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EPIGRAPH

O you who believe! Stand out firmly for Allah and be just witnesses and let not

the enmity and hatred of others make you avoid justice. Be just: that is nearer to

piety, and fear Allah. Verily, Allah is Well-Acquainted with what you do.

— Al-Quran, Surat Al-Mā’idah verse 8

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Organization of the dissertation . . . . . . . . . . . . . . 7

Chapter 2 Parallelization Wall . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Parallelization Wall . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Abundance of serial code . . . . . . . . . . . . . . 10
2.1.2 Parallelization complexity . . . . . . . . . . . . . 11
2.1.3 Resource constraints . . . . . . . . . . . . . . . . 12

2.2 Handling the parallelization wall . . . . . . . . . . . . . . 13

Chapter 3 Software Data Spreading: Leveraging Distributed Caches for
Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Software data spreading . . . . . . . . . . . . . . . . . . 16

3.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Implementing data spreading . . . . . . . . . . . . 19
3.1.3 The cost of data spreading . . . . . . . . . . . . . 20
3.1.4 Which cores to use . . . . . . . . . . . . . . . . . 22

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Data Spreading in the Compiler . . . . . . . . . . . . . . 25

3.3.1 Profile collection and program structure analysis . 25
3.3.2 Baseline spreading algorithm . . . . . . . . . . . . 27
3.3.3 Candidate loop selection . . . . . . . . . . . . . . 28
3.3.4 Loop spreading policies . . . . . . . . . . . . . . . 31

3.4 Understanding Data Spreading . . . . . . . . . . . . . . . 31

vi



3.4.1 Diverse memory hierarchies . . . . . . . . . . . . 32
3.4.2 Microbenchmarks . . . . . . . . . . . . . . . . . . 32
3.4.3 Applications . . . . . . . . . . . . . . . . . . . . . 34
3.4.4 Power . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.5 Migration overhead . . . . . . . . . . . . . . . . . 37
3.4.6 Data spreading in CMPs . . . . . . . . . . . . . . 39

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4 Inter-core Prefetching: Exploiting Migrating Helper Threads . 43
4.1 Inter-core Prefetching . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Identifying chunks . . . . . . . . . . . . . . . . . . 46
4.1.2 Distilling code . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Thread coordination . . . . . . . . . . . . . . . . 48
4.1.4 Impact of cache coherence . . . . . . . . . . . . . 51

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Processors . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Applications . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Microbenchmarks . . . . . . . . . . . . . . . . . . 54
4.3.2 Application Performance . . . . . . . . . . . . . . 61
4.3.3 Energy Considerations . . . . . . . . . . . . . . . 64
4.3.4 Comparison with SMT Prefetching . . . . . . . . 65
4.3.5 Comparison to data spreading . . . . . . . . . . . 67

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Coalition Threading: Adapting Non-Traditional Parallelism
for Parallel Applications . . . . . . . . . . . . . . . . . . . . . 70
5.1 Coalition Threading . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 ICP based coalition threading . . . . . . . . . . . 72
5.1.2 Our coalition threading framework . . . . . . . . 74

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Evaluation Systems . . . . . . . . . . . . . . . . . 75
5.2.2 Applications . . . . . . . . . . . . . . . . . . . . . 76

5.3 Effectiveness of the Different Parallelization Techniques . 77
5.3.1 Benefits of coalition threading . . . . . . . . . . . 77
5.3.2 Understanding loop behavior . . . . . . . . . . . . 79

5.4 Heuristics to apply coalition threading . . . . . . . . . . 82
5.4.1 Linear Classification . . . . . . . . . . . . . . . . 83
5.4.2 Application Level Impact . . . . . . . . . . . . . . 88

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



Chapter 6 Underclocked Software Prefetching . . . . . . . . . . . . . . . 92
6.1 ICP with Frequency Scaling . . . . . . . . . . . . . . . . 94

6.1.1 Processor power management . . . . . . . . . . . 94
6.1.2 Impact of frequency scaling . . . . . . . . . . . . 95
6.1.3 ICP and frequency scaling . . . . . . . . . . . . . 97

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.1 Evaluation Systems . . . . . . . . . . . . . . . . . 99
6.2.2 Application kernels . . . . . . . . . . . . . . . . . 99

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1 Power consumption for different P-states . . . . . 100
6.3.2 ICP without frequency heterogeneity . . . . . . . 101
6.3.3 Performance of ICP-dynamic and ICP-static . . . 102
6.3.4 Sensitivity to P-state change latency . . . . . . . 103

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 7 Load-Balanced Pipeline Parallelism . . . . . . . . . . . . . . . 108
7.1 Load-balanced Pipeline Parallelism . . . . . . . . . . . . 110

7.1.1 Pipeline parallelism . . . . . . . . . . . . . . . . . 110
7.1.2 Load-balanced pipeline parallelism . . . . . . . . 112

7.2 LBPP Implementation . . . . . . . . . . . . . . . . . . . 119
7.2.1 DAG construction . . . . . . . . . . . . . . . . . . 120
7.2.2 Pipeline design . . . . . . . . . . . . . . . . . . . 121
7.2.3 Chunking . . . . . . . . . . . . . . . . . . . . . . 122
7.2.4 Adding synchronization . . . . . . . . . . . . . . . 124

7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.1 CPU Systems . . . . . . . . . . . . . . . . . . . . 125
7.3.2 Applications . . . . . . . . . . . . . . . . . . . . . 125

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.1 Microbenchmarks . . . . . . . . . . . . . . . . . . 127
7.4.2 Impact of chunk size . . . . . . . . . . . . . . . . 132
7.4.3 Application Performance . . . . . . . . . . . . . . 134
7.4.4 Energy Considerations . . . . . . . . . . . . . . . 137

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Chapter 8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1 Improving single thread execution . . . . . . . . . . . . . 139

8.1.1 Resource aggregation . . . . . . . . . . . . . . . . 140
8.1.2 Helper thread prefetching . . . . . . . . . . . . . 141
8.1.3 Runahead execution . . . . . . . . . . . . . . . . 145
8.1.4 Decoupled architecture . . . . . . . . . . . . . . . 145
8.1.5 Speculative multithreading . . . . . . . . . . . . . 146
8.1.6 Decoupled software pipelining . . . . . . . . . . . 146
8.1.7 Others . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



8.2 Improving parallel execution . . . . . . . . . . . . . . . . 148
8.3 Improving energy efficiency . . . . . . . . . . . . . . . . . 150

Chapter 9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

ix



LIST OF FIGURES

Figure 2.1: Amdahl’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.1: Data spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3.2: Abundance of epoch sharing . . . . . . . . . . . . . . . . . . . . 26
Figure 3.3: Example of loop nest tree . . . . . . . . . . . . . . . . . . . . . 27
Figure 3.4: Speedup of different policies . . . . . . . . . . . . . . . . . . . . 30
Figure 3.5: Data spreading across different machines . . . . . . . . . . . . . 31
Figure 3.6: Impact of data spreading on pointer chasing . . . . . . . . . . . 33
Figure 3.7: 2D Jacobi speedup using data spreading . . . . . . . . . . . . . 34
Figure 3.8: Libquantum speedup using data spreading . . . . . . . . . . . . 35
Figure 3.9: Data spreading power consumption . . . . . . . . . . . . . . . . 36
Figure 3.10: Data spreading last level cache misses . . . . . . . . . . . . . . 37
Figure 3.11: Impact of context switching techniques . . . . . . . . . . . . . . 38
Figure 3.12: User space thread migration . . . . . . . . . . . . . . . . . . . . 39
Figure 3.13: Data spreading throughput in CMP . . . . . . . . . . . . . . . 40
Figure 3.14: Data spreading speedup in a 6-core CMP . . . . . . . . . . . . 40

Figure 4.1: Inter-core prefetching execution . . . . . . . . . . . . . . . . . . 46
Figure 4.2: Inter-core prefetching implementation of 2D Jacobi . . . . . . . 50
Figure 4.3: Inter-core prefetching throughput for three systems . . . . . . . 54
Figure 4.4: L2 cache misses of different threads . . . . . . . . . . . . . . . . 57
Figure 4.5: Impact of chunk size and number of helper threads . . . . . . . 58
Figure 4.6: Cache coherence impact . . . . . . . . . . . . . . . . . . . . . . 60
Figure 4.7: Application speedup using inter-core prefetching . . . . . . . . 61
Figure 4.8: Application level impact of chunk size and number of cores . . . 62
Figure 4.9: Power consumption using inter-core prefetching . . . . . . . . . 64
Figure 4.10: Energy consumption using inter-core prefetching . . . . . . . . 65
Figure 4.11: Comparing inter-core prefetching and SMT prefetching . . . . . 66
Figure 4.12: Comparing inter-core prefetching and data spreading . . . . . . 68

Figure 5.1: Interaction between par-ICP and traditional . . . . . . . . . . . 77
Figure 5.2: Histogram of the effectiveness of par-ICP . . . . . . . . . . . . 79
Figure 5.3: Correlation of loop characteristics . . . . . . . . . . . . . . . . . 85
Figure 5.4: LC7 performance on unknown loops . . . . . . . . . . . . . . . 86
Figure 5.5: Scalability of different techniques . . . . . . . . . . . . . . . . . 88
Figure 5.6: Application speedup using coalition threading . . . . . . . . . . 89

Figure 6.1: Application sensitivity to P-states . . . . . . . . . . . . . . . . 96
Figure 6.2: Impact of ICP on kernels . . . . . . . . . . . . . . . . . . . . . 101
Figure 6.3: Pareto-optimal points in real systems . . . . . . . . . . . . . . . 102
Figure 6.4: Pareto-optimal points in future systems . . . . . . . . . . . . . 104
Figure 6.5: Tradeoffs between core counts and P-states . . . . . . . . . . . 105

x



Figure 6.6: Effect of P-state change latency . . . . . . . . . . . . . . . . . . 106

Figure 7.1: Loop level pipeline parallelism . . . . . . . . . . . . . . . . . . . 111
Figure 7.2: LBPP for regular loop . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 7.3: LBPP for irregular loop . . . . . . . . . . . . . . . . . . . . . . 114
Figure 7.4: Steps of LBPP implementation . . . . . . . . . . . . . . . . . . 120
Figure 7.5: Nested loop of mcf . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 7.6: Source code of the microbenchmarks . . . . . . . . . . . . . . . 127
Figure 7.7: Impact of load balancing . . . . . . . . . . . . . . . . . . . . . . 128
Figure 7.8: Unbalanced pipeline . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 7.9: Locality in pipelining . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 7.10: Dynamic variation of pipeline balance . . . . . . . . . . . . . . 132
Figure 7.11: Impact of chunk size on LBPP . . . . . . . . . . . . . . . . . . 133
Figure 7.12: Chunking in traditional pipelining . . . . . . . . . . . . . . . . 134
Figure 7.13: Loop level performance in AMD Phenom . . . . . . . . . . . . 135
Figure 7.14: Loop level performance in Intel Nehalem . . . . . . . . . . . . . 136
Figure 7.15: Application level speedup in AMD system . . . . . . . . . . . . 136
Figure 7.16: Energy consumption using LBPP . . . . . . . . . . . . . . . . . 137

xi



LIST OF TABLES

Table 3.1: The multiprocessor system information . . . . . . . . . . . . . . 23
Table 3.2: Description of benchmarks . . . . . . . . . . . . . . . . . . . . . 24
Table 3.3: Loop selection policies . . . . . . . . . . . . . . . . . . . . . . . 28
Table 3.4: Number of loops selected . . . . . . . . . . . . . . . . . . . . . . 29

Table 4.1: Microarchitectural information of the systems . . . . . . . . . . 52
Table 4.2: Description of benchmarks . . . . . . . . . . . . . . . . . . . . . 53

Table 5.1: Microarchitectural information of 32-core AMD Opteron . . . . 75
Table 5.2: Description of benchmarks . . . . . . . . . . . . . . . . . . . . . 76
Table 5.3: List of loop characteristics . . . . . . . . . . . . . . . . . . . . . 82

Table 6.1: AMD Phenom P-states . . . . . . . . . . . . . . . . . . . . . . . 95
Table 6.2: Description of the experimental system . . . . . . . . . . . . . . 98
Table 6.3: P-state power consumption . . . . . . . . . . . . . . . . . . . . . 100

Table 7.1: Description of two systems . . . . . . . . . . . . . . . . . . . . . 124
Table 7.2: Pipeline structure and description of applications . . . . . . . . . 126

xii



ACKNOWLEDGEMENTS

Alhamdulillah. First, I want to thank the Almighty Allah for giving me

the opportunity to fulfill my dream to have a Ph.D. I want to acknowledge all the

people who constantly supported me to arrive at this stage. I would like to thank

my advisers – Dean Tullsen and Steven Swanson. I am lucky to have such awesome

advisers. Their inspiration and guidance helped me to grow up as a researcher.

They put faith in me even when things were not going well and always encouraged

me. Without their support, this dissertation would not have been possible.

I want to thank the committee members – Pamela C. Cosman, Ranjit Jhala,

and Andrew B. Kahng for their feedback and suggestions. It was a great honor to

have such esteemed professors in my thesis committee. I also thank Julie Conner

for her splendid job as a graduate student adviser.

I would like to thank my mother, Aleya Begum and my father, the late

Abdur Rob. They always gave maximum priority to my education despite all

the hardship. Their love has been a great impetus for me to go forward. I want

to specially acknowledge my mother who single-handedly took the entire burden

after the death of my father, but never compromised with my pursuit of education.

Without her sacrifice, I would never come that far.

I would like to thank my wife, Sajia Akhter for being my wife and providing

me the endless support. She is a perfect companion for me. Despite all the hard

work and stress during the research and job hunting, I never lost the spirit because

of her. She has been the source of simplicity, serenity, and strength for me.

I would like to thank other family members who gave me courage and

supported me at different stages of my life. I want to thank my only sister, Shammi

Bari whom I spent a great deal of eventful time in the childhood. Those memories

are always priceless for me. I want to thank my little aunt, Farzana Jamal who

never asked any question when I wanted something. I want to thank my father-in-

law, Dr. Sana Ullah who has been a great man and a great advocate for pursuing

the higher education. I also thank my uncles, aunts, cousins, in-laws for their

support and inspiration. I feel fortunate to be surrounded by so many good people.

Finally, I would like to thank the folks in the UCSD computer architecture

xiii



lab – Jeff, Jack, Matt, Leo, Vasileios, Rick, Hung-Wei, and Adrian, friends in

BUET – Mahbub, Ashique, Farhan, Nejhum, Sajjad, Shaikat, Sarwar, Irfan, Hasib,

Tanvir, Sunny, Ejaj, Nilothpal, Pavel, Ahsan, and Uzzal, friends in Bangladesh,

friends in San Diego, and friends all over the world. You all are inspirations to me.

Chapters 1, 5, and 8 contain material from “Coalition Threading: Combin-

ing Traditional and Non-Traditional Parallelism to Maximize Scalability”, by Md

Kamruzzaman, Steven Swanson and Dean M. Tullsen, which appears in PACT’12:

Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques, September 2012. The dissertation author was the pri-

mary investigator and author of this paper. The material in this chapter is copy-

right c©2012 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that the copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page in print or the first screen in digital media. Copyrights

for components of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,

or email permissions@acm.org.

Chapters 3 and 8 contain material from “Software Data Spreading: Lever-

aging Distributed Caches to Improve Single Thread Performance”, by Md Kamruz-

zaman, Steven Swanson and Dean M. Tullsen, which appears in PLDI’10: Proceed-

ings of the 2010 ACM SIGPLAN Conference on Programming Language Design

and Implementation. The dissertation author was the primary investigator and

author of this paper. The material in this chapter is copyright c©2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

xiv



ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

Chapters 4, and 8 contain material from “Inter-core Prefetching for Multi-

core Processors Using Migrating Helper Threads”, by Md Kamruzzaman, Steven

Swanson and Dean M. Tullsen, which appears in ASPLOS’11: Proceedings of

the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems. The dissertation author was the primary in-

vestigator and author of this paper. The material in this chapter is copyright

c©2011 by the Association for Computing Machinery, Inc. (ACM). Permission to

make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that the copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page in print or the first screen in digital media. Copyrights

for components of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,

or email permissions@acm.org.

Chapter 6 contains material from “Underclocked Software Prefetching: More

Cores, Less Energy”, by Md Kamruzzaman, Steven Swanson and Dean M. Tullsen,

which appears in IEEE Micro, July-Aug. 2012, Volume 32, Issue: 4, Page(s): 32-

41. The dissertation author was the primary investigator and author of this paper.

The material in this chapter is copyright c©2012 by the Institute of Electrical and

Electronics Engineers (IEEE). Personal use of this material is permitted. Permis-

sion from IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional pur-

poses, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works.

xv



VITA AND PUBLICATIONS

2004 B. Sc. in Computer Science and Engineering
Bangladesh University of Engineering and Technology

2004-2006 Lecturer
American International University-Bangladesh

2006 Lecturer
Bangladesh University of Engineering and Technology

2006-2012 Graduate Student Researcher
University of California, San Diego

2007 Internship
Qualcomm Corporate R&D
San Diego, California

2009 M.S. in Computer Science
University of California, San Diego

2010 C. Phil. in Computer Science
University of California, San Diego

2013 Ph. D. in Computer Science
University of California, San Diego

Md Kamruzzaman, Steven Swanson, Dean M. Tullsen, “Coalition Threading: Com-
bining Traditional and Non-Traditional Parallelism to Maximize Scalability”, Pro-
ceedings of the 21st International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), September 2012.

Md Kamruzzaman, Steven Swanson, Dean M. Tullsen, “Underclocked Software
Prefetching: More Cores, Less Energy”, IEEE Micro, August 2012.

Md Kamruzzaman, Steven Swanson, Dean M. Tullsen, “Inter-core Prefetching for
Multicore Processors Using Migrating Helper Threads”, Proceedings of the Six-
teenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), March 2011.

Md Kamruzzaman, Steven Swanson, Dean M. Tullsen, “Software Data Spreading:
Leveraging Distributed Caches to Improve Single Thread Performance”, Proceed-
ings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 2010.

xvi



ABSTRACT OF THE DISSERTATION

Exploiting Non-Traditional Parallelization for Application
Performance and Energy Efficiency in Parallel Systems

by

Md Kamruzzaman

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Dean Michael Tullsen, Chair
Professor Steven Swanson, Co-Chair

Multicore processors have become ubiquitous in today’s computing plat-

forms, extending from smartphones to data centers. However, exploiting the par-

allelism that they offer remains difficult, especially for legacy applications and

applications with large serial components. Even many parallel applications fail to

leverage the ample hardware parallelism and observe scalability limits. This cre-

ates a gap between the available hardware and the effective software parallelism.

The scenario known as the parallelization wall impedes the performance growth

that every processor generation used to bring in.

The challenge, then, is to develop techniques that allow multiple cores to

work in concert to accelerate a single thread. This dissertation proposes three such

techniques – software data spreading, inter-core prefetching, and load-balanced

pipeline parallelism – and evaluates them on state of the art real systems. These

techniques are software only and exploit application level information to best utilize

the underlying hardware.
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Software data spreading migrates a thread intelligently to spread the work-

ing set over the aggregate space from different private caches. This reduces expen-

sive cache misses and dramatically improves performance along with energy effi-

ciency when the working set fits in the aggregate cache space. Inter-core prefetching

uses one or more helper threads to prefetch data in advance and uses thread migra-

tions to access that data locally. This dissertation extends inter-core prefetching

further and introduces two more techniques – underclocked software prefetching

and coalition threading. The former exploits the decoupled execution model of

inter-core prefetching to save power. It applies dynamic frequency scaling on the

helper thread to leverage its insensitivity to frequency and allows low frequency

helper threads to bring the same performance benefits of high frequency helper

threads. The latter technique, coalition threading, explores the potential of apply-

ing inter-core prefetching on top of traditional parallelism to improve scalability

of parallel applications. Finally, this dissertation discusses load-balanced pipeline

parallelism that analytically shows how to exploit loop level pipelining to its max-

imum potential.
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Chapter 1

Introduction

Multi-core processors have become ubiquitous over the past decade. The

improvements in CMOS process technology governed by Moore’s law bring more

transistors in each process generation. Until recently, the microprocessor industry

built larger superscalars with increased clock frequency to exploit the additional

transistors, and this catered to the need for more and more performance improve-

ments for applications. However, this trend is no longer possible because of the

increase in power density. Transistor feature size shrinks according to Moore’s law,

allowing more transistors on a fixed die area, but the operating voltage does not

scale down any further due to the leakage and other physical constraints. This

triggered the discontinuation of building more powerful superscalars and shifted

the direction towards building multicores.

As a result, multicores have gone from being the domain of high-end servers

and specialized high-performance computing systems, to becoming ubiquitous in

every type of computing platform from smart phones to the data center. Current

mainstream offerings contain 4 to 16 execution cores on each processor chip [McG06,

neh08], and there is no sign of the trend toward higher core counts slowing. While

these architectures have delivered the potential for scalable parallel performance,

the impact at the application level has been uneven – software parallelism is not

nearly as pervasive as hardware parallelism. There are some environments that

provide near-infinite parallelism. Other environments and workloads scale poorly

or not at all. If we are to continue to provide performance scaling in this era of

1
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increasing hardware parallelism, we must scale application performance both in

the presence of abundant software parallelism and when that parallelism is harder

to find.

In the multicore era, we can no longer depend on instruction-level paral-

lelism (ILP) and clock frequency as the primary sources of performance improve-

ments. Rather, we need to focus on exploiting thread-level parallelism (TLP).

However, several factors make it challenging, including the abundance of non-

parallelized legacy code, the difficulty of parallel programming, and the inher-

ent serial nature of many programs and algorithms. Even in applications that

are amenable to parallelization, the applicability of multicore processors has its

bounds: as manufacturers supply an increasing number of cores, more and more

applications will discover their scalability limits due to different types of paralleliza-

tion complexities including synchronization, cache coherence, and load balancing.

Furthermore, Amdahl’s Law dictates that the more hardware parallelism is avail-

able, the more critical sequential performance becomes. So, cramming more cores

on die does not always imply getting more performance. This scenario is known

as the parallelization wall or parallelization crisis. In another way, parallelization

wall refers to the lack of parallel threads to enable performance scaling.

The parallelization wall limits the improvements in application performance

that we used to have with each processor generation. The problem is likely to

deepen and become widespread as multicores are making their way into all sorts

of computing platforms, and we move from multicore to many-core architectures.

State of the art processors try to address this problem by introducing turbo cores,

and specialized on-chip accelerators like GPUs. Turbo cores run in higher than

normal frequency when other cores remain idle and can improve sequential per-

formance. Accelerators target special type of codes (e.g., highly parallel kernels)

and offload the computation of the processing cores. However, these solutions are

effective in limited cases, and are far from being a generic solution to the paral-

lelization wall. The parallelization wall stands as a key bottleneck to the demand

of application performance growth.

This dissertation characterizes the parallelization wall problem and intro-
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duces several techniques to address the key challenge – how to improve single

thread performance on parallel hardware (e.g., multicores). In this dissertation,

we mainly describe three different techniques – software data spreading (DS), inter-

core prefetching (ICP), and load-balanced pipeline parallelism (LBPP). The first

two techniques are examples of non-traditional parallelization because they do not

distribute the computation over multiple threads (i.e., only one thread computes

at a time). All three techniques use more than one core per single thread and

improve its performance. This is definitely effective for sequential applications,

because there are typically lots of idle cores available for use. The techniques even

help when the cores are not otherwise free to use (e.g., parallel applications). There

are two main reasons why it is effective. First, sometimes these techniques provide

more speedup than what the traditional parallelization gives (i.e., more than 2×
improvements using two cores). Second, using fewer computing threads, but accel-

erating each of them, has a positive impact on the parallelization complexity. So,

accelerating single thread execution using multiple cores provide a generic solution

against the parallelization wall.

The first technique, data spreading, causes single thread computation to

migrate among multiple cores and spread data in a controlled way. This aggregates

the private cache spaces of the participating cores and provides the appearance of

a bigger private cache for the single thread execution. This improves performance

by increasing cache locality and avoiding expensive DRAM or next level cache

accesses.

Inter-core prefetching combines thread migration and helper threads to en-

able a novel technique that allows remote prefetching but local access of data. In

inter-core prefetching, helper threads run in separate cores to prefetch data and

then use migration to move the main thread (the thread that does the computa-

tion) to the prefetched data. The main thread thus migrates to a core with the

data it is about to access completely preloaded into the private cache(s), while the

helper thread is moved to a new core to begin prefetching the next set of data.

Thus, all the cache misses disappear from the critical execution path and appear as

local hits. This gives significant speedup to the single thread execution irrespective
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of the working set size or the data access pattern.

Load-balanced pipeline parallelism exploits the pipeline parallelism avail-

able in the loop iteration level. The iteration of a serial loop decomposes into a

set of one or more pipeline stages, and some of these stages can be parallel. LBPP

provides an execution model that ensures maximum possible parallelism for any

number of execution cores. LBPP executes the serial loop in a data parallel fashion,

but satisfies all the dependencies using a token based synchronization mechanism.

The technique provides linear speedup to a number of serial loops, especially when

the parallel stages dominate the sequential stages.

For any performance optimization technique, power/energy consumption is

also a concern. All three techniques described above improve energy consumption.

Data spreading reduces both power and execution times. Inter-core prefetching

and load-balanced pipeline parallelism increase power, but the reduction in ex-

ecution time compensates that by decreasing the overall consumption of energy.

This dissertation also proposes the concept of underclocked software prefetching

that exploits another window of opportunity in inter-core prefetching to reduce

the power consumption. ICP naturally produces heterogeneous threads by de-

coupling the memory accesses. The computing thread is cpu intensive, but the

prefetching thread is memory intensive and less sensitive to frequency. Under-

clocked software prefetching leverages such heterogeneity by applying frequency

scaling on the memory intensive prefetching thread. This saves power without the

loss of performance.

Accelerating a single thread using multiple cores solves the problem of hav-

ing disparity between the abundant hardware parallelism and the lack of effective

software parallelism. It also opens up new opportunities for parallel applications.

This dissertation introduces coalition threading that intelligently combines tradi-

tional parallelization techniques with non-traditional parallelization techniques for

better scalability. We analyze coalition threading in the context of data parallelism

and inter-core prefetching and find that coalition threading works better than data

parallelism alone. The key challenge in this case is to decide when to apply non-

traditional parallelism because traditional parallelization may outperform them in
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several cases. We find that using microarchitectural information, we can construct

a powerful heuristic that automatically identifies the cases where we should apply

inter-core prefetching.

This dissertation demonstrates that software only solutions handle the par-

allelization wall more effectively when they adapt themselves to different classes of

applications. Because, there are more opportunities to engage multiple cores and

to exploit locality, and decoupling.

Software only approaches Unlike a number of previous approaches that share

the same spirit with these, all techniques presented in this dissertation are soft-

ware only and can be automatically implemented in the compiler. This has several

advantages. First, there is no need to build new hardware, and we can use ma-

chines that are already available. Second, these techniques apply to a variety of

architectures. Third, it gives programmers more flexibility. It is easy to turn off

the optimizations when they do not work. In addition, programmers can always

understand the techniques and fine-tune the programs. It is also easier to combine

several software techniques to extract more benefit.

Adapting to Applications The key challenge to accelerate single thread exe-

cution using multiple cores is to find ways to engage more than one core effectively.

Extracting thread level parallelism and doing computation in parallel is the ob-

vious way. However, for a lot of serial code, this is not possible, and we need

alternative ways to exploit the resources of multiple cores.

The techniques presented in this dissertation leverage application charac-

teristics to find ways to employ multiple cores. Data spreading capitalizes on the

fact that some applications have working sets that are larger than a single cache,

and the applications repeatedly access those data. So, spreading the working set

across different cores’ caches gets the benefit of cache locality after the first round

of access. Inter-core prefetching leverages the fact that it is possible to predict

future memory references for a lot of serial computations. So, it decouples the

memory access part into a different thread(s), and executes these thread(s) in

parallel with the serial computation. Inter-core prefetching also shows sensitiv-
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ity to other application level information such as ratio of compute and memory

operations, data access pattern (sequential, or randomized), percentage of data

sharing between two chunks of computations, etc. Availability of this information

helps better tuning and makes inter-core prefetching more effective. Finally, load-

balanced pipeline parallelism exploits the fact that serial loops may have fine-grain

pipeline parallelism and further capitalizes on the fact that some of the pipeline

stages are parallel.

Locality All three techniques – data spreading, inter-core prefetching, and load-

balanced pipeline parallelism improve cache locality. Data spreading and inter-

core prefetching ensure the availability of data in a particular core’s cache and

then bring the computation there using thread migration. This essentially imple-

ments computation follows data rather than the traditional way of executing data

follows computation. Load-balanced pipeline parallelism also maintains the com-

munication between stages through the local cache. Locality is important from a

performance as well as from a power/energy point of view, because data communi-

cation between different parts of the memory subsystem consumes power. Locality

reduces pressure on the off-chip bandwidth and ensures better scalability. In addi-

tion, locality makes these techniques easily applicable on multiprocessor systems

where the communication between different processors is expensive.

Decoupling Data spreading extracts no thread level parallelism and uses one

core at a time. However, it engages multiple cores by using their caches. Inter-core

prefetching and load-balanced pipeline parallelism use multiple cores at a time by

decoupling the computation into different parts. Other than extracting thread level

parallelism, decoupling sometimes also increases instruction-level and memory-

level parallelism. This results in single thread speedup beyond the traditional

parallelization limit. However, effective implementation of decoupling requires

precise synchronization. ICP and LBPP use chunking (clustering similar types of

operations) to amortize the synchronization overhead. Chunking is also closely

related with locality. By controlling the size of chunks, we can confine the memory

footprints within the size of a particular level of cache.
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1.1 Organization of the dissertation

This dissertation presents techniques that understand the application closely

from static and profile guided analysis and exploit the information using a variety

of techniques including thread migration, software prefetching, frequency scaling,

etc. to use state of the art parallel hardware effectively. Over the course of this

dissertation, we first understand the nature of the parallelization wall and then

describe the techniques in detail. We organize our dissertation in the following

way.

Chapter 2 describes the parallelization wall in detail – the main reasons be-

hind it, the impact on application performance, and the importance of accelerating

single thread execution.

Chapter 3 demonstrates the details of software data spreading. We first

show the mechanism of the technique and then describe the compiler algorithm that

analyzes the data sharing patterns to transform a code automatically to exploit

data spreading. We also present the impact on performance and energy for several

real systems.

Chapter 4 explains inter-core prefetching in detail. We describe the soft-

ware infrastructure that supports fast thread migration and allows the effective

implementation of inter-core prefetching. We investigate the interactions between

chunking granularity, number of helper threads, compute density, data access pat-

tern, and data sharing in the context of inter-core prefetching.

Chapter 5 describes how we can extend inter-core prefetching for an effective

implementation of coalition threading. We present the compiler infrastructure

to apply coalition threading on pre-parallelized code. We analyze the impact of

applying different parallelization techniques on the loop level and demonstrate the

compiler heuristic that chooses the right technique.

Chapter 6 discusses underclocked software prefetching. We demonstrate

a theoretical model that shows how dynamic frequency scaling can exploit the

decoupling and rate mismatch of prefetching and execution created by inter-core

prefetching described in Chapter 4. We also analyze the interaction between num-

ber of helper threads, size of chunks, different power states, and the latency to
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change frequencies.

Chapter 7 describes the execution model of load-balanced pipeline paral-

lelism. We develop the theoretical model that compares the parallelism achieved

by load-balanced pipeline parallelism and another competing technique, decoupled

software pipelining. We investigate a thorough evaluation on two state of the art

architectures and justify the results predicted by the theoretical model.

Chapter 8 summarizes prior approaches (both hardware and software based)

related to our work. Finally, Chapter 9 summarizes the contribution of this dis-

sertation – introduction of the techniques that accelerate single thread execution

using multiple cores to handle the parallelization wall problem.
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Chapter 2

Parallelization Wall

In this chapter, we define and analyze the parallelization wall that motivates

this dissertation. We investigate the primary causes of the wall and the depth of

the problem. We explain why accelerating a single thread using multiple cores is

the most effective way to address this challenge.

2.1 Parallelization Wall

The parallelization wall refers to the phenomenon that application perfor-

mance does not always scale with the core count. The exponential improvement of

application performance that we used to see until very recently has now reached

a plateau despite the processor industry adding more cores on a single die each

generation.

The parallelization wall has roots in the increasing gap between complex

hardware and software abstraction. Processors have evolved in different dimen-

sions since Intel introduced its first 4-bit processor in 1971 – from in-order scalar

processor to out-of-order super-scalar and from single processing unit to on-chip

multithreading to multicores. Software and programming models, on the other

hand, target a very basic hardware abstraction and remain oblivious of the change

in hardware. This gives the compiler and runtime system the bulk of the respon-

sibility to extract maximum performance from today’s sophisticated hardware.

Three things manifest as the key bottlenecks that impede the application

9
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Figure 2.1: Amdahl’s law: Serial portion becomes dominant as we increase the
number of cores.

performance in parallel hardware and contribute towards the parallelization wall –

• Abundance of serial code

• Parallelization complexity

• Resource constraints

Next, we describe these things in detail.

2.1.1 Abundance of serial code

Serial code uses only one processing core and does not see benefit from

additional cores. So, putting more cores on die does not normally improve the

serial execution as it does for the parallel execution. Amdahl’s law explains this

circumstance clearly and dictates that as architectures become more parallel, the

inherently serial portions of applications will eventually limit the performance.

According to Amdahl’s law, if P is the parallel portion of a program, and (1− P )

is the serial part, then the maximum possible speedup by N processors is –

S(N) =
1

(1− P ) + P
N
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So, the serial portion provides an upper bound of 1
(1−P )

for the maximum

possible speedup. Figure 2.1 shows the scenarios for different values of P and N .

In every case, the speedup reaches an asymptote, and the serial part starts taking

the bulk of the execution time.

The abundance of serial code is a key component of the parallelization wall.

Serial code exists to some extent even in the most embarrassingly parallel applica-

tions. There are two reasons why serial code is pervasive. First, some applications

or some part of the applications are inherently serial. These codes (e.g., pointer

chasing, graph algorithms, recursive code, etc.) cannot be made parallel without

changing algorithms or compromising the correctness. Second, plenty of legacy

code is serial in nature. These codes might have inherent parallelism, but exposing

that requires automatic parallelization in the compiler or manual parallelization.

Automatic parallelization is still in its nascent stage and is not always effective.

On the other hand, manual parallelization is hard for legacy code as well as for

most newly developed applications. As a result, a large amount of serial code is

likely to persist.

2.1.2 Parallelization complexity

Parallelization is not free and introduces several overheads. Consequently,

most parallel codes do not achieve perfect scalability, and if we scale far enough,

all parallel codes will experience this. Parallelization overheads result from syn-

chronization, load balancing, cache coherence, and work efficiency.

In most parallel code, threads need to synchronize to maintain data consis-

tency and avoid race conditions. Locks, barriers, thread join, condition variables,

etc. are different ways to implement synchronization. The overhead of synchroniza-

tion depends on the number of participating threads. So, synchronization overhead

increases substantially as we scale more and eventually becomes dominant since

the total work to be done remains constant.

Load balancing is another challenging task for parallelization. If threads are

not load balanced, some threads become the bottleneck and impede the scalability.

Also, each thread should at least do a minimum amount of work to amortize the
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thread spawning overhead. As we scale more, each thread has less work to do, and

the relative weight of thread spawning compared to the work to be done increases.

Some parallel computations are not work efficient. In this case, the total

amount of work increases as we scale more. OpenMP reduction [CJP07] is an

example of that. The reduction part increases with the number of threads. In

some cases, the space requirements also increase and put an upper bound on the

scalability.

There are hardware overheads as well, especially in the form of cache co-

herence. In current systems, keeping data coherent is expensive because of costly

cache to cache transfers [HMN09]. Coherence activity occurs for both true and

false sharing of data and increases when we add more threads. For example, if we

use two threads for a simple data parallel loop that writes an array, there can be

one falsely shared cache line. However, if we use 64 threads, the number of falsely

shared cache lines can be as large as 63.

In summary, with the current parallel execution model there are both signif-

icant software and hardware overheads. These overheads are less noticeable when

the computation is large and threads can do enough work before doing any syn-

chronization activity. However, in other cases, these overheads tend to dominate

as we scale and at some point, start causing negative scalability. The overheads

also prohibit us from exploiting small pockets of parallelism. For example, if a crit-

ical inner loop is parallel but only iterates for a hundred instructions, we may not

leverage the parallelism, because the thread spawning, joining, and false sharing

overheads will likely exceed the benefits of parallelism.

2.1.3 Resource constraints

Hardware resource constraints in multicores is another cause of the paral-

lelization wall. The processing cores in a multicore share several on-chip structures

like last level cache, interconnect, and off-chip bandwidth. These shared structures

might become the bottleneck when several cores actively use them, because pro-

cessor designers normally under-provision these resources for different reasons.

First, there are design constraints (area, power, latency, etc) and physical
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limitations that prevent the scaling of these resources in the same way we can scale

the number of cores. For example, a large cache will incur more latency than a

small cache does. Faster interconnect requires more area and power. Increasing

off-chip bandwidth is difficult, because there are physical limitations on the number

of pins that we can put on-chip [BGK96].

Second, the workloads are diverse. Some are cpu-intensive, and some are

memory-intensive. Some applications have strong locality and are very sensitive

to the cache architecture, while some applications do not have any locality and are

sensitive to the DRAM access latency. There are multithreaded applications with

lots of shared data to stress the coherence mechanism. On the other hand, there

are also multiprogrammed workloads that do not require cache coherence. The

diversity of the workloads make the design of a general purpose multicore chal-

lenging. Increasing a shared resource far enough to make it useful for a particular

type of applications will not help other applications. As an example, increasing

the size of the last level cache may help memory-intensive applications, but will

not benefit cpu-intensive applications and will rather consume unnecessary power.

Finally, there is the emerging problem of dark silicon [EBSA+11], or utiliza-

tion wall [VSG+10]. For a large multicore, it may not be possible to run all cores

at the highest frequency, because of the power constraints. So, we may either run

few cores in the highest frequency or run more cores in a lower frequency. State of

the art architectures support this form of execution, e.g., AMD turbo cores.

2.2 Handling the parallelization wall

The parallelization wall highlights the fact that there is a lack of effective

software parallelism to match the ample hardware parallelism. This is obvious

for serial code, but the problem also persists for many parallel applications or

multiprogrammed workload when executing with a large number of cores. In that

case, the software parallelism does not provide the expected performance benefit

due to the parallelization complexity and resource constraints described above.

Reducing parallelization complexities like synchronization overhead, cache
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coherence, etc., will improve the scalability of parallel execution in state of the

art hardware. However, complete elimination of these complexities is not possible

even for newly developed code. Eliminating resource constraints will also help in

limited cases, but as explained earlier, the opportunity cost is much larger.

This leaves us with the final solution – accelerating single thread execution

using multiple cores. Unlike the approaches that only improve parallel execution,

this improves both serial and parallel execution as explained in Chapter 1. This also

gives more design choices to adapt different scenarios. In underclocked software

prefetching, we have the options to choose between a small number of fast cores or

a large number of slow cores. In coalition threading, we can control the number of

cores per single thread execution for better distribution of execution resources. In

summary, using more than one core per single thread to improve performance not

only solves the parallelization wall problem to a greater extent, but also provides

another degree of freedom.

In the following chapters, we will describe and evaluate our techniques in

detail.



Chapter 3

Software Data Spreading:

Leveraging Distributed Caches for

Locality

In this chapter, we demonstrate the concept of software data spreading

which exploits the capacity of distributed caches to accelerate a single thread. By

migrating the thread among multiple cores with distinct caches, we can utilize

the combined cache space of all of those cores. Aggregating cache capacity is of

growing importance: Although total on-chip cache capacity continues to grow with

Moore’s law, the per-core cache capacity is not keeping pace (e.g., 4MB total for

the Intel Core 2 Duo at introduction vs. 8MB total for a quad-core Nehalem chip).

Previous work [CS06, M. 05, HKS+05, LSK04] has attempted to aggregate cache

space through specialized hardware support.

Migrating a thread among multiple cores while it accesses large data struc-

tures provides three primary advantages. First, when the thread repeats a memory

access pattern (e.g., during multiple instances of a loop), we force the thread to

periodically migrate between caches in the same pattern each time. As a result,

the thread tends to access the same portion of the data when it is running on a

specific core, resulting in lower miss rates. Second, even when the computation

moves completely unpredictably through the data structures, periodic migrations

result in more of the data structure residing in the combined caches. As a result,

15



16

many DRAM accesses become faster (and more power efficient) cache-to-cache

transfers. Finally, judicious migration while accessing very large data structures

(that tend to completely over-write the cache or caches) can, in some cases, shield

other data and allow it to remain in another cache.

We have developed a compiler-based, software-only data spreading system

that identifies loops which have large data footprints and suitable sharing patterns

(e.g., high sharing between instances of the same loop) and spreads those loops

and the data they access across multiple cores, both within a chip multiprocessor

or across multiple dies or sockets. Data spreading can be applied to any system,

multicore or multiprocessor, with private L2 or L3 caches. Our experiments with

multiple Intel and AMD multiprocessor systems show that data spreading can

speed up a range of applications by an average of 17%. Most impressive, data

spreading achieves this speedup without any extra power consumption. In fact, in

the best case, it significantly reduces power by avoiding DRAM accesses. Finally,

data spreading requires no new hardware support and, since it relies on the system’s

default caching behavior, does not threaten correctness.

This chapter is organized as follows. Section 3.1 describes the motivation

and basic data spreading approach. Details of our experimental methodology are

presented in Section 3.2. Section 3.3 describes the actual data spreading algo-

rithm, evaluating several design options and presenting initial results. Section 3.4

examines software data spreading results more closely across different systems and

working set sizes. It also examines its power efficiency and applicability to multi-

cores. Section 3.5 concludes.

3.1 Software data spreading

Software data spreading allows a single thread of computation to benefit

from the private cache capacity of idle cores in the system, whether on the same

processor or on other, idle sockets. As the thread executes, it moves from core to

core, spreading its accesses across the caches. If we time the migrations correctly,

the thread can either avoid misses in the private cache it happens to be using or
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have its misses serviced out of another core rather than from main memory. This

results in reduced execution time and energy consumption, since accesses to main

memory are both slow and power-hungry.

Data spreading works best in systems with large private caches (typically

L2 or L3), spread across multiple cores, dies, or sockets. As shared caches face

scaling limitations, we expect private caches (or caches shared among a subset

of cores) to become more common. It also applies to any machine with multiple

processors on separate dies, since each die includes a private (relative to the other

dies or sockets) cache.

In the next three subsections, we give some examples of how software data

spreading applies in different scenarios, describe our implementation of the data

spreading mechanism, and then discuss its potential impacts on performance and

power efficiency.

3.1.1 Examples

Algorithm 1 contains a pair of loops that are good candidates for spreading.

It accesses two arrays, a and b, and we assume that the combined size of both arrays

is roughly eight times the capacity of a single cache. To illustrate data spreading,

we will assume (to keep the example simple) a CMP with only private caches.

Algorithm 1 – Simple example code. Data spreading can accelerate this code

if the working set does not fit in a single L2 cache.

for i = 1 to 100 do // Loop 0

for j = 1 to 1000 do // Loop 1

aj = aj−1 + aj+1

end for

for j = 1 to 2000 do // Loop 2

bj = bj−1 + bj+1

end for

end for

If this code executes on a single core, the cache miss rate will be very high,
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Figure 3.1: One iteration of the outer loop in Algorithm 1 with data spreading
across 8 cores.

since Loops 1 and 2 will destructively interfere. However, if we have an 8-core

CMP, the aggregate capacity of the cores’ private caches is enough to hold both

arrays, and there will be no capacity misses. Our spreading technique allows us to

perform this distribution without any hardware support. Figure 3.1 illustrates the

distribution of data across the private caches in the system.

Data spreading may provide benefits even if the data structures are too

large to fit in the entire on-chip cache space. It will still collect a larger portion of

the data into the private caches. Alternatively, we could spread as much of b as

will fit across all but one of the caches, and isolate the rest of it to a single cache.

Accesses to the spread out portion will be fast, while the remainder will be slower.

If b is very large, then we can isolate execution of Loop 2 in a single core, while

spreading Loop 1 to take advantage of the remaining caches. Loop 2 will “thrash”

in its cache (this is unavoidable, since b is large), but Loop 1 will remain largely

unaffected. Our compilation system does not currently support this last option.

Software data spreading can also speed up irregular access patterns. Algo-
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Algorithm 2 – Irregular loop. Data spreading can reduce the cost of misses for

irregular access patterns.

for i = 1 to 100 do

p = list

while p 6= null do

p = p→ next

end while

Shuffle(list)

end for

rithm 2 traverses a linked list that is too large to fit in a single cache, then a second

function shuffles the list. On a single core, most of the accesses would miss in the

cache. With spreading, the number of misses to private cache remains mostly un-

changed, but nearly all of them (assuming the working set fits in the combined

caches) will be satisfied via cache-to-cache transfers, saving an expensive off-chip

access. Current multicores do not typically support fast cache-to-cache transfers,

so our experiments do not show large gains in this case; however, we expect that

to change in future chips. Still, if the “shuffle” does not completely randomize the

ordering, we will see gains even without fast cache-to-cache transfers.

3.1.2 Implementing data spreading

The only support our implementation requires is from the operating system:

The OS must provide the means to “pin” a thread to a particular (new) core, and

a mechanism to determine how many cores are available to the application. With

this support, migrating from one core to another requires a single system call.

This support already exists in most operating systems running on multicores or

multiprocessors.

The main challenge in software data spreading is determining when to mi-

grate. Our compiler profiles applications to identify the data-intensive loops it will

spread. Then it adds code to count loop iterations and call the migration function

periodically. Algorithm 3 shows the code from Algorithm 1 with the extra code for



20

spreading across eight caches. We discuss the loop selection process and spreading

policies in Section 3.3.

Choosing the loop’s period requires balancing two opposing forces: Spread-

ing data across as many cores as possible is desirable, since it will spread cache

pressure out evenly and avoid spurious cache conflicts. However, a shorter period

means additional thread migrations, which can be expensive.

Algorithm 3 – Data spreading in action. The code in Algorithm 1 after the

data spreading transformation.

for i = 1 to 100 do

for cpu = 0 to 7 do

MigrateTo(cpu)

for j = 125× cpu to 125× (cpu+ 1) do

aj = aj−1 + aj+1

end for

end for

for cpu = 0 to 7 do

MigrateTo(cpu)

for j = 250× cpu to 250× (cpu+ 1) do

bj = bj−1 + bj+1

end for

end for

end for

3.1.3 The cost of data spreading

Like most optimizations, data spreading is not free. There are three poten-

tial costs that we must manage to make the technique profitable: its impact on the

availability of other cores, the cost of thread migration, and its impact on power

and energy consumption.

Performance impact on other threads Since data spreading increases the

number of cores a thread is using, it could potentially interfere with other threads’
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performance. However, when idle cores are unavailable, or better used for other

purposes, we can forgo data spreading – so the opportunity cost of using other

cores is very low. We assume the main thread queries the OS to find the number

of available cores. If it returns 0, the code runs without spreading enabled, and

the only sources of overhead are the quick (it simply returns null in this case) and

infrequent calls to the Migrate To function.

Thread migration cost This is the primary cost for implementing data spread-

ing in the systems we tested. GNU/Linux (starting with Linux kernel 2.6) provides

an API to pin threads to processors, but it is an expensive operation. Linux 2.6.18

on an Intel Nehalem processor takes about 14µs to perform one migration. If the

other core is in a sleep state, the cost could be even higher. The high cost of migra-

tion in current systems restricts our ability to employ data spreading successfully

on a single CMP, as explored further in Section 3.4.6. Proposals for hardware

migration support such as [BT08] could reduce this significantly. A migration that

requires OS intervention can be made to cost on the order of 2µs on a 3 GHz

processor with OS changes but no hardware support [SMM+09].

The other cost of migration, besides the overhead of transferring the thread

context itself, is cold start effects – the cost of moving frequently accessed data

into the new cache, the loss of branch predictor state, BTB state, etc. Typically,

cache state is the most expensive to move. Data spreading, when done correctly,

minimizes this cost by moving a thread to a location where future accesses are

already present in the cache (and away from a core where they are not present).

Power cost In contrast to traditional parallelization techniques and most of

the non-traditional parallelization techniques that use multiple processing cores,

data spreading can have a positive effect on both power and energy consumption.

Other techniques achieve speedups by executing instructions on otherwise unused

cores, and those instructions can consume extra power and energy. The only extra

instructions that data spreading executes are in the migration function that moves

threads between cores. More importantly, only one core is actively executing at

any time.
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Most current multi-core processors lack the ability to power-gate or even

voltage-scale individual cores. In that case, one core being active implies they

are all powered (and therefore dissipating leakage power). An idle core uses less

power than a running core, but that is true whether the same core is always idle

or whether activity (and, therefore, inactivity) shifts from core to core. Recent

processors, such as Nehalem [neh08], are able to voltage-scale individual cores, or

even power-gate cores. This will lower the power consumption of idle cores even

further, strengthening the power argument for data spreading. Power gating will

increase the migration latency somewhat, but when data spreading is effective, the

idle periods for each core are far longer than the time required to wake the core

from sleep [KTR+04, KBW12]. We can reduce this cost further by predictively

waking the core several loop iterations before we plan to migrate.

Section 3.4.4 quantifies the power benefits of data spreading.

3.1.4 Which cores to use

The largest gains from data spreading typically come from aggregating the

largest caches. For example, on a multi-socket Nehalem architecture, we gain more

from aggregating L3 caches across sockets than from aggregating L2 caches on-chip.

This will depend on the application – if the working set fits in four L2 caches, but

not one, it will only gain from spreading at that level. Because of the large working

sets of the applications we study, we focus on spreading at the socket level, except

for Section 3.4.6. We also find we typically gain from using the minimum number

of cores to aggregate the caches, because this reduces the frequency of migration.

So for example, with two Nehalem sockets, our best gains usually come from data

spreading across two cores (one on each socket), rather than across all eight cores.

For the Core2Quad, we use one core per die (two per socket), and on the Opteron,

we use one per socket. Tuning data spreading for individual loops and to work

across multiple levels of the memory hierarchy is the subject of future work.
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Table 3.1: The multiprocessor system configurations that are used to test data
spreading. The systems vary in cache organizations and in access latencies.

System Intel Intel Intel AMD
Information Pentium-4 Core2Quad Nehalem Opteron

CPU Model Northwood Harpertown Gainestown Opteron 2427
No. of Socket ×
No. of Die × 4×1×1 2×2×2 2×1×4 2×1×6
No. of core
Last Level 2M 6M (per die) 8M 6M
Cache
Cache to cache 300–500 150–250 120–170 210–215
transfer latency cycles cycles cycles cycles
Memory access 400–500 300–350 200–240 230–260
latency cycles cycles cycles cycles
Migration cost 14µs 10µs 14µs 9µs
Linux Kernel 2.6.9 2.6.28 2.6.18 2.6.29

3.2 Methodology

To evaluate our approach to data spreading, we implement it under Linux

2.6 on several real systems with Intel and AMD IA32 processors. The system

configurations are given in Table 3.1. We compute the latency information for

our machines by running microbenchmarks. The migration cost shown here is the

latency to call the function sched setaffinity that changes the CPU affinity mask,

and causes thread migration. All experiments run under Linux 2.6. We use gcc

4.1.2 with optimization flag -O3 for all of our compilations, PIN 2.6 for profiling

and analysis, and hardware performance counters to measure cache miss rates.

Our benchmark applications are a set of memory intensive applications

from Spec2000 [Hen00], and the serial version of NAS [BBDS93]. We also pick

one Spec2006 [Hen06] integer benchmark Libquantum, since it is easy to vary its

working set size. Table 3.2 provides the name and the approximate working set

size of the benchmarks. To identify the memory intensive benchmarks we use the

cycle accurate simulator, SMTSIM [Tul96] (configured to roughly match one of

our real experimental machines) to identify those workloads that achieve at least

75% speedup with a perfect L1 data cache. Our rationale for selecting this set of
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Table 3.2: Name and resident memory requirements for benchmarks. We show
both train and reference input sets.

Benchmark Resident Benchmark Resident
Memory Memory

Art T 3 MB BT A 298 MB
Applu T 20 MB CG A 55 MB
Equake T 12 MB LU A 45 MB
Mcf T 45 MB MG A 437 MB
Swim T 56 MB SP A 79 MB
Art R 4 MB BT B 1200 MB
Applu R 180 MB CG B 399 MB
Equake R 49 MB LU B 173 MB
Mcf R 154 MB MG B 437 MB
Swim R 191 MB SP B 314 MB
Libq R 64 MB

workloads is that if a workload shows little benefit from a perfect memory hierarchy,

there is no reason to expect data spreading to offer any benefit. Furthermore, since

it is a software-only technique, there is no danger of it penalizing workloads – if

it is not useful for a particular application it should not be applied. Our system

currently works on C code. We were able to convert Fortran77 code using an f2c

converter, but we were not able to convert Fortran90 code, which excludes some

of the SPEC benchmarks.

For the SPEC benchmarks, we profile using the train input, and experiment

with the reference input – for some experiments we also run the train inputs, just

to get more variation in working set size. When train performs better than ref, it

is typically because the working set falls in the optimal range, rather than due to

increased profile accuracy. For NAS, we profile using the W input, and experiment

with both the A and B inputs. We do all the experiments multiple times (around

10). We ignore some of the outliers and use the average execution time as our

result. The variation of execution times usually stay within 5%. The results

presented here are all normalized with respect to unmodified code.
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3.3 Data Spreading in the Compiler

Our software data spreading compilation system involves a profiling step,

a loop identification and selection stage, and a loop transformation step. This

section describes and evaluates options for all three steps.

3.3.1 Profile collection and program structure analysis

Our system uses PIN [LCM+05] to statically identify loops, profile the pro-

gram, and collect information about all the loops that make up a program’s exe-

cution. Each time a loop executes, an event we term a loop epoch, we count the

number of iterations it executes, the set of cache lines it accesses, and the number

of memory accesses it makes each iteration. The profiling part takes 50 times that

of normal execution time for a program.

We profile unoptimized code to simplify the process of identifying loops in

the binary and connecting them with the source code. This is necessary as the

compiler does optimizations like loop unrolling and function inlining. However,

with some compiler support, profiling on optimized code would be possible. After

we transform loops based on this analysis, full optimization is applied to generate

code for our measurements.

For each loop, `, we calculate its total memory footprint as the set of cache

lines ` touches across all its epochs and its epoch footprint as the lines ` touches

during the execution of a single epoch. We also define M` to be the maximum

footprint size for any epoch of ` and Nl to be the number of iterations in that

epoch.

We use this data to compute the epoch sharing ratio (ES) for each loop.

Intuitively, epoch sharing is a measure of the degree to which multiple epochs of the

same loop touch the same data. Loops with large ES values are good candidates

for spreading, because once the first epoch fetches the epoch-shared data into the

caches, the following epochs will likely reap significant benefit when they access

the same data.

To compute the ES for a loop, we start by calculating, for each loop epoch,
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Figure 3.2: Epoch sharing breakdown of data intensive applications. Data spread-
ing is effective for loops with high epoch sharing.

the fraction of that epoch’s footprint that overlaps with the union of the footprints

of all previous epochs of the same loop. The final ES is the average of this value

over all the epochs of the loop. Formally, if ` has k epochs and the corresponding

epoch footprints are e0, e1, . . . , ek−1, the epoch sharing of ` is

ES(`) =

∑k−1
i=0 S(

⋃
j<i ej, ei)

k − 1
.

where

S(ea, eb) =
|ea ∩ eb| × 100

|ea ∪ eb|
Here S(ea, eb) denotes the sharing between two epochs a and b with footprints ea

and eb.

For example, in Algorithm 1, loops 1 and 2 each have epoch sharing of

100, since they always touch the same data. Loops with only one epoch have an

epoch sharing of zero in our analysis. We find epoch sharing to be a very common

characteristic of loops in data intensive applications. In Figure 3.2, we compute

the epoch sharing breakdown of loops with more than 1 epoch. It clearly shows

that loops reuse data heavily. Even for an irregular benchmark like mcf, we see

that 61% of loops have epoch sharing of more than 75%.
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Figure 3.3: Loop nest tree annotated with epoch sharing values for the main
kernel of equake.

We use the profile data to create a dynamic loop nesting tree for the ap-

plication. Each node in the tree represents a single loop, and its children are the

loops nested within it. We ignore function call boundaries when creating the tree

(i.e., if a loop calls a function that contains loops, those loops are directly nested

within the calling loop). Our analysis does not currently handle recursion, so we

ignore back edges in the loop nest tree. Figure 3.3 shows the loop nest tree of

equake from Spec2000 [Hen00], annotated with epoch sharing values.

Clearly, data spreading is most effective on loops with large memory foot-

prints and high epoch sharing. If an inner loop (child loop) has high epoch sharing,

it is likely that the outer (parent) loop also exhibits high epoch sharing. However,

it does not work to spread both loops, as the migrations in the inner loop will

just override the outer loop migration commands. For example, the outer loop in

Algorithm 1 inherits all of its epoch sharing from the inner loops, and spreading

the outer loop would actually hurt performance. Even when both parent and child

loop have significant epoch sharing, and the parent does not inherit the sharing

from the child, the child is often a better candidate to spread (assuming its working

set exceeds the cache size). Currently, we always spread the child in this situation.

3.3.2 Baseline spreading algorithm

Our baseline algorithm takes three parameters to do loop selection – an

epoch sharing threshold, Emin, a minimum footprint size, Fmin, and a maximum
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Table 3.3: Description of different loop selection policies. The policies use different
threshold values for epoch footprint and ES.

Policy Description

FP16 Epoch footprint ≥ 16KB
FP32 Epoch footprint ≥ 32KB
FP64 Epoch footprint ≥ 64KB
ES25-FP32 Epoch footprint ≥ 32KB and ES ≥25%
ES75-FP32 Epoch footprint ≥ 32KB and ES ≥75%
ES25-FP32-MG Epoch footprint ≥ 32KB and ES ≥25%

and Epochs/sec ≤ 1000

migration frequency. We examined other inputs, such as sharing with siblings,

etc., but found that our best algorithms used just these three. The algorithm

examines the nodes of the loop nest graph in reverse topological order, starting at

the leaves and working toward the root. The algorithm selects a loop for spreading

if a) none of its descendants have been selected and b) its epoch sharing and epoch

footprints are larger than Emin and Fmin, respectively. Typically, Fmin would be

set to a value smaller than the cache, given that the profiled working set is not

necessarily indicative of the working set size of future runs.

Once the candidate loops are finalized, we do simple source to source trans-

formations. For loops with known iteration bounds before entering the loop, we

spread it using Algorithm 3. For loops with unknown iteration bounds, we need

to know the expected iteration count – Nl from the profile.

3.3.3 Candidate loop selection

The basic algorithm described above provides three parameters that we can

tune to improve performance. Table 3.3 lists the settings we evaluate. Table 3.4

gives the number of selected loops for each policy on our benchmarks, and shows

how loops are filtered across different policies. For instance, FP16 admits just 24%

of all loops, indicating that there are a significant number of loops with very small

footprints. Policy ES25-FP32-MG is more restrictive, and includes only 15% of all

static loops.
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Table 3.4: Number of selected loops for different selection policies. The threshold
on epoch footprint filters more than 75% of loops.

Bench Total FP16 FP32 FP64 ES25 ES75 ES25
mark Loops FP32 FP32 FP32

MG

Art 84 32 32 31 20 20 20
Applu 199 23 23 19 12 11 12
Equake 121 27 27 27 6 6 6
Mcf 70 22 19 19 11 7 9
Swim 69 16 14 12 9 9 9
Libq 63 16 16 16 14 9 14
BT 243 56 52 50 43 43 43
CG 63 30 26 20 14 14 14
LU 190 41 35 27 15 15 15
MG 82 15 15 15 8 5 6
SP 333 82 82 76 72 72 72

Figure 3.4 shows the performance improvement for all six policies shown in

Table 3.3, run on a 2-socket (4 die) Core2Quad machine. The first three policies

filter loops based solely on footprint size. Allowing loops with very small foot-

prints (<16KB) degrades performance by 18%, but performance improves by 3%

on average if we require footprints to be at least 64KB.

The next three policies use the epoch sharing threshold to filter loops that

do not benefit from data spreading because they touch different data during each

epoch. Although without ES considerations, the FP64 limit outperformed FP32,

we find that using a more liberal policy (FP32) and then letting the ES restric-

tion pare down the list was preferable. Limiting epoch sharing to at least 25%

works well, and the ES25-FP32 policy provides a small speedup (compared to a

slowdown for FP32). Increasing the ES limit to 75% reduces the slowdown of

two benchmarks– Swim and MG by filtering some loops that cause too frequent

migrations. The last policy, which also guards against too-frequent migrations,

improves performance further (up to an 8% speedup), in large part by eliminating

slowdowns where data spreading does not work well. This policy eliminates loops

whose epochs occur more than once per millisecond. This caps migration overhead
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Figure 3.4: Wall clock speedup across all benchmarks using six different policies
in the Core2Quad system.

at 5% of execution time. Ultimately, we see that a combination of large footprint,

high ES sharing and avoiding too-frequent migrations yields the best candidates

for spreading.

LU clearly gains the most from software data spreading. As we explore in

Section 3.4, performance is highly sensitive to working set size. Unfortunately, LU

is the only one of these applications with a significant data structure in the sweet

spot – between the size of one and four caches. But we also get reasonable gains

on BT and libquantum.

Swim and Mcf each see little or no benefit for any of the policies. Swim has

a very large working set of around 191MB, so even using four caches (combined

cache space 24MB) data spreading fails to keep sufficient useful data. In the case

of Mcf, most of the data accesses are irregular, and we do not see benefit because

of expensive cache-to-cache transfer in our real experimental system.

For current systems, migration overhead has a significant impact on the

performance of data spreading. The split of user vs. kernel time provides in-

sight into these costs. For policy FP16, the most aggressive, LU sees a 14% user

time speedup, but the increase in kernel time due to OS migration code resulted

in a wallclock slowdown of 31%. This implies techniques that reduce migration

costs [SMM+09, BT08] will increase the benefits of data spreading and compilers

can apply the technique more aggressively. Section 3.4.5 explores this further.
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Figure 3.5: Speedup across different machines using the ES25-FP32-MG policy.
The improvement can be as high as 2.2×.

3.3.4 Loop spreading policies

Once we have selected a loop for spreading, we must determine how and

when to migrate. We considered several different policies, but the results in this

chapter only reflect one. That policy is also our simplest.

The balanced policy spreads loop iterations evenly across the available cores.

Our results for more complex policies failed to show significant or consistent gains.

For example, policies that considered the size of the cache more explicitly tended

to reduce sharing between sibling loops. For example, the first one quarter of loop

A tended to touch the same data as the first one quarter of loop B. With balanced,

those data all go into the same cache. With other policies, we might migrate at

different points in the two loops depending on how much other data was being

touched. The results shown in this chapter all use the balanced policy.

3.4 Understanding Data Spreading

This section strives to acquire a deeper understanding of data spreading,

particularly in light of the uneven performance gains demonstrated in the previous

section. It uses microbenchmarks, kernels, and one full benchmark running on a
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whole suite of real machines to examine the interplay of working set size and data

spreading effectiveness. It also measures data spreading’s impact on power and

energy. Finally, it examines data spreading’s sensitivity to migration overhead,

especially for spreading within a CMP.

3.4.1 Diverse memory hierarchies

Results for our benchmark suite on four different machine architectures

are shown in Figure 3.5. Here we see that each machine gets speedup from data

spreading, but the speedups are not very predictable. In most cases, speedup

is simply a case of whether or not the key data structures fit in the aggregated

caches. Since each of these architectures has a different cache hierarchy, the results

varied. We see, though, that across a diverse range of working sets, performance

improved overall. Both the Pentium 4 and the Core2Quad systems achieve an

average speedup of 13%.

3.4.2 Microbenchmarks

To further understand the sensitivity of these techniques to working set

size, we focus on a more restrictive set of benchmarks that give us the ability to

modify the working set size continuously. First, we create two microbenchmarks

– one accesses data sequentially, the other chases pointers through memory at

random. Both perform the same set of accesses on each iteration through an outer

loop. We ran these benchmarks on four different machines, as shown in Figure 3.6.

The Core2Quad results (Figure 3.6b) illustrate the phenomenon well. Without

data spreading, when the working set fits in the cache, throughput is high, but it

degrades quickly when the working set overflows the cache. With data spreading,

there is a cost when the data fit in a single cache, and it asymptotically matches

the baseline when the working set is very large. But in between, data spreading

significantly extends the region where we maintain close to full throughput. This is

true both for sequential access (where the hardware prefetcher is actively assisting

performance) and random access (where it is not). All four machines show a similar
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Figure 3.6: Data spreading throughput for sequential and random access for dif-
ferent machines – (a) Pentium 4, (b) Core2Quad, (c) Nehalem, (d) Opteron. The
’-Base’ data are for code that does not perform data spreading.
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Figure 3.7: Speedup across different machines for 2D Jacobi using data spreading.

effect.

Also notice that the data spreading curves do not drop as sharply as the

baseline – we continue to get some performance even after the working set no

longer fits fully in the aggregated caches.

3.4.3 Applications

We can perform similar experiments for two full applications with easily

configurable working sets – the 2D Jacobi kernel and the SPEC2006 libquantum

application. For these, we show speedup of data spreading over the baseline for a

given working set size.

The Jacobi results are shown in Figure 3.7. The graph shows speedup for

the region between the size of a single cache and the size of the aggregated caches

that data spreading operates on. On either side of this “hump” data spreading

offers no benefits. All the machines achieve speedups between 1.25 (Nehalem) and

3.5 (Pentium 4). The Pentium 4 does especially well because it has the highest

latency to main memory. The Core2Quad delivers improvements over the widest

range – from 5 to 35 MB.

Results for libquantum from the SPEC2006 Integer benchmark suite are in

Figure 3.8. Libquantum is a more complex computation with multiple, and varied,
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Figure 3.8: Speedup across different machines for Libquantum using data
spreading.

spread loops. Although the complexity of the application adds some noise to the

results, the same trends emerge: Data spreading provides speedup after the local

cache is exhausted, again extending the high-IPC range of the benchmark across

a wider range of input sizes. The Core2Quad achieves over 3× speedup for this

application.

These results all point to the same conclusion. While data spreading does

not always provide speedups over non-spread code, it consistently makes the ap-

plication’s performance significantly more robust in the face of varying working set

size. In the best case, data spreading achieves dramatic speedups – it achieves

parallel-type speedups on parallel machines, without ever requiring parallel execu-

tion. This last point makes the optimization particularly attractive from an energy

efficiency standpoint, which is explored further in the next section.

3.4.4 Power

On the surface, using multiple cores to execute a single thread does not

appear to be a power-conserving optimization. However, just the opposite is true,

since only one core is ever active at any time. Indeed, data spreading can save

power (and energy) by eliminating accesses to DRAM.

We use a power meter on two of our experimental systems to quantify this
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Figure 3.9: Power requirements for random access in Core2Quad and Opteron.
The idle power shows the power consumption when no workload is running.

effect for our random access microbenchmark. We measure the total power of the

entire system. So, it reports the power consumption by all system components

including the memory system, cooling system, storage devices, network cards, etc.

Figure 3.9 shows the results. Where data spreading is effective, the power savings

is dramatic. Spreading on the Core2quad saves up to 51W, or 81% of non-idle

system power. For the Opteron, the savings are smaller – 13W, or 72% of non-idle

power. The results also show the cost of the unnecessary migrations: At 2MB,

migrations increase power consumption by up to 7W and 2W on the Core2Quad

and Opteron, respectively.

From this graph, we see the dramatic impact on power when DRAM ac-

cesses are made unnecessary. This bodes well for our real applications, where

DRAM accesses are consistently reduced, in some cases by an order of magni-

tude. Figure 3.10 shows the normalized (to no data spreading) last level cache

(LLC) misses for the Core2Quad system. These results correlate well with the

speedup results in Figure 3.5. Note that spreading-induced coherence (cache-to-

cache) transfers show up as misses, even though in some machines they will be

faster (and lower power) than memory misses. Data spreading converts 80 and

90% of misses into local hits for LU (B input) and applu (train input), respec-
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Figure 3.10: Reduction of last level cache misses for Core2Quad using data
spreading.

tively. For 11 of our 21 benchmarks, data spreading eliminates 20% of misses or

more.

3.4.5 Migration overhead

Data spreading’s primary overhead comes from the migrations it requires,

especially the software overhead. Triggering these switches with the system call,

sched setaffinity incurs a fixed overhead of 9 to 14 µs (Table 3.1), since it requires

a trap to the operating system. If context switches occur too frequently, this

overhead will eliminate the benefits of data spreading. Increasing the number of

cores exacerbates this problems, since the frequency of context switching increases

linearly with the core count. This is unfortunate, since spreading across more cores

also increases the amount of cache capacity that data spreading can exploit.

To reduce the migration overhead, we developed a userspace context switch

mechanism (User-CS in the figures, as opposed to OS-CS ) that uses user space

migrations (via setcontext() and getcontext()) and spin locks to reduce migra-

tion costs to just 1-3µs. Idle cores spin until called upon to wake up and acquire

the context of the running thread.

Figure 3.11 compares the performance of both migration schemes for our
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Figure 3.11: Impact of userspace and OS directed thread migration in Core2Quad
for the microbenchmarks.

microbenchmarks on the Core2Quad. The User-CS scheme increases performance

by 5% for working set sizes up to 10 MB (12% for 4 MB or less) for sequential

accesses and by up to 2% for working set sizes under 12 MB (6% 4 MB or less)

for random accesses. The gain is larger for smaller working sets because migration

occurs more frequently in this case.

Figure 3.12 shows the comparison between User-CS and OS-CS for the

full benchmark suite on the Core2Quad system. Overall, User-CS gives us a 17%

speedup on average (compared to 13% average speedup by OS-CS). Again, user-CS

provides the greatest new boost for small working sets (like the train input sets); it

also reduces or eliminates performance degradation we previously observed when

we were experiencing frequent migrations (e.g., SP).

The P4 machine also sees 4% additional speedup when we use user-level

migration. However, we do not notice significant changes for Opteron or Nehalem.

In these machines, we use two cores (vs. 4 cores used in Core2Quad and P4) which

reduces the frequency of migrations by half.

User-level migration, as demonstrated here, is a reasonable approach when

performance is the highest goal. However, the idle, spinning threads may reduce

the power savings that data spreading can deliver.
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Figure 3.12: Speedup in Core2Quad using user space thread migration. User-CS
provides 4% additional speedup on average.

3.4.6 Data spreading in CMPs

So far we have applied data spreading across sockets and dies, but data

spreading can also be applied in multicore architectures. However the smaller

private caches in these architectures mean that working sets small enough to fit into

the aggregate on-chip private caches will induce frequent migrations. Therefore,

data spreading requires the use of a fast migration mechanism (like User-CS) to

realize performance gains.

To evaluate CMP data spreading we ran experiments on the Nehalem (4

core) and Opteron (6 core) machines. Nehalem has 256K private L2 caches per

core whereas the Opteron has 512K private L2 caches. Figure 3.13 shows the

results for the microbenchmarks on both machines. The combined cache space in

Nehalem is 1M, so the benefit comes when the working set lies between 300K and

1M. The combined cache space in Opteron is 3M and so data spreading improves

performance over a broader region.

Figure 3.14 shows the performance improvement for different benchmarks

on Opteron while spreading is deployed within the single socket. Overall we see 6%

average performance improvement and, as expected, the speedup mainly occurs for

smaller working sets.



40

0
25
50
75
100
125

150
175
200
225
250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Working Set (MB)

O
pe

ra
tio

ns
 p

er
 µ

s
Seq-Base
Seq-DS
Rand-Base
Rand-DS

(a)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Working Set (MB)

O
pe

ra
tio

ns
 p

er
 µ

s

Seq-Base
Seq-DS
Rand-Base
Rand-DS

(b)

Figure 3.13: CMP data spreading throughput for sequential and random access on
– (a) 6-core Opteron, (b) 4-core Nehalem.
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3.5 Conclusion

This chapter presents a new compiler optimization, software data spreading,

targeted at multiprocessors and multicore processors. It uses thread migration to

allow a single thread to utilize the space of multiple private caches. This allows the

program to transform off-chip accesses into local cache hits when the data access

pattern is highly repetitious. In the case where it is not predictably repeatable, it

still turns DRAM accesses into cache-to-cache transfers. Using an approach that

relies on profiling to identify loops with large data footprints and to characterize

their sharing patterns, we identify for each application a small set of loops that

are spread across multiple caches via migration. We achieve average speedups of

17% using four processors. Speedups on the SPEC2006 libquantum benchmark

are as high as 3.3x, depending on the input size. Data spreading can also provide

significant power and energy savings since it actively uses only one core at a time

and can dramatically reduce memory accesses.
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Chapter 4

Inter-core Prefetching: Exploiting

Migrating Helper Threads

In the previous chapter, we demonstrate how non-traditional parallelism like

data spreading allows programs with limited parallelism to profitably use several

cores per thread, increasing the application’s scalability. However, data spreading

does not provide benefit if the working set is too large or the program does not have

a repetitive access pattern. In this chapter, we introduce a “helper thread” based

software prefetching technique called inter-core prefetching that removes these two

limitations.

Prior work [CSK+99, CWT+01, CTWS01, ZS01, Luk01, KY02, KLW+04,

LWW+02] has demonstrated the use of helper threads which run concurrently

in separate contexts of a simultaneous multithreading (SMT) processor and sig-

nificantly improve single thread performance. Helper thread prefetching has ad-

vantages over traditional prefetching mechanisms – it can follow more complex

patterns than either hardware prefetchers or in-code software prefetchers, and it

does not stop when the main thread stalls, since the prefetch threads and the main

thread are not coupled together. However, SMT prefetching has its limitations.

The helper thread competes with the main thread for pipeline resources, cache

bandwidth, TLB entries, and even cache space. The helper thread cannot target

more distant levels of the cache hierarchy without thrashing in the L1 cache. In

addition, core parallelism is typically more abundant than thread parallelism –

43
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even on a 4-core Nehalem, only 1 SMT thread is available for prefetching. Perhaps

most importantly, not all multicores support SMT.

In contrast to prior approaches, inter-core prefetching lets helper threads

run on separate cores of a multicore and/or multi-socket computer system. Multi-

ple threads running on separate cores can significantly improve overall performance

by aggressively prefetching data into the cache of one core while the main thread

executes on another core. When the prefetcher has prefetched a cache’s worth of

data, it moves on to another core and continues prefetching. Meanwhile, when

the main thread arrives at the point where it will access the prefetched data, it

migrates to the core that the prefetcher recently vacated. It arrives and finds most

of the data it will need is waiting for it, and memory accesses that would have

been misses to main memory become cache hits.

Inter-core prefetching can target both distant shared caches and caches

private to the core. Inter-core prefetching is especially attractive because it works

with currently available hardware and system software. Thus, it would be easy to

incorporate in a compiler or runtime system. Previous approaches have required

fundamental changes to the microarchitecture or were limited to prefetching into

shared caches.

This chapter describes inter-core prefetching and our implementation under

Linux. We characterize the potential impact of inter-core prefetching on a range

of currently-available multicore processors running focused microbenchmarks and

then demonstrate its impact on a wide range of memory-intensive applications.

Our results show that inter-core prefetching improves performance by an average

of 31 to 63%, depending on the architecture, and speeds up some applications by

as much as 2.8×. We also demonstrate that inter-core prefetching reduces energy

consumption by between 11 and 26% on average. Finally, we show that because

of the separation of resources, inter-core prefetching is more effective than SMT

thread prefetching.

The remainder of this chapter is organized as follows: Section 4.1 describes

the inter-core prefetching technique in detail. Sections 4.2 and 4.3 contain our

methodology and results, and Section 4.4 concludes.
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4.1 Inter-core Prefetching

Inter-core prefetching allows a program to use multiple processor cores to

accelerate a single thread of execution. The program uses one to perform the

computation (i.e., the main thread). The other cores run prefetching threads, which

prefetch data for the main thread. The two types of threads migrate between cores

with the prefetching threads leading the way. Thus, when the main thread arrives

on a core, much of the data it needs is waiting for it. The result is reduced average

memory access time for the main thread and an increase in overall performance.

Inter-core prefetching is a software-only technique and requires no special support

from the processor’s instruction set, the operating system, caches, or coherence.

Inter-core prefetching works by dividing program execution into chunks. A

chunk often corresponds to a set of loop iterations, but chunk boundaries can occur

anywhere in a program’s execution. The chunk size describes the memory footprint

of a chunk. So, a 256 KB chunk might correspond to a set of loop iterations that

will access 256 KB of data. For example, if a loop touches 1 MB of data in 100

iterations, then a 256 KB chunk would consist of 25 iterations, a 512 KB chunk

would consist of 50 iterations.

Both the main thread and prefetch thread execute one chunk at a time. In

the main thread, the chunked code is very similar to the original code, except for

the calls to the run-time that implement migration.

The prefetch thread executes a distilled [ZS01, CWT+01, KY02, QMS+05]

version of the main thread, with just enough code to compute addresses and bring

the necessary data into the cache. We will use the term prefetch slice, or p-slice

(terminology borrowed from prior work) to describe the code that the prefetch

thread executes to prefetch the data.

Figure 4.1 illustrates inter-core prefetching with one main thread (solid line)

and one prefetcher thread (dotted line) executing on two cores. Execution begins

with the main thread executing chunk 1 and the prefetcher executing chunk 2.

Once they complete their chunks, they swap cores and the main thread starts on

chunk 2 while the prefetcher moves on to chunk 3.

Sometimes, multiple prefetch threads are useful. In a four-core system,
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Figure 4.1: Program execution path for inter-core prefetching. The main thread
and the prefetch thread swap cores repeatedly, when the main thread reaches a
new chunk of data.

three cores would prefetch chunks 2-4 while the main thread executes chunk 1.

When the main thread starts executing chunk 2, the prefetch thread for chunk 2

would move on to chunk 5. In this scenario, each prefetcher thread has 3 chunks

worth of time to finish prefetching the chunk.

Our implementation of inter-core prefetching comprises three principal com-

ponents. First, a program analysis algorithm identifies chunk boundaries in the

original program. Second, a p-slice generator creates a distilled version of the code

for the chunks. Finally, the inter-core prefetching library provides a mechanism

to keep the main thread and the prefetcher threads synchronized as they migrate

between cores.

Below we describe the key components of inter-core prefetching in detail

and present an example that illustrates inter-core prefetching in action.

4.1.1 Identifying chunks

A chunk is a sequence of executed instructions which access a portion of

the application’s address space that matches (as closely as possible) the target
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chunk size. We use two different approaches for partitioning the iteration space

into chunks – aligned chunks and unaligned chunks.

Whenever possible, we use aligned chunks. Aligned chunks force chunk

boundaries to align with loop iteration boundaries at some level of the loop nest.

For instance, if an inner loop accesses 100 KB and the target chunk size is 256 KB,

we will likely start and end a chunk every two iterations of the outer loop.

There are some situations where inner loop iterations follow predictable

patterns even though the outer loop does not. In that case, it is easier to add a

counter and track inner loop iterations, ignoring the structure of the outer loop –

that is an unaligned chunk. Unaligned chunks allow us to swap after a predictable

number of inner loop iterations, even if we are not sure how many outer loop

iterations will have executed. For example, if we are targeting 1024 inner loop

iterations, and the inner loop executes 200, 700, then 300 iterations, the first swap

would happen in the middle of the outer loop’s 3rd iteration. For some loops, it

may not be possible to predict the future addresses at all – pointer chasing code

being a prime example. We do not prefetch those loops.

We prefer aligned chunks, even when there is not a precise match between

inner loop sizes and the desired chunk size. They introduce less overhead because

they allow us to use the existing structure of the code to introduce the thread

management primitives. In practice, unaligned chunks are rarely needed.

To identify useful chunks, a profiler selects loops that perform at least 0.5%

of the total memory accesses. The profiler also creates a dynamic loop nest tree

that spans procedure boundaries, and calculates the average memory footprint of

an iteration in each loop. While we will invariably suffer from profile mismatch,

the information on the data touched in a single iteration is reliable enough to be

useful across multiple inputs.

4.1.2 Distilling code

To build the prefetching thread, we generate p-slices by hand, following

the example of much of the original work on helper thread prefetching [ZS01,

CWT+01, Luk01]. Generating aligned chunks is typically simple and the tech-
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niques we apply are all implementable in a compiler. Other efforts have used both

static [KY02, QMS+05] and dynamic [ZTC07] compilation, as well as specialized

hardware [CTWS01] to construct p-slices. Those techniques could be applied to

inter-core prefetching as well.

For both chunk types (aligned and unaligned), the p-slice contains just the

code necessary to compute the prefetch addresses and perform the prefetches. In

most cases, the distilled code matches the basic structure of the main thread, but

this is not necessary. For instance, if the compiler can determine the range of

addresses the code will access, it can easily generate a generic prefetcher to load

the data with minimal overhead — unlike SMT prefetchers, the ordering of the

accesses within a chunk is unimportant in our scheme.

Our implementation uses normal loads rather than prefetch instructions,

because the hardware has the option of ignoring prefetch instructions if there

is contention for memory. Using normal loads requires that the prefetcher only

issues memory requests to valid addresses. This was not a problem for any of

the workloads we examined, but a more aggressive implementation that issued

speculative prefetch instructions to potentially invalid addresses could use prefetch

instructions to avoid segmentation faults.

Our p-slices include several other optimizations as well: We convert stores

into loads to prevent misspeculation and avoid invalidations that could delay the

main thread. We use profile information to determine the most likely direction

for branches within a loop iteration. For highly biased branches, we remove the

unlikely path and the instructions that compute the branch condition.

4.1.3 Thread coordination

For inter-core prefetching to work properly, the main thread and prefetcher

threads must work together smoothly. This means that (1) they must take the

same path through the program so they execute the same chunks in the same

order, (2) the prefetch thread must stay far enough of the main thread to make

the prefetches useful, and (3) they need to synchronize at swap points to exchange

cores.
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The first requirement is part of creating valid p-slices: The distiller must

ensure that both the prefetcher and the main thread take the same route through

the program. To handle the second requirement, we always start a prefetch thread

at least a full chunk ahead. The prefetch thread can finish its chunk either earlier or

later than the main thread does. The prefetcher usually finishes first, in which case

one prefetching thread is sufficient (as in Figure 4.1) and the main thread will rarely

stall. In some cases, the p-slice is slower than the main thread, and the main thread

must wait for the prefetcher to finish. When that happens, we start prefetching the

next chunk of data in the main thread’s core to avoid wasting cycles, but we would

prefer to never have to stall the main thread. As an alternative, we could stop

the prefetching thread prematurely and allow the main thread to execute without

any stall. We experiment with this approach but do not observe any advantage in

our experiments. The reason is that if the main thread finishes early, eventually

either the main thread or the prefetch thread will have to bring in the missing data

for the next chunk to execute. Often the prefetcher (because it has more memory

level parallelism and less overhead) will do so faster than the main thread, so it is

better to just let it finish.

As a third alternative, very effective when we expect the prefetch threads

to consistently be slower, we can use multiple prefetching threads to reduce or

eliminate the need for the main thread to stall, and increase the effectiveness of

prefetching. This exploits additional parallelism to allow the prefetch threads to

stay ahead.

To coordinate thread migration, we have implemented a simple user-space

migration tool that allows threads to migrate between cores without entering the

kernel. This takes around 1–2µs and saves significant overhead since normal con-

text switches take about 10µs on our machines. At each wait and swap point,

the distiller inserts a call to a library function in both the main thread and the

prefetching thread. The function acts as a barrier across the main thread and the

prefetching thread working on the next chunk the main thread will execute, so the

threads block until they have both completed their chunk. Then the threads swap

cores, and the main thread starts executing on the core with a freshly populated



50

jacobi2D ( ) {
for(i=1;i<1000;i++)
for(j=1;j<1000;j++)
a[i][j]=(b[i][j-1]+    

b[i][j+1]+
b[i-1][j]+ 

b[i+1][j])*c
}  

jacobi2D_icp ( ) {
start_inter_core_pref( )
for(k=0;k<100;k++) {
wait_and_swap(k+1)
for(i=k*10;i<(k+1)*10;i++)
for(j=1;j<1000;j++)
a[i][j]=(b[i][j-1]+

b[i][j+1]+ 
b[i-1][j]+

b[i+1][j])*c
}
end_inter_core_pref( )
}

jacobi2D_pslice ( ) {
while(continue_prefetching){
t = wait_and_swap(0)
for(i=t*10;i<(t+1)*10;i++)
for(j=1;j<1000;j+=8)
load a[i][j], b[i][j]

}
}

Prefetch thread codeMain thread codeOriginal code

jacobi2D ( ) {
for(i=1;i<1000;i++)
for(j=1;j<1000;j++)
a[i][j]=(b[i][j-1]+    

b[i][j+1]+
b[i-1][j]+ 

b[i+1][j])*c
}  

jacobi2D_icp ( ) {
start_inter_core_pref( )
for(k=0;k<100;k++) {
wait_and_swap(k+1)
for(i=k*10;i<(k+1)*10;i++)
for(j=1;j<1000;j++)
a[i][j]=(b[i][j-1]+

b[i][j+1]+ 
b[i-1][j]+

b[i+1][j])*c
}
end_inter_core_pref( )
}

jacobi2D_pslice ( ) {
while(continue_prefetching){
t = wait_and_swap(0)
for(i=t*10;i<(t+1)*10;i++)
for(j=1;j<1000;j+=8)
load a[i][j], b[i][j]

}
}

Prefetch thread codeMain thread codeOriginal code

Figure 4.2: Inter-core prefetching implementation for the 2D Jacobi kernel.
Prefetch thread takes an argument that specifies the chunk it should prefetch. The
calls to wait and swap() synchronizes the two threads before swapping processors.

cache while the prefetch thread moves on to start prefetching another chunk.

The tool uses standard Linux APIs – setcontext, getcontext, swapcontext,

and pthreads to perform the swap. The library reduces the context switch overhead

by a factor of 5. The entire thread management substrate requires only about 25

lines of code, not including comments. We use Linux’s scheduler affinity interface

to “pin” kernel threads to particular cores, while our thread management system

moves logical threads between them.

Figure 4.2 shows the code for a 2D Jacobi implementation and the corre-

sponding main thread and p-slice code. We use aligned chunking and each chunk

is a sequence of the outer loop’s iterations. To make the p-slice efficient, we re-

move all the arithmetic operations, and make it touch each cache line only once by

incrementing j by 8 in the inner loop since each cache line holds 8 elements. This

transformation speeds up execution by a factor of 2.2× on a Core2Quad machine

using four cores.
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4.1.4 Impact of cache coherence

Cache coherence concerns do not have a significant impact for SMT based

helper thread prefetching because both the helper thread and the main thread share

all levels of cache. However, on inter-core prefetching, the underlying coherence

protocol has a greater impact when chunks share data. This impacts both the

generation of p-slices and the optimal chunk size. We will briefly discuss some of

these issues here.

Write sharing is particularly problematic for inter-core prefetching. We

do not allow helper threads to write, but if they prefetch data that the main

thread writes to, it results in a slow upgrade transaction in the main thread and

an invalidation in the helper thread rendering the prefetch useless. Read sharing

has less of an impact, particularly when there exists a shared inclusive last level

cache (like the L3 cache in Nehalem). In that case, both the main thread and the

prefetch thread can get data from the shared cache. However, with an exclusive

shared cache (L3 cache in Opteron), the prefetch thread will need to get the data

from the other core (via cache-to-cache transfer) rather than from the shared cache.

This is not a problem except that on this architecture cache-to-cache transfers are

slow – they take 4 to 5 times as long as going to the L3 cache [HMN09]. The

Core2Quad, with no global shared cache, has similar issues. Adding additional

prefetch threads can potentially hide this extra latency and avoid any impact on

the main thread.

The degree of sharing between chunks depends significantly on the chunk

size. For instance, if neighboring loop iterations share data, a larger chunk size

that covers many iterations will cause less inter-chunk sharing than a smaller chunk

size. For the 2D Jacobi case in Figure 4.2, using one iteration per chunk means

that the main thread and prefetching threads share 50% of read data, while using

10 iterations per chunk results in less than 10% shared data.
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Table 4.1: The three processors have very different memory hierarchies that lead
to different optimal points of operation for inter-core prefetching.

System Intel Core2Quad Intel Nehalem AMD Opteron
Information Intel Core2Quad Intel Nehalem AMD Opteron

CPU Model Harpertown Gainestown Opteron 2427
No of Sockets×
No of Dies× 2×2×2 1×1×4 1×1×6
No of cores
L1 Cache size 32KB 32KB 64KB
L1 hit time 3 cycles 4 cycles 3 cycles
L2 Cache size 6MB (per die) 256KB private 512KB private
L2 hit time 15 cycles 10 cycles 15 cycles
L3 Cache size None 8MB shared 6MB shared
L3 hit time 38 cycles 36 cycles
Data TLB capacity 16, 256 64, 512 48, 512
(Level-1, Level-2) 48, 512
Memory access 300-350 cycles 200-240 cycles 230-260 cycles
latency 230-260 cycles
Swapping cost 2µs 1.7µs 1.7µs

4.2 Methodology

This section describes the processors and applications we use to experimen-

tally evaluate inter-core prefetching. The next section presents the results of those

experiments.

4.2.1 Processors

Inter-core prefetching depends on the details of the processor’s memory hier-

archy and interconnect. Currently-available processors vary widely in the number

of caches they provide on chip, the geometry of those caches, the interconnect

between them, and the policies used to manage them. Table 4.1 summarizes the

three processors we use to evaluate inter-core prefetching. On the Core2Quad, we

use only one core per die, so that the L2 acts like a private cache.

All of the processors have hardware prefetching enabled. This allows us to

evaluate whether inter-core prefetching effectively targets cache misses traditional
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Table 4.2: Our benchmarks, with memory footprint, last level cache misses per
1000 instructions on Opteron, the number of loops where inter-core prefetching is
applied, and the chunking technique used.

Benchmark Suite, Input Memory LLC No of Chunking
name footprint misses / ICP technique

1000 inst loops

BT NAS, B 1200 MB 19.96 20 Aligned
CG NAS, B 399 MB 20.86 5 Aligned
LU NAS, B 173 MB 17.42 14 Aligned
MG NAS, B 437 MB 11.74 6 Unaligned
SP NAS, B 314 MB 19.61 35 Unaligned

Applu Spec2000, Ref 180 MB 13.09 8 Aligned
Equake Spec2000, Ref 49 MB 28.53 4 Aligned
Swim Spec2000, Ref 191 MB 25.16 4 Aligned
Lbm Spec2006, Ref 409 MB 19.95 1 Aligned
Libquantum Spec2006, Ref 64 MB 24.45 6 Aligned
Mcf Spec2006, Ref 1700 MB 47.57 6 Both
Milc Spec2006, Ref 679 MB 27.34 20 Aligned

Svm-rfe Minebench 61 MB 16.97 1 Aligned

prefetchers cannot handle.

4.2.2 Applications

To evaluate inter-core prefetching, we use a collection of applications from

Spec2000, Spec2006, the NAS benchmark suite, and MineBench [PLL+06]. Inter-

core prefetching is only of interest for applications that are at least partially mem-

ory bound. For applications that are not memory bound, the technique will have

little effect. To identify memory bound applications, we used performance counters

to count last-level cache misses. If the application incurred more than 10 cache

misses per thousand instructions on the Opteron, we included it in our test suite.

Table 4.2 provides details about the workloads and inputs.

The table also lists how many loops we applied inter-core prefetching to and

what type of chunks we used. For the NAS benchmarks we used the “W” inputs

for profiling. For Spec2000 and Spec2006 we used the train inputs. Svm-rfe does
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Figure 4.3: Inter-core prefetching throughput for – (a) Core2Quad, (b) Nehalem,
(c) Opteron. As working set size increases to overflow one processor’s cache capac-
ity, inter-core prefetching prevents performance from dropping by using a cache on
another processor to stage data.

not include multiple inputs, so we profiled on the same input we used to collect

performance results.

4.3 Results

We evaluate inter-core prefetching in four stages. First, we use simple

microbenchmarks to measure its potential and understand some of its tradeoffs.

Then, we evaluate the technique’s application-level impact using the workloads

described in Section 4.2. Next, we evaluate inter-core prefetching’s effect on power

and energy consumption. Finally, we compare inter-core prefetching’s performance

across cores to a version of the technique that targets SMT contexts, and also with

data spreading, another software-only cache optimization.

4.3.1 Microbenchmarks

To establish inter-core prefetching’s potential, we use a simple microbench-

mark that allows us to study the interplay between the chunk size, the number

of prefetching threads, and the ratio of computation to memory access. Our mi-

crobenchmark accesses cache lines either sequentially (in virtual address space) or

pseudo-randomly – in that case accessing each cache line in a region of memory
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exactly once, but in random order. The order is deterministic, though, allowing

the prefetch thread to predict it accurately (this mimics dereferencing an array of

pointers, for example). After accessing a cache line, the microbenchmark does a

configurable number of arithmetic operations. We consider two cases: The base

configuration executes four arithmetic operations per cache line access, and the

comp configuration issues 32 operations. This gives four different microbenchmark

configurations: rand-base, rand-comp, seq-base, and seq-comp.

The potential of inter-core prefetching

We first use the microbenchmarks to establish the overall potential for inter-

core prefetching as the working set size changes. Figure 4.3 shows the throughput

(measured as cache lines accessed per µs) of seq-comp and rand-comp for the three

machines. It compares performance with and without inter-core prefetching over

a range of working set sizes. The chunk size is 256 KB, and it uses one prefetch

thread (two cores total).

For the microbenchmark without prefetching, throughput is high when the

working set fits in local cache, but drops off (sometimes precipitously) when it no

longer fits. Inter-core prefetching significantly (and, in one case, completely) miti-

gates that effect. For working sets that fit within the processor’s cache, inter-core

prefetching adds a small amount of overhead, reducing performance by between

3 and 4%. As the working set size grows, however, the benefits of inter-core

prefetching are potentially large. For instance, for sequential access, throughput

improves 1.76×, 1.38× and 1.85× for Core2Quad, Nehalem, and Opteron, respec-

tively. These gains are in addition to the performance that the hardware prefetcher

provides. The gains for random accesses are even larger: 6×, 2.5× and 4×, respec-

tively. This is primarily due to the fact that the hardware prefetcher is ineffective

for these access patterns.

The performance gains for random accesses are particularly interesting,

since inter-core prefetching delivers between 2.5 and 6× improvements in perfor-

mance using just two threads. It may seem counterintuitive, since the number of

cores only doubled relative to running without prefetching. This is an important
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result – inter-core prefetching is not bound by the limits of traditional parallelism

(i.e., linear speedup). Instead, the only limit on speedup it offers is the ratio

of memory stall time to compute time in the pipeline. When that ratio is large

(i.e., the processor stalls for memory frequently), and the stalls can be removed

by a small number of helper cores, we can achieve speedups well above linear.

Therefore, inter-core prefetching is more than a fall-back technique to use when

thread-level parallelism is not available. For some applications inter-core prefetch-

ing will be more effective than conventional parallelism. Of course, in those cases,

a combination of traditional parallelism and inter-core prefetching is likely even

better.

Looked at another way, inter-core prefetching achieves large speedups be-

cause it adds memory-level parallelism to applications that otherwise lack it. This

is not obvious in the 2-core case, because we just move the data accesses from

one core to the other. However, not only do the p-slices sometimes remove data

dependences between loads that may have been in the code, they also minimize

the number of instructions executed between loads and thus maximize the number

of loads in the instruction window at one time.

Figure 4.4 demonstrates that inter-core prefetching moves almost all of the

misses from the main thread to the prefetch thread. As long as the chunk fits in

the L2 cache (for Opteron in this case), inter-core prefetching neither increases nor

decreases L2 cache misses, it just performs them earlier and off the critical path.

The speedup comes from the fact that we can access the data more quickly, and

with more parallelism, than with a single thread.

In effect, inter-core prefetching partitions the work the application is doing

into two, time-intensive parts: Executing non-memory instructions and waiting for

cache misses. In this respect, it is similar to a decoupled access/execute [Smi82]

approach to computation. If a single thread must handle both tasks, it performs

poorly at both: Memory stalls inhibit instruction level parallelism, and dependent

non-memory operations retard memory level parallelism by filling the instruction

window. Allocating a core to each task removes these counterproductive interac-

tions and increases the performance of both. Additionally, it separates prefetch



57

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

S
-1

6K

S
-3

2K

S
-6

4K

S
-1

28
K

S
-2

56
K

S
-5

12
K

S
-1

02
4K

R
-1

6K

R
-3

2K

R
-6

4K

R
-1

28
K

R
-2

56
K

R
-5

12
K

R
-1

02
4K

N
or

m
al

iz
ed

 L
2 

m
is

se
s

Prefetch thread Main thread

Figure 4.4: Misses incurred by the main thread and prefetch thread for different
chunk sizes (R-16K means random access, 16 KB chunk), relative to the number
of misses incurred in the baseline (no inter-core prefetching).

accesses and what demand misses the main thread still experiences onto separate

cores, potentially increasing total memory bandwidth.

Chunk size and the number of prefetch threads

Once the p-slice is generated, two parameters remain to be set – the chunk

size and the number of prefetching threads (i.e., the number of cores to use).

Changing the chunk size changes the level of the cache hierarchy prefetching will

target and how completely we try to fill it, but it also determines how much swap-

ping overhead occurs. For small chunk sizes, the frequent swaps might dominate

the gains from prefetching.

Increasing the number of prefetching threads can improve performance if

the prefetching threads have difficulty keeping up with the main thread, since using

additional cores to prefetch increases the amount of memory level parallelism the

system can utilize. However, allocating more cores to prefetching increases power

consumption and also means more cores are unavailable to run other threads.
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Figure 4.5: The graphs at left show the impact of chunk size on performance for our
microbenchmark. The right hand figures measure the effect of varying the number
of prefetching threads. Each pair of figures is for a different processor. Inter-core
prefetching is especially effective for random access patterns that the hardware
prefetcher cannot handle. For threads with less computation per memory access,
more than one prefetching thread is necessary for optimal performance.
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To understand the interplay of chunk size, compute intensity, and number

of prefetch threads, we measure throughput for our microbenchmark with a 32 MB

working set while varying the chunk size and the number of prefetch threads.

Figure 4.5 shows the results for our three processors. The figures on the

left measure the impact of chunk size, while those on the right measure the effect

of total core count. For the Core2Quad, a chunk size of 128 or 256 KB gives the

best performance regardless of access pattern, but for other processors sequential

accesses favor larger chunks between 64 and 256 KB, while 16 KB chunks perform

best for random accesses.

The performance gains are again largest for the random access patterns,

where there is limited benefit from hardware prefetching. For 16 KB chunks,

inter-core prefetching improves Nehalem throughput by 3.75× and Opteron’s per-

formance by 6×.

The right hand graphs in Figure 4.5 show the impact of using multiple

prefetching cores for the optimal chunk size from the left hand graphs. Adding

additional prefetchers improves performance almost linearly up to four cores (three

prefetchers) for seq-base on the Core2Quad and Opteron machines. Nehelam sees

benefits with up to three cores. For seq-comp, conversely, one or two prefetchers

give the best results. This is an expected result: When the main thread does little

computation for each memory access, it is difficult for a single helper thread to

execute as quickly as the main thread. For the random access patterns, results are

similar.

It is not surprising that the optimal number of cores varies by memory

access pattern and computation/memory ratio. However, the optimal chunk size

also varies, especially by access pattern. This implies that the optimal chunk size

depends not only on a particular cache size, but also at which level of the memory

hierarchy the most misses are occurring, the effectiveness of the prefetcher, and the

relative cost of migration/synchronization. For example, with random access, the

program runs more slowly. This reduces the relative cost of migration, so smaller

chunks are desirable. In fact, the migration overhead is amortized to the point

that targeting the L1 cache is the best strategy for Nehalem and Opteron. For
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Figure 4.6: Performance improvement for different degree of read/write sharing
using inter-core prefetching. Sharing factor of 0.3 means adjacent chunks share
30% of data.

sequential access (because it is harder to amortize the swap cost and because the

hardware prefetcher is addressing the L1 cache fairly well), the sweet spot seems

to be targeting the L2 cache. Less obvious is why the Core2Quad, with its huge

L2 cache, tails off at 1 MB chunk size. However, inter-core prefetching allows us

to not only pre-fill caches, but also TLB entries. The Core2Quad has 256 TLB

entries per core, just enough to hold 1 MB if there are absolutely no conflicts in

the TLB. Therefore, the optimal chunk size is just a bit smaller than the maximum

space supported by the TLB.

We have also found that prefetching each chunk in reverse is helpful in some

cases. By prefetching the same chunk data, but in the opposite order that the main

thread will access it, inter-core prefetching can target multiple levels of the cache

hierarchy at once – even if a chunk is too big for the L1 cache. In this case, the

last data prefetched will be in the L1 when the main thread arrives and tries to

access it. In general, though, this technique is more difficult to apply, so we did

not include it in our experimental results shown.
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Figure 4.7: Inter-core prefetching provides good speedups (between 20 and 50%
on average) without tuning the chunk size and thread count on a per-application
basis. With that level of tuning, performance rises to between 31 and 63% (the
“best” bars).

Inter-chunk sharing

To quantify the effect of inter-chunk data sharing, we modify our mi-

crobenchmark by adding a configurable sharing factor. Figure 4.6 shows the effect

of inter-chunk sharing across different machines in the rand-comp case for both read

and write sharing. We use 16 KB chunks with one prefetch thread and vary the

fraction of shared data from 0 to 50%. As expected, without inter-core prefetch-

ing, throughput improves with the sharing because of the increase in locality. With

inter-core prefetching, throughput stays the same for read sharing, but degrades

rapidly for write sharing. Cache to cache transfer latency is the critical factor for

write sharing. Nehalem, having the best cache to cache transfer latency among the

three machines, is the most tolerant of write sharing and sees improvement even

when the main thread and prefetcher share half their data. Core2Quad, with a

private cache design, has expensive cache to cache transfer operations, so inter-core

prefetching hurts performance when more than 40% of data is shared.

4.3.2 Application Performance

This section examines the effectiveness of inter-core prefetching on real ap-

plications, with the p-slices generated as described in Section 4.1. Figure 4.7

displays inter-core prefetching’s impact on our benchmark suite. The first three
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Figure 4.8: Mean speedup across all benchmarks for different combinations of
chunk size and number of cores.

bars represent results for a single chunk size (that gave good performance across

the entire benchmark suite) per architecture, varying the number of cores. The last

bar gives the result that uses the best chunk size and core count per application

(out of the 12 combinations– 2, 3, 4 cores and 128, 256, 512, 1024 KB chunks).

Overall, prefetching improves performance by between 20 and 50% on av-

erage without tuning the chunk size or core count for each benchmark. Per-

benchmark tuning raises performance gains to between 31 and 63%. A further

step would be to tune the parameters on a loop-by-loop basis.

Performance gains are largest for Core2Quad, because it has the largest

cache miss penalty. For some applications, the gains are far above the aver-

age: Prefetching speeds up LBM by 2.8× (3 cores and 1024 KB chunks) on the

Core2Quad and MILC sees improvements of nearly 1.6× for Nehalem. Even a

complex integer benchmark like MCF gets 1.6× on Opteron. MCF also shows the

impact of microarchitectural differences across machines on performance improve-

ments. Unlike Opteron, Nehalem does not see any improvements and Core2Quad

sees moderate speedup of 20%. This variation is due to the difference in cache hier-
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archy, window size, hardware prefetcher implementation, coherence protocol, etc.

across these machines. To understand these differences, we measure the percentage

of execution time covered by loops selected for inter-core prefetching (measured in

the baseline case). Nehalem and Core2Quad spend between 44 and 47% of exe-

cution in those loops. Opteron spends 64%, which accounts for the larger overall

impact on performance.

The effectiveness of increased prefetching threads varies widely among ap-

plications. For some (e.g., CG) additional prefetching threads are useful on all

three architectures. For CG running on Nehalem with one prefetch thread, the

main thread has to wait for the prefetch thread 89% of the time. With two and

three prefetch threads, that number goes down to 25% and 0.4%, respectively.

We see similar data for CG on Core2Quad and Opteron. For others (e.g., applu),

adding threads hurts performance. If thread count has a strong impact on perfor-

mance, the trend tends to be consistent across all three processors. The optimal

number of cores is a function of the ratio of memory stalls to computation, which

tends not to change across architectures.

Figure 4.8 shows results averaged across all benchmarks, for a wider range of

chunk sizes for the three machines. We see again from these results that speedups

are somewhat tolerant of chunk size, although there are some poorer choices to be

avoided.

Looking closely, ICP exploits the latency gap between different levels of

memory and becomes the most useful when these gaps are exposed due to the lack

of memory level parallelism. In Core2Quad, the latency ratio between accessing

the DRAM and last level cache (L2 cache) is around 20, and we get 63% speedup on

average. Compared to that, the ratio is around 6 for Nehalem, and the performance

improvement is 31% on average. For Nehalem, there is another latency gap between

L2 and L3 cache that also contributes. We see similar behavior for the Opteron

system. This gives us an intuition about how ICP may perform in a future system

where there can be a different cache organization and different access latencies.

The latency gap between the last level cache and DRAM has the strongest impact.

But if we prefetch in a cache other than the last level cache, the benefit is more,
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Figure 4.9: Inter-core prefetching increases power consumption slightly compared
to the non-prefetching version of the application, but the prefetching threads con-
sume much less power than the main thread. The horizontal line denotes idle
power on each system.

and it depends on the latency gap between the corresponding levels of the cache

hierarchy.

4.3.3 Energy Considerations

Inter-core prefetching has two competing effects on application energy con-

sumption. The technique increases performance, which would reduce energy con-

sumption if power remained constant. However, using multiple cores for execution

increases power consumption both because multiple cores are active and because

the throughput of the main thread increases.

To measure the total impact on energy, we measure total system power and

energy with a power meter. The measurement includes everything in the system,

including the power supply and its inefficiency, so the results are not directly

comparable with simulation studies that focus only on processor power.

Figures 4.9 and 4.10 show results for Nehalem and Core2Quad. We were

unable to measure results for the Opteron because of system administration issues.

Our measurements show that the applications running without prefetching require

282 W (Nehalem) and 381 W (Core2Quad) on average (i.e., total system power
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Figure 4.10: Inter-core prefetching’s performance gains counteract the increase in
power consumption it causes, resulting in a net reduction in energy of between 11
and 26%. Measurements in the graph are normalized to the application without
inter-core prefetching.

increased by 42 W and 87 W while running the application compared to an idle

system). Inter-core prefetching with a single prefetcher increases power consump-

tion by 14 W (Nehalem) and 19 W (Core2Quad), and adding another prefetching

thread requires an additional 6 W.

In terms of energy, the performance gains that inter-core prefetching delivers

more than compensates for the increased power consumption. Per-application

energy drops by 11 and 26% on average for the two architectures, and as much as

50% for some applications.

4.3.4 Comparison with SMT Prefetching

Previous work on helper-thread prefetching focused on SMT machines. This

section compares that approach with inter-core prefetching.

To provide a reasonable comparison, we use the same chunk and p-slice

generation techniques that we use for inter-core prefetching, but we run the p-slice

on the second context of one of Nehalem’s SMT cores. Since the main thread and

prefetching thread will run concurrently on the same core, there is no need for

context switches or the associated overhead.
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Figure 4.11: Comparing inter-core prefetching and SMT prefetching for different
chunk sizes in Nehalem. On SMT, smaller chunk sizes give better performance
because migration is not necessary and the prefetcher can target the L1 cache.
However, using multiple cores still results in better overall performance.

Figure 4.11(a) compares the performance of applying prefetching across

SMT contexts and applying it across cores for Nehalem using our microbenchmark.

We see from these results that SMT prefetching favors smaller chunk sizes since

they minimize interference between the helper thread and the main thread in the L1

cache. With very small chunks, of course, CMP prefetching is not effective because

of the cost of swapping. However, with large chunks inter-core prefetching easily

outperforms the best SMT result. Figure 4.11(b) shows the same comparison for

one of our Spec2006 benchmark, libquantum. This application has regular memory

access pattern, and so it follows the trend of sequential access in Figure 4.11(a).

Inter-core prefetching, even on architectures where SMT threads are avail-

able, benefits from the absence of contention for instruction execution bandwidth,

private cache space, TLB entries, cache bandwidth, etc. This lack of contention

allows the prefetcher threads to run very far ahead of the main thread and makes it

easier to fully cover the latency of cache misses. As a result, inter-core prefetching

is vulnerable to neither useless late prefetches nor early prefetches whose data are

evicted before the main thread accesses it. This also explains why the hardware

prefetcher cannot completely eliminate the need for inter-core prefetching in case
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of the fully predictable (e.g. sequential) access pattern. In addition, the hard-

ware prefetcher will not cross page boundaries, while inter-core prefetching ignores

them.

4.3.5 Comparison to data spreading

Inter-core prefetching shares some traits with our previous work on data

spreading (Chapter 3), which also uses migration to eliminate cache misses. Under

that technique a single thread periodically migrates between cores, spreading its

working set across several caches. For applications with regular access patterns and

working sets that fit in the private caches, data spreading converts main memory

accesses into local cache hits. For more irregular access patterns, it converts them

into cache-to-cache transfers. The results show that it can improve performance

by up to 70%.

Inter-core prefetching and data spreading are complimentary, but they differ

in several ways. First, data spreading is only useful when the working set of the

application fits within the aggregated caches. Inter-core prefetching works with

working sets of any size. Second, data spreading uses a single thread, and, as a

result, does not incur any power overheads: only one core is actively executing

at any time. Inter-core prefetching actively utilizes multiple cores. Finally, as

datasets grow, data spreading requires more and more cores. In many cases, inter-

core prefetching gets full performance with 2 cores, even with very large data sets.

Figure 4.12 compares inter-core prefetching and data spreading on Jacobi.

The figure measures speedup relative to a conventional implementation on the same

architecture. The data show that data spreading provides better performance when

Jacobi’s data set fits within the aggregate cache capacity of the system. Inter-core

prefetching offers better performance for larger data sets. The technique also

does not require larger private caches. This helps to effectively apply inter-core

prefetching in state of the art multicores with moderately sized private L2 caches.
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Figure 4.12: Inter-core prefetching and data spreading are complimentary tech-
niques. Data spreading delivers better performance and power savings for small
working sets, but for larger working sets, inter-core prefetching is superior.
Speedups are relative to a conventional implementation.

4.4 Conclusion

This chapter describes inter-core prefetching, a technique that allows mul-

tiple cores to cooperatively execute a single thread. Inter-core prefetching distills

key portions of the original program into prefetching threads that run concurrently

with the main thread but on a different core. Via lightweight migration, the main

thread follows the prefetching threads from core to core and finds prefetched data

waiting for it in its caches. Our results show that inter-core prefetching can speed

up applications by between 31 and 63%, depending on the architecture, and that it

works across several existing multi-core architectures. Our results also show that,

although it uses multiple cores, it can reduce energy consumption by up to 50%.

Inter-core prefetching demonstrates that it is possible to effectively apply helper

thread-based techniques developed for multi-threaded processors to multi-core pro-

cessors, and even overcome several limitations of multithreaded prefetchers.
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Chapter 5

Coalition Threading: Adapting

Non-Traditional Parallelism for

Parallel Applications

Previous chapters demonstrate the potential of inter-core prefetching and

software data spreading in the absence of traditional parallelism (i.e., serial code).

These non-traditional parallelism (NTP) techniques provide parallel speedup (sev-

eral cores or hardware contexts execute a program faster than a single core) with-

out changing the number of logical threads (e.g., pthread or MPI threads) running

the computation. This chapter shows that NTP is also effective even when tra-

ditional parallelism exists. For many loops, the best parallel solution is to apply

non-traditional parallelism on top of traditional parallelism rather than using only

traditional parallelism. We can exploit this by using a combination of these two

types of parallelism that applies different techniques to different parts of an appli-

cation to increase scalability. We call this combination coalition threading, and in

this chapter we examine, in particular, the combination of traditional parallelism

expressed as pthreads and OpenMP constructs, paired with inter-core prefetching

(ICP) described in Chapter 4. ICP uses a helper thread to prefetch data into

a local cache on one core, then migrates execution to that core. This technique

requires no hardware support and works across cores, sockets, and SMT contexts,

so it is applicable to a wide range of current and future parallel microprocessors.

70
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This chapter quantifies the benefits of coalition threading on a state-of-the-

art multiprocessor, running a range of benchmarks, and describes compiler heuris-

tics that can identify the loops in each benchmark most suited to non-traditional

techniques. While coalition threading represents an opportunity for the program-

mer or compiler to increase parallel speedup and scalability, deciding when to

apply each technique is not easy, and making a poor decision can adversely impact

performance.

Our results show that coalition threading with ICP can outperform tradi-

tional threading in 39% of the 108 loops in eleven applications we studied, chosen

to only include those that already saw some benefit from traditional parallelism.

By selecting the best threading strategy on a loop-by-loop basis, we demonstrate

that coalition threading improves total performance by 17% on average and up to

51% for some applications.

Achieving that level of performance requires that the compiler, programmer,

or runtime system be able to determine when to apply each type of parallelism.

We find that a standard machine learning technique, linear classification [FCH+08],

accurately classifies 98% of the loops where the decision is critical and 87% over-

all. Considering application performance, the heuristic achieves over 99.4% of the

performance that an oracle could deliver.

This chapter addresses several contributions. It is the first investigation

into the effectiveness of combining non-traditional parallelization techniques with

traditional parallelization. It demonstrates that a combined approach can as much

as double the performance of traditional parallelization alone for particular loops.

We show that performance can be highly sensitive to the decision made for each

loop. To handle that, this chapter develops heuristics that a compiler can easily

implement to identify which combination of traditional and non-traditional paral-

lelism will work best.

The remainder of this chapter is organized as follows. Section 5.1 describes

coalition threading. Section 5.2 describes our methodology. Section 5.3 compares

the performance of parallelization techniques. Section 5.4 derives and evaluates

heuristics to identify the best parallel approach, and Section 5.5 concludes.
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5.1 Coalition Threading

Coalition threading augments conventional parallel threads with helper

threads to improve performance and scalability. Coalition threading works be-

cause many loops (virtually all, if you scale far enough) have limited scalability

– non-traditional parallelism can pick up when traditional tails off. In addition,

NTP is not bound by the limits of traditional parallelism. Both data spreading,

and inter-core prefetching have demonstrated greater than n-fold speedups with n

helper threads. This means that NTP can be a profitable choice even for scalable

loops.

In principle, coalition threading will work with many different kinds of

helper threads, but we focus on inter-core prefetching, because it works on any

cache coherent system and subsumes other techniques including SMT helper thread

prefetching [CWT+01], shared cache prefetching [LDH+05], and also software data

spreading.

The following section identifies the key issues that arise in coalition thread-

ing in general and with ICP in particular. Then we describe the implementation

of our coalition threading framework.

5.1.1 ICP based coalition threading

Our coalition threading implementation uses ICP as the non-traditional

component. For clarity, we use the term par-ICP to describe ICP implemented on

top of traditional parallelism, and applied to each of the original parallel threads.

Seq-ICP is ICP applied alone, running on top of a single-thread version of an

application. Coalition threading refers to choosing the best technique (seq-ICP,

par-ICP, or traditional parallelism) for a particular loop or for all the loops in an

application.

Par-ICP applies inter-core prefetching to each original or main thread. If

an application has N main threads and ICP provides M helper threads per main

thread we need a total of T = (N+N×M) hardware contexts. When N is one, we

only exploit helper thread parallelism. Likewise when M is zero, the application
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is running with just traditional parallelism.

Note that the choice for the value of M is critical for parallel code. In prior

work, it was assumed that other cores were otherwise idle, and adding more helper

threads was close to free. For parallel code, there is typically a high opportunity

cost, because even increasing M by one reduces the number of main threads by a

factor of (2 + M)/(1 + M). For example, for a total of 24 threads, we can either

have 24 main threads with no helper threads, 12 main threads each with one helper

thread, or 8 main threads each with two helper threads. Recall that for ICP, more

than one helper thread is only useful when it takes more time to prefetch a chunk

than to execute that chunk. Thus, we want our prefetch threads to be as efficient

as possible, and to use no more threads than necessary to leave more threads/cores

for traditional parallelism. Fortunately, in most cases, ICP achieves nearly all its

benefits with M=1.

Several new factors impact the effectiveness of ICP when applied to parallel

code, including parallel data sharing and synchronization overhead.

Data sharing (including false sharing) has a stronger negative impact on

the effectiveness of par-ICP than it has on seq-ICP. For read sharing, if the main

threads share data then so do helper threads, both with each other and with other

main threads. Thus, a single cache line can be in many caches. This uses the

caches inefficiently and potentially leads to expensive upgrade events when a main

thread eventually writes the line. Write sharing is even more critical, because

more than one thread can now invalidate the prefetched data a helper thread has

accumulated.

Conversely, if access to that shared data is protected by barriers or locks,

ICP can be extremely effective. There are several reasons for this. First, syn-

chronization overhead slows down the main thread, making it easier for prefetch

threads to keep up. Second, those applications tend to scale poorly, so even if ICP

is not helpful at low thread counts, it can be better than traditional parallelism at

high thread counts. Third, loops with frequent communication are often vulnera-

ble to load imbalance – in those cases it is often better to make every main thread

faster rather than increase the number of main threads.
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5.1.2 Our coalition threading framework

We develop a custom-built source to source translator based on the Rose

compiler infrastructure [QSPK01] to implement coalition threading. This frame-

work is flexible enough to apply other non-traditional techniques like shared cache

prefetching [LDH+05] or software data spreading (Chapter 3). However, ICP gen-

erally outperforms these techniques and so we do not demonstrate them in this

chapter. The framework supports both OpenMP or pthread code. In the case

of OpenMP applications, the framework first converts the OpenMP pragmas into

pthread constructs.

Our system decides on a loop-by-loop basis whether and to what extent to

apply traditional threading or par-ICP. The framework uses a heuristic to decide

the threading technique for each loop and automatically produces code that im-

plements the selected threading technique. The new code generates a thread group

of (1 +M) threads for each of the original threads.

Threads within a thread group can trade places with one another, but

cannot migrate across thread groups. We use the user-space thread migration

system used for inter-core prefetching to make migration as cheap as possible.

The framework uses all (N+N×M) threads for parallel execution for loops

selected for traditional threading. For par-ICP loops, the framework implements

ICP within each thread group with one main thread and M helper threads. The

framework generates all the code necessary for splitting the loop into chunks and

the coordination between main threads and helper threads required for swapping

cores within a group. Each main thread provides necessary information (live-

ins, chunk id) to the corresponding helper threads to prefetch the right chunk.

However, the framework does not automatically create the code that will prefetch

data. Instead the framework looks for a callback function associated with a loop

that will act as the prefetch function. Generating the callbacks automatically is

possible (e.g., as in [KY02]), but for the applications we study, we construct them

by hand.

To maximize prefetching efficiency we introduce two optimizations over the

original ICP implementation described in previous chapter. First, we use software
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Table 5.1: Memory hierarchy information and migration cost for the AMD Opteron
system used in our experiments.

CPU components Parameters

CPU model AMD Opteron 6136 2.4 GHz
Number of cores Quad-socket 32 cores
Level-1 (L1) cache 64-Kbyte, 3 cycles
Level-2 (L2) cache 512-Kbyte, 15 cycles
Level-3 (L3) cache 6-Mbyte, 50 cycles
Cache to cache transfer 120-400 cycles
latency
Memory 60-Gbyte DRAM, 150 cycles
Migration cost 2− 5µs

prefetching instructions instead of regular loads to avoid accidental page faults.

Second, we prefetch the chunk in reverse order – iterations that are to be executed

last by the main thread are prefetched first by the helper thread. This ensures that

the data the main thread will use first will be in the L1 cache even if our prefetch

code and chunk size target the L2 cache.

5.2 Methodology

This section describes our experimental methodology – the benchmarks that

we target and the systems that we use to evaluate coalition threading.

5.2.1 Evaluation Systems

We use a quad socket, 32-core state of the art AMD Opteron system running

Linux 2.6. Table 5.1 gives more information about the system. We compile all

codes using gcc4.1.2 with -O3 optimization level and keep hardware prefetching

enabled for all experiments. To measure microarchitectural characteristics like L2

cache misses, we use hardware performance counters.
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Table 5.2: List of the pre-parallelized benchmarks used for the evaluation of coali-
tion threading. The table also shows the number of loops analyzed.

Benchmark Suite Loops
Name Input used Evaluated

BT NAS, B 23
CG NAS, B 2
LU NAS, B 14
MG NAS, C 6
SP NAS, B 35
Ammp SpecOMP, Ref 6
Art SpecOMP, Ref 2
Equake SpecOMP, Ref 5
Fluidanimate Parsec, Native 6
Streamcluster Parsec, Native 2
Graph500 Graph500, 25–5 7

5.2.2 Applications

To evaluate coalition threading, we use memory intensive multi-threaded

applications from the NAS parallel benchmark suite [BBDS93], SpecOMP bench-

mark suite [ADE+01], Parsec [BKSL08], and Graph500 [RCMA10] workloads. Ta-

ble 5.2 summarizes the particular applications and input sizes we use. We did not

include SpecOMP benchmarks that were not written in C or C++ code. In ad-

dition, we had to exclude a few more benchmarks because Rose could not handle

them.

In all, we target 108 loops (Table 5.2) from 11 applications. All of these 108

loops are programmer-parallelized and they include all the loops that contribute

more than 0.5% of the total execution time of the corresponding benchmark when

the benchmark executes with one thread.
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5.3 Effectiveness of the Different Parallelization

Techniques

This section measures the effectiveness of coalition threading on a variety

of parallel workloads. All the data presented in this section apply for our large

32-core Opteron system.

5.3.1 Benefits of coalition threading
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Figure 5.1: Loops show four different behaviors when we apply seq-ICP, traditional
threading, and par-ICP for different thread counts (shown on the x-axis). Most
applications contain loops from more than one group. Here, all four loops are from
the benchmark SP.

The usefulness of coalition threading varies on a loop-by-loop basis, so coali-

tion threading for a particular application may include traditional threading for

some loops and a combination for others. We will use the term traditional when

we use only the parallelism as indicated in the parallel programs themselves, seq-

ICP means we only apply inter-core prefetching, par-ICP means we combine ICP
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with the existing parallelism, and coalition threading (CT) means we make an

intelligent decision about which type of parallelism to apply to each loop.

We evaluate these techniques on each of the 108 loops in our applications,

using between 1 and 32 total threads (and cores). All comparisons throughout the

chapter apply for the same total number of threads (cores). So, the data point for

32 threads means either 32 main threads (traditional), or 16 main threads with

one helper thread (par-ICP), or 1 main thread with 31 helper threads (seq-ICP).

We consider other cases of par-ICP (more than one helper thread) in Section 5.3.2.

We see four different behaviors across the loops. Figure 5.1 compares the

performance for four loops that represent these four classes of behaviors. The first

class (a) are loops for which traditional threading performs better regardless of

thread counts. For loops in class (b), par-ICP consistently outperforms traditional

threading. The third class, (c), contains loops that scale poorly (or negatively)

even for small thread counts with traditional threading. Behavior for the fourth

class, (d), changes as the number of threads increases, despite the fact that these

loops tend to have good scalability. In particular, par-ICP loses for small thread

counts, but wins for large thread counts. All of these four loops are from one

application, SP, demonstrating the importance of applying coalition threading on

a per-loop basis.

Since all our benchmarks are parallel to start with, ICP alone (seq-ICP) is

never the best choice for large core counts. In the more general case, seq-ICP would

be an attractive case for many loops that lack parallelism. In our experiments, seq-

ICP speeds up almost all of our loops (90 out of 108) over sequential execution,

but never over parallel execution; thus we do not consider seq-ICP as an option

for the compiler in this chapter.

We introduce the term ICP-gainT for a loop to compare performance be-

tween traditional parallelization and par-ICP. It is the ratio of the maximum

speedup using par-ICP and the maximum speedup using traditional threading

while using no more than T threads in total. So, for 32 threads, if a loop gets

maximum speedup of 16× using traditional threading and maximum speedup of

20× using par-ICP, the loop has an ICP-gain32 of 1.25. In the case of coalition
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Figure 5.2: Histogram of 108 loops using ICP-gain32 for the Opteron system.
There are 15 loops that get more than 50% speedup.

threading, we seek to apply par-ICP for only those loops that have ICP-gainT > 1.

Figure 5.2 shows the histogram of the 108 loops to represent the impact of

applying par-ICP on each loop in the Opteron system. The x-axis shows different

intervals of ICP-gain32, and the y-axis shows the number of loops in that category.

Applying par-ICP outperforms traditional threading in 42 loops in Opteron. There

are 15 loops that gain at least 50% or more, and 7 loops see speedup as high as

2× or more on top of traditional parallelization.

There are a large number (38 out of 108) of loops where the difference

between par-ICP and traditional is within ±10%. The most common trend we see

is for the par-ICP gains to increase with core counts, in fact we observe quite a few

cases where the curves appear to be reaching a crossover point just at the limit of

cores. Thus, as we continue to scale the number of cores, we expect the number of

applications for which coalition threading is profitable to also increase.

Next, we try to understand the factors that cause some of the loops to scale

better using par-ICP than traditional threading.

5.3.2 Understanding loop behavior

We analyze all 108 loops to identify the most common factors that cause

the diverse behavior when we evaluate both traditional threading and par-ICP on
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each loop.

There are some loops where traditional threading always outperforms coali-

tion threading, as shown in Figure 5.1(a). For these loops, adding more main

threads provide better performance than using ICP, even if ICP has something to

offer. The 59 loops in this class achieve 19% speedup on average when we apply

ICP in the single-threaded case with one helper thread, but if we use that thread

for parallel execution, we get, on average, an 83% speedup. These are highly par-

allel loops with little or no synchronization overhead, few coherence misses, and

high instruction level parallelism (ILP) that hides the effect of memory latency, if

any.

Conversely, Figure 5.1(b) represents the set of loops where par-ICP always

outperforms traditional threading. This includes both loops that scale well and

those that do not. The common factor is that ICP is highly effective in all of these

cases. For the 16 loops in this category, executing in parallel gives 1.2× speedup

on average for two threads (N = 2,M = 0), while ICP gives an average speedup

of 1.9× using just one main thread and one helper thread (N = 1,M = 1). For

some loops, we even see speedup as high as 3.5×. These loops have a significant

number of L2 misses per instruction, and have little memory level parallelism.

In our analysis, we also find several loops that scale poorly for traditional

threading (overlaps with the prior category in some cases). These loops stop scaling

beyond some thread count or even start scaling negatively, as in Figure 5.1(c).

We observe three main causes for such behavior. First, some loops have limited

scalability because there are not enough iterations to distribute over all threads.

This creates load imbalance and does not amortize the cost of parallelism with only

one iteration per thread. Second, there are some loops where computation increases

significantly (linearly in some cases) with the number of threads. For example,

threads can have a private copy of the shared data and can update that copy

independently and merge afterward instead of using locks to access that shared

data. Finally, some loops execute barriers very frequently and so synchronization

time dominates the execution time as the loop is scaled. In all these three cases,

par-ICP always works better than traditional parallelism for higher thread counts.
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Some loops (total 33) exhibit more complex behavior. Their behavior

changes more slowly with the thread counts, as in Figure 5.1(d). For small thread

counts, performance for traditional and par-ICP is similar or par-ICP performs

worse. But for larger thread counts, par-ICP starts outperforming traditional

threading and the performance gap grows. This is often just a sub case of the

previous category, but with lower synchronization overheads that are just starting

to be exposed with high thread counts. We see just a couple of counterexamples

(2 loops from LU benchmark), where the opposite happens – par-ICP wins for

smaller thread counts but loses for larger thread counts. These two loops show

super linear parallel scalability when enough cores are used to fit the working set

in the L2 caches, making prefetching less effective at those core counts.

Multiple helper threads

We also measure performance using more than one helper thread per main

thread. Multiple helper threads can be effective when applied to the single-

threaded case. In our experiments, the speedup (averaged over all 108 loops)

improves to 1.49× from 1.38× when we add one more helper thread (N = 1,M = 2

instead of N = 1,M = 1). However, in most cases, this improvement cannot com-

pensate the reduced parallelism because of the decrease in the number of main

threads. Additionally, more helper threads saturate off-chip bandwidth in some

cases and we do not see the same degree of speedup as we scale to higher thread

counts.

We found three loops where multiple helper threads provided better per-

formance than using a single helper thread for the same total number of threads

(e.g., N = 8,M = 2 works better than N = 16,M = 1). These loops each had

poor scalability as in Figure 5.1(c). Using more threads for ICP reduced the num-

ber of main threads and improved performance. Even in these cases, the gains

were small. So, we restrict ourselves to one helper thread per main thread in the

remainder of the chapter. This also has the benefit of significantly reducing the

decision space for the compiler.
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Table 5.3: List of the 12 loop characteristics that we measure for developing the
linear classification based heuristic.

Name Description

PO Parallelization overhead
CDR Chunk data reuse
L2MI L2 misses per instruction
TLBL2IN L2 misses for TLB walking per instruction
DTLBIN TLB misses per instruction
SSE No of arithmetic operations per instruction
BRANCH No of branches per instruction
IPC Instructions per cycle
DRAM DRAM accesses per instruction
FETCH Per instruction stalls for not fetching
DISP Per instruction stalls for not dispatching
LSQS Per instruction stalls for load store queue full

5.4 Heuristics to apply coalition threading

Coalition threading is the process of making a decision about when to apply

what type of parallelism to each loop. Because we filter our benchmarks for existing

parallelism, we focus here on deciding between traditional parallelism and par-ICP.

For the more general case, seq-ICP must also be considered.

Predicting when par-ICP is profitable for a loop, then, is essential. Our

compiler tool chain profiles (single-threaded) and analyzes each loop to determine

how to extract the most performance using the available CPUs. Depending on the

loop’s characteristics, it will either apply par-ICP or traditional threading. This

section describes the heuristics that our compilation framework uses.

We use a standard classification algorithm in machine learning, linear clas-

sification [FCH+08], to develop our heuristics. It exploits profile information that

we capture from the single-thread execution of the application to classify loops.

We describe this next.
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5.4.1 Linear Classification

A linear classifer [FCH+08] is a simple and robust binary classifier widely

used in machine learning. It uses a hyperplane of n-1 dimension to best separate

a set of n-dimensional points to two classes. The linear classifier library like liblin-

ear [FCH+08] automatically extracts a weight vector from the input training set

to represent the hyperplane. For a particular test point, the classifier computes

the dot product of the weight vector and the feature vector of the test point and

makes a decision based on that. The number of points that the hyperplane can

accurately classify to the correct class determines the accuracy of the classifier.

In our case, we consider each loop as an n-dimensional point where n is

the number of loop characteristics or features that we measure. There are 12 such

characteristics, shown in Table 5.3. These characteristics capture two main things

– factors that impact the scalability of traditional parallelism and factors that

impact the effectiveness of ICP. Parallelization overhead falls in the first category,

while CDR and microarchitectural characteristics (IPC, L2MI, etc.) fall in the

second category.

We use hardware performance counters to measure all microarchitectural

features. For PO and CDR, we use simple profiling. PO computes the number of

barrier or lock executions per instruction while executing with one thread. A high

PO implies the loop is unlikely to scale well. We also assign a large PO value to

the loops that have limited software parallelism and loops where the computation

increases linearly with the number of threads. These special loops also scale poorly

with additional threads.

CDR is the percent of data that the main thread chunk shares with the

helper thread chunk, when the application runs with one main thread. Write

sharing is more expensive than read sharing (Section 4.3) because of the expensive

cache to cache transfers. Thus, we give it more weight and calculate data reuse

as: read sharing + k × write sharing. The value of k depends on how expensive

coherence misses are. In our setup, any value of 2 or above works well. CDR varies

from 0 to 50% for our loops.

We evaluate our linear classifier in two steps – first we try to find out the
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features that have strong correlation, and then we measure the effectiveness of the

best linear classifier.

Correlation of loop characteristics with the classification

We analyze the weight vector of the linear classifier to understand the corre-

lation of the loop characteristics. The magnitude of the weight defines how strong

the correlation is. On the other hand, the sign indicates whether the correlation

is positive or negative. In our case, positive correlation indicates a bias toward

applying par-ICP.

To analyze the correlation, we construct the linear classifier using all 108

loops and 12 characteristics and compute the weight vector. We do 10-fold cross

validation to avoid any bias and take the average weight over all 10 classifiers. For

10-fold cross validation, the data is partitioned into 10 subsets. Each classifier uses

a different subset for testing while the remaining 9 subsets are used for training.

The cross validation accuracy is the percent of data that are correctly classified.

The cross validation accuracy in this case is 79%. There are few parameters (e.g.,

cost for incorrect classification) which we can tune during the training phase of

the classifier. For all of our experiments, we tune these parameters to get the best

accuracy.

Figure 5.3 shows the weight of the characteristics in the classifier. The

strong positively correlated characteristics are PO, TLBL2IN, and L2MI, while

CDR, DTLBIN, BRANCH exhibit negative correlation. Thus, a loop that has

large PO, L2MI, TLBL2IN but low CDR, DTLBIN is most likely to gain from par-

ICP. This figure demonstrates several interesting things. First, IPC and different

types of stalls (fetch, dispatch) have negligible correlation with the decision process.

These are complex metrics and depend on several things like branch misprediction,

cache misses, data dependency, resource conflict, etc., but ultimately they do not

provide concrete information useful for the classification.

BRANCH has a negative correlation because a high rate of branches indi-

cates irregular code where it is difficult to prefetch the correct data – e.g., they

are more likely to contain control-dependent loads or load addresses. L2MI and
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Figure 5.3: Weight vector generated by the linear classifier that represents
correlation.

TLBL2IN have strong positive correlation since ICP primarily converts L2 misses

into L2 hits. DRAM and DTLBIN have negative correlation. This is a little sur-

prising since we expect all types of misses to have positive correlation. This is

impacted by some cases where the loops are very memory intensive and the data

sets are very large, requiring multiple helper threads for ICP to be effective –

threads which are better used for traditional parallelism in those cases.

As expected, PO limits the scalability of traditional parallelization, and has

strong positive correlation. Similarly, CDR reduces the effectiveness of ICP and

has negative correlation.

Since several of the parameters have little impact on the outcome of the

classifier, we can simplify it (and the required profiling) by removing some of the

metrics. We remove the five characteristics (SSE, IPC, FETCH, DISP, and LSQS)

that have the smallest correlation and construct the linear classifier with the re-

maining seven characteristics. The 10-fold cross validation accuracy, in this case,

improves to 84%; thus, ignoring the characteristics that are not heavily correlated

removes the noise and builds a better linear classifier. On the other hand, skipping

some of the important characteristics and picking others does decrease the accu-

racy, e.g., using PO, CDR, L2MI, SSE and BRANCH decreases the accuracy to

69%. Our best linear classifier uses 7 characteristics – PO, CDR, L2MI, TLBL2IN,
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Figure 5.4: Average ICP-gain32 (a) and prediction accuracy (b) for LC7 using
different combinations of training and test set sizes (shown on the x-axis). The
first number represents the training set size.

DTLBIN, DRAM, and BRANCH. We refer to this classifier as LC7.

Linear classifier performance

This section measures the effectiveness of our best linear classifier, LC7,

using standard evaluation techniques for machine learning. We randomly pick

k loops to train the linear classifier and use the rest of (108-k) loops to test it.

While training the classifier, we assume nothing about the test loops and use cross

validation for the train loops to avoid bias towards the training set. To cancel

out the effect of randomization, for a particular training size of k, we repeat the

procedure 20 times to pick different sets of training and test loops, and then take

the average of the outcomes.

There are two metrics that we measure for the test set – average ICP-gain32

and the percent of loops correctly classified in the test set, i.e. prediction accuracy.

We compare our results with the oracle classifier which has prediction accuracy

of 100%. Figure 5.4 shows the average ICP-gain32 and prediction accuracy for

different values of k. Here, the first value indicates the size of the training set

while the second one indicates the size of the test set.

We use different training sizes from 50 to 100. The prediction accuracy

improves with the train size, because the classifier can capture more information.
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However, even if we use 50 loops for training and the other 58 loops for testing,

we get very good accuracy of 74%. Considering the average ICP-gain32, LC7 loses

5% performance compared to the oracle classifier. For a training set size of 100

loops, the accuracy improves to 84% and LC7 performs just 1.2% less well than

the oracle.

We also do another test, where we use all 108 loops to construct the linear

classifier and use that to predict the same 108 loops. In this case, the accuracy

is 87% and LC7 provides around 1.4% less gain than the oracle classifier. This

demonstrates two things – the loops are not linearly classifiable, so we can expect

some error, and yet LC7 performs close to the oracle classifier.

For further information, we analyze the loops that LC7 correctly classifies.

LC7 can more accurately classify the loops which are highly sensitive to the correct

decision – the performance variation between applying par-ICP and traditional is

large. If we only consider the loops where par-ICP either wins or loses by at least

5%, LC7 classifies 91% of loops correctly. The accuracy improves to 98% when we

consider at least 25% performance variation. This is significant, because the linear

classifier does not use any information regarding the possible performance gain or

loss. This also explains why LC7 closely follows the oracle in terms of the average

ICP-gain32 despite selecting the less effective technique 13% of the time.

Other Decision Heuristics In an attempt to simplify the decision process for

the compiler, we alternatively take the correlation data learned from the linear

classifier, and use that to construct a simple decision matrix. Specifically, we

are able to take just four of our highly correlated metrics (PO, CDR, L2MI, and

DTLBIN), apply an experimentally derived threshold for each, and classify each

loop according to whether it is high or low with respect to these four metrics.

By doing so, we are able to replicate the accuracy of the linear classifier. The

advantage of this construction is that it uses only four profile measurements and

simple table lookup. However, since it does not provide gains above the linear

classifier, we do not show the specific results here.
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5.4.2 Application Level Impact

This section analyzes the impact of applying coalition threading (CT) to

the applications. There can be several dominant loops in an application, so we have

four different schemes to consider – apply seq-ICP to all loops, apply traditional

parallelism to all loops, apply par-ICP to all loops and apply the combination of

traditional parallelism and par-ICP as suggested by our heuristic. We call the

last scheme heuristic CT which applies par-ICP to the set of loops chosen by

the heuristic and applies traditional threading to the rest. For heuristic CT, our

coalition threading framework uses the LC7 heuristic described earlier. We also

implement oracle CT that applies coalition threading using the oracle heuristic to

evaluate the performance of the LC7 heuristic at the application level.

Figure 5.5 shows the effect of applying all the schemes on our benchmarks

in the Opteron system. The y-axis here denotes the average speedup over all

benchmarks for a particular number of threads. The seq-ICP scheme cannot com-

pete with other schemes, because most of them scale with traditional threading,

whereas seq-ICP scales only marginally beyond 2 cores. Par-ICP scales better

than traditional threading and gradually catches up – 28% performance loss for 2

threads vs. 15% loss for 32 threads. The impact of par-ICP is more prominent in

case of heuristic CT. For all thread counts, heuristic CT outperforms traditional
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Figure 5.6: The graph compares speedup (normalized to best traditional perfor-
mance) of oracle CT and heuristic CT with other techniques in Opteron. The
improvement is as high as 51%.

threading. The improvement is 1% for 4 threads, but reaches 13% for 32 threads.

As expected, the utility of coalition threading increases with core count. There

is no reason to expect this trend does not continue. Figure 5.5 also shows the

strength of the LC7 heuristic. It performs almost the same as the oracle heuristic.

Next, in Figure 5.6, we compare the performance of heuristic CT with par-

ICP, traditional threading, and oracle CT across all benchmarks. The values on

the y-axis are normalized to the best possible speedup by traditional threading

using no more than 32 cores.

In the Opteron machine, we see gain as high as 21% for SP and 40% for

streamcluster while using the par-ICP scheme. Oracle CT improves performance

further from 21 to 40% for SP by filtering the loops that do not get any benefit

from par-ICP. However, for streamcluster, both the key loops get benefit from par-

ICP and oracle CT gives the same speedup as the par-ICP scheme. Graph500

shows the importance of using a good heuristic. For this application, heuristic

CT provides 51% speedup vs. the 5% loss by par-ICP. Overall, the oracle CT

gives an average of 17.4% gain across all benchmarks, and an average gain of 21%

considering only the nine benchmarks where we apply par-ICP to at least one

loop. Compared to that, heuristic CT gives an average of 16.7% gain across all

benchmarks and performs very close to the oracle CT. The small number of loops
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where our heuristic does not make the correct decision have negligible impact on

the overall application run-time. So our developed heuristic is nearly as effective

as the oracle heuristic.

5.5 Conclusion

This chapter describes coalition threading, a hybrid threading technique

that combines traditional parallelism with non-traditional parallelism, and demon-

strates heuristics to find the best combination, which can be used to direct a par-

allel compiler. We analyze the effectiveness of coalition threading using inter-core

prefetching as the non-traditional component and observe that for a number of

parallel loops, adding ICP on top of traditional threading outperforms traditional

threading alone. Our results show that in a 32-core Opteron system, there are 20

loops out of 108 where coalition threading provides more than 30% improvements

on top of the best possible speedup by traditional threading. Coalition threading

has a strong impact on application level scalability (up to 51% performance gain in

some cases) when we apply the right technique to the right set of loops. Our best

heuristic makes the correct decision 87% of the time and can accurately identify

98% of the loops where the correct decision is critical. Heuristic-based coalition

threading gives an average of 17% improvements across our benchmarks and is

only 0.7% less than what an oracle provides.
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Chapter 6

Underclocked Software

Prefetching

In last few chapters, we show the techniques that improve application per-

formance by accelerating each single thread using multiple cores. However, for

today’s computing platforms, in many scenarios, it is of equal or greater impor-

tance that we should be able to exploit multiple cores to reduce energy or improve

energy efficiency (e.g., energy-delay product).

This chapter shows the potential of inter-core prefetching (Chapter 4) to

provide such opportunity. Using helper thread techniques on a multicore, not

only can we decrease runtime for serial code, but we can also decrease consumed

energy. Here, we demonstrate a helper-thread runtime system, which is uniquely

constructed to exploit higher core counts for decreased energy and to manage the

complex energy/performance/core count tradeoffs. We call this new technique

underclocked software prefetching.

In fact, non-traditional parallelism (e.g., helper thread based parallelism,

where parallel speedup is achieved without dividing up the original computation)

shows new directions for energy optimization. Most parallel code creates homo-

geneous threads, leaving little opportunity for per-thread energy optimization.

Helper thread parallelism is inherently heterogeneous, meaning each thread can

be optimized separately (e.g., running the main thread at a high frequency and

helper threads at a low frequency). That heterogeneity exists across two dimen-

92
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sions. First, the main thread is compute intensive while the helper thread is

memory-intensive, meaning their tolerance to frequency scaling is likely to differ.

Second, they are typically imbalanced, allowing us to exploit slack by scaling the

frequency of a fast helper thread.

Inter-core prefetching (ICP) enables the helper threads to execute on dis-

tinct cores, yet still target the L1 cache, on existing architectures. It does so by mi-

grating the main thread to a core for which the data has already been prefetched by

the helper, simultaneously migrating the helper thread to another core to preload

new data into that cache. In this way, the main thread is constantly executing

in a core for which the current data working set is already present in the data

cache, regardless of the size of the working set. Because helper threads execute in

different cores, their frequency and, in the future, voltage can be decoupled from

that of the main thread.

The combination of inter-core prefetching and per-core frequency control

creates several unique opportunities. First, with the helper thread in a separate

core, we can manage the power of the main thread and the helper threads sep-

arately, exploiting the natural heterogeneity. Second, this allows us to minimize

the incremental power consumed by the helper threads, while preserving the full

performance gain of ICP, resulting in dramatic reductions in energy. Third, it has

been shown that ICP easily handles slow helper threads by simply using more cores

– thus, the complete spectrum of core count vs. per-core power can be exploited

to find the optimal operating point.

This particular work shows that ICP itself can decrease energy over tradi-

tional execution, by a factor of two. Additionally, by controlling the frequency of

helper threads, we have the potential to match the performance of the best ICP

result, while further cutting the energy by as much as 47%. However, we also

show that this potential is not realized on current systems, as ICP is very sensitive

to the (currently very high) latency of changing frequency. We show that future

systems with lower latency, however, will be able to exploit this technology.

The rest of this chapter is organized as follows. Section 6.1 discusses pro-

cessor power management, and the details of the technique. Section 6.2 describes
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our methodology. Section 6.3 evaluates the technique, and Section 6.4 concludes.

6.1 ICP with Frequency Scaling

This section describes how we apply frequency scaling to maximize the

energy-efficiency of ICP. We refer to this approach as ICP-dynamic, where we apply

per-core dynamic frequency scaling, potentially allowing different frequencies for

the main thread and the helper threads. The optimal use of dynamic frequency

control depends heavily on the underlying capabilities and properties of the system,

so we first give a brief overview of processor power and frequency management in

a state of the art system, and then analyze the impact of frequency scaling on

applications. Following that, we describe how to apply ICP-dynamic to single

thread execution.

6.1.1 Processor power management

Most modern processors support multiple performance states (P-states) to

manage power consumption. Each P-state is characterized by an operating voltage

and frequency. A lower P-state means the processor operates at a lower voltage

and frequency. Power consumption follows the equation P ∝ V 2f where P, V, f

stand for power, voltage, and frequency, respectively. So, there is a considerable

increase in power consumption when the processor moves into a higher P-state.

In the case of multicore processors, different systems allow different levels

of heterogeneity – same voltage and frequency on each core, same voltage but dif-

ferent frequency, or different voltage and frequency settings per core. Systems like

Intel Nehalem require the same voltage and frequency for all active cores, whereas

AMD systems (starting from generation 0x10) allow cores to run in different fre-

quency but with the same voltage. This is known as “Independent Dynamic Core”

technology in AMD terminology. There are no general-purpose processors yet that

allow different voltage and frequency settings per core. Therefore, we use per-

core dynamic frequency scaling in this study – future systems that allow per-core

DVFS will see greater improvements in energy efficiency than what we measure
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Table 6.1: Operating voltage and frequency for different P-states in the AMD
Phenom used in our experiments.

P-state Voltage (V) Frequency (MHz)

P0 1.25 3,100
P1 0.90 2,600
P2 0.85 2,000
P3 0.76 1,400
P4 0.76 800

and project in these results.

The AMD Phenom processor supports five P-states including one turbo

state. Table 6.1 shows the different P-states for the AMD Phenom system that we

use. Here P0 is the turbo state and it is only available when at least half of the

total cores are inactive. AMD Phenom allows different P-states for different cores.

In this case, all cores will operate at the voltage of the highest P-state, but will

run at different frequencies. So, if core-0 is in P2, and core-1 is in P4, both cores

will operate at 0.85V, but at 2000 MHz and 800 MHz frequency, respectively. This

consumes less power than running both cores in P2, but uses more power than

using different voltages.

6.1.2 Impact of frequency scaling

Applications show different sensitivity to changing P-states (i.e. frequen-

cies). Figure 6.1 shows the impact on performance using different P-states for two

different kernels – one cpu-intensive, and one memory-intensive. As expected, the

memory-intensive kernel is less sensitive to the change of frequency. If we change

the frequency from 800MHz to 3100MHz (3.9× increment), performance only im-

proves by 2.1×. This happens for two reasons. First, the memory subsystem runs

in a different (and slower) frequency domain than the cores, so changing core fre-

quency does not impact the performance of the memory. Second, the cpu stalls

frequently while executing memory-intensive kernels, and reducing the frequency

decreases the latency of cpu stalls (measured in processor cycles). For cpu-intensive

kernels, performance is highly proportional to the frequency.



96

0

0.5

1

1.5

2
2.5

3

3.5

4

4.5

P4 P3 P2 P1 P0
P-states

Sp
ee
du
p

Cpu-intensive
Mem-intensive

Figure 6.1: Speedup for cpu-intensive and memory-intensive kernels in different
P-states.

Decreasing frequency makes an application run longer, but at lower power,

so the impact on energy is unclear. Additionally, two competing factors make the

problem even more complex. First, higher frequency requires higher voltage so

there can be a cubic increase in the power consumption. This favors lower fre-

quency. On the other hand, other system components, including the memory hier-

archy, consume a large amount of fixed power irrespective of whether the processor

is executing or not, and this favors executing as fast as possible. Current systems

are not energy proportional and the latter effect tends to dominate. Therefore,

for cpu-intensive applications, the most performance efficient execution is usually

also the most energy efficient. However, the scenario changes for the memory in-

tensive applications. Prior works address these issues [HK03, KGyWB08, CSP04]

and show the effectiveness of DVFS for energy efficiency.

These insights impact our results in several ways. First, ICP transforms the

main thread from memory-intensive to cpu-intensive. Second, the helper threads

themselves are memory intensive; however, because our helper threads exhibit

much higher memory-level parallelism than typical code, their forward progress

scales with frequency somewhat more than typical memory-intensive code.



97

6.1.3 ICP and frequency scaling

ICP provides an opportunity to apply per-core dynamic frequency scaling

to make single thread execution more power and energy efficient.

ICP decouples the memory intensive prefetching stream from the execution

stream. The prefetching stream is less sensitive to core frequency, and can execute

in parallel. Thus, we can use multiple prefetch threads to decrease the average

prefetching time. Conversely, the execution stream is more sensitive to core fre-

quency, and is strictly sequential. Thus, the only way to accelerate the main thread

(after ICP is already applied) is to use higher frequency.

ICP-dynamic has the ability to use different frequencies for the prefetching

and execution streams. However, since the main thread and helper threads swap

cores at frequent intervals, we cannot use a fixed frequency for each core. Instead,

we need to change frequency dynamically when a core switches from prefetching to

execution or vice versa. This makes ICP-dynamic highly sensitive to the latency

of changing frequency, which on current systems is very high.

We can explain the impact of ICP-dynamic (ignoring for now the latency

of frequency changes) using the following equation:

T = max(e, (e+ p)/n) (6.1)

Here T is the average time to process a chunk using ICP, e is the time to execute

(after data is already prefetched) a chunk by the main thread at some frequency,

p is the time required to prefetch data for a chunk by the helper thread at some

frequency, and n is the total number of cores used – e.g., in the case of one helper

thread, n is 2. This equation holds whether the main thread and helper threads

use the same or different frequency.

Equation (6.1) demonstrates several things. The theoretical maximum

speedup of ICP is b/e where b is the time to execute a chunk without ICP. When

e is larger than p, we only need one helper thread to get the best speedup. In

this case, the helper thread waits e− p to synchronize with the main thread. We

can lower the operating frequency for the helper thread while e ≥ p. This will

reduce power consumption without sacrificing any performance benefit. When p
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Table 6.2: Memory hierarchy information, migration cost, and the latency to do
frequency/voltage scaling for AMD Phenom.

CPU components Parameters

CPU model AMD Phenom(tm) II X6 1035T
Number of cores Single-socket 6 cores
Level-1 (L1) cache 64-Kbyte private cache, three cycles
Level-2 (L2) cache 512-Kbyte private cache, 15 cycles
Level-3 (L3) cache 6-Mbyte shared cache, 40 cycles
Memory 8 Gbytes, 120 cycles
Latency to frequency change 4− 9µs
Latency to voltage and 14− 70µs
frequency change
Idle state power consumption 94.5W

is larger than e, a more complicated case arises. Lowering the frequency of either

stream will hurt performance in this case. However, we can reduce the frequency

of the prefetching stream if we increase the number of prefetch threads. A lower

frequency increases p, but increasing n easily offsets that since prefetching is less

sensitive to frequency change. Meanwhile, using a lower frequency reduces per core

power consumption.

ICP-static is an alternative option. In this case, core frequencies remain

fixed over time but different cores may operate at different frequencies. Threads

in this case alternate in different frequencies. ICP-static is not typically a great

option compared to ICP-dynamic or ICP-same (all cores at same frequency), but

could be used to keep the power consumption under some budget.

6.2 Methodology

This section describes our experimental methodology – the application ker-

nels that we target, and the systems that we use to evaluate ICP-dynamic and

ICP-static.
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6.2.1 Evaluation Systems

We use a 6-core AMD Phenom desktop system running Ubuntu Linux 2.6.

Table 6.2 gives more information about the system. From Table 6.2, it takes

more time to change voltage than just frequency. The time also scales with the

difference between the P-states. For example, when a core switches from P0 (1.25V,

3100MHz) to P4 (0.76V, 800MHz), it takes around 70µs. However, switching to P2

(0.85V, 2000MHz) from P0, it takes around 14µs. The core is unavailable during

the P-state switching time.

We compile all codes using gcc version 4.5.2 with -O3 optimization level

and keep hardware prefetching enabled for all experiments. We do all power mea-

surements using a “Watts up? .Net” power meter [Dev]. It measures the power for

the system at the wall and reports power consumption in 1-second intervals with

±1.5% accuracy.

We read and write the model-specific registers using privileged instructions

rdmsr and wrmsr to change the P-state of a core.

6.2.2 Application kernels

We extract kernels from 11 applications from several different benchmark

suites – bt, cg, mg, lu, sp from NAS, equake from Spec2000, lbm, libquantum,

mcf, milc of Spec2006, and svm-rfe of Minebench. All of these kernels are key

processing loops of the applications and dominate their performance. We exclude

benchmarks from these suites that are not written in C/C++ or are not memory-

intensive. Using kernels instead of the full application enables us to keep the power

consumption steady for more accurate measurement.

6.3 Results

We evaluate frequency scaling for ICP in several steps. First, we baseline

the power consumption behavior of the system. Then we measure the performance

improvements and power consumption of our kernels using ICP-same. Third, we
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Table 6.3: Power consumption for different P-state combinations. Using one core
in P1 and two cores in P3 will consume 106.8 + 2 ∗ 4.7 = 116.2W .

Core-0 Power Additional core power (W)
P-state consumption (W) P0 P1 P2 P3 P4
P0 125.6 13.8 7.5 6.1 3.3
P1 106.8 8.4 6.6 4.7 2.9
P2 102.8 6.0 4.4 2.6
P3 98.1 3.9 2.3
P4 96.6 2.2

apply ICP-dynamic and ICP-static and measure the performance, power, and en-

ergy. Finally, we simulate the effect of lowering the latency of frequency or voltage

scaling.

In this section, we will use the term active power to represent the power

that we get by subtracting idle power from the power measured at the wall. So, if

the system uses 120W power, the active power is 120 − 94.5 = 25.5W. Similarly,

we can compute active energy.

6.3.1 Power consumption for different P-states

We measure the power consumption for different P-state combinations to

understand how it varies when P-state changes. For this experiment, we use a

simple loop doing arithmetic operations and no memory accesses. Table 6.3 shows

the power consumption for different combinations. The 2nd column represents the

power when one core is active, and columns 3–6 represent the additional power

required when we activate one more core at a particular P-state. So when two

cores run at P0, the power consumption is 125.6 + 13.8 = 139.4W.

Table 6.3 shows three things. There is a large jump in active power con-

sumption when we increase the voltage (active power is 2.1W at P4, 31.1W at

P0). Second, as expected the incremental power of adding a core depends on the

P-state of the first core, since the first core (the one at higher P-state in this table)

determines the voltage. Third, it takes more power to use a high P-state core

rather than multiple low P-state cores. For example, 2 cores at P0 will consume
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Figure 6.2: ICP-same speedup in different P-states. Here 1, 2 represent the
number of helper threads.

139.4W, but one in P0 and 3 cores in P4 will consume 125.6 + 3.3× 3 = 135.5W.

This last characteristic is an opportunity for ICP since we can often replace one

fast prefetch thread with multiple slower ones with no loss in performance.

6.3.2 ICP without frequency heterogeneity

ICP provides significant performance improvements for memory intensive

kernels. Figure 6.2 shows the speedup averaged over all kernels using traditional

ICP (ICP-same) and without using ICP (No-ICP) at different P-states. We use a

chunk size of 128K and apply ICP with both 1 and 2 helper threads.

From Figure 6.2, the effectiveness of ICP increases with higher P-states

(higher frequency). The processor-memory gap accounts for this. Cache misses are

more expensive in P0 than in P4, so eliminating those profits more. We also see that

ICP continues to improve performance linearly with frequency whereas without

ICP, performance tapers off at higher frequency. This is expected – without ICP,

most of these applications are memory bound; with ICP, they become compute

bound.



102

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Normalized active energy

Sp
ee

du
p

No-ICP
ICP-same
ICP-static
ICP-dyn

Figure 6.3: Scatter plot of normalized speedup and active energy consumption
averaged over all kernels for different P-state combinations. The points on the line
are pareto-optimal.

6.3.3 Performance of ICP-dynamic and ICP-static

We compare ICP-same (all cores at same frequency), ICP-static (cores dif-

ferent in frequencies, but do not change, whether running main thread or helper

thread), and ICP-dynamic (cores change frequencies when transitioning from main

thread to helper thread and back) on our AMD system. We compute the power

measurements and performance for all possible P-state combinations for all of our

kernels. We use 128K chunks and vary the number of helper threads between 1

and 2. In each case, we measure the power consumption, active power, energy, and

active energy.

Because there are so many possible P-state combinations, we show a scatter

plot of the possible combinations in Figure 6.3, plotting active energy and speedup.

The pareto-optimal points (connected by the line) are the interesting ones – those

where no other single data point is both above and to the left. From this figure, we

see that none of ICP-static or ICP-dynamic points are pareto-optimal and ICP-

same works best – six out of seven pareto-optimal points are ICP-same. Looking

more closely, some of the ICP-dynamic points are pareto-optimal for individual

kernels, but not in general across all kernels. This is a direct result of the high la-
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tency to switch frequency and/or voltage. Recall from Section 6.1.3, ICP-dynamic

performs two P-state changes per chunk and in some cases, we see a nasty side

effect of the chip P-state policy – consider the case where the main thread is at

P1 and the prefetch threads are at P3. In that case, the main thread determines

the chip voltage. But, if the core running the main thread finishes early, it starts

a prefetch thread and the processor will seek to change the voltage because all

threads are temporarily at P3, resulting in an expensive transition.

Increasing chunk size reduces the frequency of P-state changes. However,

using chunk size larger than 512K (the size of the L2 cache) will drastically impede

ICP performance. We run the above experiment with 512K chunk size and find

that still none of the ICP-dynamic points are pareto-optimal. The average switch-

ing interval in P0 becomes 100µs compared to 24µs with 128K chunk and the

performance drop is around 15%. On the other hand, the P-state change latency

varies from 4− 70µs, the same order of magnitude as the chunk execution time in

some cases. We expect a drop in the future voltage and frequency change latency,

which will change these results significantly.

In the next section, we further evaluate the scenario when the latency to

change P-state is reduced.

6.3.4 Sensitivity to P-state change latency

ICP-dynamic does not perform to its potential because of the high P-state

change latency in our experimental system. Recent research [KBW12] shows the

potential for nanosecond level voltage/frequency switching. The authors report

a voltage transition between 4 and 1.4V within 20ns. Also, systems like IBM

Power7 [FAWR+11] can gradually change core clock frequency while the core is

fully operational – it has essentially zero P-state change latency.

We build a simulation model that analyzes the impact of varying P-state

change latency. We develop the model using the timing and power consumption

data collected from our AMD Phenom system. The model requires six values for

each P-state – time required to execute a chunk without ICP, time to prefetch data

for a chunk, time to execute a chunk when the data is already in the cache, and
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Figure 6.4: Scatter plot of normalized speedup and active energy consumption
assuming zero latency to change P-states. Pareto-optimal points are shown on the
line.

power requirements in the previous three cases. We feed this matrix to our model,

and it computes for each core the amount of time the core prefetches, executes, and

spins for each P-state combination. For ICP-dynamic, the model also considers the

latency to change P-states. The model needs two additional power consumption

values – when the core is spinning, and when it is switching to a new P-state. The

first is easy to measure. For the second, we take the average power consumption of

the participating P-states. The model works for both ICP-dynamic and ICP-static,

and handles any number of helper threads.

For a particular P-state combination, our model computes the power con-

sumption of each participating core, and the average processing time of a chunk (T

in Equation (6.1)), which we again use to compute the performance gain, energy,

or energy-delay product (EDP). We denote a P-state combination by Pxy meaning

that the main thread runs at Px, while the helper thread runs at Py. So, P00 refers

to ICP-same at P0 while P03 indicates ICP-dynamic with main thread at P0 and

helper threads at P3.

Figure 6.4 shows the scatter plot similar to Figure 6.3 (128K chunk, 1–2

helper threads) assuming no latency to change P-states. ICP-dynamic is pareto-
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optimal with respect to all other techniques except P33 and P00. P33 takes the

least energy of all ICP combinations, but the performance of that point is quite

low. P00 provides a little more speedup at the expense of much larger energy. If

we consider other metrics, such as EDP or active EDP, ICP-dynamic dominates

those two points as well.

At the top of Figure 6.4, we see that ICP-dynamic comes within 1% of the

maximum (P00) speedup (5.28×), using the P01 combination which consumes 26%

less active energy. Alternatively, we can get within 2% with P02 while consuming

38% less active energy.

We can underclock the helper threads further while use more cores to attain

the same speedup as ICP-same. In our experiments, P3 seems to be the best choice

for helper threads. Figure 6.5 shows the impact of varying the number of helper

threads for the five ICP-same and three ICP-dynamic choices – P03, P13, and P23.

We use up to 5 helper threads (6 cores). The graph shows the advantage of using

underclocked prefetchers. P00 reaches the theoretical maximum speedup by ICP

using 5 cores. P03 eventually catches up to the speedup provided by P00 using

6 cores, but consumes 47% less active energy. Similarly, P13 consumes 32% less

active energy and still provides the same speedup as P11. ICP-dynamic is effective
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in saving energy with no sacrifice in performance even over the most aggressive

ICP scheme.

We have shown results to this point with both the full frequency switch

latency, and no latency. Figure 6.6 shows the change in speedup for P03 and P13

when the latency varies from 0 to 12µs. We present the results for both 128K

and 512K chunk size to better understand the sensitivity. Note that, given the

granularity of this graph, the most accurate estimate of expected future switch

times (in the few ns [KBW12]) is actually the 0 point. The vertical line shows

the upper limit of the latency beyond which the ICP-dynamic point would no

longer be pareto-optimal. For 128K chunks, this happens around 2µs of latency.

Use of 512K chunk tolerates much higher latency. From Figure 6.6(b), P13 stays

pareto-optimal until 11µs. However, the performance drop is significant for 512K.

If we consider both the 128K and 512K set of points in our scatter plot, none of

the 512K points become pareto-optimal for any P-state change latency. So, the

additional performance provided by the smaller chunks is critical.

Our model also allows us to predict the effects of per-core voltage scaling.

With the same P-states, zero latency switching, and the ability to vary voltage

across cores, P03 can achieve the same speedup as P00, consuming 54% less active

energy (frequency scaling alone achieves 47%).
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6.4 Conclusion

This chapter demonstrates techniques that enable the use of more processor

cores to both improve performance and energy efficiency, even on completely serial

code. It combines a multicore-based helper thread technique with explicit control

of core frequency. The ability to manage the power consumption of the helper

thread enables the system to minimize the incremental power of the helper thread,

without compromising the resulting performance gains. This results in heavy gains

in both energy and energy-delay product.

Furthermore, we showed that the long latency for frequency switching on

current systems is a barrier to full realization of this technique, but future systems

with faster switching will be able to benefit greatly. Compared to the state of the

art helper thread prefetcher, we can match the same performance while consuming

half the energy.
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Chapter 7

Load-Balanced Pipeline

Parallelism

The techniques discussed so far in this dissertation accelerate single thread

execution without dividing up the computation. So, the potential gain is somewhat

limited by the latency variations in different levels of memory hierarchy, or program

internals like how memory intensive the application is, data access pattern, etc. In

this chapter, we focus on extracting the parallel threads that will do computations,

so that we can scale sequential performance as we add more cores. We look at the

applications that are difficult to parallelize due to data dependences in the key

loops, making the code highly sequential.

Prior work on decoupled software pipelining [RVVA04, ORSA05, ROR+08]

addresses the same problem and shows that fine-grained pipeline parallelism ap-

plied at the loop level can be very effective in speeding up some serial codes,

including irregular codes like pointer chasing. In this case, the compiler automat-

ically divides the loop into a set of pipeline stages (each stage can be sequential

or parallel) and maps them to different cores to achieve parallel execution while

still maintaining all the dependencies. However, several issues make the technique

less attractive in practice. First, the cores often remain underutilized because of

the imbalance in the pipeline, sacrificing performance and wasting energy. Sec-

ond, the technique sacrifices the existing locality between stages, communicating

data that was originally local across cores, again sacrificing both performance and

108
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power/energy. Finally, the technique typically works best with the number of

threads at least equal to the number of stages, requiring the compiler to know a

priori the number of cores available, and causing inefficient execution when the

counts do not match.

This chapter describes load balanced pipeline parallelism (LBPP) which ex-

ploits the same pipeline parallelism as prior work, but assigns work to threads in

a completely different manner, maintaining locality and naturally creating load

balance. While prior pipeline parallelism approaches execute a different stage on

each core, LBPP executes all the stages of a loop iteration on the same core, but

achieves pipeline parallelism by distributing different iterations to the available

cores and using token based synchronization to handle sequential stages. It groups

together several iterations of a single stage, though, before it moves to the next

stage.

LBPP is inherently load-balanced, because each thread does the same work

(for different iterations). It maintains locality because same-iteration communi-

cation never crosses cores. The generated code is essentially the same no matter

how many cores are targeted – thus the number of stages and the thread count are

decoupled and the thread count can be determined at runtime and even change

during runtime. Prior techniques must recompile to perform optimally with a

different core count.

Like our other techniques, LBPP is a software only technique and runs on

any cache coherent system. In this chapter, we demonstrate a compiler and runtime

system that implements LBPP. We find that chunking is the key to making LBPP

effective on the real machines. Chunking groups several iterations of a single stage

together before the thread moves on to the next stage (executing the same chunk of

iterations of that stage). Thus, chunking reduces the frequency of synchronization

by clustering the loop iterations. Instead of synchronizing at each iteration, we

only synchronize (and communicate) at chunk boundaries. Chunking appropriately

allows us to maximize locality within a target cache.

In this chapter, we describe the implementation of LBPP under Linux and

evaluate it on two multicore systems. We experiment with different microbench-
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marks, focused on particular aspects of LBPP to characterize the technique better,

and then apply it on a wide range of real applications (both regular and irregular).

LBPP provides 1.7× to 3.2× speedup on AMD Phenom, and 1.6× to 2.3× on Intel

Nehalem on average, depending on the core counts for individual loops. Consid-

ering application level speedup, some irregular applications see as large as 5.4×
speedup over the single thread execution. We also compare LBPP with decoupled

software pipelining. LBPP outperforms decoupled software pipelining by 60% to

88% on the loop level for a particular core count (three cores) because of better

load balancing and locality. The energy savings can be more than 50% for some

applications.

The remainder of this chapter is organized as follows: Section 7.1 describes

the details of the technique. Section 7.2 shows the compiler implementation. Sec-

tions 7.3 and 7.4 demonstrate our methodology and results, and Section 7.5 con-

cludes.

7.1 Load-balanced Pipeline Parallelism

Load-balanced pipeline parallelism exploits the pipeline parallelism avail-

able in the loops of applications and executes them in a data parallel fashion. It

uses token-based synchronization to ensure correct execution of sequentially de-

pendent code and handles synchronization overhead using chunking. The iteration

space is divided into a set of chunks and participating threads execute them in

round-robin order. The technique can handle both regular and irregular codes.

The following sections give an overview of pipeline parallelism and then

describes LBPP.

7.1.1 Pipeline parallelism

Pipeline parallelism is one of the three types of parallelism that we see in

applications (vs. data parallelism and task parallelism). Pipeline parallelism works

like an assembly line and exploits the producer-consumer relationship. There are

several pipeline stages and each stage consumes data produced by previous stages.
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for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

(a) Regular loop

while(p != NULL) {

p->s += p->left->s;

p = p->next;

}

p=p->next

p=p->next

p=p->next

p=p->next

p=p->next

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

(b) Irregular loop
SS-1                   SS-2                SS-3 SS-1                    PS-1

a1=a0+a1

a2=a1+a2

a3=a2+a3

a4=a3+a4

a5=a4+a5

b1=b0+a1

b2=b1+a2

b3=b2+a3

b4=b3+a4

b5=b4+a5

c1=c0+b1

c2=c1+b2

c3=c2+b3

c4=c3+b4

c5=c4+b5
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Figure 7.1: Examples of loop level pipeline parallelism for regular and irregular
loops. The arcs show the dependency relationships.

This maintains the dependency between different stages. The parallelism in this

case is on the order of the number of stages. Pipeline parallelism can be coarse-

grain or fine-grain.

In this work, we are interested in fine-grain pipeline parallelism extracted

from loops in conventional code. Pipeline parallelism might exist in both regular

and irregular loops. Figure 7.1 shows examples of pipeline parallelism in both types

of loop. It also depicts the two different types of dependency relationships that

exist between stages – intra-iteration dependency, and cross-iteration dependency.

The former denotes the dependency between two stages in the same loop iteration

whereas the latter represents a dependence to stages from previous iterations.

The regular loop in Figure 7.1(a) has three pipeline stages – SS1, SS2,

and SS3. SS1 has no intra-iteration dependency (no incoming arcs from differ-

ent stages), but has a cross-iteration dependency. SS2, and SS3 have both types

of dependencies. All three stages in this case are sequential because of the cross-

iteration dependency. This particular loop has a pipeline of three sequential stages.

We can map each stage to a separate core and execute the stages in parallel while

still maintaining all the dependencies. Prior works describe this technique as de-

coupled software pipelining [RVVA04]. The maximum possible parallelism for this

loop is 3× assuming there are a sufficient number of iterations and all three stages

are perfectly balanced.

Figure 7.1(b) shows the availability of pipeline parallelism in an irregular

loop. In this case, SS1 is a sequential stage that does the pointer chasing. It has
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cross-iteration dependency but no intra-iteration dependency. Stage PS1 updates

each node pointed to by p and depends only on SS1 computed in the same itera-

tion. PS1 has no cross-iteration dependency and it is possible to compute different

iterations concurrently for this stage, i.e. PS1 is a parallel stage. So, this irregular

loop has a pipeline of one sequential and one parallel stage. We can use one thread

for the sequential stage, and one or more for the parallel one to get a pipelined

execution. Prior works address this form of execution as parallel-stage decoupled

software pipelining (PS-DSWP) [ROR+08]. Assuming we have enough cores, the

maximum possible parallelism for this loop is determined by the relative weight of

the sequential stage because we must use one thread for the sequential stage, but

can use as many as necessary to make the parallel stage non-critical.

7.1.2 Load-balanced pipeline parallelism

A pipelined loop (regular or irregular) has one or more sequential stages,

and zero or more parallel stages. It requires at least two stages for pipelining. The

traditional way [RVVA04, ROR+08] to implement such pipelining maps different

stages to each core (or multiple cores, for parallel stages) and protects the intra-

iteration dependency using synchronization. The cross-iteration dependency, on

the other hand, is automatically satisfied by the program order. From now on,

we use the term traditional pipelining or traditional pipeline parallelism (TPP) to

refer to such execution.

Load-balanced pipeline parallelism executes all stages of a particular loop

iteration in the same core, but distributes the iterations between cores in a man-

ner more similar to conventional data parallel execution. First, it splits the loop

iterations into a set of chunks, and consecutive chunks of the same stage are exe-

cuted on different cores. LBPP executes all the stages of a chunk sequentially in a

single core. It will execute several iterations (a chunk) of stage 1, followed by the

same iterations of stage 2, etc. Once all the stages are finished, the thread starts

executing the next assigned chunk, starting again at the first stage. LBPP maps

the chunks to threads in round robin order.

This creates no correctness issue for the parallel stages, because they do
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for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

while(not done) {
s = chunk.start, t = chunk.end;
SS1:
wait_for_token(1);
for(i=s;i<t;i++) a[i] = a[i-1] + a[i];
release_token(1);
SS2:
wait_for_token(2);
for(i=s;i<t;i++) b[i] = b[i-1] + a[i];
release_token(2);
SS3:
wait_for_token(3);
for(i=s;i<t;i++) c[i] = c[i-1] + b[i];
release_token(3);

}
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Figure 7.2: Implementation and execution of LBPP for a regular loop with a chunk
size of 2 iterations that uses three threads.

not have any cross-iteration dependency, and the program order satisfies the intra-

iteration dependency. However, there exist sequential stages with cross-iteration

dependencies. LBPP handles that with a simple token-based synchronization

mechanism and ensures properly ordered execution of the sequential stages.

LBPP uses a token for each sequential stage. Every participating thread

waits for the corresponding token before executing a sequential stage. In that

way, all of the iterations of a sequential stage execute in order – they execute in

order on a single core within a chunk, and across chunks, the order is protected

by synchronization. The parallel stages do not require tokens and LBPP executes

them immediately. Once a sequential stage finishes execution, the current thread

hands over the token to the next thread. Thus, the tokens for sequential stages

move between threads in round robin order and guarantee serial execution of a

sequential stage. LBPP uses spin locking to implement the tokens.

LBPP obtains concurrency in two ways – (1) between stages, as threads

are typically working on different stages at different times, and (2) within parallel

stages, as any thread can enter the parallel stage without regard to whether other

threads are in the same stage.

Figure 7.2 shows the LBPP implementation of the regular loop in Fig-

ure 7.1(a). Here each chunk consists of two consecutive iterations. Unlike tra-

ditional pipelining, all three threads in this case execute the same function. In
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while(p != NULL) {

p->s+=p->left->s;

p = p->next;
}

while(not done) {
wait_for_token(1);
p = liveins.p;
for(i=1;i<=k && p;i++) {

buf[i] = p; p = p->next;
}
liveins.p = p; count = i;
release_token(1);
for(i=1;i<=count;i++) {

p=buf[i]; p->s+=p->left->s;
}

}

LBPP ImplementationSerial Implementation

SS1

PS1

while(p != NULL) {

p->s+=p->left->s;

p = p->next;
}

while(not done) {
wait_for_token(1);
p = liveins.p;
for(i=1;i<=k && p;i++) {

buf[i] = p; p = p->next;
}
liveins.p = p; count = i;
release_token(1);
for(i=1;i<=count;i++) {

p=buf[i]; p->s+=p->left->s;
}

}

LBPP ImplementationSerial Implementation

SS1

PS1

Figure 7.3: Implementation of LBPP for an irregular loop with a chunk size of k
iterations.

traditional pipelining, we need to design separate functions for each pipeline stage,

and then add synchronization.

We can also implement LBPP for the irregular loop in similar fashion.

Figure 7.3 shows the LBPP implementation of the pointer chasing loop from Fig-

ure 7.1(b). The sequential stage, upon receiving the token, gets the start value of

p from the previous thread. Then, it does the pointer chasing for k iterations and

enqueues the pointers in a thread local buffer. After that, it forwards the current

value of p to the next thread and releases the token. The parallel stage dequeues

the sequence of pointers from the local buffer and does the update operation. Thus,

the local buffer transfers data from the sequential stage to the parallel stage and

serves the same purpose as software queues do in traditional pipelining. Note that

queues/local buffers may not always be necessary. The regular loop mentioned

above is an example of that.

The performance of LBPP depends heavily on the chunk size. We define

chunk size as the approximate memory footprint of a chunk that includes both

the memory accesses done by the original loop itself, and the additional memory

accesses to the local buffer. Chunk size is a critical tuning parameter in LBPP. It is

highly correlated with the cost of synchronization and the data sharing overhead.

Larger chunks better amortize the overhead of the synchronization (i.e., waiting
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for tokens) that is required for the sequential stages. The number of times that

a thread needs to wait for the tokens is inversely proportional to the chunk size.

Thus, when a sequential stage is critical (e.g., SS1 in Figure 7.1(b)), chunking

minimizes the overhead of executing that stage in different cores.

Smaller chunks also create more coherence traffic when there exist data

sharing between consecutive iterations. Most cross-iteration communication will

stay on a core – only when that communication crosses chunk boundaries will

it move between cores. Therefore, larger chunks reduce communication. In Fig-

ure 7.2, for example, we see both true and false sharing. Both iteration 5 and 6

use a5, b5, and c5. On the other hand, there exists false sharing between iteration

4 and 6 when any of a4, a6 or b4, b6 or c4, c6 occupy the same cache line. For a

64-byte cache line and assuming each of a, b, c takes 8 bytes, we need to use at

least 8 iterations per chunk to avoid excessive false sharing.

However, we cannot make chunks arbitrarily large for two reasons. First,

smaller chunks exploit locality better. Chunks that do not fit in the private caches

will evict the shared data between two stages and will cause unnecessary high-

latency misses. Second, chunk size determines the amount of parallelism that can

be extracted from a pipelined loop, especially when iteration counts are low. In

Figure 7.2, for three threads, the chunk of 2 iterations gives parallelism of 2.25×
whereas using 4 iterations per chunk will give parallelism of 1.8× (because our

simple example has only 12 iterations). However, this gap diminishes when the

loop iterates more. In the last example, for 10000 iterations, we get the same 3×
parallelism for either of 2 or 4 iterations chunk. Even a chunk of 100 iterations

gives 2.94× parallelism. Thus, from the parallelism point of view, the size of the

chunk relative to the number of loop iterations is important.

LBPP provides three key advantages over traditional pipelining – locality,

thread number independence, and load balancing.

Locality

LBPP provides better locality compared to traditional pipelining. In tra-

ditional pipelining, data shared between stages within an iteration always crosses
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cores. Since pipelined loops always share data between stages, this is the dominant

communication. In LBPP, this communication never crosses cores. Traditional

pipelining may avoid cross-core communication for loop-carried dependencies, but

only if they go to the same stage. With LBPP, loop-carried dependencies only

cross cores when they cross chunk boundaries, whether or not they are within a

stage.

In Figure 7.1(a), the first two stages (SS1 and SS2) share a while the last two

stages share b. Similarly, in Figure 7.1(b), the parallel stage PS1 uses p produced

by SS1. Note that most of this sharing is read-write sharing, and all require

cache-cache transfers with traditional pipelining. The communication cost was also

identified as a key bottleneck for traditional pipelining on real systems [RVVA04,

ROR+08].

In contrast, LBPP executes all stages of the same chunk in the same core.

All the intra-iteration communication between stages happens within the same

core. In Figure 7.3, PS1 will find p already available in the cache. The same thing

happens for the regular loop in Figure 7.2. SS2 finds a while SS3 finds b in the

private cache. LBPP can also exploit data sharing between distant stages, e.g.

sharing between stage 1 and stage 4, etc.

For the example regular loop, assuming 3000 iterations, chunk size of 500,

8-byte values, and no false sharing, traditional pipelining would move 48,000 bytes

for intra-iteration dependences while all loop carried communication is free. For

LBPP, all intra-iteration communication is free, and we would move 144 bytes for

loop-carried communication between chunks.

Chunking allows LBPP to target a certain level (either private or shared)

of the cache hierarchy. By tuning the chunk size, LBPP can confine most memory

operations to either the L1 cache or the L2 cache. In some sense, LBPP implements

tiling between stages with the help of chunking. This, combined with the natural

locality, allows LBPP to simply accommodate prefetching. We can simply add a

stage to do prefetching, targeted the data that will be accessed by the next chunk,

and that data stays in the cache until that stage executes. However, we do not

implement that optimization in our results here.
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Thread number independence

In Figure 7.2, there are three sequential stages. For traditional pipelining,

the code created by the compiler would be very different depending on whether it

expected two cores or three cores to be available for execution. In LBPP, the code

is the same in either case. Thus, LBPP decouples the code generation from the

expected thread count, simplifying compilation and providing better adaptation

to runtime conditions. We can use any number of threads irrespective of the

number of pipeline stages for a loop, even including more threads than stages.

For one thread, the loop executes the three stages sequentially. For two threads,

LBPP achieves pipelining and extracts as much as 2× parallelism when all three

stages are of equal weight (traditional pipelining will suffer from imbalance). The

parallelism improves to 3× when there are three threads. If we add more threads,

the parallelism does not improve, but we might get additional speedup because

of the data spreading (Chapter 3). Data spreading is a technique that distributes

the data of a sequential loop over several private caches, creating the effect of a

single large, fast private cache. We can emulate this mechanism just by growing

the number of threads/cores until the working set fits in the caches, again without

recompiling.

Load balancing

LBPP is inherently load balanced in the same way as traditional loop-level

data parallelism, because each thread is doing the same work, only on different

iterations of the loop. Thus, performance tends to scale linearly until we reach the

maximum performance. That is not typically the case with traditional pipelining,

although it will approach the same peak performance at the maximum number of

threads.

Assume we have a pipeline of k sequential stages with execution times

S1, S2 . . . Sk and SSl is the largest stage with execution time, Smx. We also assume

that there are a large number of iterations and there is no synchronization overhead.

Thus, if thread 1 releases a token at time t, thread 2 can grab that token and start

executing at time t. Moreover, since there are enough iterations, we ignore the
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first and last few iterations where not all threads are active.

With these settings, there is an important observation. A thread will only

wait for tokens when it needs to execute the bottleneck stage SSl. That is because

when it gets the token for SSl, it would require the next token after Smx time and

by that time, the next required token will be available. So, the average execution

time of an iteration will be T +W where T is
∑k

i=1 Si, and W is the waiting time

for the token to execute SSl.

We can compute W for n threads. A thread that just finishes SSl will

require the token to execute this stage again after T − Smx time. On the other

hand, the token will be available after (n−1)∗Smx time. So, W is max(0, (n−1)∗
Smx− (T − Smx)) or max(0, n ∗ Smx− T ). Thus, the average execution time of an

iteration ismax(T/n, Smx) using n threads. The equation also holds when there are

one or more parallel stages. In that case, T is
∑k

i=1 Si+
∑m

i=1 Pi where P1, P2 . . . Pm

are the execution times for the parallel stages. The expected parallelism of such a

pipeline using LBPP for n threads is given in the following equation:

LBPPn =
T

max(T/n, Smx)
(7.1)

Equation 7.1 shows that LBPP is load balanced and increases parallelism

linearly until it reaches the theoretically maximum parallelism, i.e., T/Smx. So,

the minimum number of threads to gain the maximum parallelism is:

LBPPmin = ceil(T/Smx) (7.2)

Compared to that, traditional pipelining uses a single thread for each se-

quential stage, and one or more for each parallel stage. So, the minimum number

of threads to achieve the maximum parallelism is:

TPPmin = k +
m∑
i=1

ceil(Pi/Smx) (7.3)

From Equation 7.2 and 7.3, LBPPmin is always smaller than TPmin unless

all the stages have equal execution times. In that case, both values are the same.

For example, assume the pipeline of a loop has 5 sequential stages with the execu-

tion time of 10, 15, 10, 20, and 5. Traditional pipelining will require 5 threads to
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reach the maximum parallelism of 3×. However, LBPP will require only 3 threads

to reach that parallelism.

The load balancing of LBPP becomes more evident in the presence of par-

allel stages. Assume a pipeline has 2 sequential stages (execution times 10 and 10,

respectively) and 2 parallel stages (40 and 40). If we have 4 cores, the maximum

parallelism we can extract using traditional pipelining is 100/40 = 2.5×. How-

ever, LBPP extracts 4× parallelism and utilizes all threads 100%. LBPP provides

more parallelism until we use 10 threads. In that case, both provide the maximum

parallelism of 10×.

Equation 7.1 also suggests that for LBPP, the parallelism is independent of

the number of stages. This gives enormous flexibility while designing the pipeline.

Load balancing allows us to add more pipeline stages or redesign the current stages

and still ensures the maximum parallelism as long as T and Smx do not change.

If we account for synchronization cost, there is one case where traditional

pipelining may have an advantage. Once we have enough threads that a sequential

stage becomes the bottleneck, traditional pipelining executes that stage on a single

core, while LBPP executes it across multiple cores. Both techniques will have

some synchronization in the loop, but traditional pipelining may be able to avoid

it when that stage only produces and no queuing is necessary (e.g., SS1 in our

regular loop). However, for LBPP, it can be highly amortized with large chunks.

In our experiments, this effect was, at worst, minimal, and at best, completely

dominated by the locality advantages of LBPP.

7.2 LBPP Implementation

LBPP can be automatically implemented in the compiler and does not

require any hardware support. Our implementation of LBPP follows very closely

the implementation of traditional pipelining, at least in the initial steps. In fact,

any traditionally pipelined loop can be automatically converted to take advantage

of LBPP.

There are four steps to apply LBPP – DAG construction, pipeline design,
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for(i=1;i<N;i++) {
t1 = i*2;
a[i] = a[i-1] + t1;
b[i] = a[i] + c[i-1];
c[i] = b[i] + c[i-1];
t2 = c[i] + sin(i);
d[i] = d[i-1] + t2;

}
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Figure 7.4: Different steps of constructing the pipeline for a loop. Each rectangular
box is a strongly connected component and cannot be pipelined.

adding synchronization, and chunking.

7.2.1 DAG construction

In the first step, we construct the dependence graph for a loop. For this

step, we use the same methodology described in previous work [ORSA05, ROR+08].

The dependence graph includes both data and control dependence. Figure 7.4(b)

shows the dependence graph for the loop on the left side. An arc from node x to

node y denotes that node y must execute after the execution of x.

Next we identify the strongly connected components (SCC) in the depen-

dence graph. This step is required because we cannot pipeline and execute the

nodes in parallel when there exist cyclic dependencies between them. In Fig-

ure 7.4(b), node R and S are examples of having cyclic dependency. Executing all

the nodes of an SCC in the same thread maintains the chain of dependency. The

rectangular boxes in Figure 7.4(b) represent the SCCs. If we consider each SCC

as a single node, we get a directed acyclic graph (DAG). This is called the DAG of

SCCs. We can do a topological ordering for the DAG so that all edges are either

self edges or go forward to subsequent nodes, i.e., there will be no backward edges.

Figure 7.4(c) shows the DAG for this example loop.

In a DAG, the self arc represents cross-iteration dependency whereas for-

ward arcs represent intra-iteration dependency. We can pipeline all the nodes of

a DAG by making each node a different pipeline stage. This will satisfy all the
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dependencies. The nodes that do not have self arcs (P, T in Figure 7.4(c)) can be

executed in parallel as well. These become the parallel stages in a pipeline. The

others (Q, RS, U) become sequential stages.

7.2.2 Pipeline design

LBPP is load balanced and does not depend on how many threads will be

used at runtime. This makes pipeline design easy and flexible.

From Section 7.1.2, we need to minimize both T (the sum of all stage exe-

cution times) and Smx (the maximum of all stage execution times) for maximum

parallelism. The DAG construction automatically minimizes Smx. However, using

all DAG nodes as separate stages may not minimize T . There are overheads for

each additional stage. These include the synchronization overhead for sequential

stages, decoupling overhead (loading and storing data from local buffers), reduced

instruction level parallelism, and other software overheads. Chunking automati-

cally amortize most of these overheads. To reduce them further, we can cluster

stages as long as Smx does not increase.

We use a simple cost model to estimate the stage execution times. The

model counts the number of different types of arithmetic operations, memory op-

erations, and branches to assign weights to approximate the stage execution time.

The model assumes a large weight for function calls or when the stage itself is a

loop. Profiling is an option in this case to get better approximation. Note that

for LBPP, we do not need a perfect partitioning of stages, but we should remove

simple stages (easy to identify) that benefit less than the overheads induced. So,

a precise execution time for complex stages (having function calls or loops) is not

necessary.

As a first step of the clustering, we collapse simple producer stages with

the corresponding consumer stages. In Figure 7.4(c), stage P computes i ∗ 2 used

by stage Q. Keeping P as a separate stage will cause a store operation (enqueue

i∗2) in P, and a load operation (deque i∗2) in Q. Collapsing P with Q will remove

these memory operations and the overheads for using one extra stage. This also

compacts Q because the load operation is more expensive than computing i ∗ 2
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in most systems. As a rule of thumb, we collapse a stage unless it does enough

computation that it is equivalent to doing at least three memory operations.

Next, we try to coalesce parallel stages similar to that described in the

earlier work [ROR+08]. We combine two parallel stages PS1 and PS2 when there

is no intervening sequential stage, SS such that there is an arc from PS1 to SS and

SS to PS2 in the DAG of SCCs. We continue this process iteratively unless no

more coalescing is possible. This process of coalescing does not change Smx. So,

from Equation 7.1, there is no negative impact on the level of parallelism.

LBPP works well if we design the pipeline using only the above two steps.

Until this point, we do not need the value of Smx for the pipeline design. In the final

step, we can further optimize the pipeline by collapsing the stages whose combined

execution time does not exceed Smx. Short parallel stages can also be combined

with sequential stages (and be treated as sequential stages) in this process. A

simple greedy algorithm is sufficient for this merging, because LBPP does not

require the optimal solution. For example, assume a pipeline has 6 sequential

stages of execution times 60, 40, 20, 30, 20, 10. In this case, both 60, 60, 60 and

60, 40, 50, 30 are equally good solutions.

The output of the pipeline design step is a sequence of sequential and par-

allel stages. Figure 7.4(d) shows the pipeline for our example loop. Next, we add

necessary memory operations to transfer data from one stage to another stage. In

our example, we buffer t2 in stage T and use that in stage U.

7.2.3 Chunking

Our compilation framework adds necessary code for chunking the pipeline

stages. For a particular chunk size (passed as a runtime parameter), we compute

the number of iterations per chunk (say k) using the memory footprint of a loop

iteration. LBPP executes k iterations of a stage before going to the next stage.

Figures 7.2 and 7.3 show the chunking of both regular and irregular loops.

For regular loops (loop count is known), each thread independently identifies the

chunks for themselves and execute those chunks. The threads exit when there are

no more chunks to execute. For irregular loops, LBPP uses a sequential stage (SS1
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while( node != root ) {
while( node ) {

if( node->orientation == UP )
node->potential=node->basic_arc->cost+node->pred->potential;

else {
node->potential=node->pred->potential–node->basic_arc->cost;
checksum++;  

}
tmp = node;  node = node->child;

}
…………….
…………….

} 

Figure 7.5: Nested loop of refresh potential function of mcf. The iteration count
of the inner loop is not fixed.

in Figure 7.2) that catches the loop termination in one thread and forwards that

information to other threads. LBPP automatically packs and unpacks necessary

liveins for all the coordinations.

In this work, we statically compute the approximate memory footprint of a

loop iteration. This is easy to do for loops that do not have inner loops. For nested

loops, the iteration memory footprint of the outer loop depends on the number of

iterations of the inner loop. Figure 7.5 shows the refresh potential function of the

Spec2006 benchmark mcf. In this case, the number of iterations of the inner loop is

not fixed, so the memory footprint of the outer loop iteration changes dynamically.

If we apply chunking to the outer loop and use a fixed value of k, chunks will not

be of even size and load distribution between threads will be imbalanced. We solve

this problem by adding a sequential stage that counts the number of inner loop

iterations. Thus, we can compute a more accurate value of k and do better load

distribution – we terminate a chunk based on the inner loop count rather than the

outer loop count. Note that in LBPP, adding a stage is inexpensive since it does

not require a new thread.

In Section 7.4, we will examine other metrics besides memory footprint for

determining chunk size.
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Table 7.1: Microarchitectural details of the two systems that are used in our
experiments.

CPU components Intel Nehalem, AMD Phenom

CPU Model Core i7 920, Phenom II X6 1035T
Number of cores 4, 6
L1 cache size 32-Kbyte, 64-Kbyte
L1 hit latency 4 cycles, 3 cycles
L2 cache size 256-Kbyte, 512-Kbyte
L2 hit latency 10 cycles, 15 cycles
L3 cache size 8-Mbyte shared inclusive,

6-Mbyte shared exclusive
L3 hit latency 46 cycles, 45 cycles
DRAM hit latency 190-200 cycles, 190-200 cycles
Cache to cache 42 cycles, 240 cycles
transfer latency

7.2.4 Adding synchronization

In the final step, we add the synchronization operations (waiting for tokens

and releasing tokens) to the sequential stages. The compilation framework creates

the necessary tokens at the beginning of the program. At the start of a pipelined

loop execution, the framework assigns all the corresponding tokens to the thread

that executes the first chunk. When a thread completes a sequential stage, it

passes the token to the next thread. There is also a barrier at the end of each

pipelined loop to make all changes visible before proceeding to the computation

following the loop.

7.3 Methodology

This section describes our methodology to evaluate LBPP. First, we describe

the two systems used for our experiments and then describe the set of applications

that we target to demonstrate LBPP.
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7.3.1 CPU Systems

LBPP is expected to work well across all cache coherent systems. However,

performance might vary because of the microarchitectural differences that exist

between processors. These include the processor’s memory hierarchy – geometry

of the caches and latency to the different levels of cache or DRAM, cache coherence

protocol, off-chip bandwidth, and the underlying interconnect. Thus, for our ex-

periments, we choose two state of the art systems from different vendors. Table 7.1

summarizes the important microarchitectural information for the two systems.

The systems run Linux 2.6. We compile all our codes using GCC version

4.5.2 with “-O3” optimization level. We keep hardware prefetching enabled for all

of the experiments. For power measurements, we use a “Watts up? .Net” power

meter that measures the power at the wall and can report power consumption in

1-second interval with ±1.5% accuracy.

7.3.2 Applications

We apply LBPP on loops from a diverse set of applications chosen from

different benchmark suites – Spec2000, Spec2006, Olden, SciMark2. We also pick

two important irregular applications (also used in previous work) – ks (Kernighan-

Lin graph partitioning algorithm), and otter (an automated theorem prover).

Pipeline parallelism is most interesting when there are at least two stages

in the pipeline. This excludes the loops that are completely data parallel (only

one parallel stage), and the sequential loops that have a single SCC in the DAG

of SCCs. Thus, we exclude several benchmarks from these suites whose key loops

do not have multiple pipeline stages. In addition, our compilation framework

currently only handles C code, further limiting candidate benchmarks.

Table 7.2 shows the loops of interest, corresponding function names, and the

description of the benchmarks. We select a loop if it is not parallel and contributes

at least 10% to the total execution time, when executed serially with the reference

input. Table 7.2 also shows the type of each loop, its contribution to the total

execution time, and the pipeline structure identified by the compiler. All the

irregular loops involve pointer chasing. Most of these loops have inner loops.
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Table 7.2: List of benchmarks explored in our experiments. Here, ss represents
sequential stage where ps stands for parallel stage.

Function Bench- Loop Contrib. Pipeline
name mark Suite type Phenom, structure

name Nehalem

match, art Spec2000 Regular 77%, 63% ss1 ps1
train match
f nonbon ammp Spec2000 Regular 12%, 11% ss1 ps1 ss2
smvp equake Spec2000 Regular 68%, 51% ss1 ps1 ss2
SetupFastFull h264ref Spec2006 Regular 30%, 29% ss1 ss2 ps1
PelSearch
P7Viterbi hmmer Spec2006 Regular 99%, 99% ps1 ss1
LBM perform lbm Spec2006 Regular 99%, 99% ps1 ss1
StreamCollide
refresh potential mcf Spec2006 Irregular 19%, 25% ss1 ps1 ss2
primal bea mpp mcf Spec2006 Regular 61%, 46% ps1 ss1
FindMaxGp ks Graph Irregular 100%,100% ss1 ps1 ss2
AndSwap partitioning
BlueRule mst Olden Irregular 77%, 70% ss1 ps1 ss2
find lightest otter Theorem Irregular 10%, 3% ss1 ps1 ss2
geo child proving
SOR execute ssor SciMark2 Regular 99%, 99% ps1 ss1

7.4 Results

We evaluate LBPP in several steps. First, we use a set of simple microbench-

marks to explore the potential and different characteristics of LBPP. Then, we

evaluate its impact on the real applications described in Section 7.3. Finally, we

study LBPP’s impact on the power and energy consumption.

For all of our experiments, we also implement traditional pipelining (TPP).

We do our best to implement it as efficiently as possible. This is straightforward

because the compiler-extracted pipeline structure and even the optimization of the

stages (coalescing, etc.) are the same for both techniques. In fact, both LBPP and

traditional pipelining use similar types of synchronization.
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for(i=1;i<N;i++) {
SS1: 
a[i] = sin(a[i-1]+a[i]+1);
SS2:
b[i] = sin(b[i-1]+a[i]+1);
SS3:
c[i] = sin(c[i-1]+b[i]+1);
SS4:
d[i] = sin(d[i-1]+c[i]+1);
SS5:
e[i] = sin(e[i-1]+d[i]+1);

}
(a) mb_load

t = start_node;
while(t != stop_node) {

SS1:
tmp = t;       
t = t->next;
SS2:
s += tmp->left->a;

}
(c) mb_local

for(i=2;i<N;i++) {
SS1:
a[i] = (a[i-2] + a[i-1] + a[i])/3.0;
PS1:
b[i] = sin(a[i])*cos(i);
SS2:
c[i] = (c[i-1] + a[i]   + b[i])/3.0;
PS2:
d[i] = sin(c[i]) + M_PI;

}
(b) mb_ubal

for(i=1;i<N;i++) {
SS1:
a[i] = a[i] + f(a[i-1]);
SS2:
b[i] = a[i] + f(b[i-1]);
SS3:
c[i] = b[i] + f(c[i-1]);
SS4:
d[i] = c[i] + f(d[i-1]);

}
(d) mb_dyn

for(i=1;i<N;i++) {
SS1: 
a[i] = sin(a[i-1]+a[i]+1);
SS2:
b[i] = sin(b[i-1]+a[i]+1);
SS3:
c[i] = sin(c[i-1]+b[i]+1);
SS4:
d[i] = sin(d[i-1]+c[i]+1);
SS5:
e[i] = sin(e[i-1]+d[i]+1);

}
(a) mb_load

t = start_node;
while(t != stop_node) {

SS1:
tmp = t;       
t = t->next;
SS2:
s += tmp->left->a;

}
(c) mb_local

for(i=2;i<N;i++) {
SS1:
a[i] = (a[i-2] + a[i-1] + a[i])/3.0;
PS1:
b[i] = sin(a[i])*cos(i);
SS2:
c[i] = (c[i-1] + a[i]   + b[i])/3.0;
PS2:
d[i] = sin(c[i]) + M_PI;

}
(b) mb_ubal

for(i=1;i<N;i++) {
SS1:
a[i] = a[i] + f(a[i-1]);
SS2:
b[i] = a[i] + f(b[i-1]);
SS3:
c[i] = b[i] + f(c[i-1]);
SS4:
d[i] = c[i] + f(d[i-1]);

}
(d) mb_dyn

Figure 7.6: Source code of the microbenchmarks that explore different aspects of
LBPP.

7.4.1 Microbenchmarks

We design several microbenchmarks that are simple to understand and

whose pipeline structures are easy to recognize. These microbenchmarks capture

a variety of characteristics including the amount of data transfer between stages,

the ratio of sequential and parallel stages, the relative weight of stages, and the

dynamic nature of the pipeline. Using microbenchmarks allows us to adapt the

code to focus on a particular characteristic.

Figure 7.6 shows the source code of the microbenchmarks that we use. The

stages and the type of stages are also marked in the figure. All of these microbench-

marks run many iterations and have large working sets unless specified otherwise.

The speedup numbers given in this section and afterwards are all normalized to

the single thread execution with no pipelining.

Load balancing and number of stages Our first microbenchmark, mb load

has five sequential stages and all of them have similar execution times. Thus,

the pipeline is mostly balanced. Consecutive stages have some data sharing, e.g.,

SS2 and SS3 share b. However, the amount of data sharing compared to the

computation per stage is small, because the sin function is expensive.

We apply LBPP and TPP on this microbenchmark for different number of

threads. For LBPP, we use the same pipeline structure for all thread combinations.

However, the 5-stage pipeline given above is only applicable for five threads when

we use TPP. Thus, we make the best possible partition of the stages into 2, 3, and
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Figure 7.7: Scalability of mb load – (a) Phenom (b) Nehalem. The pipeline has five
stages of equal weight. LBPP provides better load balancing until both techniques
reach the maximum speedup.

4 groups to run with 2, 3, and 4 threads, respectively, but a balanced partitioning

is not possible. Figure 7.7 shows the speedup using both techniques on the two

experimental systems. We use several chunk sizes for both LBPP and TPP and

show the data for the best chunk size. Chunking lets TPP use synchronization and

enqueuing once for a group of iterations, like LBPP.

LBPP improves performance linearly in both systems. The maximum pos-

sible parallelism for this loop is 5×. LBPP provides 4.7× speedup for five cores in

the AMD system and 4× for four cores in the Intel system. From Equation 7.1,

the parallelism will not increase once it gets limited by the largest sequential stage.

We see the same trend here. For the AMD machine, the speedup stays the same

beyond five cores.

Figure 7.7 also demonstrates the importance of decoupling the pipeline

design and the number of threads to be used. Traditional pipelining gives the same

speedup as LBPP for five cores. However, it loses as much as 35% (4.1× vs. 2.7×)

and 30% (4× vs. 2.8×) for four threads in the AMD and Intel system, respectively,

despite using the optimal partitioning of the stages. This happens due to the lack

of load balancing. With four partitions of the five stages, the largest partition is
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Figure 7.8: Scalability of mb ubal – (a) Phenom (b) Nehalem. The pipeline has a
mix of parallel and sequential stages of different weights. LBPP provides as large
as 2× performance improvements over TPP.

twice as big as the smallest. LBPP also outperforms traditional pipelining while

using 2 or 3 cores.

Unbalanced stages LBPP effectively handles the pipeline where there are mul-

tiple parallel stages and the stages are not balanced. The microbenchmark mb ubal

has two parallel stages and two sequential stages of relative weight of 60, 30, 5,

and 5, respectively. Thus, the sequential stages are not dominant here.

Figure 7.8 shows the performance for this pipelined loop. For TPP, we use

the best possible partitioning when there are less than four threads. If we have

more than four threads, we assign the extra threads to the parallel stages.

LBPP provides linear performance improvements for all thread combina-

tions in both machines. The sequential stages here are much shorter than the

parallel stages. LBPP does not bind stages to threads and dynamically assigns

stages to threads. With LBPP, it is possible that all threads are executing the

largest parallel stage PS1 at a time, where TPP only gets stage parallelism when

it can explicitly assign multiple threads to a stage. LBPP provides 6× speedup

for six cores in the AMD machine and 4.2× for four cores in the Intel machine.

In this case, traditional pipelining suffers from load imbalance since the
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Figure 7.9: Scalability of mb local – (a) Phenom (b) Nehalem. The irregular loop
has two sequential stages. LBPP exploits locality in both systems. In the Phenom,
LBPP also shows data spreading.

two small sequential stages and sometimes the smaller parallel stage, PS2, occupy

cores and sit idle waiting for the data from the largest stage, PS1. This results in

performance loss for all core combinations. The loss increases with the imbalance.

For four cores (each stage gets its own core), the loss is more than 55% in Nehalem,

and 58% in Phenom. The situation does not improve much even when we use extra

threads for PS1 and PS2. The performance loss is 44% for six cores in the AMD

machine.

Locality Our third microbenchmark mb local explores the locality issue in pipelin-

ing. For this microbenchmark, we use a 1 Mbyte working set and execute the loop

multiple times. Thus, the same data is reused again and again. The loop is an ir-

regular loop with two sequential stages. SS1 does the pointer chasing and supplies

the set of pointers to SS2, which does the accumulation. Thus, there exists signif-

icant data sharing between the two stages relative to the amount of computation

per iteration.

Figure 7.9 compares the performance between LBPP and TPP. LBPP out-

performs TPP by 36% and 11% for Phenom and Nehalem, respectively, using two

cores (TPP cannot use more than two cores). In both cases, two cores are enough
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to exploit the available parallelism. However, the speedup is less than 2× because

of the imbalance in the pipeline, and also for the negative impact of decoupling, i.e.,

reduced instruction level parallelism. The imbalance is much higher in Nehalem.

TPP does not do well in either machine, because it requires cache to cache

transfers to send the pointers from SS1 to SS2. In LBPP, the pointers stay in the

local cache. We measure the number of references to the last level cache using

hardware performance counters. TPP causes 16% more references than that of

LBPP in Nehalem.

The performance impact of losing locality is more prominent in Phenom

than it is in Nehalem. This directly correlates with the latency of cache to cache

transfers. The latency is much higher in Phenom (Table 7.1), making locality more

critical.

Figure 7.9 also explains LBPP’s ability to exploiting data spreading. Ne-

halem does not experience this, because the working set does not fit in the combined

L2 cache space. For the AMD machine (with more cores and larger L2 caches),

the working set gets distributed and fits in the aggregate L2 cache space as we

add more cores. This does not increase parallelism, but reduces average memory

access time. The effect improves LBPP’s performance up to 2.3× while using six

cores, even though there are only two sequential stages.

Varying stages Our final microbenchmark, mb dyn captures the case when the

stage execution times change over different iterations. The function f picks a

random number between 0 to 500 based on the argument and does some counting

operations. Thus, the relative weight of the stages vary over time.

Figure 7.10 shows the scalability for this workload. There are four sequential

stages and LBPP gives linear speedup up to four cores in both machines, extracting

the maximum parallelism. Traditional pipelining works equally well in Nehalem

given enough cores, but falls short in the Phenom. For four cores, the loss is

around 7%. We observe the effect of an unbalanced pipeline (four stages cannot

be perfectly partitioned into three groups) when we use three cores for traditional

pipelining. LBPP outperforms TPP by 61% in Phenom, and by 49% in Nehalem.



132

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

(a) (b)

Figure 7.10: Scalability of mb dyn – (a) Phenom (b) Nehalem. The execution time
of all four sequential stages vary during different iterations. LBPP handles these
variations better.

7.4.2 Impact of chunk size

Chunking is a critical component for LBPP, because it amortizes the over-

head due to data sharing and synchronization. In this section, we analyze the

performance impact for different chunk sizes on LBPP. So far, we have used chunk-

ing based on the approximate memory footprint of an iteration. We can also do

chunking using the number of iterations directly, or using the execution time of an

iteration (using expected iteration latency to compute a chunk iteration count).

Thus, chunk size can be a simple iteration count or execution time (in µs) other

than the memory footprint.

Figure 7.11 shows the performance for our four microbenchmarks using the

three chunking techniques. We give the results for the AMD Phenom machine and

use two cores. We vary the chunk size from 1 to 10000 iterations, 0.1µs to 100µs,

and 1KB to 512KB for the iteration based, execution based, and footprint based

chunking, respectively.

Iteration based chunking is the simplest. Figure 7.11(a) explains the need

for chunking. Without chunking (chunk size of one iteration in the graph), the

performance seriously suffers. The loss can be as high as 93% compared to the sin-
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Figure 7.11: Performance impact in LBPP of different chunk sizes in the AMD Phe-
nom system – (a) Iteration based, (b) Execution time based, (c) Memory footprint
based. Chunks must be large enough to amortize the synchronization overhead.

gle threaded execution that uses no pipelining. Only mb dyn shows some speedup,

because it does more computation per iteration than the others. Using 10 itera-

tions per chunk is also not sufficient. The tightest loop, mb local cannot amortize

the synchronization overhead and shows negative performance. We see significant

performance improvements for 50 iterations and it improves further for 500 iter-

ations across all microbenchmarks. Thus, LBPP requires significant computation

per chunk to keep the synchronization overhead under control.

Figure 7.11(b) explains the correlation between the chunk execution time

and the synchronization overhead. LBPP cannot amortize the overhead when the

chunks execute for 0.5µs or less. Here, mb dyn is an outlier, because each of its

iteration takes 2.5µs on average and we use at least one iteration per chunk. Out

of the four microbenchmarks, mb load has four sequential stages and it performs

more synchronization per iteration than the others do. We observe the impact in

the graph. Overall, LBPP amortizes the overhead well and reaches closes to 2×
speedup when the chunk size is at least 10µs.

Memory footprint based chunking handles the locality issue. We can tune

the chunk size to target a particular level of the cache hierarchy. Memory footprint

also strongly correlates with the execution time. Figure 7.11(c) shows that chunk

sizes starting from 8KB work well across our microbenchmarks. It also shows

that by keeping the chunk size limited to 32KB or 64KB, we can confine the data

transfers from SS1 to SS2 for mb local in the L1 cache and get maximum benefit.
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Figure 7.12: Impact of chunking on Traditional pipelining. Similar to LBPP,
chunks smaller than 8K do not work well.

Traditional pipelining shows sensitivity to the chunk size, too. Figure 7.12

shows the impact of using different memory footprint based chunk sizes. In this

case, the primary advantage is to reduce the instances of synchronization.

7.4.3 Application Performance

This section describes the performance of LBPP on real applications. Ta-

ble 7.2 gives detailed information about the loops and their corresponding pipeline

structure. We select two loops from two different functions for mcf. From Ta-

ble 7.2, all the loops have at least one parallel stage and one sequential stage.

Thus, the mix of parallel and sequential stages is very common.

Figure 7.13 shows the loop level speedup of LBPP for different number of

cores in the AMD Phenom machine. We normalize the performance using both

single thread execution (left graph), and using TPP with the same number of cores

(right graph). For TPP, when there are more cores than the number of stages, we

apply the extra cores to the parallel stage. We try with the seven footprint based

chunk sizes given in Figure 7.11(c) and show the result for the best chunk size.

LBPP provides significant performance improvements across all loops, an

average speedup of 1.67× for just two cores. The pointer chasing loop in the
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Figure 7.13: Performance of LBPP on sequential loops from real applications us-
ing different core counts in AMD Phenom – (a) normalized to single thread, (b)
normalized to TPP.

complex integer benchmark, mcf shows 1.57× speedup justifying the importance of

loop level pipelining. Some of the loops (e.g., ks, mst, etc.) show linear scalability.

The speedup can be as high as 5.5× in some cases. On average, the performance

improves from 1.67× to 3.2× when we apply six cores instead of two cores. Some

of the loops do not scale well, because the parallel stage is not large enough and

the sequential stages start to dominate according to Equation 7.1. The loops from

equake and lbm have larger parallel stages, but lose some scalability due to the

data sharing and off chip bandwidth limitation, respectively. The equake loop has

significant write sharing across different iterations, enough that the communication

across chunk boundaries makes an impact. The lbm loop is bandwidth limited and

cannot exploit additional computing resources.

LBPP outperforms traditional pipelining in almost all cases. The difference

is much bigger for smaller core counts, because of the load balancing and locality

issue. LBPP outperforms TPP by 65% for two cores, and by 88% for three cores

on average. Traditional pipelining closes the gap for higher core counts (5 to 6

cores). For six cores, LBPP wins by 27%. In that case, there are enough cores

for all stages and load balancing does not remain a critical issue. This reduces

the locality issue to some extent, especially when the parallel stage gets data from

another stage. TPP still moves large amounts of data, but with more cores, it is

better able to hide the communication. We see this effect in the refresh potential
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Figure 7.14: LBPP performance on the Intel Nehalem for real application loops –
(a) normalized to single thread, (b) normalized to TPP.
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Figure 7.15: Application level speedup in AMD Phenom – (a) normalized to single
thread, (b) normalized to TPP.

loop of mcf, for example.

We also do the same set of experiments in our Nehalem system (Figure 7.14).

LBPP provides 1.6× and 2.3× speedup on average using two and four cores, re-

spectively. This is 50% and 26% higher than what traditional pipelining offers.

Thus, LBPP performs well across different architectures.

The results so far show the performance of the individual loops. Figure 7.15

describes the impact on the application level for the AMD machine, since those

loops only represent a fraction of total execution time. The application perfor-

mance varies depending on the loop’s contribution to the total execution time,

but also on how the loop interacts with the rest of the program. For example,

the serial part might suffer more coherence activity because of the data spread-
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Figure 7.16: Energy consumption for the selected benchmarks in Phenom – (a)
normalized to single thread, (b) normalized to TPP. Here, lower is better.

ing by the pipelined loop. Overall, even at the application level LBPP speedups

are high, including outperforming TPP by 42% and 51% for two and three cores,

respectively.

7.4.4 Energy Considerations

We measure the total system power using a power meter to understand the

power and energy tradeoff for LBPP. The meter reports the power consumption

in 1-second intervals, prohibiting power measurement at the loop level, because

most of the loops execute for much shorter than 1 second. Thus, we pick the

benchmarks where the selected loops contribute at least 60% to the total run time

and dominate the power consumption.

Figure 7.16 shows the normalized energy consumption in the AMD systems

for different numbers of cores. LBPP provides significant energy savings over single

thread execution across all core counts, due to decreasing execution times. LBPP

beats TPP for all core counts. The energy savings is 36% on average for two and

three cores. The improvement in locality makes a significant difference. This can

be seen at large core counts where the difference in energy is far higher than the

difference in performance. In some cases, we even observe LBPP consuming less

power than that of TPP even though it executes faster. For mst and equake, the

power savings is around 8% and 7%, respectively, while using three cores.
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7.5 Conclusion

This chapter describes Load-Balanced Pipeline Parallelism. LBPP is a com-

piler technique that takes advantage of the pipelined nature of sequential compu-

tation, allowing the computation to proceed in parallel. Unlike prior techniques,

LBPP preserves locality, is naturally load-balanced, and allows compilation with-

out a priori knowledge of the number of threads. LBPP provides linear speedup

on a number of important loops when prior techniques fail to do so.

LBPP works by chunking, or executing a number of iterations of a single

stage, before moving onto the next stage. For a sequential stage, a synchronization

token is sent to another thread to continue with the next chunk. In this way, intra-

iteration communication is always local, and even cross-iteration communication

is minimized. Also, because all threads execute all stages, it is naturally load-

balanced.

LBPP outperforms prior pipeline parallel solutions by up to 50% or more on

full applications, especially for lower thread counts. It provides even more striking

energy gains, by reducing both runtimes and decreasing expensive cache-to-cache

transfers.
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Chapter 8

Related Work

This dissertation addresses the parallelization wall problem and proposes

several techniques that extract more performance, and energy efficiency from state

of the art parallel hardware. The techniques proposed here improve application

performance by accelerating each single thread using multiple processing cores.

This dissertation also focuses on improving scalability of parallel applications by

combining different parallelization techniques and on improving energy efficiency

by dynamic frequency scaling.

In this chapter, we place our techniques in the context of previous ap-

proaches in the related area. We broadly categorize the prior approaches in three

main sections – improving single thread execution, improving parallel execution,

and improving energy efficiency. Next, we describe the relevant research work in

each section and compare the main goals, technical differences, and performances

with our techniques.

8.1 Improving single thread execution

Accelerating single thread execution has been a key area of interest for long

time. There have been both hardware and software approaches. Some of the works

apply the basic techniques that we use in our techniques including helper threads,

prefetching, resource aggregation, decoupled execution, etc.
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8.1.1 Resource aggregation

Data spreading aggregates the cache resources of different processors. Both

inter-core prefetching and load-balanced pipeline parallelism can also achieve the

advantage of data spreading. There have been several prior works that focus on

the same theme of resource aggregation (primarily cache resources) from different

processing units.

Pierre Michaud [Mic04] proposes a multicore design that works in the sim-

ilar spirit of data spreading. In this system, the hardware monitors the cache

misses, does some affinity analysis, and performs thread migration to take the ad-

vantage of aggregate cache space. Compared to that, data spreading is a software

only technique and works on state of the art real systems. So, it does not incur

the cost of additional hardware when the technique is not effective, or not utilized.

Data spreading also applies across sockets and can aggregate last level caches. We

find that most of the benefit comes in that way, because it amortizes the thread

migration cost easily. Most importantly, the compiler driven analysis done in data

spreading spreads the working set lot more effectively.

Chakraborty, et al., [Kou06] present a technique called Computation Spread-

ing, which also tries to leverage other caches via migration like what data spreading

does. They migrate threads so that some cores execute exclusively operating sys-

tem code, and others execute exclusively user code. In this way, they get separation

of data that is not typically shared over short time frames, and co-location of data

more likely to be shared. However, they do not achieve the effect of working set

spreading that is the primary contributor to the speedups of data spreading.

Cooperative Caching [CS06] is an architectural technique with the same goal

as data spreading – using caches from neighboring cores to support the execution

of a single thread. They do this by allowing caches to store data that have been

evicted from other private caches. Thus, caches that are lightly used or idle can

act as large victim caches [Jou90]. However, this can only transform misses into

cache-to-cache transfers. Both data spreading and inter-core prefetching effectively

transform misses into local hits.

Other work [HKS+05, M. 05, LSK04] has suggested blurring the distinction
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between private and shared caches even further to improve cache locality. Core

fusion processors [IKKM07] take a different approach and allow multiple cores to

be dynamically combined into a single larger core. Conjoined core designs [KJT04]

allow two cores to share even the lowest-level (L1) caches. These approaches require

significant changes to the hardware and do not involve thread migration for sharing

resources. So, none of these hardware techniques work across multiple chips.

8.1.2 Helper thread prefetching

Prefetching is an important technique to speed up memory-intensive ap-

plications. There has been significant work on both hardware prefetchers [Jou90,

CB95] and software controlled prefetchers [MLG92, APD01, CH02]. The introduc-

tion of multithreaded and multicore architectures introduced new opportunities

for prefetchers. Multithreaded architectures are a natural target, because threads

share the entire cache hierarchy.

Helper thread prefetchers [CSK+99, CWT+01, IBR03, ZS01, Luk01, KY02,

KLW+04, LWW+02, SPR00, CTWS01, LDH+05] accelerate computation by ex-

ecuting prefetch code in another hardware context, or core. The idea first came

in the context of simultaneous multithreaded processor [TEL95] and later got ex-

tended to multicore architectures. In these techniques, helper threads predict

future load addresses by doing some computation and prefetch the corresponding

data to the nearest level of shared cache. Prior work focus on different aspects

of helper thread prefetching including the target systems, architectural design,

runtime implementation, how the helper threads are generated, etc.

Chappell, et al. [CSK+99] first propose the idea of simultaneous subordi-

nate microthreading that use microthreads (i.e., helper threads) in a multithreaded

processor to implement a variety of optimizations including prefetching data in ad-

vance to assist the primary computing thread. In their system, hardware manages

the spawning of microthreads, and a separate hardware structure called microRAM

stores the microthread code. The system uses hand built microthread code.

The work in [CWT+01] introduces a helper thread prefetching technique

that targets the inorder Itanium TMprocessor. The authors find that the number
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of loads that causes the bulk of cache misses and pipeline stalls is very small.

They classify these loads as delinquent loads and use helper threads to prefetch

the corresponding data. In their design, the system spawns a helper thread well

ahead of the execution (the trigger point) of the delinquent load instruction. The

helper thread executes the set of critical instructions (known as p-slice) required

to compute the load address and prefetch data. In this case, helper threads are

much short-lived. Zilles and Sohi propose a similar system [ZS01] for out of order

processors. In addition to prefetching, their work use helper threads to improve

branch prediction accuracy. Both of these two systems use hand constructed helper

thread code.

Collins, et al. [CTWS01] extend their prior work on helper thread prefetch-

ing and show that it is possible to construct the p-slice (helper thread code) auto-

matically in hardware. Their system keeps track of the delinquent load and goes

backwards through the traces of committed instructions to construct the p-slice

that computes the load address.

In the work on software controlled pre-execution [Luk01], the author uses

the original program instead of the reduced version to get the advantage of helper

thread prefetching. In this approach, helper threads run the target section of the

original program in the pre-execution mode that ignores the exceptions and does

not commit any store operations. To ensure latency tolerance, the system uses

multiple helper threads to prefetch multiple data streams in parallel.

Liao, et al. [LWW+02] propose a compiler implementation of constructing

the p-slice for delinquent loads. Like prior approaches, they use profile guided anal-

ysis to identify the delinquent loads, and then use a secondary pass to the compiled

binary to construct the p-slices. The system also identifies proper spawning points

for helper threads and adds necessary synchronization instructions to automate

the entire process. Binaries constructed this way show promising performance

(around 87%) for inorder processor, but not so much (around 5%) for out of order

processor.

The works so far only exploit the indirect advantages (prefetching, improve-

ments in branch prediction accuracy). Roth and Sohi come up with the idea of
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data-driven multithreading [RS01], where the main thread gets the prefetching ad-

vantage as well as reuses some of the computational results produced by the helper

thread. In this case, both threads share the same physical register file, and the

hardware adapts register renaming to deliver some of the values produced by the

helper thread to the main thread. A profile driven analysis extracts helper threads

from program traces automatically.

Prior research has also targeted prefetching across cores [SPR00, IBR03,

LDH+05]. In Slipstream processors [IBR03], a reduced version of the program

speculatively runs ahead of the main program in another core. Multiple specialized

hardware pipes transport information (including loaded values) from one to the

other. The trailing main execution gets prefetching advantage and also bypasses

some of the computation when the outcomes of the speculative computations are

correct. The hardware generates the reduced version by detecting the instruc-

tions that can be skipped based on the past runtime behavior. The follow-on

work [IBR03] shows the potential of this technique for an effective self-invalidation

scheme to reduce cache coherence activities. Slipstream processors also target

reliability.

Lu, et al. [LDH+05] demonstrate helper thread prefetching on a real CMP

system that has a shared cache. They use a dual core UltraSPARC IV+ with

shared L2 cache and implement a dynamic optimization system that executes in a

separate core. It monitors the main program execution to select program regions

that have delinquent loads, generates the helper thread code, and runs that code

in the same core. Brown, et al. [BWC+01] propose changes to CMP hardware and

coherence to enable a thread on one core to effectively prefetch for a thread on a

separate core.

The construction of helper threads, or p-slice is an important component for

helper thread prefetching. There are several ways to generate helper threads includ-

ing by hand [CWT+01, ZS01], in hardware [CTWS01, SPR00], profile driven com-

piler analysis [RS01, LWW+02], etc. Zhang, et al. [ZTC07] and Lu, et al. [LDH+05]

describe the generation of helper threads in dynamic compilation systems. Kim

and Yeung [KY02] propose the first source-level compiler to automatically generate
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the helper thread code. Their compiler first uses profile information to identify the

cache-missing memory references and the enclosing loops. After that, the compiler

constructs a program dependence graph and performs data-flow, and control-flow

analysis to extract the non-critical computations from the target loop.

In another work by Kim, et al. [KLW+04], the authors implement a helper

thread prefetching system entirely in software to target the hyperthreaded (i.e.,

simultaneous multithreaded) Intel Pentium 4 processor. They find that in that

hyperthreaded system, the overhead due to synchronization, thread management,

and thread conflicts dominates the performance advantages.

Gummaraju, et al. [GR05] implement a compilation framework that uses

helper thread prefetching to map a program written for stream processors to gen-

eral purpose processors. In their system, there are three threads – one for execu-

tion, one for data prefetching, and one that manages execution and prefetching.

They target SMT threads.

Prescient instruction prefetch [ACH+04] is another helper thread-based

technique that improves performance by prefetching instructions instead of data.

None of our techniques target reducing instruction cache misses. However, data

spreading can be adapted to spread the instructions as well.

One of our techniques described in this dissertation, inter-core prefetch-

ing also belongs to the genre of helper thread prefetching. However, inter-core

prefetching has some unique characteristics that make it a lot more powerful tech-

nique than prior approaches. First, it allows cross-core prefetching into private

caches with no new hardware support, and it does not require a shared cache. So,

we can apply ICP on any cache coherent parallel hardware including multi-socket

systems. Second, it uses thread migration to use the prefetched data locally. This

combines the best of shared cache prefetching and SMT prefetching. Third, the

helper threads in ICP prefetch a chunk of data to amortize the synchronization

and thread management overhead. We can tune the number of helper threads and

chunk size to make ICP effective on different types of applications. Finally, unlike

all prior approaches, main thread may not be always executing in ICP. For very

memory intensive applications, ICP may temporarily use all cores to run helper
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threads. This ensures better resource utilization.

8.1.3 Runahead execution

Runahead execution is a hardware based latency tolerant technique. Unlike

helper thread prefetching, runahead execution [DM97, MSWP03] does not require

extra hardware contexts or cores. During the long latency load operation, instead

of blocking, it assumes a dummy value and switches to the runahead mode to

continue execution. The runahead mode is very similar to the pre-execution mode

described above and does not cause any change in the program state. When

the original load operation is satisfied, the application switches back to the normal

execution. This improves memory level parallelism but still places all of the burden

of prefetching, demand misses, and execution on a single core.

8.1.4 Decoupled architecture

Inter-core prefetching uses separate threads to access memory and per-

form computation. This is similar in spirit to decoupled access/execute architec-

tures [Smi82]. These architectures use a queue to pass data from a memory thread

to a compute thread. The queue requires that the two threads be tightly coupled,

and that the memory thread correctly computes the result of all branches. As a re-

sult, there is rarely enough “slack” between the threads to allow the memory thread

to issue memory requests far enough in advance to fully hide their latency. The

Explicitly-Decoupled architecture [GH08] uses the queue only for passing branch

outcomes and shares the entire cache hierarchy to get the advantage of prefetching.

Inter-core prefetching accomplishes the benefit of decoupled access/execute

architecture without specialized hardware, and thus delivers a long sought solution

for this elegant execution model. Comparing to the hardware implementation, the

private cache of a helper core serves as the “queue”, but because inter-core prefetch-

ing places no ordering constraints on the accesses, it can completely decouple the

threads.



146

8.1.5 Speculative multithreading

Speculative multithreading [MGT98, QMS+05, KT99, SBV95] straddles the

line between traditional and non-traditional parallelism. Most of this work strives

to maintain single-thread software semantics, while the hardware executes threads

in parallel.

In multiscalar processors [SBV95], the control flow graph of the program

gets divided into several tasks that execute in parallel in different processing units.

The hardware manages the inter-task data communication and ensures the correct-

ness of the speculative execution by adopting the recovery mechanism whenever

required. Multiscalar uses compiler support to identify the tasks. Marcuello, et

al. [MGT98] propose another speculative multithreaded architecture that dynam-

ically extracts multiple threads of control in hardware from a sequential program.

Their system primarily targets loops and execute different iterations of the same

loop speculatively. Krishnan, et al. [KT99] propose a speculative system that tar-

gets the CMP architecture. They use a binary annotation tool to generate the

speculative threads. Mitosis [QMS+05] is a hardware-software approach that ex-

tends the concept further by adding helper threads to precompute critical data.

All of these speculative multithreaded processors use large amount of addi-

tional hardware to manage speculation. So, there is a lot of underutilized hardware

when parallel applications or multiprogrammed workloads execute. This is a big

concern, because most of the systems are nowadays power constrained. All the

techniques in this dissertation are non-speculative and software only. These tech-

niques do not have to worry about correctness or recovery scheme. In addition,

there is no penalty when we do not use any of these techniques. Speculative tech-

niques are normally orthogonal to non-speculative techniques. For example, we

can speculatively parallelize the main thread execution in inter-core prefetching.

We can also use speculation to compute load addresses that cannot be predicted.

8.1.6 Decoupled software pipelining

Decoupled software pipelining [RVVA04, ORSA05] is a non-speculative tech-

nique that exploits pipeline parallelism on the loop level. Using dependence anal-
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ysis, it automatically partitions an iteration of the loop into several stages and

executes them in different processing units in a pipelined fashion to extract paral-

lelism. Raman, et al. [ROR+08] propose parallel-stage DSWP that identifies some

stages as parallel and executes them in a data parallel manner.

Our load-balanced pipeline parallelism shares the same concept of separat-

ing the loop iteration into a set of sequential stages or a mix of sequential and

parallel stages, but the execution model is different. Each processing core does not

execute a particular pipeline stage in LBPP. It might be the case that all cores are

executing the same pipeline stage at a time. Unlike decoupled software pipelin-

ing, which assumes hardware support for efficient synchronization and core to core

communications, LBPP uses chunking to amortize synchronization overhead and

naturally exploits locality to reduce inter-core communication. DSWP deals par-

allel stages specially, but this is not the case in LBPP. Here, parallel stages just

do not wait for the tokens.

Vachharajani, et al. [VRR+07] adds speculation on top of decoupled soft-

ware pipelining. They speculate on few dependencies to extract more pipeline

stages and use a special commit thread for the recovery process. Spice [RVhRA08]

uses value prediction of the loop live-ins to enable speculative threading. Huang, et

al. [HRJ+10] combine speculative parallelization with parallel stage DSWP. Load-

balanced pipeline parallelism is non-speculative and orthogonal to the speculative

techniques. We can speculatively parallelize the sequential stages that dominate

the execution. We can also use speculation to create additional pipeline stages to

extract more parallelism.

8.1.7 Others

Event-driven compilation systems [ZCT05, ZCT06, ZTC07] use idle cores

to invoke a compiler at run-time to perform optimizations in response to events

detected by hardware performance monitors. DeVuyst, et al. [DTK11] use the dy-

namic optimization framework for runtime parallelization of single-threaded legacy

programs. They use the support of hardware transactional memory for efficient

parallel processing. Both data spreading, and inter-core prefetching use profile
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guided analysis and perform simple loop transformations based on that informa-

tion. An event-driven compiler could do this type of analysis runtime and then

recompile to apply these optimizations transparently.

Cache blocking [MC69, LRW91] is a compilation technique that reorders

computation on a single core to increase locality and reduce cache misses. Our

techniques could actually be complementary to techniques such as this, because

they can reduce the reuse distance for only a subset of the accesses and must still

incur some capacity misses on any structure that does not fit in the cache.

8.2 Improving parallel execution

Improving the scalability of parallel applications is another area of interest.

There have been works on new programming models, extracting parallelism, load-

balancing, synchronization overhead, etc.

Traditional parallelism Countless researchers have studied techniques for cre-

ating parallel code, either by discovering it automatically in the compiler [DRV00],

providing primitives and libraries for the programmer [CJP07, Mue93, Phe08], pro-

viding parallelized libraries for key computations [Int07], or building parallelism

into the programming language [Che93].

In this dissertation, we provide techniques that work on each parallel thread.

We mainly experiment with the workloads that are either sequential, or express

parallelism by using Pthreads [Mue93] and OpenMP [CJP07]. However, our tech-

niques apply to most forms of traditional parallelism and can improve nearly all

of them, even including mechanisms such as MPI [SOW+95], that do not commu-

nicate through shared memory.

Pipeline parallelism Pipeline parallelism [NATC09, BL12, GMV08, LTST11]

in another powerful parallel programming model that is well studied. Navarro,

et al. [NATC09] gives an analytical model for pipeline parallelism using queuing

theory to estimate the performance. Bienia, et al. [BL12] use PCA analysis to
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characterize pipeline applications from data parallel applications. Communica-

tions between different pipeline stages is shown to be an important component.

The cache-optimized lock-free queue [GMV08] is a software construct that reduces

communication overhead. Lee, et al. [LTST11] propose hardware solutions to the

queuing overhead. Chen, et al. [CYH10] improves decoupled software pipelining

using a lock-free queue.

Thies, et al. [TCA07] provides a mechanism to assist programmers to ex-

tract coarse-grained pipeline parallelism in C programs. They primarily target

streaming applications.

Load-balanced pipeline parallelism achieves the effect of pipeline parallelism

implicitly. However, it does not always execute in pipelined fashion. At some point,

all cores may execute the same pipeline stage like a data parallel application does.

In LBPP, all core to core communications occur through shared memory. So, it

does not warrant for additional hardware based fast communication mechanisms.

DOACROSS parallelism DOACROSS [Cyt86] is another technique that dis-

tributes loop iterations like LBPP to extract parallelism, but it does not support

arbitrary control flow inside the loop body and does not distinguish between se-

quential and parallel stages. This distinction is important, because a lot of serial

codes have pipelines composed of dominant parallel stages. The execution model

of LBPP extracts maximum possible parallelism for any number of cores. It is also

easy for LBPP to load-balance and accelerate irregular pointer chasing codes.

There are also works on constructing efficient scheduling of doacross paral-

lelism. Chen and Yew [CY94] focus on dependence graph partitioning to reduce

synchronization overhead for DOACROSS loops. LBPP can use their algorithm

as well to construct the pipeline.

Loop distribution [KM90] is a related technique that splits a loop into sev-

eral loops by isolating the parts that are parallel (have no cross iteration depen-

dencies) from the parts that are not parallel and can leverage data parallelism.

However, it does not pipeline sequential stages with the parallel stages like LBPP

does. In addition, it might require unlimited queuing space when there are data

transfers between different parts of the loop iteration.
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Load balancing Load balancing among threads has also received attention in

the past. Work stealing [BL99] is a common scheduling technique where cores

that are out of work steal threads from other cores. Feedback-driven thread-

ing [SQP08] shows, analytically, how to dynamically control the number of threads

to improve performance and power consumption. It dynamically measures data

synchronization and bus bandwidth usage to modify its threading strategy. Sule-

man, et al. [SQKP10] propose a dynamic approach to load balancing for pipeline

parallelism. Their technique tries to find the limiter stage at runtime and allocates

more cores to it. They assume at least one core per stage. Sanchez, et al. [SLY+11]

use task stealing with per-stage queues and a queue backpressure mechanism to

enable dynamic load balancing for pipeline parallelism.

LBPP naturally achieves load-balancing. In more complex cases, when the

weight of a pipeline stage varies dynamically, LBPP still does a fair job because

of chunking. For even better load balancing, we can add a lightweight sequential

stage to measure the load of a particular stage dynamically and partition the work

according to that. Adding lightweight sequential stages is close to free in LBPP.

Others Researchers have also improved scalability of parallel code by combin-

ing different types of traditional parallelism and by dynamically changing thread

behavior. Researchers have proposed hybrid models [LC08] that combine subsets

of Pthreads, OpenMP, and MPI as well as systems that combine multiple forms

of parallelism. For example, Gordon, et al. [GTA06] provide a compiler system

that finds the right combination of task parallelism, data parallelism, and pipeline

parallelism for stream programs. All of our techniques target programs written for

general purpose processors.

8.3 Improving energy efficiency

Energy efficiency is a key concern nowadays for all computing platforms

from smartphones to datacenters. There have been works on hardware to make

power efficient processors as well as on software to reduce the operating power or

to improve the energy efficiency.
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Weiser, et al. [WWDS94] take an operating system stand for processor

power reduction. They analyze the traces of multiple applications that are sched-

uled to run and monitor the system idle time that they use to adjust the processor

speed. They find that scheduling algorithms have the potential to reduce processor

power consumption while satisfying the important deadlines.

Hsu, et al. [HK03] propose a compiler algorithm that exploits dynamic volt-

age scaling (DVS) to reduce application power consumption. Their implementation

uses instrumented code to measure the impact of using different voltage/frequency

settings for a particular region and then use that information to construct an ap-

plication specific DVS schedule. Xie, et al. [XMM03] demonstrate an analytical

model that a compiler can use for DVS scheduling.

Choi, et al. [CSP04] implement a runtime system that uses an embedded

performance monitoring unit (PMU) to identify memory intensive regions and ap-

ply DVFS on that. The PMU computes the CPU clock cycles required to execute

instructions and the number of external memory access clock cycles to determine

the memory intensiveness. Poellabauer [Poe05] takes a similar approach that mon-

itors data cache miss rates using hardware performance counters and uses that as

a feedback. The work by Magklis, et al. [MSS+03] target a multiple clock domain

architecture and use profile guided analysis to determine the voltage settings of

those domains dynamically. Hotta, et al. [HSK+06] use DVFS algorithm in a clus-

ter to slow down the nodes that wait for data from another nodes. They also use

profiling to identify the proper regions of code.

The work in [KGyWB08] by Kim, et al. describe the design of on-chip

voltage regulators to provide fast per-core DVFS. They show that per core DVFS

allows the opportunity of applying higher frequency to a compute intensive thread

while applying lower frequency to memory bound thread. This optimizes energy

efficiency rather than using a fixed voltage/frequency setting for each chip. Fast

per-core DVFS also helps when same thread has both CPU bound and memory

bound regions.

In contrast to these approaches, underclocked software prefetching proposed

in this dissertation does not require complex DVFS algorithm. The decoupled
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execution model automatically provides memory intensive regions (i.e., prefetching

part) where we can apply dynamic frequency scaling. We also do not need to worry

about performance degradation or the right frequency settings. We can increase

the number of helper threads to take care of that.

Thread motion [RWB09] by Rangan, et al. takes a different approach to

save power. It uses different voltage/frequency settings for different cores, and the

thread moves around across different cores depending on the computing need. So,

the technique trades the switching latency of DVFS for the cost of thread migration

and loosing the working set. Underclocked software prefetching also uses thread

migration, but finds the working set ready in the new core.

Jeong, et al. [JKK+12] propose the design of a low overhead power gating

technique that power gates an active core when it stalls during long latency mem-

ory operations. Underclocked software prefetching and inter-core prefetching will

also get benefit from such architectures. We can apply power gating when helper

threads wait for the main thread and also, during the prefetch operations.
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Chapter 9

Summary

It is a recurring theme in computer architecture that hardware parallelism

always precedes and typically exceeds software parallelism – forcing software to

struggle to keep pace. We saw this with vector machines, VLIW, and wide su-

perscalar processors. We are seeing it today, or will shortly, to a greater extent

than ever before with the pervasive parallelism brought about by multithreaded

and multicore processors. The scenario known as the parallelization wall is the key

bottleneck against the performance growth that we used to see in the past.

This dissertation characterizes the parallelization wall problem and intro-

duces several techniques as a potential solution. We find that the key to solving the

parallelization wall is to accelerate the single thread execution using multiple cores

and thus to bridge the gap between software and hardware parallelism. This will

improve serial applications as well as parallel applications, because all applications

will eventually experience scalability limitations.

The non-traditional techniques presented in this dissertation are software

only and employ multiple cores to speedup the single thread execution. We find

that it is not always necessary to extract thread level parallelism to leverage multi-

ple cores. In software data spreading, we intelligently spread the working set across

different private caches and essentially construct a larger private cache to improve

locality. We develop an automated compiler algorithm to identify the loops that

can take such advantages. Data spreading provides up to 3.3× speedup for some

applications.
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We devote a greater part of this dissertation behind the inter-core prefetch-

ing technique and its extensions. Inter-core prefetching implements the first helper

thread prefetching technique that allows remote prefetching (in a different core)

but local accessing of data. Like data spreading, it also uses thread migration as

a key primitive. We find inter-core prefetching to be very effective on real sys-

tems providing up to 63% performance on average. More importantly, inter-core

prefetching sometimes provides more speedup than what traditional parallelization

gives making it very attractive for parallel applications as well.

Coalition threading intelligently combines traditional and non-traditional

parallelism to improve scalability of parallel applications. We show the effective

integration of inter-core prefetching and data parallelism for several parallel ap-

plications. This implies that using all cores for computation may not be always

optimal. We develop a compiler algorithm that identifies those cases very accu-

rately.

Underclocked software prefetching leverages the decoupled execution model

of inter-core prefetching for saving power. It applies dynamic frequency scaling on

helper threads that are memory intensive and less sensitive to frequency. We show

that using low frequency helper threads provides better energy efficiency than

using fewer high frequency helper threads while still maintains the same level of

performance. In some sense, this demonstrates a way of applying power to the

right component.

Finally, this dissertation proposes load-balanced pipeline parallelism, a tech-

nique that decomposes loop iterations into a set of pipeline stages, but execute

them in a data parallel fashion. LBPP does not handle parallel stages specially,

yet ensures maximum possible parallelism for any number of cores. We evaluate

LBPP in the context of two state of the art systems and find that it provides linear

speedup to a lot of serial loops.

In conclusion, this dissertation shows promising directions to handle the

parallelization wall problem and brings attention to several interesting points in

this regard. We can extract significant speedup to a lot of single thread executions

without parallelizing it. Thread migration can serve as a powerful optimization
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primitive to improve performance on multicore systems. Decoupling memory ac-

cesses provides another dimension of parallelism that we can exploit for perfor-

mance as well as for power. Software techniques allow more options to achieve

locality. And, coalition threading opens up a new way of expressing parallelism.
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