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Abstract

Topics in Electricity Market Design

by

Ruoyang Li

Doctor of Philosophy in Engineering - Industrial Engineering and Operations
Research

University of California, Berkeley

Professor Shmuel S. Oren , Chair

The evolution of policy objectives and emergence of new technologies continually
challenge the existing wholesale electricity market design. In the framework of stan-
dard market design based on locational marginal pricing (LMP) and two-settlement
electricity markets, this dissertation investigates two topics for existing and future
power systems – Convergence Bidding (CB) and distribution locational marginal pric-
ing (DLMP). The central theme that connects these two topics is market design –
determining how to create proper incentives to compensate market participants that
ensures efficiency and reliability of the power grid.

We first empirically test whether the California Independent System Operator’s
(CAISO) existing two-settlement electricity markets are efficient, and if not, to what
extent CB improves market efficiency. We examine the theoretical and empirical
tools intended for other financial markets to help us understand the efficacy of CB
in the forward and spot electricity markets. In the light of the efficient market hy-
pothesis formalized by Samuelson (1965) and Fama (1970), Jensen (1978) uses the
zero-profit competitive equilibrium to describe the condition for market efficiency.
This definition of market efficiency directly converts the test of market efficiency into
the assessment of return behavior. Following this methodology, we empirically test
for market efficiency by evaluating the performance of trading strategies based on
market data in the CAISO electric power markets. Our backtest results show that
profitable trading opportunities continue to exist in the post-CB period, but the prof-
itability decreases substantially. The decrease in profitability in the post-CB period
indicates the improvement of market efficiency, and demonstrates the benefit of CB.
The profitability in the post-CB period, however, conveys empirical implications that
can be interpreted differently, depending on the level of competition and the level of
risk aversion of virtual traders.

We further examine the use of DLMP to improve system efficiency in future power
systems. DLMP is a modified form of LMP to alleviate congestion induced by electric
vehicle (EV) loads on the distribution network. The distribution system operator
(DSO) determines distribution locational marginal prices (DLMPs) by solving the
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social welfare optimization for both the conventional household demand and the EV
demand with marginal costs exogenously set to LMPs. We show mathematically that
the socially optimal charging schedule can be implemented through a decentralized
mechanism where retailers and EV aggregators respond autonomously to the posted
DLMPs by maximizing their individual net surplus in the perfectly competitive local
DSO market. We further investigate the problem of designing pricing mechanism
when LMPs are uncertain. A robust DLMP method is developed for EV charging
management under price uncertainty. The efficacy of the proposed use of DLMP is
demonstrated by means of case studies using the Bus 4 distribution system of the
Roy Billinton Test System (RBTS) and the Danish driving data.
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Chapter 1

Overview of Electricity Market

1.1 Electricity Restructuring

Starting in the early 1980s, the electricity sector has been under dramatic restruc-
turing throughout the world, in the pursuit of competitiveness and efficiency. The
earliest introduction of wholesale electricity markets and privatization of the power
industry took place in Chile in the early 1980s, followed by a series of electricity
market reforms in other Latin American nations, including Argentina, Peru, Brazil,
and Colombia. The liberalization of the electricity sector in European and Common-
wealth countries including Norway, Sweden, Finland, Demark, Great Britain, New
Zealand, and Australia, occurred in 1990s.

Since 1992, a series of state and federal initiatives began the deregulation process
of the electricity sector in the United States. The Independent System Operator (ISO)
was formed to administer regional wholesale electricity markets, and ensure reliability
for grid operations. Several regional wholesale electricity markets were established
under the management of the ISOs: ISO New England (ISO-NE), New York ISO
(NYISO), Pennsylvania-New Jersey-Maryland Interconnection (PJM), Midwest ISO
(MISO), Electric Reliability Council of Texas (ERCOT), and California Independent
System Operator (CAISO).

The development of wholesale electricity markets increases the reliance on market
mechanisms that promote the efficient use of physical resources and transmission fa-
cilities. Although basic tasks of wholesale electricity markets remain the same, market
designs vary across geographical jurisdictions (Stoft, 2002). This dissertation focuses
on the market design based on locational marginal pricing (LMP) and two-settlement
electricity markets. LMP is the pricing mechanism proposed by Bohn, Caramanis,
and Schweppe (1984) to internalize significant externalities arising from the presence
of Kirchhoff’s laws that govern the power flow in transmission systems. The concept
of LMP is later popularized by the work of Hogan (1992), and becomes the center-
piece of wholesale market design in the United States, Australia, New Zealand and
Singapore. Two-settlement electricity markets consist of wholesale forward and spot
electricity markets, where the forward electricity market is aimed to provide financial
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instruments to hedge against price risk in the spot electricity market. This framework
is often referred to as standard market design that is adopted by ISOs in the United
States.

The evolution of policy objectives and emergence of new technologies continually
challenge the existing wholesale market design. Driven by environmental and climate
policy priorities aiming to reduce carbon emissions from the electricity sector, carbon
taxes and tradable permits are under consideration for government intervention to
correct negative externalities. Market mechanisms that can bridge wholesale elec-
tricity markets and emerging technologies are needed to integrate variable renewable
generation and induce demand side flexibility. Financial derivatives are expected to
introduce risk-sharing mechanisms that improve market efficiency of wholesale elec-
tricity markets. This dissertation investigates two topics in wholesale market design
for existing and future power systems – Convergence Bidding (CB) and distribution
locational marginal pricing (DLMP). For the purpose of this dissertation, the func-
tional description of existing wholesale electricity markets is presented in the context
of the CAISO electric power markets.

1.2 Pricing Mechanism

Locational marginal prices (LMPs) are the prices used for the settlement of power
purchases and sales in wholesale electricity markets. LMPs are determined by the ISO
to maximize social welfare with respect to the physical constraints of the transmission
system, and expose producers and consumers to the marginal costs of electricity
delivery at different locations. Unlike traditional commodity markets, the wholesale
electricity market cannot be cleared with a single clearing-price auction, where the
aggregate supply and demand curves are formed and the single clearing price is set
to balance the supply and demand. The physical laws governing power flow and
the capacity of the transmission lines prevent electricity from flowing freely between
producers and customers on the electric power network. When the transmission lines
are congested and the import of electricity from cheap producers are constrained, the
ISO is forced to use some local but expensive producers for power generation in order
to satisfy the demand. As a result, LMPs are high in the downstream areas of the
congested transmission lines, and low in the upstream areas. The differences between
LMPs in the downstream areas and the upstream areas are congestion rents that
reflect the marginal values of the scarce transmission resources. LMPs are calculated
for a number of locations on the electric power network. These locations are called
nodes, and each node represents the geographic region where physical resources are
aggregated.
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1.3 Two-Settlement Electricity Markets

This dissertation focuses on the CAISO’s market design, where two-settlement
electricity markets are implemented. The CAISO’s two-settlement electricity markets
consist of two interrelated markets: day-ahead (DA) market, and real-time (RT)
market. The DA market is a forward market, where energy can be purchased at
forward prices, also called day-ahead LMPs (DA LMPs). The RT market is a spot
market, where energy can be purchased at spot prices, also called real-time LMPs
(RT LMPs). DA LMPs are generally considered more stable than RT LMPs. In the
RT market, price spikes are often triggered by unplanned outages of generation plants
and transmission facilities, and unpredictable weather, while the DA market is less
affected due to a longer planning horizon.

The DA market includes three sequential processes: market power mitigation
and reliability requirement determination (MPM-RRD), integrated forward market
(IFM), and residual unit commitment (RUC). The MPM-RRD starts the day before
delivery. Market participants are allowed to submit supply and demand bids for both
physical and virtual trades until the start of the MPM-RRD. In the MPM-RRD, the
ISO mitigates bids from physical resources that exercise locational market power, and
ensures the availability of physical resources whose outputs are required to maintain
local reliability. The results of the MPM-RRD are a pool of bids that is ready for the
IFM. In the IFM, the ISO economically clears the supply bids against the demand
bids with the transmission constraints enforced, determines DA schedules and DA
LMPs, and procures ancillary services. When the CAISO forecast of demand exceeds
the total physical supply cleared in the IFM, the additional capacity is procured by
the ISO in the RUC to satisfy reliability requirements. Note that the additional
resources procured in the RUC are not directly used for production, and hence do
not receive DA LMPs. However, there are still costs to keep these resources staying
online, namely start-up costs and minimum load costs, as discussed later.

In the RT market, the ISO runs the economic dispatch process every 5 minutes
to rebalance the residual demand, which is the deviation between the instantaneous
demand and the scheduled demand in the DA market. RT LMPs are determined to
settle the residual demand and the supply used to balance the residual demand.

While DA and RT LMPs reflect the cost of energy production, generation plants
also incur start-up and minimum load costs which they submit as part of their bids.
Start-up costs are the costs that are incurred when generation plants are turned on,
and minimum load costs are the costs that maintain generation plants to operate at
the minimum load level. The CAISO guarantees that all dispatched resources who
submit economic bids will cover their costs in the DA and RT markets. Hence, if
a resource does not cover its total cost including start-up and minimum load cost
through its energy revenue at DA and RT LMPs, its shortfall is covered by an uplift
payment which is allocated to market participants based on a two-tier cost allocation
scheme that considers both causation and socialization. The tier 1 uplift costs account
for cost causation, and the tier 2 uplift costs account for cost socialization.
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1.4 CB in Two-Settlement Electricity Markets

To provide hedging instruments against volatile wholesale spot prices, forward
contracts and other financial derivatives have been introduced into these deregulated
electricity markets. Financial incentives attract virtual traders to play their critical
role in price discovery and market efficiency through exploiting arbitrage opportuni-
ties. CB is a financial mechanism that allows market participants, including electricity
providers, retailers and virtual traders, to arbitrage price discrepancies between the
forward and spot electricity markets. After the introduction of CB in the other five
regional wholesale electricity markets, the CAISO has implemented CB on February
1, 2011 under Federal Energy Regulatory Commission’s (FERC) September 21, 2006
Market Redesign and Technology Upgrade (MRTU) Order.

CB allows market participants to arbitrage between the DA and RT markets
through a financial mechanism, exempting them from physically consuming or pro-
ducing energy. A virtual demand bid is to make financial purchases of energy in the
DA market, with the explicit requirement to sell back that energy in the RT market
at the same location. Conversely, a virtual supply bid is to make financial sales of
energy in the DA market, with the explicit requirement to buy back that energy in
the RT market at the same location. On the physical side, the positions taken in
the DA market are offset by the opposite positions in the RT market, which leaves
market participants with no physical obligation. In anticipation of DA LMPs being
less than RT LMPs, market participants can make profits by using virtual demand
bids to effectively buy energy in the DA market and sell it back in the RT market.
These virtual demand bids result in the additional demand in the DA market that
increases DA LMPs, and the additional supply in the RT market that decreases RT
LMPs. This yields the desired outcome of CB – price convergence.

Price convergence is regarded as a benefit to the DA and RT markets. It reduces
the incentives for market participants to defer their physical resources to the RT
market in expectation of favorable RT LMPs. The improved stability of the DA
market is beneficial from reliability perspectives. To ensure reliability of the power
grid, the ISO is required to procure sufficient capacity in the RUC, when the total
physical supply cleared in the IFM is not enough to meet the CAISO forecast of
demand. With physical resources withheld by market participants, the ISO tends to
over-procure capacity in the RUC. This raises the RUC uplift costs, and increases
the risk of decommiting scheduled resources in the RT market when deferred physical
resources show up.

The benefit of CB also comes from the fact that it relieves market participants from
using physical resources to arbitrage price differences between the DA and RT mar-
kets, also called implicit virtual bidding in some literature. Implicit virtual bidding
is the bidding strategy where market participants intentionally defer their physical
resources to the RT market to take advantage of favorable RT LMPs, by bidding at
prices that are unlikely to be cleared in the DA market rather than their economic
costs and benefits. Although implicit virtual bidding can achieve price convergence in
the absence of CB, it can also lead to disastrous effects that jeopardize the efficiency
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of the DA and RT markets. Without the revelation of the true economic costs and
benefits of physical resources, it is difficult for the ISO to allocate resources efficiently
and optimally. In addition, the prices at which market participants bid their physical
resources largely depend on their own anticipation of DA and RT LMPs, and this
introduces uncertainty into the DA market. In some cases, the ISO can either over-
schedule physical supply in the IFM that has to be sold back in the RT market, or
under-schedule physical supply in the IFM that relies on the procurement in the RUC
to balance. These variations decrease the stability of the DA market, and significantly
undermine reliability of the power grid.

CB can be conducted at both nodes and trading hubs. In comparison to nodes,
trading hubs provide more liquidity to trade large volumes of virtual bids. There are
three trading hubs in the CAISO electric power markets, that corresponds to three
congestion management zones: NP15, SP15 and ZP26. DA and RT LMPs at the
trading hub represent the weighted average of prices at generation nodes within the
corresponding congestion management zone. The weights are determined annually
based on the seasonal generation in the previous year, and are differentiated by peak
and off-peak hours. The virtual bids submitted at the trading hub are distributed to
generation nodes in proportion to their weights, and are bound together so that they
are cleared as a whole in the DA market.

The credit policy for CB requires that the current exposure of virtual bids submit-
ted by a market participant may not exceed the collateral established with the ISO.
The current exposure of virtual bids is calculated by the sum of the product of the
quantity and the corresponding reference price of each virtual bid. For one node, the
reference price is the 95th percentile value of the historical price differences between
DA and RT LMPs. After the settlement of virtual bids, the collateral is adjusted
based on the realized profits and losses of virtual bids.

There is no transaction fee imposed on submitted virtual bids, but cleared virtual
bids are required to pay uplift costs. The costs allocated to cleared virtual bids
include the IFM tier 1 uplift costs, and the RUC tier 1 uplift costs. In particular,
cleared virtual demand bids are obligated to pay a proportion of the IFM tier 1 uplift
costs, as virtual demand bids tend to increase physical supply procured in the IFM.
Cleared virtual supply bids are subject to a proportion of the RUC tier 1 uplift costs,
as the ISO tends to under-schedule physical supply in the IFM due to virtual supply
bids and increase additional capacity procured in the RUC. The costs allocated to 1
MWh of cleared virtual position are estimated to be between $0.065 and $0.085 by
the CAISO.

1.5 Scope of the Dissertation

In Chapter 1, we have provided a basic overview of electricity market restructuring
and a functional description of existing wholesale electricity markets. This stand-
alone chapter is meant to convey background information to readers who do not
possess prior knowledge on electricity market design. The material of this chapter is
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reproduced in the introduction sections of Chapter 2 and Chapter 3 so that they can
stand alone as independent publications.

In Chapter 2, the central question is to address whether the CAISO’s existing two-
settlement electricity markets are efficient, and if not, to what extent CB improves
market efficiency. We examine the theoretical and empirical tools intended for other
financial markets to help us understand the efficacy of CB in the forward and spot
electricity markets. In the light of the efficient market hypothesis formalized by
Samuelson (1965) and Fama (1970), Jensen (1978) uses the zero-profit competitive
equilibrium to describe the condition for market efficiency. This definition of market
efficiency directly converts the test of market efficiency into the assessment of return
behavior. Following this methodology, we empirically test for market efficiency by
evaluating the performance of trading strategies based on market data in the CAISO
electric power markets. The implications of market efficiency is further discussed in
the context of trading performance.

In Chapter 3, we investigate the use of DLMP to improve system efficiency in
future power systems. DLMP is a modified form of LMP to alleviate congestion in-
duced by electric vehicle (EV) loads on the distribution network. The distribution
system operator (DSO) determines distribution locational marginal prices (DLMPs)
by solving the social welfare optimization for both the conventional household de-
mand and the EV demand. Supply busses connecting the distribution system to the
transmission grid are treated as generation nodes with marginal costs exogenously set
to LMPs for each bus. We show mathematically that the socially optimal charging
schedule can be implemented through a decentralized mechanism where retailers and
EV aggregators respond autonomously to the posted DLMPs by maximizing their
individual net surplus in the perfectly competitive local DSO market. We further
investigate the problem of designing pricing mechanism when LMPs are uncertain. A
robust DLMP method is developed for EV charging management under price uncer-
tainty. The efficacy of the proposed use of DLMP is demonstrated by means of case
studies using the Bus 4 distribution system of the Roy Billinton Test System (RBTS)
and the Danish driving data.

In Chapter 4, we summarize all findings and provide concluding remarks.
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Chapter 2

Efficiency Impact of Convergence
Bidding on the California
Electricity Market

2.1 Introduction

The California Independent System Operator (CAISO) has implemented Conver-
gence Bidding (CB) on February 1, 2011 under Federal Energy Regulatory Com-
mission’s (FERC) September 21, 2006 Market Redesign and Technology Upgrade
(MRTU) Order. CB is a financial mechanism that allows market participants, includ-
ing electricity suppliers, consumers and virtual traders, to arbitrage price differences
between the day-ahead (DA) market and the real-time (RT) market without physi-
cally consuming or producing energy. In this chapter, we analyze market data in the
CAISO electric power markets, and empirically test for market efficiency by assess-
ing the performance of trading strategies from the perspective of virtual traders. By
viewing DA-RT spreads as payoffs from a basket of correlated assets, we can formulate
a chance constrained portfolio selection problem, where the chance constraint takes
two different forms as a value-at-risk (VaR) constraint and a conditional value-at-risk
(CVaR) constraint, to find the optimal trading strategy. A hidden Markov model
(HMM) is further proposed to capture the presence of the time-varying forward pre-
mium. Our backtesting results cast doubt on the efficiency of the CAISO electric
power markets, as the trading strategy generates consistent profits after the intro-
duction of CB, even in the presence of transaction costs. Nevertheless, by comparing
with the performance before the introduction of CB, we find that the profitability
decreases significantly, which enables us to identify the efficiency gain brought about
by CB.
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2.2 Market Efficiency and Trading Strategy

Since 1992, the electricity sector in the United States began the process of dereg-
ulation in the pursuit of competitiveness and efficiency. The Independent System
Operator (ISO) was formed to administer regional wholesale electricity markets, and
ensure reliability for grid operations. Several regional wholesale electricity markets
were established under the management of the ISOs: ISO New England (ISO-NE),
New York ISO (NYISO), Pennsylvania-New Jersey-Maryland Interconnection (PJM),
Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and Califor-
nia Independent System Operator (CAISO). To provide hedging instruments against
volatile wholesale spot prices, forward contracts and other financial derivatives have
been introduced into these deregulated electricity markets. Financial incentives at-
tract virtual traders to play their critical role in price discovery and market efficiency
through exploiting arbitrage opportunities. Convergence Bidding (CB) is a financial
mechanism that allows market participants, including electricity providers, retailers
and virtual traders, to arbitrage price discrepancies between the forward and spot
electricity markets. After the introduction of CB in the other five regional wholesale
electricity markets, the CAISO has implemented CB on February 1, 2011 under Fed-
eral Energy Regulatory Commission’s (FERC) September 21, 2006 Market Redesign
and Technology Upgrade (MRTU) Order. The central question of this study is to
address whether the CAISO’s forward and spot electricity markets are efficient, and
if not, to what extent CB improves market efficiency.

Recently, Jha and Wolak (2013) have employed hypothesis testing to assess the
impact of CB on the CAISO electric power market efficiency. Specifically, they cal-
culate the implied no-arbitrage trading costs for which risk neutral traders will reject
the hypothesis that a profitable arbitrage opportunity between the day-ahead (DA)
and real-time (RT) market prices (after incurring such trading costs) does exist. They
estimate the implied no-arbitrage trading costs, derived from several heuristic trading
strategies, before and after the introduction of CB in the CAISO electric power mar-
kets. Their estimates show that the implied no-arbitrage trading costs have declined
after the introduction of CB which indicates an improvement in market efficiency
through price convergence.

We examine the theoretical and empirical tools intended for other financial mar-
kets to help us understand the efficacy of CB in the forward and spot electricity
markets. The efficient market hypothesis first formalized by Samuelson (1965) and
Fama (1970), asserts that at any given time asset prices should always reflect all avail-
able information, and change quickly to incorporate new information. Jensen (1978)
defines market efficiency in terms of trading profitability – “a market is efficient with
respect to [an] information set, if it is impossible to make economic profits by trading
on the basis of [this] information set.” In particular, if anomalous returns are not
high enough for a sophisticated trader to generate consistent profits after allowing
for transactions costs, they are not economically significant. The definition of market
efficiency by Jensen (1978) directly converts the test of market efficiency into the
assessment of return behavior. Following this methodology, we test the efficiency of
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the forward and spot electricity markets by developing robust forecasting models and
exploring profitable trading strategies. The trading strategy implemented is back-
tested using market data in the CAISO electric power markets. Market efficiency is
then evaluated in the context of trading performance.

This chapter is organized as follows. Section 2.3 introduces the CAISO’s two-
settlement electricity markets and the current market design for CB. Section 2.4
presents the formulation of the virtual trader’s optimization problem. Section 2.5
presents the regime switching model to capture the time-varying forward premium
in electricity markets. Section 2.6 describes the data used in the study. Section
2.7 examines market efficiency and presents some empirical evidence. Section 2.8
discusses the implication of market efficiency. Section 2.9 summarizes the results.

2.3 CAISO Electric Power Markets

Pricing Mechanism

Locational marginal prices (LMPs) are the prices used for the settlement of power
purchases and sales in wholesale electricity markets. LMPs are determined by the ISO
to maximize social welfare with respect to the physical constraints of the transmission
system, and expose producers and consumers to the marginal costs of electricity
delivery at different locations. Unlike traditional commodity markets, the wholesale
electricity market cannot be cleared with a single clearing-price auction, where the
aggregate supply and demand curves are formed and the single clearing price is set
to balance the supply and demand. The physical laws governing power flow and
the capacity of the transmission lines prevent electricity from flowing freely between
producers and customers on the electric power network. When the transmission lines
are congested and the import of electricity from cheap producers are constrained, the
ISO is forced to use some local but expensive producers for power generation in order
to satisfy the demand. As a result, LMPs are high in the downstream areas of the
congested transmission lines, and low in the upstream areas. The differences between
LMPs in the downstream areas and the upstream areas are congestion rents that
reflect the marginal values of the scarce transmission resources. LMPs are calculated
for a number of locations on the electric power network. These locations are called
nodes, and each node represents the geographic region where physical resources are
aggregated.

Two-Settlement Electricity Markets

The two-settlement electricity markets consist of two interrelated markets: DA
market, and RT market. The DA market is a forward market, where energy can
be purchased at forward prices, also called day-ahead LMPs (DA LMPs). The RT
market is a spot market, where energy can be purchased at spot prices, also called
real-time LMPs (RT LMPs). DA LMPs are generally considered more stable than
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RT LMPs. In the RT market, price spikes are often triggered by unplanned outages
of generation plants and transmission facilities, and unpredictable weather, while the
DA market is less affected due to a longer planning horizon.

The DA market includes three sequential processes: market power mitigation
and reliability requirement determination (MPM-RRD), integrated forward market
(IFM), and residual unit commitment (RUC). The MPM-RRD starts the day before
delivery. Market participants are allowed to submit supply and demand bids for both
physical and virtual trades until the start of the MPM-RRD. In the MPM-RRD, the
ISO mitigates bids from physical resources that exercise locational market power, and
ensures the availability of physical resources whose outputs are required to maintain
local reliability. The results of the MPM-RRD are a pool of bids that is ready for the
IFM. In the IFM, the ISO economically clears the supply bids against the demand
bids with the transmission constraints enforced, determines DA schedules and DA
LMPs, and procures ancillary services. When the CAISO forecast of demand exceeds
the total physical supply cleared in the IFM, the additional capacity is procured by
the ISO in the RUC to satisfy reliability requirements. Note that the additional
resources procured in the RUC are not directly used for production, and hence do
not receive DA LMPs. However, there are still costs to keep these resources staying
online, namely start-up costs and minimum load costs, as discussed later.

In the RT market, the ISO runs the economic dispatch process every 5 minutes
to rebalance the residual demand, which is the deviation between the instantaneous
demand and the scheduled demand in the DA market. RT LMPs are determined to
settle the residual demand and the supply used to balance the residual demand.

While DA and RT LMPs reflect the cost of energy production, generation plants
also incur start-up and minimum load costs which they submit as part of their bids.
Start-up costs are the costs that are incurred when generation plants are turned on,
and minimum load costs are the costs that maintain generation plants to operate at
the minimum load level. The CAISO guarantees that all dispatched resources who
submit economic bids will cover their costs in the DA and RT markets. Hence, if
a resource does not cover its total cost including start-up and minimum load cost
through its energy revenue at DA and RT LMPs, its shortfall is covered by an uplift
payment which is allocated to market participants based on a two-tier cost allocation
scheme that considers both causation and socialization. The tier 1 uplift costs account
for cost causation, and the tier 2 uplift costs account for cost socialization.

CB in Two-Settlement Electricity Markets

CB allows market participants to arbitrage between the DA and RT markets
through a financial mechanism, exempting them from physically consuming or pro-
ducing energy. A virtual demand bid is to make financial purchases of energy in the
DA market, with the explicit requirement to sell back that energy in the RT market
at the same location. Conversely, a virtual supply bid is to make financial sales of
energy in the DA market, with the explicit requirement to buy back that energy in
the RT market at the same location. On the physical side, the positions taken in



CHAPTER 2. EFFICIENCY IMPACT OF CONVERGENCE BIDDING ON THE
CALIFORNIA ELECTRICITY MARKET 11

the DA market are offset by the opposite positions in the RT market, which leaves
market participants with no physical obligation. In anticipation of DA LMPs being
less than RT LMPs, market participants can make profits by using virtual demand
bids to effectively buy energy in the DA market and sell it back in the RT market.
These virtual demand bids result in the additional demand in the DA market that
increases DA LMPs, and the additional supply in the RT market that decreases RT
LMPs. This yields the desired outcome of CB – price convergence.

Price convergence is regarded as a benefit to the DA and RT markets. It reduces
the incentives for market participants to defer their physical resources to the RT
market in expectation of favorable RT LMPs. The improved stability of the DA
market is beneficial from reliability perspectives. To ensure reliability of the power
grid, the ISO is required to procure sufficient capacity in the RUC, when the total
physical supply cleared in the IFM is not enough to meet the CAISO forecast of
demand. With physical resources withheld by market participants, the ISO tends to
over-procure capacity in the RUC. This raises the RUC uplift costs, and increases
the risk of decommiting scheduled resources in the RT market when deferred physical
resources show up.

The benefit of CB also comes from the fact that it relieves market participants from
using physical resources to arbitrage price differences between the DA and RT mar-
kets, also called implicit virtual bidding in some literature. Implicit virtual bidding
is the bidding strategy where market participants intentionally defer their physical
resources to the RT market to take advantage of favorable RT LMPs, by bidding at
prices that are unlikely to be cleared in the DA market rather than their economic
costs and benefits. Although implicit virtual bidding can achieve price convergence in
the absence of CB, it can also lead to disastrous effects that jeopardize the efficiency
of the DA and RT markets. Without the revelation of the true economic costs and
benefits of physical resources, it is difficult for the ISO to allocate resources efficiently
and optimally. In addition, the prices at which market participants bid their physical
resources largely depend on their own anticipation of DA and RT LMPs, and this
introduces uncertainty into the DA market. In some cases, the ISO can either over-
schedule physical supply in the IFM that has to be sold back in the RT market, or
under-schedule physical supply in the IFM that relies on the procurement in the RUC
to balance. These variations decrease the stability of the DA market, and significantly
undermine reliability of the power grid.

CB can be conducted at both nodes and trading hubs. In comparison to nodes,
trading hubs provide more liquidity to trade large volumes of virtual bids. There are
three trading hubs in the CAISO electric power markets, that corresponds to three
congestion management zones: NP15, SP15 and ZP26. DA and RT LMPs at the
trading hub represent the weighted average of prices at generation nodes within the
corresponding congestion management zone. The weights are determined annually
based on the seasonal generation in the previous year, and are differentiated by peak
and off-peak hours. The virtual bids submitted at the trading hub are distributed to
generation nodes in proportion to their weights, and are bound together so that they
are cleared as a whole in the DA market.
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The credit policy for CB requires that the current exposure of virtual bids submit-
ted by a market participant may not exceed the collateral established with the ISO.
The current exposure of virtual bids is calculated by the sum of the product of the
quantity and the corresponding reference price of each virtual bid. For one node, the
reference price is the 95th percentile value of the historical price differences between
DA and RT LMPs. After the settlement of virtual bids, the collateral is adjusted
based on the realized profits and losses of virtual bids.

There is no transaction fee imposed on submitted virtual bids, but cleared virtual
bids are required to pay uplift costs. The costs allocated to cleared virtual bids
include the IFM tier 1 uplift costs, and the RUC tier 1 uplift costs. In particular,
cleared virtual demand bids are obligated to pay a proportion of the IFM tier 1 uplift
costs, as virtual demand bids tend to increase physical supply procured in the IFM.
Cleared virtual supply bids are subject to a proportion of the RUC tier 1 uplift costs,
as the ISO tends to under-schedule physical supply in the IFM due to virtual supply
bids and increase additional capacity procured in the RUC. The costs allocated to 1
MWh of cleared virtual position are estimated to be between $0.065 and $0.085 by
the CAISO.

2.4 Portfolio Optimization

Formulation

In the DA and RT markets, the ISO determines DA LMPs PDA
t ∈ R24 and RT

LMPs PRT
t ∈ R24 for one node on day t, for t = 1, . . . , T . Both PDA

t and PRT
t contain

24 hourly market-clearing prices for 1 MWh of electricity. DA-RT spreads can be
expressed as Rt = PDA

t − PRT
t . The virtual trader’s objective is to maximize the

expected payoff of his virtual bids (2.1) with respect to a budget constraint (2.2), by
entering virtual positions xt ∈ R24 in the DA market and closing those positions in
the RT market,

(P0) maxxt E
[
RT
t xt
]
− τ‖xt‖1 (2.1)

s.t. C‖xt‖1 ≤ W0 (2.2)

where τ is the costs allocated to 1 MWh of virtual position, C is the reference price
for 1 MWh of virtual position, and W0 is the initial collateral. In this formulation, we
implicitly assume that virtual traders behave as price-takers, and that contract can
be fractional. x

(j)
t ≥ 0 denotes a virtual supply bid, and we can equivalently view it

as taking a long position in the corresponding DA-RT spread, while x
(j)
t < 0 denotes

a virtual demand bid, and we can equivalently view it as taking a short position in
the corresponding DA-RT spread.1 In the budget constraint (2.2), both supply and
demand bids must provide collateral separately, as they are not allowed to offset each

1x
(j)
t is the j-th entry of xt.
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other under the current credit policy for CB. This formulation can be easily extended
to multiple-node networks.

Without loss of generality, we assume W0 = 1. The collateral used to establish
virtual positions in DA-RT spreads is yt = Cxt and the costs associated with 1 dollar
of collateral are τ c = 1

C
τ . By viewing DA-RT spreads as payoffs from a basket of

correlated assets, the returns on DA-RT spreads are then defined as Rc
t = 1

C
Rt =

1
C

(
PDA
t − PRT

t

)
. With these substitutions, (P0) is equivalent to (P1),

(P1) maxyt E[Rc
t
Tyt]− τ c‖yt‖1 (2.3)

s.t. ‖yt‖1 ≤ 1, (2.4)

which is a portfolio optimization problem in the presence of linear transaction costs.
The budget constraint (2.4) requires that the absolute value of weights must sum up
to one. This is different from the standard portfolio optimization problem where long
and short positions can be netted out. We can further formulate a chance constrained
portfolio selection problem, where the chance constraint takes two different forms as
a value-at-risk (VaR) constraint and a conditional value-at-risk (CVaR) constraint,
to find the optimal trading strategy.

Portfolio Optimization under a VaR Constraint

VaR is a modern way of measuring the risk of a portfolio, based on computing
probabilities of large losses of the portfolio. Mathematically, VaR(z; η) = inf{γ|P (z ≤
γ) ≥ η} is the level η-quantile of the random variable z denoting the losses. To put
it another way, the confidence level η is the probability that losses do not exceed or
equal to VaR(z; η). (P1) can be reformulated as a portfolio optimization problem
(VAR0(γ, η)) under a VaR constraint (2.6),

(VAR0(γ, η)) maxyt E[Rc
t
Tyt]− τ c‖yt‖1 (2.5)

s.t. VaR(−Rc
t
Tyt; η) ≤ γ (2.6)

‖yt‖1 ≤ 1 (2.7)

where γ is the predetermined upper bound for the VaR of the portfolio.
Assuming Rc

t follows a multivariate Gaussian distribution N(µt,Σt), −Rc
t
Tyt − γ

follows a multivariate Gaussian distribution N(−µTt yt − γ, yTt Σtyt). Thus, the tail
probability is P (−Rc

t
Tyt ≤ γ) = Φ( 1√

yTt Σtyt
(µTt yt + γ)), where Φ is the cumulative

distribution function of the standard multivariate Gaussian distribution. By sub-
stituting the tail probability into (2.6), it yields Φ( 1√

yTt Σtyt
(µTt yt + γ)) ≥ η, and

(VAR0(γ, η)) can be rewritten as (VAR1(γ, η)),

(VAR1(γ, η)) maxyt µTt yt − τ c‖yt‖1 (2.8)

s.t. µTt yt + γ ≥ Φ−1(η)‖Σ
1
2
t yt‖2 (2.9)

‖yt‖1 ≤ 1. (2.10)
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As shown in Table 2.3 and Table 2.4, DA-RT spreads are negatively skewed in most
of the hours, which cannot be modeled properly by a normal distribution. Without
assuming normality, VaR cannot be written in a closed form, and there is no guaran-
tee that VaR is convex. Nemirovski and Shapiro (2006) propose a computationally
tractable approximation of the non-convex VaR constraint. Therefore, we can replace
the VaR constraint (2.6) with the Chebyshev bound (2.134) yielding (VAR2(γ, η)),2

(VAR2(γ, η)) maxyt µTt yt − τ c‖yt‖1 (2.11)

s.t. −E[(Rc
t
Tyt + γ)] + (ηE[(Rc

t
Tyt + γ)2])

1
2 ≤ 0 (2.12)

‖y‖1 ≤ 1. (2.13)

Note that the Chebyshev bound (2.134) is a conservative approximation of the
VaR constraint (2.6), which implies that the confidence level realized is higher than
the confidence level intended η.

Portfolio Optimization under a CVaR Constraint

Since VaR is incapable of addressing the distribution of losses beyond VaR(z; η),
CVaR is introduced by Rockafellar and Uryasev (2000) as an alternative risk assess-
ment technique to account for losses in the tail of the distribution. For continuous
distributions, CVaR is defined as the conditional tail expectation exceeding VaR(z; η),
CVaR(z, η) = E[z|z ≥ VaR(z, η)]. In this case, the optimization problem can be
stated as follows,

(CVAR0(γ, η)) maxyt E[Rc
t
Tyt]− τ c‖yt‖1 (2.14)

s.t. CVaR(−Rc
t
Tyt; η) ≤ γ (2.15)

‖yt‖1 ≤ 1. (2.16)

VaR and CVaR can be characterized by function gη(z, ρ) = ρ+ 1
1−ηE[(z − ρ)+] in

the following forms,

CVaR(z, η) = min
ρ
gη(z, ρ), (2.17)

VaR(z, η) = arg min
ρ
gη(z, ρ). (2.18)

Thus, by substituting the CVaR constraint (2.15) with (2.17), (CVAR0(γ, η))
becomes

(CVAR1(γ, η)) maxyt E[Rc
t
Tyt]− τ c‖yt‖1 (2.19)

s.t. gη(−Rc
t
Tyt, ρ) ≤ γ (2.20)

‖yt‖1 ≤ 1. (2.21)

2See Appendix B for details.
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2.5 Regime Switching Model

Spot Price and Forward Price

In deregulated electricity markets, the prominent features of electricity spot prices
include, mean-reversion, seasonality, and spikes. The causes of these features can be
traced to the inherent characteristics of electricity. As the supply function of power
generation becomes much steeper above a certain capacity level, the marginal produc-
tion cost increases substantially with the aggregate demand. The consumer demand
is highly inelastic and varies widely from season to season, resulting in seasonal varia-
tions in the levels of electricity spot prices. The difficulty of storing electricity further
limits the feasibility of holding inventories to arbitrage and smooth price discrepancies
across time periods. In some extreme cases, price spikes occur when the power system
is not flexible enough in response to forced outages of power plants and unexpected
contingencies in the transmission networks within a short time frame. Price spikes
are frequently seen during the summer, when the demand is high.

Regime switching models seem to be natural candidates to study the dramatic
alternations in the behavior of electricity spot prices. Deng (2000) proposes several
mean-reversion jump-diffusion models with parameters varying in different regimes
to capture the systematic alternations of electricity spot prices among different equi-
librium states of supply and demand. Mount, Ning, and Cai (2006) investigate the
predictability of price spikes in electricity markets using daily on-peak average spot
prices and loads. They adopts a probabilistic model with two regimes, where the
state variables are the load and the reserve margin. However, the prediction accuracy
decreases substantially when forecasts of the state variables are used.

In electricity forward markets, there is a wide range of tradable instruments with
maturities varying from a day, a week, a month, to a year. Here we mainly present
studies that focus on modeling forward prices that are settled one day ahead of de-
livery by regime switching. De Jong (2006) provides statistical evidence that the
regime switching model outperforms the generalized autoregressive conditional het-
eroskedasticity (GARCH) model and the stochastic Poisson jump model. The con-
sistent test results from various day-ahead spot markets in Europe and the United
States make a convincing case for the use of regime switching models to capture price
dynamics in electricity markets.3 Haldrup and Nielsen (2006) analyze market data
in Nord Pool with a regime switching model that features long memory. They find
that the regime switching model is superior to the non-switching model in terms of
out-of-sample forecasting performance. Some other successful applications of regime
switching models to electricity forward prices are presented in Huisman and Mahieu
(2003), Rafa l Weron (2009), and Janczura and Rafal Weron (2010).

3The day-ahead spot market or the spot market in Europe is similar to the DA market in the
United States, where the delivery of electricity for each of the 24 hours is settled one day in advance.
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Time-Varying Forward Premium

The forward premium is defined as the difference between the forward prices and
the expected spot prices. In electricity markets, the 24 hourly forward premia FPt
on day t take the form,

FPt = Et−1[PDA
t − PRT

t ] = Et−1[Rt]. (2.22)

There exists extensive literature on the time-varying property of the forward pre-
mium – a situation where the forward premium varies through time to reflect eco-
nomic risk. The time-varying forward premium is observed and well documented in
exchange rates and traditional commodity markets. In one of the seminal papers,
Fama (1984) first attributes the behavior of forward exchange rates to a time-varying
forward premium, and finds that the variation in the forward premium accounts for a
substantial proportion of the variation in forward exchange rates. In addition to Fama
(1984), other papers focusing on explaining the determination of the time-varying for-
ward premium include Fama and French (1987), Bekaert and Hodrick (1993), Backus,
Foresi, and Telmer (2001), and Baillie and Kilic (2006).

Recently, there is a growing literature investigating the time-varying forward pre-
mium in electricity markets. These studies present empirical evidence that supports
the risk-factor-related time variation in the electricity forward premium. Bessem-
binder and Lemmon (2002) develop a general equilibrium model for forward prices,
where the difference between the equilibrium forward price and the expected whole-
sale price can be explained by risk-related factors that reflect the net hedging pressure
of producers and consumers. The risk-related factors are approximated in terms of
the central moments of the distribution of wholesale spot prices. To be specific, the
electricity forward premium is negatively correlated to spot price volatility, but pos-
itively correlated to spot price skewness. The model is empirically verified by using
data from the PJM power market and the California Power Exchange (CALPX) at
a monthly level.4 The one-month forward price is estimated by the average of one-
month forward prices prior to the delivery month. They also point out that in a
frictionless market with risk-neutral outside speculators, the forward prices would
converge to the expected spot prices. Based on a data set of hourly spot and forward
prices in the PJM power market, Longstaff and A. W. Wang (2004) find evidence that
supports the structural model presented in Bessembinder and Lemmon (2002) at an
hourly level. They also conclude that the forward premium is fundamentally related
to the risk premium required by market participants to compensate for uncertainty.

Shawky, Marathe, and Barrett (2003) conduct studies on the spot and future price
relationship, based on the contracts traded on the New York Mercantile Exchange
and delivered at the California-Oregon Border. They find the forward premium of
electricity is larger than those of other commodities. An exponential GARCH spec-
ification is employed to model the time-varying volatility clustering in the forward

4 The CalPX was founded in 1998. It declared bankruptcy and permanently ceased market
operations during 2000-2001 California energy crisis. During its existence, the CALPX administered
market transactions, while the CAISO ensured the reliable management of transmission network.
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premium time series. Cartea and Villaplana (2008) propose a model to forecast whole-
sale electricity prices in different states identified by two observable state variables –
demand and capacity. By testing their model in the PJM, England and Wales, and
Nord Pool markets, they present empirical results that the forward premium exhibits
a seasonal pattern. The forward premium is high during the months of high demand
volatility. Benth, Cartea, and Kiesel (2008) provide a framework to explain the for-
ward premium with two market factors – the levels of risk aversion of buyers and
sellers, and the market power of producers relative to that of consumers.

As mentioned, the existing literature extensively studies the time-varying forward
premium by statistical models with observable state variables, namely the volatility
and skewness of spot prices, the level of risk aversion, market structure, and demand
and supply capacity. The choice of state variables is largely predetermined and varies
across different electricity markets, which limits the possibility to arrive at a gen-
eralization. From a different perspective, the time-varying forward premium can be
subject to regime shifts, where the behavior of the forward premium exhibits dramatic
changes. Lucia and Schwartz (2002) propose a factor model with unobservable state
variables, for the purposes of derivative pricing. These unobservable state variables
can be further interpreted as latent market regimes. However, their model is primar-
ily aimed to forecast the forward curve – forward prices with different maturities,
rather than the forward premium. To the authors’ best knowledge, there is no paper
on modeling the electricity forward premium with unobservable states. Our study
therefore is intended to fill this gap by introducing a hidden Markov model (HMM)
to model the regime shifts in the electricity forward premium.

Model Description

A HMM can be presented as a dynamic bayesian network model in which the
underlying state transition follows a Markov process. Each state has a probability
distribution over the possible observations. The state is assumed to be invisible to
the observer, but the observation is visible. Therefore some information about the
sequence of states can be inferred from the sequence of observations. In the context
of CB, {St, Rt}Tt=1 is a discrete-time stochastic process, where the sequence of states
{St}Tt=1 is an unobserved Markov chain.5 Given {St}Tt=1, the observed sequence of
DA-RT spreads {Rt}Tt=1 is a sequence of conditionally independent random variables
with the conditional distribution depending on {St}Tt=1 only through the current state
of the chain St. In this study, we assume the conditional probability density function
of Rt, given the occurrence of St, follows a Gaussian mixture distribution. This
HMM variant is also called Gaussian mixture hidden Markov model (GMHMM). The
GMHMM is illustrated in Figure 2.1.

We assume there exist M different states in the GMHMM and N different clusters
in the Gaussian mixture distribution. The equation for DA-RT spreads Rt given the

5We use upper case letters to denote random variables, and lower case letters to denote realiza-
tions of random variables.
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cluster zt, for zt = 1, . . . , N , can be expressed as,

Rt = µzt + Σ
1
2
ztεt, (2.23)

where µzt denotes the conditional mean given the cluster zt, Σzt denotes the condi-
tional covariance given the cluster zt, and εt denotes the noise. Both µzt and Σzt can
take different values depending on the realization of the cluster zt. The noise term
εt follows a standard multivariate Gaussian distribution εt ∼ N(0, I24). The cluster
zt follows a multinomial distribution, and occurs with probability P (zt|st) = cst,zt ,
conditioned on the state st, for st = 1, . . . ,M and zt = 1, . . . , N . The transition from
the present state st to the future state st+1 is governed by a transition probability
matrix, and the transition probability is P (st+1|st) = ast,st+1 , for st, st+1 = 1, . . . ,M .

The GMHMM offers a flexible framework where both the inferences of unobserv-
able states and the estimations of forward premium statistics can be obtained from
market data. We denote the historical DA and RT LMPs by pRTt and pDAt . Let
rt = pDAt − pRTt denote the historical DA-RT spreads. The forward-backward algo-
rithm and the expectation-maximization algorithm documented in Appendix A are
adopted to compute the posterior marginals of state variables and update maximum
likelihood estimators respectively, given a sequence of DA-RT spreads rt. Maximum
likelihood estimators are denoted as Θ = {πk, µk,h,Σk,h, ak,l, ck,h : k, l = 1, . . . ,M, h =
1, . . . , N}.

In-Sample and Out-of-Sample Test

We implement the in-sample and out-of-sample test to measure and evaluate the
performance of the trading strategy using historical data. In both tests, the two
chance constrained portfolio selection problems (VAR2(γ, η)) and (CVAR1(γ, η)) can
be approximated and solved with sampling for a given GMHMM. To illustrate the
sampling procedure, we calculate the expected value of a function in general form
f(Rt).

In the in-sample test, the whole sequence of DA-RT spreads, r1, . . . , rT , is used to
train the parameters of GMHMM Θ on day t. The expected function value of DA-RT
spreads f(Rt), conditioned on the whole sequence of DA-RT spreads, can be derived
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as,

E[f(Rt)|r1, . . . , rT ] =
M∑
st=1

E[f(Rt)|st, r1, . . . , rT ]P (st|r1, . . . , rT ) (2.24)

=
M∑
st=1

E[f(Rt)|st]P (st|r1, . . . , rT ) (2.25)

=
M∑
st=1

N∑
zt=1

E[f(Rt)|zt, st]P (zt|st)P (st|r1, . . . , rT ) (2.26)

=
M∑
st=1

N∑
zt=1

E[f(Rt)|zt]cst,ztP (st|r1, . . . , rT ), (2.27)

where E[f(Rt)|zt] can be simulated since Rt follows a multivariate Gaussian distri-
bution given the cluster zt, cst,zt is the maximum likelihood estimator of the cluster
probability obtained by the expectation-maximization algorithm, and P (st|r1, . . . , rT )
is the posterior state probability computed by the forward-backward algorithm.6

In the out-of-sample test, only the sequence of available DA-RT spreads up to day
t, r1, . . . , rt−2, is used to train the parameters of GMHMM Θ on day t. We exclude
rt−1, because virtual positions for day t must be taken in the morning of day t − 1,
when RT LMPs for the rest of the day are still unavailable for the calculation of rt−1.

The probability of being in the state st, conditioned on the sequence of available
DA-RT spreads up to day t, can be derived as,

P (st|r1, . . . , rt−2) =
M∑

st−2=1

P (st, st−2|r1, . . . , rt−2) (2.28)

=
M∑

st−2=1

P (st−2|r1, . . . , rt−2)P (st|st−2, r1, . . . , rt−2) (2.29)

=
M∑

st−2=1

P (st−2|r1, . . . , rt−2)P (st|st−2), (2.30)

where P (st|st−2) is the probability of going from the state st−2 to the state st in 2
time steps. The n-step transition probability satisfies the Chapman - Kolmogorov
equation, and thus (2.30) can be rewritten as,

P (st|r1, . . . , rt−2) =
M∑

st−2=1

P (st−2|r1, . . . , rt−2)
M∑

st−1=1

P (st|st−1)P (st−1|st−2). (2.31)

6P (st|r1, . . . , rT ) is denoted by λk(t) in Appendix A.
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The expected function value of DA-RT spreads f(Rt), conditioned on the sequence
of available DA-RT spreads up to day t, can be derived as,

E[f(Rt)|r1, . . . , rt−2] =
M∑
st=1

E[f(Rt)|st, r1, . . . , rt−2]P (st|r1, . . . , rt−2) (2.32)

=
M∑
st=1

E[f(Rt)|st]P (st|r1, . . . , rt−2) (2.33)

=
M∑
st=1

N∑
zt=1

E[f(Rt)|zt, st]P (zt|st)P (st|r1, . . . , rt−2)(2.34)

=
M∑
st=1

N∑
zt=1

E[f(Rt)|zt]cst,ztP (st|r1, . . . , rt−2), (2.35)

where E[f(Rt)|zt], cst,zt and P (st|r1, . . . , rt−2) can be computed in the same way as
mentioned in the in-sample test.

One distinction between the two tests lies in the fact that virtual positions con-
structed in the out-of-sample test only relies on the distribution of past DA-RT
spreads, while the distribution of both past and future DA-RT spreads are used to
determine virtual positions in the in-sample test. By using the predicted distribution
of DA-RT spreads, the out-of-sample test produces a robust and credible assessment
of the trading strategy. The in-sample test contributes to the evaluation of the trad-
ing strategy by allowing us to obtain the most efficient portfolio of virtual positions
and achieve the best attainable performance, under the true distribution of DA-RT
spreads.

2.6 Data

The data for this study consist of the historical DA and RT LMPs at the CAISO
NP15 EZ Gen Hub before and after the implementation of CB. The data in the
pre-CB period include the historical DA and RT LMPs from January 1st, 2010 to
December 31st, 2010, and the data in the post-CB period include the historical DA
and RT LMPs from January 1st, 2012 to December 31st, 2012. For each day, the
data contain DA and RT LMPs for each of the 24 hours during that day. The CAISO
NP15 EZ Gen Hub is one of the trading hubs in the CAISO electric power markets,
and covers the current CAISO congestion management zone NP15.7

7 The majority of Pacific Gas and Electric Company’s load is located in NP15.
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2.7 Numerical Results

Summary Statistics for the DA and RT Markets

Table 2.2 reports summary statistics for post-CB DA and RT LMPs in dollars per
megawatt hour. As can be seen, the means of post-CB DA and RT LMPs are low for
the early morning hours, and high for the peak late afternoon hours. Post-CB DA
and RT LMPs exhibit large variation during peak hours. For each hour, the volatility
of post-CB RT LMPs is higher than the volatility of post-CB DA LMPs, due to large
price spikes in the RT market.

The same statistics for pre-CB DA and RT LMPs are presented in Table 2.1 in
dollars per megawatt hour. Similar features are observed as Table 2.2.

Table 2.4 presents summary statistics for post-CB DA-RT spreads in dollars per
megawatt hour. Post-CB DA-RT spreads can also be viewed as realized or ex post
forward premia. The mean of post-CB DA-RT spreads varies throughout the day.
Large negative spreads are observed during peak hours. The volatility of post-CB
DA-RT spreads is higher during peak hours than during off-peak hours. Post-CB
DA-RT spreads are negatively skewed in most of the hours, because price spikes
occur frequently in the RT market during the summer.

The same statistics for pre-CB DA-RT spreads are presented in Table 2.3 in dollars
per megawatt hour. The overall mean of post-CB DA-RT spreads is closer to zero than
the overall mean of pre-CB DA-RT spreads, which indicates better price convergence
after the introduction of CB.

Table 2.7 and Table 2.8 show the seasonal means and standard deviations of
post-CB DA-RT spreads in dollars per megawatt hour. Both exhibit strong seasonal
patterns, especially for peak hours. In particular, the means of post-CB DA-RT
spreads for 5 p.m. range from a low of -$23.82 during the period from May to July
to a high of $3.55 during the period from November to January. The large negative
mean values of post-CB DA-RT spreads are observed during the period from May
to July, as a result of the price spikes that occur regularly throughout the summer
in the RT market. The lowest overall mean of post-CB DA-RT spreads is observed
during the period from May to July, and the highest overall standard deviation of
post-CB DA-RT spreads is also observed during the same period. This seasonal
variation is consistent with the Bessembinder and Lemmon (2002) model in that
downward hedging pressure is imposed on the forward premium by the variance. The
strong seasonal patterns raise the need to incorporate a time-varying property in the
forward premium model, and support the use of the GMHMM characterized by the
time-varying conditional mean and variance. It is also worth noting that off-peak
hours do not display significant seasonal effects as peak hours do. The means and
standard deviations of post-CB DA-RT spreads in off-peak hours show relatively small
variation across different periods, compared with those in peak hours.

The same statistics for pre-CB DA-RT spreads are presented in Table 2.5 and
Table 2.6 in dollars per megawatt hour. Similar features are observed as Table 2.7
and Table 2.8.
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Summary Statistics for the GMHMM

Several heuristic procedures for model selection are applied to determine the num-
ber of states and the number of clusters in the GMHMM. We choose the number of
states M = 2 to avoid the overfitting problem commonly encountered in learning
a large state-space HMM. A simple model also allows us to provide clear economic
interpretations for different states, which are discussed later. One common method
of choosing the appropriate number of clusters is to graph the within cluster sum of
squared error against the number of clusters in Figure 2.3. The appropriate number
of clusters can be defined as the number at which the reduction in the within cluster
sum of squared error slows significantly. As demonstrated in Figure 2.3, to increase
the number of clusters reduces the the within cluster sum of squared error, but at
3 clusters the marginal gain drops suggesting that additional clusters do not have a
substantial impact on the within cluster sum of squared error. It produces an “el-
bow” in the graph at 3 clusters. Hence, we choose the number of clusters N = 3,
according to this “elbow criterion”. After model selection, statistical inference and es-
timation can then be conducted by applying the forward-backward algorithm and the
expectation-maximization algorithm on historical data. In particular, note that max-
imum likelihood estimators presented in this section are estimated using the whole
sequence of DA-RT spreads to obtain a complete picture of the property of the for-
ward premium across seasons. In Figure 2.2, similar features are observed as Figure
2.3.

The transition probabilities of the post-CB GMHMM are shown in Table 2.13.
The transition probability from one state to itself is over 90%, which implies that
the alternations between states occur at a relatively low frequency in the underlying
state transition process. It captures the fact that the forward premium time series
exhibits seasonal patterns and evolves slowly from season to season. Table 2.15 shows
summary statistics for DA-RT spreads of the clusters of the post-CB GMHMM in
dollars per megawatt hour.8 Each cluster is represented by a multivariate Gaussian
distribution characterized by its mean vector and covariance matrix. For most of the
hours, the means are positive in cluster 1, and negative in cluster 2 and cluster 3. The
standard deviations in cluster 2 are uniformly larger than those in cluster 1, indicating
a higher level of volatility. However, cluster 3 behaves very differently from the other
two clusters, and can be interpreted as a cluster where DA-RT spreads are highly
volatile, especially during several specific peak hours, including 7 a.m. and 2 p.m. to
5 p.m. During these peak hours, the means in cluster 3 are lower than -$400, while
the lowest mean value in cluster 1 and cluster 2 is -$37.59 during the corresponding
hours. The standard deviations in cluster 3 are also significantly larger than those in
cluster 1 and cluster 2 for these hours. Table 2.14 reports the cluster probabilities of
the post-CB GMHMM. As shown in Table 2.14, cluster 3 is not historically observed
in state 1 and occurs with very low probability in state 2. This is consistent with
the fact that DA-RT spreads in cluster 3 exhibit occasional extreme price movements

8A full covariance matrix is estimated in this study, but only diagonal elements are presented in
Table 2.15 to convey insights.
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of magnitudes that can only be observed during the summer, but rarely seen for the
rest of the year.

Table 2.16 shows summary statistics for DA-RT Spreads of the states of the post-
CB GMHMM in dollars per megawatt hour. The means in state 1 are higher than
those in state 2, since more observations in state 1 are drawn from cluster 1 as shown
in Table 2.14 and cluster 1 exhibits higher means. Similarly, the standard deviations
in state 1 are smaller than those in state 2. Therefore, we can interpret state 1 as a
low volatility state, and state 2 as a high volatility state. Similar implications can be
seen from Figure 2.15. In Figure 2.15, the posterior probability of being in state 1 is
low during the summer, and high during the rest of the year. After the inference, the
posterior probability of being in state 1 is adjusted based on the empirical evidence
that DA-RT spreads are most volatile during the summer to correctly reflect the
updated belief that the occurrence of state 1 which exhibits low volatility is rather
unlikely during this period. Finally, we note that the negative skewness shown in
Table 2.16 is consistent with summary statistics in Table 2.4.

Figure 2.18 and Figure 2.19 plot the marginal distribution of the post-CB DA-RT
spreads for 3 a.m. and 3 p.m., representing peak hours and off-peak hours respec-
tively. During off-peak hours, the marginal distributions of pre-CB DA-RT spreads
are almost identical in the two states. During peak hours, however, the marginal dis-
tribution of pre-CB DA-RT spreads in state 1 has more density concentrated around
the mean and less in both tails, compared to that in state 2. The difference of the
marginal distributions between the two states is supported by the findings we report
in Table 2.7 and Table 2.8 that seasonal patterns are stronger for off-peak hours.

All of these results demonstrate that many stylized facts of the time-varying for-
ward premium can be well captured and accommodated in the GMHMM framework.

The same statistics for the pre-CB GMHMM are presented in Table 2.9 - Table
2.12 in dollars per megawatt hour. Similar features are observed as Table 2.13 -
Table 2.16. In Figure 2.9, Figure 2.16, and Figure 2.17, similar features are observed
as Figure 2.15, Figure 2.18, and Figure 2.19.

Test for the Bessembinder and Lemmon (2002) Model

Bessembinder and Lemmon (2002) model the forward market as a closed system,
where the only participants are producers and consumers. In their general equilibrium
model, the forward premium reflects the net hedging pressure of producers and con-
sumers, and the sign of the forward premium is indeterminate. The forward premium
can be expressed as,

PDA
t − E[PRT

t ] = θ1V ar[P
RT
t ]− θ2Skew[PRT

t ], (2.36)

where θ1 ≤ 0, and θ2 ≤ 0, implying that the forward premium is negatively related
to the variance of RT LMPs, and positively related to the skewness of RT LMPs. To
express forward premia in terms of DA-RT Spreads Rt = PDA

t −PRT
t , we can rewrite

(2.36) as,

E[Rt] = θ1V ar[Rt] + θ2Skew[Rt]. (2.37)
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To further test the implications of Bessembinder and Lemmon (2002), we regress
the means for each of the 24 hours in the 2 states of the post-CB GMHMM on
the corresponding variance and skewness measures in Table 2.16. The regression
specification can be written in the form of (2.38),

StateMeani = θ0 + θ1StateV ari + θ2StateSkewi + εi. (2.38)

As shown in Table 2.18, θ1 is negative with a t-statistic of −13.4369, and θ2 is
negative with a t-statistic of −4.2229. Both of θ1 and θ2 are significant at 1% level
and the R-squared value for the regression is 0.8246, which strongly supports the
empirical implications of the Bessembinder and Lemmon (2002) model.

These test results provide evidence against the efficiency of the current CAISO DA
and RT markets. The theoretical framework of Bessembinder and Lemmon (2002)
essentially describes the characteristics of the electricity forward premium in an in-
efficient market, where the risks are borne within the industry by a few producers
and consumers due to a lack of risk-sharing mechanisms. As financial mechanisms
are implemented to allow risk neutral outside traders to enter the market and share
the risks, the risk premium should decline and these characteristics are expected to
disappear for the market to be fully efficient. Nevertheless, in the post-CB period,
we demonstrate that the electricity forward premium still displays characteristics
similar to what Bessembinder and Lemmon (2002) describe for an inefficient market
in the absence of risk neutral outside traders, which to some extent implies market
inefficiency.

The same statistics for the pre-CB GMHMM are presented in Table 2.17. Similar
features are observed as Table 2.18.

Pre-CB and Post-CB Performance

To test for market efficiency, we backtest the trading strategy on the last 120
days in the pre-CB and post-CB period respectively, and all the rest of the data are
used in training. We adopt several popular metrics for performance assessment. The
annualized expected return and the annualized standard deviation directly measure
the reward and risk of the trading strategy converted to an annual basis. The Sharpe
ratio, also known as the reward-to-variability ratio, is a risk-adjusted measure used to
evaluate the quality of the return. The ratio is calculated by using excess return and
standard deviation to determine reward per unit of risk.9 These standard measures
of risk, however, do not account for the risk exposure associated with skewness,
kurtosis, and serial correlation of the return distribution. In such cases, we include
the maximum drawdown, that measures the greatest loss from a historical peak in
the cumulative return, as an additional measure of the worst-case risk.

In the backtest, the predetermined upper bound γ for both the VaR and CVaR
constraints is set to 0.02. To investigate the robustness of the trading strategy, we
vary the choice of confidence levels η. As the Chebyshev bound (2.12) in (VAR2(γ, η))

9We assume the risk-free interest rate is 3% in the calculation of excess return.
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is a conservative approximation of the VaR constraint (2.6), we tend to use lower con-
fidence levels for the VaR constraint than for the CVaR constraint to ensure the risks
of the two portfolios obtained from (VAR2(γ, η)) and (CVAR1(γ, η)) comparable.
Therefore we vary η from 0.90, 0.85 to 0.80 for the VaR constraint, and from 0.99,
0.98 to 0.95 for the CVaR constraint. The costs τ are assumed to be $0.085 for 1
MWh of cleared virtual position and the reference price C for 1 MWh of cleared
virtual positionand is calculate by the 95th percentile value of the historical price
differences between DA and RT LMPs.10

Figure 2.10 - Figure 2.14 depict the evolution of post-CB dynamic posterior state
probability through time. On day t, the dynamic posterior state probability is in-
ferred from the sequence of available DA-RT spreads up to day t, r1, . . . , rt−2. These
probabilities are used to compute the prediction probabilities in the out-of-sample
test. Figure 2.4 - Figure 2.8 display the evolution of pre-CB dynamic posterior state
probability. Similar features are observed as Figure 2.10 - Figure 2.14.

Table 2.19 and Figure 2.20 - Figure 2.23 reports the trading performance under a
VaR constraint in the pre-CB and post-CB period. To begin with, we investigate the
behavior of the trading strategy under different confidence levels η. In Table 2.19,
both the annualized standard deviation and the maximum drawdown are negatively
related to the confidence level, as a higher confidence level imposes a tighter bound for
probability of tail events and hence lower risks are undertaken in the portfolio. The
annualized expected return is positively related to the annualized standard deviation.
This is what one might expect based on economic theory that high potential returns
are associated with high levels of uncertainty. In terms of risk-adjusted performance
measures, the low risk trading strategy exhibits a high Sharpe ratio in all cases except
for the out-of-sample performance in the pre-CB period, as the Sharpe ratio penalizes
the trading strategy that generates high but volatile returns.

We further compare the performance in the pre-CB and post-CB periods. There
is little disparity between the in-sample and out-of-sample tests in their relative per-
formance before and after the implementation of CB. In particular, to compare the
post-CB metrics against the pre-CB metrics, we see the annualized expected returns
and the Sharpe ratios in both of the tests drop dramatically. It is plausible because
in the post-CB period virtual traders who engage in arbitrage trades tend to use
the trading strategy, which proves to be profitable in the pre-CB period. As these
arbitrage trades have the effect of causing price convergence between the DA and RT
markets, the profitability is significantly eroded in the post-CB period, which serves
to be convincing evidence for the improvement of market efficiency brought about by
CB.

We now proceed to explore whether the current CAISO DA and RT markets are
efficient, and if not, the extent to which the implementation of CB enhances market
efficiency in the post-CB period. For this purpose, we primarily focus on the out-of-
sample test. Examining the out-of-sample performance metrics in Table 2.19 reveals

10 The upper bound of the estimated costs allocated to 1 MWh of cleared virtual position is used
to ensure the robustness of our results.
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that the trading strategy generates profits in the presence of transaction costs in the
post-CB period. The out-of-sample Sharpe ratios under different parameters range
from 2.13 to 2.35. For medium frequency strategies, the Sharpe ratio of the S&P
500 is commonly used as a benchmark, which F. Modigliani and L. Modigliani (1997)
estimate to be about 0.30 based on quarterly returns ten years ending the second
quarter of 1996.11 All the out-of-sample Sharpe ratios exceed this benchmark by
substantial margins in the post-CB period. In addition, the maximum drawdowns
are small, if not negligible, in comparison with the corresponding annualized expected
returns, which indicates that daily losses tend to be small and the occurrence of
consecutive losses is uncommon. Taken together, these results provide compelling
evidence that profitable trading opportunities still exist and consistent returns can
be generated by exploiting these trading opportunities. Hence, market efficiency is
not fully restored in the current CAISO DA and RT markets in the sense of Jensen
(1978).

Combining the evidence against the efficiency of the current CAISO DA and RT
markets with the evidence for the improvement of market efficiency brought about
by CB, we are inclined to conclude that the current CAISO DA and RT markets
lie somewhere between the two extremes, the inefficient markets as they were and
the fully efficient markets that we pursue.12 During this transition phase of CB,
trading experience and market knowledge are accumulated among market participants
within the industry, which serves as a necessary condition for the development of fully
efficient DA and RT markets.

Table 2.20 and Figure 2.24 - Figure 2.27 reports the trading performance under
a CVaR constraint in the pre-CB and post-CB period. Similar features are observed
as Table 2.19 and Figure 2.20 - Figure 2.23 .

2.8 Market Power, Risk Averse Speculation and

Implications

The efficient market hypothesis, which implicitly assumes that economic agents
are risk neutral and have no market power, is called the simple efficiency hypothesis in
Hansen and Hodrick (1980). In the forward market, the simple efficiency hypothesis
implies that forward prices are unbiased predictors of expected spot prices. These
risk neutral and competitive market conditions are also implicitly assumed in the
statement by Jensen (1978) that no trading strategy can consistently profit from an
efficient market.

However, if the market is not competitive, economic agents can exercise market
power by withholding their bidding quantities below the competitive levels to maxi-

11Generally, low, medium, and high trading frequencies are defined as position holding periods
of months, days, and hours, respectively.

12This is consistent with Jha and Wolak (2013) that after the implementation of CB the implied
trading costs decrease but the difference between the implied trading costs before and after the
implementation of CB is relatively small at the NP15 trading hub for all three hypothesis tests.
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mize their profits. Thus, as a result, price discrepancies are not fully arbitraged away
and the zero-profit competitive equilibrium as described by Jensen (1978) is no longer
attained. We argue this is an unlikely case in the current CAISO DA and RT markets.
There are currently over 70 market participants registered with the CAISO to partic-
ipate in CB, including electricity producers and consumers, their trading subsidiaries,
investment banks, and energy trading firms.13 The latter two are sophisticated vir-
tual traders, who do not own physical resources and engage in arbitrage activities for
pure financial incentives. They are generally large corporations, and have sufficient
access to capital to perform intended trading strategies. Therefore, in the presence
of low transaction costs and full nodal granularity, it is reasonable to assume a high
degree of competition among these well-informed and well-financed virtual traders
that reduces the possibility of market manipulation and prevents the possession of
excessive market power.

If, on the other hand, we extend the assumption to allow for risk averse economic
agents, forward prices can systematically deviate from expected spot prices, which
compromises the statement of Jensen (1978). Some intuitions are provided by Keynes
(1923). He explains that, in a commodity market where only hedgers and speculators
can take positions, the forward premium is determined by the net hedging demand.14

As consumers traditionally show no interest in participation possibly due to infor-
mational setup costs, hedgers in this forward market are typically producers who
are endowed with initial long positions in goods.15 When facing price uncertainty,
hedgers are net short to offset the exposures to their initial long positions, and there-
fore speculators have to be net long. Speculators are only willing to bear the risks
if expected returns to speculation are positive, that is, forward prices are downward
biased relative to expected spot prices. In contrast, Rolfo (1980), Anderson and Dan-
thine (1983), and Hirshleifer (1990) argue that forward prices can be upward-biased
predictors of expected spot prices, when hedgers are subject to both price and quan-
tity uncertainties. If demand is elastic, quantity uncertainty has a more pronounced
effect than price uncertainty from the perspective of hedgers, since small price fluc-
tuations lead to large quantity fluctuations. Hedgers are then net long to reduce
their quantity risks. Speculators are only willing to be net short, if forward prices
constantly lie above expected spot prices. Hirshleifer (1990) shows that, apart from
quantity uncertainty, the participation of consumers can also result in upward-biased
forward prices, because the hedging incentives of consumers are opposite to those of
producers. This way, we can think of both the upward and downward deviations of
forward prices from expected spot prices as the costs of hedging, or the returns to

13 CAISO List of Scheduling Coordinators (SCs), Congestion Rev-
enue Rights (CRR) Holders, CB Entities as updated on July 8th, 2014.
http://www.caiso.com/Documents/ISOListofSCsCRRsCBEs July 2014pdf.pdf. Accessed July
23rd, 2014.

14To follow the convention in the finance literature, we use the term “speculators” referring to
informed traders who explore price deviations and stabilize prices. The term “speculators” and
“traders” are interchangeable in this study.

15Informational setup costs is the implicit costs of collecting and analyzing market information.
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speculation.
In this sense, rationally, risk averse virtual traders only employ trading strategies

that are capable of generating returns high enough to compensate for the risks under-
taken, to arbitrage cautiously between the DA and RT markets. For virtual traders
with relatively low risk-tolerance, they might require a higher risk-adjusted return
than that of the trading strategy we develop to enter the forward market. If that is
the case, the DA and RT markets can still be efficient in the presence of profitable
trading strategies, and the profitability of these trading strategies only reflects the
competitive returns to induce the participation of those risk averse virtual traders.

We tend to believe this is not the case for three reasons. Firstly, virtual traders in
the current CAISO DA and RT markets are investment banks and trading firms, who
are by nature less risk averse, if not risk neutral. Secondly, the Sharpe ratios of our
trading strategy in Table 2.19 are significantly higher than that of the S&P 500, we can
reasonably assume that the trading strategy indeed provides a decent risk-adjusted
return. Thirdly, when there exists sufficient competition among virtual traders, the
price deviation between the DA and RT markets is expected to be kept small, even
if virtual traders are risk averse. The small DA-RT spreads should certainly lead to
the the demise of the profitability in the post-CB period, which is contrary to what
we observe in Table 2.19.

Although our profitable trading strategy indicates market inefficiency, it is not in
itself sufficient evidence for us to fully reject the efficiency of the current CAISO DA
and RT markets, with these unjustified concerns on market power and risk aversion
in mind. A thorough investigation of these alternative hypotheses requires the esti-
mation of risk aversion parameters of speculators and the level of competition, which
is beyond the scope of this study, and is left for future research.

2.9 Conclusion

In this study, we investigate whether the current CAISO DA and RT markets
are efficient, and whether markets efficiency is improved by CB, based on the zero-
profit condition of Jensen (1978). In the backtest, our results show that our trading
strategy continues to be profitable in the post-CB period, but the profitability is at
a lower magnitude, compared to the profitability in the pre-CB period. Clearly, the
deteriorated profitability in the post-CB period provides compelling evidence for the
improved market efficiency, which demonstrates the benefit of CB. The profitability
in the post-CB period, however, conveys empirical implications that can be inter-
preted differently, depending on the level of competition and the level of risk aversion
of virtual traders. If virtual traders are risk-neutral and the competition among vir-
tual traders is intense, the profitability in the post-CB period is convincing evidence
against the fully efficient DA and RT markets. Otherwise, the profitability in the
post-CB period might only rationally reflect the economic profit to incentivize the
participation of risk averse virtual traders, which has nothing to do with market
inefficiency and the mispricing of financial instruments.
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Last but not least, market efficiency does not come for free. A market becomes or
remains efficient as a result of the persistent efforts of market participants, who con-
duct research, identify inefficiencies, and trade until these inefficiencies disappear. In
this sense, we encourage market participants to search for profitable trading strategies,
make profits, and ultimately improve the efficiency of electricity forward markets.
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2.10 Appendix

Appendix A

Based on a subset of data rt, for t = 1, . . . , T ′ with T ′ ≤ T , maximum likelihood
estimators Θ = {πk, µk,h,Σk,h, ak,l, ck,h : k, l = 1, . . . ,M, h = 1, . . . , N} can be derived
by expectation-maximization algorithm in the following steps.16 Assuming the noise
term εt follows a standard multivariate Gaussian distribution εt ∼ N(0, I24), rt follows
a multivariate Gaussian distribution εt ∼ N(µst,zt ,Σst,zt). The conditional probability
density of rt given st and zt is

bk,h(rt) = P (rt|st = k, zt = h) (2.39)

=
1√

(2π)24|Σk,h|
exp(−1

2
(rt − µk,h)TΣ−1

k,h(rt − µk,h)). (2.40)

The conditional probability density of rt given st is

bk(rt) = P (rt|st = k) (2.41)

=
N∑
h=1

P (rt, zt = h|st = k) (2.42)

=
N∑
h=1

P (rt|zt = h, st = k)P (zt = h|st = k) (2.43)

=
N∑
h=1

P (rt|zt = h)P (zt = h|st = k) (2.44)

=
N∑
h=1

ck,h
1√

(2π)24|Σk,h|
exp(−1

2
(rt − µk,h)TΣ−1

k,h(rt − µk,h)). (2.45)

The joint probability density of st and rt is

f(s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′ , r1, r2, . . . , rT ′ |Θ′) (2.46)

= f(s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′|Θ′)
·f(r1, r2, . . . , rT ′ |s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′ ,Θ

′) (2.47)

= f(s1, s2, . . . , sT ′ |Θ′)f(z1, z2, . . . , zT ′ |s1, s2, . . . , sT ′ ,Θ
′)

·f(r1, r2, . . . , rT ′|z1, z2, . . . , zT ′ , s1, s2, . . . , sT ′ ,Θ
′) (2.48)

= π′s1

T ′∏
t=2

a′st−1,st

T ′∏
t=1

c′st,zt

T ′∏
t=1

P (rt|µ′st,zt ,Σ′st,zt). (2.49)

Then the log-likelihood function can be shown as,

log f(s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′ , r1, r2, . . . , rT ′|Θ′) (2.50)

= log(π′s1) +
T ′∑
t=2

log a′st−1,st
+

T ′∑
t=1

log c′st,zt +
T ′∑
t=1

P (rt|µ′st,zt ,Σ′st,zt). (2.51)

16πk is the initial probability in the state k.



CHAPTER 2. EFFICIENCY IMPACT OF CONVERGENCE BIDDING ON THE
CALIFORNIA ELECTRICITY MARKET 31

To take the expectation on both sides yields the expected complete log-likelihood,

E[log f(s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′ , r1, r2, . . . , rT ′ |Θ′)|r1, r2, . . . , rT ′ ,Θ](2.52)

=
M∑
s1=1

M∑
s2=1

. . .

M∑
sT ′=1

N∑
z1=1

N∑
z2=1

. . .

N∑
zT ′=1

P (s1, s2, . . . , sT ′ , z1, z2, . . . , zT ′ |r1, r2, . . . , rT ′ ,Θ)

·(log(π′s1) +
T ′∑
t=2

log a′st−1,st
+

T ′∑
t=1

log c′st,zt +
T ′∑
t=1

P (rt|µ′st,zt ,Σ′st,zt)).(2.53)

Let λk(t) be the conditional probability of being in the state k at period t given
r1, . . . , rT ′ ,

λk(t) = P (st = k|r1, . . . , rT ′). (2.54)

Let ξk,l(t) be the conditional probability of being in the state k at period t and
being in the state l at period t+ 1 given r1, . . . , rT ′ ,

ξk,l(t) = P (st = k, st+1 = l|r1, . . . , rT ′). (2.55)

Let ζk,h(t) be the conditional probability of being in the state k at period t and
being in the cluster h at period t given r1, . . . , rT ′ ,

ζk,h(t) = P (st = k, zt = h|r1, . . . , rT ′). (2.56)

By substituting λk(t), ξk,l(t) and ζk,h(t), we have

E[log f(s1, s2, . . . , sT ′ , r1, r2, . . . , rT ′|Θ′)|r1, r2, . . . , rT ′ ,Θ] (2.57)

=
M∑
s1=1

log(π′s1)P (s1|r1, . . . , rT ′) +
T ′∑
t=2

M∑
st−1=1

M∑
st=1

log a′st−1,st
P (st−1, st|r1, . . . , rT ′)

+
T ′∑
t=1

M∑
st=1

N∑
zt=1

(log c′st,zt + P (rt|µ′st,zt ,Σ′st,zt))P (st, zt|r1, . . . , rT ′) (2.58)

=
M∑
k=1

log(π′k)λk(1) +
T ′∑
t=2

M∑
k=1

M∑
l=1

log a′k,lξk,l(t)

+
T ′∑
t=1

M∑
k=1

N∑
h=1

(log c′k,h + P (rt|µ′k,h,Σ′k,h))ζk,h(t). (2.59)
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Maximum likelihood estimators can be derived by expectation-maximization al-
gorithm. The parameters Θ are updated in the following form,

π′k = λk(1) (2.60)

µ′k,h =

∑T ′

t=1 ζk,h(t)rt∑T ′

t=1 ζk,h(t)
(2.61)

Σ′k,h =

∑T ′

t=1 ζk,h(t)(rt − µ′k,h)(rt − µ′k,h)T∑T ′

t=1 ζk,h(t)
(2.62)

a′k,l =

∑T ′−1
t=1 ξk,l(t)∑T ′−1
t=1 λk(t)

(2.63)

c′k,h =

∑T ′

t=1 ζk,h(t)∑T ′

t=1 λk(t)
. (2.64)

The forward-backward algorithm is used to compute λk(t), ξk,l(t) and ζk,h(t) effi-
ciently. The forward probability αk(t) is defined as the joint probability of observing
the first t vectors rτ , τ = 1, . . . , t, and being in the state k at time t,

αk(t) = P (r1, r2, . . . , rt, st = k). (2.65)

This probability can be evaluated by the following recursive formula. For t = 1,
the probability can be computed as αk(1) = πkbk(r1). For t ≥ 2, the probability
follows

αk(t) (2.66)

=
M∑
l=1

P (r1, r2, . . . , rt−1, st−1 = l)P (r1, r2, . . . , rt, st = k|r1, r2, . . . , rt−1, st−1 = l)

(2.67)

=
M∑
l=1

P (r1, r2, . . . , rt−1, st−1 = l)P (rt, st = k|r1, r2, . . . , rt−1, st−1 = l) (2.68)

=
M∑
l=1

P (r1, r2, . . . , rt−1, st−1 = l)P (rt, st = k|st−1 = l) (2.69)

=
M∑
l=1

P (r1, r2, . . . , rt−1, st−1 = l)P (rt|st = k, st−1 = l)P (st = k|st−1 = l) (2.70)

=
M∑
l=1

P (r1, r2, . . . , rt−1, st−1 = l)P (rt|st = k)P (st = k|st−1 = l) (2.71)

= bk(rt)
M∑
l=1

αl(t− 1)al,k. (2.72)
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The backward probability βk(t) is defined as the conditional probability of ob-
serving the vectors after time t, rτ , τ = t + 1, . . . , T ′, given the state at time t is
k,

βk(t) = P (rt+1, . . . , rT ′ |st = k). (2.73)

By setting βk(T
′) = 1, this backward probability can be evaluated by the following

recursive formula,

βk(t) (2.74)

=
M∑
l=1

P (rt+1, . . . , rT ′ , st+1 = l|st = k) (2.75)

=
M∑
l=1

P (st+1 = l|st = k)P (rt+1, . . . , rT ′ |st+1 = l, st = k) (2.76)

=
M∑
l=1

P (st+1 = l|st = k)P (rt+1, . . . , rT ′ |st+1 = l) (2.77)

=
M∑
l=1

P (st+1 = l|st = k)P (rt+2, . . . , rT ′ |st+1 = l)P (rt+1|rt+2, . . . , rT ′ , st+1 = l)

(2.78)

=
M∑
l=1

P (st+1 = l|st = k)P (rt+2, . . . , rT ′ |st+1 = l)P (rt+1|st+1 = l) (2.79)

=
M∑
l=1

ak,lβl(t+ 1)bl(rt+1). (2.80)

The probabilities λk(t), ξk,l(t) and ζk,h(t) are solved by

λk(t) (2.81)

= P (st = k|r1, . . . , rT ′) (2.82)

=
P (r1, . . . , rT ′ , st = k)

P (r1, . . . , rT ′)
(2.83)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′|r1, . . . , rt, st = k) (2.84)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′|st = k) (2.85)

=
1

P (r1, . . . , rT ′)
αk(t)βk(i), (2.86)
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and

ξk,l(t) (2.87)

= P (st = k, st+1 = l|r1, . . . , rT ′) (2.88)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rT ′ , st = k, st+1 = l) (2.89)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′ , st+1 = l|r1, . . . , rt, st = k)

(2.90)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′ , st+1 = l|st = k) (2.91)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′ |st+1 = l, st = k)

·P (st+1 = l|st = k) (2.92)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+1, . . . , rT ′ |st+1 = l)P (st+1 = l|st = k)

(2.93)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+2 . . . , rT ′|rt+1, st+1 = l)

·P (rt+1|st+1 = l)P (st+1 = l|st = k) (2.94)

=
1

P (r1, . . . , rT ′)
P (r1, . . . , rt, st = k)P (rt+2 . . . , rT ′|st+1 = l)

·P (rt+1|st+1 = l)P (st+1 = l|st = k) (2.95)

=
1

P (r1, . . . , rT ′)
αk(t)βl(t+ 1)bl(rt+1)ak,l, (2.96)

and
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ζk,h(t) = P (st = k, zt = h|r1, . . . , rT ′) (2.97)

= P (st = k|r1, . . . , rT ′)
P (zt = h, rt|st = k, r1, . . . , rt−1, rr+1, . . . , rT ′)

P (rt|st = k, r1, . . . , rt−1, rr+1, . . . , rT ′)
(2.98)

= P (st = k|r1, . . . , rT ′)
P (zt = h, rt|st = k, r1, . . . , rt−1, rr+1, . . . , rT ′)

P (rt|st = k)
(2.99)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)

P (zt = h, rt, r1, . . . , rt−1|st = k, rr+1, . . . , rT ′)

P (r1, . . . , rt−1|st = k, rr+1, . . . , rT ′)
(2.100)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)

P (rr+1, . . . , rT ′ |st = k)

P (rr+1, . . . , rT ′ |st = k, r1, . . . , rt−1)P (r1, . . . , rt−1|st = k)

·P (zt = h, rt, r1, . . . , rt−1|st = k, rr+1, . . . , rT ′) (2.101)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)

P (rr+1, . . . , rT ′|st = k)

P (rr+1, . . . , rT ′ |st = k)P (r1, . . . , rt−1|st = k)

·P (zt = h, rt, r1, . . . , rt−1|st = k, rr+1, . . . , rT ′) (2.102)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)P (r1, . . . , rt−1|st = k)

P (zt = h, rt, r1, . . . , rt−1, rr+1, . . . , rT ′|st = k)

P (rr+1, . . . , rT ′ |st = k)

(2.103)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)P (r1, . . . , rt−1|st = k)P (rr+1, . . . , rT ′ |st = k)

·P (zt = h, rt|st = k)P (r1, . . . , rt−1, rr+1, . . . , rT ′ |zt = h, rt, st = k) (2.104)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)P (r1, . . . , rt−1|st = k)P (rr+1, . . . , rT ′ |st = k)
P (zt = h, rt|st = k)

·P (r1, . . . , rt−1|zt = h, rt, st = k)P (rr+1, . . . , rT ′ |r1, . . . , rt−1, zt = h, rt, st = k)

(2.105)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)P (r1, . . . , rt−1|st = k)P (rr+1, . . . , rT ′ |st = k)
P (zt = h, rt|st = k)

·P (r1, . . . , rt−1, zt = h, rt|st = k)

P (zt = h, rt|st = k)
P (rr+1, . . . , rT ′ |st = k) (2.106)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)P (r1, . . . , rt−1|st = k)P (rr+1, . . . , rT ′ |st = k)
P (zt = h, rt|st = k)

·P (zt = h, rt|r1, . . . , rt−1, st = k)P (r1, . . . , rt−1|st = k)

P (zt = h, rt|st = k)
P (rr+1, . . . , rT ′ |st = k)

(2.107)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)
P (zt = h, rt|st = k) (2.108)

=
P (st = k|r1, . . . , rT ′)

P (rt|st = k)
P (rt|zt = h, st = k)P (zt = h|st = k) (2.109)

=
λk(t)

bk(rt)
bk,h(rt)ck,h. (2.110)
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The joint probability of observing rt for t = 1, . . . , T ′ is

P (r1, . . . , rT ′) =
M∑
k=1

P (r1, . . . , rT ′ , st = k) (2.111)

=
M∑
k=1

P (r1, . . . , rt, st = k)P (rt+1 . . . rT ′|r1, . . . , rt, st = k)

(2.112)

=
M∑
k=1

P (r1, . . . , rt, st = k)P (rt+1 . . . rT ′|st = k) (2.113)

=
M∑
k=1

αk(t)βk(t). (2.114)

Note that ξk,l(t) can be also expressed in the following form,

ξk,l(t) (2.115)

= P (st = k, st+1 = l|r1, . . . , rT ′) (2.116)

= P (st = k|r1, . . . , rT ′)P (st+1 = l|st = k, r1, . . . , rT ′) (2.117)

= P (st = k|r1, . . . , rT ′)
P (st+1 = l, rt+1, . . . , rT ′ |st = k, r1, . . . , rt)

P (rt+1, . . . , rT ′ |st = k)
(2.118)

= P (st = k|r1, . . . , rT ′)
P (st+1 = l, rt+1, . . . , rT ′|st = k)

P (rt+1, . . . , rT ′ |st = k)
(2.119)

= P (st = k|r1, . . . , rT ′)

·P (st+1 = l|st = k)P (rt+1, . . . , rT ′|st+1 = l, st = k)

P (rt+1, . . . , rT ′|st = k)
(2.120)

= P (st = k|r1, . . . , rT ′)
P (st+1 = l|st = k)P (rt+1, . . . , rT ′ |st+1 = l)

P (rt+1, . . . , rT ′|st = k)
(2.121)

= P (st = k|r1, . . . , rT ′)

·P (st+1 = l|st = k)P (rt+1|st+1 = l)P (rt+2, . . . , rT ′|rt+1, st+1 = l)

P (rt+1, . . . , rT ′|st = k)
(2.122)

= P (st = k|r1, . . . , rT ′)

·P (st+1 = l|st = k)P (rt+1|st+1 = l)P (rt+2, . . . , rT ′|st+1 = l)

P (rt+1, . . . , rT ′ |st = k)
(2.123)

= λk(t)
ak,lbl(rt+1)βl(t+ 1)

βk(t)
. (2.124)

Finally, if we assume µk,h and Σk,h are the same across different states, the pa-
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rameters are updated in the following form,

µ′h =

∑T ′

t=1

∑M
k=1 ζk,h(t)rt∑T ′

t=1

∑M
k=1 ζk,h(t)

(2.125)

Σ′h =

∑T ′

t=1

∑M
k=1 ζk,h(t)(rt − µ′k)(rt − µ′k)T∑T ′

t=1

∑M
k=1 ζk,h(t)

. (2.126)

Appendix B

With φ(u) = (u+1)2
+, we can show φ(u

α
) ≥ I(u ≥ 0) for any α > 0. By substituting

u = −RT
t yt − γ, we have φ( 1

α
(−RT

t yt − γ)) ≥ I(−RT
t yt − γ ≥ 0). Taking expectation

on both sides yields,

E[φ(
1

α
(−RT

t yt − γ))] ≥ P (−RT
t yt − γ ≥ 0). (2.127)

By multiplying α on both sides and replacing the positive part function, we can
further show a conservative approximation of P (−RT

t yt − γ ≥ 0) ≤ 1 − η in the
following form,

αP (−RT
t yt − γ ≥ 0) ≤ αE[φ(

1

α
(−RT

t yt − γ))] (2.128)

= αE[(
1

α
(−RT

t yt − γ) + 1)2
+] (2.129)

≤ αE[(
1

α
(−RT

t yt − γ) + 1)2] (2.130)

≤ α(1− η). (2.131)

Rearranging αE[( 1
α

(−RT
t yt − γ) + 1)2] ≤ α(1− η) yields,

αE[(
1

α
(−RT

t yt − γ) + 1)2]− α(1− η) (2.132)

=
1

α
E[(RT

t yt + γ)2]− 2E[(RT
t yt + γ)] + ηα ≤ 0. (2.133)

Noticing that (2.133) is a quadratic function, we can minimize the function by

setting α = ( 1
η
E[(RT

t yt + γ)2])
1
2 .17 By substituting α = ( 1

η
E[(RT

t yt + γ)2])
1
2 into

(2.133), we derived the Chebyshev bound,

−E[(RT
t yt + γ)] + (ηE[(RT

t yt + γ)2])
1
2 ≤ 0. (2.134)

17α is nonnegative, since α = ( 1
ηE[(RTt yt + γ)2])

1
2 ≥ 0.
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Appendix C

Table 2.1: Summary Statistics for Pre-CB DA LMPs and RT LMPs

Hour DA Mean DA Standard Deviation RT Mean RT Standard Deviation
1 31.04 7.16 34.18 30.51
2 28.08 7.60 33.45 40.89
3 25.64 8.03 28.69 43.14
4 24.74 8.50 21.79 15.41
5 26.17 9.02 20.83 17.03
6 30.39 9.89 24.86 19.34
7 31.91 11.43 28.94 28.79
8 34.19 10.88 34.75 32.15
9 36.21 8.67 34.83 33.47
10 38.11 7.25 36.60 23.67
11 39.90 6.47 42.84 35.91
12 40.52 6.50 43.14 35.42
13 40.22 6.19 40.27 22.24
14 40.37 6.88 39.29 16.89
15 41.42 7.88 41.55 30.13
16 43.07 10.92 45.78 45.71
17 44.27 11.42 45.15 45.67
18 44.25 9.20 49.60 56.92
19 44.62 9.53 53.33 66.61
20 43.93 8.05 51.69 65.17
21 43.75 6.13 52.64 62.40
22 40.28 5.33 45.76 39.19
23 37.28 5.39 48.37 42.92
24 33.05 5.64 41.59 52.68

Overall 36.82 10.44 39.17 41.45
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Table 2.2: Summary Statistics for Post-CB DA LMPs and RT LMPs

Hour DA Mean DA Standard Deviation RT Mean RT Standard Deviation
1 23.07 4.31 21.26 8.19
2 21.30 4.68 19.32 10.57
3 18.85 5.53 16.51 12.77
4 18.26 6.07 15.18 14.72
5 18.95 5.65 17.63 12.41
6 21.84 5.35 21.94 15.12
7 24.45 6.73 23.00 21.43
8 26.70 6.79 27.25 38.49
9 26.89 5.71 27.43 31.81
10 27.87 5.64 30.18 43.40
11 29.25 5.66 31.92 55.90
12 29.63 5.49 29.42 36.04
13 29.93 6.00 29.79 36.57
14 30.63 6.93 28.44 32.27
15 31.98 10.92 32.28 42.70
16 34.52 17.37 36.95 83.54
17 37.72 20.64 43.39 86.43
18 38.27 17.18 43.65 77.04
19 37.11 12.44 40.46 53.27
20 35.65 10.33 36.88 47.88
21 34.08 7.67 32.51 28.13
22 30.81 6.03 32.55 43.10
23 27.66 4.85 27.59 17.96
24 24.36 4.31 23.10 24.90

Overall 28.32 10.92 28.69 43.24
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Table 2.3: Summary Statistics for Pre-CB DA-RT Spreads

Hour Mean Standard Deviation Skewness
1 -3.14 31.10 -9.14
2 -5.37 41.71 -10.49
3 -3.13 44.29 -11.55
4 2.77 14.42 0.54
5 5.29 13.84 0.63
6 5.35 16.31 -4.50
7 3.46 22.97 -7.70
8 -0.56 29.56 -8.95
9 1.38 31.63 -13.38
10 1.51 21.85 -6.31
11 -2.94 35.41 -6.70
12 -2.62 34.98 -7.85
13 -0.05 20.95 -6.70
14 1.08 15.95 -3.70
15 -0.14 29.48 -7.62
16 -2.71 43.38 -6.02
17 -0.88 43.38 -6.09
18 -5.34 55.43 -5.43
19 -8.70 65.40 -6.14
20 -7.77 64.63 -6.94
21 -8.89 62.01 -6.30
22 -5.48 38.77 -7.36
23 -11.09 43.37 -4.77
24 -8.55 53.93 -7.51

Overall -2.36 39.84 -8.61
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Table 2.4: Summary Statistics for Post-CB DA-RT Spreads

Hour Mean Standard Deviation Skewness
1 1.81 7.01 2.93
2 1.98 9.31 2.61
3 2.34 11.24 2.03
4 3.08 13.44 2.62
5 1.32 11.05 1.90
6 -0.10 14.23 -7.33
7 1.45 19.88 -4.94
8 -0.56 38.08 -12.09
9 -0.54 30.92 -12.10
10 -2.31 43.33 -10.24
11 -2.68 56.07 -12.03
12 0.22 35.92 -12.32
13 0.14 36.41 -9.19
14 2.19 32.08 -13.23
15 -0.29 39.99 -7.67
16 -2.43 77.89 -10.70
17 -5.68 78.68 -6.23
18 -5.39 73.41 -6.24
19 -3.35 50.58 -4.61
20 -1.23 46.79 -6.91
21 1.57 26.62 -6.90
22 -1.74 42.67 -7.49
23 0.07 17.32 -4.38
24 1.26 24.67 -10.32

Overall -0.37 40.67 -11.71
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Table 2.5: Seasonal Means of Pre-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 -3.27 1.37 -12.31 1.77
2 -1.99 0.37 -20.20 0.51
3 2.19 3.58 -20.22 1.81
4 4.84 5.18 -1.38 2.28
5 2.88 6.37 9.33 2.65
6 1.25 6.71 9.37 4.15
7 0.83 2.87 8.14 2.05
8 -4.63 2.68 2.20 -2.48
9 -4.63 2.14 6.32 1.63
10 -1.12 0.90 3.54 2.66
11 -14.39 -1.23 4.39 -0.61
12 -1.72 2.33 -6.93 -4.05
13 -2.87 1.36 3.76 -2.44
14 0.82 -0.04 2.56 0.95
15 0.51 2.55 -0.74 -2.80
16 -1.94 3.02 -6.33 -5.46
17 5.25 3.64 -7.16 -5.09
18 -28.71 6.99 2.02 -1.66
19 -15.67 3.69 -1.48 -21.16
20 -0.86 -5.84 -2.40 -21.85
21 -12.84 -5.61 -12.11 -4.99
22 -2.92 -3.24 -13.38 -2.31
23 -9.12 -3.77 -24.61 -6.67
24 -2.32 1.19 -34.06 1.34

Overall -3.77 1.55 -4.68 -2.49
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Table 2.6: Seasonal Standard Deviations of Pre-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 45.31 8.07 40.01 6.61
2 35.05 11.79 72.52 6.94
3 11.87 11.40 84.74 10.40
4 14.36 12.57 17.34 12.27
5 9.84 11.74 17.55 14.09
6 22.43 9.51 18.64 9.83
7 34.01 18.34 19.48 14.97
8 46.88 8.38 19.15 29.13
9 56.20 7.45 25.73 10.09
10 24.32 20.67 29.22 6.35
11 59.93 26.83 20.50 12.09
12 16.73 7.61 55.02 38.57
13 23.81 8.15 11.20 31.21
14 16.58 13.40 16.35 17.29
15 16.55 5.84 33.43 45.15
16 44.13 5.89 53.33 51.66
17 23.10 6.61 58.73 58.23
18 98.47 7.06 28.41 32.86
19 91.13 16.17 47.18 77.46
20 29.06 41.79 56.75 103.27
21 83.50 40.51 61.86 54.78
22 17.95 34.55 57.73 33.28
23 44.05 20.86 64.04 28.58
24 20.53 4.81 101.17 6.56

Overall 44.80 18.59 49.51 38.84
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Table 2.7: Seasonal Means of Post-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 1.84 1.18 2.25 1.95
2 1.98 2.71 1.63 1.61
3 1.47 4.25 2.02 1.68
4 2.93 3.46 3.19 2.78
5 1.51 1.44 1.79 0.55
6 -0.74 -1.73 1.85 0.18
7 -0.16 0.34 5.82 -0.29
8 2.32 -3.53 -3.70 2.58
9 -3.99 -0.60 2.44 -0.14
10 -1.44 -10.37 2.03 0.27
11 0.15 -11.31 -0.72 0.90
12 -0.70 -5.47 1.85 4.99
13 -2.25 -1.93 0.92 3.70
14 2.76 -0.13 -2.22 8.27
15 1.09 -2.11 -1.71 1.43
16 0.58 1.15 -8.49 -3.04
17 2.68 -0.98 -14.45 -9.92
18 3.55 2.02 -23.82 -3.18
19 0.35 2.46 -7.51 -8.79
20 3.32 -0.39 -7.79 -0.17
21 0.93 3.39 1.38 0.44
22 -1.85 1.27 -10.84 4.32
23 -0.75 0.43 -1.19 1.66
24 1.88 2.02 -2.47 3.61

Overall 0.73 -0.52 -2.41 0.64
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Table 2.8: Seasonal Standard Deviations of Post-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 7.40 7.31 8.20 4.77
2 10.37 10.48 9.36 6.72
3 8.54 13.02 13.68 8.78
4 11.23 15.42 15.22 11.65
5 9.53 10.54 14.43 9.05
6 17.46 20.04 9.15 5.22
7 19.30 22.21 14.97 22.00
8 9.44 55.29 51.24 8.76
9 56.30 17.93 7.34 17.61
10 31.29 77.13 15.91 20.01
11 30.15 98.84 27.36 36.17
12 29.90 60.60 23.17 10.13
13 53.25 20.47 36.14 27.79
14 9.72 10.40 61.68 7.89
15 16.01 21.82 56.80 49.59
16 14.09 6.75 99.58 118.79
17 14.82 20.07 111.17 108.03
18 22.96 10.59 117.88 81.25
19 40.83 12.25 47.47 78.20
20 13.03 29.47 60.89 63.16
21 20.30 7.40 21.73 43.60
22 40.20 7.09 70.50 23.48
23 18.00 10.51 22.21 16.58
24 14.12 14.65 44.51 5.70

Overall 25.50 33.81 51.67 46.29

Table 2.9: Transition Probabilities of the Pre-CB GMHMM

State 1 State 2
State1 96.67% 3.33%
State2 7.77% 92.23%

Table 2.10: Cluster Probabilities of the Pre-CB GMHMM

Cluster 1 Cluster 2 Cluster 3
State1 81.46% 18.51% 0.00%
State2 39.13% 56.06% 4.81%
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Table 2.11: Summary Statistics for DA-RT Spreads in the Clusters of the Pre-CB
GMHMM

Mean Standard Deviation
Hour Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

1 1.11 -13.02 -9.07 9.55 53.43 47.24
2 0.23 -18.32 -15.27 10.14 73.78 28.48
3 2.30 -12.98 -68.48 11.39 70.58 146.98
4 4.18 -0.77 3.01 14.02 14.62 7.45
5 5.94 3.51 9.44 13.39 14.44 16.62
6 6.93 1.99 -5.36 11.29 23.78 18.52
7 5.60 1.28 -60.65 11.74 23.68 121.92
8 2.61 -4.98 -68.09 10.75 32.76 171.85
9 4.15 -5.24 0.53 9.19 56.28 9.65
10 4.67 -4.82 -24.90 9.11 34.83 52.73
11 3.43 -18.47 2.75 6.75 62.03 13.78
12 2.97 -16.06 -1.86 7.00 61.85 6.79
13 3.02 -7.51 2.21 6.92 36.17 10.50
14 3.49 -3.93 -15.12 8.81 23.56 41.48
15 4.63 -11.56 -0.22 9.17 50.94 6.58
16 6.10 -23.95 -0.07 9.13 74.98 6.06
17 7.46 -17.85 -64.59 9.67 70.60 113.34
18 6.22 -29.70 -76.13 8.41 91.09 140.81
19 4.06 -25.15 -308.54 16.08 75.66 270.04
20 4.99 -23.49 -322.35 11.71 77.02 242.70
21 3.31 -21.66 -358.18 10.42 66.47 218.42
22 1.79 -17.55 -119.07 9.20 59.30 109.04
23 -3.04 -26.01 -103.40 18.13 67.35 86.84
24 1.17 -32.46 6.50 9.41 94.54 6.50
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Table 2.12: Summary Statistics for DA-RT Spreads in the States of the Pre-CB
GMHMM

Mean Standard Deviation Skewness
Hour State 1 State 2 State 1 State 2 State 1 State 2

1 -1.57 -7.27 25.08 42.19 -1.15 -0.33
2 -3.14 -10.84 33.48 56.52 -1.10 -0.34
3 -0.59 -9.50 32.53 64.23 -1.04 -0.74
4 3.25 1.38 14.22 14.36 -0.02 -0.03
5 5.53 4.75 13.67 14.28 -0.01 -0.01
6 6.05 3.50 14.57 19.86 -0.30 -0.20
7 4.78 0.22 15.20 35.44 -1.38 -3.01
8 1.11 -4.87 18.14 47.41 -2.29 -2.53
9 2.58 -1.20 25.50 42.95 -0.64 -0.25
10 2.93 -1.92 17.35 29.74 -1.00 -0.55
11 -0.56 -8.77 28.78 48.31 -1.69 -0.51
12 -0.35 -8.16 28.07 47.94 -1.39 -0.47
13 1.03 -3.03 17.20 27.95 -1.17 -0.43
14 2.11 -1.55 13.23 21.06 -0.75 -0.51
15 1.75 -4.75 23.90 39.35 -1.29 -0.47
16 0.62 -11.28 35.33 58.35 -1.78 -0.62
17 2.95 -10.54 33.08 61.52 -1.50 -0.72
18 -0.44 -18.09 42.12 78.27 -1.89 -0.68
19 -1.60 -27.46 38.84 105.23 -2.87 -3.49
20 -0.52 -27.28 36.69 105.30 -2.00 -3.34
21 -1.42 -28.35 32.53 103.04 -2.78 -3.70
22 -1.70 -15.18 27.88 57.60 -1.42 -1.40
23 -7.19 -21.01 34.10 59.88 -1.02 -0.72
24 -4.76 -17.68 42.34 73.36 -1.68 -0.57

Table 2.13: Transition Probabilities of the Post-CB GMHMM

State 1 State 2
State1 95.23% 4.77%
State2 4.00% 96.00%
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Table 2.14: Cluster Probabilities of the Post-CB GMHMM

Cluster 1 Cluster 2 Cluster 3
State1 89.65% 10.35% 0.00%
State2 56.84% 42.10% 1.05%

Table 2.15: Summary Statistics for DA-RT Spreads in the Clusters of the Post-CB
GMHMM

Mean Standard Deviation
Hour Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

1 2.20 0.75 1.73 7.21 6.38 2.68
2 1.95 2.08 0.83 8.98 10.22 2.25
3 2.50 1.93 0.59 11.13 11.57 1.43
4 3.54 1.91 1.21 13.55 13.21 1.88
5 2.13 -0.84 0.22 11.57 9.28 1.38
6 1.18 -3.53 -1.30 10.28 21.27 1.59
7 1.87 0.33 -2.27 20.95 16.81 3.36
8 3.18 -5.89 -236.75 7.11 53.68 240.32
9 2.67 -9.28 -1.39 5.92 57.98 3.11
10 3.70 -18.71 0.07 6.95 80.59 4.32
11 4.70 -22.88 3.69 7.67 104.85 3.55
12 4.84 -12.16 -7.55 6.37 66.95 0.87
13 4.73 -11.70 -29.70 6.62 67.73 27.41
14 5.17 -3.67 -107.51 7.91 56.28 97.00
15 6.04 -9.11 -412.31 8.12 44.78 77.20
16 7.35 -9.84 -944.17 10.75 59.77 119.64
17 9.99 -36.38 -583.82 13.61 113.61 244.14
18 9.55 -37.59 -412.65 12.06 109.88 355.19
19 6.17 -29.78 19.05 22.38 84.75 40.92
20 7.92 -26.74 28.00 9.14 83.73 32.35
21 5.95 -10.86 22.44 8.52 47.05 23.38
22 5.35 -21.47 16.41 5.77 78.43 13.56
23 1.18 -3.09 1.20 14.77 22.62 3.48
24 3.91 -6.01 4.91 5.89 45.84 2.16
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Table 2.16: Summary Statistics for DA-RT Spreads in the States of the Post-CB
GMHMM

Mean Standard Deviation Skewness
Hour State 1 State 2 State 1 State 2 State 1 State 2

1 2.05 1.59 7.16 6.89 0.00 0.05
2 1.98 1.96 9.15 9.47 0.01 0.01
3 2.49 2.18 11.25 11.24 0.01 -0.01
4 3.41 2.76 13.51 13.31 0.00 0.01
5 1.86 0.85 11.36 10.73 0.03 0.07
6 0.77 -0.82 11.93 15.90 -0.27 -0.27
7 1.74 1.17 20.54 19.22 0.02 0.03
8 2.17 -2.86 18.86 48.21 -1.06 -4.50
9 1.46 -2.41 19.75 38.74 -1.41 -0.49
10 1.61 -5.69 26.90 54.06 -1.74 -0.67
11 2.06 -6.80 34.95 69.87 -1.56 -0.64
12 3.13 -2.29 22.63 44.73 -1.57 -0.54
13 3.14 -2.76 23.28 45.07 -1.55 -0.58
14 4.38 0.43 19.55 39.98 -0.93 -0.88
15 4.36 -4.34 16.95 51.33 -1.92 -5.51
16 5.50 -9.14 22.20 102.52 -1.47 -7.92
17 5.05 -15.15 41.28 98.80 -2.57 -3.18
18 4.34 -14.22 40.55 91.68 -2.81 -3.02
19 2.33 -8.59 36.32 60.44 -1.53 -0.79
20 4.22 -6.54 30.29 57.39 -2.77 -0.98
21 4.18 -1.00 18.04 32.37 -1.91 -0.80
22 2.53 -5.76 26.68 52.36 -2.40 -0.87
23 0.74 -0.60 15.83 18.63 -0.09 -0.16
24 2.94 -0.25 15.84 30.34 -1.36 -0.53

Table 2.17: Pre-CB Regression Analysis

θ0 θ1 θ2 tθ0 tθ1 tθ2 R Squared DF
0.9050 -0.0032 -1.1511 1.2250 -16.1359 -2.0904 0.8732 45

Table 2.18: Post-CB Regression Analysis

θ0 θ1 θ2 tθ0 tθ1 tθ2 R Squared DF
1.8041 -0.0021 -1.0617 4.6235 -13.4369 -4.2229 0.8246 45
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Table 2.19: Performance under a VaR Constraint

Strategy Parameter Expected Return Standard Deviation Sharpe Max Drawdown
Pre-CB In-Sample Performance

γ = 0.02 η = 0.90 153.42% 14.60% 10.34 1.12%
γ = 0.02 η = 0.85 187.50% 19.54% 9.48 1.53%
γ = 0.02 η = 0.80 210.34% 24.71% 8.43 2.09%

Pre-CB Out-of-Sample Performance
γ = 0.02 η = 0.90 90.36% 24.50% 3.58 6.91%
γ = 0.02 η = 0.85 118.70% 29.42% 3.95 8.96%
γ = 0.02 η = 0.80 150.92% 35.15% 4.23 9.45%

Post-CB In-Sample Performance
γ = 0.02 η = 0.90 78.03% 11.10% 6.79 2.23%
γ = 0.02 η = 0.85 86.66% 13.08% 6.42 2.82%
γ = 0.02 η = 0.80 87.61% 15.21% 5.59 3.72%

Post-CB Out-of-Sample Performance
γ = 0.02 η = 0.90 33.47% 13.03% 2.35 2.73%
γ = 0.02 η = 0.85 35.11% 14.35% 2.25 3.19%
γ = 0.02 η = 0.80 38.03% 16.55% 2.13 5.08%

Table 2.20: Performance under a CVaR Constraint

Strategy Parameter Expected Return Standard Deviation Sharpe Max Drawdown
Pre-CB In-Sample Performance

γ = 0.02 η = 0.99 267.77% 37.04% 7.18 1.19%
γ = 0.02 η = 0.98 296.75% 44.60% 6.61 1.14%
γ = 0.02 η = 0.95 341.83% 59.30% 5.74 1.42%

Pre-CB Out-of-Sample Performance
γ = 0.02 η = 0.99 245.86% 47.78% 5.10 6.59%
γ = 0.02 η = 0.98 266.79% 55.65% 4.76 7.23%
γ = 0.02 η = 0.95 284.81% 66.01% 4.29 7.80%

Post-CB In-Sample Performance
γ = 0.02 η = 0.99 47.35% 11.54% 3.86 2.75%
γ = 0.02 η = 0.98 52.93% 13.29% 3.77 3.16%
γ = 0.02 η = 0.95 60.82% 16.58% 3.50 4.60%

Post-CB Out-of-Sample Performance
γ = 0.02 η = 0.99 22.58% 16.56% 1.19 4.02%
γ = 0.02 η = 0.98 25.55% 17.87% 1.27 5.29%
γ = 0.02 η = 0.95 22.18% 22.83% 0.84 9.01%
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Appendix D
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Figure 2.1: GMHMM
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Figure 2.2: Pre-CB Within-Cluster
Sum of Squared Error
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Figure 2.3: Post-CB Within-Cluster
Sum of Squared Error
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Figure 2.4: Pre-CB Dynamic Poste-
rior State Probability 1
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Figure 2.5: Pre-CB Dynamic Poste-
rior State Probability 2
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Figure 2.6: Pre-CB Dynamic Poste-
rior State Probability 3
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Figure 2.7: Pre-CB Dynamic Poste-
rior State Probability 4
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Figure 2.8: Pre-CB Dynamic Poste-
rior State Probability 5
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Figure 2.9: Pre-CB Posterior State
Probability
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Figure 2.10: Post-CB Dynamic Pos-
terior State Probability 1
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Figure 2.11: Post-CB Dynamic Pos-
terior State Probability 2
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Figure 2.12: Post-CB Dynamic Pos-
terior State Probability 3
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Figure 2.13: Post-CB Dynamic Pos-
terior State Probability 4
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Figure 2.14: Post-CB Dynamic Pos-
terior State Probability 5
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Figure 2.15: Post-CB Posterior State
Probability
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Figure 2.16: Marginal Distribution of
Pre-CB DA-RT Spreads for 3 a.m.

Figure 2.17: Marginal Distribution of
Pre-CB DA-RT Spreads for 3 p.m.

Figure 2.18: Marginal Distribution of
Post-CB DA-RT Spreads for 3 a.m.

Figure 2.19: Marginal Distribution of
Post-CB DA-RT Spreads for 3 p.m.
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Figure 2.20: Pre-CB In-Sample Per-
formance under a VaR constraint
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Figure 2.21: Pre-CB Out-of-Sample
Performance under a VaR constraint
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Figure 2.22: Post-CB In-Sample Per-
formance under a VaR constraint
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Figure 2.23: Post-CB Out-of-Sample
Performance under a VaR constraint
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Figure 2.24: Pre-CB In-Sample Per-
formance under a CVaR constraint
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Figure 2.25: Pre-CB Out-of-Sample
Performance under a CVaR con-
straint
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Figure 2.26: Post-CB In-Sample Per-
formance under a CVaR constraint
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Figure 2.27: Post-CB Out-of-Sample
Performance under a CVaR con-
straint
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Chapter 3

Distribution Locational Marginal
Pricing for Optimal Electric
Vehicle Charging Management

3.1 Introduction

This chapter presents an integrated distribution locational marginal pricing (DLMP)
method designed to alleviate congestion induced by electric vehicle (EV) loads in fu-
ture power systems. In the proposed approach, the distribution system operator
(DSO) determines distribution locational marginal prices (DLMPs) by solving the
social welfare optimization of the electric distribution system which considers EV ag-
gregators as price takers in the local DSO market and accounts for the price elasticity
of the conventional household demand. Supply busses connecting the distribution
system to the transmission grid are treated as generation nodes with marginal costs
set to locational marginal prices (LMPs) for each bus. These LMPs are determined
by the independent system operator (ISO), and treated in our model as exogenous
inputs. Nonlinear optimization has been used to solve the social welfare optimiza-
tion problem in order to obtain DLMPs which propagate the LMPs throughout the
transmission network so as to alleviate distribution level congestion while meeting
the conventional household demand and the EV demand. It is also shown mathe-
matically that the socially optimal charging schedule can be implemented through a
decentralized mechanism where loads respond autonomously to the posted DLMPs
by maximizing their individual net surplus. We further investigate the problem of
designing pricing mechanism when LMPs are uncertain. A robust DLMP method is
developed for EV charging management under price uncertainty. The efficacy of the
proposed use of DLMP is demonstrated by means of case studies using the Bus 4
distribution system of the Roy Billinton Test System (RBTS) and the Danish driving
data. The case study results show that the DLMP and robust DLMP methods can
successfully alleviate congestion caused by EV loads.
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3.2 Literature Review

Environmental concerns and the quest for energy supply independence have re-
sulted in increasing penetration of renewable energy sources (RES) and a move toward
electrification of transportation. Consequently, electric vehicles (EVs) are expected
to play a significant role in future power systems. Increased use of EVs will reduce the
green house gas (GHG) emission from the transport sector by replacing conventional
internal combustion engine (ICE) vehicles while also serving as distributed energy
storage that can mitigate uncertainties arising from intermittent RES.

Numerous studies have addressed vehicle-to-grid (V2G) technology to investigate
the technical and commercial feasibility of providing ancillary service to the grid
from EVs. The capacity from EVs and the economic return to participate in peak
power, spinning reserve and regulation markets have been explored in Kempton and
Tomić (2005a), Kempton and Tomić (2005b), and Tomić and Kempton (2007). The
effectiveness of using EVs to provide peak load shaving and extra flexibility has
been illustrated in Sortomme and El-Sharkawi (2011) and Sortomme and El-Sharkawi
(2012).

However, the deployment of a large number of EVs will challenge power system
operations especially for distribution networks if there is no proper coordination of the
electric vehicle (EV) charging schedule. Grid congestion results from demand patterns
that induce flows exceeding design limits. Congestion from EVs can be observed at
the medium voltage (MV) level, as demonstrated by a number of studies (Heydt,
1983; Clement-Nyns, Haesen, and Driesen, 2010; Dyke, Schofield, and Barnes, 2010).
It was also noted that the problems are likely to originate in distribution networks,
and as such, the analysis of these networks should be conducted as the primary stage
of EV induced congestion (Maitra et al., 2010; Taylor et al., 2010; Lopes, Soares, and
Almeida, 2011).

Grid congestion depends on a number of factors including local grid rating and
topology, penetration and distribution of EVs, and charging management procedures.
Coordinated charging appears to be an effective means for allowing increased pene-
tration of EVs without violating grid constraints. There is some diversity regarding
the optimal manner in which to coordinate charging, and the proposed objectives
for such coordination include minimization of losses (Clement-Nyns, Haesen, and
Driesen, 2010), maximization of EV penetration (Lopes, Soares, and Almeida, 2011),
and minimization of customer charging costs (Rotering and Ilic, 2011; Sundstrom and
Binding, 2012).

Congestion management methods can be categorized into three groups: opti-
mal power flow (OPF) based method, price area congestion control method and
transaction-based method (Christie, Wollenberg, and Wangensteen, 2000). The OPF
based congestion management method is based on a centralized optimization, and it
is considered to be the most accurate and effective congestion management method.
The price area congestion management controls congestion by generation redispatch
in response to congestion prices within an OPF framework (Glatvitsch and Alvarado,
1998). The transaction-based method determines the available transfer capability
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(ATC) from the start point to the end point of a path using a power flow model
described by power transfer distribution factors (PTDF).

In the existing work on load management techniques and other methods for al-
leviating congestions from EVs, there is no integrated method which has a closed
loop solution accounting for the elasticity of the conventional household demand and
the intertemporal shifting characteristics of the EV demand. In order to address this
problem, the distribution locational marginal pricing (DLMP) method is proposed
for distribution networks in order to alleviate congestion induced by EVs.

This chapter is arranged as follows. The nomenclature is defined in Section 3.3.
The mathematical formulation of the integrated DLMP method under complete in-
formation is presented in Section 3.4. The integrated DLMP method is extended
to the incomplete information case in Section 3.5. The data used in case studies is
described in Section 3.6. The case study results are presented in Section 3.7 with the
detailed discussion followed by the conclusion in Section 3.8.

3.3 Nomenclature

L: Set of distribution elements
N : Set of all nodes
Nc: Subset of demand nodes
T : Planning periods for optimization
g: Subset of generation node(s)1

ci,t: Conventional household demand at time period t at node i
qg,t: Generation supplied to the distribution grid at time period t
rg,t: Net active power import/export at time period t at generation node g (positive
for import)
ri,t: Net active power import/ export at time period t at node i (positive for import)
xi,t: EV charging energy at time period t at node i
pt: Dual variables for the total power flow balance constraints
λ−l,t, λ

+
l,t: Dual variables for the line capacity constraints

ξi,t: Dual variables for the conventional household demand constraints
δg,t: Dual variables for the generation node power balance constraints
ρi,t: Dual variables for the demand node power balance constraints
µ−i,t, µ

+
i,t: Dual variables for the aggregate EV charging energy constraints

κ−i,t, κ
+
i,t: Dual variables for the aggregate EV SOC constraints

Dl,i: PTDF coefficient of line l with respect to a unit injected at node i
Ei,t: Aggregate EV charging energy limit at time period t at node i
Kl: MVA capacity of line l
Pi,t(τi,t): Benefit from using demand τi,t at time period t at node i
PLMP
t : Locational marginal prices (LMPs) for the node feeding the distribution grid
P ∗i,t: Distribution locational marginal prices (DLMPs) for the distribution grid

1The set of all nodes N consists of two subsets, where Nc is the subset of demand nodes and g
is the subset of generation node(s).
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Si,0: Initial aggregate EV battery SOC at node i
S−i,t: Minimum aggregate EV battery SOC at time period t at node i
S+
i,t: Maximum aggregate EV battery SOC at time period t at node i
di,t: Aggregate driving energy requirement at time period t at node i

3.4 Formulation under Complete Information

Determination of DLMPs

We examine the framework intended for LMPs in the derivation of DLMPs. LMPs
are determined by maximizing social welfare with the physical constraints of the trans-
mission system respected, which expose producers and consumers to the marginal
costs of electricity delivery at different locations. LMPs can be decomposed into
three components: marginal cost of generation, marginal cost of losses and marginal
cost of congestion (Stoft, 2002). Both the AC optimal power flow (ACOPF) and
the DC optimal power flow (DCOPF) can be used to compute LMPs. The DCOPF
is widely used and is considered to be sufficient for the locational marginal pricing
(LMP) calculation due to its efficiency and reasonable accuracy (Li and Bo, 2007).
The DCOPF has also been employed by several software tools for the chronological
LMP simulation and forecasting, such as ABB GridViewTM, Siemens Promod, GE
MAPSTM and PowerWorld (Yang, Li, and Freeman, 2003). The DCOPF is adopted
in the derivation of DLMPs as a practical approach to address the computational
complexity resulting from the large number of nodes on the distribution network.

In the proposed DLMP method, the DSO determines DLMPs by solving a con-
strained social welfare maximization problem for the distribution network which con-
siders EV aggregators as price takers in the local DSO market and accounts for the
price elasticity of the residential energy consumption. It is assumed that EV aggrega-
tors are economically rational, that is, their objective is to maximize their individual
surplus. Supply busses connecting the distribution system to the transmission grid
are treated as generation nodes with marginal costs set to LMPs for each bus.2 These
LMPs are determined by the independent system operator (ISO), and treated in our
model as exogenous inputs.

DSO’s Problem

The mathematical formulation in Yao, Adler, and Oren (2008), Limpaitoon, Chen,
and Oren (2011), and Hogan (1992) has been modified to make it more general to
allow economic allocation for both the conventional household demand and the EV

2 In our model, we assume that there is only one generation node on the distribution network,
and no demand locates at the generation node.
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charging energy. The DSO’s optimization problem is presented in (3.1) to (3.8),

(P1) max
ri,t:i∈N,t∈T ;ci,t,xi,t:i∈Nc,t∈T ;qg,t:t∈T

∑
i∈Nc

∑
t∈T
∫ ci,t

0
Pi,t(τi,t)dτi,t −

∑
t∈T P

LMP
t qg,t

s.t. (3.1)

∑
i∈N ri,t = 0 ∀t ∈ T (pt) (3.2)

−Kl ≤
∑

i∈N Dl,iri,t ≤ Kl ∀l ∈ L,∀t ∈ T (λ−l,t, λ
+
l,t) (3.3)

rg,t + qg,t = 0 ∀t ∈ T (δg,t) (3.4)

ri,t = ci,t + xi,t ∀i ∈ Nc,∀t ∈ T (ρi,t) (3.5)

ci,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (ξi,t) (3.6)

0 ≤ xi,t ≤ Ei,t ∀i ∈ Nc,∀t ∈ T (µ−i,t, µ
+
i,t)(3.7)

S−i,t ≤ Si,0 +
∑

t′≤t−1 xi,t′ −
∑

t′≤t di,t′ ≤ S+
i,t ∀i ∈ Nc,∀t ∈ T\{1} (κ−i,t, κ

+
i,t).(3.8)

The DSO’s objective is to maximize social surplus (3.1)−− subject to the lossless
energy-balance constraints on the distribution network (3.2), the line capacity con-
straints (3.3), the generation node balance constraints (3.4), the demand node balance
constraints (3.5), the conventional household demand non-negative constraints (3.6),
the charging energy limit constraints (3.7) and the driving requirement constraints
(3.8). For the demand node balance constraints (3.5), EVs are assumed to charge
energy at the locations they belong to on the distribution network, which requires
that the energy import ri,t balances the sum of the conventional household demand
ci,t and the EV demand xi,t at time period t at node i. The EV demand xi,t is con-
strained between 0 and the aggregate EV charging energy limit Ei,t at time period t
at node i in (3.7). Ei,t varies over time to reflect the aggregate availability of EVs in
different hours. The DSO is required to provide enough energy to satisfy the driving
energy requirements, which is specified in (3.8). The SOC at time period t at node i
is the sum of the initial SOC Si,0 and the total charging energy xi,t up to time period
t− 1 minus the total driving energy requirement di,t up to time period t. The SOC is
constrained between the minimum aggregate EV battery SOC S−i,t and the maximum
aggregate EV battery SOC S+

i,t in (3.8). The variables in parentheses next to the
constraints denote the corresponding Lagrange multipliers.

The objective function consists of two components, the social value of meeting the
conventional demand, given by the area under the demand function, and the costs
of satisfying both the EV demand and the conventional demand as shown in (3.1).
We do not include in the objective function the benefit corresponding to the EV
demand since that component is constant as long as the EV demand is met within
the day and is not affected by the charging schedule. Instead, the driving requirement
constraints (3.8) requiring that the EV demand is met by the schedule is included.
To be more specific, the object function (3.1) can be further decomposed into three
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terms as shown by,∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t qg,t (3.9)

=
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t

∑
i∈Nc

(ci,t + xi,t) (3.10)

=
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t

∑
i∈Nc

ci,t −
∑
t∈T

PLMP
t

∑
i∈Nc

xi,t, (3.11)

where
∑

i∈Nc

∑
t∈T
∫ ci,t

0
Pi,t(τi,t)dτi,t −

∑
t∈T P

LMP
t

∑
i∈Nc

ci,tis the social welfare cor-
responding to the conventional household demand and

∑
t∈T P

LMP
t

∑
i∈Nc

xi,t is the
EV charging costs.

The Karush-Kuhn-Tucker (KKT) conditions of the DSO’s optimization problem
(P1) are summarized below,

Pi,t(ci,t)− ρi,t + ξi,t = 0 ∀i ∈ Nc,∀t ∈ T (3.12)

−pt −
∑

l∈L(λ+
l,t − λ−l,t)Dl,i + ρi,t = 0 ∀i ∈ Nc, ∀t ∈ T (3.13)

−pt −
∑

l∈L(λ+
l,t − λ−l,t)Dl,g + δg,t = 0 ∀t ∈ T (3.14)

−PLMP
t + δg,t = 0 ∀t ∈ T (3.15)

−ρi,t − µ+
i,t + µ−i,t −

∑
t′≥t+1 κ

+
i,t′ +

∑
t′≥t+1 κ

−
i,t′ = 0 ∀i ∈ Nc, ∀t ∈ T\{|T |}

(3.16)

−ρi,t − µ+
i,t + µ−i,t = 0 ∀i ∈ Nc, t = |T | (3.17)∑

i∈N ri,t = 0 ∀t ∈ T (3.18)

rg,t + qg,t = 0 ∀t ∈ T (3.19)

ri,t = ci,t + xi,t ∀i ∈ Nc,∀t ∈ T (3.20)

0 ≤ λ−l,t ⊥
∑

i∈N Dl,iri,t +Kl ≥ 0 ∀l ∈ L,∀t ∈ T (3.21)

0 ≤ λ+
l,t ⊥ Kl −

∑
i∈N Dl,iri,t ≥ 0 ∀l ∈ L,∀t ∈ T (3.22)

0 ≤ ξi,t ⊥ ci,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (3.23)

0 ≤ µ−i,t ⊥ xi,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (3.24)

0 ≤ µ+
i,t ⊥ Ei,t − xi,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (3.25)

0 ≤ κ−i,t ⊥ Si,0 +
∑

t′≤t−1 xi,t′ −
∑

t′≤t di,t′ − S−i,t ≥ 0 ∀i ∈ Nc,∀t ∈ T\{1}
(3.26)

0 ≤ κ+
i,t ⊥ S+

i,t − Si,0 −
∑

t′≤t−1 xi,t′ +
∑

t′≤t di,t′ ≥ 0 ∀i ∈ Nc,∀t ∈ T\{1}.
(3.27)

The KKT conditions yield optimality certificate for the primal problem and provide
the economic interpretation of Lagrange multipliers. DLMPs are derived from the
KKT conditions to provide financial incentives for market participants to alleviate
congestion and ensure efficient load allocation. By solving (3.13), (3.14) and (3.15),
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the marginal value of energy for both the EV demand and the conventional household
demand at time period t at node i ρi,t takes the form of

ρi,t = PLMP
t −

∑
l∈L

(λ+
l,t − λ−l,t)Dl,g +

∑
l∈L

(λ+
l,t − λ−l,t)Dl,i. (3.28)

The PTDF coefficients associated with the generation node Dl,g are set to be 0 to
enable unlimited import from the grid to the distribution network, which simplifies
(3.28) and yields,

ρi,t = PLMP
t +

∑
l∈L

(λ+
l,t − λ−l,t)Dl,i. (3.29)

DLMPs can be derived by combining (3.12) and (3.29) to yield

P ∗i,t = ρi,t − ξi,t (3.30)

= PLMP
t +

∑
l∈L

(λ+
l,t − λ−l,t)Dl,i − ξi,t. (3.31)

The non-negativity constraints (3.6) can be excluded by implicitly assuming an inte-
rior solution with respect to these constraints, forcing the dual variables associated
with the constraints ξi,t = 0. This can be explained as: every conventional household
consumes at least a small positive amount of energy. Under this assumption, DLMPs
become

P ∗i,t = PLMP
t + ϕ̃i,t, (3.32)

where ϕ̃i,t =
∑

l∈L(λ+
l,t−λ−l,t)Dl,i is a sum of difference of λ+

l,t and λ−l,t over all the lines
l weighted by the i-th row of the PTDF matrix. DLMPs can be interpreted as the
sum of the reference price PLMP

t and the locational congestion markup ϕ̃i,t, which
is analogous to the marginal cost of congestion in LMPs. Noticing that LMPs only
optimize the dispatch of instantaneous demand, DLMPs are designed to co-optimize
the dispatch of both the instantaneous demand and the EV charging schedule over
the planning horizon. By rearranging (3.16) and (3.17), we have ρi,t = −(µ+

i,t−µ−i,t)−∑
t′≥t+1(κ+

i,t′ − κ−i,t′) for ∀t ∈ T\{|T |} and ρi,t = −µ+
i,t + µ−i,t for t = |T |. DLMPs

P ∗i,t can be written as a linear combination of the dual variables associated with the
constraints of EVs,

P ∗i,t = ρi,t − ξi,t (3.33)

= { −µ
+
i,t + µ−i,t −

∑
t′≥t+1 κ

+
i,t′ +

∑
t′≥t+1 κ

−
i,t′ − ξi,t ∀i ∈ Nc,∀t ∈ T\{|T |}

−µ+
i,t + µ−i,t − ξi,t ∀i ∈ Nc, t = |T | .

(3.34)

When the constraints (3.7) do not bind, it yields

P ∗i,t = { −µ
+
i,t + µ−i,t −

∑
t′≥t+1 κ

+
i,t′ +

∑
t′≥t+1 κ

−
i,t′ ∀i ∈ Nc,∀t ∈ T\{|T |}

−µ+
i,t + µ−i,t ∀i ∈ Nc, t = |T | . (3.35)
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DLMPs defined by (3.32) and (3.35) can be interpreted as the equilibrium con-
ditions for the market clearing of the electric distribution system. This is consistent
with DLMPs derived from the dual problem of the DSO’s optimization problem (D1).3

As shown later, both efficient load allocation and distribution grid reliability can be
achieved under DLMPs through a decentralized mechanism where loads respond au-
tonomously to the posted DLMPs by maximizing their individual net surplus.

EV Aggregator’s Problem

The EV charging management can take different forms: charging management
controlled by individual EV user, aggregator based charging management, and the
proper combination of the two mechanisms. In this study, we provide models for
examining the feasibility of the aggregator based charging management. In the ag-
gregator based charging management, the EV aggregator is a profit-seeking entity,
who manages the EV fleet on behalf of EV users, ensures that the energy needs are
satisfied, and provides customized service and charging solution. The objective of the
EV aggregator in our model is to meet the energy needs of EV users with minimum
charging costs. The shape of the DLMP curve and the driving pattern of EV users
affect the optimal solution. It is also assumed that the EV aggregator does not pos-
sess market power in the DSO market, since the EV aggregator only controls a small
portion of the distribution network.

The aggregator based EV optimal charging management can be described by the
optimization problem that follows,

(P2) minx̂i,t:t∈T
∑

t∈T P
∗
i,tx̂i,t (3.36)

s.t. 0 ≤ x̂i,t ≤ Ei,t ∀t ∈ T (µ̂−i,t, µ̂
+
i,t)(3.37)

S−i,t ≤ Si,0 +
∑

t′≤t−1 x̂i,t′ −
∑

t′≤t di,t′ ≤ S+
i,t ∀t ∈ T\{1} (κ̂−i,t, κ̂

+
i,t).

(3.38)

The constraints (3.37) and (3.38) ensure that the EV charging energy and the EV
battery SOC are within the specified limits. When DLMPs P ∗i,t are known to the EV
aggregator, the optimization problem is a linear programming problem and the EV
aggregator optimally determines the amount of energy to purchase x̂i,t to minimize
the charging costs subject to the charging energy limit constraints and the driving
requirement constraints.

The dual problem of the EV aggregator’s optimization problem (P2) can be shown
in the following form,4

(D2) maxµ̂+i,t,κ̂
+
i,t,κ̂

−
i,t≥0:t∈T −

∑
t∈T µ̂

+
i,tEi,t −

∑
t∈T\{1} κ̂

−
i,t(Si,0 −

∑
t′≤t di,t′ − S−i,t)

−∑t∈T\{1} κ̂
+
i,t(S

+
i,t − Si,0 +

∑
t′≤t di,t′) (3.39)

3See Appendix A for details.
4See Appendix B for details.
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s.t. P ∗i,t − µ̂−i,t + µ̂+
i,t −

∑
t′≥t+1 κ̂

−
i,t′ +

∑
t′≥t+1 κ̂

+
i,t′ = 0 ∀t ∈ T\{|T |}

(3.40)

P ∗i,t − µ̂−i,t + µ̂+
i,t = 0 t = |T | (3.41)

µ̂−i,t ≥ 0 ∀t ∈ T (3.42)

µ̂+
i,t ≥ 0 ∀t ∈ T (3.43)

κ̂−i,t ≥ 0 ∀t ∈ T (3.44)

κ̂+
i,t ≥ 0 ∀t ∈ T. (3.45)

The certificate of optimality of the EV aggregator’s optimization problem (P2)
are summarized below,

0 ≤ x̂i,t ≤ Ei,t ∀t ∈ T (3.46)

S−i,t ≤ Si,0 +
∑

t′≤t−1 x̂i,t′ −
∑

t′≤t di,t′ ≤ S+
i,t ∀t ∈ T\{1} (3.47)

P ∗i,t − µ̂−i,t + µ̂+
i,t −

∑
t′≥t+1 κ̂

−
i,t′ +

∑
t′≥t+1 κ̂

+
i,t′ = 0 ∀t ∈ T\{|T |} (3.48)

P ∗i,t − µ̂−i,t + µ̂+
i,t = 0 t = |T | (3.49)

µ̂−i,t ≥ 0 ∀t ∈ T (3.50)

µ̂+
i,t ≥ 0 ∀t ∈ T (3.51)

κ̂−i,t ≥ 0 ∀t ∈ T (3.52)

κ̂+
i,t ≥ 0 ∀t ∈ T (3.53)

µ̂−i,tx̂i,t = 0 ∀t ∈ T (3.54)

µ̂+
i,t(Ei,t − x̂i,t) = 0 ∀t ∈ T (3.55)

κ̂−i,t(Si,0 +
∑

t′≤t−1 x̂i,t′ −
∑

t′≤t di,t′ − S−i,t) = 0 ∀t ∈ T\{1} (3.56)

κ̂+
i,t(S

+
i,t − Si,0 −

∑
t′≤t−1 x̂i,t′ +

∑
t′≤t di,t′) = 0 ∀t ∈ T\{1}, (3.57)

where (3.46)-(3.47) are primal feasibility conditions, (3.48)-(3.53) are dual feasibility
conditions and (3.54)-(3.57) are complementarity conditions.

Theorem 1 The efficient EV charging allocation of the DSO’s problem {x∗i,t} is
optimal for the EV aggregator under DLMPs {P ∗i,t}, if the non-negativity constraints
of the conventional household demand (3.7) do not bind.

Proof of the Theorem 1: We show that the optimal solution of the DSO’s problem
{x∗i,t, µ+∗

i,t , µ
−∗
i,t , κ

+∗
i,t′ , κ

−∗
i,t′} also satisfies the optimality conditions of the EV aggregator’s

problem (3.46)-(3.57).
The optimal solution of the DSO’s problem satisfies the KKT conditions (3.12)-(3.27).
If the non-negativity constraints of the conventional household demand (3.7) do not
bind, we have DLMPs P ∗i,t = −µ+∗

i,t +µ−∗i,t −
∑

t′≥t+1 κ
+∗
i,t′+

∑
t′≥t+1 κ

−∗
i,t′ for ∀t ∈ T\{|T |}

and P ∗i,t = −µ+∗
i,t + µ−∗i,t for t = |T |, which implies (3.48) and (3.49) hold. (3.46),

(3.47) and (3.50)-(3.57) come directly from the KKT conditions (3.24)-(3.27). Thus,
the efficient EV charging allocation of the DSO’s problem satisfies the optimality
conditions of the EV aggregator’s problem.
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Corollary 1 The efficient allocation of the DSO’s problem {x∗i,t, c∗i,t} can be achieved
in a decentralized system under DLMPs {P ∗i,t}, if the non-negativity constraints of
the conventional household demand (3.7) do not bind.

Proof of the Corollary 1: The conventional household demand {c∗i,t} is deterministic
under DLMPs {P ∗i,t}. From Theorem 1, it is known that, under DLMPs {P ∗i,t}, the
optimal solution of the EV aggregator’s problem is the efficient EV charging allocation
of the DSO’s problem {x∗i,t}. Therefore, the efficient allocation of the DSO’s problem
can be achieved through a decentralized mechanism.

However, Theorem 1 only holds under the assumption of non-degeneracy. In
the presence of degeneracy, the uniqueness of the solution of the EV aggregator’s
problem is no longer guaranteed by Theorem 1. Hence, in a more accurate way, the
allocation of the DSO’s problem can, but not necessarily always, be achieved through
a decentralized mechanism (Liu and Wen, 2014). The existence of multiple optimal
solutions in the EV aggregator’s optimization is the result of dual degeneracy. As
shown in Figure 3.2, flat DLMPs across several hours are often observed to induce
intertemporal demand shifts that relieve congestion. In the dual problem, flat DLMPs
across several hours cause one or more basic variables in the basic feasible solution
to take zero values, which leads to degeneracy. A degenerate dual problem implies
multiple optimal solutions in the primal problem and can result in infeasibility if
the solution is implemented through a decentralized scheme. In such cases, pure
decentralization fails and some external rationing scheme must be implemented to
ensure feasibility of the primal in Huang, Wu, Oren, Li, and Liu (2014). In practice,
degeneracy is a problem even at the ISO level. In the CAISO electric power markets,
for instance, degeneracy occurs when the dispatch is not unique or when the prices
are not unique. In such cases, heuristic procedures are employed to resolve the non-
uniqueness.

DSO Market Design

The theoretical framework of DLMPs supports the implementation of a decen-
tralized DSO market with the aim to facilitate efficient load allocation and alleviate
congestion on the distribution network. The DSO market process can be described
in the form of a coordinated mechanism between the DSO and market participants
including retailers and EV aggregators. Based on historical data, the DSO estimates
the price elasticity of the conventional household demand, and forecasts the EV de-
mand. Once LMPs are available, the DSO calculates DLMPs that enable local welfare
optimization and ensure grid reliability by accounting for the topological constraints
of the distribution network. Under the assumption that retailers and EV aggrega-
tors respond rationally to the posted DLMPs by maximizing their individual net
surplus, the efficient allocation of both the conventional household demand and the
EV demand can be achieved by the DSO in a decentralized system under DLMPs, as
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proved in Theorem 1 and Corollary 1. This yields the desired outcome of DLMPs –
congestion on the distribution network is properly managed, without explicit commu-
nication among the DSO and market participants. DLMPs are in themselves sufficient
information to induce the consumption behavior of market participants that benefits
economic efficiency and system reliability.

3.5 Formulation under Incomplete Information

Pricing and Scheduling under Uncertainty

As discussed in Section 3.4, DLMPs are solved in a deterministic environment
where the DSO possesses the complete information of LMPs. The implicit assump-
tion is that the ISO determines LMPs before the DSO calculates DLMPs. In practice,
however, LMPs are determined by the ISO with an auction mechanism that economi-
cally clears the supply bids against the demand bids submitted by market participants
with the transmission constraints enforced. These supply and demand bids also in-
clude the bids submitted by the DSO, which invalidates our assumption. When LMPs
are unavailable, the DSO needs to determine DLMPs under uncertainty and manage
associated risks, based on the forecasts of LMPs.

In wholesale electricity markets, LMPs exhibit high price volatility caused by
unanticipated energy imbalances. The marginal production cost increases substan-
tially with the aggregate demand, as the cost function of power generation becomes
much steeper above a certain capacity level. The use of inventory to smooth LMPs
is limited, since the non-storability of electricity makes it costly to hold inventory
for price arbitrage across time periods. LMPs are most volatile during the summer,
when a sudden heat wave can strain the ability of generation plants to meet the el-
evated demand. Without publicly known LMPs, the DSO is exposed to substantial
amounts of risks, which requires effective methodologies for pricing and scheduling
under uncertainty.

Optimal pricing and scheduling under uncertainty has been a central problem
in the practice of power management. Various applications of linear and nonlin-
ear stochastic optimization techniques are proposed to deal with the variability and
uncertainty in power system planning. For efficient operation of reservoir systems,
Pereira and Pinto (1991) propose an algorithm for multistage stochastic optimiza-
tion problems based on the piecewise linear approximation of the cost-to-go functions
of stochastic dynamic programming to avoid the curse of dimensionality. Takriti,
Krasenbrink, and L. S.-Y. Wu (2000) present a mixed-integer program for stochastic
unit commitment that can be solved by using Lagrangian relaxation and Benders de-
composition. Wong and Fuller (2007) propose a stochastic linear programming model
for pricing energy and reserves in power markets under N-1 reliability requirements.
Garcia-Gonzalez, Muela, Santos, and González (2008) develop a two-stage stochastic
programming model for renewable integration by coupling wind farms with hydro
pumped-storage units.
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There is a rapidly growing literature concentrated on the development of robust
optimization framework to address uncertainty in diverse settings of power plan-
ning. Malcolm and Zenios (1994) develop a robust optimization model for capacity
expansion under demand uncertainty. Bertsimas, Litvinov, Sun, Zhao, and Zheng
(2013) propose a two-stage adaptive robust unit commitment model in the presence
of supply and demand uncertainty resulting from variable generation resources, and
they further demonstrate that the robust unit commitment model can be solved by a
computationally tractable method based on a combination of Benders decomposition
type algorithm and the outer approximation technique. Other recent work includes
Q. Wang, Watson, and Guan (2013), Zhao and Guan (2013), and Zhao, J. Wang,
Watson, and Guan (2013).

Both stochastic optimization and robust optimization are implemented for DLMPs,
under the assumption that price uncertainty comes from a multivariate normal distri-
bution N(µP,ΣP) with mean values µP ∈ R|T |×1 and covariance matrix ΣP ∈ R|T |×|T |.

Stochastic Optimization

The classical stochastic optimization maximizes the expected social welfare, and
the scenarios are sampled from a multivariate normal distribution N(µP,ΣP). Since
the objective of the DSO’s optimization problem (P1) is linear, it is equivalent to
solve a deterministic optimization problem, where LMPs PLMP

t are replaced by the
mean values of LMPs µP,

E[
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t qg,t] (3.58)

=
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

µPqg,t. (3.59)

We denote this natural extension as DLMPs under uncertainty.

Robust Optimization

Under the robust optimization framework, we assume the demand function at
time period t at node i follows the linear dynamics Pi,t(τi,t) = ai,t − bi,tτi,t, which
simplifies the objective function into a quadratic form. We further substitute in the
constraints (3.4) and (3.5), and it yields

(P1) max
ri,t:i∈N,t∈T ;xi,t:i∈Nc,t∈T

∑
i∈Nc

∑
t∈T (ai,t(ri,t − xi,t)− 1

2
bi,t(ri,t − xi,t)2)

−∑t∈T P
LMP
t

∑
i∈Nc

ri,t (3.60)

s.t. −Kl ≤
∑

i∈Nc
Dl,iri,t ≤ Kl ∀l ∈ L,∀t ∈ T (3.61)

ri,t − xi,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (3.62)

0 ≤ xi,t ≤ Ei,t ∀i ∈ Nc,∀t ∈ T (3.63)

S−i,t ≤ Si,0 +
∑

t′≤t−1 xi,t′ −
∑

t′≤t di,t′ ≤ S+
i,t ∀i ∈ Nc,∀t ∈ T\{1}. (3.64)
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By putting the objective (3.60) into the constraints and introducing an auxiliary
variable s, we can formulate a quadratically constrained quadratic program (QCQP),

(QCQP1) minri,t:i∈N,t∈T ;xi,t:i∈Nc,t∈T ;s s (3.65)

s.t. −∑i∈Nc

∑
t∈T (ai,t(ri,t − xi,t)− 1

2
bi,t(ri,t − xi,t)2)

+
∑

t∈T P
LMP
t

∑
i∈Nc

ri,t − s ≤ 0 (3.66)

−Kl ≤
∑

i∈Nc
Dl,iri,t ≤ Kl ∀l ∈ L,∀t ∈ T (3.67)

ri,t − xi,t ≥ 0 ∀i ∈ Nc,∀t ∈ T (3.68)

0 ≤ xi,t ≤ Ei,t ∀i ∈ Nc,∀t ∈ T (3.69)

S−i,t ≤ Si,0 +
∑

t′≤t−1 xi,t′ −
∑

t′≤t di,t′ ≤ S+
i,t ∀i ∈ Nc,∀t ∈ T\{1}.

(3.70)

By using matrix representation for simplification, we can expressed (QCQP1) in ma-
trix form by using notations presented in Appendix C,

(QCQP2) min
Y
eT2|Nc||T |+1Y (3.71)

s.t. −ATUY +
1

2
YTUTBUY + PTVY− eT2|Nc||T |+1Y ≤ 0 (3.72)

−K ≤ DY ≤ K (3.73)

UY ≥ 0 (3.74)

0 ≤WY ≤ E (3.75)

S− ≤ S + LY−G ≤ S+. (3.76)

where Y ∈ R(2|Nc||T |+1)×1 is the vector of decision variables and the entries of Y
include s, ri,t and ci,t for ∀i ∈ Nc,∀t ∈ T . If the uncertainty set of LMPs U = {P =
µP + ζ|ζTΣP

−1ζ ≤ α} is ellipsoidal, Ben-Tal, Nemirovski, and Roos (2002) allow us to
rewrite the quadratic constraints (3.72) as the following second-order cone constraints,

−YTUTBUY + 2(UTA + e2|Nc||T |+1)TY (3.77)

≥ max
P∈U

2PTVY (3.78)

= max
ζT ΣP

−1ζ≤α
2(µP + ζ)TVY (3.79)

= 2µTPVY + max
ζT ΣP

−1ζ≤α
2ζTVY (3.80)

= 2µTPVY + max
(α−

1
2 ΣP

− 1
2 ζ)T (α−

1
2 ΣP

− 1
2 ζ)≤1

2((α−
1
2 ΣP

− 1
2 )−1α−

1
2 ΣP

− 1
2 ζ)TVY (3.81)

= 2µTPVY + max
(α−

1
2 ΣP

− 1
2 ζ)T (α−

1
2 ΣP

− 1
2 ζ)≤1

2(α−
1
2 ΣP

− 1
2 ζ)Tα

1
2 (ΣP

1
2 )TVY (3.82)

= 2µTPVY + 2‖α 1
2 (ΣP

1
2 )TVY ‖2 (3.83)

= 2µTPVY + 2‖α 1
2 ΣP

1
2VY ‖2, (3.84)

where ΣP
1
2 is the square root of covariance matrix ΣP, and ΣP

1
2 is a symmetric positive

semidefinite matrix. Integrating with the rest of the equations, we have the robust
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counterpart of (QCQP1) in the following second-order cone program (SOCP),

(SOCP1) min
Y
eT2|Nc||T |+1Y (3.85)

s.t. −YTUTBUY + 2(UTA + e2|Nc||T |+1)TY ≥ 2µTPVY + 2‖α 1
2 ΣP

1
2VY ‖2

(3.86)

−K ≤ DY ≤ K (3.87)

UY ≥ 0 (3.88)

0 ≤WY ≤ E (3.89)

S− ≤ S + LY−G ≤ S+. (3.90)

3.6 Data

Case studies have been conducted using the Bus 4 distribution network of the
Roy Billinton Test System (RBTS) (Allan et al., 1991) and the Danish driving data.
Figure 3.1 illustrates a line diagram of the distribution system used in case studies.
On this medium voltage distribution network, there are 3 supply points (SPs), 38
load points (LPs) and 7 feeders. SPs are connected to the main grid by 33 kV/11
kV transformers. A summary of the customer data is presented in Table 3.1, which
consist of customer type, peak and average load levels, and number of customers.
There are 4779 customers in total on the distribution network. The demand function
is assumed to be linear with a price elasticity of -0.1, and this is consistent with
empirical evidence reported in Azevedo, Morgan, and Lave (2011). A summary of
connection line types is presented in Table 3.2.

The price data for this study consist of the historical day-ahead LMPs at the
California Independent System Operator (CAISO) NP15 EZ Gen Hub. For each day,
the data contain day-ahead LMPs for each of the 24 hours during that day. The
CAISO NP15 EZ Gen Hub is one of the trading hubs in the CAISO electric power
markets, and covers the current CAISO congestion management zone NP15.

A nonhomogenous EV fleet is used in case studies. The EV battery size varies
according to individual EV driving requirements. It is assumed that the maximum
charging power is 1.15 kW (based on a 5A, 230V connection), and the EV energy
consumption is 0.15 kWh/km (Q. Wu et al., 2010). The minimum and maximum EV
battery SOCs are set as 20% and 85%, respectively. The initial EV battery SOC varies
by vehicle to ensure the feasibility of individual charging and driving requirements.
This is in accordance with the non-homogenous nature of EV fleet. A summary of
the EV data is presented in Table 3.3.

The Danish driving data from the Danish National Travel Survey are used in
case studies because the driving behavior in Denmark is representative of the driving
pattern of EV users (Q. Wu et al., 2010). In Denmark, the average driving distance
is about 40 km per day, and this is similar to the typical driving distance of EV
users. The Danish driving data are highly detailed and provide significant insight
into the driving habits of Danish drivers. The relevant data used in case studies are
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driving start and stop time, distance during driving period, and day type. The EV
availability for charging is defined as the period during which the EV is parked. The
driving profile from the same day type as LMPs is used to ensure the consistency of
case studies.

3.7 Case Study Results

Three case studies are conducted, and the details are presented in Table 3.4.5

The results of case study 1 are shown in Figure 3.2 - Figure 3.5. Figure 3.3 and
Figure 3.5 illustrate the effect of congestion alleviation on Line 1 when DLMPs are
introduced. In Figure 3.5, EV aggregators minimize the charging costs under LMPs
by allocating all EV loads in a single hour. Under DLMPs, however, EV loads are
spread out and distributed among several hours with low LMPs, as shown in Figure
3.3. In Figure 3.2, DLMPs are higher than LMPs on the buses in the downstream
areas of the congested lines, which creates intertemporal demand shifts that relieve
congestion. In case study 2, without DLMPs, congestion occurs in both the morning
and the afternoon when LMPs are low in Figure 3.9, but congestion is successfully
alleviated under DLMPs as EV loads are shifted to the adjacent low LMP hours in
Figure 3.7. The results of case study 3 are plotted in Figure 3.10 - Figure 3.13, and
similar features are observed as case study 1 and case study 2.

In order to further demonstrate the effectiveness of the proposed DLMP concept
in congestion alleviation, case studies with three projected futuristic EV penetration
scenarios are conducted in Figure 3.14 - Figure 3.19 with 200%, 500% and 1000%
EV penetration. DLMPs increase as the EV penetration level increases, but the line
capacity constraints are not violated in any of the three scenarios, as shown in Figure
3.15, Figure 3.17, and Figure 3.19. It concludes that the DLMP concept is promising
even in the presence of high EV penetration, which is likely to come into existence in
the future.

We compare the results obtained by stochastic optimization and robust optimiza-
tion. µP and ΣP are empirically estimated from historical LMPs with maximum
likelihood estimators. Since the tail distribution can only be sampled under LMPs
that yield the worst objective value, importance sampling technique is employed for
the simulation of social welfare under DLMPs and robust DLMPs. Importance sam-
pling is a statistical technique for estimating properties of a particular distribution. It
generates samples from a different distribution rather than the distribution of interest
to reduce variance in Monte Carlo simulation. We refer to the exposition in Hastings
(1970). We draw samples from the proposal probability density function, which is
centered around the worst-case LMPs, instead of the real probability density function
of LMPs.

5The EV penetration is defined as the ratio of the maximum EV charging demand to the conven-
tional household demand, and the maximum EV charging demand is the total EV charging demand
when all EVs charge simultaneously.
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As we discussed, the size of the uncertainty set is controlled by α. To demonstrate
the effect of parameter α, we present the results obtained from robust optimization
under different α in Figure 3.20 - Figure 3.25. α = 1 is the smallest set which captures
the lowest level of uncertainty, and conversely α = 20 is the largest set which captures
the highest level of uncertainty. Compared to the case with α = 1, the EV demand
is shifted from 2 a.m., 3 a.m. and 4 a.m. to 6 a.m., 7 a.m. and 6 p.m. in the
case with α = 20, because LMPs during 2 a.m., 3 a.m. and 4 a.m. are no longer
cheap under the worst-case LMPs. Figure 3.26 compares the probability density
function of social welfare under DLMPs, robust DLMPs with α = 5 and robust
DLMPs with α = 20. They show significant improvements in reducing price risk by
the robust approach, since more probability density is concentrated around the mean
value under robust DLMPs. In Figure 3.27, we explore the effect of tail risk reduction
by robust optimization, and importance sampling technique is used. A substantial
decrease of probability density in the tail under robust DLMPs is observed. These
results illustrate the differences of robust optimization from the classical stochastic
optimization.

3.8 Conclusion

An integrated DLMP concept is proposed to address the problem of congestion
alleviation on the distribution network faced by future power systems. By design, it
can be adopted under the existing LMP framework for achieving economic allocation
of both the EV demand and the conventional demand subject to line capacity con-
straints. In the presence of price uncertainty, a robust DLMP method is developed
for EV charging management. Case studies based on the RBTS electric distribu-
tion network and the Danish driving data show the efficacy of the proposed DLMP
concept. In a very extreme scenario with 1000% EV penetration, congestion on the
distribution network can be alleviated by introducing DLMPs. Under robust DLMPs,
both variance and tail risk reduction is achieved.
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3.9 Appendix

Appendix A

From duality theory, primal and dual problems are alternative ways of character-
izing market equilibrium conditions for both the EV demand and the conventional
demand. If we describe our primal problem as a classical welfare maximization prob-
lem, its dual problem can be interpreted as a cost minimization problem, where dual
variables are related to shadow prices that reflect the economic values of resources
available to market participants. The Lagrangian dual function can be used to ex-
press the primal problem (P1) as an unconstrained one. In order to simplify the
Lagrangian dual function, the PTDF coefficients associated with the generation node
Dl,g = 0. The dual problem can be derived from weak duality theorem,

max
ri,t:i∈N,t∈T ;ci,t,xi,t:i∈Nc,t∈T ;qg,t:t∈T

∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t qg,t

+ min
pt,δg,t:t∈T ;ρi,t:i∈Nc,t∈T ;λ−l,t,λ

+
l,t≥0:l∈L,t∈T ;ξi,t,µ

−
i,t,µ

+
i,t≥0:i∈Nc,t∈T ;κ−i,t,κ

+
i,t≥0:i∈Nc,t∈T\{1}

{−
∑
t∈T

pt
∑
i∈N

ri,t +
∑
l∈L

∑
t∈T

λ−l,t(
∑
i∈N

Dl,iri,t +Kl) +
∑
l∈L

∑
t∈T

λ+
l,t(Kl −

∑
i∈N

Dl,iri,t)

+
∑
t∈T

δg,t(rg,t + qg,t) +
∑
i∈Nc

∑
∀t∈T

ρi,t(ri,t − ci,t − xi,t) +
∑
i∈Nc

∑
t∈T

ξi,tci,t

+
∑
i∈Nc

∑
t∈T

µ−i,txi,t +
∑
i∈Nc

∑
t∈T

µ+
i,t(Ei,t − xi,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ−i,t(Si,0 +
∑
t′≤t−1

xi,t′ −
∑
t′≤t

di,t′ − S−i,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ+
i,t(S

+
i,t − Si,0 −

∑
t′≤t−1

xi,t′ +
∑
t′≤t

di,t′)} (3.91)
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≤ min
pt,δg,t:t∈T ;ρi,t:i∈Nc,t∈T ;λ−l,t,λ

+
l,t≥0:l∈L,t∈T ;ξi,t,µ

−
i,t,µ

+
i,t≥0:i∈Nc,t∈T ;κ−i,t,κ

+
i,t≥0:i∈Nc,t∈T\{1}

max
ri,t:i∈N,t∈T ;ci,t,xi,t:i∈Nc,t∈T ;qg,t:t∈T

∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t qg,t

{−
∑
t∈T

pt
∑
i∈N

ri,t +
∑
l∈L

∑
t∈T

λ−l,t(
∑
i∈N

Dl,iri,t +Kl) +
∑
l∈L

∑
t∈T

λ+
l,t(Kl −

∑
i∈N

Dl,iri,t)

+
∑
t∈T

δg,t(rg,t + qg,t) +
∑
i∈Nc

∑
∀t∈T

ρi,t(ri,t − ci,t − xi,t) +
∑
i∈Nc

∑
t∈T

ξi,tci,t

+
∑
i∈Nc

∑
t∈T

µ−i,txi,t +
∑
i∈Nc

∑
t∈T

µ+
i,t(Ei,t − xi,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ−i,t(Si,0 +
∑
t′≤t−1

xi,t′ −
∑
t′≤t

di,t′ − S−i,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ+
i,t(S

+
i,t − Si,0 −

∑
t′≤t−1

xi,t′ +
∑
t′≤t

di,t′)} (3.92)

= min
pt,δg,t:t∈T ;ρi,t:i∈Nc,t∈T ;λ−l,t,λ

+
l,t≥0:l∈L,t∈T ;ξi,t,µ

−
i,t,µ

+
i,t≥0:i∈Nc,t∈T ;κ−i,t,κ

+
i,t≥0:i∈Nc,t∈T\{1}

max
ri,t:i∈N,t∈T ;ci,t,xi,t:i∈Nc,t∈T ;qg,t:t∈T

L(ri,t, ci,t, xi,t, qg,t; pt, δg,t, ρi,t, λ
−
l,t, λ

+
l,t, ξi,t, µ

−
i,t, µ

+
i,t, κ

−
i,t, κ

+
i,t),

(3.93)

where

L(ri,t, ci,t, xi,t, qg,t; pt, δg,t, ρi,t, λ
−
l,t, λ

+
l,t, ξi,t, µ

−
i,t, µ

+
i,t, κ

−
i,t, κ

+
i,t)

=
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t −
∑
t∈T

PLMP
t qg,t

{−
∑
t∈T

pt
∑
i∈N

ri,t +
∑
l∈L

∑
t∈T

λ−l,t(
∑
i∈N

Dl,iri,t +Kl) +
∑
l∈L

∑
t∈T

λ+
l,t(Kl −

∑
i∈N

Dl,iri,t)

+
∑
t∈T

δg,t(rg,t + qg,t) +
∑
i∈Nc

∑
∀t∈T

ρi,t(ri,t − ci,t − xi,t) +
∑
i∈Nc

∑
t∈T

ξi,tci,t

+
∑
i∈Nc

∑
t∈T

µ−i,txi,t +
∑
i∈Nc

∑
t∈T

µ+
i,t(Ei,t − xi,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ−i,t(Si,0 +
∑
t′≤t−1

xi,t′ −
∑
t′≤t

di,t′ − S−i,t)

+
∑
i∈Nc

∑
t∈T\{1}

κ+
i,t(S

+
i,t − Si,0 −

∑
t′≤t−1

xi,t′ +
∑
t′≤t

di,t′)}. (3.94)

We take the derivative with respect to each primal variable, and set all the deriva-
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tives equal to zero,

∂L

∂ci,t
= Pi,t(ci,t)− ρi,t + ξi,t ∀i ∈ Nc, ∀t ∈ T (3.95)

∂L

∂ri,t
= −pt −

∑
l∈L

(λ+
l,t − λ−l,t)Dl,i + ρi,t ∀i ∈ Nc,∀t ∈ T (3.96)

∂L

∂rg,t
= −pt −

∑
l∈L

(λ+
l,t − λ−l,t)Dl,g + δg,t ∀t ∈ T (3.97)

∂L

∂qg,t
= −PLMP

t + δg,t ∀t ∈ T (3.98)

∂L

∂xi,t
= { −ρi,t − (µ+

i,t − µ−i,t)−
∑

t′≥t+1(κ+
i,t′ − κ−i,t′) ∀i ∈ Nc,∀t ∈ T\{|T |}

−ρi,t − (µ+
i,t − µ−i,t) ∀i ∈ Nc, t = |T | .

(3.99)

Under these conditions, the Lagrangian dual function can be derived as,

g(pt, δg,t, ρi,t, λ
−
l,t, λ

+
l,t, ξi,t, µ

−
i,t, µ

+
i,t, κ

−
i,t, κ

+
i,t)

= max
ri,t:i∈N,t∈T ;ci,t,xi,t:i∈Nc,t∈T ;qg,t:t∈T

L(ri,t, ci,t, xi,t, qg,t; pt, δg,t, ρi,t, λ
−
l,t, λ

+
l,t, ξi,t, µ

−
i,t, µ

+
i,t, κ

−
i,t, κ

+
i,t)

(3.100)

=
∑
i∈Nc

∑
t∈T

∫ ci,t

0

Pi,t(τi,t)dτi,t +
∑
l∈L

∑
t∈T

λ−l,tKl +
∑
l∈L

∑
t∈T

λ+
l,tKl +

∑
i∈Nc

∑
t∈T

µ+
i,tEi,t

+
∑
i∈Nc

∑
t∈T\{1}

κ−i,t(Si,0 −
∑
t′≤t

di,t′ − S−i,t) +
∑
i∈Nc

∑
t∈T\{1}

κ+
i,t(S

+
i,t − Si,0 +

∑
t′≤t

di,t′).

(3.101)

The dual problem is presented as follows,

(D1) min
pt,δg,t:t∈T ;ρi,t:i∈Nc,t∈T ;λ−l,t,λ

+
l,t:l∈L,t∈T ;ξi,t,µ

−
i,t,µ

+
i,t,κ

−
i,t,κ

+
i,t:i∈Nc,t∈T ;c∗i,t:i∈Nc,t∈T∑

i∈Nc

∑
t∈T

∫ c∗i,t

0

Pi,t(τi,t)dτi,t +
∑
l∈L

∑
t∈T

λ−l,tKl +
∑
l∈L

∑
t∈T

λ+
l,tKl +

∑
i∈Nc

∑
t∈T

µ+
i,tEi,t

+
∑
i∈Nc

∑
t∈T\{1}

κ−i,t(Si,0 −
∑
t′≤t

di,t′ − S−i,t) +
∑
i∈Nc

∑
t∈T\{1}

κ+
i,t(S

+
i,t − Si,0 +

∑
t′≤t

di,t′)

(3.102)
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s.t. Pi,t(c
∗
i,t) = PLMP

t +
∑

l∈L(λ+
l,t − λ−l,t)Dl,i − ξi,t ∀i ∈ Nc, ∀t ∈ T(3.103)

Pi,t(c
∗
i,t) = −µ+

i,t + µ−i,t −
∑

t′≥t+1 κ
+
i,t′ +

∑
t′≥t+1 κ

−
i,t′ − ξi,t ∀i ∈ Nc, ∀t ∈ T\{|T |}

(3.104)

Pi,t(c
∗
i,t) = −µ+

i,t + µ−i,t − ξi,t ∀i ∈ Nc, t = |T |
(3.105)

λ−l,t ≥ 0 ∀l ∈ L,∀t ∈ T (3.106)

λ+
l,t ≥ 0 ∀l ∈ L,∀t ∈ T (3.107)

ξi,t ≥ 0 ∀i ∈ Nc,∀t ∈ T(3.108)

µ−i,t ≥ 0 ∀i ∈ Nc,∀t ∈ T(3.109)

µ+
i,t ≥ 0 ∀i ∈ Nc,∀t ∈ T(3.110)

κ−i,t ≥ 0 ∀i ∈ Nc,∀t ∈ T(3.111)

κ+
i,t ≥ 0 ∀i ∈ Nc,∀t ∈ T.

(3.112)

The economic interpretation of equilibrium conditions in (3.103), (3.104), and
(3.105) shows the marginal value relationship between the EV charging energy and
the conventional household demand, which is consistent with DLMPs derived from
the KKT conditions.

Appendix B

The Lagrangian can be used to express the primal problem (P2) as an uncon-
strained one. The dual problem can be derived from weak duality theorem,

min
x̂i,t:t∈T

∑
t∈T

P ∗i,tx̂i,t + max
µ̂−i,t,µ̂

+
i,t,κ̂

−
i,t,κ̂

+
i,t≥0:t∈T

∑
t∈T

−µ̂−i,tx̂i,t +
∑
t∈T

µ̂+
i,t(x̂i,t − Ei,t)

+
∑

t∈T\{1}

κ̂−i,t(S
−
i,t − Si,0 −

∑
t′≤t−1

x̂i,t′ +
∑
t′≤t

di,t′)

+
∑

t∈T\{1}

κ̂+
i,t(Si,0 +

∑
t′≤t−1

x̂i,t′ −
∑
t′≤t

di,t′ − S+
i,t)

(3.113)

≥ max
µ̂−i,t,µ̂

+
i,t,κ̂

−
i,t,κ̂

+
i,t≥0:t∈T

min
x̂i,t:t∈T

∑
t∈T

P ∗i,tx̂i,t +
∑
t∈T

−µ̂−i,tx̂i,t +
∑
t∈T

µ̂+
i,t(x̂i,t − Ei,t)

+
∑

t∈T\{1}

κ̂−i,t(S
−
i,t − Si,0 −

∑
t′≤t−1

x̂i,t′ +
∑
t′≤t

di,t′)

+
∑

t∈T\{1}

κ̂+
i,t(Si,0 +

∑
t′≤t−1

x̂i,t′ −
∑
t′≤t

di,t′ − S+
i,t)

(3.114)

= max
µ̂−i,t,µ̂

+
i,t,κ̂

−
i,t,κ̂

+
i,t≥0:t∈T

min
x̂i,t:t∈T

L(x̂i,t; µ̂
−
i,t, µ̂

+
i,t, κ̂

−
i,t, κ̂

+
i,t), (3.115)
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where

L(x̂i,t; µ̂
−
i,t, µ̂

+
i,t, κ̂

−
i,t, κ̂

+
i,t) (3.116)

= P ∗i,tx̂i,t +
∑
t∈T

−µ̂−i,tx̂i,t +
∑
t∈T

µ̂+
i,t(x̂i,t − Ei,t)

+
∑

t∈T\{1}

κ̂−i,t(S
−
i,t − Si,0 −

∑
t′≤t−1

x̂i,t′ +
∑
t′≤t

di,t′)

+
∑

t∈T\{1}

κ̂+
i,t(Si,0 +

∑
t′≤t−1

x̂i,t′ −
∑
t′≤t

di,t′ − S+
i,t).

(3.117)

We take the derivative with respect to each primal variable, and set all the deriva-
tives equal to zero,

∂L

∂x̂i,t
= P ∗i,t − µ̂−i,t + µ̂+

i,t −
∑
t′≥t+1

κ̂−i,t′ +
∑
t′≥t+1

κ̂+
i,t′ = 0 ∀t ∈ T\{|T |}(3.118)

∂L

∂x̂i,t
= P ∗i,t − µ̂−i,t + µ̂+

i,t t = |T |. (3.119)

Under these conditions, the Lagrangian dual function can be derived as,

g(µ̂−i,t, µ̂
+
i,t, κ̂

−
i,t, κ̂

+
i,t) (3.120)

= max
µ̂−i,t,µ̂

+
i,t,κ̂

−
i,t,κ̂

+
i,t≥0:t∈T

min
x̂i,t:t∈T

L(x̂i,t; µ̂
−
i,t, µ̂

+
i,t, κ̂

−
i,t, κ̂

+
i,t) (3.121)

= max
µ̂−i,t,µ̂

+
i,t,κ̂

−
i,t,κ̂

+
i,t≥0:t∈T

−
∑
t∈T

µ̂+
i,tEi,t

+
∑

t∈T\{1}

κ̂−i,t(S
−
i,t − Si,0 +

∑
t′≤t

di,t′) +
∑

t∈T\{1}

κ̂+
i,t(Si,0 −

∑
t′≤t

di,t′ − S+
i,t).

(3.122)

Appendix C

The following notation is used to express (QCQP1) in matrix form,

R|Nc|×1
t = {r1,t, r2,t, . . . , r|Nc|−1,t, r|Nc|,t}T (3.123)

X|Nc|×1
t = {x1,t, x2,t, . . . , x|Nc|−1,t, x|Nc|,t}T (3.124)

Y(2|Nc||T |+1)×1 = {RT
1 , . . . ,RT

|T |,XT
1 , . . . ,XT

|T |, s}T (3.125)

A
|T |×1
t = {a1,t, a2,t, . . . , a|Nc|−1,t, a|Nc|,t}T (3.126)

A|T ||Nc|×1 = {AT1 , AT2 , . . . , AT|T |−1, A
T
|T |}T (3.127)

U|T ||Nc|×(2|T ||Nc|+1) =


...

eTi − eT|T ||Nc|+i
...

 (3.128)
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P|T |×1 = {PLMP
1 , PLMP

2 , . . . , PLMP
|T |−1 , P

LMP
|T | }T (3.129)

K|L|×1
t = {K1, K2, . . . , K|L|−1, K|L|}T (3.130)

K|L||T |×1 = {KT1 ,KT2 , . . . ,KT|L|−1,KT|L|}T (3.131)

W|Nc||T |×(2|T ||Nc|+1) =
(

0|Nc||T |×|Nc||T | I |Nc||T |×|Nc||T | 0|Nc||T |×1
)

(3.132)

E |Nc|×1
t = {E1,t, E2,t, . . . , E|Nc|−1,t, E|Nc|,t}T (3.133)

E|Nc||T |×1 = {ET1 , ET2 , . . . , ET|T |−1, ET|T |}T (3.134)

G |Nc|×1
t = {

∑
t′≤t

d1,t′ ,
∑
t′≤t

d2,t′ , . . . ,
∑
t′≤t

d|Nc|−1,t′ ,
∑
t′≤t

d|Nc|,t′}T (3.135)

G|Nc||T |×1 = {GT1 ,GT2 , . . . ,GT|T |−1,GT|T |}T (3.136)

S |Nc|×1 = {S1,0, S2,0, . . . , S|Nc|−1,0, S|Nc|,0}T (3.137)

S|Nc||T |×1 = {. . . ,ST , . . .}T (3.138)

S+
t
|Nc|×1

= {S+
1,0, S

+
2,0, . . . , S

+
|Nc|−1,0, S

+
|Nc|,0}

T (3.139)

S+|Nc||T |×1
= {S+

1
T
,S+

2
T
, . . . ,S+

|T |−1

T
,S+
|T |

T}T (3.140)

S−t
|Nc|×1

= {S−1,0, S−2,0, . . . , S−|Nc|−1,0, S
−
|Nc|,0}

T (3.141)

S−|Nc||T |×1
= {S−1

T
,S−2

T
, . . . ,S−|T |−1

T
,S−|T |

T}T (3.142)

B
|T |×|T |
t =


b1,t

b2,t

. . .

b|Nc|−1,t

b|Nc|,t

 (3.143)

B|T ||Nc|×|T ||Nc| =


B1

B2

. . .

B|T |−1

B|T |

 (3.144)
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D|L|×|Nc|
t =


D1,1 D1,2 . . . D1,|Nc|−1 D1,|Nc|
D2,1 D2,2 . . . D2,|Nc|−1 D2,|Nc|

...
D|L|−1,1 D|L|−1,2 . . . D|L|−1,|Nc|−1 D|L|−1,|Nc|
D|L|,1 D|L|,2 . . . D|L|,|Nc|−1 D|L|,|Nc|


(3.145)

D|L||T |×(2|T ||Nc|+1) =


D1

D2

. . . 0|L||T |×(|T ||Nc|+1)

D|T |−1

D|T |

 (3.146)

V|T |×(2|T ||Nc|+1)

=


1|Nc|×1

1|Nc|×1

. . . 0|T |×(|T ||Nc|+1)

1|Nc|×1

1|Nc|×1


(3.147)

L|Nc||T |×(2|T ||Nc|+1)

=


0|Nc|×|Nc| 0|Nc|×|Nc| . . . 0|Nc|×|Nc| 0|Nc|×|Nc|

I |Nc|×|Nc| 0|Nc|×|Nc| . . . 0|Nc|×|Nc| 0|Nc|×|Nc|

0|Nc||T |×|Nc||T | ...
... 0|Nc||T |×1

I |Nc|×|Nc| I |Nc|×|Nc| . . . 0|Nc|×|Nc| 0|Nc|×|Nc|

I |Nc|×|Nc| I |Nc|×|Nc| . . . I |Nc|×|Nc| 0|Nc|×|Nc|

 .

(3.148)
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Figure 3.2: LMPs and DLMPs for
Case 1 under 100% EV Load Pene-
tration
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Figure 3.3: Line 1 Loading with
DLMPs for Case 1 under 100% EV
Load Penetration
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Figure 3.4: EV Demand with DLMPs
for Case 1 under 100% EV Load Pen-
etration
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Figure 3.5: Line 1 Loading without
DLMPs for Case 1 under 100% EV
Load Penetration
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Figure 3.6: LMPs and DLMPs for
Case 2 under 100% EV Load Pene-
tration
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Figure 3.7: Line 1 Loading with
DLMPs for Case 2 under 100% EV
Load Penetration
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Figure 3.8: EV Demand with DLMPs
for Case 2 under 100% EV Load Pen-
etration
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Figure 3.9: Line 1 Loading without
DLMPs for Case 2 under 100% EV
Load Penetration
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Figure 3.10: LMPs and DLMPs for
Case 3 under 100% EV Load Pene-
tration
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Figure 3.11: Line 1 Loading with
DLMPs for Case 3 under 100% EV
Load Penetration
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Figure 3.12: EV Demand with
DLMPs for Case 3 under 100% EV
Load Penetration
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Figure 3.13: Line 1 Loading without
DLMPs for Case 3 under 100% EV
Load Penetration
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Figure 3.14: LMPs and DLMPs for
Case 3 under 200% EV Load Pene-
tration
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Figure 3.15: Line 1 Loading with
DLMPs for Case 3 under 200% EV
Load Penetration
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Figure 3.16: LMPs and DLMPs for
Case 3 under 500% EV Load Pene-
tration
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Figure 3.17: Line 1 Loading with
DLMPs for Case 3 under 500% EV
Load Penetration
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Figure 3.18: LMPs and DLMPs for
Case 3 under 1000% EV Load Pene-
tration
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Figure 3.19: Line 1 Loading with
DLMPs for Case 3 under 1000% EV
Load Penetration
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Figure 3.20: LMPs and Robust
DLMPs for Case 1 with α = 1
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Figure 3.21: Line 1 Loading with Ro-
bust DLMPs for Case 1 with α = 1
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Figure 3.22: LMPs and Robust
DLMPs for Case 1 with α = 5
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Figure 3.23: Line 1 Loading with Ro-
bust DLMPs for Case 1 with α = 5
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Figure 3.24: LMPs and Robust
DLMPs for Case 1 with α = 20
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Figure 3.25: Line 1 Loading with Ro-
bust DLMPs for Case 1 with α = 20
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Figure 3.26: Probability Density Function of Social Welfare under DLMPs and Robust
DLMPs for Case 1
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Figure 3.27: Cumulative Density Function of Social Welfare under DLMPs and Ro-
bust DLMPs for Case 1
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Chapter 4

Concluding Remarks

This dissertation investigates two topics in wholesale market design for the existing
and future power systems – CB and DLMP. A key link that connects these two topics
is market design - determining how to create proper incentives to compensate market
participants that ensures efficiency and reliability of the power grid.

In Chapter 2, we investigate whether the CAISO’s existing two-settlement elec-
tricity markets are efficient, and whether markets efficiency is improved by CB, based
on the zero-profit condition of Jensen (1978). Our backtest results show that our trad-
ing strategy continues to be profitable in the post-CB period, but the profitability
decreases substantially. The decrease in profitability in the post-CB period indicates
the improvement of market efficiency, and demonstrates the benefit of CB. The prof-
itability in the post-CB period, however, conveys empirical implications that can be
interpreted differently, depending on the level of competition and the level of risk
aversion of virtual traders. Although we tend to attribute the existence of profitable
arbitrage opportunities in the CAISO’s existing two-settlement electricity markets to
market inefficiency, we cannot exclude the possibility that the profitability simply
reflects incentives to induce speculative behavior. Due to limited market data, it is
difficult to distinguish whether this profitability level can persist in the long run or
can be explained by some short run equilibrium. Further investigation is required to
fully resolve this ambiguity.

In Chapter 3, an integrated DLMP concept is proposed to address the problem of
congestion alleviation on the distribution network faced by future power systems. By
design, it can be adopted under the existing wholesale market design for achieving
economic allocation of both the EV demand and the conventional demand subject to
line capacity constraints. Under perfect competition, we show that DLMPs provide
financial incentives to achieve the socially optimal charging schedule in a decentralized
system where market participants respond to DLMPs by maximizing their individual
net surplus. In the presence of price uncertainty, a robust DLMP method is devel-
oped to coordinate EV charging schedule. Case studies based on the RBTS electric
distribution network and the Danish driving data show the efficacy of the proposed
DLMP and robust DLMP concept. However, it is still unclear whether the use of
DLMPs can incentivize EV aggregators with market power, and whether DLMPs can
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induce demand side flexibility for renewable integration. Further investigation might
be able to shed additional light on these questions.

As many questions are still left unanswered in these topics, we sincerely hope
this dissertation lays the groundwork for some further research in electricity market
design.
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