

Another problem that one faces in problems like the one we are solving is
that of model selection. In the last section we argued that simpler models or lower
complexity estimates are to be preferred to higher complexity ones. However, it is also
the case that higher complexity models typically fit the training data better than lower
complexity models. In our case the regularization parameter λ controls the complexity of
our embedding. But how does one choose the optimal value of λ? If one could estimate
the generalization error for the various choices of λ then one could choose that λ for
which the error was the lowest.

The most widely used method for estimating generalization error is cross-
validation [48]. In k-fold cross-validation the data set (the set of human responses)
is split into k roughly equal parts. At the ith iteration, the model is fitted (embedding
is learned) using k − 1 parts of the data excluding the ith part which is then used for
measuring the prediction error. The final prediction error estimate is the mean of the k

error estimates obtained in this manner. Typical choices of k are 5 or 10. We use 10-fold
cross-validation in this study.

4.5.1 Sources of Error

As with any study involving human responses, our data is prone to errors
and inconsistencies. This can be due to inconsistency of response across subjects as
well as inconsistencies across comparisons performed by a single subject. These errors
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are not just a function of the set of subjects used for our study but of the particular
experimental setup that we use to collect the data, including but not limited to the choice
of the BRDFs, geometry and illumination. In this section we describe three experiments,
one that examines inter-subject inconsistencies and two that look at the two types of
inconsistencies exhibited by a single subject. These experiments, each carried out with
12 different subjects, were independent of our main experiment with 75 subjects.

Inter-subject Consistency

It is possible that given the same triplet of images such as the one in Figure 4.1,
there will be variability in the response of the subjects to it. To get an estimate of how
often subjects came to the same conclusion on our data set, we did a separate smaller
study in which 12 subjects evaluated the same set of 120 randomly chosen comparisons.
The reason for a separate study was that due to the large size of the set of possible
comparisons (55

(
54
2

)
≈ 78000) and our main data set does not contain a significant

number of overlap across all the users.
We found significant agreement across subjects. The majority vote accounts

for about 85% of our total data in this experiment.

Repeated-Trial Consistency

It is the case that sometimes when asked to make the same paired comparison
multiple times, the same subject will show variability in his or her response across trials.
It is important to estimate this variability to get an idea of the repeatability of the
experiment. High variability reduces our trust in the data and the conclusions we can
draw from it.

We conducted a study where 30 random comparisons were chosen and presented
4 times, randomizing both the order of the outer images as well as the order of presen-
tation. Twelve subjects were used for this study. On average 87% of the time subjects
gave the same answer.

Circular Preferences

One of the aims of this study is to construct a Euclidean space in which distances
correspond to perceptual dissimilarity. In a Euclidean space every set of unique pairwise
distances between a set of points can be ordered without ambiguity, thus if a subject
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Figure 4.3 Cross Validation and Rank. (a) Training (red) and Testing (green) error
curves for varying choices of the regularization parameter λ for our MDS algorithm.
Testing error (blue) for the randomized control set. (b) Average rank as a function of
the regularization parameter.

expresses preference for three BRDFs as Dij < Djk < Dki < Dij , they are being circular
in their preferences and these preferences are not representable in a Euclidean space.

Since this type of violation can only be detected if a subject is given all three
distance evaluations for a given set of 3 BRDFs, we conducted a study where for each
of the 12 subjects a different random set of 40 triplets of BRDFs was randomly selected
and the subjects evaluated each of the three distance comparisons.

We found that the violation rate was 1.5% on average with a median of 1%.
We note that each of these error estimates are specific to our dataset, the

performance of the same subjects over different tasks and datasets will be different.
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4.5.2 The space of gloss perception

In this section we present and analyze the optimal embedding that was obtained
by applying the MDS algorithm described in 4.4.1 to our data set.

We ran our MDS algorithm on the data for varying values of λ between 0 and
300, and performed 10-fold cross-validation for each value of λ. Figure 4.3(a) plots the
training (Red) and testing error (Green) as a function of the parameter λ. Figure 4.3(b)
plots the average rank of the embedding as a function of λ. As expected the rank of the
embedding goes down as the regularization is increased.

As an additional check for the fact that our data does indeed contain structure
and we are learning from it, we performed the following control experiment. We gener-
ated a new dataset by taking each triplet (i, j, k) in our dataset and randomly swapping
i and k. This is equivalent to a random observer’s response if he were shown exactly
the same set of comparisons. We then learnt an embedding for varying values of λ and
measured the test error using cross-validation. In Figure 4.3(a) the blue curve plots this
error. As can be seen the test error never goes below 50%. The consistent and significant
gap between the blue and the green curves indicates that our data set is far from purely
random.

The choice of a non-zero λ indicates a tradeoff between the rank of the matrix
K and total amount of violation in the paired comparisons. Setting λ = 0 would focus
the attention of the MDS algorithm entirely on reducing the violations. Doing so results
in matrix K that has a training error of 17%. The resulting embedding has 53 dimensions
(which is only 2 less than the maximum). The cross-validation error for λ = 0 is 27%.
This is a significant gap and indicates the poor generalization ability of this embedding.
The algorithm without any regularization is allowed to come up with a complex model
that overfits to the noise in the training data resulting in poor performance on test
data. As the regularization increases, the training error increases, but the testing error
decreases at first and then starts to go back up again. This is because as we increase the
penalty for higher rank embeddings, the algorithm trades model complexity for training
error. The simpler lower dimensional model does not overfit to the noise leading to
an increase in generalization performance. However as the regularization parameter
continues increasing the algorithm is biased too strongly towards choosing a low rank
embedding , ultimately being restricted to one dimension which is not enough to explain
the set of relative comparisons leading to a high test error.

The embedding with the best cross-validation error has a training error of 21.9%



83

and a test error of 21.3%. The embedding has over 95% of the variance contained in
the first two dimensions. Truncating the embedding at two dimensions increased the
test error by 0.5%. We do not consider this significant. This embedding is a significant
improvement in terms of test error as well as the complexity of the embedding. To put
these numbers in perspective, a trivial upper bound on the test error of an embedding
is 50% since a purely random predictor or even one that gives the same answer every
time will on average get half of the paired comparisons right. Using the L2 distance
between sampled BRDF vectors as the distance function results in 37.5% error and the
inter-subject error was 17%.

Further, we analyzed the stability of this embedding. We constructed 55 differ-
ent embeddings corresponding to leaving the response data corresponding to one of the
BRDFs out at a time. Each of the embeddings produced in this manner was then aligned
upto a similarity transformation to its corresponding 54 points in the final embedding
reported above, and the average squared distortion was measured [115]. Paired compar-
isons are invariant to similarity transformations. To establish a scale for these errors,
the average distance between pairs of points in the global embedding was calculated.

The root mean squared distortion was 2.7e-2 and the average distance between
points in the global embedding was 8.7e-1. This is an error of 3% or an order of magnitude
difference. This is indicative of the stability of the embedding produced by analyzing
our data using the algorithm proposed in this chapter.

Figure 4.4(a) shows the optimal 2-D embedding with cropped windows of the
BRDF images displayed in the locations of the BRDF in the new space. Notice the
clustering of the BRDFs into two distinct clumps and the similarity amongst the images
corresponding to them in each clump. There are also two pronounced trends in the
embedding, a vertical trend with the darker BRDFs at the top gradually getting brighter
with the brightest BRDFs at the bottom. The other roughly breaks the BRDFs into two
clusters: the primarily diffuse BRDFs and those that have a strong glossy or specular
component. It is also interesting that the metallic BRDFs are all in the lower left corner
and the fabrics are in the upper right corner. This embedding is based entirely on the
user preference data, no BRDF or image data was used, which points to the significant
descriptive power contained in the paired comparison data.

Figure 4.4(b)-(d) show plots of three of the ASTM gloss dimensions in our
embedding space. The position of each circle corresponds to one of the BRDFs in the
embedding space and the diameter corresponds to the measurement of the BRDF in the
ASTM gloss dimension. We chose to plot contrast gloss, specular gloss and haze since
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Figure 4.4 Perceptual Embedding. (a) The optimal 2-D embedding with cropped win-
dows of the BRDF images displayed in the locations of the BRDF in the new space.
(b-d): Contrast Gloss (b), Specular Gloss (c) and Haze (d) values shown for BRDFs in
the embedding. The diameter of the circles corresponds to the value for each property.

they were the ASTM dimensions mentioned as significant in previous work [86,125].
Figure 4.4(b) shows the measurements of each BRDF for contrast gloss. Notice

that there is a strong horizontal trend with contrast gloss increasing from left to right.
Since contrast gloss is the ratio of light reflected far from the specular direction to the
light reflected in the specular direction, it will be higher for matte materials and lower
for materials with a strong specular component.

Figure 4.4(c) shows the measurements of each BRDF for specular gloss at 20◦.
The measurements exhibit a trend increasing from the lower left corner to the upper
right corner. This correlates to the trend we noticed before with the glossy materials on
the left and the metallic materials in the lower left corner.

Figure 4.4(d) shows the measurements of each BRDF for haze. There is a
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Figure 4.5 Uniform perceptual sampling. The convex hull of the perceptual embed-
ding was resampled, for each point a new BRDF was generated using the perceptual
interpolation procedure which was used then to render the nose of the Stanford bunny.

strong trend increasing from the lower left corner to the upper right corner. This is a
measure of the light that is reflected 5◦ off specular and may be less sensitive to noise,
which may explain the fewer number of outliers when compared to the measurements
taken on specular.

4.5.3 Perceptual Interpolation

As pointed out by Matusik in his thesis, mathematically the set of BRDFs is
convex [73], given any two BRDFs x and y and a scalar 0 ≤ µ ≤ 1, µx + (1 − µ)y

is a mathematically valid BRDF. Thus given a set of BRDFs, measured or otherwise,
a simple way to generate new BRDFs is by taking all convex combinations of them.
This approach, however, has two problems. First, arbitrary convex combinations, while
mathematically correct, can result in physically implausible BRDFs [74]. Second, one is
typically interested in producing materials with properties close to some known collection
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Figure 4.6 Perceptual interpolation. Figure (left) illustrates how a user might use per-
ceptual interpolation to design new materials. He begins by specifying a set of base
materials (in this case three) indicated by blue dots and then chooses a point relative
to them (indicated in red). This relative position in the perceptual space is used to
perceptually interpolate a new BRDF for that point. The image corresponding to the
interpolated BRDFs are shown in the red boxes. Figure (right) illustrates the underly-
ing geometrical method used for performing the perceptual interpolation between two
BRDFs. Notice that in this case neither of the two end points (A and D) are used in
the interpolation process and only one BRDF (R) is shared for the two interpolations
(B and C). This illustrates the locally linear yet highly non-linear nature of perceptual
interpolation.

of BRDFs; in such case one would like that the combination of weights to correlate with
perceptual distance to the basis BRDFs, thus making the combination process intuitive
and useful in practice. However, there is nothing to suggest that a linear algebraic
combination of two BRDFs translates into a perceptual combination of their properties.
Once again it is useful to make an analogy with color perception. There are colors
that appear to be both red and blue (purples), both blue and green (blue-greens) and
both yellow and green (yellow-greens). There is no color, however, that is subjectively
the combination of red and green [85]. Thus we must be careful in our use of linearity
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when combining perceptual properties, in particular we should avoid linearly combining
objects that are perceptually far apart.

Having a low dimensional perceptual space in which known BRDFs are embed-
ded offers a solution to the problem of perceptual BRDF design. An artist wanting to
design a new material can now easily move around in this space and indicate the per-
ceptual position of the BRDF that he wants by indicating how close it is to the known
BRDFs. Of course this requires the ability to generate a BRDF from its position in
the perceptual embedding. Since we are only given a sparse sampling of the space of
BRDFs, we must construct a perceptual interpolation scheme that uses the geometry of
the embedding to interpolate over the measured BRDF data.

Given a point in the perceptual space, one naive solution would be to select the
k-nearest neighbors of that point from amongst the set of BRDFs. The distance used for
determining the neighbors is the Euclidean distance in the perceptual space. The point
corresponding to the desired BRDF may or may not lie in the convex hull of its nearest
neighbors and its not clear what weighting scheme should be used to actually interpolate
between the BRDFs.

Our solution to the problem is to start by first constructing a Delaunay tri-
angulation of the space [83]. Delaunay triangulation constructs a natural neighborhood
structure on the embedding by maximizing the minimum angle of all angles of the trian-
gulation. This ensures that long thin triangles connecting far ends of the embedding are
avoided. Now when the user specifies a point in the space, we select the Delaunay triangle
containing the point and use its Barycentric coordinates to linearly interpolate between
the vertex BRDFs. Barycentric coordinates sum to one, thus the resulting interpolant
is a convex combination of the vertex BRDF and thereby it is a mathematically valid
BRDF. This means for any point inside the convex hull of the embedding, we need at
most three BRDFs to generate a perceptual interpolation for it. Figure 4.6(a) illustrates
this process.

An interesting consequence of this interpolation scheme is that even if a point
in the perceptual space lies on the line joining two BRDFs, the interplolated value of a
BRDF could be the result of three entirely different BRDFs. Figure 4.6(b) illustrates
this phenomenon. Thus, even though our interpolation process is locally linear, the
overall interpolation is a non-linear process. Figure 4.8 shows a comparison between our
perceptual interpolation and simple linear interpolation. Note that the primary difference
in this case is in the specular peak and the overall impression of glossy vs. matte. In
the perceptual interpolation the change in specularity is more gradual whereas the linear
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interpolation jumps to a glossy material in just one step from the matte material.
Figure 4.5 shows a collage of images obtained by uniformly sampling within the

convex hull of the perceptual embedding. At each point we calculate the interpolated
BRDF using the perceptual interpolation procedure described above and use it to render
the corresponding image.

We note that if the computational overhead of using measured BRDFs is too
much for a particular application, it is simple to replace each measured BRDF with
the best fitting empirical model and return to the user the parameters of the best fitting
BRDFs at the vertices of the chosen Delaunay triangle and the three combination weights.
As our understanding of the space of perception improves and we construct more detailed
and perhaps higher dimensional models, our perceptual interpolation scheme will extend
naturally. In the higher dimensional case, one can replace the Delaunay triangulation in
the plane with the n-space generalization [83], though navigation of a space with more
than three dimensions is a tricky user interface design problem.

4.5.4 Integration with Color

While we are aware that the perception of gloss is affected by the surface color,
often one can decouple the chromatic and achromatic parts of the BRDF. Following [86],
we can integrate our perceptual model of surface gloss with color by assuming that gloss
and chromaticity are approximately independent [2,4]. We use our method to interpolate
the L channel in perceptual space and then choose two example BRDFs to use for ends of
color interpolation in the a and b channels of the CIELAB color space. Figure 4.7 shows
an example of this interpolation. Note that while the color interpolation is a simple linear
interpolation in color space based on the two endpoint BRDFs, the interpolation for gloss
is based on interpolation between 5 intermediate BRDFs as shown in Figure 4.6(b).

4.6 Discussion

In this study we have presented the results of a psychophysical study of the per-
ception of achromatic isotropic reflectance. The study uses the largest publicly available
data set of measured reflectances. We introduced a novel MDS algorithm for analyzing
the data we collected. This algorithm is a replacement for the widely used weighted
non-metric MDS algorithm. It is efficient and optimal in the sense that it find the global
minimum to the resulting optimization problem. Analysis of our dataset using this al-
gorithm revealed a two dimensional perceptual embedding. The embedding captures
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Figure 4.7 Perceptual Interpolation: four Buddhas rendered in the Galileo environment.
The images on the far right and left are rendered from real measured BRDFs (Aluminum
Bronze and Teflon, repectively). The images in between are rendered using BRDFs that
are constructed by perceptually interpolating the measured BRDFs in our perceptual
space.

Figure 4.8 Perceptual vs. Linear Interpolation. The top row shows a perceptual in-
terpolation (left to right) from a very matte material (black fabric) to one that is very
specular (silver metallic paint). The bottom row shows the linear interpolation. The pri-
mary difference in this case is in the specular peak and the overall impression of glossy
vs. matte. In the perceptual interpolation (top) the change in the specularity is more
gradual whereas linear interpolation (bottom) jumps to a glossy material in just one step
from the matte material.

a large fraction of human subject responses indicating that at least the gross struc-
ture of the perceptual space of reflectance can be captured by approximating it with a
low-dimensional Euclidean space. We also introduced a novel perceptual interpolation
scheme that uses the geometric structure of this embedding to perceptually interpolate
between BRDFs. This procedure is computationally efficient and locally linear. We
showed how this scheme performs better than just linearly interpolating from one target
BRDF to another.

We are aware that the small size of the BRDF database places a restriction on
the strength of the conclusions we can draw from it. However, our aim in this chapter not
just an investigation of the phenomenology of the perception of reflectance but also to
propose a methodology and framework for doing such an investigation in the future. We
hope that this will set the stage for larger and more elaborate studies of the perception
of reflectance.
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There are a number of very interesting avenues for future work; we briefly
mention some of them here. One interesting direction to explore is the effect of motion
on the perception of reflectance. It is often the dynamic reflectance that makes it easier
to spot fakes in rendered scenes. It may be interesting to show users rotating geometry
and/or cameras to see the effect of the discrimination by the user. How does the scale
and magnification of the object affect the ability to discriminate between materials.
This has important implications on Level-of-Detail research. Also in talking to the test
subjects after the experiment, many of them mentioned that they became quite proficient
at quickly examining certain portions of each of the images. It will be interesting to
monitor the eye movement of the subjects and study how reflectance and image saliency
are related.

The perceptual interpolation procedure described in this chapter is a first step
towards constructing an easily navigable space for reflectance. Part of the ease of naviga-
tion is due to its two dimensional structure. As we model finer scale structure variations,
the dimensionality of this space will likely go up, which will necessitate novel user inter-
faces for navigating them.

The MDS algorithm we have proposed in this work is a novel and general tool
that we expect to have applications in various fields including psychophysics, vision and
graphics. It is simple to extend it to other experimental setups like pairs of pairs and
complete ranking. A similar formulation can perhaps be used to learn empirical distance
functions that will allow us to measure perceptual distance between two previously un-
seen BRDFs without performing an additional psychophysical study.



91

This chapter, in full, has been submitted for publication of the material as:
J. Wills, S. Agarwal, D. Kriegman and S. Belongie, “Toward a Perceptual Space for
Reflectance,” ACM Transactions on Graphics, 2006, in review.
I was the primary author and responsible for the design and implementation of the
psychophysics experiment, the literature survey, and produced all renderings.
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Appendices to the Dissertation

A.1 Pseudo-code for Motion Segmentation

In this appendix, we provide pseudo-code with syntax that is similar to Matlab
code for the approach to planar motion segmentation that is presented in section 2.1.
We will provide the top level motion segmentation routine as well as functions for each of
the three stages in our algorithm (point correspondences, motion estimation, and pixel
assignment) and for each function the inputs and outputs will be defined.
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A.1.1 Motion Segmentation

The function MotionSeg computes the layer decomposition for two input images
based on the parameters k and lambda, which control the pixel assignment.

[Motions,Assign1,Assign2]=MotionSeg(Im1,Im2,k,lambda)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function MotionSeg computes the layer decomposition for

% two input images

% Input:

% Images to segment: Im1, Im2

% k stdev of gaussian for neighborhood weighting

% lambda tradeoff between reconstruction error and smoothness

% Output:

% Array of transformations: Motions

% Assignment matrices for Im1 and Im2: Assign1, Assign2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find point correspondences

[pts1,pts2]=PointCorrespondences(Im1,Im2)

% Find motions present in set of correspondences

Motions=EstimateMotion(pts1,pts2)

% Densely assign pixels to layers

[Assign1,Assign2]=AssignPixels(Im1,Im2,Motions,k,lambda)
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A.1.2 Point Correspondences

The function PointCorrespondences computes interest points and correspon-
dences for two input images and returns the results as a pair of lists of points where
each entry specifies the position of a given point in each of the input images. This list is
assumed to be very noisy.

[pts1,pts2]=PointCorrespondences(Im1,Im2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function PointCorrespondences computes interest points

% and correspondences for two input images

% Input:

% Images to find point correspondences for: Im1, Im2

% Output:

% Point Locations: pts1, pts2

% pts1(i) and pts2(i) are corresponding points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find corners

[corners1,corners2]=DetectCorners(Im1,Im2)

% Perturb interest points

[pts1,pts2]=PerturbPoints(corners1,corners2)

% Filter images for point description at corners

[FR1,FR2]=FilterImages(Im1,Im2, pts1,pts2)

% Find nearest match in Im2 for each point in Im1

[pts1,pts2]=PointMatch(FR1, FR2, pts1, pts2)
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A.1.3 Motion Estimation

The function EstimateMotion computes a set of motions for a set of input
point correspondences. It assumes there are routines that can compute crowdedness,
compute random samples based on the crowdedness at each point, estimate a least
squares estimate of a planar homography between 2 sets of points, and count inliers for
a given transformation.

Motions=EstimateMotion(pts1,pts2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function EstimateMotion computes a set of motions for

% a set of point correspondences

% Input:

% Set of point correspondences: pts1, pts2

% Output:

% Array of transformations: Motions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute feature crowdedness

[crowdedness]=ComputeCrowded(Im1,pts1)

% Choose a set of random samples based on crowdedness

% RandSams is a list of 4-tuples of points (assuming homography)

RandSams=GetRandSams(pts1, crowdedness)

% RANSAC

Foreach tuple in RandSams

% estimate homography for tuple

H=EstHomography(pts1(tuple),pts2(tuple)

% count inliers

InlierCount=GetInlierCount(pts1,pts2,H)

% store H and InlierCount

HResults(count++)=[H,InlinerCount]
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% Sort Hs by inlier counts

Motions=sort(HResults)

% Prune duplicate warps

InlierSet={}

Foreach H in Motions

inliers=GetInliers(pts1,pts2,H)

if(overlap(inliers,InlierSet)<OverlapTau)

Add inliers to InlierSet

else

Prune H from Motions
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A.1.4 Pixel Assignment

The function AssignPixels computes the layer assignment for two input images
and a set of motions. This function uses a routine that implements the algorithm of
Boykov, Veksler, and Zabih [19] and assumes there is a routine to compute reconstruction
errors for a set of motion layers an another that computes the intersection of two layer
assignments given a set of motions.

[Assign1,Assign2]=AssignPixels(Im1,Im2,Motions,k,lambda)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function AssignPixels computes the layer assignment for

% two input images and a set of motions

% Input:

% Images to use for assignment: Im1, Im2

% Array of transformations: Motions

% k stdev of gaussian for neighborhood weighting

% lambda tradeoff between reconstruction error and smoothness

% Output:

% Assignment matrices for Im1 and Im2: Assign1, Assign2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute reconstruction error for each motion

ReconErrs1=ComputeReconErrs(Im1,Im2, Motions)

% Compute reconstruction error for inverse motions

ReconErrs2=ComputeReconErrs(Im2,Im1, Inv(Motions))

% Build similarity matrix

Loop over all pixels i

Loop over all pixels j in neighborhood of i

Sij1=exp( - (distance(i,j)^2)/2k^2 - pixelDiff(i,j,Im1)^2)

Sij2=exp( - (distance(i,j)^2)/2k^2 - pixelDiff(i,j,Im2)^2)

% Densely assign pixels to layers for forward motion

[Assign1a]=BVZGraphCut(Im1,Im2,ReconErrs1,Sij1,lambda)
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% Densely assign pixels to layers for backward motion

[Assign2a]=BVZGraphCut(Im2,Im1,ReconErrs2,Sij2,lambda)

% Compute Intersection between forward and backward motions

[Assign1,Assign2]=IntersectAssigns(Assign1a,Assign2a,Motions)
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A.2 Derivation for the Computation of Normal

We can determine the local angle of incidence θ′i and the slope of the facet α

from incident and refracted vectors, ~ωi and ~ωt. Using the ratio of the indices of refraction
η = ηt/ηi and the angle between ~ωi and ~ωt: γ = θ′i − θ′t we will first solve for θ′i. We
begin with Snell’s Law:

sin θ′i = η sin θ′t = η sin(θ′i − γ)

Letting x = sin θ′i, we get:

x = ηx cos γ − η
√

1− x2 sin γ

x(1− η cos γ) = −η
√

1− x2 sin γ

x2(1− η cos γ)2 = η2 sin2 γ − x2η2 sin2 γ

x2 =
η2 sin2 γ

(1− η cos γ)2 + η2 sin2 γ

x2 =
η2 sin2 γ

1− 2η cos γ + η2

which gives us the following expression for θ′i:

θ′i = sin−1

√ η2 sin2 γ

1− 2η cos γ + η2

 (A.1)

Using θ′i and θ′t = θ′i − γ, we can calculate the new normal, ~nf , as follows:
Assuming that ~ωi and ~ωt are not collinear (a case which makes the determination of ~nf

trivial and unnecessary), ~nf lies in the plane of these two vectors and we can express it
as:

~nf = xr~ωt + xi~ωi

We also know that since ~nf lies on the unit sphere ‖~nf‖ = 1. This can be expressed as:

‖~nf‖ = x2
r + x2

i + 2xrxi(~ωt · ~ωi) = 1 (A.2)
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Figure A.1 This is the geometry used in the calculation of θ′i and α. θ′i is the local angle
of incidence, θ′t is the local angle of refraction, α is the slope of the reflecting/refracting
facet, and ~ωi and ~ωt are the incident and refracted vectors respectively.

Since (~nf · ~ωi) = cos θ′i,

xr(~ωt · ~ωi) + xi =

√
1− η2(1− cos2 γ)

1 + η2 − 2η cos γ

=

√
(η cos γ − 1)2

1 + η2 − 2η cos γ

If we let cf =
√

η2 − 2η cos γ + 1 we can solve for xi in terms of xr:

xi =
(η cos γ − 1)

cf
− xr(~ωt · ~ωi)

=
(η cos γ − 1)

cf
+ xr cos γ
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Inserting this value into equation A.2 we get:

x2
r +

(
η cos γ − 1

cf
+ xr cos γ

)2

+

2xr(− cos γ)
(

η cos γ − 1
cf

+ xr cos γ

)
= 1

x2
r + x2

r cos2 γ − 2x2
r cos2 γ +

(
η cos γ − 1

cf

)2

= 1

(1− cos2 γ)x2
r +

(
η cos γ − 1

cf

)2

= 1

We can then solve for xr:

xr =

√√√√c2
f − (η cos γ − 1)2

c2
f (1− cos2 γ)

=

√
η2(1− cos2 γ)
c2
f (1− cos2 γ)

which gives the following values for xi and xr:

xr =
η√

η2 − 2η cos γ + 1

xi =
1√

η2 − 2η cos γ + 1

This gives us the final expression for ~nf :

~nf =
~ωi + η~ωt√

η2 − 2η cos γ + 1
(A.3)
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Figure A.2 This is the geometry that is used to calculate dωf/dωt. dωf is the solid angle
around the normal, dωt is the solid angle around the refracted direction, θ′i is the angle
between the incident direction and the normal, θ′t is the angle between the refracted
direction and the normal

A.3 Derivation for the Solid Angle Relations

We would like to find the relation between the solid angle around the normal
and the solid angle around the refracted direction during refraction. To do so, we extend
the elegant proof of the relation for the case of reflection by Nayar et al. [77] to the case
of refraction. We begin by considering the relation between the solid angle dωf around
the normal to the solid angle dωt around the outgoing direction for two arbitrary angles
θ′i and θ′t, where θ′i is the angle between the incident direction and the normal, and θ′t is
the angle between the outgoing direction and the normal. We will use the geometry of
figure A.2.

Since the triangle joining the incident and outgoing directions is isosceles, β =(
θ′
i−θ′

t
2

)
which leads to β′ =

(
θ′
t+θ′

i
2

)
. In addition, we find that the angle at IOR is

θ′t + π − θ′i.
Using the following relations:

dA′ =
(
|IP|
|IR|

)2

dωt

dA =
(

r

|OP|

)2

dA′

dωf = cos θ′tdA
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we can arrive at a relation between the solid angles around the normal and the refracted
direction:

dωf = cos θ′t

(
r

|OP|

)2( |IP|
|IR|

)2

dωt (A.4)

We can then compute the lengths we need:
Using two applications of the Pythagorean theorem:

|IR|2 = 2r2 − 2r2 cos(π − θ′i + θ′t)

= 2r2(1− cos(π − θ′i + θ′t))

= 4r2 sin2

(
π

2
− θ′i − θ′t

2

)
= 2r cos

(
θ′i − θ′t

2

)
using the law of sines:

|IP| = r sin(π − θ′i)/ sinβ′

= r sin θ′i/ sin
(

θ′t + θ′i
2

)
|OP| = r sinβ/ sinβ′

= r sin
(

θ′i − θ′t
2

)
/ sin

(
θ′t + θ′i

2

)
Substituting the computed values into equation A.4 leads to:

dωf =
cos θ′t sin2 θ′i

4 cos2
(

θ′
i−θ′

t
2

)
sin2

(
θ′
i−θ′

t
2

)dωt =
cos θ′t sin2 θ′i
sin2(θ′i − θ′t)

dωt

We now have the expression for the case of two independent angles. If we then use
our knowledge of the relation between the two angles for the case of refraction, namely,
sin θ′i = η sin θ′t, where η is the ratio of indices of refraction, this becomes the following
expression:

dωf =
η2 cos θ′t

(cos θ′i − η cos θ′t)2
dωt (A.5)
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