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In brief

Zhou et al. present the flagship project of

the Global Biobank Meta-analysis

Initiative (GBMI). They demonstrate the

substantial benefits of the collaborative

efforts of 23 biobanks worldwide to

advance genetic discoveries for human

diseases with larger sample sizes and

increased ancestry diversity and highlight

issues and challenges in biobank meta-

analyses.
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SUMMARY
Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a
range of human diseases and traits. However, most biobanks are primarily composed of individuals of Euro-
pean ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of
23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data
linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using
harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints.
This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity
in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves
GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling
the nomination of disease genes and drug candidates by incorporating gene and protein expression data and
providing insight into the underlying biology of human diseases and traits.
INTRODUCTION

Understanding the genetic basis of disease can elucidate the

biology or underlying epidemiological risk factors, nominate
This is an open access article under the CC BY-N
genes as drug targets, and identify at-risk individuals for preven-

tion strategies. Genome-wide association studies (GWASs)

have identified thousands of genetic loci for hundreds of human

diseases and traits (see GWAS Catalog1). Meta-analysis across
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cohorts has been instrumental in making these discoveries.

However, most genomics research has been performed primar-

ily in cohorts of European ancestry in high-resource countries.

Although much remains to be done to address the lack of repre-

sentation in genomics, here we present the Global Biobank

Meta-analysis Initiative (GBMI), a step toward building a more

comprehensive view of the impact of genetic variation on human

health and disease.

Biobanks with health data linked with genomic information

provide resources for the genetic research community. The
drop in the cost of genotyping and sequencing has led to an

increase in the number of genomically profiled biobanks

worldwide. Compared with disease- or trait-based cohorts

centered around a particular phenotype or several relevant

phenotypes, biobanks enable cost-effective genetic discovery

for hundreds to thousands of phenotypes, curated from

electronic health records (EHRs), registry-based data (e.g.,

pharmaceutical, death, or cancer registry data), and/or epide-

miological questionnaires to understand the genetic etiology

of human diseases.2,3
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Figure 1. 23 biobanks across four continents have joined GBMI as of April 2022, bringing the total number of samples with matched health

data and genotypes to more than 2.2 million

Biobanks are colored based on the sample recruiting strategies.
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In 2019, we formed the GBMI, bringing together 23 biobanks

to work together to understand the genetic basis of human

health and disease (Figure 1; Table S1). The goal was to jump-

start and align global efforts, particularly because meta-analysis

of GWASs is simple in terms of data sharing yet enables a

variety of scientific goals including increasing the power of

GWASs for common diseases, enabling the genetic investigation

into less prevalent or understudied diseases, cross-validating

new findings across biobanks, facilitating follow-up analyses

such as polygenic risk scores or Mandelian randomization, and

increasing the genetic ancestral diversity of association studies

which, by extension, expands the analysis to a broader set of ge-

netic variation. At the heart of the GBMI is a community of inves-

tigators that have adopted seven principles to guide our collab-

oration (Figure 2).

Here, we present the pilot effort of GBMI, in which we meta-

analyzed GWAS results for 14 endpoints of common interest of

18 biobanks and then meta-analyzed GWAS results of 5 more

biobanks for replication. These include diseases across a wide

range of prevalences in the discovery stage (Table S2): asthma

(153,763 cases [sample prevalence: 8.54%]); chronic obstruc-

tive pulmonary disease (COPD; 81,568 cases [5.86%]); heart fail-

ure (HF; 68,408 cases [5.05%]); stroke (60,176 cases [4.39%]);

gout (37,105 cases [2.50%]); venous thromboembolism (VTE;

27,987 cases [2.63%]); primary open-angle glaucoma (POAG;

26,848 cases [1.80%]); abdominal aortic aneurysm (AAA; 9,453

cases [0.65%]); idiopathic pulmonary fibrosis (IPF; 8,006 cases

[0.64%]); thyroid cancer (ThC; 6,699 cases [0.41%]); hypertro-
4 Cell Genomics 2, 100192, October 12, 2022
phic cardiomyopathy (HCM; 2,993 cases [0.25%]); and a fe-

male-specific disease, uterine cancer (UtC; 8,295 cases

[1.2%]). We also examined acute appendicitis (AcApp; 32,706

cases [2.95%]) and the related procedure code of appendec-

tomy (14,446 cases [1.86%]), which is an endpoint that can be

extracted from EHR procedure codes but has not been widely

studied in previous GWASs. As a proof of concept, using aligned

phenotype definitions, analysis methods, sharing standards, and

quality control, we demonstrate the advantages of aggregating

biobanks together for genetic studies of human diseases.
RESULTS

Overview of biobanks in GBMI
GBMI represents 2.2 million research participants with health

and genetic data from 23 biobanks: one from Australia, one

from West Asia, four from East Asian countries, eight from Euro-

pean countries, and nine from North America. During the prepa-

ration of this manuscript, the Uganda Genome Resource4 joined

GBMI.

Table S1 presents a brief summary of biobanks in GBMI,

including basic information about each biobank (location,

institute, cohort size, and sample recruiting approach),

participants (ancestry and age), types of electronic health

data (self-report data from epidemiological survey question-

naires, billing codes, doctors’ narrative notes, death registry,

etc.), and genotypes (genotyping platforms and imputation



Figure 2. Seven collaboration principles in

GBMI
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reference), as well as data access and references (webpage if

available).

Disease prevalence varies across biobanks (Figure S1) and

across sample recruiting strategy groups (Figure S2A). Biobanks

recruiting participants from health centers or hospitals, relative

to those recruiting participants from the general population,

had a significantly higher prevalence (Wilcoxon test p < 0.05)

for 6 out of 13 examined diseases (appendectomy was excluded

from the test because of insufficient data shared from the hospi-

tal-based biobanks) (Figure S2B), including asthma, HF, stroke,

VTE, gout, and IPF.

GBMI incorporates diverse genetic ancestries in genetic

studies by including biobank samples of 6 main ancestry

groups: approximately 42,000 of African ancestries from ad-

mixed-ancestry diaspora (AFR), 18,000 admixed American

(AMR), 31,000 Central and South Asian (CSA), 415,000 East

Asian (EAS), 1.4 million European (EUR), and 12,000 Middle

Eastern (MID) individuals (Table S3). To compare the genetic

ancestries represented between different biobanks, we pro-

jected biobanks’ participants to the same principal component

(PC) space (Figure 3) using pre-computed loadings of genetic

markers overlapping in all biobanks and the reference contain-

ing 1000 Genomes5 and Human Genome Diversity Project

(HGDP).6 PCs projected in the same space enable a cross-

comparison of the sample genetic ancestry among all

biobanks (STAR Methods). Notably, the population labels

used in GBMI were defined by global genetic reference data-

sets, although GBMI is not globally representative; for example,

the majority of individuals assigned to AMR and AFR ancestry

groups are mostly from biobanks in the US, and GBMI partici-

pants’ ancestries are not currently representative of broader

Central/South American or continental African ancestries,

respectively.

Biobank meta-analyses
Biobank meta-analyses (Figure 4) were performed. We harmo-

nized phenotype definitions primarily by mapping the Interna-

tional Classification of Diseases (ICD) codes to phecodes7 for

diseases and using Classification of Interventions and Proced-

ures (OPCS) codes for procedures. We shared the definitions

with member biobanks to curate phenotypes (Table S4).

Biobanks that have not collected ICD or OPCS codes for their

participants used the shared phenotype definitions as a guide-

line to create phenotypes with any available health data, such

as self-report data (Table S5). After standard quality control

and the estimation of ancestry groups (Table S1), GWASs
Ce
stratified by ancestry and sex were con-

ducted in each biobank (Table S2) with

the first 20 genetic PCs adjusted as cova-

riates, which are continuous measures of

sample ancestries (STAR Methods). The

central analysis team performed post-

GWAS variant-level quality control for
each biobank by flagging markers with different allele fre-

quencies compared with gnomAD8 and excluding markers

with an imputation quality score <0.3 (STAR Methods). Across

all biobanks, 70.7 million genetic variants were tested for asso-

ciations, of which 39.4 million variants were tested in at least

two biobanks (Table S6). The discovery meta-analyses contain

up to 18 biobanks, and for each endpoint, all-biobank meta-

analysis as well as ancestry- and sex-stratified meta-analyses

were conducted. In addition, we performed the leave-one-bio-

bank-out (LOBO) meta-analyses for each biobank, estimated

genetic correlation, and compared effect size estimates be-

tween GWASs in individual biobanks and the corresponding

LOBO (see integration of association results across biobanks).

LOBO results have been used by analyses that are sensitive to

sample overlap, such as developing and testing polygenic risk

scores (PRSs) for disease prediction.9 Post-meta-analysis fil-

ters were applied to genome-wide significant loci (STAR

Methods). Five biobanks (BBofA, PMBB, CanPath, NBK, and

QBB) were meta-analyzed to replicate loci identified by the dis-

covery meta-analysis.

Inverse variance-based meta-analyses of all biobanks for 14

endpoints successfully replicated 317 previously reported loci1

and identified 183 apparently novel loci, spanning the variant fre-

quency spectrum (STAR Methods; Table S7; Figure 5). 431 loci

were tested for 12 endpoints (except for VTE and appendec-

tomy) in the replication meta-analysis containing up to 73,596

samples (9,991 cases and 63,605 controls) (Tables S2 and S7).

Despite that for 360 out of 431 loci, the case numbers in the repli-

cation data were less than 10% of the case numbers in the dis-

covery data, 127 loci (30%) had a p value <0.05 in the replication

meta-analyses. Out of the 127 loci, 124 loci had consistent effect

direction in discovery and replication meta-analyses (Table S7).

At 87 loci, a protein-coding variant was either the most signif-

icant one (n = 26) (Table 1) or in linkage disequilibrium with the

most significant variant with r2 > 0.8 (n = 61 additional). 18 of

these 87 loci were novel (Table S8). 13 endpoints had SNP-

based heritability significantly different from 0 on the liability

scale (under the assumption that the population prevalence

matches the prevalence of all biobanks aggregated together),

ranging from 1.79% (AcApp) to 10.73% (gout) (Table S9). The

heritability of cardiomyopathy was estimated to be 0. This

could be because the heritability estimation was underpowered

based on the low prevalence (0.25%) with a low number of cases

(2,993 cases) and because the disease has heterogeneous sub-

types, including dilated and hypertrophic cardiomyopathy, with

different genetic causes.10
ll Genomics 2, 100192, October 12, 2022 5



Figure 3. GBMI incorporates biobanks with diverse sample ancestry into genetic studies

Biobanks’ participants were projected to the same principal component (PC) space using the pre-computed loadings of genetic markers.
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Identified associations were largely shared across biobanks.

The lead variants at 95% (n = 476) of the 500 genome-

wide loci did not show evidence for heterogeneity in effect sizes

across different datasets (per biobank and ancestry) (Table S7)

with a p value for Cochran’s Q test R1/500, despite

biobanks differing in many aspects, as discussed above.

This suggests that harmonizing phenotyping and then inte-

grating GWASs from different biobanks together using the anal-

ysis pipeline within GBMI enables reliable discoveries for ge-

netic-disease associations. We also used the meta-regression

approach implemented in MR-MEGA11 for all-biobank meta-an-

alyses. In contrast with fixed-effects, inverse variance-based

meta-analyses, MR-MEGA accounts for the effect size hetero-

geneity across datasets, which identified 17 additional loci

across 10 endpoints, including 12 that were novel (Figure S3;

Table S10).

Power improved by incorporating samples with non-

EUR ancestries

An additional 21.8 million genetic variants were analyzed in the

all-biobank meta-analyses that were not present in the EUR-

only meta-analyses with variant sets imputed from Haplotype

Reference Consortium (HRC) and/or population-specific refer-

ence panels (Tables S1 and S6). The majority of these variants

were rare, with 18.3 million having a minor allele frequency

(MAF) % 1%, and the other 3.4 million were common in at

least one ancestry group (Figure S4). Incorporating samples

with diverse ancestries to the meta-analyses allowed us to
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compare effect sizes of genomic loci across ancestry. 486

out of the 500 loci were tested in more than one ancestry

(Table S7). 16 out of the 486 loci showed evidence for hetero-

geneity in effect sizes across ancestry (p value for Cochran’s Q

test across ancestry < 1/486) (Table S11). 337 loci were iden-

tified in the EUR-only meta-analyses, and including non-EUR

samples yielded 163 more loci (Figure S5A; Table S12),

bringing the total number of loci to 500. While an increase in

sample size drives some of our ability to detect variants, the

increased diversity allows the identification of loci whose index

variants are much more frequent in non-EUR ancestries. In

contrast to only 4 out of the 337 loci identified in the EUR-

only meta-analyses (1.19%), 21 out of the 163 additional loci

(12.9%) had index variants that are at least 10 times more

frequent in other ancestries than in EUR ancestries and have

a MAF <5% in EUR ancestries (Table S12). Forest plots (Fig-

ure S5B) highlight analyses with index variants more frequent

in EAS than other ancestries (MIR2054/INTU for POAG,

PNPT1/EFEMP1 for COPD, and NAA38 for asthma) as well

as loci more frequent in African ancestry than other ancestries,

including VPS13D/DHRS3 for VTE, BCL2L12 for HF, and

MEIS2/TMCO5A for stroke.

Sex-stratified meta-analyses

We performed sex-stratified meta-analyses to compare GWAS

effect sizes between sexes. 479 loci were tested in more than

one biobank for both male-only and female-only meta-analyses.

8 loci showed evidence of heterogeneous effect sizes between



Figure 4. Workflow of the flagship project in GBMI
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Figure 5. All-biobank meta-analyses for the

14 endpoints have successfully replicated

317 previously reported loci and identified

183 novel loci

(A) Number of loci was plotted for each endpoint

(left panel) against the effective sample sizes

1/(4/cases + 4/controls) colored by the sample

ancestry (right panel).

(B) Top hits spread over the entire allele frequency

spectrum. Phenotypes are in ascending order by

the effective sample sizes. One marker with beta >5

is not shown. Gene names are labeled for the novel

loci with protein-coding index variants.
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males and females (p value for Cochran’s Q test < 1/479)

(Table S13; Figure S6).

Environmental factors, such as alcohol usage, that have dif-

ferences in males and females may play a role in GWAS effect

size differences between sexes. We have replicated two previ-

ously reported loci that are located at the aldehyde dehydroge-

nase family genes for gout and exhibit stronger associations in

males than in females.12,13 The top hit of one locus was an

EAS-specific intronic variant rs4646776 (r2 = 0.99 with the

missense variant rs67114) located at the gene ALDH2 with a

stronger effect in males than in females (in females AF =

20.4%, effect size [SE] = �0.10 [0.056], p = 0.07; in males

AF = 24.2%, effect size [SE] = �0.29 [0.023], p =

2.5 3 10�36). The top hit of the other locus was a low-frequency

EUR-specific intronic variant located in ALDH16A1, which has

been previously identified to be associated with serum urate

levels.13 The variant was more strongly associated with gout

in males and in females (rs752383928 intronic, in females

AF = 0.74%, effect size [SE] = 1.63 [0.29], p = 2.43 3 10�8;

in males AF = 0.73%, effect size [SE] = 2.70 [0.18], p =

1.33 3 10�50). We have also uncovered significant sex differ-

ences for loci that were previously reported for disease associ-

ation: RANBP6/IL33 for asthma,15 AFAP1 for COPD,16 PKD2

for gout,17 MUC5AC/MUC5B for IPF,18 and ARHGEF12 for

POAG.19

The top variant in the CTDP1/KCNG2 locus (rs11665567)

was an intergenic variant with a female-specific association for

asthma (in females AF = 18.8%, effect size [SE] = 0.05 [0.008],
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p = 5.62 3 10�10; in males AF = 18.7%,

effect size [SE] = 0.003 [0.01], p = 0.75 [p

value for difference = 2.4 3 10�4]). Inter-

estingly, the allele associated with an

increased risk in asthma has been re-

ported to be associated with an increased

risk in smoking,20 but the relationship

between smoking and asthma risk remains

unclear. Clarifying whether the sex-specific

associations are due to pleiotropic effects

of the genetic variants, environmental fac-

tors, and/or possible gene-environment in-

teractions requires further study.

There were 31 loci only identified in

the sex-stratified meta-analyses but

not in the sex-combined meta-analyses
(p value > 5 3 10�8), of which 11 loci were detected in female-

only meta-analyses and 20 loci only in male-only meta-analyses.

26 out of the 31 loci were potentially novel for the studied pheno-

types (Table S14). Female-only meta-analysis for stroke identi-

fied the previously reported locus CETP21 that did not reach

the genome-wide significance threshold in the sex-combined

meta-analysis. The top hit is an intronic variant rs7499892 with

stronger association in females than in males (in females: effect

size [SE] = 0.078 [0.014], p = 1.08 3 10�8; in males: effect size

[SE] = 0.007 [0.012], p = 0.56). Transgenic expression of CETP

increases plasma triglyceride levels in females and males

through distinct mechanisms,22,23 while the role of triglyceride

levels in the risk of stroke remains elusive. None of the 31 loci

had significant heterogeneity in effect size estimates across

ancestries within females or males with p <0.05/31 (Table S14).

In between-sex heterogeneity tests conducted within each

ancestry, the significant heterogeneity of effect sizes in males

and females was observed in some ancestries, suggesting that

the between-sex effect heterogeneity of these loci was unlikely

confounded by differences across ancestries in the proportion

of each sex studied (Figure S7). Some loci with sex-specific ef-

fects were also ancestry specific, such as the EAS-specific locus

ALDH2 and the EUR-specific locus ALDH16A1 for gout.

Integration of association results across biobanks
We evaluated the integration of different biobanks in the

meta-analyses (STAR Methods; Data S1). We compared

the effect sizes of top variants in individual biobanks and the



Table 1. Lead variants that are protein coding within 26 disease-associated loci identified in the multi-biobank multi-ancestry meta-analyses in GBMI

Endpoint

CHR/POS

(hg38) REF/ALT Freqa

Odds Ratio

(95% CI)b p Heterogeneity p Gene Function Cases Controls

Number of

biobanks

Novel

AAA 10:73913343 T/C 0.737 0.88 (0.85–0.91) 5.93 3 10�12 0.76 PLAU missense 9,453 1,446,422 11

COPD 1:149934520 T/C 0.350 1.04 (1.03–1.05) 7.91 3 10�10 0.54 MTMR11 missense 79,844 1,289,683 15

Stroke 6:49492265 A/G 0.446 0.96 (0.94–0.97) 1.8 3 10�11 0.99 CENPQ missense 60,176 1,310,725 16

Asthma 10:94279840 G/C 0.448 1.03 (1.02–1.03) 2.52 3 10�9 0.98 PLCE1 missense 153,763 1,647,022 18

Asthma 14:100883117 G/T 0.025 1.09 (1.05–1.12) 2.61 3 10�8 0.73 RTL1 missense 133,369 1,370,606 16

Asthma 19:56222056 C/A 0.253 1.03 (1.02–1.04) 2.35 3 10�8 0.60 ZSCAN5A missense 149,293 1,626,581 17

Known

COPD 14:94378610 C/T 0.020 1.22 (1.16–1.29) 5.2 3 10�15 9.27 3 10�3 SERPINA1 missense 54,105 883,399 11

COPD 19:44908684 T/C 0.140 0.95 (0.94–0.97) 1.04 3 10�8 0.36 APOE missense 81,568 1,310,798 16

Gout 2:27508073 T/C 0.588 0.87 (0.86–0.88) 9.27 3 10�64 0.11 GCKR missense 37,105 1,448,128 15

Gout 11:64593747 G/A 0.016 0.36 (0.31–0.42) 1.19 3 10�41 0.10 SLC22A12 stop gain 6,634 248,305 2

Gout 12:57449928 G/A 0.194 0.91 (0.89–0.93) 1.51 3 10�17 0.45 INHBC missense 37,105 1,448,128 15

IPF 5:1279370 T/C 0.001 862 (205–3618) 2.66 3 10�20 0.09 TERT missense 1,278 330,954 2

IPF 5:169588475 G/A 0.014 2.19 (1.81–2.66) 1.61 3 10�15 0.02 SPDL1 missense 4,812 882,416 7

POAG 1:11193760 C/T 0.026 0.67 (0.6–0.74) 4.39 3 10�14 0.90 ANGPTL7 missense 12,810 421,360 5

POAG 1:171636338 G/A 0.002 6.33 (4.71–8.51) 1.67 3 10�34 4.33 3 10�6 MYOC stop gain 15,916 1,092,446 11

POAG 14:60509819 C/A 0.547 0.89 (0.87–0.91) 7.08 3 10�30 0.31 SIX6 missense 26,848 1,460,599 15

Stroke 12:111803962 G/A 0.238 0.9 (0.88–0.92) 5.16 3 10�18 0.37 ALDH2 missense 23,804 269,656 4

VTE 1:169549811 C/T 0.020 3.04 (2.85–3.24) 1.5 3 10�245 5.52 3 10�13 F5 missense 26,749 1,011,509 9

VTE 12:6034818 T/C 0.889 1.1 (1.07–1.13) 1.59 3 10�10 0.21 VWF missense 27,987 1,035,290 9

VTE 12:103742510 C/T 0.011 1.65 (1.45–1.88) 6.19 3 10�14 0.25 STAB2 missense 10,353 341,418 2

Asthma 1:12115601 G/A 0.012 0.85 (0.8–0.89) 1.7 3 10�11 0.46 TNFRSF8 missense 118,767 1,202,660 12

Asthma 1:31699894 G/T 0.573 1.03 (1.02–1.04) 1.61 3 10�10 0.49 COL16A1 missense 148,045 1,579,632 17

Asthma 4:38797027 C/A 0.387 0.95 (0.94–0.96) 4.21 3 10�21 0.54 TLR1 missense 138,764 1,458,022 15

Asthma 4:102267552 C/T 0.044 1.08 (1.06–1.1) 2.53 3 10�12 0.81 SLC39A8 missense 129,434 1,256,670 14

Asthma 5:14610200 C/G 0.084 1.07 (1.05–1.09) 7.68 3 10�15 0.16 OTULINL missense 125,483 1,241,068 13

Asthma 9:128721272 T/A 0.068 0.95 (0.93–0.96) 5.61 3 10�10 0.21 ZDHHC12 missense 152,469 1,638,824 18
aFrequencies are reported with respect to the alternate allele (ALT) in the combined meta-analysis datasets.
bOdds ratios are reported with respect to the alternate allele (ALT) in the meta-analyses.
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corresponding LOBO meta-analyses by fitting a Deming regres-

sion.24 Most of the slope estimates were not significantly

different from 1 across biobanks and phenotypes with excep-

tions among biobanks with smaller sample sizes and non-EUR

or multiple ancestries (Figure S8; Data S1). Genetic correlation

estimates between individual biobanks and LOBO for diseases

with the highest heritability estimates, asthma, gout, and

COPD, were close to 1 (STAR Methods; Figure S9; Table S9).

We also compared population-based biobanks and hospital-/

healthcare-based biobanks (STARMethods) withmeta-analyses

for biobank groups separately for gout, ThC, asthma, and POAG,

and consistent effect sizes between two biobank groups were

observed (Figure S10; Data S1). Robust genetic association re-

sults despite differences among biobanks suggested the inte-

gration of genetic association results across biobanks.

For previously reported loci, consistent effect sizedirection and

magnitude were observed between GBMI and the previous

largest meta-analyses for AAA25 and gout26 (Table S15; Data

S1) as well as for VTE (see Wolford et al.27). All 18 loci that were

previously identified by the Trans-National Asthma Genetic Con-

sortium (TAGC)15 for asthma had more significant association

p values in GBMI (Figure S11), and attenuation of genetic effects

in GBMI was observed (Table S15; see Tsuo et al.28). Attenuation

of effect estimates in GBMI compared with disease-specific co-

horts that generally study highly ascertained patients was also

observed for IPF (seeKoskelaet al.;29DataS1). These results sug-

gested that the impact of using EHR-curated phenotypes in bio-

banks on effect size estimates varies across phenotypes and

that biobank studies can show attenuated genetic effects where

phenotyping is often, by necessity, more pragmatic.

Biological implications of genetic associations
Pleiotropic effects of associated loci

We investigated thegenetic relationship betweenendpoints stud-

ied in this project and other complex traits by examining associa-

tions of the top variants identified by all-biobank meta-analyses

with 1,283 human diseases in UKBB (STARMethods). 78 variants

identified from 12 GBMI endpoints (except for HCM and UtC)

exhibited significant (p < 5 3 10�8) pleiotropic associations

with at least one other phenotype (Table S16; Data S1).We further

investigated pleiotropic effects of the 52 loci (30 novel) identified

for gout by all-biobankmeta-analysis. 40 of these loci were asso-

ciatedwith serum urate levels,26,30–32 andmost of these loci were

alsoassociatedwithother relevant traits anddiseases (TableS17;

Data S1).

Prioritization of cell types, tissues, and genes

To further understand the biology underlying the genetic associa-

tions, we prioritized tissues and cell types in which genes at the

associated loci are likely to behighly expressedusingData-driven

Expression-Prioritized Integration for Complex Traits (DEPICT)33

(Table S18).

Prioritizing potentially functional genes with genetic variant as-

sociations is a large challenge for genomic research. We applied

several methods to prioritize potentially functional genes,

including DEPICT (Table S19), the gene-level polygenic priority

score (PoPS)34 (Table S20), transcriptome-wide association

studies (TWASs)35 (Table S21), and proteome-wide Mendelian

randomization (PWMR)36 (Table S22; STAR Methods). Using
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asthma, POAG, and VTE as examples, the gene lists generated

by these different methods showed little overlap (Figure S12).

For asthma, 618 genes were prioritized by at least 1 of the 4 ap-

proaches (Figure S12A). However, no genes were prioritized by

all 4 methods, and only 5 were prioritized by any 3 methods

(Table S22). All these genes are located at well-known asthma-

associated loci. We then extracted the nearest genes of the

most significant variants (for intergenic variants, the nearest

genes on both sides were included if both are located within 50

kb from the top hits), which brings the total number of prioritized

genes to 729. FCER1G, IL4R, andSMAD3, whichwere prioritized

byDEPICT, TWAS, and PoPS, were also the nearest genes of top

hits at those loci. 17more geneswere prioritized by any of the two

methods and the naive nearest genes approach (Figure S12A;

Table S22): BCL2, CD247, CD28, GSDMB, HDAC7, IL13,

IL2RA, IL6R, IL7R, ITPKB, JAZF1, NEK6, PTPRC, RUNX3,

STAT6, TLR1, and TNFSF8. Low overlap of the prioritized gene

lists by different methods was also seen for POAG and VTE

(Figures S12B and S12C; Table S22; Data S1).

In line with previous discussions,34 these results suggest that

existing gene prioritization methods successfully prioritized rele-

vant genes for diseases but had poor agreement. Note that be-

sides adapting different statistical models and pipelines, these

approaches prioritize genes with different expression data types

(STAR Methods).

In addition, a gold standard set of 41 VTE genes was curated

blindly from the meta-analysis results27 (Figure S13A;

Table S23). Based on this gene set, the nearest gene approach

had comparable precision and recall to other methods (Fig-

ure S13B; Data S1). When using 13 genes in the gold standard

set that are located within 1 Mb around the VTE top hit, as ex-

pected, we observed an increase in the recall of DEPICT and

the nearest gene approach (Figures S13B and S13C). This is

because both approaches tend to prioritize genes that are

located at GWAS loci.

Our results highlight the challenges in interpreting genome-

wide significant loci and the clear need for robust in silico ap-

proaches and pipelines to nominate genes for experimental

follow-up.

Prioritization of functional variants through fine

mapping

While previous meta-analysis studies have applied existing fine-

mapping methods to further prioritize functional variants at dis-

ease association loci,37–39 it is unclear whether heterogeneous

characteristics of biobanks in the meta-analysis affect fine-map-

ping calibration and recall. We investigated the impacts on fine

mapping of the heterogeneity across biobanks via simulation

studies and demonstrated that different sample sizes, ances-

tries, phenotyping, genotyping, and imputation can lead to

mis-calibrated fine-mapping results.40 Thus, we developed a

summary statistics-based quality control (QC) method,

SLALOM, to identify suspicious loci for meta-analysis fine map-

ping. Applying SLALOM to the all-biobank meta-analysis results

for 14 endpoints in GBMI found that 68% of loci showed suspi-

cious patterns that call into question fine-mapping accuracy.40

These results suggest the need for development of methods

that take the cohort heterogeneity into account for reliable

meta-analysis fine mapping. We thus urge caution when
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interpreting fine-mapping results from meta-analysis until

improved methods are available. Because of the lack of robust

fine-mapping methods to obtain credible sets for most loci, we

report the protein-coding variants at association loci (Tables 1

and S8) to shed light on potentially functional variants.

Biobank meta-analysis for genetic association studies
Improving power of genetic discovery for common

diseases

Aggregating 18 biobanks in GBMI substantially increases sam-

ple sizes for genetic association studies for asthma (Table S2),

leading to an increase in power for genetic discovery; 179

genome-wide significant loci for asthma were identified by

GBMI, of which 49 are novel (Table S7). Notably, all 18 loci that

were reported by TAGC15 have more significant association p

values in GBMI (Figure S11). Meta-analyzing GBMI biobanks

and the existing disease consortia would further increase the dis-

covery power to uncover genetic risks for human diseases. For

example, we meta-analyzed 14 biobanks in GBMI with two pre-

viousmeta-analysis studies for POAG (three overlapped biobank

datasets were excluded from GBMI), which doubled the case

numbers compared with the previous largest meta-analysis

and successfully identified 103 significant loci, of which 19 are

novel.41

Providing opportunities for genetic studies on less

prevalent diseases

EHR-linked biobanks provide opportunities to assess less prev-

alent diseases that were understudied by previous GWASs. For

example, the largest meta-analysis for gout so far was conduct-

ed on 13,179 cases and 750,634 controls across 20 studies.

Here, meta-analysis of 15 biobanks in GBMI achieved a sample

size of 37,105 cases and 1,448,128 controls across 5 genetic an-

cestries (Table S2) and identified 52 significant loci, of which 30

are novel (Table S7).

Biobanks also enable genetic studies of different types of dis-

ease phenotypes. Meta-analyses of biobanks for AcApp and the

relevant procedure endpoint appendectomy, respectively,

demonstrated high genetic correlation between the two end-

points (r2 = 0.99). Out of the 9 loci identified for AcApp, 3 were

also significant for appendectomy (Table S7) even with a 3 times

lower sample size, suggesting that the procedure phenotypes

may add meaningful information in biobank-based genetic

studies. Incorporating these phenotypes to traditional disease

diagnosis phenotypes could improve discovery power.

Improving PRSs with multi-biobank multi-ancestry

meta-analyses

The LOBO meta-analyses in GBMI allow us to construct bio-

bank-specific PRSs and evaluate PRSs for disease risk predic-

tion. We have investigated PRS construction, evaluation, and

interpretation using the multi-biobank multi-ancestry summary

statistics resource and shared lessons and methodological con-

siderations (see details in Wang et al.9).

Using asthma as an example, we observed improved PRS

prediction accuracy with GBMI summary statistics, compared

with a previousmeta-analysis,15 in 6 biobanks across 6 ancestral

populations (Figure S14). The accuracy improvements were

greatest for EUR samples (0.017–0.047), followed by SAS and

EAS samples (0.01–0.037), and were least for AFR samples
(0.005–0.014). Improvements in prediction accuracy using

GBMI compared with previous GWASs were also observed for

more endpoints.9 Note that the PRS prediction accuracy varies

across biobanks and ancestries, which might be attributable to

factors such as non-genetic factors and differences among bio-

banks. How to better account for these factors in disease predic-

tion models remains an open question for future research and

methods development.

DISCUSSION

Genetic discovery benefits from the increasing numbers of EHR-

linked biobanks, despite differences among biobanks. As of

January 2022, 23 biobanks across four continents comprising

six major ancestral groups have joined GBMI to uncover genetic

risk factors of human diseases. Researchers worked to address

challenges in large-scale genetic studies related to biobanks,

such as harmonizing phenotypes to account for different sour-

ces of heterogeneity and developing analytic pipelines to ac-

count for sample relatedness, case-control imbalance, and large

data sizes. GBMI is an important initiative aiming to integrate

large-scale biobanks for genetic studies. With carefully harmo-

nized phenotype definitions and analysis pipelines, we meta-

analyzed GWASs in up to 18 biobanks for 14 endpoints,

including common diseases (asthma, COPD, VTE, etc.), less

prevalent diseases (gout, IPF, AAA, ThC, etc.), and the proced-

ure endpoint appendectomy for primary discovery, and then

conducted replication in up to 5 additional biobanks. 500

genome-wide significant loci were detected, of which 183 are

novel. Sex-stratified meta-analysis allows for comparing effects

between sexes and identified 8 loci with different effect sizes in

men and women. Not only have we demonstrated the integration

of genetic association results from different biobanks, but we

have also illustrated the gains by meta-analyzing biobanks

together. The increase in the sample size and sample diversity

leads to higher discovery power. Incorporating non-EUR sam-

ples in the meta-analyses allows for genetic association tests

of 21.8 million additional markers. 85% of those markers are

low-frequency ones (AF < 1%), which may further facilitate func-

tional follow-up studies to disentangle the causal variants at

identified loci.

Several loci identified in our biobank meta-analyses have as-

sociations with other human diseases, which could be due to

pleiotropy, disease comorbidities, or linkage disequilibrium.

Follow-up statistical analyses, such as colocalization analysis,

are needed to obtain clearer biological implications. As ex-

pected, based on biobank meta-analysis results, more accurate

predictive PRSs can be constructed because of the increased

genetic discovery power compared with previous studies. This

gain can be further extended to non-EUR samples as the sample

diversity continues to increase in GBMI. The collaborative efforts

of biobanks in GBMI creates invaluable resources and opportu-

nities to advance the understanding of the etiology of human dis-

eases, leading to better treatment and prevention, and helps

move toward the equitability of genetic studies in diverse

ancestries.

We formed multiple working groups (1) to deepen the genetic

investigation of the biological implications of results for several
Cell Genomics 2, 100192, October 12, 2022 11
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endpoints,27–29,42,43 (2) to systematically characterize genome-

wide significant loci via fine mapping,40 transcriptome-wide as-

sociation,35 protein QTL Mendelian randomization analysis,36

and drug target prioritization,44 and (3) to improve the disease

risk prediction with PRSs based on the multi-biobank multi-

ancestry meta-analysis results.9

Together, the pilot work conducted in GBMI shows that bio-

banks can be meta-analyzed to provide reliable genetic discov-

eries despite the heterogeneous characteristics across biobanks

in many aspects, such as locations, sample sizes, genotyping

and phenotyping approaches, sample ancestries, and strategies

to recruit participants, with standardized phenotype definitions

and analysis pipelines. We have evaluated the challenges in

downstream in silico studies to prioritize functional genes and

variants, provided the best practices and pipelines based on

our lessons from GBMI, and highlighted the need for new

method development to address the upcoming issues in current

analyses based on the biobank meta-analysis results.

Limitations of the study
Although we have demonstrated how biobank meta-analysis

can help advance the understanding of genetic risk factors for

human diseases, the current study has several limitations. (1)

Most samples (73%) in the current meta-analysis are of EUR

ancestry, and, because of the small proportion of samples of

non-EUR ancestries, the power to identify and investigate

ancestry-specific genetic and environmental factors for human

traits and diseases remains limited. (2) Phenotype curation in

biobanks was harmonized according to the phecodemap, which

led to attenuation of effect size estimates for several phenotypes

compared with disease-specific cohorts that generally study

highly ascertained patients. (3) As has been demonstrated in

detail,40 due to heterogeneous characteristics across biobanks,

prioritization of functional variants through fine mapping based

on the summary statistics generated by biobank meta-analyses

can have mis-calibrated results. (4) Different gene prioritization

methods do not always agree, highlighting the challenges in in-

terpreting genome-wide significant loci and nominating genes

for functional follow-up. (5) Only three biobanks used self-report

data to curate phenotypes (two are EA biobanks). This chal-

lenged our ability to evaluate the impact of phenotyping on ge-

netic associations.
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Han, X., Ong, J.S., Hewitt, A.W., Segrè, A.V., Rouhana, J.M., et al. (2021).

Genome-widemeta-analysis identifies 127 open-angle glaucoma loci with

consistent effect across ancestries. Nat. Commun. 12, 1258. https://doi.

org/10.1038/s41467-020-20851-4.

38. Wightman, D.P., Jansen, I.E., Savage, J.E., Shadrin, A.A., Bahrami, S.,

Holland, D., Rongve, A., Børte, S., Winsvold, B.S., Drange, O.K., et al.

(2021). A genome-wide association studywith 1, 126, 563 individuals iden-

tifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282.

https://doi.org/10.1038/s41588-021-00921-z.

39. Mahajan, A., Taliun, D., Thurner, M., Robertson, N.R., Torres, J.M., Ray-

ner, N.W., Payne, A.J., Steinthorsdottir, V., Scott, R.A., Grarup, N., et al.

(2018). Fine-mapping type 2 diabetes loci to single-variant resolution using

high-density imputation and islet-specific epigenome maps. Nat. Genet.

50, 1505–1513. https://doi.org/10.1038/s41588-018-0241-6.

40. Kanai, M., Elzur, R., Zhou, W., Daly, M.J., Finucane, H.K., and Finucane,

H.K. (2022). Meta-analysis fine-mapping is often miscalibrated at single-

variant resolution. Preprint at medRxiv. 2022.03.16.22272457. https://

doi.org/10.1101/2022.03.16.22272457.

41. Lo Faro, V., Bhattacharya, A., Zhou, W., et al. (2022). Genome-wide asso-

ciation meta-analysis identifies novel ancestry-specific primary open-

angle glaucoma loci and shared biology with vascular mechanisms and

cell proliferation. Preprint at medRxiv. 2021.12.16.21267891. https://doi.

org/10.1101/2021.12.16.21267891.

42. Surakka, I., Wu, K.H., Hornsby, W., Wolford, B.N., Shen, F., Zhou, W.,

Huffman, J.E., Pandit, A., Hu, Y., Brumpton, B., et al. (2022). Multi-

ancestry meta-analysis identifies 2 novel loci associated with ischemic

stroke and reveals heterogeneity of effects between sexes and ancestries.

Preprint at medRxiv. 2022.02.28.22271647. https://doi.org/10.1101/2022.

02.28.22271647.

43. Wu, K.H.H., Douville, N.J., Konerman, M.C., et al. (2021). Polygenic risk

score from a multi-ancestry GWAS uncovers susceptibility of heart failure.

Preprint at medRxiv. 2021.12.06.21267389. https://doi.org/10.1101/2021.

12.06.21267389.

44. Namba, S., Konuma, T., Wu, K.H., Zhou, W., and Global Biobank Meta-

analysis Initiative; and Okada, Y. (2021). A practical guideline of geno-

mics-driven drug discovery in the era of global biobank meta-analysis.

Preprint at medRxiv. 12.03.21267280. https://doi.org/10.1101/2021.12.

03.21267280.

45. Zhou, W., Nielsen, J.B., Fritsche, L.G., Dey, R., Gabrielsen, M.E., Wolford,

B.N., LeFaive, J., VandeHaar, P., Gagliano, S.A., Gifford, A., et al. (2018).

Efficiently controlling for case-control imbalance and sample relatedness

in large-scale genetic association studies. Nat. Genet. 50, 1335–1341.

https://doi.org/10.1038/s41588-018-0184-y.

46. Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J.A.,

Ziyatdinov, A., Benner, C., O’Dushlaine, C., Barber, M., Boutkov, B.,

et al. (2021). Computationally efficient whole-genome regression for quan-

titative and binary traits. Nat. Genet. 53, 1097–1103. https://doi.org/10.

1038/s41588-021-00870-7.

47. Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional anno-

tation of genetic variants from high-throughput sequencing data. Nucleic

Acids Res. 38, e164. https://doi.org/10.1093/nar/gkq603.

48. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A.,

Flicek, P., and Cunningham, F. (2016). The ensembl variant effect predic-

tor. Genome Biol. 17, 122. https://doi.org/10.1186/s13059-016-0974-4.

https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.020
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.020
https://doi.org/10.1194/jlr.M069013
https://doi.org/10.1002/lipd.12271
https://psycnet.apa.org/fulltext/1944-00642-000.pdf
https://psycnet.apa.org/fulltext/1944-00642-000.pdf
https://doi.org/10.1161/CIRCULATIONAHA.120.047544
https://doi.org/10.1161/CIRCULATIONAHA.120.047544
https://doi.org/10.1038/s41588-019-0504-x
https://doi.org/10.1038/s41588-019-0504-x
https://doi.org/10.1101/2022.06.21.22276721
https://doi.org/10.1101/2021.11.30.21267108
https://doi.org/10.1101/2021.12.29.21268310
https://doi.org/10.1101/2021.12.29.21268310
https://doi.org/10.1161/HYPERTENSIONAHA.120.16547
https://doi.org/10.1038/s41588-020-00757-z
https://doi.org/10.1038/s41588-020-00757-z
https://doi.org/10.1371/journal.pone.0119752
https://doi.org/10.1371/journal.pone.0119752
https://doi.org/10.1038/ncomms6890
https://doi.org/10.1101/2020.09.08.20190561
https://doi.org/10.1101/2021.11.24.21266825
https://doi.org/10.1101/2021.11.24.21266825
https://doi.org/10.1101/2022.01.09.21268473
https://doi.org/10.1101/2022.01.09.21268473
https://doi.org/10.1038/s41467-020-20851-4
https://doi.org/10.1038/s41467-020-20851-4
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1101/2022.03.16.22272457
https://doi.org/10.1101/2022.03.16.22272457
https://doi.org/10.1101/2021.12.16.21267891
https://doi.org/10.1101/2021.12.16.21267891
https://doi.org/10.1101/2022.02.28.22271647
https://doi.org/10.1101/2022.02.28.22271647
https://doi.org/10.1101/2021.12.06.21267389
https://doi.org/10.1101/2021.12.06.21267389
https://doi.org/10.1101/2021.12.03.21267280
https://doi.org/10.1101/2021.12.03.21267280
https://doi.org/10.1038/s41588-018-0184-y
https://doi.org/10.1038/s41588-021-00870-7
https://doi.org/10.1038/s41588-021-00870-7
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1186/s13059-016-0974-4


Article
ll

OPEN ACCESS
49. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizo-

phrenia Working Group of the Psychiatric Genomics Consortium; Patter-

son, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score regression

distinguishes confounding from polygenicity in genome-wide association

studies. Nat. Genet. 47, 291–295. https://doi.org/10.1038/ng.3211.

50. Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes Con-

sortium; Ye, C.J., Price, A.L., and Zaitlen, N. (2016). Asian genetic epide-

miology network type 2 diabetes Consortium, ye CJ, price AL, zaitlen N.

Transethnic genetic-correlation estimates from summary statistics. Am.

J. Hum. Genet. 99, 76–88. https://doi.org/10.1016/j.ajhg.2016.05.001.

51. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015).

MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput.

Biol. 11, e1004219. https://doi.org/10.1371/journal.pcbi.1004219.

52. GTEx Consortium (2020). TheGTExConsortium atlas of genetic regulatory

effects across human tissues. Science 369, 1318–1330. https://doi.org/

10.1126/science.aaz1776.

53. Zhou, D., Jiang, Y., Zhong, X., Cox, N.J., Liu, C., and Gamazon, E.R.

(2020). A unified framework for joint-tissue transcriptome-wide associa-

tion and Mendelian randomization analysis. Nat. Genet. 52, 1239–1246.

https://doi.org/10.1038/s41588-020-0706-2.

54. Bhattacharya, A., Li, Y., and Love, M.I. (2021). MOSTWAS: multi-omic

strategies for transcriptome-wide association studies. Zhu X. PLoSGenet.

17, e1009398. https://doi.org/10.1371/journal.pgen.1009398.

55. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W.J.H., Jan-

sen, R., de Geus, E.J.C., Boomsma, D.I.,Wright, F.A., et al. (2016). Integra-

tive approaches for large-scale transcriptome-wide association studies.

Nat. Genet. 48, 245–252. https://doi.org/10.1038/ng.3506.

56. Gusev, A., Mancuso, N., Won, H., Kousi, M., Finucane, H.K., Reshef, Y.,

Song, L., Safi, A., Schizophrenia Working Group of the Psychiatric Geno-

mics Consortium; and McCarroll, S., et al. (2018). Transcriptome-wide as-

sociation study of schizophrenia and chromatin activity yieldsmechanistic

disease insights. Nat. Genet. 50, 538–548. https://doi.org/10.1038/

s41588-018-0092-1.

57. Mancuso, N., Shi, H., Goddard, P., Kichaev, G., Gusev, A., and Pasaniuc,

B. (2017). Integrating gene expression with summary association statistics

to identify genes associated with 30 complex traits. Am. J. Hum. Genet.

100, 473–487. https://doi.org/10.1016/j.ajhg.2017.01.031.

58. Mancuso, N., Freund, M.K., Johnson, R., Shi, H., Kichaev, G., Gusev, A.,

and Pasaniuc, B. (2019). Probabilistic fine-mapping of transcriptome-wide
association studies. Nat. Genet. 51, 675–682. https://doi.org/10.1038/

s41588-019-0367-1.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Wei Zhou

wzhou@broadinstitute.org.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The all-biobank meta-analysis results and plots for the 14 endpoints (including both ancestry-specific and cross-ancestry

meta-analyses and sex-stratified meta-analyses) are available for downloading at https://www.globalbiobankmeta.org/

resources and browsing at the browser http://results.globalbiobankmeta.org. The PRS weights estimated using all-biobank

multi-ancestry meta-analyses and leave-UKBB-out multi-ancestry meta-analyses have been deposited within the PGS Cata-

log with study ID PGP000262 (https://www.pgscatalog.org/).

d All original code has been deposited to Zenodo with DOIs as below and is publicly available as of the date of publication. Links

are listed in the key resources table.

d Scripts used for quality control, meta-analysis, and summary of results are available at https://github.com/globalbiobankmeta

and deposited at https://zenodo.org/badge/latestdoi/295461030.

d Scripts for PC projection are deposited at https://zenodo.org/badge/latestdoi/353203447.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Phenotype definition
A phenotype definition guideline was created and shared with all biobanks (Table S4). The disease endpoints were defined following

the phecodemaps7 tomap the ICD-9 or ICD-10 codes into hierarchical phecodes, each representing a specific disease group. Study
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participants were labeled a phecode if they had one or more of the phecode-specific ICD-9 or ICD-10 codes. Cases were all study

participants with the phecode of interest and controls were all study participants without the phecode of interest or any related phec-

odes. For sex-specfic disease endpoint, which is uterine cancer (UtC) in the endpoint list, only females were included in the study

samples. The procedure endpoint, appendectomy, was defined based on the OPCS. Any biobank participant with codes H01 (Emer-

gency excision of appendix), H01.1(emergency excision of abnormal appendix and drainage), or H01.2 (emergency excision of a

normal appendix) were cases, while all other participants without these codes were controls. Biobanks which do not collect the

ICD codes or OPCS codes define phenotypes using the available EHRs according to the phenotype definitions in the guideline.

GWAS
Each biobank conducted genotyping, imputation and quality controls and estimated sample ancestry independently. Then biobank

run GWAS following the analysis plan shared in GBMI (information available at https://www.globalbiobankmeta.org/) with pheno-

types curated according to the harmonized phenotype definitions (see the Phenotype definition section in STAR Methods). We rec-

ommended to run GWAS analysis using Scalable and Accurate Implementation of GEneralized mixed model (SAIGE)45 or

REGENIE,46 which are scalable for biobank-scale data and account for sample relatedness and case-control imbalances. The sug-

gested covariates were age, age2, sex, age*sex, 20 first principal components, and any biobank specific covariates, such as gen-

otyping batches and recruiting centers.

Post-GWAS quality control
Variant-level quality control was conducted for each data set containing GWAS summary statistics shared by biobanks (Table S24

and Figures S15 and S16). Genetic variants with MAC < 20 and variants that were poorly imputed with an imputation score < 0.3 were

firstly excluded. Genome coordinates of all genetic variants were lifted to GRCh38. For palindromic SNPs (with A/T or G/C alleles), we

compared their allele frequencies of the aligned reference allele in the GWAS data set (AF-GWAS) to gnomAD8 (AF-gnomAD) by

ancestry. If a palindromic SNP met any one of the following standards, we flipped its alleles in the GWAS data set and indicated

that this variant had the potential strand flip with a flag: 1. The fold difference was greater than two, 2. The allele frequency of the

alternative allele in the GWAS data set was closer to AF-gnomAD than the reference allele, 3. AF-GWAS < 0.4 and AF-gnomAD > 0.6,

4. AF-GWAS > 0.6 and AF-gnomAD < 0.4. We then identified genetic variants with different allele frequencies compared to gnomAD.

For each genetic variant, the Mahalanobis distance between AF-GWAS and AF-gnomAD was estimated and the variant was flagged

to have different AF-GWAS and AF-gnomAD if the Mahalanobis distance was greater than three standard deviations away from the

mean. We observed that across 18 biobanks that shared GWAS summary statistics to the meta-analysis for asthma, very small pro-

portions (0.003% to 0.65%) of variants were flagged as either palindromic SNPs with flipped strands or variants having very different

allele frequencies compared to gnomAD.

Meta-analysis
Fixed-effect meta-analyses based on inverse-variance weighting were performed for all endpoints with 1. all biobanks across all an-

cestries, 2. leave-one-biobank out (LOBO) (Figure S8) 3. all biobanks stratified by each ancestry, and 4. all biobanks stratified by sex.

Trans-ancestry meta-analysis was performed using MR-MEGA11 with three principal components of ancestry. We defined genome-

wide significant loci by iteratively spanning the ±500 kb region around the most significant variant and merging overlapping regions

until no genome-wide significant variants were detected within ±1Mb. A locus was categorized as ‘‘previously reported’’ if the region

after merging is within ±500kb of variants for the corresponding phenotype in GWAS Catalog,1 otherwise, it was categorized as

‘‘novel’’ (Table S7). The most significant variant in each locus was selected as the index variant. The nearest gene(s) to the index

variant was used to name each locus. Cochran’s Q-test for heterogeneity has been conducted to identify loci with index variants

that have different effect sizes across GWAS data sets, ancestry, or in males and females.

Post-meta-analysis quality control
For genome-wide significant loci, post meta-analysis quality control has been conducted. 1. For any locus with the top hit tested in

one or more data sets that have different allele frequencies compared to gnomAD,8 we excluded those data sets and re-performed

the meta-analysis. 2. We excluded loci with the top hits that were tested in only two biobanks and had significant heterogeneous

effect size estimates in the biobanks.

PC projection
179,195 genetic variants have been genotyped/imputed in all biobanks, among which 168,899 are also in the 1000 Genomes5 and

HGDP.6 The weights corresponding to principal components for those markers were estimated based on the PCA analysis for the

reference samples with known ancestry in 1000 Genomes and HGDP and shared among biobanks. Biobanks then generated PC

loadings based on the pre-estimated weights of those markers.

Variant annotation
Genetic variants were annotated using ANNOVAR47 for the nearest genes. To obtain amore complete annotation for putative loss-of-

function variants, VEP48 with the LOFTEE plug8 as implemented in Hail was used.
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Heritability estimation
LD score regression analyseswere conducted using LDSC49 to estimate narrow-sense heritability based on the summary statistics of

all-biobank meta-analyses based on the LD scores pre-estimated using UK Biobank samples (Table S9).

Evaluate the integration genetic associations from diverse biobanks
Compare individual biobank with LOBO meta-analysis

The effect sizes of top variants with association p-value < 1 3 10�10 by all-biobank meta-analyses in individual biobanks were

compared to the effect sizes estimated in the corresponding LOBOmeta-analyses. For each biobank and LOBOpair, we fit a Deming

regression model,24 which accounts for standard errors of effect size estimates in both association datasets, with the intercept set to

zero (Figure S8). We estimated genetic correlation between individual biobanks and LOBO (Figure S9) for the three endpoints with

highest heritability estimates: asthma, gout, and COPD, using LDSC.49 For biobanks with samples of non-EUR ancestries, such as

BBJ, we estimated the trans-ancestry genetic correlation estimation using Popcorn.50

Compare GBMI with published GWAS studies

The effect size estimates of previously known loci in all-biobank meta-analyses were compared to the effect size estimated in pre-

vious GWAS (Table S15). This analysis was done for 18 loci that were previously identified by TAGC15 for asthma, 24 previously iden-

tified loci for AAA by MVP, and 40 previously identified loci for gout, respectively. For the 18 asthma loci, p-values by all-biobank

meta-analyses in GBMI were compared those reported by TAGC15 (Figure S11).

Prioritize functional genes
DEPICT

Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT)33 was applied to investigate the results from GWAS of 14

endpoints. DEPICT uses three analyses to predict the gene functions: 1) prioritizing the most likely causal genes, 2) identifying en-

riched gene sets, and 3) discovering tissues/cell types with highly expressed genes at associated loci (Tables S18, S19, S22, and S23

and Figures S12 and S13). Two p-value thresholds were used to define genome-wide significance 13 10�5 and 5 3 10�8, for input

summary statistics. A reference panel from individuals of European ancestry in 1000 Genomes was used to calculate LD and further

identify the tag SNP from GWAS results. A minimum of 10 index variants from GWAS results were set to perform analysis using

DEPICT. Enrichment results for significant findings from DEPICT were defined by FDR <0.05. Sensitivity analysis was conducted

with GWAS summary statistics derived from the meta-analysis of biobank data sets with samples of European ancestries (not

including Finns) using LD information from the 1000 Genomes European panel to compare our findings with DEPICT results using

multi-ancestry GWAS summary statistics.

PoPS

Polygenic Priority Score (PoPS) is a gene prioritization method used in our study to identify potential causal genes34 (Tables S20 and

S22, and S23 and Figures S12 and S13). PoPS integrates GWAS summary statistics with publicly available bulk and single-cell gene

expression, biological pathway, and predicted protein-protein interaction data to comprehensively perform gene prioritization. PoPS

applies Multi-marker Analysis of GenoMic Annotation (MAGMA)51 to meta-analyze gene-level associations and create a gene-gene

correlation matrix. Gene-level associations were generated bymeta-analyzing the variants across the same gene, using GWAS sum-

mary statistics and LD panel from the 1000 Genomes European-only dataset. Next, MAGMA integrated previously calculated gene-

level associations and gene-gene correlation to perform enrichment analysis for gene features selection. Lastly, a PoPS score was

calculated by fitting a joint model with all the selected features simultaneously. In our study, genes with a PoPS score in the top one

percentile were considered as the prioritized genes. A PoPS score cutoff, the top 0.1 percentile, was also used in the gene prioriti-

zation method evaluation.

Transcriptome-wide association studies (TWASs)

Prediction of gene expression: Using genotypes and gene expression from 296 European donors fromGTEx ver. 8,52 we trained pre-

dictive expression models using Joint-Tissue Imputation (JTI)53 and Multi-Omic Strategies for TWAS (MOSTWAS).54 Due to small

eQTL sample sizes of non-European patients in GTEx, we restricted TWAS to European populations. We used gene expression

frommultiple relevant tissues for the analysis. For asthma, gene expression in Lungwas used and for POAG, gene expression in Brain

Cortex was used. For VTE, gene expressions in five most relevant tissues were used: Artery Aorta, Artery Coronary, Artery Tibial,

Heart Atrial Appendage, and Heart Left Ventricle. JTI borrows information across transcriptomes of different tissues, leveraging

shared genetic regulation, to improve prediction performance in a tissue-dependent manner.53 MOSTWAS prioritizes distal-SNPs

to a gene of interest that are mediated by biomarkers local to the distal-SNPs; these prioritized distal-SNPs are incorporated in

the final model. We only considered genes with positive SNP heritability at p-value < 0.05 and adjusted cross-validation (CV)

R2 > 0.01 with p-value < 0.05; we considered the gene model from the method that showed larger CV R2 for TWAS.

Association testing and probabilistic fine-mapping: Using biobank meta-analysis summary statistics in GBMI from European-

ancestry subjects, we detected gene-trait associations through theweighted burden test and 1000Genomes Project CEUpopulation

as an LD reference5,55. We defined a transcriptome-wide significance using a Bonferroni correction across 20,000 tests

(p-value < 2.5 3 10�6)55–57(Tables S21, S22, S23 and Figures S12 and S13). As complex correlations between predicted

expression levels at a given region can yield multiple associated genes in TWAS, we used FOCUS, a probabilistic gene-level fine-

mappingmethod, to define credible sets of genes that explain the expression-trait signal at a given locus.58 Here, we used the default
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non-informative priors implemented in FOCUS and estimated the posterior inclusion probability (PIP) and a 90%credible set of genes

at a given locus.

Proteome-wide mendelian randomization (PWMR)

The putative causal role of 1,310 proteins on eight diseases in the NFE samples were estimated using proteome-wide association

study (PWMR) and sensitivity analyses. For the exposure of the analysis, 5,418 conditional independent protein quantitative trait

loci (pQTLs) of 1,310 proteins in European samples from ARIC59 were selected as genetic predictors. For outcomes, eight of the

14 endpoints from GBMI were selected since they had full GWAS summary statistics in both European and African ancestries

and had relatively good sample size (>100 cases). The eight disease outcomes included idiopathic pulmonary fibrosis (IPF), primary

open-angle glaucoma (POAG), heart failure (HF), venous thromboembolism (VTE), stroke, gout, chronic obstructive pulmonary dis-

ease (COPD) and asthma in European and African ancestries. For the discovery PWMR analysis, we applied a generalised inverse

variance weighted approach60 that takes into account the correlation between genetic predictors. To increase the possibility of iden-

tifying true causal links between proteins and diseases, we applied five sensitivity analyses. First, we applied generalised MR-Egger

regression to estimate the influence of horizontal pleiotropy.60 For PWMR association with a p-value of the gEgger intercept term

lower than 0.05, we considered these associations as influenced by horizontal pleiotropy and excluded them from the top finding

list. Second, we applied Cochrane’s Q test for gIVW results and Rocker’s Q test for gEgger results to estimate the potential hetero-

geneity of PWMR estimates61,62. Third, we applied three types of genetic colocalization analyses to distinguish causality from con-

founding by LD. The conventional colocalization, pairwise conditional and colocalization (PWCoCo) and LD check63,64. Fourth, to

control for potential aptamer binding artificial effects of pQTLs, we listed all PWMR associations using pQTLs from the coding regions

and flagged these associations with caution. Fifth, to estimate the influence of potential reverse causality, we applied MR-Steiger

filtering65 and removed any PWMR associated with evidence of reverse causality from the top finding list. All the remaining

PWMR associations with p-value < 0.001 were selected as candidate findings (Tables S22 and S23 and Figures S12 and S13).

Phenome-wide association test
For top variants at the 500 identified loci (known or novel), look-ups were carried out for their association with 1,283 human diseases

curated based on phecodes mapped to ICD codes in the UK Biobank.45 We reported associations with p-value < 5 3 10�8.

Polygenic scores
The polygenic scores (PRS) were constructed using PRS-CS,66 which is based on the Bayesian framework. We used the auto model

with default parameters implemented in the software to estimate the posterior mean SNP effects. The input for GWAS sample size

was estimated as the total effective sample size. The LDmatrices calculated using European individuals from 1000Genomes Phase 3

(1KG) provided by PRS-CSwere used. Specifically, we used leave-one-biobank-out (LOBO)meta-analysis in GBMI for asthma as the

discovery GWAS and validated the PRS in 9 different biobanks, including: BBJ, BioVU, Lifelines, UKBB, CanPath, ESTBB, FinnGen,

HUNT and MGI. To quantify the accuracy improvement attributable to GBMI, we built PRS using a published GWAS by TAGC.15

The prediction performance of PRS was estimated using Nagelkerke’s R2 after regressing out all biobank-specific covariates with

a logistic regression. It was further transformed to R2 on the liability scale,67 with biobank-specific case proportion used as the dis-

ease population prevalence. The corresponding 95% confidence intervals (CIs) were calculated using bootstrap with 1000 replicates

(Figure S14).
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