
UC Berkeley
UC Berkeley Previously Published Works

Title
A matrix-algebraic formulation of distributed-memory maximal cardinality matching 
algorithms in bipartite graphs

Permalink
https://escholarship.org/uc/item/5d808876

Authors
Azad, Ariful
Buluç, Aydın

Publication Date
2016-10-01

DOI
10.1016/j.parco.2016.05.007
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5d808876
https://escholarship.org
http://www.cdlib.org/


A Matrix-Algebraic Formulation of Distributed-Memory Maximal
Cardinality Matching Algorithms in Bipartite Graphs

Ariful Azad, Aydın Buluç

Computational Research Division, Lawrence Berkeley National Laboratory

Abstract

We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-
memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many
unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic
matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal
changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First,
unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant
with increasing processor counts, which is important for predictable and reproducible performance. Second,
relying on bulk-synchronous matrix operations, these algorithms expose a higher degree of parallelism on
distributed-memory platforms than existing graph-based algorithms.

We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-
MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated
graphs. On real instances, our algorithms achieve up to 200× speedup on 2048 cores of a Cray XC30 super-
computer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms
show good scaling on up to 16,384 cores.

1. Introduction

A matching in a graph is a set of edges without common vertices, and the number of edges in a matching is
its cardinality. Computing a maximum cardinality matching (MCM) is an important combinatorial problem
in scientific computing with applications to permute a matrix to its block triangular form (BTF) via the
Dulmage-Mendelsohn decomposition of bipartite graphs [1, 2], and to compute minimum-weight matchings
used by sparse direct solvers [3]. A matching M is maximal if any edge not in M is added to M, it is no
longer a matching. An algorithm that computes a maximal matching is an approximation algorithm, and the
ratio of maximal to maximum cardinality is the approximation ratio of the maximal matching. The primary
use case of a maximal cardinality matching is in the initialization of MCM algorithms because the former
can be computed much faster than the latter [4, 5, 6, 7]. This paper solely focuses on maximal cardinality
matchings in a bipartite graph, G=(R,C,E), where the vertex set V is partitioned into two disjoint sets R
and C, such that every edge connects a vertex in R to a vertex in C. Consequently, we will occasionally
drop the adjectives “bipartite” and “maximal cardinality” when describing our methods.

Computing a matching in parallel is an interesting research topic on its own. However, our primary
interest is in solving sparse systems of linear equations where matching is used as a preprocessing step [2, 3].
The increasing size of the sparse systems encouraged development of many distributed-memory solvers as
large-scale problems do not fit into a single node. The lack of distributed-memory matching algorithms
and implementations left the preprocessing step as a bottleneck. The current state of the practice [3]
involves gathering the data into a single page memory node to run the serial (or multithreaded) matching

Email addresses: azad@lbl.gov (Ariful Azad), abuluc@lbl.gov (Aydın Buluç)

Preprint submitted to Elsevier April 24, 2017



1 4 16 64 256 1024 4096 8192
90%

92%

94%

96%

98%

100%

Number of Cores or Threads

A
p
p
ro

x
im

a
ti

o
n
 R

a
ti

o
 

Multithreaded
Karp−Sipser
(Intel)

Multithreaded
Karp−Sipser
(Cray XMT)

Distributed
Karp−Sipser
(Edison)

Distributed
Greedy
(Edison)

Figure 1: Matching qualities attained by Karp-Sipser and Greedy algorithms on delaunay n24 graph. Multithreaded algorithms
are presented in earlier work [5], whereas distributed algorithms, which are matrix based, are presented here for the first time.

code, followed by a redistribution of the data for the rest of the solver to complete. The gathering can be
impossible due to limited single node memory. Even when the problem fits into a single node, the gathering
incurs expensive communication [8] and subsequent single node execution of the matching algorithm creates
a scalability bottleneck in Amdahl’s terms due to significantly reduced concurrency within a single node.
Therefore, scalable distributed-memory algorithms are needed to compute matchings in large distributed
graphs.

In earlier work, effective serial and parallel algorithms for maximal cardinality matching have been
designed and implemented on both shared and distributed memory systems [5, 9, 10, 11, 12]. To increase
the cardinality of the maximal matching, existing serial and parallel algorithms process only a small fraction
of unmatched vertices at a time, which imposes a vertex-processing order. This artificial ordering of vertices
causes two important weaknesses of existing parallel algorithms. First, the cardinality of maximal matchings
provided by existing algorithms can decrease significantly with increased concurrency because of suboptimal
vertex orders. For example, Azad et al. [5] demonstrated that the approximation ratio (the ratio of maximal
to maximum cardinality) of a multithreaded Karp-Sipser algorithm decreases significantly on a Cray XMT
multiprocessor with more than six thousands threads. Fig. 1 shows that the quality of matchings from
the multithreaded Karp-Sipser decreases by more than 2% on 80 threads of an Intel multiprocessor and
by another 1% on 6400 threads of a Cray XMT massively multithreaded multiprocessor. This reduction
in matching quality is undesirable because the reduced cardinality may significantly increase the runtime
of other dependent algorithms (e.g., a maximum matching algorithm) that use a maximal matching as an
initializer. Second, existing algorithms use asynchronous communication when searching for unmatched
neighbors from a small subset of unmatched vertices. The difficulty of managing a large number of fine-
grained asynchronous communication calls limits the scalability of existing matching algorithms.

In this paper, we address these two limitations of existing algorithms by redesigning them using matrix
algebra. For this purpose, we represent the input bipartite graph by a sparse matrix and the vertex sets
(including matchings) by vectors, and then decompose the matching algorithms into several independent
steps. Next, sparse matrix-sparse vector multiplication (SpMSpV) is used to explore the neighborhood of
unmatched vertices and vector operations are used to update the current matching. A slight modification
in these matrix and vector operations give rise to three efficient maximal matching algorithms.

We show with an extensive set of real and randomly generated problems that our matrix-based algorithms
are more amenable to parallelization on distributed-memory platforms. Over a diverse set of 33 real input
graphs, we achieve an average of 121× speedup (up to 200×) on 2048 cores of a Cray XC30 supercomputer
(Edison). Even higher speedups are obtained on larger synthetically generated graphs where our algorithms
show good scaling on up to 16,384 processors, making them the first algorithms for maximal matching that
scale to tens of thousands of processors. Furthermore, unlike previous algorithms, the cardinality of matching
obtained by our algorithms is insensitive to concurrency, and remains the same even on several thousands
of processors. This is because the way we implement matrix operations leads itself to a bulk-synchronous

2



Algorithm 1 A maximal matching algorithm based on edge traversal. Input: A bipartite graph G(R,C,E).
Output: A maximal cardinality matching M .

1: procedure Maximal-Match-Graph(G(R,C,E))
2: M ← φ
3: Q← C . Unmatched columns
4: while Q 6= φ do
5: vc ← a vertex from Q . Algorithmic variants
6: if (vc, vr) ∈ E and vr is unmatched then
7: M ←M ∪ (vc, vr)

8: Q← Q \ {vc}
return M

execution, where no explicit ordering among vertices are enforced within a single phase. Consequently,
the algorithm is not effected by increased concurrency. For example, Fig. 1 demonstrates that the newly
developed matrix-based Karp-Sipser algorithm outputs matchings with statistically the same quality on 1
to 2048 cores of Edison. Since the primary use case of our algorithms is to initialize MCM algorithms,
we extensively evaluate the impact of three maximal matching algorithms on a distributed-memory MCM
algorithm. This paper expands on work first published as a conference paper [13].

2. Background and Notations

Given a graph G=(V,E) on the set of vertices V and edges E, a matching M is a subset of edges such
that at most one edge in M is incident on each vertex in V . Given a matching M in a graph G, an edge
is matched if it belongs to M , and unmatched otherwise. Similarly, a vertex is matched if it is an endpoint
of a matched edge, and unmatched otherwise. If an edge (u, v) is matched, we call u and v mates of each
other. Given a matching M , the unmatch-degree of a vertex v is the number of unmatched vertices adjacent
to v in the graph. The number of edges in M is called the cardinality |M | of the matching. A matching
M is maximal if there is no other matching M ′ that properly contains M . M is a maximum cardinality
matching (MCM) if |M |≥|M ′| for every matching M ′.

2.1. Variants of maximal matching algorithms

The function Maximal-Match-Graph described in Algorithm 1 computes a maximal matching in a
bipartite graph G(R,C,E). The algorithm traverses the neighborhood of an unmatched vertex vc in C,
and if an unmatched neighbor vr in R is found, the edge (vc, vr) is included in the matching. The order
in which the unmatched vertex vc is selected in Algorithm 1 defines several variants of maximal matching
algorithms. If vc is selected at random then the algorithm is called the Greedy algorithm. In the Karp-Sipser
algorithm [14], vertices with one unmatched neighbor (called degree-1 vertices) are processed before vertices
with higher unmatched-degrees. When there is no degree-1 vertex, Karp-Sipser works similar to the Greedy
algorithm. Finally, when vertices are selected in the ascending order of unmatch-degrees, Algorithm 1 turns
into a Dynamic Mindegree algorithm.

2.2. Representing a bipartite graph via a sparse matrix

Let G=(R,C,E) be an undirected and unweighted bipartite graph with |R|=m and |C|=n. Without
loss of generality, we assume that m≥n. Consider an arbitrary ordering of vertices in each vertex part of
G, R = {r1, r2, ..., rm} and C = {c1, c2, ..., cn}. Then, we represent G by an m× n binary sparse matrix A
with |E| nonzero entries (i.e., nnz (A)=|E|) such that A(i, j)=1 when there is an edge between the ith row
vertex ri and jth column vertex cj . By a reverse construction, we can also create a bipartite graph from a
binary matrix. Fig. 2 shows an example of representing a bipartite graph with a sparse matrix. Note that
A can be unsymmetric, rectangular (when m 6=n), and might have nonzero entries in the diagonal (when
there are edges of the form (ri, ci)). Hence, A is not the adjacency matrix of the bipartite graph G since
the actual adjacency matrix is an (m+ n)× (m+ n) square matrix with zero diagonal.

3



Table 1: Basic functions needed for the maximal matching algorithms.

Function Arguments Returns
Example Serial
(x: sparse, y:dense, q: sparse) Complexity

Ind x: a sparse vector
local indices of x = [3, 0, 2, 2, 0]

O(nnz (x))
nonzero entries of x Ind(x) = [1, 3, 4]

Select

x: a sparse vector z ← an empty sparse vector x = [3, 0, 2, 2, 0]
y: a dense vector for i ∈ Ind(x) y=[1, -1, -1, 2, -1] O(nnz (x))
expr : logical expr. on y if (expr(y[i]) then Select(x, y = -1) = [0, 0, 2, 0, 0]
assume size(x) = size(y) z[i]← x[i]

Invert
x: a sparse vector z ← an empty sparse vector x=[3, 0, 2, 2, 0]
assume max(x) ≤ len(x) for i ∈ Ind(x) Invert(x)=[0, 4, 1, 0, 0] O(nnz (x))

if (z[x[i]] 6= 0) then z[x[i]]← i

SpMSpV
A: a sparse matrix ∑

k∈Ind(x)

nnz (A(:, k))x: a sparse vector returns A · x see Fig. 2
SR: a semiring

2.3. Representing matching and vertex sets via vectors

We use either a dense or a sparse vector to represent a set of vertices. The difference between these two
formats is that the latter does not explicitly store the zero entries. Given a sparse vector x, nnz (x) denotes
the number of nonzero entries and len(x) denotes the number of both zero and nonzero entries in x. For a
dense vector x, nnz (x)= len(x). Given a sparse/dense vector x and an index vector I with max(I)≤ len(x),
x[I] selects the nonzero entries from indices specified by I. We use subscripts r and c to denote vectors of
row and column vertices, respectively.

In our matching algorithms, we store the mates of row and columns vertices in two dense vectors mater
and matec . If the ith row vertex ri is matched to the jth column vertex cj , then mater [i]=j and matec [j]=i.
mater [i] is set to −1 when ri is unmatched. Consider a graph with five column vertices and fc ={c1, c2, c5} to
be a subset of column vertices in the graph. Then, we store fc in a sparse vector of length five with nonzeros
in 1st, 2nd and 5th locations: fc =[×,×, 0, 0,×]. Here, len(fc)=5, nnz (fc)=3. Therefore, the indices of the
nonzero entries of a sparse vector represent the actual vertices, whereas the values stored in nonzero entries
store pointers to other vertices such as parents or mates. We show several examples of sparse and dense
vectors in Fig. 3 in the context of a matching algorithm.

2.4. Operations on vectors and matrices

Table 1 defines several operations on vectors and matrices, which will be used in matching algorithms.
The function Ind(x) returns the local indices of nonzero entries of a sparse vector x. Since we need to copy
nnz (x) indices, the complexity of this operation is O(nnz (x)). Given a sparse vector x, a dense vector y
and a logical expression expr , the function Select(x, y, expr) selects indices I of y where expr(y) is true
and returns x[I]. As shown in the pseudocode in Table 1, Select only iterates on the sparse vector, hence
the complexity O(nnz (x)). Given a sparse vector x, the Invert function returns the inverted index by
swaping the indices and values of nonzero entries in x and stores the results in a new sparse vector z. If x
has repeated nonzero values, only one of them is used as index in z (we keep the first index).

We explore vertices from one side of a bipartite graph to the other side by using SpMSpV over a semiring.
For the purposes of this work, a semiring is defined over (potentially separate) sets of ‘scalars’, and has its two
operations ‘multiplication’ and ‘addition’ redefined. We refer to a semiring by listing its scaling operations,
such as the (multiply, add) semiring. The usual semiring multiply for breadth-first search (BFS) is select2nd,
which returns the second value it is passed. The BFS semiring is defined over two sets: the matrix elements
are from the set of binary numbers whereas the vector elements are from the set of integers. This usage of
a semiring is less strict than the definition used in mathematics.

Consider a bipartite graph G(R,C,E), its matrix representation A, and a set of column vertices fc .
Then, Fig. 2 shows the execution of the SpMSpV A · fc over the (select2nd, min) semiring. SpMSpV returns
the set of row vertices explored by fc . In practice we use a (select2nd, rand) semiring where the ‘addition’
operation selects a random unmatched column in each row.

4



1 

5 

2 
3 
4 

1 5 2 3 4 

× 

× × 

× 

× 
× 

c1 

c2 

c3 

c4 

r1 

r2 

r3 

r4 

r5 c5 

× 
× × 

1 2 5 

1	  

1	  

2	  

5	  

5	  

Select  
columns 

Unmatched columns: fc 

In each row, retain 
the minimum product 
from the selected columns 

Vi
si

te
d 

ro
w

s:
 f r

 

Matrix A Bipartite graph  
G(R,C,E) 

Figure 2: Illustration of traversing a bipartite graph G(R,C,E) via SpMSpV. The bipartite graph with five row and five column
vertices is shown in the left. Matched and unmatched vertices are shown in filled and empty circles, respectively. Thin lines
represent unmatched edges and thick lines represent matched edges. The binary matrix A represents the bipartite graph where
an “x” denotes an edge in G. fc represents the set of unmatched column vertices. The sparse matrix-vector multiplication
A · fc over the (select2nd, min) semiring first selects columns that have nonzeros in fc (shown in gray) and then in each row,
retains the minimum product from the selected columns. The indices of the result vector fr denote row vertices explored from
fc and the value fr [i] denotes the column vertex that explored the ith row vertex.

2.5. Related Work

There has been a large body of research on the theory of parallel matching algorithms, e.g., Karpinski and
Rytter [15]. However, most of these algorithms are based on parallel random access machine (PRAM) model,
and they are often impractical on modern parallel platforms. Considerable interest in parallel algorithms has
been observed recently with work on approximation as well as exact algorithms on shared and distributed
memory platforms. Patwary et al. [12] have implemented a parallel Karp-Sipser algorithm (in a general
graph) on a distributed memory machine using an edge partitioning of the graph. On some real graphs,
their algorithm achieved up to 38× speedups on 64 processors, whereas on other graphs their algorithm
did not scale at all. Langguth et al. describe their work on parallelizing the Push-Relabel algorithm for
bipartite maximum matching on both shared and distributed-memory platforms [7, 16]. However, their
distributed-memory push-relabel algorithm did not scale well beyond 64 processors [16].

Parallel algorithms for weighted matching have also been studied [17]. Recently, Sathe et al. have
reported 4× to 64× speedups on 1024 processors of a Cray XE6 for a parallel auction algorithm [18]. Half-
approximation algorithms for weighted matching have been implemented on both shared and distributed
memory computers with good speedups [19, 20, 21, 22].

3. Matrix Algebra based formulation of Matching Algorithms

3.1. The greedy matching algorithm

The function Maximal-Match-Mtx in Algorithm 2 describes the greedy matching algorithm using
matrix algebra building blocks. As inputs, the algorithm takes a matrix A representing a bipartite graph
and two dense vectors mater , and matec storing the mates of row and column vertices. Maximal-Match-
Mtx returns a maximal cardinality matching by updating mater and matec . At first, we create two sparse
vectors fr and fc storing the unmatched row and column vertices. The values of fc are set to their indices
to facilitate BFS traversals. We keep both A and its transpose AT so that we can traverse the graph from
both row and column vertices. The dense vector dc of size n stores the unmatch-degree of column vertices.
Initially, we compute dc by multiplying AT by fr over the (select2nd, +) semiring.

One pass over the repeat-until block in Algorithm 2 defines an iteration of the algorithm. Fig. 3
demonstrates the execution of one iteration of the Maximal-Match-Mtx function. In this example, the
bipartite graph has five row vertices and five column vertices. Two of the vertices are matched before
the current iteration (Subfig. 3(a)). We divide each iteration of Maximal-Match-Mtx into three steps
described below.

5



Algorithm 2 Maximal matching algorithm based on matrix algebra. Inputs: A binary m×n sparse matrix
A denoting a bipartite graph G(R,C,E) where |R| = m, |C| = n, and |E| = nnz (A). Dense vectors mater ,
and matec store the mates of row and column vertices (-1 for unmatched vertices). Output: Updated mater
and matec with a maximal cardinality matching.

1: procedure Maximal-Match-Mtx(A, matec , mater )
2: fr ← A sparse vector of size m with fr[i] = 1 . Unmatched row vertices
3: fc ← A sparse vector of size n with fc[i] = i . Unmatched column vertices
4: AT ← Transpose(A) . Transpose matrix
5: dc ← SpMSpV(AT,fr, SR=(select2nd,+)) . Degrees of column vertices to unmatched row vertices
6: fc ← Select(fc, dc > 0) . Remove isolated vertices
7: repeat
8: . Step 1: Discover unmatched rows from unmatched columns (one step of BFS)
9: fr ← SpMSpV(A, fc, SR=(select2nd,rand)) . Explore row vertices from unmatched column vertices.

10: fr ← Select(fr,mater = −1) . Unmatched visited row vertices
11:

12: . Step 2: Update matching
13: tc ← Invert(fr) . For each column vertex, select one of its children if available
14: J ← Ind(tc)
15: matec[J ]← tc . Match column vertices with their selected children
16: tr ← Invert(tc) . Selected row vertices pointing to their unique parents
17: I ← Ind(tr)
18: mater[I]← tr . Match an unmatched row vertex with its unique parent
19:

20: . Step 3: Update unmatched column vertices fc
21: mdc ← SpMSpV(AT,tr, SR=(select2nd,+)) . Degrees of column vertices to the newly matched rows
22: J ← Ind(mdc) . Indices of column vertices adjacent to the newly matched row vertices
23: dc[J ]← dc[J ]−mdc . Update unmatch-degrees of column vertices
24: fc ← Select(fc,matec = −1) . Keep unmatched columns
25: fc ← Select(fc, dc > 0) . Keep unmatched columns with positive degrees
26: until no vertex is matched in the last iteration

c1 c2 

r1 r2 r3 r4 r5 

c5 c1 c2 

r1 r2 r4 

c5 c1 c2 c3 c4 

r1 r2 r3 r4 r5 

c5 

fc=[1,2,0,0,5] 

matec=[-1,-1,3,5,-1] 
mater=[-1,-1,3,-1,4] fr=[1,1,2,5,5] fr=[1,1,0,5,0] 

r4 

c5 

tc=[1,0,0,0,4] 

r1 

c1 

matec=[1,-1,3,5,4] 

r4 

c5 

tr=[1,0,0,5,0] 

r1 

c1 

mater=[1,-1,3,5,4] 

r2 

c2 

dc=[2,1,1,0,1] 

dc=[0,0,0,0,0] 

fc=[0,0,0,0,0] 

c1 c2 c3 c4 

r1 r2 r3 r4 r5 

c5 

matec=[1,-1,3,5,4] 
mater=[1,-1,3,5,4] 

Before Iteration 
 (a) initial state 

Step 1 
      (b) SpMSpV 

Step 2 
  (d) update matec       (e) update mater  

Step 3 
 (f) update fc 

After Iteration 
 (g) final state 

U
pd

at
ed

  
D

at
a 

 S
tru

ct
ur

es
 

O
pe

ra
tio

ns
 

(c) unmatched rows 

Figure 3: A working example of one iteration of a maximal matching algorithm described in Algorithm 2. Matched and
unmatched vertices are shown in filled and empty circles, respectively. Thin lines represent unmatched edges and thick lines
represent matched edges. The vectors f , d , and mate represent the current unmatched vertices, unmatch-degree of vertices,
and mates of the matched vertices. Subscripts r and c denote row and column vertices, respectively. The temporary vectors
tr and tc store unmatched row and column vertices that are matched in this iteration (see Step 2 of Algorithm 2). (a) An
initial matching and associated data structures before an iteration, (b) exploring the neighbors of unmatched column vertices fc
where arrows direct from children to parents, (c) keep only the unmatched row vertices as children, (d) match column vertices
to their unique children, (e) match row vertices to their unique parents, (f) update fc by removing newly matched columns
and columns with no unmatched neighbors, and (g) a maximal matching is obtained. In Subfigs. (d) and (e), arrows show the
direction of matching.

Step 1: Explore graph from unmatched column vertices. Let fc be the set of unmatched column
vertices at the beginning of an iteration. In this step, we discover a set of row vertices fr reachable from
fc by using SpMSpV over the (select2nd, rand) semiring. If we consider fc to be the current frontier, the
SpMSpV is essentially conducting one iteration of BFS-based graph traversal. In this context, vertices in fr

6



have unique parents in fc and construct a forest of unit height as shown in Fig. 3(b). The parents of row
vertices are stored as nonzero values in fr . Since we are only interested in unmatched vertices, the matched
rows are removed from fr (Subfig. 3(c)), which concludes Step 1 of the algorithm.

Step 2: Update matching. We update mates of column vertices by calling Invert(fr) that selects a
unique child for each vertex in fc and update matec accordingly. Note that, in Step 1, an unmatched column
vertex in fc might have acquired more than one child, e.g., r1 and r2 are children of c1 in Fig. 3(b). In this
case, Invert matches a vertex in fc to exactly one of its children. To update mater, we execute Invert
on the newly matched column vertices. This process is described between lines 13–18 of Algorithm 2 and
illustrated in Subfigs. 3(d) and 3(e).

Step 3: Update unmatched column vertices. After updating mates, we remove the newly matched
columns from fc . For example, after matching c1 and c5 in Subfig. 3(d), we have a single unmatched column
vertex c2. We could start the next iteration with fc ={c2}. Since c2 has no unmatched neighbor, we can
remove it from fc to reduce work in future iterations. For this purpose, we update the unmatch-degree dc
of column vertices by first computing the degree mdc of column vertices to the newly matched row vertices
and then subtracting mdc from dc (lines 21–23 of Algorithm 2). In our example in Fig. 3, we have no more
unmatched vertices, hence the algorithm returns with a maximal matching shown in Subfrig. 3(g).

Algorithm 3 Modified Step 1 of Algorithm 2 needed for the Karp-Sipser algorithm.

1: f1
c ← Select(fc, dc = 1) . degree-1 column vertices

2: if nnz (f1
c ) 6= 0 then . Process degree-1 vertices

3: fr ← SpMSpV(A, f1
c , SR=(select2nd,rand))

4: else . Process other vertices
5: fr ← SpMSpV(A, fc, SR=(select2nd,rand))

3.2. The Karp-Sipser algorithm

We can convert Algorithm 2 into the Karp-Sipser algorithm by replacing Step 1 with Algorithm 3. Here,
f1c is the set of unmatched column vertices that have unmatch-degree equal to 1. f1c is easy to compute
because we update unmatch-degree of column vertices in Step 3 of every iteration in Algorithm 2. If f1c
is not empty, we explore the neighborhood of these degree-1 vertices (lines 3–4 of Algorithm 3) and try to
match them, otherwise we proceed with the greedy algorithm.

3.3. The Dynamic Mindegree algorithm

We can convert Algorithm 2 into the Dynamic Mindegree algorithm by using the (select2nd, mindegree)
semiring in line 9. Here, the vector entries are {parent, degree} pairs for the SpMSpV. Hence, the (se-
lect2nd, mindegree) semiring operates on a set of binary numbers and a set of pairs of integers. As before,
select2nd returns the second value it is passed, i.e., the {parent, degree} pair. The mindegree operation
takes two {parent, degree} pairs and returns the pair with minimum degree. The mindegree operation can
be implemented as a function or a lambda expression in C++. The rest of Algorithm 2 remains unchanged
for Dynamic Mindegree.

3.4. Serial complexity

The computational complexity of every iteration of Algorithm 2 depends on the functions described in
Table 1. Since SpMSpV dominates other operations in terms of serial complexity, it determines the serial
runtime of the matrix-based algorithms. The cost of a single SpMSpV with a sparse vector x depends on
the number of nonzeros of x and their locations. The number of multiplications is

∑
k∈Ind(x) nnz (A(:, k)),

as listed in Table 1 as well.
First, note that two SpMSpV calls (lines 9 and 21) in Algorithm 2 use two different vectors. The first

SpMSpV with the (select2nd, rand) or (select2nd, mindegree) semiring uses unmatched columns in x. By
contrast, the second SpMSpV with the (select2nd, +) semiring uses the newly matched row vertices as the
vector. Since the the set of newly matched vertices is a subset of unmatched vertices, the cost of the first

7



SpMSpV is often higher than the other. Hence, we only discuss the cost of the first SpMSpV. (However,
two SpMSpVs traverse the graph from opposite directions, hence their costs also depend on the nonzero
structure.)

In the first iteration, the SpMSpV in line 9 of Algorithm 2 uses a dense vector because all column vertices
are unmatched at the beginning. Hence, the cost of the first iteration of Greedy, Dynamic Mindegree, and
Karp-Sipser (when there is no degree-1 vertices in the input graph) algorithms is O(nnz (A)). However, in
the presence of degree-1 vertices in the input graph, the cost of the first iteration of Karp-Sipser depends
on the number of degree-1 vertices. The cost of subsequent iterations depend significantly on the algorithm
and input graphs (e.g., see Fig. 5). However, all of our algorithms spend most of their time in the first
iteration. For example, Fig. 5 shows that every algorithm spends at least 18% of their total runtime in the
first iteration on GL7d19.

4. Distributed memory parallel algorithm

4.1. Data distribution and storage

We use the CombBLAS framework [23] which distributes its sparse matrices on a 2D pr × pc processor
grid. Processor P (i, j) stores the submatrix Aij of dimensions (m/pr) × (n/pc) in its local memory. The
CombBLAS uses the doubly compressed sparse columns (DCSC) format to store its local submatrices for
scalability, and uses a vector of {index, value} pairs for storing sparse vectors. To balance load across
processors, we randomly permute the input matrix A before running the matching algorithms.

Vectors are also distributed on the same 2D processor grid. For a distributed vector v, the syntax vij
denotes the local n/p length piece of the vector owned by the P (i, j)th processor. The syntax vi denotes
the hypothetical n/pr or n/pc length piece of the vector collectively owned by all the processors along the
ith processor row P (i, :) or column P (:, i).

4.2. Analysis of the distributed algorithm

We measure communication by the number of words moved (W ) and the number of messages sent (S).
The cost of communicating a length m message is α + βm where α is the latency and β is the inverse
bandwidth, both defined relative to the cost of a single arithmetic operation. Hence, an algorithm that
performs F arithmetic operations, sends S messages, and moves W words takes T = F + αS + βW time.

A 2D SpMSpV algorithm for the case of sparse input and output vectors has previously been used in
the specialized context of distributed memory BFS [24], which we leverage here. A 2D SpMSpV algorithm
for the case of dense vectors is also provided in CombBLAS. As discussed before, serial SpMSpV performs∑

k∈Ind(x) nnz (A(:, k)) multiplications. The total work of the parallel algorithm is the same (i.e. our parallel

SpMSpV is work efficient), but the load balance depends on the exact distribution of nonzeros in A and x.
Hence, we will be analyzing the parallel running time with the assumption that nonzeros of A and x are
i.i.d. distributed. This provides a lower bound on the running time and the actual observed performance
can be worse in the presence of load imbalance.

The allgather phase of SpMSpV has cost

TAllGather = α(pr − 1) + β
pr − 1

pr
nnz (xi)

using the ring algorithm, which is the default algorithm for large (≥ 512KB) messages on many MPI
implementations such as MPICH [25]. Recall that xi is the n/pc length piece collectively owned by the
ith processor column, which needs to be gathered at each processor on that processor column. The all-
to-all phase, assuming the pairwise-exchange algorithm that is typical for long messages in many MPI
implementations, has the cost

TAllToAll = α(pc − 1) + β
∑

k∈Ind(x)

nnz (Aij(:, k))

8



Invert requires a permutation of vector entries among all processors, and has per-processor cost of

TInvert = nnz (xij) + α(p− 1) + β nnz (xij) =
n

p
+ α(p− 1) + β

n

p

using personalized all-to-all. Invert is also work-efficient but communication intensive. We perform certain
approximations to make these analyses comparable to each other. First we use asymptotics, p − 1 ≈ p,
second we assume a square processor grid pr=pc=p, and finally we assume i.i.d. distributed nonzeros in
A and x. If x is f percent full, and A has on average d nonzeros per column, then the arithmetic cost of
SpMSpV per processor is

nnz (xi)nnz (Aij(:, k)) =
fn
√
p

d
√
p

=
fnd

p
= f

nnz (A)

p

for some column k. In the worst case, i.e., in the absence of nonzero collusions, the amount of words moved
due to all-to-all is the same as the arithmetic cost. Allgather phase moves fn/

√
p words, resulting in a total

cost for SpMSpV as:

TSpMSpV =
nd

p
+ 2α

√
p+ fβ

(nd
p

+
n
√
p

)
From that, we see that Invert has a factor of

√
p higher latency cost, which hurts performance on

large concurrencies and smaller matrices where the latency term dominates. In other words, Invert is the
potential bottleneck in the strong scaling regime. On the other hand, in the weak scaling regime, SpMSpV
is projected to be the bottleneck when

√
p > d due to worse scaling of the allgather phase. Any future

reductions in communication costs of SpMSpV would make our algorithm even more scalable.

5. Experimental Setup

5.1. Platform

We evaluate the performance of parallel matching algorithms on Edison, a Cray XC30 supercomputer
at NERSC. In Edison, nodes are interconnected with the Cray Aries network using a Dragonfly topology.
Each compute node is equipped with 64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge processors,
each with 30 MB L3 cache. We used OpenMP for intra-node multithreading and compiled the code with
gcc 4.9.2 with -O2 -fopenmp flags. Cray’s MPI implementation on Edison is based on MPICH2. Unless
otherwise stated, all of our experiments used 12 threads per MPI process and each MPI process was placed
on a socket in a node of Edison.

5.2. Input Graphs

Table 2 describes a representative set of matrices from the University of Florida sparse matrix collec-
tion [26]. We consider a diverse collection of rectangular, unsymmetric and symmetric matrices so that our
conclusions apply to most practical matrices. To test the performance of maximal matching algorithm on
larger matrices, we used RMAT [27], the Recursive MATrix generator to generate two classes of synthetic
matrices: (a) G500 matrices representing graphs with skewed degree distributions from Graph 500 bench-
mark [28], and (b) ER matrices representing Erdős-Rényi random graphs with uniform degree distributions.
A scale n synthetic matrix is 2n-by-2n. To generate G500 matrices, we use RMAT seed parameters a=.57,
b=c=.19, and d=.05. On average, G500 and ER matrices have 16 nonzeros per row and column. For
example, a scale-30 G500 matrix (G500-30) has 1 billion rows, 1 billion columns, and 16 billion nonzeros.

9



Table 2: Test problems for evaluating the matching algorithms.

Class Graph #Rows (m) #Columns (n) nnz Description
(×106) (×106) (×106)

watson 2 0.35 0.68 1.85 linear programming problem
wheel 601 0.90 0.72 2.17 combinatorial problem
stormG2 1000 0.53 1.38 3.46 linear programming problem
LargeRegFile 2.11 0.80 4.94 circuit simulation problem
cont1 l 1.92 1.92 7.03 linear programming problem
Rucci1 1.98 0.11 7.79 least squares problem

Rectangular degme 0.18 0.66 8.13 linear programming problem
tp-6 0.14 1.01 11.53 linear programming problem
rel9 9.89 0.27 12.67 combinatorial problem
GL7d19 1.91 1.96 37.32 combinatorial problem
relat9 12.36 0.55 38.96 combinatorial problem
spal 004 0.01 0.32 46.17 linear programming problem

amazon0312 0.40 0.40 3.20 electromagnetics problem
t2em 0.92 0.92 4.59 electromagnetics problem
ohne2 0.18 0.18 6.87 semiconductor device problem
atmosmodm 1.49 1.49 10.32 computational fluid dynamics problem
rajat31 4.69 4.69 20.32 circuit simulation problem
FullChip 2.98 2.98 26.62 circuit simulation problem

Unsymmetric RM07R 0.38 0.38 37.46 computational fluid dynamics problem
circuit5M 5.56 5.56 59.52 circuit simulation problem
ljournal-2008 5.36 5.36 79.02 LiveJournal social network
cage15 5.15 5.15 99.20 DNA electrophoresis problem
HV15R 2.02 2.02 283.07 computational fluid dynamics problem
it-2004 41.29 41.29 1150 2004 web crawl of .it domain
sk-2005 50.64 50.64 1949 2005 web crawl of .sk domain

coPapersDBLP 0.54 0.54 60.98 Citation networks in DBLP
hugetrace-00020 16.00 16.00 96.00 Frames from 2D Dynamic Simulations
road usa 23.94 23.94 115.42 USA street networks
dielFilterV3real 1.10 1.10 178.61 electromagnetics problem

Symmetric delaunay n24 16.77 16.77 201.33 delaunay triangulations of random points
europe osm 50.91 50.91 216.22 Europe street networks
rgg n 2 24 s0 16.78 16.78 530.22 undirected random graph
nlpkkt240 27.99 27.99 1531 symmetric indefinite KKT matrix

Random ER-26 67.11 67.11 1024 Erdős-Rényi random graphs
RMAT-26 67.11 67.11 1024 RMAT random graphs (param: .57,.19,.19,.05)

6. Results

6.1. Approximation ratios obtained by maximal matching algorithms

A maximal matching with higher approximation ratio often leaves less work for a MCM algorithm.
Therefore, it can be used to measure the quality of a maximal matching. Fig. 4 shows the approximation
ratios obtained by three parallel matching algorithms for different matrices on 1024 cores of Edison. In every
case, each algorithm matches at least 80% of the vertices matched in a maximum matching. Fig. 4 shows that
our Karp-Sipser implementation attains the best approximation ratio for about 65% of the matrices from
Table 2. The Greedy algorithm returns with the best approximation ratio only for ohne2 matrix whereas
Dynamic Mindegree provides the best cardinality for the rest of the problems. In the next subsection we
discuss the impact of maximal matching on the time to compute a maximum matching.

In our prior work [13], we compared our matrix based algorithms to serial matching software by Duff
et al. [4]. We showed that the approximation ratio obtained by our algorithms are slightly smaller than
serial graph-based algorithms that match one vertex at a time. Especially for Karp-Sipser and Dynamic
Mindegree, graph-based algorithms consistently outperform the matrix-based algorithms. This behavior is
not unexpected because the original Karp-Sipser and Dynamic Mindegree algorithms process vertices based
on their unmatch-degrees that are updated after matching every vertex. By contrast, our matrix-based

10



80

90

100
w

at
so

n
_2

w
he

el
_6

0
1

st
or

m
G

2
_1

0
0

0

La
rg

eR
eg

Fi
le

co
nt

1
_l

R
uc

ci
1

de
gm

e

tp
−6 re
l9

G
L7

d1
9

re
la

t9

sp
al

_0
0

4

am
az

on
0

3
1

9

t2
em

oh
ne

2

at
m

os
m

o
d

m

ra
ja

t3
1

F
ul

lC
hi

p

R
M

07
R

ci
rc

ui
t5

M

ljo
ur

na
l-

2
0

0
8

ca
ge

15

H
V

15
R

co
P

ap
er

sD
B

LP

hu
ge

tr
ac

e
-0

0
2

0

ro
ad

_u
sa

di
el

F
ilt

er
V

3
re

a
l

de
la

un
ay

_n
2

4

Greedy
Karp−Sipser
Dynamic Mindegree

A
p

p
ro

x
im

a
ti

o
n

 r
a
ti

o
 (

%
)

Figure 4: Approximation ratios attained by Greedy, Karp-Sipser, and Dynamic Mindegree algorithms on 1024 cores of Edison.

2 4 6 8 10
0

5%

10%

15%

20%

Iteration

%
of
ru
nt
im
e
or
%
of
m
at
ch
in
g
ca
rd
in
al
ity

(a) Greedy

%ofmaximal matching
% of total runtime

5 10 15 20 25 30 35 40 45
0

5%

10%

15%

20%

Iteration

(b) Karp−Sipser

% ofmaximal matching
% of total runtime

1 2 3 4 5 6 7
0

10%

20%

30%

40%

Iteration

(c) Dynamic Mindegree

%ofmaximal matching
% of total runtime

Figure 5: Fraction of time spent and fraction of vertices matched (percentage of the final maximal matching cardinality) in
each iteration of the matching algorithms on GL7d19 graph on 1024 processors.

algorithms do not impose any ordering of vertices and process all unmatched vertices simultaneously in
order to increase concurrency. Therefore, the matching quality of the latter is often slightly smaller than
serial graph-based algorithms. However, being free from a vertex-processing order, matrix-based algorithms
are able to maintain the same approximation ratio on all concurrencies. On the other hand, the cardinality
of parallel graph-based algorithms may decrease rapidly with increased concurrency [5]. This behavior is
explained with an example in Fig. 1 where a cardinality of a multithreaded Karp-Sipser algorithm decreases
by more than 3% on several thousands of threads. Even worse, the cardinality (as well as runtime) of
multithreaded algorithms fluctuate from one run to another on the same concurrency due to dynamic
allocation of vertices to thread and the scheduling of threads. By contrast, matchings obtained from matrix-
based algorithms are reproducible on all concurrency.In our implementation, we randomly permute input
matrices for load balance. If different permutations are used on different concurrencies, we might observe
a small variation in matching cardinality (less than 0.1% [13]). This small variation can in practice be
completely eliminated if the random permutations are fixed for all concurrencies.

6.2. Progression of algorithms

The amount of work performed in an iteration of maximal matching algorithms varies considerably
from one iteration to another. The iterations of Karp-Sipser come in batches of k iterations. First k−1
iterations of each batch match degree-1 vertices (line 3 of Algorithm 3) followed by one iteration of the
Greedy algorithm when no degree-1 vertices are available (line 5 of Algorithm 3). For example, iterations
8-12 is a batch of iterations in Fig. 5(b). By contrast, the Greedy and Dynamic Mindegree algorithms
pack several iterations of Karp-Sipser into a single iteration because the former algorithms do not have any
restriction when processing unmatched vertices. Therefore, Greedy and Dynamic Mindegree often require
fewer iteration than Karp-Sipser and their workloads decrease consistently from one iteration to the next as
shown in Fig. 5 for GL7d19 graph.

11



Ti
m

e
 (

se
c)

Greedy Karp-Sipser Dynamic Mindegree

Number of Cores

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1
watson_2

Speedup =24.81 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1
wheel_601

Speedup =28.09 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1

stormG2_1000
Speedup =49.57 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1

LargeRegFile
Speedup =70.68 x

1 4 16 64 256 1024 4096

0.03125

0.125

0.5

2
cont1_l

Speedup =51.82 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1

Rucci1
Speedup =65.77 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1

degme
Speedup =31.71 x

1 4 16 64 256 1024 4096
0.015625

0.0625

0.25

1

tp−6
Speedup =43.37 x

1 4 16 64 256 1024 4096

0.03125

0.125

0.5

2

8 rel9
Speedup =115.84 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16
GL7d19

Speedup =74.90 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16
relat9

Speedup =118.86 x

1 4 16 64 256 1024 4096

0.25

1

4

spal_004
Speedup =36.15 x

Figure 6: Strong scaling of maximal matching algorithms on 12 rectangular matrices on Edison.

Ti
m

e
 (

se
c)

Greedy Karp-Sipser Dynamic Mindegree

1 4 16 64 256 1024 4096
0.03125

0.125

0.5

2
t2em

Speedup =37.85 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

ohne2
Speedup =21.98 x

1 4 16 64 256 1024 4096

0.03125

0.125

0.5

2
atmosmodm

Speedup =51.82 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16
rajat31

Speedup =93.72 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16
FullChip

Speedup =63.04 x

1 4 16 64 256 1024 4096

0.25

1

4

16
RM07R

Speedup =82.78 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16

circuit5M
Speedup =119.80 x

1 4 16 64 256 1024 4096
0.25

1

4

16

64

256
ljournal−2008

Speedup =90.41 x

1 4 16 64 256 1024 4096

0.125

0.5

2

8

32 cage15
Speedup =135.05 x

1 4 16 64 256 1024 4096
0.25

1

4

16

64

256
HV15R

Speedup =214.51 x

128 256 512 1024 2048 4096

2
4
8

16
32

64
128
256
512

1024

it−2004
Speedup =11.39 x

256 512 1024 2048 4096
16

32

64

128

256

512

1024
sk−2005

Speedup =2.87 x

Number of Cores

Figure 7: Strong scaling of maximal matching algorithms on 12 unsymmetric matrices on Edison. The speedup is reported as
the ratio of runtime on the lowest and highest number of cores on which a particular matrix was run.

12



The number of iterations influences the runtime of maximal matching algorithms significantly. A higher
number of iterations means more synchronization steps and less work per processor in each iteration, which
negatively impacts the performance. The number of iterations needed by each algorithm is influenced
by input graphs. On some graphs Karp-Sipser takes many more iterations than its competitors. For
example, on GL7d19, Greedy algorithm takes 11, Karp-Sipser takes 48, and Dynamic Mindegree takes 7
iterations before completion (Fig. 5), and on ohne2, Greedy algorithm takes 33, Karp-Sipser takes 370, and
Dynamic Mindegree takes 14 iterations. Consequently, on these problems Karp-Sipser performs badly on
high concurrency as can see seen in Fig. 10. On other graphs, all of these algorithms take the same number
of iterations. For example, all three algorithms take 3-4 iterations on Rucci1. Hence, on this graph, their
performance is very similar as shown in Fig. 10 and Fig. 6.

6.3. Scalability

We show the strong scaling of parallel maximal matching algorithms for rectangular matrices in Fig. 6,
for unsymmetric matrices Fig. 7, and for symmetric matrices Fig. 8. Matching algorithms achieve more
than 90× speedups on 50% of real matrices when we go from 1 core to 1024 cores of Edison. Our algorithms
scale better on larger matrices than on smaller matrices, as expected. For example, the Dynamic Mindegree
algorithm attains 238× speedup on hugetrace-00020, but only 25× on watson 2. For these small graphs,
processors do not have enough work on higher concurrency, which limits the performance.

The scalability of matrix-based algorithm on higher number of processors can be realized on larger
synthetic graphs. Fig. 9 shows the strong scaling of RMAT random graphs on up to 16,384 cores. Recall
that RMAT-30 denotes a graph with about 1 billion vertices and 16 billion edges. We observe that larger
graphs scale better than smaller graph on very large number of processors, as expected. For example, on
RMAT-30, every algorithm achieves more than 8× speedup when we go from 1,024 to 16,384 processors.
By contrast, on RMAT-26, Greedy algorithm achieves only 3× speedup and Karp-Sipser stops scaling for
the same range of processors. Therefore, our algorithms have the ability to scale on very large number
of processors as long as we have enough work to utilize the available computing resources. Among three
algorithms presented in this paper, Dynamic Mindegree scales the best and Karp-Sipser scales the worst
on large number of processors as can be seen in Fig. 9. When we go from 1,024 to 16,384 cores (i.e.,
16× increase), Dynamic Mindegree achieves about 15×, 10×, and 6× speedups on RMAT-30, RMAT-28, and
RMAT-26, whereas Karp-Sipser achieves about 8× and 3× speedups on RMAT-30 and RMAT-28, and no speedup
on RMAT-26. The greedy algorithm seats in between Dynamic Mindegree and Karp-Sipser. According to our
discussed in the previous subsection, Dynamic Mindegree scales better than Karp-Sipser because the former
requires fewer iteration than the latter (i.e., the former performs more work than the latter per iteration).

The weak scaling of the matrix-based algorithms is also good when compute maximal matchings on
RMAT synthetic graphs from scale 28 to 32 on 526 to 8192 cores of Edison [13]. We observe that the
number of processors increased by 16× slows down our algorithms by a factor less than 2×. Hence, the
matrix-based algorithms can utilize even larger number of processors if large enough graphs become available.

6.4. Impact of in-node multithreading and randomization in selecting parents

We use in-node multithreading in all primitives in implementing maximal matching algorithms. When
12 threads are used in each MPI process, we observe a performance increase of 2-4× relative to nonthreaded
implementation presented in the conference paper [13]. In addition, the new implementation scales up to
4096 cores whereas the previous flat MPI versions stopped scaling at 1024 cores on most real matrices.

We also observed that randomization in selecting parents helps Karp-Sipser and Greedy algorithms.
Consequently, we use the (Select2nd, rand) semiring, as opposed to the (Select2nd, min) semiring that was
used in the conference paper [13]. The new approach results in decreased computation time for 60% of the
problems for the Karp-Sipser algorithm and 80% of the problems for the Greedy algorithm. These savings
are primarily due to the new implementation taking fewer iterations to complete. Similarly, the cardinality
of the matchings also increased as a result this modification. Due to randomization in selecting parents,
average cardinalities of the Karp-Sipser and Greedy algorithms are increased by 0.4% and 0.8%, respectively.

13



Ti
m

e
 (

se
c)

Greedy Karp-Sipser Dynamic Mindegree

Number of Cores

1 4 16 64 256 1024 4096

0.125

0.5

2

8
coPapersDBLP

Speedup =48.28 x

1 4 16 64 256 1024 4096
0.0625

0.25

1

4

16

64
hugetrace−00020

Speedup =237.78 x

1 4 16 64 256 1024 4096

0.0625

0.25

1

4

16

64

256
road_usa

Speedup =214.84 x

1 4 16 64 256 1024 4096

0.125

0.5

2

8

32 dielFilterV3real
Speedup =138.24 x

1 4 16 64 256 1024 4096

0.0625

0.25

1

4

16

64

256
delaunay_n24

Speedup =201.17 x

1 4 16 64 256 1024 4096
0.25

1

4

16

64

256
rgg_n_2_24_s0

Speedup =217.28 x

4 16 64 256 1024 4096

0.25
1
4

16
64

256
1024
4096

europe_osm
Speedup =93.33 x

64 256 1024 4096

0.5

2

8

32
nlpkkt240

Speedup =9.64 x

Figure 8: Strong scaling of maximal matching algorithms on 8 symmetric matrices on Edison. The speedup is reported as the
ratio of runtime on the lowest and highest number of cores on which a particular matrix was run.

256 512 1024 2048 4096 8192 16384
.25

.5

1

2

4

8

16

32

Number of Processors

T
im
e
(s
ec
)

(a) Greedy

RMAT−26
RMAT−28
RMAT−30

256 512 1024 2048 4096 8192 16384
.25

.5

1

2

4

8

16

32

64

Number of Processors

T
im
e
(s
ec
)

(c) Dynamic Mindegree

RMAT−26
RMAT−28
RMAT−30

256 512 1024 2048 4096 8192 16384
.25

.5

1

2

4

8

16

Number of Processors

T
im
e
(s
ec
)

(b) Karp−Sipser

RMAT−26
RMAT−28
RMAT−30

Figure 9: Strong scaling of maximal matching algorithms on RMAT graphs.

0

2

4

6

D
M

D

D
M

D

D
M

D

D
M

D D
M

D

D
M

D

D
M

D

D
M

D

D
M

D

K
S K
S

K
S

K
S

K
S

K
S

K
S

K
S K

S

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

G
re

ed
y

T
im

e
(s

ec
)

LargeRegFile

     
     

     
 cont1_l

Rucci1
GL7d19

relat9

s   
     

     
     

     
     

     
     

     
   s

pal_0
04

ohne2

z   
     

     
     

     
     

     
     

     
     

     
     

  atmosm
odm

sto
rm

G2_1000

Maximal matching
Maximummatching

0

10

20

30

40

D
M
D

D
M
D

D
M
D D
M
D

D
M
D

D
M
D

D
M
D D
M
D

D
M
D

D
M
D

K
S

K
S

K
S

K
S

K
S

K
S

K
S K
S

K
S

K
S

G
re
ed
y

G
re
ed
y

G
re
ed
y

G
re
ed
y G
re
ed
y

G
re
ed
y

G
re
ed
y

G
re
ed
y

G
re
ed
y

G
re
ed
y

T
im
e
(s
ec
)

t2e
m
Ful
lCh

ip
RM

07R
circ

uit5
M

ljou
rna

l-20
08
cag

e15HV
15R

Cop
ape

rsD
BLP
roa

d_u
sa

Maximal matching
Maximummatching

am
azo

n0
31
2

Figure 10: Time taken to compute a distributed-memory maximum cardinality matching when initialized by Greedy, Karp-
Sipser, and Dynamic Mindegree algorithms on 1024 cores of Edison. A subset of problems were selected from Table 2. Smaller
and larger matrices are shown in the left and right subfigures, respectively.

6.5. Impact of maximal matching on MCM

The total runtime of an MCM algorithm often decreases when it is initialized by a maximal matching
with high approximation ratio [4, 5, 11] because the latter can be computed much quickly than the former.
We demonstrate the impact of three maximal matching algorithms on the runtime of a distributed-memory
MCM algorithm in Fig. 10 where the dark and light blue colors denote runtimes to compute maximal and
maximum matchings, respectively. The distributed-memory MCM algorithm is described in our recent
paper [8], and its source code is publicly available as part of Combinatorial BLAS library [29]. Fig. 10 shows
that larger cardinalities of maximal matchings often lead to faster runtime of the MCM algorithm (light
blue color). For example, when Karp-Sipser returns a matching with the highest approximation ratio, the

14



runtime of the MCM algorithm initialized by the Karp-Sipser algorithm is often the fastest. However, the
total time to compute an MCM, which is the summation of runtimes of maximal and maximum matching
algorithms, is determined by both the approximation ratio and runtime of the maximal matching algorithms.
For example, for ljournal-2008 matrix, Karp-Sipser attains the highest approximation ratio (Fig. 4), and
the runtime of MCM algorithm initialized by Karp-Sipser is the smallest (Fig. 10). However, the total time
to compute MCM on ljournal-2008 is the smallest when we initialize the MCM algorithm by Dynamic
Mindegree because of the higher runtime of Karp-Sipser. In summary, the total time to compute an MCM
(maximal + maximum matchings) is the smallest for 55% of matrices in Table 2 when Dynamic Mindegree
is used, for 35% matrices when Karp-Sipser is used, and 10% matrices when Greedy algorithm is used.

7. Conclusion and Future Work

Using matrix-algebraic primitives, we present the first distributed-memory algorithms for maximal car-
dinality matching in bipartite graphs that scale to tens of thousands of processors. We represent three differ-
ent algorithms in the same matrix algebraic framework, only with minimal modifications to the underlying
semiring operations and data structures. All three algorithms benefit from fast parallel implementations of
a handful of matrix-algebraic primitives that they are built upon. Unlike previous algorithms, ours main-
tain a stable approximation ratio that is insensitive to increasing concurrency, a trait that is important for
exascale-level parallelism.

Distributed-memory Karp-Sipser is almost always the slowest among the three algorithms we considered
as shown in Figs. 6, 7, and 8 (see the discussion in Subsection 6.2 for empirical reasons). Karp-Sipser’s slow
runtime combined with its poor scalability makes it less attractive on higher concurrency despite it yielding
the highest approximation ratio for most practical problems as shown in Fig. 4. The greedy algorithm is
often not used in practice because of its small approximation ratio. Hence, we argue that the dynamic
mindegree algorithm be used on higher core count when computing a maximal matching on a new graph.
However, dynamic mindegree is not the universally best option because the approximation ratio attained
by these algorithms depends heavily on the structure of the graph where the matching is being computed.

Finding a distributed data structure that can be used to traverse the bipartite graph from both sides
without storing both A and AT would reduce the storage requirements by up to 50%. Such a data structure,
Compressed Sparse Blocks (CSB) [30], which allows efficient SpMSpV on both A and AT without explicitly
storing AT, exists in shared memory. Developing a distributed-memory CSB, which can perform SpMSpV
not just with dense vectors but also sparse vectors, is considered future work.

Acknowledgments

This work is supported by the Applied Mathematics Program of the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05CH11231. We used resources of the NERSC
supported by the Office of Science of the DOE under Contract No. DE-AC02-05CH11231.

References

[1] A. Pothen and C.-J. Fan, “Computing the block triangular form of a sparse matrix,” ACM Trans. Math. Softw., vol. 16,
pp. 303–324, 1990.

[2] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,”
ACM Trans. Math. Softw., vol. 37, no. 3, p. 36, 2010.

[3] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear
systems,” ACM Trans. Math. Softw., vol. 29, no. 2, pp. 110–140, 2003.

[4] I. S. Duff, K. Kaya, and B. Uçar, “Design, implementation, and analysis of maximum transversal algorithms,” ACM
Trans. Math. Softw., vol. 38, no. 2, pp. 13:1– 13:31, 2011.

[5] A. Azad, M. Halappanavar, S. Rajamanickam, E. G. Boman, A. Khan, and A. Pothen, “Multithreaded algorithms for
maximum matching in bipartite graphs,” in IPDPS. IEEE, 2012, pp. 860–872.

[6] K. Kaya, J. Langguth, F. Manne, and B. Uçar, “Push-relabel based algorithms for the maximum transversal problem,”
Computers & Operations Research, vol. 40, no. 5, pp. 1266–1275, 2013.

15



[7] J. Langguth, A. Azad, M. Halappanavar, and F. Manne, “On parallel push–relabel based algorithms for bipartite maximum
matching,” Parallel Computing, vol. 40, no. 7, pp. 289–308, 2014.

[8] A. Azad and A. Buluç, “Distributed-memory algorithms for maximum cardinality matching in bipartite graphs,” in
IPDPS. IEEE, 2016.

[9] J. C. Setubal, “Sequential and parallel experimental results with bipartite matching algorithms,” Univ. of Campinas,
Tech. Rep. IC-96-09, 1996.

[10] J. Magun, “Greeding matching algorithms, an experimental study,” Journal of Experimental Algorithmics, vol. 3, p. 6,
1998.

[11] J. Langguth, F. Manne, and P. Sanders, “Heuristic initialization for bipartite matching problems,” Journal of Experimental
Algorithmics, vol. 15, pp. 1–3, 2010.

[12] M. M. A. Patwary, R. H. Bisseling, and F. Manne, “Parallel greedy graph matching using an edge partitioning approach,”
in HLPP’10. ACM, 2010, pp. 45–54.

[13] A. Azad and A. Buluç, “Distributed-memory algorithms for maximal cardinality matching using matrix algebra,” in IEEE
CLUSTER, 2015.

[14] R. M. Karp and M. Sipser, “Maximum matching in sparse random graphs,” in FOCS’81. IEEE, 1981, pp. 364–375.
[15] M. Karpinski and W. Rytter, Fast parallel algorithms for graph matching problems. Clarendon Press, 1998, vol. 98.
[16] J. Langguth, M. M. A. Patwary, and F. Manne, “Parallel algorithms for bipartite matching problems on distributed

memory computers,” Parallel Computing, vol. 37, no. 12, pp. 820–845, 2011.
[17] D. P. Bertsekas and D. A. Castañon, “Parallel synchronous and asynchronous implementations of the auction algorithm,”

Parallel Computing, vol. 17, pp. 707–732, September 1991.
[18] M. Sathe, O. Schenk, and H. Burkhart, “An auction-based weighted matching implementation on massively parallel

architectures,” Parallel Computing, vol. 38, no. 12, pp. 595–614, 2012.
[19] U. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and A. Pothen, “Distributed-memory parallel algo-

rithms for matching and coloring,” in IPDPSW. IEEE, 2011, pp. 1971–1980.
[20] F. Manne and R. H. Bisseling, “A parallel approximation algorithm for the weighted maximum matching problem,” in

PPAM’07. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 708–717.
[21] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, “Approximate weighted matching on emerging manycore

and multithreaded architectures,” IJHPCA, vol. 26, no. 4, pp. 413–430, 2012.
[22] F. Manne and M. Halappanavar, “New effective multithreaded matching algorithms,” in IPDPS. IEEE, 2014, pp. 519–528.
[23] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design, implementation, and applications,” IJHPCA, vol. 25,

no. 4, 2011.
[24] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed memory systems,” in SC’11. ACM, 2011, pp.

65:1–65:12.
[25] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective communication operations in MPICH,” IJHPCA,

vol. 19, no. 1, pp. 49–66, 2005.
[26] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Trans. Math. Softw., vol. 38, no. 1,

p. 1, 2011.
[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for graph mining,” in SDM, 2004.
[28] “Graph500 benchmark,” www.graph500.org.
[29] “Combinatorial BLAS 1.5,” http://gauss.cs.ucsb.edu/∼aydin/CombBLAS/html/.
[30] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel sparse matrix-vector and matrix-transpose-

vector multiplication using compressed sparse blocks,” in SPAA. ACM, 2009, pp. 233–244.

16




