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Fine-scale mapping of 8q24 locus identifies multiple 
independent risk variants for breast cancer
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Abstract

Previous genome-wide association studies among women of European ancestry identified two 

independent breast cancer susceptibility loci represented by single nucleotide polymorphisms 

(SNPs) rs13281615 and rs11780156 at 8q24. We conducted a fine-mapping study across 2.06 Mb 

(chr8:127,561,724 −129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within 

the Breast Cancer Association Consortium. We found three additional independent association 

signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 

0.93-0.97, conditional P = 5.8 × 10−6), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional P 
= 1.1 × 10−6), and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional P = 1.1 × 10−4). 

Integrative analysis using functional genomic data from the Roadmap Epigenomics, the 

Encyclopedia of DNA Elements project, the Cancer Genome Atlas, and other public resources 

implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium 

with rs11780156, r2 = 0.77), were putatively functional variants for two of the five independent 

association signals. Our results highlight multiple 8q24 variants associated with breast cancer 

susceptibility in women of European ancestry.
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Introduction

Breast cancer is one of the most common malignancies among women worldwide.1 

Genome-wide association studies (GWASs) have identified approximately 100 loci 

associated with breast cancer.2 Multiple independent variants on 8q24 have been shown to 

confer susceptibility for multiple types of cancer, including breast,3,4 prostate, colorectal, 

bladder, ovarian, renal cell, glioma, chronic lymphocytic leukemia, and Hodgkin’s 

lymphoma,5 (also see Supplementary Figure S1). Although most of these loci are located in 

a “gene desert” region, several hundred kilobases (kb) telomeric to several genes including 

*Correspondence to: Jirong Long, PhD, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University 
School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN 37203, Phone: (615) 343-6741; Fax: (615) 936-8241, 
Jirong.Long@vanderbilt.edu, Qiuyin Cai, M.D., Ph.D., Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, 
Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, Phone: (615) 936-1351; Fax: 
(615)936-8291, qiuyin.cai@vanderbilt.edu. 

Conflict of interest statement
None of the authors has conflicts of interests to declare.

HHS Public Access
Author manuscript
Int J Cancer. Author manuscript; available in PMC 2017 September 15.

Published in final edited form as:
Int J Cancer. 2016 September 15; 139(6): 1303–1317. doi:10.1002/ijc.30150.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FAM84B, POU5F1B, MYC, and the long non-coding gene PVT1. A growing number of 

studies have shown that the 8q24 locus may harbor long-range regulatory elements involved 

in regulating expression of the MYC 6 or PVT1 genes.7

In most GWAS, only the single nucleotide polymorphism (SNP) showing the strongest 

statistical association at each locus (hereinafter referred to as the index SNP) is reported. 

Those index SNPs themselves are usually not the causal variants but are in linkage 

disequilibrium (LD) with the functional variants. In addition to the common variants 

identified by GWAS, low-frequency variants in susceptible loci may also be associated with 

disease risk.8 Furthermore, in each locus, there may exist allelic heterogeneity and multiple 

independent variants that may be associated with complex diseases.8 Some of the missing 

heritability for disease may be derived from the incomplete coverage of genetic variants and 

poor representation of the full spectrum of causal variants on commercial genotyping 

arrays.9,10 Therefore, it is necessary to conduct fine-scale mapping studies to investigate 

comprehensively all genetic variants in the LD blocks where a GWAS index SNP is located.

We conducted a fine-mapping study of the 8q24 region using data from 106,708 individuals 

within the Breast Cancer Association Consortium (BCAC). We systematically evaluated the 

associations with breast cancer risk of the SNPs across 2.06 Mb in this chromosome region. 

We aimed to identify additional independent association signals and potentially functional 

variants that may be responsible for the observed associations of variants in this locus with 

breast cancer risk.

Materials and Methods

Ethics statement

All studies were approved by the relevant institutional review committee and informed 

consent was obtained from all participants.

Subjects

Epidemiological and genotype data were obtained from 50 breast cancer case-control studies 

participating in the BCAC.4 The sample set for the current project included 48,155 cases and 

43,612 controls of European ancestry from 39 studies, 6,269 cases and 6,624 controls of 

Asian ancestry from 9 studies, and 1,116 cases and 932 controls of African ancestry from 2 

studies. The estrogen receptor (ER) status of the primary tumor was available for 35,824 

cases of European ancestry; 28,038 (78%) cases were ER+ and 7,786 (22%) were ER−.

SNP selection and genotyping

Fine-mapping SNPs were selected for inclusion on the custom Illumina iSelect array 

(iCOGS),4,11–13 with the following criteria: 1) Defining the interval to include all SNPs with 

r2 > 0.1 with the index SNPs rs13281615 and rs11780156 based on HapMap 2 CEU, which 

identified a region of 2.06 Mb (base positions 127,561,724 −129,624,067; NCBI build 37 

assembly); 2) Identifying all SNPs in the interval using the 1000 Genomes Project CEU 

(April 2010), and HapMap 3; 3) Selecting high-quality SNPs: only variants with the minor 

allele called at least twice in the 1000 Genomes Project and an Illumina designability score 
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> 0.8 were included; 4) Selecting all SNPs with r2 > 0.1 with the index SNPs rs13281615 

and rs11780156 from the CEU data set of the 1000 Genomes Project or HapMap 3; 5) 

Selecting tagging SNPs at r2 > 0.9 to capture the remaining SNPs that are not in LD with the 

index SNPs (r2 < 0.1). Genotyping of the iCOGS array and details of the genotyping calling 

and quality control has been described elsewhere.4,11,12 In order to improve SNP density and 

imputation quality, we conducted one-step imputation (without phasing) using the program 

IMPUTE2 (see URLs) with the March 2012 release of the 1000 Genomes Project as 

reference. Genotypes were successfully imputed for 10,593 variants in samples of European 

ancestry, 9,218 variants in samples of Asian ancestry, and 17,964 variants in samples of 

African ancestry, all with imputation-r2 > 0.3. After excluding SNPs with minor allele 

frequency (MAF) < 0.02, the final genotype data in this project included 6,631 SNPs in 

samples of European ancestry, 6,459 SNPs in samples of Asian ancestry, and 10,830 SNPs 

in samples of African ancestry.

Statistical analysis

The per-allele odds ratio (OR) and 95% confidence interval (CI) for each SNP was estimated 

for breast cancer risk using a log-additive logistic model with covariates of study site and 

principal components (PC; eight PCs with one additional principal component from the 

LMBC study in Europeans, two PCs in Asians and two in African Americans). Per-allele 

ORs and CIs were estimated separately for each population for overall disease, for ER+ and 

for ER− breast cancer. To identify potential independent susceptibility variant(s), stepwise 

forward logistic regression analyses were employed with or without the index SNPs 

rs13281615 and rs11780156 forced in the model. SNPs with a P value < 1× 10−4 from the 

single variant analysis were included in this analysis.11 To identify potentially functional 

variant candidate(s), we computed a likelihood ratio for each SNP relative to the 

representative SNP in each signal and excluded SNPs with a likelihood ratio < 0.01. Because 

no SNPs showed p < 1×10−4 in Asian or African ancestry data, such analyses were 

performed only on data from subjects of European ancestry. We used the haplo.stats package 

in R for haplotype analyses for the SNPs that are independently associated with breast 

cancer risk in women of European ancestry, with study sites and principal components as 

covariates. The familial relative risk (FRR) was estimated with the formula ln(λ)/ln(λo), 

where λ is the FRR to offspring of an affected individual due to a single genetic locus or 

assumed multiplicatively interacting loci and λo is the overall FRR, which was assumed to 

be 1.8 for breast cancer.14 All analyses were conducted using R version 3.0.1.

Functional annotation

We annotated a total of 245 breast cancer risk associated variants (p < 1× 10−4 from 

univariate analysis) for potential functional significance using data from the Encyclopedia of 

DNA Elements (ENCODE), the Roadmap Epigenomics Mapping Consortium, and The 

URLs. 1000 Genomes, http://browser.1000genomes.org; BCAC, http://apps.ccge.medschl.cam.ac.uk/consortia/bcac/; CbioPortal, 
http://www.cbioportal.org/public-portal/; ENCODE, http://genome.ucsc.edu/ENCODE/; HaploReg v4.1, http://
www.broadinstitute.org/mammals/haploreg/haploreg.php; HapMap project, http://hapmap.ncbi.nlm.nih.gov/; iCOGs, http://
ccge.medschl.cam.ac.uk/research/consortia/icogs/; IMPUTE v.2.2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; 
LocusZoom, http://csg.sph.umich.edu/locuszoom/; Minimac, http://genome.sph.umich.edu/wiki/Minimac; R version 3.0.1, http://
www.r-project.org/; RegulomeDB, http://regulome.stanford.edu/; UCSC Genome Browser, http://genome.ucsc.edu; TCGA, http://
cancergenome.nih.gov/.
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Cancer Genome Atlas (TCGA) (see URLs). For each variant, we investigated whether it is 

mapped to transcriptional elements primarily associated with enhancers (H3K4me1) or 

promoters (H3K4me3), in any of nine cell lines: normal human mammary epithelial cell line 

(HMEC), GM12878, H1-hESC, K562, HepG2, HSMM, HUVEC, NHEK, and NHLF. The 

epigenetic landscape of histone markers H3K4Me1, H3K4Me3, and H3K27Ac was also 

examined through layered histone tracks on seven ENCODE cell lines, including GM12878, 

H1-hESC, K562, HSMM, HUVEC, NHEK, and NHLF from the UCSC Genome Browser 

(see URLs). DNase I hypersensitive and transcription factor (TF) ChIP-Seq datasets were 

investigated in all available ENCODE cell lines, including HMEC and the breast cancer cell 

lines T-47D and MCF-7. Publicly available tools RegulomeDB15 and HaploReg v4.116 were 

also used to evaluate potential functional variants.

For regions lacking ChIP-seq peaks data, we collected raw ChIP-seq data for the estrogen 

receptor-α (ESR1) and forkhead box protein A1 (FOXA1) in MCF-7, TAMR and ZR751 

breast cancer cell lines (Supplementary Table S1) from the study by Hurtado et al. 17 The 

raw ChIP-seq data in .FASTQ format from different lanes in the same experiment were first 

merged and mapped to the human reference genome (hg19) using the Bowtie2 program18 

with the default setting. Aligned data were processed and converted into Binary Sequence 

Alignment/Map format (BAM) files using the SAMtools program.19 After removing 

duplicated reads, we used the MACS14 (version 1.4.2) algorithm20 to identify peaks with 50 

bp resolution using the matched DNA input data as the control. The peaks were ranked by 

the number of uniquely aligned reads and only the top 5% of peaks were selected for motif 

discovery. The summits of the top 5% peaks were extended by 100 bp on either side. Similar 

methodological strategy has been used elsewhere.21,22 Motifs between 5 and 30 bp in length 

were identified on both strands. We employed the MEME 4.9.1 toolkit23 to search DNA 

motifs and enrichment significance for ESR1 and FOXA1.

Expression quantitative trait (eQTL) analysis

eQTL analysis was performed followings the method described previously.24 Briefly, RNA-

Seq V2 data (level 3) of 1,006 breast cancer tumor tissues were downloaded from the TCGA 

data portal (see URLs). DNA methylation data measured by the Illumina 

HumanMethylation450 BeadChip and genotype data from the Affymetrix SNP 6.0 array 

were also retrieved from TCGA level 3 data. Genotype data of the flanking 2 Mb region of 

the index SNPs on 8q24 were extracted and then imputed to the 1000 Genomes Project data 

with Minimac (see URLs). Only common SNPs (MAF > 0.05) with high imputation quality 

(r2 > 0.3) were included in the present study. For the interrogated 2 Mb region, copy number 

variation (CNV) data spanning the 8q24 genes FAM84B, POU5F1B, MYC, and PVT1 from 

TCGA tumor tissue samples were collected from the CbioPortal (see URLs).

We used the TCGA breast cancer data described above to perform cis-eQTL analyses in 

tumor tissues. Several steps were taken to reduce the batch and other technical effects on 

gene expressions following the approach described by Pickrell et al.25 First, the RNA-Seq by 

Expectation-Maximization value of each gene was log2 transformed and genes with a 

median expression level of 0 across tissues were removed. We then performed the principal 

component correction on gene expression to remove potential batch effects. A linear 
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regression of expression values on the first five principal components was constructed and 

the residuals were used to replace the expression values of each gene among tissues. To 

make the data more closely conform to the linear model for the eQTL analysis, we further 

transformed the gene expression levels to fit quantiles of N(0,1) distribution based on the 

ranks of the expression values to their respective quantiles. Finally, to further adjust for the 

potential effects of methylation and CNV on the expression of each gene in tumor tissues, 

we constructed residual linear regression models to detect eQTLs according to the approach 

used by Li et al.26

Results

Associations with breast cancer risk among women of European ancestry

We first conducted univariate analysis for 2,391 genotyped and 4,240 well-imputed SNPs in 

samples from women of European ancestry. A total of 359 SNPs were associated with breast 

cancer risk with a statistical significance of p < 1× 10−4 (Figure 1 and Supplementary Table 

S2). Confirming previous GWAS results, the index SNPs rs13281615 (Signal 2 in Table 1) 

and rs11780156 (Signal 5 in Table 1) showed significant associations with ORs of 1.11 

(95% CI = 1.08-1.13, P = 2.0 × 10−24) and 1.07 (95% CI = 1.05-1.10, P = 4.1 × 10−8), 

respectively (Table 1, univariate analysis). We then conducted forward stepwise regression 

analysis for each of the 359 SNPs to identify potential independent association signals. 

When two index SNPs rs13281615 and rs11780156 were forced into the model, we found 

two additional independent association signals at statistical significance of P < 1 × 10−4 and 

a third one with suggestive evidence (P = 1.1× 10−4) (Table 1 and Supplementary Figure 

S2). The first independent signal (Signal 1 in Table 1), represented by rs35961416 

(chr8:128213561:I) with an insertion of base A, showed a P value of 5.8 × 10−6 after 

adjustment for other four signals (conditional OR = 0.95, 95% CI = 0.93-0.97). The second 

independent signal (Signal 3) represented by rs7815245 (conditional OR = 0.94, 95% CI = 

0.91-0.96, P = 1.1 × 10−6, Table 1), was in moderate LD with the index SNP rs13281615 in 

Signal 2 (r2 = 0.48) but not with the second index SNP rs11780156 in Signal 5 (r2 < 0.01). 

The third suggestive independent variant (Signal 4, rs2033101), not in LD with either of the 

two index SNPs, showed a conditional P value of 1.1 × 10−4 (OR = 1.05, 95% CI = 

1.02-1.07, Table 1). We also performed forward stepwise regression analysis without the two 

index SNPs forced into the model. Five similar independent breast cancer risk associated 

SNPs were selected: Signal 1 (rs35961416) (conditional P = 3.2 × 10−6) and the suggestive 

Signal 4 (rs2033101) (conditional P = 1.4 × 10−4) remained the same; Signal 2 (rs13281615) 

was tagged by the highly correlated SNP rs10110330 (r2 = 0.97, conditional OR = 1.06, 

95% CI = 1.04-1.09, P = 9.5 × 10−6), Signal 3 (rs7815245) tagged by the most significant 

SNP rs17465052 (r2 = 0.93, conditional OR = 0.94, 95% CI = 0.91-0.97, P = 3.2 × 10−6), 

and Signal 5 (rs11780156) tagged by c8_pos129263191 (rs67397162, r2 = 1, conditional OR 

= 1.07, 95% CI = 1.05-1.10, P = 1.1 × 10−7). These results consistently showed four 

independent risk association signals and another suggestive one (Supplementary Figure S2). 

No significant evidence of between-study heterogeneity was observed for any of these 

independently risk-associated SNPs (data not shown).
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Stratified by ER status, all five independent signals showed significant associations for ER+ 

breast cancer; however, with the exception of rs11780156 showing a P value of 0.012 (signal 

5), no significant associations were observed for ER− breast cancer (Table 2).

Haplotype analyses were performed using data from the five independent risk signals (Table 

3). In women of European ancestry, a total of 16 haplotypes with frequency of > 1% were 

observed. Compared to the reference haplotype, which carries the alleles associated with a 

reduced risk in all five SNPs, most haplotypes were associated with increased breast cancer 

risk. Haplotype 5, which carries the risk-associated alleles of the signals 1-3, showed the 

most significant association (P = 3.4 × 10−11 for overall breast cancer) while Haplotype 1, 

which carries the risk-associated alleles of all signals except for Signal 4, was associated 

with the highest estimated OR (OR = 1.27, 95% CI = 1.15-1.39 for overall breast cancer) 

(Table 3). As shown in Table 3, similar haplotype associations were observed for ER+ but 

not for ER− breast cancer.

Association with breast cancer risk in women of Asian or African ancestry

Of the five independently risk-associated variants identified in women of European ancestry, 

only rs35961416 (Signal 1) showed a nominal association in African-American women at P 
< 0.05 (P = 0.04, Table 4). Based on univariate analyses of all SNPs on 8q24 that passed QC, 

SNP rs76382129 showed a P value of 8.3 × 10−4 in women of Asian ancestry and five SNPs 

showed P values of between 9.6 × 10−4 and 1.6 × 10−4 in women of African ancestry 

(Supplementary Table S3). Another 16 SNPs showed breast cancer risk association with P 
values between 0.01 and 0.001 in either population and in the same direction across the two 

populations (Table 4).

Functional annotation

For each of the five independent signals identified among women of European ancestry, we 

excluded SNPs with r2 ≤ 0.2 with the representative SNP in each signal region and then 

calculated the likelihood of all risk-associated variants to select potentially functional variant 

candidates. Setting a likelihood ratio threshold of > 0.01 relative to the representative/index 

SNP in each signal region, we did not identify any functional variant candidates for 

rs35961416 (Signal 1) and rs2033101 (Signal 4) whereas we identified 154 functional 

variant candidates for Signal 2, 170 variants for Signal 3 (143 variants overlap with those for 

Signal 2), and 62 variants for Signal 5, respectively (Supplementary Tables S4-S6). Thus, a 

total of 245 unique SNPs including the five representative SNPs in five signal regions were 

further evaluated for their potentially functional significance.

Our integrative functional annotation from ENCODE, Roadmap Epigenomics, the 

RegulomeDB15, the HaploReg databases16, and other public data identified the 

representative SNP rs7815245 in Signal 3 and SNP rs1121948 (in LD with rs11780156) in 

Signal 5 as most likely functional variant candidates underlying respective independent 

association signals (Figure 2). Based on the Roadmap Epigenomics data, SNP rs7815245 in 

Signal 3 is mapped to a conserved enhancer region with a genomic evolutionary rate 

profiling (GERP) score of 5.04 among eight tissues including breast variant human 

mammary epithelial cells (vHMEC) and breast myoepithelial primary cells. It is in a DNase 
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I hypersensitive region in eight tissues including vHMEC. It is also predicted to change the 

transcription factor TCF12 binding motif. This SNP is also located in the binding regions of 

two critical nuclear hormone responsible receptors, estrogen receptor-α (ESR1), and 

forkhead box protein A1 (FOXA1) (Supplementary Figure S3). ChIP-seq data from different 

breast cancer cell lines and technical replicates showed consistent results (Supplementary 

Figure S3A). DNA binding motif analysis further confirmed that SNP rs7815245 is located 

in the ESR1 DNA binding motif (P = 1.5 × 10−3) and is very close to the FOXA1 DNA 

binding motif (P = 5.2 × 10−3) (Supplementary Figure S3B). In addition, the breast cancer 

risk-associated T allele was correlated with decreased expression of the POU5F1B gene (P = 

0.04, Supplementary Table S7).

SNP rs1121948, which is in strong LD with the index SNP rs11780156 (r2=0.77) in Signal 

5, resides in the binding motifs of the TFs GATA-binding protein 3 (GATA3) and MYC-

associated factor X (MAX) in the breast cancer cell line MCF-7. HaploReg data shows that 

this SNP resides in promoter regions of lung and muscle tissues, in strong enhancer regions 

of 14 tissues including HSMM and NHLF cells, and in DNase I hypersensitive sites of four 

tissues. Two active epigenetic markers (H3K4Me1 and H3K27Ac) were enriched in the 

interval containing rs1121948 in seven ENCODE cell lines (Figure 2C). We examined the 

effect of the associations of the 62 SNPs from the likelihood analysis for Signal 5 and 

expression of genes within 1 Mb of the index SNP rs11780156. We found that the risk-

associated G allele of rs1121948 was weakly associated with decreased expression of the 

PVT1 gene (P=0.037, Supplementary Table S7).

Discussion

In this study, we conducted a fine-mapping investigation at the breast cancer susceptibility 

locus on 8q24. Among women of European ancestry, we identified four independent 

association signals represented by rs35961416, rs13281615, rs7815245 and rs11780156, 

respectively, and another suggestive one tagged by rs2033101. This discovery increases the 

proportion of familial risk of breast cancer explained by variation on 8q24 from 0.25% (due 

to the GWAS index SNPs rs13281615 in Signal 2 and rs11780156 in Signal 5) to 0.55%.

SNP rs7815245 (Signal 3) showed a more significant association than the previously 

GWAS-identified index SNPs rs13281615 (Signal 2) and rs11780156 (Signal 5). This SNP 

is located in an enhancer region among eight tissues including breast variant HMEC and 

myoepithelial cells. TF occupancy data showed that SNP rs7815245 falls within the DNA 

binding motifs for ESR1 and FOXA1, two critical DNA binding proteins for the 

development of several hormone-dependent cancers including breast cancer. Breast cancer 

susceptibility variants rs4784227 on 16q12.1 and rs2981578 on 10q26 have also been 

reported to modulate the affinity for these two transcription factors.11,27 In addition, FOXA1 

has shown a critical role in estrogen-ESR1 activity and endocrine response in breast cancer 

cells.17,28,29 These results imply that the association between SNP rs7815245 at Signal 3 

and breast cancer risk might be mediated by their functional effects through these two 

transcription factors. The risk allele T of rs7815245 down-regulated expression of its 

downstream gene POU5F1B, which encodes a weak transcriptional activator highly similar 

to the POU class 5 homeobox 1 transcription factor and is overexpressed in prostate 
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cancer.30 However, further functional studies are needed to clarify the biological mechanism 

of this SNP in breast cancer susceptibility.

The most attractive candidate gene for cancer risk variants in the gene-desert 8q24 region is 

the proto-oncogene MYC, because it plays a vital role in tumorigenesis and metastasis of 

several types of cancer including breast cancer.31–33 As a key transcription factor, MYC 

forms heterodimers with MAX, and then regulates transcription of genes involved in cell 

growth, and proliferation.31 Aberrant MYC signaling can promote cell transformation and 

tumor progression.32,33 Although most of the GWAS-identified SNPs on 8q24 for multiple 

types of cancers5,34 are not mapped to the MYC genic region, they may cis-regulate nearby 

genes including MYC and its 53-kb downstream non-coding gene PVT1.5 For example, 

cancer risk-associated variants may regulate MYC expression by forming a large chromatin 

loop with the MYC locus.6,26,35 This hypothesis has been partially supported by the fact that 

trait-associated loci are frequently found to be cis-eQTL.26,36,37 Our e-QTL analysis of the 

TCGA breast cancer tumor tissues showed a trend that rs1121948 in Signal 5 might affect 

MYC or PVT1 expression levels (Supplementary Table 7), consistent with a co-expression 

pattern.38 However, the risk-increased alleles are associated with down-regulated gene 

expression of MYC or PVT1. This is inconsistent with overexpression of these two genes 

commonly observed in breast cancer tumors,39–42 leaving challenges to link the risk alleles 

and the possible candidate gene(s) in malignancy.

Of the five independent association signals observed among women of European ancestry, 

only rs35961416 showed a significant association in women of African ancestry. This could 

be due to small effect size, different allele frequency, or allelic heterogeneity by race. 

Differences in GWAS findings across populations have commonly been observed for breast 

cancer and many other complex traits.43–45 Taking the GWAS index SNP rs13281615 as an 

example, the risk allele frequency in women of European ancestry was 0.40.46 Under an 

additive inheritance mode to detect the same per-allele effect (OR = 1.08) at P = 0.05, our 

Asian sample with 6,269 breast cancer cases and 6,624 controls (risk allele frequency of 

0.53) and African American sample with 1,116 breast cancer cases and 932 controls (risk 

allele frequency of 0.44) has a power of 0.09% and 0.1%, respectively.

In addition to a smaller sample size for women of Asian or African ancestry, there are 

several other limitations in this study. First, no functional laboratory experiments were 

conducted for any of the putative functional SNPs implicated in our study, preventing us 

from drawing a more definitive conclusion regarding the functionality of these variants. For 

example, our in silico analyses suggest that rs1121948 is located in binding sites of GATA3 

and MAX, which may regulate MYC expression, but such potential interaction needs to be 

demonstrated experimentally.47–50 Second, we limited our investigation to variants with a 

MAF > 0.02, and thus it is possible that some rare variants in these loci may also contribute 

to the risk of breast cancer.

In conclusion, our fine mapping study identified two additional and another suggestive 

independent association signals on 8q24 among women of European ancestry, which 

together with two previous reported GWAS index signals plain approximately 0.55% of 

excess familial risk of breast cancer. In addition, our functional analyses revealed two 
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putatively functional variants that can be further investigated experimentally. Our study 

provides additional evidence of the importance of common independent variants on 8q24 in 

breast cancer susceptibility.
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Refer to Web version on PubMed Central for supplementary material.
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What's new?

Previous genome-wide association studies identified rs13281615 and rs11780156 on 

8q24 as breast cancer susceptibility loci. The authors performed a fine-mapping study 

including 55,540 breast cancer cases and 51,168 controls within the Breast Cancer 

Association Consortium and identified three additional, represented by rs35961416, 

rs7815245, and rs2033101, respectively. In silico analysis indicated two putatively 

functional variants rs7815245 and rs1121948.
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Figure 1. Manhattan plot of overall breast cancer risk association in Europeans at the 8q24 locus
SNPs are plotted based on their chromosomal positions (hg19) and −log10 P-values for 

univariate association. The regions spanning five independent association signals 

(representative SNP for each signal are shown in Table 1) and their highly correlated SNPs 

are indicated by dashed rectangles.
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Figure 2. Functional annotation of the independent signal regions
(A) Chromatin states across the 45.6 kb region harboring two associated signals rs13281615 

and rs7815245. The top 3 tracks show enrichment of transcription regulatory histone 

markers H3K4me1, H3K4me3 and H3K27ac from seven cell lines in ENCODE. The next 9 

tracks are the chromatin state annotation by ChromHMM derived from 9 cell types. 
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ChromHMM color coding is as follows: orange, strong enhancer; yellow, weak enhancer; 

light green, weak transcribed; light gray, low signal. The next 5 tracks show the designated 

histone modifications in the HMEC cell line. The last two tracks show the open chromatin 

enrichment from DNase clusters and evolutionary conservation measurement by PhastCons 

from 100 vertebrates. (B) LD structure of the region harboring the index SNP rs13281615 

and the independent signal rs7815245 in European samples. (C) Chromatin states across the 

58.9 kb region harboring the second index SNP rs11780156 and the potential underlying 

functional SNP rs1121948. The contents of the tracks are the same as described in (A). (D) 

LD structure of the 58.9 kb region wherein SNPs rs11780156 and rs1121948 lie, marked 

with red arrows.
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Table 2

Association of the five independent signals with breast cancer risk by ER status among women of European 

ancestry.

SNP

ER+ cases (n=28,038) ER− cases (n=7,786) P for

Adjusted per-allele

OR (95% CI)
a

Adjusted

P
a

Adjusted per-
allele OR (95%

CI)
a

Adjusted

P
a

heterogeneity
testb

rs35961416 0.93(0.91-0.96) 4.8×10−7 0.97(0.93-1.01) 0.138 0.217

rs13281615 1.08(1.04-1.11) 3.1×10−6 1.00(0.95-1.05) 0.971 0.032

rs7815245 0.94(0.91-0.97) 1.6×10−4 0.96(0.91-1.01) 0.104 0.276

rs2033101 1.06(1.03-1.09) 1.3×10−4 1.04(0.99-1.08) 0.140 0.307

rs11780156 1.08(1.05-1.11) 6.6×10−7 1.06(1.01-1.12) 0.012 0.118

Abbreviations: ER, estrogen receptor; OR, odds ratio; CI, confidence interval.

a
Adjusted for other four independent signal, age, study site and principle components.

b
Heterogeneity test between ER-positive and ER-negative disease.
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Table 4

Association of top SNPs identified in women of European and non-European ancestry with breast cancer risk 

among women of Asian (6,269 cases and 6,624 controls) and African ancestry (1,116 cases and 932 controls).

Top SNPs Alleles
a

Univariate Analysis (Asian) Univariate Analysis (African)

EAF OR(95% CI)
b

P 
b EAF OR(95% CI)

b
P 

b

Identified in women of European ancestry

 rs35961416 A/− 0.10 1.01(0.91-1.13) 0.804 0.39 0.85(0.73-0.99) 0.040

 rs13281615 G/A 0.53 1.02(0.97-1.08) 0.357 0.44 1.02(0.90-1.16) 0.721

 rs7815245c T/C 0.17 0.96(0.89-1.02) 0.202 0.36 0.99(0.87-1.13) 0.908

 rs2033101 T/C 0.33 1.00(0.95-1.05) 0.957 0.09 0.85(0.67-1.07) 0.174

 rs11780156 T/C 0.20 0.99(0.93-1.06) 0.842 0.04 0.97(0.70-1.34) 0.838

Identified in women of non-European ancestry

 rs16901629 G/A 0.14 1.12(1.03-1.22) 6.6×10−3 0.38 1.07(0.92-1.24) 0.407

 rs974451 A/G 0.23 0.91(0.85-0.96) 1.4×10−3 0.56 0.99(0.88-1.13) 0.915

 rs7014860 C/A 0.24 1.14(1.03-1.25) 9.8×10−3 0.25 1.01(0.83-1.24) 0.896

 rs979200 C/T 0.45 1.07(1.02-1.13) 8.2×10−3 0.67 1.09(0.95-1.24) 0.230

 rs16901857 G/A 0.24 1.08(1.02-1.15) 6.6×10−3 0.08 1.02(0.82-1.28) 0.841

 rs75127456 A/C 0.10 0.89(0.81-0.97) 8.9×10−3 0.07 0.92(0.71-1.19) 0.524

 rs56005245 C/T 0.26 1.09(1.03-1.16) 2.5×10−3 0.37 1.02(0.89-1.16) 0.780

 chr8:128272219:I A/AG 0.04 1.32(1.10-1.59) 2.9×10−3 0.12 1.04(0.83-1.32) 0.715

 rs28392817 T/G 0.17 1.10(1.03-1.18) 7.1×10−3 0.78 1.1(0.94-1.28) 0.237

 rs4733807 A/G 0.12 0.89(0.82-0.96) 3.6×10−3 0.16 0.99(0.83-1.18) 0.907

 rs55971392 G/A 0.10 0.88(0.8-0.96) 4.5×10−3 0.04 0.88(0.61-1.27) 0.501

 rs35686742 C/T 0.09 0.87(0.79-0.96) 4.4×10−3 0.03 0.91(0.62-1.32) 0.619

 rs6988558 G/C 0.44 0.98(0.93-1.04) 0.476 0.49 0.83(0.73-0.96) 9.6×10−3

 rs73356177 A/G 0.05 1.05(0.93-1.19) 0.426 0.10 1.36(1.11-1.67) 2.8×10−3

 rs1516964 C/T 0.04 0.88(0.76-1.01) 0.072 0.09 0.67(0.51-0.89) 6.1×10−3

 rs56142222 G/A 0.03 1.08(0.92-1.25) 0.351 0.22 1.22(1.05-1.42) 9.8×10−3

Abbreviations: EAF, effect allele frequency; OR, odds ratio; CI, confidence interval.

a
Effect/reference allele; effect alleles are shown in bold.

b
Adjusted for study site and two principal components for each population.

c
Except for r2 of 0.23 and 0.43 for linkage disequilibrium between rs7815245 and the index SNP rs13281615 in Asians and African American, all 

other SNPs are not in LD with either of the index SNPs rs13281615 or rs11780156 in non-European populations (r2 < 0.02).
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