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The evolution of efficient compression in signaling games
Nathaniel Imel (nimel@uci.edu)

Department of Logic and Philosophy of Science
University of California, Irvine

Abstract

Converging evidence suggests that natural language meaning
systems are efficient by jointly maximizing cognitive simplic-
ity and communicative informativeness. Comparatively less is
known about how languages might optimize over time for com-
municative efficiency. Our goal in this paper is to use minimal
dynamicmodels to give a high-level description of the evolution
of efficient meaning systems. To do this, we provide a model of
emergent communication combining evolutionary game the-
ory with a recent information theoretic account of efficiency
in semantic systems. We perform simulations of adaptive dy-
namics requiring minimal assumptions about agents’ cognitive
resources, and observe that emergent languages converge near
the achievable bounds of efficient compression. This unifies
existing accounts of communicative efficiency with minimalist
accounts of how meaning can emerge ex nihilo.
Keywords: simplicity/informativeness trade-off; information
theory; language evolution; signaling games

Human languages use words to categorize the environment.
Converging evidence suggests that our semantic category sys-
tems do this efficiently bymaximizing simplicity and informa-
tiveness (Kemp & Regier, 2012; Kemp et al., 2018; Levinson,
2012). An important open question concerns how this op-
timization happens over time: how languages optimize for
efficiency. Cognitive scientists have attended to this question
using a variety of modeling frameworks, including cultural
evolution (Carr et al., 2020; Carstensen et al., 2014; Kirby
et al., 2015), semantic chaining (Xu et al., 2016), machine
learning (Carlsson et al., 2021; Chaabouni et al., 2021; Kåge-
bäck et al., 2020), and annealing processes (Zaslavsky et al.,
2019; Zaslavsky et al., 2018). This paper aims to extend
this progress using a simple but focused analysis. We ask:
what is the relationship between communicative efficiency of
semantic systems and their evolution in signaling games?

To answer this question, we model communication in sig-
naling games andmeasure the information-theoretic efficiency
of agents’ semantic systems. Signaling games are evolution-
ary game-theoretic models widely applied across economics,
biology, philosophy and linguistics (S. Huttegger et al., 2014;
Nowak & Krakauer, 1999; Skyrms, 2010). In such games,
a Sender and a Receiver coordinate via signals in order to
maximize a joint payoff. Researchers often take the changes
in players’ strategies over repeated plays of the game to model
of the emergence of communication. We focus on sim-max
games, in which payoffs reflect the similarity of Sender’s in-
tended meaning to Receiver’s reconstruction of that meaning

(Franke & Correia, 2018; Jäger, 2007; Jäger & van Rooij,
2007; Komarova et al., 2007; O’Connor, 2014).

To explore the evolution of efficiency, we perform numer-
ical simulations analyzing the optimality of communication
systems resulting from two simple mechanisms for evolution
in repeated games: Roth-Erev reinforcement learning and a
discrete-time replicator dynamic (Erev & Roth, 1998; Hof-
bauer & Sigmund, 1998). To quantify communicative effi-
ciency, we draw on a recent information-theoretic framework
predicting efficient compression in natural language seman-
tic systems (Zaslavsky, 2020; Zaslavsky et al., 2018). We
measure the optimality of emergent communication systems
in terms of their closeness to the Rate-Distortion curve.

We catalogue two empirical results.1 First, signaling agents
typically converge to languages that are near-optimal com-
pression systems. This echoes recent results from emergent
communication (Chaabouni et al., 2021; Tucker et al., 2022a,
2022b) that deep reinforcement learning in multi-agent ref-
erence games can lead to semantic systems that achieve ef-
ficient compression. Second, the degree to which percep-
tual distinctions are rewarded in the game typically constrains
where, along the Rate-Distortion curve, languages will con-
verge. This mirrors the findings of Chaabouni et al. (2021),
lending further support to the idea that diverse solutions to the
simplicity/informativeness trade-off may be accounted for in
terms of diverse environmental need to discriminate stimuli.
Our results are novel in indicating that some meaning systems
that achieve efficient compression are also those yielded by
well-studied evolutionary dynamics.

The Simplicity/Informativeness Trade-Off
Researchers have argued that meanings expressed in lexicons
across the world are optimized for efficient communication.
This idea can be summarized roughly as follows: a language
can be simple (by e.g. containing a single expression) and a
language can be informative (by e.g. having unique expres-
sions for every posible thought). A language cannot, however,
be both simple and informative: these two pressures trade off
against each other. A hypothesis in linguistics is that the
natural languages are near solutions to this multi-objective
optimization problem, and that these efficiency pressures ex-
plain constraints on crosslinguistic semantic variation (Kemp

1Code for reproduction is available at https://github.com/
nathimel/rdsg.
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& Regier, 2012; Kemp et al., 2018; Levinson, 2012). This
efficient communication hypothesis has been successfully ap-
plied across semantic domains, including kinship terms, color
terms, number terms, container terms, quantifiers, tense and
evidentiality, boolean connectives, person systems, indefinite
pronouns and modals (Denić et al., 2022; Imel & Steinert-
Threlkeld, 2022; Kemp & Regier, 2012; Mollica et al., 2021;
Regier et al., 2015; Uegaki, 2021; Xu & Regier, 2014; Xu
et al., 2016; Zaslavsky et al., 2018; Zaslavsky et al., 2021).

Here, we look towards a dynamic account of how meaning
systems come to optimally balance simplicity and informa-
tiveness. We ask: what are some minimal conditions under
which we can expect efficient meaning systems to emerge?
Evolutionary game theory offers a framework for sketching
an answer to this question. This paper investigates whether
efficient compression is the typical result of evolution in a
simple and well-studied model of meaning emergence.

Signaling Games
We model communication using signaling games (Lewis,
1969; Skyrms, 2010). In the games we consider, agents co-
ordinate on signals to communicate about objects in a richly
structured meaning space wherein atomic states bear similar-
ity relations to one other via perceptual distance. A single
round of the game models one communicative interaction as
follows. Nature selects a state of the world to present to
Sender. Sender observes this state and chooses a signal to
send to Receiver, who cannot observe the state. Receiver then
chooses an action to perform. Nature then awards payoff to
both players if the action was appropriate. We can describe
this game formally. Let X ,Y be two finite sets, ∆(X ) denote
the set of probability distributions over X and ∆(X )Y denote
the set of conditional distributions of random variableX ∈ X
given random variable Y ∈ Y .
Definition. A signaling game is a tuple 〈S,W, Ŝ, σ, ρ, u, P 〉
of states S, signalsW , actions Ŝ, a Sender σ(w|s) ∈ ∆(W)S ,
a Receiver ρ(m̂|w) ∈ ∆(Ŝ)W , a utility function u : S ×Ŝ →
R, and a distribution over states P (s) ∈ ∆(S). Their joint
payoff is given by:

π(σ, ρ) =
∑
s

P (s)
∑
w

σ(w|s)
∑
ŝ

ρ(ŝ|w) · u(s, ŝ) (1)

= E[u(S, Ŝ)], (2)

Tomodel a lexicon, we let Ŝ = S and talk only of states, which
represent meanings. The payoff for Sender and Receiver can
be thought of as an expected utility of a language for com-
munication; rational communicative behavior is achieved if
their signals maximize E[u(S, Ŝ)]. Canonically, both players
receive a payoff only if the action corresponds to the state.
Payoff in this game rewards only perfect informativeness.

A similarity-maximizing game
The similarity-maximizing (sim-max) game weakens this lat-
ter assumption by endowing the meaning space with struc-
ture such that some meanings are closer ‘guesses’ than others

(Jäger, 2007). That is, if the utility function u is classically de-
fined to be the indicator function, in the sim-max game we let
u depend on the perceptual similarity of states, u ∝ sim(s, ŝ).
Perceptual similarity calls for several modeling considera-
tions. First, it should be defined over a set of objects standing
in distance relations to each other. Second, less distance be-
tween states should correspond to higher similarity between
them. Lastly, how quickly similarity decreases should depend
on discriminative need —a pragmatic or environmental need
to finely discriminate objects. Our particular formalizations
are driven largely by a desire to make the minimal adjustments
necessary to the simple Lewis-Skyrms model; scaling up to
realistic settings, one would let the meaning space, models of
agent perception, behavior, etc., be validated experimentally.

Meaning space We define the state space to be a set of inte-
gers, to model a situation in which states of the environment
stand in minimally interesting physical distance relations.

S = Ŝ = {1, 2, . . . , n} (3)

Similarity function For the model of perceptual similar-
ity, we follow Franke and Correia (2018) in using an inde-
pendently motivated model from mathematical psychology
(Nosofsky, 1986; Shepard, 1957). It is given by

simα(x, y) = exp

(
−(x− y)2

α2

)
, (4)

where sim0(x, y) is the indicator function if α = 0. Here α
is an imprecision parameter. Total imprecision is reached as
α → ∞, i.e. when all states are always rewarded; perfect
discrimination between states is enforced when α = 0, i.e. a
classic Lewis-Skyrms game obtains. Note that the distance
measure is squared difference between integers.

Semantic systems We measure the semantic system as a
conditional distribution over Receiver interpreted meanings
given Sender intended meanings:

p(ŝ|s) =
∑
w

σ(w|s)ρ(ŝ|w), (5)

where p(ŝ|s) is the expected value of Receiver choosingmean-
ing ŝ given that Sender intended s, using their respective
strategies for sending and receiving the available signalsW .
Different distributions parameterized by Sender and Receiver
behavior determine better or worse communicative success
rates; we refer to these distributions interchangeably as com-
munication/semantic systems and (generously) languages.

Rate-Distortion Theory
To evaluate whether languages in a sim-max game optimize
the simplicity/informativeness trade-off, we apply the model-
ing framework introduced by Zaslavsky et al. (2018) to mea-
sure efficiency in terms of Rate-Distortion Theory (RDT), the
branch of information theory concerned with optimizing lossy
data compression (Berger, 1971; Cover & Thomas, 2006;
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Shannon, 1959). In information-theoretic terms, languages
minimize both rate (the resources necessary to compress a
thought into a word, quantified in bits) and distortion (the er-
ror a listener makes in reconstructing a speaker’s intention).
We recapitulate a setting in which Sender meanings S are
compressed into Receiver meanings Ŝ, referring readers to
Zaslavsky et al. (2018, SI, section 1.3) and Zaslavsky (2020)
for the original motivation and formulation of this view of
RDT and its formal connection to the Information Bottleneck
framework (Harremoes & Tishby, 2007) as applied to study-
ing semantic systems.2

Complexity The simplicity of a language is defined terms
of its inverse, complexity. Formally, the complexity of the
semantic system is given by the information rate:

I(S; Ŝ) =
∑
s

p(s)
∑
ŝ

p(ŝ|s) log
p(ŝ|s)
p(ŝ)

, (6)

where p(s) is a prior over Sender states3, p(ŝ|s) is computed
using Equation 5. The mutual information I(S; Ŝ) quantifies
the number of bits required, on average, to represent states of
the environment S as Ŝ. Minimal complexity at I(S; Ŝ) =
0 is achieved when the players use one signal to represent
every state of the environment. It can also be achieved when
the players choose, for every state, each signal with equal
probability. These latter strategies do not give anything useful
toReceiver. To support successful communication, a language
must allow some complexity, i.e. I(S; Ŝ) > 0. Additional
bits of complexity, however, require greater computational
resources for speakers and listeners.

Communicative cost Informativeness is also defined in
terms of its inverse, communicative cost, which we quantify
by the expected distortion between Sender and Receiver:

E[d(S, Ŝ)] =
∑
s

p(s)
∑
ŝ

p(ŝ|s) · d(s, ŝ). (7)

RDT can consider an arbitrary measure of distortion. Given
that similarity of states in the game depends on their squared
distance, we use d(s, ŝ) = (s− ŝ)2.

Bounds on efficiency In between the extremes of zero com-
plexity and perfect accuracy, RDT predicts a continuum of
functions p(ŝ|s) that achieve the minimum distortion for a
given complexity bound. These determine communicative
strategies that optimally balance simplicity and informative-
ness. These functions are found byminimizing theLagrangian

2Future work will explore the robustness of our results measuring
the trade-off in terms of the Information Bottleneck framework. This
setting allows one to model perceptual uncertainty for Sender and
Receiver, in addition to explicitly including the bottleneck variable
W (signals) in the theoretical bound on efficiency. Meanwhile, see
Tucker et al. (2022b, Appendix A) for the relation in RDT between
KL-divergence and squared error.

3We report results for a uniform prior (communicative need dis-
tribution). We expect our results to be robust to some, but not
all, possible need distributions. For discussion, see Komarova et
al. (2007) in a related setting, and Barrett (2006), S. M. Huttegger
(2007), and Skyrms (2010) in signaling games more generally.

Fβ [p(ŝ|s)] = I(S; Ŝ) + βE[d(S, Ŝ)], (8)

where β specifies the trade-off between complexity and com-
municative cost.4 Equation 8 can be solved numerically by the
Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972). It
is an alternating minimization procedure that iterates the fol-
lowing equations until convergence:

p(ŝ) =
∑
s

p(s)p(ŝ|s), (9)

p(ŝ|s) =
p(ŝ) exp(−β · d(s, ŝ))∑
ŝ p(ŝ) exp(−β · d(s, ŝ))

. (10)

The set of solutions to this problem define the Rate-Distortion
curve, which in our setting represents the set of languages that
perfectly optimize the simplicity/informativeness trade-off.

Predictions
If evolution leads to efficient semantic systems, thenwe should
expect players’ languages to converge to points close to the
Rate Distortion curve. To model evolution, we perform two
computational experiments: one involving Roth-Erev rein-
forcement learning, and another involving a discrete-time ver-
sion of the standard replicator dynamic. There are a few
reasons to use these dynamics, which we discuss in turn.

First, researchers have discovered that reinforcement learn-
ing and replicator dynamics operate across a variety of bi-
ological contexts (Glimcher, 2011; Schuster & Sigmund,
1983). Second, there are conditions under which both dy-
namics converge to Nash equilibria of Lewis-Skyrms games
(Beggs, 2005; S. Huttegger et al., 2014); we intend our simu-
lations to give intutions about potential relationships between
equilibrium concepts in sim-max games and information the-
ory. Analytical results about the connection between these
two dynamics are limited; so as a robustness check in the
present investigation, we apply both. Third, their simplicity
lends generality. The dynamics we consider require relatively
little cognitive sophistication, suggesting our model may cap-
ture features of efficient signaling in nature more generally.
Lastly, although Roth-Erev learning and replicator dynam-
ics have been deployed extensively to model the emergence
of perfect coordination (Nowak & Krakauer, 1999; Skyrms,
2010; Spike et al., 2017) and vague meanings (Franke & Cor-
reia, 2018; O’Connor, 2014), to our knowledge they have
not been proposed as models of the evolution of information
theoretically efficient meaning systems.

Experiments
Roth-Erev reinforcement learning
Onemodel for the evolution of meaning conventions in signal-
ing games deploys a highly rudimentary form of reinforcement
learning described by Erev and Roth (1998). This model is

4For precise definitions of Rate-Distortion functions and their
optimization, see (Berger, 1971; Cover & Thomas, 2006).
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popular in part because it requires minimal assumptions about
the rationality of agents, and because it has been tractable
enough for proving analytic results regarding convergence
(Argiento et al., 2009; Skyrms, 2010). 5

The Roth-Erev model of reinforcement learning specifies
an update rule, which determines how agents’ propensities
towards pure strategies evolve over repeated plays of a game,
and a choice rule, which determines the strategy that is played
in a particular context. Let qx,y(t) denote an agent’s propen-
sity to choose strategy x in context y at time t, and r be the
agent’s reinforcement reward. The agent’s propensity to play
strategy x at the next time step is updated:

qx,y(t+ 1) = qx,y(t) + r (11)

The choice rule (Luce, 1959) specifies the probability that an
agent plays strategy x in context y, which is given by:

px,y(t) =
qx,y(t)∑
qx,y(t)

(12)

This model thus assumes that propensity weights and rein-
forcements are always positive. The reinforcement for Sender
and Receiver when s is interpreted as ŝ is defined:

r(s, ŝ) = u(s, ŝ) · η, (13)

where η > 0 is a positive constant acting as a learning rate.6
This means that if w was the signal used during round t,
the update to Sender’s propensity qs,w(t) equals the update
to Receiver’s propensity qw,ŝ(t), which depends only on the
similarity of s to ŝ. Only the strategies that were actually cho-
sen by players are reinforced at each time step. A rudimentary
form of reinforcement learning is modeled in the sense that
successful actions become more likely over time.

To ensure that perfect accuracy is possible we report results
for games with equal number of states and signals |S| =
|W | = n. Since perfect communicative success becomes
rare in large games, we set n = 10 (Barrett, 2006; S. M.
Huttegger, 2007; Pawlowitsch, 2008).7 We simulate multiple
runs of Roth-Erev reinforcement learning for 106 rounds.

Discrete-time replicator dynamic
The standard replicator dynamic describes change in mean
behavior in a population of game players. We imagine two
distinct and virtually infinite populations of Senders and Re-
ceivers and model their evolution; the players are modeled

5For discussion of the relationships between the many proposed
learning mechanisms underlying emergent signaling, see Spike et al.
(2017).

6The current results are for η = 0.05. The general trends pre-
sented here are relatively robust for small learning rates, e.g. those
within [0.05, 1.0]. Note that the similarity function already has range
[0, 1]. In the replicator dynamic, this scaling has no effect because
frequencies are renormalized at each update.

7This limits the applicability of Roth-Erev learning to explana-
tions of perfectly informative, large lexicons. Future work is needed
to determine whether either the dynamics considered here can pre-
dict the emergence of Rate-Distortion optimal lexicons for larger
meaning spaces.

as instantiating pure strategies, and behavioral strategies cap-
ture average population behavior. We follow Jäger (2007)
and Franke and Correia (2018) in adopting a discrete-time
version, which imagines that update steps are infinitesimally
small. Formally, the updates to the behavioral strategies of a
randomly sampled sender σ and a randomly sampled receiver
ρ are given by:8

σ′(w|s) = σ(w|s) ·
∑
ŝ

ρ(ŝ|w) · u(s, ŝ) (14)

ρ′(ŝ|w) = ρ(ŝ|w) ·
∑
s

P (s) · σ(s|w) · u(s, ŝ) (15)

In Equation 14, σ(w|s) is the probability the average sender
chooses w to communicate s. This represents the frequency
of the corresponding type of pure strategy in the Sender pop-
ulation. Likewise, ρ(ŝ|w) is the frequency of a strategy in the
Receiver population. The frequency of an strategy evolves
according to its current frequency and its fitness (i.e., the ex-
pected utility relative to the other population). Intuitively, this
describes a situation of idealized Darwinian natural selection
wherein ‘like begets like’. Imitation and reproduction are two
possible mechanisms that could implement this dynamic in
theory. As in reinforcement learning, evolution is driven by
the fact that successful strategies become more frequent. For
comparability, we consider games with |S| = |W | = 10. We
simulate the replicator dynamic for up to 200 time steps.

Results
Wemeasure the efficiency of the emergent languages resulting
from the two evolutionary dynamics in terms of distance to
the Rate-Distortion curve. We report results for six different
values of imprecision: α ∈ {0, 1, 2, 4, 8, 16} across 100 runs,
varying random initialization of agents’ strategies. In addi-
tion, to test whether convergence to a Rate-Distortion optimal
system is trivial, i.e. whether an uninteresting random pro-
cess could yield the diverse range of optimal solutions to the
trade-off problem, we compare the evolved languages to many
mathematically possible ‘hypothetical’ languages. We follow
Zaslavsky et al. (2021) in generating hypothetical variants by
randomly permuting the signals that a semantic system as-
signs to states. For each emergent system, we generate 100
such variants, resulting in a total 6000 hypothetical systems
for each experiment.

Figure 1 displays the main results. Visual inspection sug-
gests that both simple reinforcement learning agents and popu-
lations evolving according to the replicator dynamic do indeed
approach the Rate-Distortion curve. Moreover, discriminative
need in a game constrains the location of its emergent sys-
tems. The plots of evolutionary and learning trajectories in
Figures 1C and 1D show that meaning systems in the sim-max
game do traverse sub-optimal regions of the space before con-

8We refer readers to Franke and Correia (2018) for an explicit
derivation of this formulation from the standard replicator equation.
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Figure 1: The evolution of information-theoretically efficient semantic systems in sim-max games with ten states and signals.
The x-axis is complexity, given by the information rate I(S; Ŝ) in bits. The y-axis is communicative cost, i.e. the expected
squared difference between Sender and Receiver meanings (Equation 7). Black line: the Rate-Distortion curve, which is the
set of optimal solutions to the Rate-Distortion objective of efficient compression. Triangles: the emergent semantic systems.
Circles (gray): random variants of the emergent semantic systems, generated for comparison. Color: imprecision parameter
α for the sim-max game that controls the utility of discriminating states. A: Systems (100 trials) evolved under the replicator
dynamic. B: Systems (100 trials) learned by Roth-Erev agents. C: The mean evolutionary trajectories of systems during the
replicator dynamic. D:Mean trajectories of systems during learning.
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Figure 2: Distribution of semantic systems’ efficiency across
discriminative need. Orange: Roth-Erev learned systems.
Green: systems evolved under the replicator dynamic. Blue:
random variants of the emergent systems.

verging. Under this RDT-based analysis of sim-max games,
inefficiency is achievable but often unstable in evolution.

However, efficiency is not always an expected result of ei-
ther dynamics. Higher complexity systems are often far from
the curve, and the replicator dynamic can yield very ineffi-
cient low-complexity systems. In the latter, large variation in
resulting systems, depending on initial conditions, skews the
mean trajectories. The high-complexity, inefficient systems
may contain some of the well known ‘partial pooling’ equilib-
ria of classic Lewis-Skyrms.9 On the other hand, moderately
high discriminative need typically results in near-optimality
for both dynamics. Emergent systems also display a striking
tendency to minimize complexity. Notably, Chaabouni et al.
(2021) report that quantization from continous meanings to
discrete symbols is sufficient for complexity minimization.
This explanation alone is not sufficient our setting, since both
our meanings and signals are discrete; we leave a full expla-
nation of this effect to future work.

A quantitative comparison between the efficiency of lan-
guages emerging from Roth-Erev learning and the replicator
dynamic vs. the set of pooled hypothetical variants is de-
picted in Figure 2. The efficiency of a language is measured
by the normalized minimum Euclidean distance to its closest
point on the Rate-Distortion curve. This plot shows that pres-
sures for utility/fitness in a simple model of communication
are sufficient for the evolution information-theoretically effi-
cient meaning systems, and that (with the exception of high
imprecision settings) merely random processes do not usually
deliver efficiency.

9There are analytic results about the convergence to these non-
strict Nash equilibria under Roth-Erev learning (Hu et al., 2011) and
replicator dynamics (S. M. Huttegger, 2007; Pawlowitsch, 2008).

Summary
In simulations, signaling agents in sim-max games converge to
communicative behavior that is near-optimal from the stand-
point of Rate-Distortion Theory. Additionally, the degree to
which perceptual distinctions are rewarded in the game typ-
ically constrains where, along the RD curve, languages con-
verge. This suggests that when there is joint environmental
pressure to discriminate stimuli and to coordinate on signals,
even rudimentary adaptive dynamics can carry semantic sys-
tems to information-theoretic efficiency.

Related work
We aim to contribute to the existing literature characteriz-
ing the evolution of communicative efficiency. This in-
cludes dynamic computational and evolutionary models of
perceptually-based color categorization (Komarova et al.,
2007; Steels & Belpaeme, 2005; Zuidema & Westermann,
2003), iterated learning models invoked to explain the emer-
gence of simple and informative lexicons (Carr et al., 2020;
Carstensen et al., 2014; Kirby et al., 2015), and the emergence
of human-like semantic systems achieving efficient compres-
sion from reference games in deep reinforcement learning
settings (Carlsson et al., 2021; Chaabouni et al., 2021; Tucker
et al., 2022a, 2022b). In addition, our current work is con-
tinuous with research that explores how convex meanings and
vague terms can evolve in sim-max games (Correia & Franke,
2019; Franke & Correia, 2018; Jäger, 2007; Jäger & van
Rooij, 2007; O’Connor, 2014).

Our model is distinct in connecting (i) views in which nat-
ural language lexicons result from optimally balancing cog-
nitive complexity and communicative accuracy to (ii) evolu-
tionary game theoretic approaches describing how meaning
systems can emerge naturally from minimally sophisticated
agents. To our knowledge, this paper is the first to unify these
two adjacent literatures.

Importantly, we do not intend to provide a dynamic frame-
work that scales to complex, naturalistic settings, or an empir-
ical account of human category learning or cultural evolution.
Instead, we believe our goals align with those of other re-
searchers in the evolution of language, especially Komarova
et al. (2007), who intend to “demonstrate what can be achieved
using only the most rudimentary forms of [category] observa-
tion and communication together with an elementary evolu-
tionary dynamics." Additionally, we hope to provide intuitions
for potential mathematical connections between evolutionary
game theory and information theory. We look forward to ex-
tending the current results in these directions in future work.
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