
UCLA
Papers

Title
Interference-Aware Fair Rate Control in Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/5dk877x5

Journal
Center for Embedded Network Sensing, 36(4)

Authors
Rangwala, Sumit
Gummadi, Ramakrishna
Govindan, Ramesh
et al.

Publication Date
2006

DOI
10.1145/1151659.1159922

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dk877x5
https://escholarship.org/uc/item/5dk877x5#author
https://escholarship.org
http://www.cdlib.org/

Interference-Aware Fair Rate Control in Wireless Sensor
Networks

Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, Konstantinos Psounis
University of Southern California

{srangwal, gummadi, ramesh, kpsounis}@usc.edu

ABSTRACT
In a wireless sensor network of N nodes transmitting data to a single
base station, possibly over multiple hops, what distributed mecha-
nisms should be implemented in order to dynamically allocate fair
and efficient transmission rates to each node? Our interference-
aware fair rate control (IFRC) detects incipient congestion at a
node by monitoring the average queue length, communicates con-
gestion state to exactly the set of potential interferers using a novel
low-overhead congestion sharing mechanism, and converges to a
fair and efficient rate using an AIMD control law. We evaluate
IFRC extensively on a 40-node wireless sensor network testbed.
IFRC achieves a fair and efficient rate allocation that is within 20-
40% of the optimal fair rate allocation on some network topologies.
Its rate adaptation mechanism is highly effective: we did not ob-
serve a single instance of queue overflow in our many experiments.
Finally, IFRC can be extended easily to support situations where
only a subset of the nodes transmit, where the network has multiple
base stations, or where nodes are assigned different transmission
weights.

Categories and Subject Descriptors: C.2.1 [Computer Commu-
nication Networks]: Wireless communication, C.3 [Special-Purpose
and Application-Based Systems]: Embedded Systems

General Terms: Design, Algorithms

Keywords: Congestion Control, Rate Control, Fairness, Wireless,
IFRC, Sensor Network

1. INTRODUCTION
Congestion control has been an active area of networking re-

search for several decades now. Relatively less attention has been
paid to congestion control in the emerging area of wireless sen-
sor networks. In this paper, we examine the following simple but
important problem: In a sensor network of N sensor nodes each
transmitting data, possibly over multiple hops, to a base station,
what distributed mechanisms must the sensor network implement
in order to dynamically allocate fair and efficient transmission rates
to each node?

One motivation for this problem comes from the application of

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0520235.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

wireless sensor networks for structural health monitoring [17, 21,
22]. In this application, a set of sensors is deployed on a large civil
structure (such as a building or a bridge). Each sensor continu-
ously measures structural vibrations at several hundred samples a
second, a rate that is comparable to the nominal data rate of today’s
low-power sensor radios. When a significant response is detected,
as when the structure is vibrated using a mechanical shaker, every
sensor transmits a time series of recorded samples to a base station.
Civil engineers find an application such as this to be extremely use-
ful for conducting short to medium term experiments on test struc-
tures; they analyze the structural response to derive models of the
structure, or assess the level of damage in the structure. In the ab-
sence of rate control, this sensor network could suffer congestion
collapse.

A more general motivation comes from an evolved understand-
ing of the structure and application of sensor networks. Early sen-
sor network designs assumed a flat network of sensors support-
ing low-rate periodic sensing. More recently, tiered sensor net-
works [28] have been proposed for use in high data-rate applica-
tions (e.g., acoustic [2, 8], imaging [23]). In tiered networks, the
lower-tier consists of tiny wireless sensors that transmit data to the
closest upper-tier node (usually an embedded 32-bit system with
an 802.1x radio) [7]. In such networks, when an event is sensed,
a relatively large number of nodes might wish to transmit signif-
icant volumes of data (either raw samples, or processed informa-
tion) along one or more trees towards base stations. Rate control
will prevent congestion collapse in these situations.

In this paper, we examine the design of a distributed and adap-
tive mechanism for fair and efficient rate control in wireless sen-
sor networks. In general, the design of such a mechanism is com-
plicated by multiple nodes concurrently accessing a time varying,
shared wireless channel. As such, the channel arbitration used by
the MAC layer and the quality of paths determined by the routing
protocol can impact the quality of any solution to rate control. For
simplicity, we build our work upon the sensor network de facto
standard MAC layer (CSMA) and routing layer (link-quality based
path selection). We defer to future work the examination of an
optimal “cross-layer” design—one which jointly designs the MAC
layer, the routing layer, and a rate allocation scheme.

Within our chosen framework, one important challenge is to de-
sign a mechanism by which each node can locally detect all flows
that can contend for channel capacity, fairly adapt its own rate such
that the capacity is not exceeded, and signal all relevant flows to
do so as well. In general, such interference-aware rate allocation
in wireless networks is difficult for arbitrary communication pat-
terns [14]. As we show in this paper, we can leverage the tree-based
traffic pattern prevalent in wireless sensor networks to obtain a dis-
tributed, adaptive, and fair rate control mechanism. Specifically,

we make the following contributions:
Design: Our interference-aware fair rate control (IFRC) technique
(Section 4) is a collection of inter-related mechanisms for distributed
and adaptive fair and efficient rate allocation for tree-based com-
munication in wireless sensor networks. IFRC monitors average
queue lengths to detect incipient congestion, and uses an AIMD
control law to ensure convergence to fairness. Our main contri-
bution is the design of a low-overhead, yet surprisingly efficient,
congestion sharing mechanism. Congestion sharing itself is not a
new idea; it has been used to achieve MAC-layer fairness [3], and
to help TCP connections exchange network state [1]. However, de-
signing such a mechanism in the context of sensor networks is not a
trivial extension of prior efforts: to achieve fairness, all flows (even
those originating at a distant node) that pass through a congested
node need to be throttled, and rapidly signaling all relevant nodes
is a non-trivial task. What is more, any flow that affects the rate at
which the congested node sends data to the base station may need
to be throttled, but such flows may not traverse the congested node
at all. Precisely identifying the set of these flows is an important
contribution of this paper.
Analysis: We analyze the steady state behavior of IFRC to rigor-
ously derive IFRC parameters for stability and fast convergence.
We validate our analysis with experiments which demonstrate that
parameter choices within the bounds predicted by our analysis re-
sults in a stable system, while parameter choices outside this bound
result in instability.
Implementation and experimentation: We have implemented IFRC
in TinyOS (the widely-used sensor node OS), and demonstrate, us-
ing extensive experiments on a 40-node testbed (Section 6), that
IFRC achieves fair rate control. IFRC’s performance is within
20–40% of the maximum sustainable fair rate using a fixed tree
and a CSMA MAC layer. IFRC can be trivially extended to more
general versions of our problem: where each sensor node sends to
the nearest of many base stations, where only a subset of the nodes
transmit data, or where an application might require a weighted fair
rate allocation. Finally, IFRC’s rate adaptation is highly effective:
we noticed no packet drops due to queue overflows even with rela-
tively small buffer sizes in any of our experiments.

2. RELATED WORK
IFRC draws inspiration from the Internet congestion control lit-

erature, and borrows liberally from the work on TCP [13] and active
queue management [6, 18]. Sharing congestion information has
been employed in other contexts: for adjusting MAC-layer back-
offs to ensure fair channel access [3], and for sharing path conges-
tion state among Internet flows to improve TCP performance [1].
However, our problem setting is quite unlike any considered in
these areas; to our knowledge, the problem of achieving a fair
and efficient rate when many wireless nodes send data, possibly
over multiple hops, to a base station has not been studied in ei-
ther the Internet or ad-hoc networks literature before. Internet fair
queuing mechanisms [5, 20] do not extend easily to shared wire-
less links. Much of the literature on TCP for ad-hoc wireless net-
works [9, 16, 25] focuses on mechanisms that distinguish between
packet loss due to routing dynamics or wireless packet corruption,
and packet loss due to congestion. The one exception to this is
the work of Xu et al. [33], which extends RED to improve TCP
fairness in wireless ad-hoc networks. They introduce the idea of
a distributed queue comprised of all the nodes that contend for a
channel. Each node locally computes its RED drop probability
based on this distributed queue. This implicit congestion sharing
is similar to our mechanism; however, as we show later, the set

of nodes contributing to congestion at a node extends beyond the
one-hop neighborhood of a node, and IFRC’s congestion sharing
mechanism takes this into account.

Prior work in the sensor networks literature has looked at two
qualitatively different problems: congestion mitigation, and con-
gestion control. Broadly speaking, mitigation attempts to solve the
following problem. Consider a sensor network in which each sen-
sor is tasked to periodically transmit samples at some fixed rate.
When the aggregate sensor traffic exceeds network capacity, how
should nodes regulate their transmissions such that the network
goodput and fairness degrade gracefully (rather than exhibit con-
gestion collapse at a point close to network capacity)? This is qual-
itatively different from congestion control, which seeks to find an
optimal fair rate allocation to sensor nodes that is also maximally
efficient (so that, when nodes send at this rate, the network is fully
utilized, and the per node goodput is close to the sending rate).

Fusion [11] is a congestion mitigation scheme that uses queue
lengths to measure levels of congestion, as we do, but also uses
a different set of mechanisms than the congestion sharing mecha-
nism we have considered; it applies hop-by-hop backpressure using
a token-based regulation mechanism, and a prioritized medium ac-
cess layer that allows congestion at local nodes to drain quickly.
With this combination, Fusion achieves higher goodput and fair-
ness at high offered loads than in the absence of these mecha-
nisms. CODA [30] is another congestion mitigation strategy that
uses slightly different mechanisms than Fusion. It senses both
channel and buffer occupancies for measuring congestion levels;
Fusion uses only buffer occupancy because, to a first order, a CSMA
MAC layer with link-layer retransmissions will cause congestion
to be reflected in backed up buffers. Beyond that, CODA considers
two strategies: open-loop back pressure for transient congestion,
and an end-to-end acknowledgment based approach for persistent
congestion. Unlike Fusion, CODA does not explicitly focus on
per-source fairness. Because they are focused on congestion mit-
igation, neither Fusion nor CODA implements an AIMD control
law that IFRC uses to converge to a fair and efficient rate. Also,
instead of their explicit hop-by-hop back-pressure, in IFRC, nodes
exchange congestion indicators, and distributedly converge to a fair
and efficient rate.

IFRC is closer in spirit to prior work on sensor network conges-
tion control. In early work, Woo et al. [31] examine an AIMD rate
adjustment strategy in which the additive increase is proportional to
the number of descendants of a node, and multiplicative decrease
is performed whenever a node detects (by promiscuously listening)
that its parent is unable to forward its traffic. Thus, a parent indi-
cates congestion by dropping some traffic from its child, forcing
the latter into multiplicative decrease. IFRC is different from this
work in that it detects incipient congestion and applies aggressive
rate cutting to avoid dropping packets. It also employs a more so-
phisticated congestion sharing strategy beyond just a signal from a
parent to its children.

ESRT [24] allocates transmission rates to sensors such that an
application-defined number of sensor readings are received at a
base station, while ensuring that the network is uncongested (and
therefore efficient). Unlike IFRC, ESRT’s rate allocation is cen-
trally computed at the base station: periodically, the base station
counts the number of received sensor readings and re-tasks the sen-
sors by broadcasting a new transmission rate. ESRT uses a sophis-
ticated control law based on empirically derived regions of opera-
tion, and does not attempt to find a rate allocation that is maximally
efficient.

More recently, Ee and Bajcsy [4] have designed a congestion
control scheme in which each node estimates the channel capacity

by measuring the time to transmit a packet, and then divides up the
available capacity among the nodes in its subtree. Each node en-
forces overall fairness by using a non-work-conserving weighted-
fair queue for each of its children. Besides mechanistic differences
(IFRC does not measure channel capacity by measuring the time
to transmit a packet because that measurement can be skewed by
local packet processing overhead), IFRC is fundamentally differ-
ent from this scheme since it achieves both fairness and efficiency.
By contrast, this scheme’s non-work-conserving scheduler does not
promote efficiency; nodes whose flows do not pass through the con-
gested regions cannot fully utilize the available bandwidth.

Several other pieces of work in the sensor and ad hoc network
literature are tangentially related to IFRC. Sridharan and Krishna-
machari [26] explore the static allocation of fair and efficient rates
for a TDMA-based network. Li et al. [15] demonstrate that fair-
ness at the medium access layer does not lead to transport layer
fairness. Zhang et al. [35] examine priority adjustment techniques
to reduce the retransmission priorities of unacknowledged pack-
ets, with the aim of improving overall goodput. Jain et al. [14]
analyze the tractability and performance benefits of interference-
aware transmission scheduling in multi-hop wireless networks, but
do not consider distributed rate control mechanisms. Finally, sev-
eral pieces of work have considered reliable point-to-point or point-
to-multipoint delivery in sensor networks [10, 19, 27, 29]; we hope
to leverage some of this work in the design of an end-to-end relia-
bility mechanism that would complement IFRC.

3. MOTIVATION AND DEFINITIONS
Consider a network of N sensor nodes, with each node uniquely

identified by an integer in the range 1. . . N. In the simplest version
of our problem, each node has infinite data to send to a single base
station. This data can traverse multiple hops before reaching the
base station. Thus, a sensor node originates traffic (is a source),
and may forward traffic sent by other nodes. The traffic originated
by source i and sent to the base station is the i-th flow, denoted
by fi. We seek to adaptively assign a fair and efficient rate ri to
fi (or equivalently, to node i). Specifically, ri is the rate at which
node i sources flow fi, and does not include the rate at which node
i forwards traffic. In Section 4.2, we explore other problem formu-
lations: supporting multiple base stations; allowing only a subset
of the nodes to send; and, assigning different priorities to flows.

We assume that the sensor nodes run a contention-based medium
access layer. The default MAC layer in TinyOS (the widely-used
sensor node operating system) uses carrier-sense for collision avoid-
ance, and our implementation is built upon this MAC. Our design
can be extended to other contention-based MACs, such as those
that use RTS/CTS [34]. We have not considered whether IFRC
extends easily to token-based and TDMA MACs.

We also assume that the sensor nodes run a routing protocol [32]
that builds a tree to the base station. The solid lines in Figure 1
depict such a tree. The correctness of IFRC is not sensitive to the
particular choice of routing protocol, but its performance is. In
general, IFRC will result in higher overall throughput on routing
protocols that use link-quality metrics to establish the tree than on
those that do not. In what follows, we assume that a sink tree has
been constructed by the routing protocol, and, for ease of expo-
sition, that the sink tree is stable. IFRC is designed to adapt to
changes in the underlying routing tree.

Finally, we assume that the MAC layer provides link-layer re-
transmissions. Our current IFRC design performs well in a regime
where the wireless loss rates on the tree links are such that link-
layer retransmissions recover from most packet losses. Outside this
regime, IFRC needs an end-to-end feedback mechanism to deter-

10

11

13 14

16

15

17 1918

12

2120

Neighbor

Child/Parent

Figure 1: An example routing sub-tree. Dashed lines represent
a neighbor that is neither a parent nor a child of a node.

mine the effective goodput that each node receives. We explore
the impact of wireless loss rates on IFRC’s performance in Sec-
tions 4.3 and 6.2.

3.1 Fair and Efficient Rate Allocation
What do we mean by a fair and efficient rate? Intuitively, we

would like each flow to receive a fair share of the total channel
capacity. However, in non-uniform deployments, spatial reuse ef-
fectively defines several wireless contention domains, in each of
which the fair share may be different depending upon the number
of flows traversing the domain. IFRC’s goal is to assign to each
flow at least the most congested fair share rate. In addition, it al-
lows flows passing through less restrictive contention domains to
send at higher rates in order to achieve overall network efficiency.

It is possible to make this intuition more precise using a con-
structive definition, described below. Central to this constructive
definition, and a major contribution of this paper, is the precise
identification of the set of nodes whose flows share the channel ca-
pacity at a given node. We call all such nodes potential interferers
of the given node. Before defining potential interferers, we intro-
duce the following definition:

Interfering links: A link l1 interferes with a link l2 if a transmis-
sion along l1 prevents the initiation or the successful reception of a
transmission along l2.

Then, we define a potential interferer as follows:

Potential interferer: A node n1 is a potential interferer of node n2
if a flow originating from node n1 uses a link that interferes with the
link between n2 and its parent.

In tree-based wireless communication, the potential interferers are
not merely the set of neighbors of a node, as we now show. Figure 1
shows a network of wireless nodes; solid arrows describe the rout-
ing tree, and dashed lines indicate neighboring nodes (those that
can overhear each others’ transmissions). Consider node 16 in Fig-
ure 1, which transmits data to its parent 14. Clearly, links 20 → 16,
21 → 16 and 14 → 12 interfere with the link 16 → 14. Moreover,
links 13 → 11, 17 → 14 and 12 → 10 interfere with 16 → 14 as
well: when a packet is being transmitted on any of these links,
14 cannot safely listen to transmissions from 16. Thus, any flow
traversing these links shares the channel capacity at 16. For Fig-
ure 1 this includes flows originating from 16, 20, 21, 14, 13, 17, 12
as well as flows originating from 15, 18 and 19 as these flows tra-
verse 12 → 10. These nodes form the set of potential interferers of
node 16. Interestingly, node 11 is not a potential interferer of node
16, since the flow originating at node 11 does not traverse a link that

interferes with transmissions along 16 → 14 and therefore does not
share the channel capacity at node 16. This example illustrates an
important point: in tree-based communication, the potential inter-
ferers of a node include nodes not just in the node’s subtree or its
neighbor’s (parent included) subtrees, but also includes nodes in
its parent’s neighbor’s subtrees.

We now constructively define the fair and efficient rate allocation
that IFRC strives to achieve. (In effect, IFRC achieves a max-min
fair rate allocation, but we resort to this constructive definition since
it cleanly motivates IFRC’s novel congestion-sharing mechanism,
which we describe in Section 4.1.2.) To do this, consider the sink
tree built by the routing protocol (as in Figure 1), and define Fi to
be the set of flows routed through node i. This set includes fi (the
flow from source i), and all the flows originating at the descendants
in the subtree rooted at i. Also define a neighbor of node i to be
any node which is within a single hop of i; this includes i’s parent,
its children, and other tree nodes that can hear i’s transmissions
(represented by dashed lines in Figure 1). Finally, for the purpose
of this definition, assume that radios have a well-defined nominal
data rate B. Then, IFRC attempts to achieve the following rate
allocation:

1. At each node i, define Fi to be the union of Fi and all sets
Fj, where j is either a neighbor of i, or a neighbor of i’s parent.
Following our discussion above, Fi includes flows from all of i’s
potential interferers. Allocate to each flow in Fi a fair and efficient
share of the nominal bandwidth at i, B. (We do not define how
to compute this share, since we are merely interested in defining
the network-wide fairness and efficiency. Note that more efficient
allocations may be possible than those that merely evenly divide
B across all the flows by, for example, carefully scheduling non-
interfering flows.) Denote by fl,i the rate allocated at node i to flow
l. Repeat this calculation for each node.

2. Assign to fl the minimum of fl,i over all nodes i.

We now apply this definition to node 16. Clearly, f16 belongs to
F16. f20, f21, f14, being flows from neighbors of node 16, belong
to F16. f13, f17, f12, being flows from neighbors of 16’s parent,
also belong to this set. Finally f15, f18, f19 also belong to F16 as
they are routed through a neighbor of 16’s parent 14. If, in this
network, 16 is the most congested node, then all nodes with flows
in F16 should be constrained to send at a rate no greater than that
assigned to f16. f11 can send at a higher rate since it is not in F16.

Intuitively, if node 16 is congested, the network should perform
two actions: (i) reduce the arrival rate to this node, that is, reduce
the rate of flows from nodes 16, 20 and 21, and (ii) increase the
service rate of this node, that is, reduce the contention for the wire-
less channel between node 16 and 14. For the latter to happen,
the capacity of 16 to transmit should increase (its neighbors 20, 21
and 14, and their descendants 17 should reduce the rate of their
flows) and the capacity at 14 to receive packets should increase (its
neighbors 17, 13 and 12 and their descendants 15, 18 and 19 should
decrease the rate of their flows).

Before describing IFRC’s rate control mechanisms, we consider
two questions. Is fairness the appropriate design goal for sensor
network data transport? Unless we get more deployment experi-
ence, this question is difficult to answer. Fairness is a reasonable
initial design goal, and design insights from IFRC will be useful in
designing other rate adaptation mechanisms for sensor networks.
Furthermore, simple extensions to fairness, such as weighted fair-
ness, can be easily realized with IFRC (Section 4.2). Secondly,
should sensor network congestion control be rate-based or window-
based? The former seems more natural for sensor networks, given

sensors often generate periodic traffic. That said, many of IFRC’s
mechanisms can be adapted to window-based congestion control.

4. IFRC DESIGN
In this section, we discuss the design of IFRC, including the

detailed node-level algorithms for congestion detection, signaling,
and rate adaptation in IFRC. Extensions to, and limitations of,
IFRC appear at the end of the section.

4.1 IFRC Mechanisms
In IFRC, each node i adaptively converges to a fair and effi-

cient rate ri for flow fi using a distributed rate adaptation technique.
It achieves this by accurately sharing congestion information with
potential interferers. IFRC consists of three inter-related compo-
nents: one that measures the level of congestion at a node, another
that shares congestion information with potential interferers, and a
third that adapts the rate using an AIMD control law.

We describe these mechanisms in this subsection.

4.1.1 Measuring Congestion Levels
Various techniques have been proposed in the wireless and sen-

sor network literature to measure the level of congestion experi-
enced by a node. Broadly speaking, these techniques either directly
measure the channel utilization around a node [30], or measure the
queue occupancy at the node [11], or a combination thereof. How-
ever, recent work [11] reports that, for a traffic pattern in which
multiple sources send to a single sink, queue occupancy is a suf-
ficiently accurate indicator of congestion. Intuitively, with a MAC
layer that uses carrier-sense, MAC backoffs and retransmissions ef-
fectively cause queues to build up at a node, so queue lengths are a
reasonable indicator of congestion.

At each node, IFRC maintains a single queue of packets from
all flows passing through the node. This includes flows from all
descendants of the node in the routing tree and that sourced by
the node itself. Following much of the prior work on congestion
control, IFRC uses an exponentially weighted moving average of
the instantaneous queue length as a measure of congestion: avgq =
(1−wq)×avgq +wq × instq. The average queue length is updated
whenever a packet is inserted into the queue.

Conceptually, IFRC detects incipient congestion by using a sim-
ple thresholding technique with hysteresis. Thus, if avgq exceeds
a certain upper threshold U , the node is said to be congested, and
the node halves its current ri (the precise rate adaptation behavior
is described in detail in Section 4.1.3), and then starts additively
increasing its ri. The node, however, remains in a congested state
until avgq falls below a lower threshold L.

In practice, a single upper threshold is too coarse-grained to ef-
fectively react to congestion. When avgq crosses U , halving ri and
signaling others to accordingly adjust their rates may still leave
node i in a congested state (for example, when the network size
doubles instantaneously). Thus, IFRC employs multiple thresholds
U(k), defined by U(k) = U(k−1)+ I/2k−1, where k is a small in-
teger and I is a constant increment of the queue length. When avgq
is increasing the node halves its ri whenever avgq crosses U(k) for
any k. Since the difference between U(k) and U(k− 1) decreases
geometrically with increasing k, the rate halving becomes more fre-
quent as the queue size increases. In this manner, a node continues
to aggressively cut its ri until its queue starts to drain. (In TCP, the
same effect is achieved when the sender treats each dropped packet
as a congestion signal, and halves its window in response). Sec-
tion 6 shows how this scheme effectively signals congestion while
eliminating any packet drop due to queue overflow in our experi-
ments.

4.1.2 Congestion Sharing
In Section 3, we introduced a constructive definition for IFRC’s

rate adaptation goal. To achieve that goal, it is necessary to share
i’s congestion state (its current average queue length) with other
potential interferers. Each node can do this by explicitly transmit-
ting its queue length to its potential interferers. Since some of its
potential interferers can be many hops away from node i, the de-
sign of such a mechanism is a little tricky. IFRC uses a simpler
congestion sharing mechanism, described below, that achieves the
same goal.

In IFRC, node i includes the following information in the header
of each outgoing transmission packet: its current ri; its current av-
erage queue length, using which other nodes can infer i’s conges-
tion state; a bit indicating whether any child of i is congested; the
smallest rate rl among all its congested children (the reason for this
information will become clear in a moment); and l’s average queue
length. Including this information in every packet enables robust
signaling in the face of packet loss.

Using this information, all recipients of each packet (we assume
that nodes snoop transmissions, a common assumption in many
wireless protocols) can determine whether i (or any of its chil-
dren) is congested or not. All neighbors of i (its children, its parent,
and other nodes that can hear i’s transmissions) receive this packet.
However, some potential interferers of i (the neighbors of i’s par-
ent) may not receive this packet. How, then, does IFRC converge
to the fair rate?

IFRC introduces two simple constraints on the value of ri at
node i:

Rule 1: ri can never exceed r j, the rate of i’s parent j.

Rule 2: Whenever a congested neighbor j of i crosses a congestion
threshold U(k) (for any k), i sets its rate to the lower of ri and
r j. The same rule is applied for the most congested child l of
any neighbor of i, i.e., i sets its rate to the lower of ri and rl
where l is the most congested child of i’s neighbor.

Why do these two constraints achieve the goal described in Sec-
tion 3? Consider a congested node i. By rule 1 above, all descen-
dants of i will eventually be notified of i’s congestion and reduce
their rates to that of ri. By rule 2, any other neighbor of i, including
its parent, will set its own rate to ri. By the same rule, all neighbors
of i’s parent will set their rates to ri since when i’s parent sends any
transmission it indicates that one of its children (namely i) is con-
gested. Finally, recursively, descendants of a non-parent neighbor,
and descendants of the parent’s neighbors will also reduce their rate
to ri, again by rule 1.

More specifically, let us assume node 16 in Figure 1 is congested.
We require all nodes with flows in F16 to have the same rate as r16.
By rule 1, 16’s children 20 and 21 will set their rates to r16. By rule
2, 16’s neighbor 14 will set its rate equal to r16. 14 will include
information about a congested child in its outgoing packets. Based
on this information and using rule 2, nodes 13, 17 and 12 will set
their rate to equal to r16. All the remaining nodes with flows in
F16, namely node 15, 18 and 19 will eventually have their rates set
to r16 by rule 1 since one of their ancestors has set its rate to r16.

Finally, IFRC’s state scales well, since, with this congestion
sharing mechanism, a node need only maintain state proportional
to the number of neighbors.

4.1.3 Rate Adaptation
Finally, in this section, we describe some of the details of IFRC’s

rate adaptation mechanism. Before we do this, it is worth empha-
sizing that the averaged value of ri (which oscillates within a nar-
row range during steady state operation) represents the long-term

fair and efficient rate at which node i can originate traffic. ri itself
is not the maximum instantaneous rate at which a node can origi-
nate traffic; the instantaneous rate may be affected by MAC-layer
transmission scheduling mechanisms.

In IFRC, nodes increase their ri’s additively. Specifically, every
1/ri seconds, a node i increases its rate by δ/ri. We discuss the
choice of the parameter δ and the choice of the 1/ri control interval
in Section 5. If i is congested, then when threshold U(k) is crossed,
the node halves its current ri. It does this at most once for each
U(k) during one congestion epoch; an epoch begins when the node
transitions to a congested state, and ends when it transitions to a
non-congested state. The latter happens when, in a congested state,
the average queue length goes below the lower threshold L.

When i discovers its ri to be higher than that of its parent j, it
sets its rate to r j. When i overhears a neighbor l’s transmission
that indicates that l, or one of l’s children p has crossed a threshold
U(k), its sets ri to either rl or rp as necessary. Both these sets of
rules follow from the discussions in the previous two sections. In
either case, i does not change its own congestion state.

All nodes start from a fixed initial rate rinit . For faster conver-
gence, IFRC implements a multiplicative rate increase initially.
This technique is similar to TCP’s slow start. While node i is in
slow start, it adds φ to its rate every 1/ri seconds, thus multiplica-
tively increasing its ri. It exits this mode when one of three condi-
tions is true. If, in slow start, i itself becomes congested, it halves
ri. If its ri equals or exceeds that of its parent, it sets ri to its parent’s
rate and transitions to additive increase. Finally, if its rate is con-
strained by congestion sharing, i sets its ri to that of the constraining
node and transitions to additive increase. These three conditions are
consistent with the congestion sharing rate adaptation mechanisms
discussed above.

Slow start behavior is also invoked, for rapid recovery, when ri
equals or goes below rinit . This can happen in one of two ways. If
i’s average queue length increases continuously, it will repeatedly
halve its rate (Section 4.1.1). Alternately, i’s rate can be constrained
by a neighbor to rinit .

4.1.4 Base Station Behavior
The base station is a distinguished node in IFRC, since it never

sources any traffic, and therefore does not need a separate allocated
rate. It does, however, need to facilitate congestion sharing be-
tween its children. For this, it maintains a “rate” rb and enforces
congestion sharing by adapting rb to congestion indicators from its
children. Its children are constrained by rule 1 in Section 4.1.2 to a
rate no greater than rb.

The base station implements a slightly different algorithm to
adapt its rate rb. It decreases its rate only when any of its children j
crosses U(k) for any k. Unlike other nodes, it does not decrease its
rate when any of its non-child neighbors or any child of a neighbor
is congested. Since the base station does not source or forward any
traffic, the rate of its children (determined by rb) does not affect the
congestion status of the congested neighbor (or the congested child
of a neighbor) of the base station.

Initially, IFRC sets rb equal to the nominal data rate of the wire-
less channel. IFRC is not sensitive to the choice of value for this
rate, since each node independently measures congestion by moni-
toring their own queue lengths. The initial value of rb merely needs
to be high enough that the base station’s children can determine
their fair rates without being constrained by the configured value.
The base station always additively increases rb: every 1/rb sec-
onds, it increments rb by δ/rb. Since the base station does not
source any traffic, it broadcasts a control message containing this
rate as a way of sharing congestion information. To limit control

message overhead, the base station broadcasts this message after at
least m packets have been received from the child with the high-
est rate. Intuitively, this lets the fastest child perform m additive
increases before hearing from the base station. In our implementa-
tion, m = 5. However, when rb is decreased in response to conges-
tion at a child, the base station immediately broadcasts the control
message. This message is broadcast twice, to increase the likeli-
hood that the children receive the “bad news” quickly (in the event
that a child doesn’t receive both these transmissions, it will eventu-
ally get one of the periodically transmitted control messages).

4.2 Extensions to IFRC
So far, we have assumed that every node in the network has data

to send to a single base-station. Our IFRC design is flexible enough
to accommodate multiple base stations, weighted fairness, or only
a subset of nodes transmitting data.

Multiple Base Stations: Consider a network with multiple base
stations. Each sensor node may be able to send to more than one
base station, but picks the one with the best path and the system
converges to one routing tree for each base station. In this scenario,
a potential interferer for node i may be on a different routing tree
than the one i is on. IFRC must account for this in adapting to a
fair and efficient rate.

To accommodate multiple base stations, IFRC requires a simple
modification to the base station behavior (Section 4.1.4). Figure 2
motivates this modification and shows two routing trees rooted at
node 0 and node 10. When node 11 is congested, node 10, fol-
lowing the base station behavior described above, sets r10 to r11.
r1 should also to be set to r10 as node 1 is a potential interferer of
node 11. But since node 10 is not congested (it is the base station),
Rule 2 in Section 4.1.2 is never triggered at node 1.

10

12
Neighbor

Child/Parent

0

1 2

11

1413

Figure 2: Scenario with multiple base stations (nodes 0 and 10)

Our fix to this modifies the control packet transmitted by the base
station to include, in place of the current rate of the most congested
child, the base station’s own rate. With this change, when node 11
is congested, r10 resets its rate to r11 and sends a control packet
indicating that r11 is congested. This triggers Rule 2 at node 1 if
r1 is greater than r11. This modification is backward compatible to
the single base station case. All our experiments have incorporated
this modification. In discussing other extensions to IFRC below,
we revert to a single base-station scenario, and believe that these
other extensions will extend without modification to multiple base
stations.

Weighted Fairness: Consider a network where node i is as-
signed a weight wi. We say a rate allocation scheme is fair if the
normalized rate for each flow, fi

wi
, is fair according to our defini-

tion in Section 3. We have implemented weighted fairness as fol-
lows, without needing to change any aspect of IFRC’s rate adap-
tation, congestion sharing, or queue management behavior: each
node sends traffic at a long-term rate wi × ri, instead of just ri. This
is equivalent to adding (wi − 1) leaf nodes to the parent of i each
sending at rate ri; this intuition explains why no modifications are
needed to IFRC. We experimentally demonstrate this strategy in
Section 6.2.

When only a subset of nodes transmit: Finally, IFRC works
(without modification) when only a subset of nodes are sending
data in the network. Each node i maintains ri exactly as it would if
it had data to send. Intuitively, a subset of nodes sending data can be
considered as a special case of weighted fairness where nodes that
have data to send have weight 1, and nodes that don’t have weight
0. We experimentally demonstrate this extension in Section 6.2.

4.3 Discussion
As we discussed briefly in Section 3, IFRC currently works well

in regimes where hop-by-hop loss recovery (using a limited num-
ber of retransmissions) suffices to recover from most end-to-end
losses. Hop-by-hop loss recovery is used in many real-world sce-
narios today to improve delivery reliability [22, 28]. Furthermore,
many, but not all, of our experiments in real radio environments
fall in this regime. (Our experiments were conducted in relatively
harsh wireless environments with loss rates in the 15-40% range,
with paths of more than five hops, and where five retransmissions
or less were sufficient to recover from losses in, relatively speak-
ing, most—92% or more—cases.) In this regime, the average ri is
effectively the goodput that the node receives. Outside this regime,
however, since IFRC is essentially an open-loop system and does
not get feedback about the actual goodput each node receives, there
is no way to ensure globally fair allocation of goodput. For this
purpose, as well as for reliability reasons, IFRC needs to be com-
plemented with an end-to-end reliability mechanism.

Designing a scalable end-to-end reliability mechanism is a chal-
lenge, and we have left that to future work. When integrated with
such a mechanism, we expect the rate adaptation parameters and
some of the details of those algorithms to change, but the conges-
tion sharing algorithms to stay the same.

IFRC cannot detect the reduction of channel capacity caused by
interfering transmissions from non-neighboring nodes. This kind
of interference is harder to detect at the higher layers of software,
and manifests itself as packet loss. The interference rejection capa-
bilities of spread spectrum radios mitigates this problem somewhat,
and hop-by-hop recovery deals with its effects.

Node battery conservation is an important issue in the design
of sensor network systems. Many existing sensor network sys-
tems duty-cycle network nodes [28] to conserve energy. As long
as the underlying routing protocol maintains or re-constructs rout-
ing paths when nodes resume from sleep, IFRC will work unmod-
ified. Although duty-cycling achieves significant energy conserva-
tion, other research has proposed finer-grain energy conservation
methods [34], for example, by turning off radios to avoid over-
hearing transmissions. IFRC assumes promiscuous listening for
congestion sharing, and so will not work with such methods.

IFRC will work without modification when intermediate nodes
perform in-network aggregation [12]. In general, aggregation re-
duces the volume of data transmitted by nodes; in IFRC, nodes
will adaptively detect the availability of, and use, the available ca-
pacity.

5. PARAMETER SELECTION IN IFRC
IFRC converges to a fair rate using AIMD, but its long-term sta-

bility, efficiency, and convergence properties crucially depend upon
the choice of its parameters. The choice of many IFRC parameters
is influenced by IFRC’s open-loop design. In reliable transport
protocols like TCP, acknowledgments used for error recovery are
received after one round trip time. This RTT is a natural timescale
at which rate can be adapted. Since IFRC is not coupled with an
end-to-end feedback mechanism (Section 3), it departs from tradi-
tional congestion control protocols in its parameter choices.

Intensity of AIMD: In IFRC, node i increases its rate ri ev-
ery 1/ri seconds by δ/ri. Other additive functions are possible.
We choose this because, intuitively, 1/ri is the inter-packet trans-
mission time, and thus it provides a natural timescale for making a
control decision. Hence, we have:

ri

(
t +

1
ri(t)

)
= ri(t)+

δ
ri(t)

.

It is easy to see that the function ri(t) is a linear function with slope
δ , that is, ri(t) = δ t.

The choice of δ dictates the intensity of the additive increase,
and is thus crucial for both stability and speed of convergence. We
now present a simple analysis of the steady state behavior of the
system, which we use to deduce the appropriate value of δ .

Recall that ri(t) is the rate at which node i generates traffic at
time t. Let rst,i be the maximum sustainable rate of node i, rmin,i be
the minimum rate of node i, and rmax,i be its maximum rate. Note
that all these rates do not include the rate by which node i forwards
traffic generated by other nodes. Figure 3 shows ri(t) during the
additive increase phase. The rate increases from rmin,i, crosses the
maximum sustainable rate rst,i, and, once a congestion signal is
received, it decreases from rmax,i to rmin,i by half.

Time (sec)

rmax
Excess Load

R
at

e
(p

kt
s/

se
c) rst

slope = δ

rmin / δ

rmin = rmax/2

Multiplicative
Decrease

Additive Increase

Figure 3: AIMD behavior of ri(t)

For stability, we require that the amount of data transmitted when
ri is above rst (the ”excess load” in Figure 3) be no more than
the unexploited transmission opportunity when ri is below rst (the
”underutilized capacity” in Figure 3), i.e., rst,i >

rmin,i+rmax,i
2 . Also,

since, our multiplicative decrease factor equals 1/2, rmax = 2×rmin
and we have:

rst,i >
3rmax,i

4
. (1)

To avoid ri jumping from rmin,i to rmax,i in a single step, we re-
quire δ/rmin,i � rmin,i, or,

δ = εr2
min,i,

where 0 < ε < 1 is a small positive number whose value we derive
below.

When the average rate of nodes in the network is below their sus-
tainable rate, rst,i, the load on the network is less than the capacity
and thus the network is able to support the load without any queue
build-up at the nodes. When the rate of nodes increases beyond
their sustainable rate, the excess load will cause queues to build up
at the congested nodes. The excess number of packets that a node
sends during this time is equal to the area of the shaded region in
Figure 3, which equals (rmax,i − rst,i)2/(2δ) for each node i.

Let’s focus on one congested node, call it node j. Let Ii j be an
indicator function that equals one if the packets from node i traverse
node j, and equals zero otherwise. Then, the total number of excess

packets that are accumulated at node j equals

∑
i

(rmax,i − rst,i)2Ii j

2δ
.

This assumes that the ri values increase and decrease in synchrony
at all network nodes. This is an idealized assumption that would
only be true if feedback were instantaneous. As Figure 8 shows,
this assumption holds approximately in our experiments, because
per-hop latencies are small relative to the timescale of additive in-
crease.

Intuitively, the formula above measures the excess work on node
j’s queue due to the increase in the packet arrival rate at this queue.
Notice that, in the above calculation, there is an underlying as-
sumption that the service rate of this queue remains the same in-
dependently of the network congestion. But this assumption does
not hold for wireless networks because of contention. In partic-
ular, contention reduces the service rate of the queue and creates
further queue build up. To see this consider a flow from a poten-
tial interferer of j. This flow may use various links that interfere
with the link between j and its parent. A transmission of an excess
packet of this flow along one of these interfering links will prevent
j from transmitting a packet it would otherwise transmit, which is
as if one more packet is added at node j’s queue. Precisely analyz-
ing such contention is a hard problem in general. Here, we model
its effect by replacing the indicator function Ii j with a function fi j
whose value reflects not only the arrival of an excess packet, but
also the number of time slots that node j cannot transmit due to the
transmission of an excess packet by one of j’s potential interferers.

The congested node will signal congestion only when its average
queue increases beyond the threshold U(0). Let U0 denote the in-
stantaneous queue length required for the EWMA-averaged queue
length to exceed U(0). Then, for congestion signaling, we require

∑
i

(rmax,i − rst,i)2 fi j

2δ
> U0. (2)

Further, IFRC decreases its rate every time a threshold is crossed.
Therefore, to avoid raising multiple congestion signals, that is, to
avoid multiple multiplicative decreases, we also require that the
excess load is less than the second threshold. Thus,

∑
i

(rmax,i − rst,i)2 fi j

2δ
< U1, (3)

where U1 is the instantaneous queue length required for the EWMA-
averaged queue length to exceed U(1), starting from an empty
queue.

In the analysis so far we have ignored the latency associated with
the time that it takes for the congestion signal to travel from node
j to all its potential interferes. Let i be a potential interfere of j
and si be the number of rate updates performed at node i before it
receives the congestion information from node j. Assume that the
rate at node i when congestion occurred at node j was at least rst,i
and approximate the increase in ri due to the si updates by siδ/ri.
Then, we have

rmax,i > rst,i +
siδ
rst,i

. (4)

Equations (1), (2), and (3) guarantee system stability, and, when-
ever there is congestion, that one and only one signal is going to be
propagated to all relevant nodes. Together with Equation (4) that
takes the propagation delay of the congestion signals into account,
they dictate some operational constraints that must be satisfied.

Without loss of generality, assume all node weights are equal,
that is, in steady state rst,i, rmax,i, and rmin,i are the same for all

i. By substituting rst in Equation (2) using its lower bound from

Equation (1), and letting Fj = ∑i fi j we get r2
st Fj

18δ > U0. Similarly,
by substituting rmax in Equation (3) using its lower bound from

Equation (4) and letting s be the average value of si we get s2δFj

2r2
st

<

U1. Now, recall that δ = εr2
min to get

ε <
Fj(rst/rmin)2

18U0
, and ε <

2U1(rst/rmin)2

s j
2Fj

.

The value of rst/rmin ranges between 1.5 and 2. (The lower
bound comes from Equation (1) and the fact that rmax = 2× rmin,
and the upper bound from the fact that rmax = 2× rmin > rst .) Any
value in this range can be legitimately substituted into the above
inequalities. However, a particular choice of value determines the
efficiency of the system. When the value is 1.5, the average rate
assigned to each node will be rst , but when the value is 2, the sys-
tem achieves only 75% efficiency. We choose the former, sacrific-
ing convergence time for efficiency (notice that choosing 1.5 yields
a lower value of ε , resulting in longer convergence times) which
yields:

ε <
Fj

8U0
, (5)

and

ε <
9U1

2s2Fj
. (6)

Intuitively, when Fj is small, the first inequality (Equation (5))
determines ε . This happens in small networks or in sparse net-
works with low contention. In larger networks, the second inequal-
ity (Equation (6)) determines ε .

In Section 6, we conduct experiments that validate our analysis.
In particular, we show that choosing ε using the above inequalities
results in stable operation, while choosing ε that minimally violates
them results in instability.

In general, however, choosing an ε for an arbitrary network is
tricky, since Fj is a function of the topology and the tree. In our
experiments, we have been using a rule-of-thumb value of n logn
for Fj, where n is the number of nodes in the network. n logn is a
good approximation of Fj for a reasonably balanced tree in a net-
work where every node can hear every other node, and where the
congested node is close to the root. In the worst case—in a chain
topology in which all links interfere with each other—Fj can be n2.

Choice of Other Parameters: We now turn to a brief discus-
sion of how to set other parameters. Our choices for these parame-
ters are based on intuition, rather than rigorous analysis, but which
we have validated through experimentation. We have left the anal-
ysis to future work.

Clearly, rinit should have a value that is smaller than the steady
state rate achievable for a given network. We conservatively set
rinit to be one order of magnitude smaller than the steady state rate.
Now, in a wireless network of n nodes, depending upon the network
topology and the routing tree, the maximum achievable rate, rst ,
can vary greatly. In a sparse network with a balanced tree, nodes
can hear only their parent and children. In this case rst is O(1/n).
When each node can hear all other nodes, and the tree is balanced,
rst is of the order of O(1/(n logn)). If instead, the tree degenerates
to a chain topology, rst is O(1/n2). This is the worst case. We
expect most networks of interest to be closer to the second category,
and thus conservatively set rinit to equal B/(10n logn), where B is
the nominal data rate of the radio.

The parameter φ determines the rate of multiplicative increase
during slow-start. We conservatively set it to rinit/8 to ensure a

small slow-start overshoot over the sustainable rate, without com-
promising the speed at which slow-start hunts for that rate.

Finally, for a given choice of U(0), the choice of wq dictates the
burst lengths U0 and U1 that each node is able to accommodate.
The relationship between these two parameters and the burst length
has been explored in [6]. In our case, a reasonable rule of thumb for
U0 is N/2, and U1 is N; intuitively, if the congested node is close to
the root of the tree, we would like to be able to accommodate one
additive increase step (which, in IFRC, is one packet) at either that
node or its child (when a node is congested, queues start to build
up at its child too), from each node in the network.

Our parameter choices in Section 6 have been derived based on
the discussions in this section.

6. EVALUATION
In this section, we present the main results from an extensive

performance evaluation of our implementation of IFRC on a 40-
node wireless sensor testbed.

6.1 Implementation and Methodology
We have implemented, in TinyOS 1.1, all the features of IFRC

described in Section 4. Our implementation is about 1200 lines of
code, and consists of two modules, QueueManagement and Rate-
Control. The former module maintains the packet queue, and im-
plements packet forwarding functionality. It also measures the node’s
congestion level as described in Section 4.1.1, and signals the Rate-
Control module when the node’s congestion state changes. The
RateControl module implements congestion sharing (Section 4.1.2)
and rate adaptation (Section 4.1.3). In addition, the module main-
tains a neighbor table to track neighbor congestion states and rates.
The RateControl module also promiscuously snoops network pack-
ets for congestion sharing. In our hardware platform, putting the ra-
dio in promiscuous mode disables the chip-level acknowledgments
usually provided by the radio hardware. Since hop-by-hop recov-
ery is essential for IFRC, we added MAC-layer acknowledgments,
but expect IFRC to work well with chip-level acknowledgments as
well.

We evaluated our IFRC implementation on a 40-node indoor
wireless sensor network testbed. Each sensor node in our testbed
is a Moteiv Tmote with an 8MHz Texas Instruments MSP430 mi-
crocontroller, 10KB RAM and a 2.4GHz IEEE 802.15.4 Chipcon
Wireless Transceiver with a nominal bit rate of 250Kbps. These
motes are deployed over 1125 square meters of a large office floor
They have a USB back-channel that we use for logging experimen-
tal data. The motes collectively form a connected topology (Fig-
ure 4) with a diameter of eight hops. We only depict links that have
a loss rate of 40% or lower.

1

2

3

4

5

6

7

8 9

10

11

12

13

14

17
16

15

19

20

18

29

30

21

24

32

23

22

26

25
27

31

33

35

28

34

36

37

38

39

41

40

Figure 4: Testbed connectivity graph

We have tested IFRC on several routing trees constructed on

various topologies with up to 40 nodes, and with different base
station locations. Here, we present a subset of these results. Table
1 shows the parameters used in our experiments (unless otherwise
specified); these parameter choices were driven by the discussion
in Section 5.

Parameter Value

Lower Threshold (L) 4 pkts
Upper Threshold (U(0)) 8 pkts

Queue Increment (I) 8 pkts
Additive Increase Parameter (ε) 0.025 per pkt

Slow-start initial rate (rinit) 0.02 pkt/sec
Slow-start mult. incr. (φ) 0.0025 pkt/sec

MAX RETRANS 5
Queue Size 64 pkts

EWMA Weight (wq) 0.02
Packet Size 32 bytes

Table 1: IFRC parameters used in the experiments

A routing protocol which computes routes using link reliabil-
ity estimators can incur route changes under heavy traffic. During
preliminary experiments, we have found IFRC to work well in dy-
namic topologies. However, in order to study the steady-state be-
havior of IFRC, we modified the existing TinyOS routing protocol
(MultiHopLQI) to terminate the route computation after an initial,
reasonable tree is found. For each experiment, then, we ran this
modified routing protocol to fix an initial tree, after which we ran
IFRC on it. This procedure results in the same routing tree with
substantially similar link qualities across different IFRC experi-
ments.

We ran each experiment for at least an hour. For each experi-
ment, we logged every packet transmission and reception, and ev-
ery change in rate, at each network node. In addition, we logged
every packet received at the base station. This fairly detailed log-
ging helps us visualize IFRC behavior in several ways. However,
during and across runs, the quality of wireless links can and does
change. This is beyond our control, of course, but we compensate
by running long experiments at consistent times of day (usually late
at night or in the early morning hours).

We plot the per-flow goodput as the total number of packets re-
ceived from a node at the base station divided by the duration of the
experiment. We plot the rate adaptation at each node, by plotting
ri as a function of time. For some experiments, we visualize in-
stantaneous queue size at nodes as a function of time. For some ex-
periments, we also present a per-flow packet reception plot, which
shows the number of packets received at the sink as a function of
time.

6.2 Results
In this section, we present experimental results that validate our

IFRC design, demonstrate that IFRC can be extended in the ways
we have discussed in Section 4.2, and analyze the consequences of
poor parameter choices for IFRC.

IFRC on a 40-node network: We now discuss the performance
of IFRC on a 40-node network. All 40 nodes are transmitting data,
and there is one base station. All flows are treated equally.

Figure 5 shows the routing tree generated during one experimen-
tal run. Packet reception ratios are depicted on each link and vary
between 66% and 96%. This tree is 9 hops deep, which is slightly
greater than the diameter of the underlying topology. This surpris-
ingly large depth is because of the way the routing protocol can pre-
fer shorter links with higher qualities over poorer but longer links.
The depth of the tree, the variable fanout at various nodes, the high

variability in packet loss rates, and the unbalanced layout make this
a good routing topology to study IFRC performance.

2

1

0.87

3

0.88

4

0.85

5

0.89

6

0.8

7

0.92

8

0.94

9

13

0.79

0.88

10

0.87

11

0.87

12

0.9

14

0.87

15

0.77

16

0.81

17

0.84

18

0.72

19

0.74

20

0.87

21

0.85

22

0.8

23

0.66

24

0.96

25

0.95

26

0.79

27

0.93

28

0.96

29

0.84

30

0.87

31

32

0.93

0.82

33

0.87

34

0.94

35

0.93

36

0.96

37

0.96

38

0.95

39

0.93

40

0.91

41

0.89

Figure 5: Routing tree and link qualities used in the experi-
ments

Figure 6 shows the per-flow goodput received at the sink. Each
bar represents the average rate of transmitted packets from the cor-
responding node. The lighter section of each bar represents the av-
erage rate at which packets from that node were received at the base
station. Packet losses account for the rest (the remaining, darkly
shaded, section of the bar). We make several observations from
this graph. First, it validates the basic design of IFRC, and shows
that nodes receive approximately fair rates and fair goodput. In this
topology, it turns out that nodes 13 and 8 are congested, and every
other node is a potential interferer of one of these nodes. For this
topology, hop-by-hop recovery resulted in fewer than 8% of the
packets being lost end-to-end. Second, node 1 is the base station,
and the bar corresponding to node 1 indicates the base station’s sig-
naling control traffic rate. This represents pure overhead, and is less
than 1 packet in 10 seconds. Figure 7 shows the packet reception

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45

T
h
r
o
u
g
h
p
u
t

(
p
k
t
s
/
s
e
c
)

Node Id

Figure 6: Per flow goodput in the 40-node experiment

plot for all the nodes in the network. The slope of this curve around
a particular point gives us an estimate of the instantaneous goodput
received by the node at that point. Notice that the reception plot is
relatively smooth, with minor variations attributable to AIMD.

Figure 8 shows the rate adaptation at each node, including the
base station. All nodes adapt their rates in near-synchrony, as the
rate plots for various nodes overlap with each other (cf. the discus-
sion in Section 5). The slow start phase and the classic AIMD saw-
tooth behavior is clearly visible in the graph. A closer look (not
shown) reveals that the rate adaptation at different nodes is slightly
de-synchronized by network latencies, but this effect does not show
up at the time scale of the graph. Finally, there are several small
measurement artifacts in the graph, caused by loss of experimental

 0

 100

 200

 300

 400

 500

 600

 700

 800

12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40

P
a
c
k
e
t

C
o
u
n
t

Time (Hour:Min)

Figure 7: Packet reception in the 40-node experiment

data. For example, the horizontal line starting at about 12:45 shows
that the rate plot for one of the nodes is slightly distorted. This re-
sults from an infrequent data logging queue overflow problem at
the USB ports on one of our motes, due to software driver issues
beyond our control.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40

R
a
t
e

X

1
0
0
0
0

(
p
k
t
s
/
s
e
c
)

Time (Hour:Min)

Figure 8: Rate adaptation in the 40-node experiment

In subsequent experiments, unless otherwise specified, we use
the same routing tree (Figure 5) as the one used for Figure 8.

Figure 9 shows the instantaneous size of the queue at every node.
While it is difficult to decipher the detailed behavior of each flow
from the graph, we clearly see that the instantaneous size varies
a fair bit, but never grows beyond 20. Each of our nodes has a
buffer size of 64, and, so, in this experiment, no packets are lost
due to queue overflow. In fact, in all the experiments that we have
conducted, we have never seen a single instance of buffer overflow.
This results from IFRC’s aggressive rate cutting at each U(k) (Sec-
tion 4.1.1).

 0

 5

 10

 15

 20

 25

12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40

I
n
s
t
.

Q
u
e
u
e

L
e
n
g
t
h

Time (Hour:Min)

Figure 9: Instantaneous queue size in 40-node experiment

Optimality of IFRC: How close is IFRC’s rate allocation to
the optimal? There are several ways to answer that question, but
the one we have chosen is to ask: What is the maximum fair rate
sustainable on the routing tree of Figure 5? This can help us un-
derstand how much inefficiency IFRC introduces. To understand
this, we programmed each node to send at a fixed rate R, without
IFRC, but kept buffer sizes the same as in our above experiment,

and used link-layer retransmissions to recover from losses. Starting
with a value of R corresponding to the fair rate in Figure 6, we then
increased R and measured the goodput received by each node. Our
conjecture was that beyond some rate R′, the network would result
in unfair goodput, and R′ would be the benchmark we could use to
calibrate IFRC.

Figure 10 shows two distinct plots in the same graph. The x-axis
depicts the successive rates used in the experiment. The solid line
is the ratio of the maximum goodput received by any node to the
minimum goodput. The dotted line measures the largest queue seen
at a node during an experiment.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2000 2500 3000 3500 4000
 0

 10

 20

 30

 40

 50

 60

M
a
x
/
M
i
n

G
o
o
d
p
u
t

R
a
t
i
o

M
a
x

Q
u
e
u
e

L
e
n
g
t
h

Per node configured rate X 10000 (pkts/sec)

Max/Min Goodput Ratio
Max Queue Length

Figure 10: Optimality test for the 40-node experiment

Consider the goodput ratio curve. It remains flat initially, and
then starts increasing. If we define the point at which it starts
increasing to be R′ (about 0.27 packets/sec), then IFRC achieves
about 80% of the maximum sustainable fair rate. Roughly speak-
ing, that value of R′ also represents the knee of the maximum queue
size curve. However, real-world experiments are often messy; in
our graph, there are two higher rates that appear to be anomalously
non-monotonic, but still unfair. If we conservatively assume that
R′ is closer to 0.36 packets/sec (beyond which the largest queue al-
ways overflows, as can be seen from the second, queue size plot),
then IFRC still achieves about 60% of the maximum sustainable
fair rate. Either way, this is extremely encouraging, and validates
the basic motivation and premise of our design.

As an aside, the nominal bandwidth of the Tmote radio is about
80-90 packets/sec. However, IFRC’s fair rate for our topology
amounts to a total goodput of about 8.8 packets/sec. Why this ap-
parent discrepancy? First, our goodput numbers do not account for
loss in channel capacity due to lost transmissions and re-transmissions.
Second, our link-layer acknowledgments reduce some of the net-
work capacity. Finally, the TinyOS MAC layer implements a ran-
dom, and not exponential backoff. The default random backoff pa-
rameter in TinyOS is not sufficient for the densities and traffic lev-
els we use, so we increased it by a factor of three. These last two
changes effectively reduce the nominal bandwidth of the radio to
about 50 packets/sec. Now, in our experiments, we have measured
the total traffic at each node (defined to be all packets received,
overheard, and transmitted by that node, at the transport layer). We
find that the busiest node has a total traffic of close to 32 packet/sec,
close to the nominal bandwidth. Collision-related losses handled
purely by the radio at the MAC layer partially contributed to the
remaining difference.

Dynamics and Startup Behavior: IFRC dynamically adapts to
node addition and removal. We would have liked to validate this be-
havior by turning nodes on and off. However, as we have discussed
above, IFRC can interact with link quality based route selection,
and turning notes on and off would trigger changes to the routing
tree. So, we conducted two simple experiments to demonstrate how
IFRC adapts to the addition or removal of nodes.

In the first experiment, all the nodes were turned on at the begin-
ning of the experiment, and the routing tree was fixed, but only
a fourth of the nodes started sending data initially. The others
started sending data about 20 minutes into the experiment. Fig-
ure 11 shows the rate adaptation of the nodes in this experiment.
The reduced overall fair share rate when nodes are added to the
network is clearly visible in this plot. The horizontal line in the left
half of the picture represents the ri’s of inactive nodes. The graph
also shows another interesting feature: two successive multiplica-
tive decreases occur at around 9:09. Such a behavior is sometimes
caused by a parent and a child reaching a congested state within a
short time of each other. When the parent gets congested, the child
reduces its rate. Again, when the child’s own congestion threshold
is exceeded, the child halves its rate again.

 0

 5000

 10000

 15000

 20000

 25000

 30000

09:00 09:10 09:20 09:30 09:40 09:50

R
a
t
e

X

1
0
0
0
0

(
p
k
t
s
/
s
e
c
)

Time (Hour:Min)

Figure 11: Node addition: Rate adaptation

The second experiment was similar, but all nodes started sending
data at the beginning, and three-fourths of the nodes stopped about
20 minutes into the experiment. Nodes that continue transmitting
data obtain higher fair share rates, as shown in Figure 12. This
figure also has an interesting feature: a slight de-synchronization at
10:30 of the additive increase rates of some nodes. This is caused
by packet loss; if a node loses a couple of transmissions from its
parent, its rate can then lag behind that of its parent for some time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

10:00 10:10 10:20 10:30 10:40 10:50 11:00

R
a
t
e

X

1
0
0
0
0

(
p
k
t
s
/
s
e
c
)

Time (Hour:Min)

Figure 12: Node deletion: Rate adaptation

IFRC Extensions: In this section, we validate the performance
of the IFRC extensions discussed in Section 4.2.

Figure 13 plots the per-flow goodput for an experiment in which
some nodes were assigned different weights than others. Each node
whose id is divisible by 4 was assigned a weight of 2 and all the
other nodes were assigned a weight 1. The figure clearly demon-
strates that IFRC is effective in allocating rates conforming to the
configured weights. All other nodes whose identifiers are divisible
by 4 get twice the fair share rate dictated by the most congested
node. (As with other goodput graphs, the lighter section of the bar
measures goodput received by each node, while the bar for node 1
denotes the base station’s control traffic overhead.)

Figure 14 shows the per-flow goodput for an experiment in which
only nodes whose identifiers were divisible by 3 were allowed to

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45

T
h
r
o
u
g
h
p
u
t

(
p
k
t
s
/
s
e
c
)

Node Id

Figure 13: Per flow goodput with weighted fairness

transmit data. As expected, all transmitting nodes receive at least
the fair rate. Furthermore, the fair share per-flow goodput is ap-
proximately a factor of four higher in this case than when all nodes
transmit; IFRC adapts to the increased overall available capacity
and allocates it fairly to the transmitting nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40
T
h
r
o
u
g
h
p
u
t

(
p
k
t
s
/
s
e
c
)

Node Id

Figure 14: Per flow goodput with only a subset of senders

Finally, we ran an experiment with two base stations (Figure 15).
Nodes numbered higher than 33 have node 41 as the sink, and the
rest send to another sink (node 1). As Figure 15 shows, the two sets
of nodes get different fair share rates. The most congested node in
the larger cluster is 17; the smaller cluster is not constrained by this
node. This experiment further illustrates IFRC’s efficiency. Nodes
4, 5 and 6 receive a little less than twice the fair share rate because,
in this topology, these nodes are not the potential interferers of node
17.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45

T
h
r
o
u
g
h
p
u
t

(
p
k
t
s
/
s
e
c
)

Node Id

Figure 15: Per flow goodput with multiple sinks

Validating Design Choices and Parameter Settings: In Section 3,
we discussed why link-layer retransmissions are essential for IFRC.
In all of our experiments, we have found that the five retransmission
limit we use is sufficient to ensure fairness. (We emphasize that our
topology encounters fairly high loss rates, with some links experi-
encing upwards of 30% loss rates.) Figure 16 shows the effect of
turning off link-layer retransmissions. In this figure, notice that the
rate allocation is fair, but the goodput that each node gets is not (as

shown by the lighter section of each bar). This, as we have dis-
cussed in Section 4.3, is because nodes receive no feedback about
the goodput they receive.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40 45

T
h
r
o
u
g
h
p
u
t

(
p
k
t
s
/
s
e
c
)

Node Id

Figure 16: Per flow goodput with no link-layer retransmissions

Finally, we conducted two experiments to validate the analysis
of Section 5. Table 2 summarizes our findings. Our first experi-
ment involved running IFRC on two nodes. For this experiment,
we chose a nominal value of U0 = 10 and U1 = 20, which gives
a value of wq < 0.32. We conservatively set wq to be 0.3. With
these values, the first inequality determines ε , giving an ε < 0.0125.
We then increased ε slowly, until the system became unstable—the
queue didn’t drain completely after one multiplicative decrease and
the subsequent additive increase, triggering another multiplicative
decrease. This happened at ε = 0.0167. For this experiment, the ε
value predicted by our analysis is conservative (in that the predicted
value results in stability), but tight.

Experiment Predicted ε Smallest unstable ε
2 nodes 0.0125 0.0167
30 nodes 0.147 0.2

Table 2: Validating the analysis of Section 5

For a larger, 30-node network, we conducted a similar experi-
ment, but with a small difference. In a large network, as we have
discussed before, it is difficult to estimate Fj or s j, so a reasonable
rule of thumb for the former is n logn and for the latter is a small
number (we chose 3, which is the about the average network ra-
dius). Following Section 5, we set U0 = 15 and U1 = 30, giving
an ε < 0.147. For this large network, we ran IFRC using ε val-
ues of 0.05, 0.1, and 0.2. Instability occurred at 0.2. Thus, for
this larger network, choosing ε using our analysis and our rules of
thumb resulted in a conservative, but stable choice.

While these experiments are not conclusive, they are highly en-
couraging in that they both validate the analysis, and our rules of
thumb for picking IFRC parameters for a given network.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have described the design and implementation

of IFRC, the first practical interference-aware rate control mecha-
nism for wireless sensor networks. IFRC incorporates a novel low-
overhead congestion sharing mechanism that leverages the preva-
lent tree-based communication pattern in wireless sensor networks.
IFRC is fair and efficient in realistic wireless environments with
packet loss rate over 30%, and its queue management strategy com-
pletely prevents packet drops due to queue overflow (at least in the
experiments we have conducted).

Our design of IFRC points to some directions for future work:
the integration of an end-to-end reliability mechanism with IFRC,
a more complete validation of our analysis of IFRC parameters,
and a complete analysis of the impact of other parameters on IFRC
performance.

References
[1] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated Congestion Manage-

ment Architecture for Internet Hosts. In SIGCOMM ’99.
[2] P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R. E. Hudson, K. Yao,

and D. Estrin. Collaborative Sensor Networking Towards Real-Time Acoustical
Beamforming in Free-Space and Limited Reverberance. In IEEE Trans. Mob.
Comput., 3(3):211–224, 2004.

[3] V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang. MACAW: A Media
Access Protocol for Wireless LAN’s. In SIGCOMM ’94.

[4] Cheng Tien Ee and Ruzena Bajcsy. Congestion Control and Fairness for Many-
to-One Routing in Sensor Networks. In SenSys ’04.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In SIGCOMM ’95.

[6] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1(4), 1993.

[7] R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chintalapudi, O. Gnawali,
S. Rangwala, R. Gummadi, and T. Stathopoulos. Tenet: An Architecture for
Tiered Embedded Networks. CENS Technical Report 56, 2005.

[8] B. Greenstein, A. Pesterev, C. Mar, E. Kohler, J. Judy, S. Farschi, and D. Es-
trin. Collecting High-Rate Data Over low-rate Sensor Network Radios. CENS
Technical Report 55, 2005.

[9] G. Holland and N. Vaidya. Impact of Routing and Link Layers on TCP Perfor-
mance in Mobile Ad-Hoc Networks. In IEEE WCNC ’99.

[10] J. W. Hui and D. Culler. The Dynamic Behavior of a Data Dissemination Pro-
tocol for Network Programming at Scale. In SenSys ’04.

[11] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating Congestion in Wireless
Sensor Networks. In SenSys ’04.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. In MobiCom ’00.

[13] V. Jacobson. Congestion Avoidance and Control. ACM CCR, 18(4), 1988.
[14] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of Interference on

Multi-Hop Wireless Network Performance. In MobiCom ’03.
[15] J. Li, C. Blake, and Douglas S. J. De Couto and Hu Imm Lee and Robert Morris.

Capacity of Ad-Hoc Wireless Networks. In Mobicom ’01.
[16] D. Kim, C.-K. Toh, and Y. Choi. TCP-BuS: Improving TCP Performance in

Wireless Ad-Hoc Networks. In ICC ’00.
[17] V. Kottapalli, A. Kiremidjian, J. P. Lynch, E. Carryer, T. Kenny, K. Law, and

Y. Lei. A Two-Tier Wireless Sensor Network Architecture for Structural Health
Monitoring. In Proc. of SPIE’s 2003.

[18] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. In SIGCOMM ’01.

[19] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-Regulating Algo-
rithm for Code Propagation and Maintenance in Wireless Sensor Networks In
NSDI ’04.

[20] P. E. McKenney. Stochastic Fairness Queuing. In INFOCOMM ’90.
[21] K. Mechitov, W. Y. Kim, G. Agha, and T. Nagayama. High-Frequency Dis-

tributed Sensing for Structure Monitoring. In INSS ’04.
[22] J. Paek, K. Chintalapudi, J. Cafferey, R. Govindan, and S. Masri. A Wireless

Sensor Network for Structural Health Monitoring: Performance and experi-
ence. In EmNetS ’05.

[23] M. Rahimi, R. Baer, J. Warrior, D. Estrin, and M. B. Srivastava. Cyclops: In-
situ Image Sensing and Interpretation in Wireless Sensor Networks. In SenSys
’05.

[24] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT: Event-to-Sink Reli-
able Transport in Wireless Sensor Networks. In MobiHoc ’03

[25] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan. WTCP: A Reli-
able Transport Protocol for Wireless Wide-Area Networks. In Mobicom ’99.

[26] A. Sridharan and B. Krishnamachari. Max-Min Fair Collision-Free Scheduling
for Wireless Sensor Networks. In Workshop on Multihop Wireless Networks
(MWN’04), IPCCC.

[27] F. Stann and J. Heidemann. Rmst: Reliable Data Transport in Sensor Networks.
In SNPA ’03.

[28] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An Analysis of a
Large Scale Habitat Monitoring. In SenSys ’04.

[29] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A Reliable Transport
Protocol For Wireless Sensor Networks. In WSNA ’02.

[30] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA: Congestion Detection
and Avoidance in Sensor Networks. In SenSys ’03.

[31] A. Woo and D. Culler. A Transmission Control Scheme for Media Access In
Sensor Networks. In Mobicom ’01.

[32] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In SenSys ’03.

[33] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP Fairness in Ad-Hoc Wire-
less Networks Using Neighborhood RED. In MobiCom ’03.

[34] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks, In Infocom ’02.

[35] H. Zhang, A. Arora, Y. ri Choi, and M. G. Gouda. Reliable Bursty Convergecast
in Wireless Sensor Networks. In MobiHoc ’05.

	1 Introduction
	2 Related Work
	3 Motivation and Definitions
	3.1 Fair and Efficient Rate Allocation

	4 IFRC Design
	4.1 IFRC Mechanisms
	4.1.1 Measuring Congestion Levels
	4.1.2 Congestion Sharing
	4.1.3 Rate Adaptation
	4.1.4 Base Station Behavior

	4.2 Extensions to IFRC
	4.3 Discussion

	5 Parameter Selection in IFRC
	6 Evaluation
	6.1 Implementation and Methodology
	6.2 Results

	7 Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

