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Abstract: We demonstrate time-gated confocal imaging as a means to 
separate coherent anti-Stokes Raman scattering (CARS) microscopy data 
from multi-photon excited endogenous fluorescence in tissue. CARS is a 
quasi-instantaneous process and its signal decay time is only limited by the 
system’s instrument response function (IRF). Signals due to two-photon-
excited (TPE) tissue autofluorescence with excited state lifetimes on the 
nanosecond scale can be identified and separated from the CARS signal by 
employing time-gating techniques. We demonstrate this improved contrast 
on the example of CARS microscopy of intact roots of plant seedlings as 
well as on rat arterial tissue.  

2007 Optical Society of America  

OCIS codes: (180.4315) Nonlinear microscopy; (170.6920) Time-resolved imaging; (190.5650) 
Raman effect.  
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1. Introduction  

While still in early stages of adoption by cell biologists and medical researchers, coherent 
anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful new imaging 
modality for applications in cell biology and disease characterization [1-7]. As a microscopy 



technique, it enables imaging with diffraction-limited spatial resolution, high speed, and high 
chemical selectivity - similar to confocal microscopy - but without the need for fluorescent 
labels [8-13]. CARS microscopy is a mergence of Raman scattering and nonlinear optical 
microscopy. Raman scattering probes the strength and composition of molecular bonds 
through inelastic light scattering [14]. Different molecular bonds exhibit different vibrational 
frequencies so that monitoring these allows for the label-free probing of specific molecules, 
such as proteins, DNA, RNA, and lipids, and their distribution within tissue or even within a 
single cell [15].  Traditional Raman scattering microscopy based on spontaneous light 
scattering has to cope with extremely weak signals, which, when used in an imaging 
application requires typical acquisition times of up to several hours [16-19]. CARS 
microscopy overcomes this limitation by using coherent excitation of molecular bonds to 
increase the signal strength by several orders of magnitude. Here, two laser beams with 
energies ωp and ωS are tuned so that their difference in energy matches a specific Raman-
active vibration (ωvib). A nonlinear optical process drives molecules through the Raman 
vibration, and produces an anti-Stokes signal at ωCARS = 2ωp - ωs = ωp + ωvib. This signal is the 
vibrational marker providing chemical contrast for CARS imaging. If the two laser beams are 
tightly focused, the stringent phase-matching condition is relaxed while simultaneously 
creating the high electric field strength required to induce a CARS process. The CARS signal, 
by and large, is then only generated at that focal point. Raster-scanning this focal point across 
the sample then produces 3-dimensional vibrational images with diffraction-limited resolution 
(<1 µm).  
 To improve the CARS signal over any fluorescence background, a number of 
developments were made from its original form [20], such as shifting the excitation laser 
wavelength to the near-infrared [21]. Unfortunately, however, during imaging at the tissue 
level, short-pulsed near-infrared laser illumination also leads to two-photon-induced 
excitation of endogenous fluorescence – especially at the peak pulse energies needed to 
generate sufficient CARS or other nonlinear signals [22-27]. Depending on the type of tissue, 
this background fluorescence can exhibit significant spectral overlap with the CARS signal 
and often mask it. This is particularly true for chlorophyll-rich plant tissues. Chlorophyll 
exhibits strong fluorescence with a peak emission at ~ 670 nm, which overlaps with most 
CARS signals obtained by using a combination of laser wavelengths around 800 nm and 1064 
nm as done in most of the current CARS microscopy setups [4, 28-30]. Other tissue types, in 
particular tissues that are in contact with blood, have other sources of broadband 
autofluorescence in a similar wavelength range, which stem from e.g. porphyrins and heme. 
To date, suppressing these autofluorescence signals in CARS imaging has been limited to the 
use of narrow bandpass filters centered around the CARS signal. This scheme alone has 
several limitations: 1) the spectral width of bandpass filters is often larger than the CARS 
spectral width, leading to excess background bleed-through, 2) any remaining fluorescence 
signal on top of the CARS spectral position still cannot be suppressed, and 3) using narrow 
bandpass filters greatly restricts the ability to tune between a range of Raman modes without 
switching filters.  Alternatively, a potential technique to enhance the CARS contrast is to 
perform background subtraction of autofluorescence from CARS by acquiring separate 
fluorescence images with just one laser and subtracting these by using imaging software, but 
this method is tedious and time consuming.  
 Here, we implement an entirely different approach in separating CARS signals from tissue 
TPE autofluorescence. In Raman scattering and CARS, the molecule is excited to a virtual 
state, an unstable state with a large energy uncertainty, resulting in a quasi-instantaneous 
decay time (<1 ps). This distinguishes it well from the typical nanosecond electronic excited 
state lifetimes that are characteristic of fluorescence emission. By implementing a time-
correlated single photon counting (TCSPC) detection scheme similar to what has been 
previously reported for fluorescence lifetime imaging (FLIM) [31-34], we are able to use the 
photon arrival time information to discriminate between the quasi-instantaneous CARS 
photons and the delayed TPE autofluorescence photons, thereby improving the quality of the 
CARS images.  



2. Materials and methods 

2.1. CARS microscope 

Our CARS microscope is set up in the epi-detection mode as shown in Fig. 1a. The pump 
laser source is provided by a 1064 nm Nd:YVO4 laser (Picotrain, High Q Laser, Austria) with 
10 W average power and 7 ps pulse width at 76 Mhz repetition rate. A large portion of the 
laser power, 9W, is used to synchronously pump an optical parametric oscillator (OPO – 
Levante, APE, Berlin, Germany), generating approximately 1.5 W of OPO average power 
with 5 ps pulse width, and wavelengths tunable from 770 nm to 960 nm.  The remaining 
portion of the Nd:YVO4 laser source (~1 W) is used as the Stokes beam. The 1064 nm Stokes 
beam is passed through a 100 mm optical delay stage and collimated by a lens pair before 
being combined with the OPO pump beam by a dichroic mirror (Chroma Technology, 
Rockingham, VT). The combined laser beams are then delivered to the rear entrance port of 
an inverted optical microscope (IX71, Olympus, Center Valley, PA) through a periscope. The 
CARS beams are reflected by a 750 nm short pass dichroic mirror (Chroma Technology, 
Rockingham, VT) and sent to the back-aperture of a 1.2NA, 60X water immersion objective, 
(Olympus, Center Valley, PA) to form a diffraction-limited spot at the sample. The epi-CARS 
signal is collected by the same microscope objective, spectrally separated from the excitation 
sources by the dichroic mirror and a set of bandpass filters, i.e. a multiphoton short-pass filter  
(FF-01-750, Semrock, Rochester, NY) and a 40 nm wide bandpass filter (#42-7377, Ealing 
Catalog, Inc., Rocklin, CA) around 660 nm, before being focused onto a single photon 
counting avalanche photodiode (SPAD, SPCM-AQR 14, Perkin-Elmer, Waltham, MA). A 
portion of the CARS signal is also sent to a spectrometer (Acton SpectraPro 2300i, PI Acton, 
Trenton, NJ) equipped with a back-illuminated deep-depletion charge-coupled device (CCD) 
camera (PIXIS 100BR, PI Acton, Trenton, NJ). For all images shown in this report, the OPO 
wavelength was tuned to 816.8 nm to match the aliphatic C-H stretch mode at 2845 cm
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corresponding to a CARS signal at 658 nm. 
 

 
Fig. 1. (A) Schematics of our experimental CARS microscopy system. An optical parametric 
oscillator is synchronously pumped by a Nd:YVO4 laser (10W, 7 ps, 1064 nm, 76 MHz) to 
produce the excitation beam, while the Nd:YVO4 laser provides the probe beam. CARS signals 
are detected in epi-mode by a single photon counting avalanche photodiode (SPAD). BS: beam 



splitter, DM: dichroic mirror, BE: beam expander, OPO: optical parametric oscillator, TCSPC: 
time-correlated single photon couting, PC: personal computer. (B) TCSPC concept: the arrival 
time of a photon is detected with 35 ps resolution with respect to the laser pulse. (C) Photon 
arrival time distribution histogram of the 2845 cm-1 CARS signal from aliphatic C-H bonds 
generated in rat artery by scanning the CARS beams and collecting photon arrival time data for 
every pixel, which are fitted by a single exponential decay function. The fit values for each 
photon arrival time are shown in the distribution histogram. The majority of photons arrives 
with a time constant of 310 ps, which reflects the instrument response function of our system – 
limited by the timing jitter of the SPAD. The microscopic photon arrival time is determined by 
the TimeHarp200 histogramming electronics, whereby the start-stop times are binned to a 4096 
channel histogram with an adjustable resolution per channel and a minimum resolution 
corresponding to ~ 30 ps. CARS and TPE fluorescence images are generated by the 
SymphoTime software by setting the respective time-gates, i.e. by selecting a subset of photons 
collected during a given time range within the microscopic photon arrival (TCSPC) time 
window, corresponding to CARS only and TPE fluorescence photons, respectively. 

2.2. Imaging electronics 

CARS images are generated by translating the microscope objective across the sample in the 
lateral x-y, and axial z-plane using a closed-loop controlled piezoelectric motion stage 
(Polytec PI). Scan control of the piezo stage is provided by the SymPhoTime software 
package (Picoquant GmbH, Berlin, Germany). Signals from the SPAD and reference photo 
diode are acquired by a time-correlated single photon counting board (TCSPC, TimeHarp 
200, Picoquant GmbH, Berlin, Germany). By utilizing SPADs and TCSPC electronics, 
macroscopic (absolute timescale, recorded with 100 ns precision) and microscopic (relative 
timescale in the picosecond to nanosecond range, 35 ps minimum time-resolution) photon 
arrival times are recorded for every photon detected by the electronics with respect to the laser 
excitation pulse. This is achieved by acquiring data in reverse START-STOP mode. The 
START pulse is generated by the SPAD while the STOP  (or SYNC) pulse is provided by a 
direct sync output from the Nd:YVO4 via an internal photodiode.  Furthermore, operation of 
the TimeHarp200 board in time-tagged time-resolved (TTTR) mode allows for the full time-
resolved analysis of collected photon events over the time scale of picoseconds to 
nanoseconds, as well as synchronization to the piezo-scanner for image formation. The 
microscopic photon arrival time enables us to employ software time-gating to display only 
those photons that were detected within a specified time window. From here on out, whenever 
we refer to arrival time in the text, we mean microscopic arrival time. The macroscopic 
photon arrival time, on the other hand, enables the reconstruction of images (TPE 
fluorescence and CARS). It should be noted that because of the high repetition rate of the 
laser system (76 MHz), the TCSPC time window between adjacent pulses is limited to ~13 ns 
for the applications shown in this paper. This can be expanded through the use of 
optoelectronic pulse pickers. 

2.3. Sample preparation 

Seedlings of Arabidopsis thaliana were prepared by growing them in the dark for 1 week, 
then placing one seedling on a 0.17 mm thick coverslip mounted in an Attofluor cell chamber 
(Invitrogen, Inc., Eugene, Oregon), and immersing the plant in Dulbecco’s phosphate 
buffered saline solution. The intact, living plant seedling was used for CARS imaging. 
 A section of the main thoracic aorta in the heart, running along the side of the esophagus 
and behind the lungs of a healthy young rat was surgically removed. It was then cut in the 
cross section plane of 1 mm slices and stored in a flask filled with cold saline solution with 
0.9% sodium chloride content, before being transferred to a microscope cover slip. 

3. Results 

3.1. Arabidopsis thaliana plant sample 

A dark-grown seedling of Arabidopsis thaliana was imaged in our CARS system near the 
roots of the plant. Dark-grown seedlings develop few to no chloroplasts, which should reduce 
the plant tissue fluorescence significantly. Further minimization of autofluorescence 



background is achieved by imaging near the roots rather than the leaves of the plant. Fig. 2(a) 
shows a transmitted light micrograph of the lower stem (“hypocotyls”) near the roots of the 
seedling. This micrograph provides little contrast of the sample, except for some cell 
membranes. The arrows shown in the figure point to parts of the image that are also shown in 
the corresponding CARS image in Fig. 2(b). For CARS microscopic image acquisition of the 
seedling, the OPO pump laser was tuned to 816.8 nm using 35 mW average power at the 
sample, while the Nd:YVO4 probe laser was set to 11 mW at the sample. The beams were 
focused onto the sample using a 60X 1.20 NA UPlanSApo water immersion objective 
(Olympus America, Center Valley, PA). The 256 x 256 pixel CARS image was acquired 
using a 2 ms dwell time per pixel in a 40 µm x 40 µm sample area. This image shows 
significantly more contrast than the transmitted light image, allowing for the identification of 
vesicles and organelles within the plant. Spectra were taken following the imaging using 0.3 s 
exposure times in various locations, two of which are shown in Fig. 2(c) and correspond to 
the locations highlighted in Fig. 2(b). As can be seen from these spectra, location (i) exhibits a 
relatively significant CARS signal as evidenced by the intense, spectrally narrow peak around 
658 nm. This signal sits on top of a broader fluorescence peak with a maximum at ~ 680 nm. 
The spectrum obtained from location (ii), on the other hand, is dominated by the fluorescence 
signal and shows a very small CARS contribution.  

 
Fig. 2. (A) Transmitted light micrograph of the lower stem near the roots (hypocotyls region) 
of a living Arabidopsis thaliana seedling. (B) Intensity CARS image of the same area of the 
hypocotyls shown in (A). The areas highlighted by arrows in the image are areas where 
emission spectra were taken and correspond to the spectra shown in (C). Image scale is 40 µm 
x 40 µm. (C) Local emission spectra obtained by positioning the laser beams to different parts 
of the plant cell as indicated in (B). (D) Two-photon-excited confocal autofluorescence image 
of the same plant area, where just the picosecond OPO beam (817 nm) was used to excite 
fluorescence. (E) Same as (D), but with just the Nd:YVO4. (F) Difference image, where the 
fluorescence images shown on (D) and (E) were subtracted from the “CARS” image in (B).  
This should result in a CARS image essentially free of background fluorescence contributions 
except for those due to simultaneous absorption of 1 photon from the pump beam and 1 photon 
from the Stokes beam. All CARS images were taken at 256 x 256 pixels with 2 ms dwell time 
per pixel, resulting in a total image acquisition time of 6.93 min. 

 To determine the extent of the fluorescence contributions to the image shown in Fig. 2(b), 
the same area of the sample was also scanned by alternately blocking each one of the two 



lasers that are needed to generate a CARS signal.  The image in Fig. 2(d) shows an 
autofluorescence micrograph obtained by scanning the sample with OPO laser excitation 
only, while the image shown in Fig. 2(e) results from Nd:YVO4 laser excitation only. In order 
to try to eliminate the autofluorescence background contributions from the CARS image, the 
independently acquired fluorescence-only images (Fig. 2(d,e)) were then subtracted from the 
combined CARS image (Fig. 2(b)), resulting in a “corrected” CARS image (Fig. 2(f)) free of 
two-photon excited fluorescence from the individual beams, but not accounting for 
fluorescence contributions excited due to frequency mixing of the pump and Stokes beams.  

 
Fig. 3. Time-correlated CARS micrographs of the hypocotyl of an Arabidopsis thaliana 
seedling. (A) Intensity CARS image showing all photons collected per pixel without arrival 
time information. Image scale is 40µm x 40µm. (B) This image shows the same area as in A, 
but encodes the photon arrival time in false color. Note that some well-confined areas of the 
image indicate very short photon arrivals times (shown in dark-blue to purple color). (C) 
Normalized arrival time decays for different regions highlighted by the arrows in (B), as well 
as averaged over the entire image. The CARS images were taken at 256 x 256 pixels with 2 ms 
dwell time per pixel, resulting in a total image acquisition time of 6.93 min. 

 Alternatively, using TCSPC electronics, the photon arrival time can be used to determine 
fluorescence and CARS contributions to the image contrast. Fig. 3(a) shows the same 
intensity-only CARS image of the plant seedling as shown in Fig. 2(b). In comparison, the 
image in Fig. 3(b) shows photon arrival time information encoded by false color. Parts of the 
image exhibiting purple-blue colors represent signal dominating from photons that arrive 
within ~ 1 ns of the laser pulse, while green-red color represents the arrival of “delayed” 
photons. The photon arrival time plots in Fig. 3(c) show photon arrival time decays (“lifetime 
plots”) obtained from the same areas (i) and (ii) highlighted in Figs. 2(b) and 3(b), as well as 
the average over the entire image.  

 
Fig. 4. Time-gated CARS microscopy images of the same hypocotyls as shown in Figs. 2 and 
3. (A) Intensity image with a time gate set to 0-0.6 ns. This short time gate separates the 
instantaneously arriving CARS photons from the delayed photons due to fluorescence 
emission. The gate width is set to cover all photons that are emitted within the time set by the 
instrument response function. (B) Intensity image with time gate set between 2-10 ns. This 
image shows only two-photon excited fluorescence. (C) Normalized arrival time decays for 
different regions overlaid with the schematic times gates used for isolating “early” and “late” 
photons resulting in the images shown in (A) and (B). The CARS images were taken at 256 x 



256 pixels with 2 ms dwell time per pixel, resulting in a total image acquisition time of 6.93 
min. 

 In Fig. 4 we make use of the additional information provided by also registering photon 
arrival times. Here, software time-gates were used to generate the image contrast. The image 
in Fig. 4(a) shows the same image of the plant hypocotyls shown in the previous figures, but 
only photons arriving within 0-0.6 ns of the laser pulse were used to generate the image 
contrast. The time gate is indicated by the green dashed lines in the photon arrival time plot in 
Fig. 4(c). Figure 4(b), on the other hand, shows the same image generated by counting only 
those photons arriving between 2-10 ns after the laser pulse (represented by the blue dashed 
lines in the photon arrival time plot). White arrows show the same sample locations as in the 
previous figures. 

3.2. Rat artery sample 

CARS images of a rat artery sample were acquired by scanning a small part of the arterial 
wall and the lumen with an image size of 30 x 30 µm at 256 x 256 pixels resolution, and 0.6 
ms dwell time per pixel. The OPO wavelength was tuned to the aliphatic C-H stretch mode at 
2845 cm

-1
 corresponding to a pump wavelength of 816.8 nm. Here, the pump beam was 15 

mW at the sample and the Stokes beam 10 mW at the sample. 
 

 
Fig. 5. CARS micrograph of rat arterial tissue (cross-section) showing the effect of time-gating 
on animal tissue. The fat white outline drawn in the image indicates the border between the 
tissue and the beginning of the interior of the artery (the”lumen”). (A) CARS image encoding 
the photon arrival time on a false color scale. Image scale is 30 x 30 µm. (B) Normalized 
photon arrival time histograms obtained by isolating areas with short photon arrival times from 
areas with long photon arrival times as highlighted by white circles in (A). (C) Intensity image 
with a time gate set to 0-0.6 ns, covering the instantaneously emitted CARS photons. (D) 
Intensity image with time gate set to 2-10 ns, which captures all delayed photons due to 
fluorescence emission. Some areas of the sample shown by brightly red-colored spots lead to 
saturation of the detection electronics, and photon arrival times could not be properly 
represented for these areas. These parts were set to black in (C) and (D). All CARS images are 
acquired at 256 x 256 pixel resolution with 0.6 ms dwell time per pixel and a total image 
acquisition time of 2.03 min. 



 The image shown in Fig. 5(a) shows a false color-encoded representation of the intensity 
and arrival time of the signal detected at 658 nm wavelength. Similar to the plant sample 
image, areas with different photon arrival times can be identified, in particular small areas 
surrounding the lumen of the artery with average photon arrival times of ~0.6 ns. 
Representative photon arrival time decay plots for the areas labeled (I) and (II) and 
highlighted by white dashed outlines in Fig. 5(a) are shown in Fig. 5(b). Local emission 
spectra (not shown) additionally identify the areas representing fast photon arrival time 
decays as stemming from CARS signals as characterized by narrow-band emission peaks, 
whereas areas with delayed photon emission exhibit broad spectral fluorescence emission. 
Software time-gating can again be employed to separate photons arriving within the intrinsic 
instrument response of the system from delayed fluorescence photons. Figure 5(c) shows an 
intensity image of all the photons arriving within 0 - 0.6 ns of the laser pulse. The image in 
Fig. 5(d), on the other hand, shows an image representing all photons arriving within 2-10 ns 
after the laser pulse. 

4. Discussion 

CARS signals are essentially instantaneous - at least on time scales measurable with 
electronic photon counting equipment - while fluorescence signals decay with time constants 
on the nanosecond scale. Time-gating with fast optical gates would allow us to optimally 
separate both signal sources, but such devices typically lead to substantial signal loss and are 
currently not very practical for use in microscopy. Because of the time-scales involved, 
software time-gating using TCSPC data is much more practical and efficient for this 
application. In this case, however, even though one would prefer to extract the CARS signal 
by setting a time gate of less than 1 ps, in practice it is limited by the timing uncertainty of the 
detectors and electronics used in the system. The overall time resolution of a detection system 
is a convolution of a number of factors, e.g. the time resolution of the detector, individual 
TCSPC components, and the excitation source. In our setup, the main limiting factor to the 
system response time is the SPAD time resolution with an IRF specified to be approximately 
300 ps, since all other sources have a timing uncertainty of  < 35 ps. In order to determine the 
intrinsic timing jitter of our system for the CARS signal, we measured the system response 
time by generating a CARS signal in the absence of fluorescence contributions. With pump 
and probe laser wavelengths set to 816.8 nm and 1064 nm, respectively, the CARS signal is 
centered at 658 nm. Traditionally, the system IRF is measured by reflecting a tiny fraction of 
laser light back through the microscope onto the SPAD detector and acquiring a photon 
arrival time histogram. For our CARS system, this approach is not applicable because the 
pump and probe laser beams have wavelengths that are significantly red-shifted when 
compared to the CARS signal wavelength. SPAD detectors, however, are known to have - 
amongst other sources leading to an increase in timing uncertainty - a wavelength-dependent 
response. And, indeed, when we determined the IRF by reflecting the primary laser beams 
onto the SPAD, we found the IRF at 816.8 nm to be ~ 1 ns, while it is > 2 ns at 1064 nm. 
Only the CARS signal measured at 658 nm results in an IRF of 310 ps, which matches the 
timing jitter specified in the manufacturer’s data sheet. Based on this intrinsic decay time, we 
chose to set our time gates for all images to ~ 2x the IRF, i.e. from 0-0.6 ns, in order to 
capture most CARS photons, while still providing significant rejection of fluorescence 
photons. Another, interesting feature of SPADs is that they count single photons, i.e. once a 
photon has been detected, the detector is dead and cannot detect any other photons for ~ 35 
ns. Thus, even in the presence of very high fluorescence levels, these detectors can effectively 
isolate the CARS signal because of its instantaneous nature. This means that TCSPC-based 
techniques are well suited for conducting experiments in regimes with low signal versus 
background count rates as long as the difference in signal arrival times is significant.  
 To demonstrate the benefits of CARS signal time-gating, we imaged tissues that are 
known to exhibit significant autofluorescence within the CARS signal emission band near 658 
nm. Figures 2-4 show this on the example of plant tissue where the main source for 
autofluorescence can be attributed to chlorophyll emission.  The contribution and magnitude 



of fluorescence to the CARS signal is only apparent when comparing local emission spectra 
as shown in Fig. 2(c). These reveal that the apparent “CARS” signal in Fig. 2(b) is largely 
convoluted by fluorescence contributions.  It should be noted that even though the spectrum 
obtained in area (ii) shows an intensity ratio of <10:1 of autofluorescence over CARS, the 
actual photon count ratio detected ranges from 100:1 to 1000:1 as a result of the wide 
autofluorescence band from chlorophyll in the plant organelles. Typically, one would try to 
employ narrow spectral bandpass filters that isolate the CARS signal and minimize 
background contributions from the broad fluorescence, but even then, the background 
contributions can be equal to or overwhelm CARS signals. Another potential approach to 
reducing the fluorescence background is demonstrated in Fig. 2(f), where fluorescence images 
obtained by scanning the sample with only one of the two laser beams (Fig. 2(d) and Fig. 
2(e)), respectively, were obtained separately and then subtracted from the “CARS” image 
(Fig. 2(b)) obtained with both lasers simultaneously present. This approach, however, is 
typically not very practical since it requires taking several different time-consuming image 
scans of the same sample location while the sample must remain stationary at all times 
throughout the imaging process. The result of this subtraction process is shown in Fig. 2(f), 
where due to sample drift during the acquisition of the successive image series, some areas 
exhibit inverted contrast. This technique also does not account for fluorescence excitation due 
to frequency mixing of the pump and probe beams. 
 The additional information gained by recording photon arrival time information is 
demonstrated in Fig. 3. Here, the “CARS” intensity image (Fig. 3(a) - same as Fig. 2(b)) is 
overlaid with the average photon arrival time for every pixel encoded by false color as shown 
in Fig. 3(b). The photon arrival time histograms shown in Fig. 3(c) illustrate this even more 
by representing the local decay curves collected in areas (i) and (ii) as indicated in Fig. 3(b) 
and comparing them to the average over the entire image. By comparing this information with 
the local spectroscopy in Fig. 2(c), it is quite apparent, that areas with high CARS signal 
emission (indicated by the intense, narrow peak at 658 nm) correlate with areas of short 
photon arrival time (indicated by the blue color in Fig. 3(b), and the fast decay curve in Fig. 
3(c)).  
 Thus, by employing software time-gating, where photons with a microscopic arrival time 
of <0.6 ns are separated from photons with an arrival time >2 ns, we can generate a “pure” 
CARS image as shown in Fig. 4(a). The corresponding image due to fluorescence emission is 
shown in Fig. 4(b). The time gates are schematically shown by the green dashed lines (CARS 
time gate) and the blue dashed lines (fluorescence time gate) shown in Fig. 4(c). A potentially 
even better, but more computation-intensive approach could be taken by fitting the decay 
curve for every pixel with a double-exponential decay curve consisting of a short decay time 
(representing CARS signals) and a slightly longer decay time (representing fluorescence 
signals). The CARS and fluorescence images could then be constructed by plotting the 
amplitudes of each exponential decay in separate images, respectively. We also tested this 
approach to see if it might further improve the image separation, but the image contrast was 
quite similar to that obtained by simply sorting early and delayed photons and plotting the 
respective count rates. As can be seen by the contrast in Fig. 4, CARS signals due to aliphatic 
lipid vibrations primarily originate in the membrane of plant cells. This is particularly 
apparent in Fig. 4(a), where some organelles such as the one shown near the center of the 
image (highlighted by an arrow) now exhibit a CARS-signal free interior, as expected for a 
plant organelle that is rich in lipids. Since membranes composed of a single lipid bilayer 
provide rather weak CARS contrast we tentatively assign these structures to lipid-rich 
plastids, possibly being a precursor to the folded thylakoid membranes found in chloroplasts, 
which haven’t fully developed yet because these plants were dark-grown. This particular 
contrast could also be caused by the nature of our detection system, i.e. epi-CARS, which is 
only sensitive to objects smaller then the wavelength as well as interfaces [11], but as shown 
by Evans et al., CARS signal generation in tissue leads to substantial back-reflection of the 
forward-scattered CARS signal and thus a convolution between forward and epi-CARS 
signals [1]. The entire organelle, however, leads to significant fluorescence emission (see Fig. 



4(b)), indicating that it is rich in chlorophyll. It should be noted that these images represent an 
arbitrary section through the hypocotyls of the Arabidopsis thaliana seedling, which is 
difficult to control because it was obtained by scanning the intact, living plant.  
 Another example of the efficacy of applying photon arrival time-gating to the imaging of a 
targeted chemical species in the presence of autofluorescence contributions is shown in Fig. 5. 
Here, the sample is a cross-section of a healthy rat artery. Again, when tuned to the aliphatic 
lipid CH stretching mode, a response from all tissue lipids is expected, but this will be 
convoluted with autofluorescence contributions, in this case primarily due to porphyrin and 
heme fluorescence emission. Surprisingly, the photon arrival time image shown in Fig. 5(a) 
indicates the presence of a number of small, discrete regions within the tissue near the lumen 
that exhibit very strong lipid vibrations. These regions exhibit photon arrival time decays 
comparable to the IRF of our system (~310 ps), as indicated by the histogram plots shown in 
Fig. 5(b), and again, strong CARS signals in these areas are confirmed by an intense, 
spectrally narrow peak occuring at 658 nm (not shown). We tentatively assign these areas to 
temporary small, lipid-rich deposits as rats do not typically suffer from cardiovascular disease 
and their associated saturated fatty acid deposits. The spatially limited extent of these areas is 
again highlighted when we employ time-gating to separate CARS signals from 
autofluorescence contributions (Fig. 5(c) and Fig. 5(d) respectively).  

5. Conclusions 

We have shown how CARS microscopy can benefit from simultaneously collecting photon 
arrival time information using time-correlated single photon couting. This particular concept 
represents a straight-forward upgrade to most CARS microscopes that use photon-counting 
detectors based on commercially available upgrade kits for confocal microscopes. The use of 
software time gating can then be used for the temporal separation of CARS signals from 
background autofluorescence in tissue. Issues resulting from background autofluorescence 
have not yet been widely addressed in the current CARS microscopy literature, but, 
depending on the type of tissue, can lead to substantial background contributions on top of 
other sources of background (e.g. the widely acknowledged non-resonant CARS signal). We 
have confirmed the CARS nature of areas isolated in time-gated CARS microscopy by also 
collecting local emission spectra, which exhibit strong, narrow peaks at the wavelength 
expected for the CARS signal. The signal strength of these CARS signals, however, is 
comparable to the integrated fluorescence signals when collected through relatively wide 
bandpass filters, which is current practice, because it allows the collection of several different 
CARS signals over a narrow tuning range without having to change filters. Employing more 
narrow bandpass filters, however, will only partially improve the CARS contrast, because it is 
still convoluted with contributions from the broad fluorescence background. Spectral 
deconvolution of narrow CARS signals from broad autofluorescence is an option, but 
typically requires the simultaneous acquisition of images at several different wavelengths or 
the acquisition of spectra for every pixel resulting in very large data files. Such deconvolution 
also becomes increasingly less efficient if the CARS signal is relatively weak compared to the 
fluorescence background. Separating such weak CARS signals from autofluorescence is the 
true strength of time gating. We expect this to become more and more important as CARS 
microscopy moves towards in-vivo applications. Currently, image acquisition times are 
limited by the pixel dwell times needed for single photon counting. This can still be realized 
and combined with most fast (galvo-scanner based) CARS imaging schemes reported in the 
literature through the addition of commercial FLIM upgrades, but will require several image 
sweeps to optimize the signal-to-noise ratio. Ideally, however, novel, fast optical gating 
schemes could be employed that better separate the different signal contributions which will 
be compatible with both scanning as well as widefield imaging approaches to CARS 
microscopy. This leaves significant room for future development. 
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