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This having learnt, thou hast attaind the summe 
 Of wisdom; hope no higher, though all the Starrs 
Thou knewst by name, and all th' ethereal Powers, 
All secrets of the deep, all Natures works, 
Or works of God in Heav'n, Air, Earth, or Sea, 
And all the riches of this World enjoydst, 
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Deeds to thy knowledge answerable, add Faith, 
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By name to come call'd Charitie, the soul 
Of all the rest: then wilt thou not be loath 
To leave this Paradise, but shalt possess 
A Paradise within thee, happier farr. 
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Epistasis, refers to the phenomenon, in which the phenotypic effect of one 

gene depends on or is modified by a secondary gene. High-throughput screening of 

genetic interactions has been made possible through a variety of methods such as 

Synthetic Genetic Array, combinatorial RNAi and genome-wide association studies. 
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However, thus far the majority of data has been generated in standard laboratory 

conditions. Yet in the course of their lives, cells are exposed to a wide-array of 

environmental stresses. How genetic interaction networks are re-wired in response to 

such stimuli remains an open question. In this thesis, I describe the generation and 

analysis of differential genetic interaction data, in response to numerous genotoxic 

stresses and demonstrate how this data can be used to elucidate cellular pathways 

required for the response to these stresses. 

 In Chapter 2, I describe the development of computational and visualization 

algorithms designed to integrate physical and differential genetic interaction data. This 

integrative approach enables the automatic assembly of raw interactions into pathway 

models and maps the higher-order functional relationships between such pathways.  

 In Chapter 3, I map changes in the cell’s genetic network across a panel of 

mechanistically distinct DNA-damaging agents. This multi-conditional genetic 

interaction map identifies both agent-specific and general DNA damage response 

pathways. More over, we anticipate that this data will be an important resource for the 

study of the DDR and its associated diseases. 

 In Chapters 4 and 5, I describe our efforts to analyze genetic interactions 

derived from forward genetic screening approaches, such as genome-wide association 

studies (GWAS). We develop a novel computational algorithm, which greatly 

increases our power to detect such interactions and furthermore, through projection of 

these genetic interactions within and across protein complexes, demonstrate that such 
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pathway-based interpretations of GWAS data provide novel hypothesis regarding the 

mechanism through which combinations of polymorphisms may affect a phenotype.
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Chapter 1. Introduction 

Proteins regulate and mediate most of the processes within a cell. In nearly all 

cases, they act in concert with other proteins as part of pathways or larger molecular 

assemblies such as complexes1. Studies in model organisms suggest that these 

networks of physically-interacting proteins have topological and dynamic properties 

that reflect biological function. Furthermore, a complete catalog of all these physical 

associations can expand our knowledge of the mechanistic details required for the 

execution of a particular phenotype. For example knowledge of kinase-substrate 

interactions can help us to order signaling pathways2, while transcription factor-DNA 

interactions can help to elucidate the transcriptional response to various stimuli3. Thus, 

an understanding of biological processes and disease pathogenesis will require a shift 

from a reductionist paradigm with its emphasis on the investigation of single proteins 

to a more global analysis of the structure, function, and dynamics of networks of 

interacting proteins. 

 Until recently, protein interactions were mainly discovered by small-scale 

methods such as co-immunoprecipitation, fluorescence correlation spectroscopy, or 

FRET microscopy. Unfortunately, most of these methods were both time consuming 

and could be only be used to reveal a small fraction of the interactome. In the past 

decade, however, numerous technologies such as yeast two-hybrid4 (Y2H) or tandem 

affinity purification followed by mass spectrometry (TAP-MS)5 have enabled the 

high-throughput mapping of protein-protein interactions (Figure  1.1). As of May 
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2010, the BioGRID database of protein interactions houses nearly 180,000 interactions 

spanning 17 different species6.  

In contrast to physical interactions, genetic interactions represent functional 

relationships between genes, in which the phenotypic effect of one gene is modified 

by another7-9. Genetic interactions are identified by comparing the effect of single 

knockouts to the joint effect of a double knockout. When the measured phenotype is 

growth, a genetic interaction is indicated when the growth rate of a double mutant is 

slower than expected (e.g. synthetic sickness or lethality) or faster than expected (e.g. 

suppression)7,8,10. In yeast, the systematic and high-throughput screening of genetic 

interactions has been made possible through a variety of methods including Synthetic 

Genetic Array (SGA) analysis7 and to a lesser extent diploid Synthetic Lethality 

Analysis by Microarray (dSLAM)11. In its simplest form, SGA analysis involves a 

series of replica-pinning procedures in which mating and meiotic recombination are 

used to convert an input array of single mutants into an output array of double mutants 

(Figure  1.2)8. Additionally, essential genes can be screened as well through the use of 

a method for creating hypomorphic alleles (as opposed to complete null alleles) 

termed DAmP (decreased abundance by mRNA perturbation)12. In this method, the 

essential gene’s 3’ untranslated region (UTR) is disrupted with an antibiotic resistance 

cassette leading to a two to ten-fold reduction in the amount of mRNA (Figure 1.3).  

A more recent variant of the SGA methodology, termed E-MAP (epistatic 

mini-array profiles) has enabled the identification of quantitative genetic interactions. 

As shown in Figure 1.4 the size of each double mutant colony is measured and 
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assigned a quantitative score reflecting deviation from an expected colony size, which 

is defined as the product of each single mutant colony size10. This feature enables the 

classification of both positive (i.e., double mutant grows better than the expected 

colony size) and negative (i.e., double mutant grows worse than the expected colony 

size) genetic interactions, as well as the magnitude of the genetic interaction (i.e., how 

much the double mutant deviates from the expected colony size). The E-MAP 

platform has been used extensively to study genetic interactions amongst subsets of 

genes involved in chromosomal biology9, RNA processing13, secretory pathways14, 

and signaling15. In all cases, having the entire quantitative profile of phenotypic 

changes induced by each double mutant have allowed for numerous new genes and 

pathways to be implicated in each of these processes.  

Recently, our lab has extended this genetic interaction mapping approach to 

examining how interactions are re-wired in response to an external stimulus. We have 

dubbed this approach differential epistasis mapping or dE-MAP16. In the dE-MAP 

approach, SGA is used to measure genetic interactions under standard conditions as 

well as under perturbations of interest and, by comparing the resulting networks, 

interactions that are altered in response to perturbation can be quantitatively assessed. 

These ‘differential’ genetic interactions reveal a unique view of cellular processes and 

their inter-connections under specific stress conditions17. 

 However, with the ever increasing quantity of data being deposited into public 

databases, the question arises of how to effectively organize these raw interactions into 

pathways and complexes so as to facilitate biological discovery? Analysis of large-
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scale genetic networks generated in Sacchromyces cervisiae  have revealed a striking 

orthogonality between physical and genetic networks; less than 1% of gene pairs 

which exhibit synthetic lethality also interact physically7, suggesting that the two types 

of networks provide complementary views of the cell. Accordingly, the interpretation 

of genetic networks has largely proceeded via integration with physical networks. Two 

common models that have been used include the “between-pathway” and “within-

pathway” explanations. In the, “within-pathway” model genetic interactions are found 

to be enriched amongst genes encoding for proteins in the same complex or 

pathway7,18,19. Such models typically include positive or alleviating genetic 

interactions consistent with the hypothesis that deleting pairs of genes in the same or 

similar biological process leads to a less severe growth defect compared to deletions in 

two un-related pathways (Figure 1.5A). On the other hand, in the “between-pathway” 

model genetic interactions are found to span pairs of protein complexes or signaling 

pathways, which themselves are defined as sets of genes encoding for proteins which 

interact physically (Figure 1.5B). Such “between-pathway” models typically 

encompass mostly synthetic lethal or negative genetic interactions, which are 

consistent with their role in connecting genes belonging to compensatory or redundant 

pathways7,18-20.  

In Chapter 2, I leverage these previously described network models to design 

an algorithm which automatically identifies both ‘modules’, i.e., sets of proteins 

whose physical and genetic interaction data matches that of known protein complexes 

and the higher-order functional cooperativity and redundancy between modules. More 
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over, we have designed a number of intuitive ways of visualizing both the modules 

and their relationships which should enable new functional relationships implicated in 

the vast flood of genetic and physical interaction data to be easily seen. In Chapter 3, I 

use the dE-MAP approach, along with computational methods developed in Chapter 2, 

to construct a large resource of genetic modules and networks induced by distinct 

types of DNA damage. We find that the network differences induced by each DNA 

damaging compound is able to distinguish DNA damage response pathways with high 

statistical power and can help to elucidate both agent-specific and general DNA 

damage response pathways. 

While the above experimental techniques have been instrumental in model 

organisms, performing genetic interaction analysis in higher eukaryotes has been less 

straightforward. First, genetic screens have relied on easy-to-measure cell-based 

phenotypes, such as fitness in rich growth conditions. However, genetic interactions 

governing complex traits in humans (such as body weight, blood pressure, or 

incidence of disease) are difficult to study using cell-based assays and are highly 

condition-dependent. Second, systematically engineering a series of double gene 

disruptions in mammals remains technically difficult, although combinatorial RNAi 

knockdowns show promise in this regard21,22.  

As an alternative to engineered genetic perturbations, high-throughput 

genotyping and sequencing platforms have made it possible to characterize the 

millions of polymorphic genetic markers present in the genome. Genome-wide linkage 

or genome-wide association studies (GWAS) attempt to identify polymorphic markers 
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that have associations, ideally causal associations, with a phenotype of interest23. 

Numerous technologies are currently available for measuring upwards of 105 Single 

Nucleotide Polymorphisms (SNPs) in the human genome24. In addition, full genome 

sequencing is becoming increasingly cheaper thus promising nearly complete 

interrogation of all sequence variations on an unprecedented scale. 

In theory, mapping epistatic interactions from forward genetic approaches, 

such as GWAS data is relatively simple and proceeds in a manner similar to reverse 

genetic approaches.  The goal is to identify a pair of sequence perturbations (e.g. a pair 

of SNPs) which are jointly correlated with a particular phenotype than either 

perturbation alone. Figure 1.6 provides an example of this situation: two SNPs B and 

C are used to segregate a particular population under study, but neither SNP alone can 

partition the variance of phenotype D seen in this population (Figure 1.6A). However, 

the joint state of SNPs B and C is able to effectively partition the variance suggesting 

an epistatic interaction between the two sequence variations (Figure 1.6B). Numerous 

computational methods for assessing the significance of epistasis between sequence 

variations exist ranging from simple linear and logistic regression models to more 

sophisticated Bayesian and machine-learning frameworks.  

Currently, mapping genetic interactions using GWAS faces two major 

challenges: a lack of statistical power for finding genotype-phenotype associations, 

and a lack of tools for understanding the molecular mechanisms behind the 

associations found to be significant25-27. Because billions of marker pairs must be 

tested, the power to detect a given epistatic interactions is diluted by the multiple 
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hypothesis under consideration. One solution to this problem is to initiate searches for 

pair-wise interactions only for markers with strong individual effects28. The 

subsequent reduction in search space greatly improves power. This technique has been 

used to great effect in identifying epistatic interactions amongst SNPs controlling gene 

expression traits in a recent linkage study done in yeast28,29.  

The second problem stems from the so-called “fine-mapping” problem; a 

significant locus detected in a GWAS many contain dozens of genes due to the large 

spacing between molecular markers. Consequently it becomes difficult to distinguish 

between these genes in a given locus30,31. A number of recent approaches have 

attempted to rank the candidate genes within a significant “association” locus based on 

independent biological information. For instance, Franke et al. prioritized genes in loci 

associated with a particular disease by scoring them based on their network proximity 

to other genes in these loci32. Aerts et al. formulated the “Fine Mapping” problem as a 

classification problem33. They used a machine learning approach based on a list of 11 

lines of evidence, ranging from protein domains to sequence similarity, to rank genes 

on their characteristic similarity to known disease genes. Tu et al. analyzed eQTL data 

by modeling the association between locus and phenotype (in this case the expression 

of a target gene) as a random walk through a protein network34. Each random walk 

originated from the target gene and terminated when it arrived at one of the candidate 

genes in the locus. The candidate gene that was visited most often was predicted to be 

the true causal gene for the phenotype.  
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In Chapters 5 and 6, I describe computational methods for boosting the power 

to detect epistatic interactions from GWAS data. Our method improves both power 

and interpretability of such genetic interactions through: (i) exploiting linkage 

disequilibrium between adjacent genetic markers (i.e., markers which share much of 

the same information) to identify groups of marker-marker interactions that fall across 

common genomic intervals, and (ii) projection of such interval-interval interactions 

within and across protein complexes, thereby elevating the analysis of GWAS from 

the level of individual markers to global maps of genetic interactions amongst protein 

complexes. 

Together, this thesis reveals how genetic networks are substantially re-wired in 

response to various stimuli and that genetic networks derived from forward genetic 

approaches are amenable to similar types of analysis as those networks derived from 

reverse genetic approaches. It is my sincere hope that both the analytical and 

experimental approaches established in this thesis will help to guide the analysis of 

genetic interactions in humans which are believed to underlie numerous diseases that 

are currently afflicting society35,36. 
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Figure 1.1: Schematic of two high-throughput methods for identifying protein-
protein interactions.  

(A) The yeast two-hybrid system (Y2H) consists of a separable DNA binding 
domain from a transcriptional activator fused to one protein and an activation domain 
from the same transcription factor fused to a second protein. An X-Y protein-protein 
interaction reconstitutes the transcription factor leading to the transcription of the 
reporter gene. (B) In the TAG-MS/MS system, a bait protein is fused to particular 
TAG system (e.g. TAP or FLAG). The bait protein is then purified using an antibody 
capture system; any interacting proteins are then identified using mass spectrometry. 
(Adapted from Cusick et al1 and Suter et al.37). 
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Figure 1.2: SGA Methodology.  
 
(a) A MAT α strain carries a query mutation linked to a dominant selectable 

markers (e.g. nourseothricin-resistance marker natMX), and the SGA haploid selection 
marker can1∆::MFA1pr-HIS3. This query strain is crossed to an ordered array of 
MATa deletion mutants (harboring a different resistance markers such as kanMX). (b) 
Resultant heterozygous diploids are transferred to a medium with reduced carbon and 
nitrogen to induce sporulation which leads to haploid progeny. (d-f) Through a series 
of selection steps, haploid double mutants are finally produced (adapted from Boone et 
al.8). 
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Figure 1.3: DAmP scheme for creating hypomorphic alleles of essential genes.  
 
Using homolgous recombination an antibiotic resistance cassette is integrated 

downstream of the essential gene leading to the destabilization of the transcript. 
(adapted from Breslow et al.12). 
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Figure 1.4: E-MAP Enables Measurement of the Continuous Spectrum of 
Genetic Interactions.  

 
(a) Colony sizes of the final double mutants are measured and compared to an 

expected colony size (defined as the product of each single mutant colony size). A 
genetic interaction score is assigned to each double mutant representing both the 
direction & size of deviation from the expected colony size. (B) An array of double 
mutants; yellow and blue circles show, respectively, replicates of double mutants 
which are growing faster than expected (positive interaction) or worse than expected 
(negative interaction). (C) E-MAP platform allows every single double mutant to be 
assigned a score allowing for full spectrum of genetic interactions to be analyzed. 
(Credit to Sourav Bandyophadyay).  
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Figure 1.5: Common pathway interpretations of genetic and physical 
interactions.  

 
(A) An example of a “within-pathway” model. Proteins are connected by 

higher than expected number of protein and genetic-interactions. An example would 
be members of a multimeric complex. (B) An example of a “between-pathway” 
model. Two sets of proteins are connected a higher than expected number of protein 
interactions. The two sets are spanned by a large number of genetic interactions. An 
example would be two complexes fulfilling redundant roles. (Adapted from Beyer et 
al.38)  
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Figure 1.6: Mapping epistatic interactions from forward genetic approaches.  
 
(A) An epistatic interaction between two sequence variants is identified when 

neither variant alone can segregate the variation of quantitative trait seen in a 
population , (B) while the joint state of the two markers is predictive. 
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Chapter 2. Assembling Global Maps of Cellular Function through Integrative 

Analysis of Physical and Genetic Networks 

Chapter 2.1: Abstract 

To take full advantage of large-scale genetic and physical interaction mapping 

projects, the enormous amount of raw data must first be assembled into models of cell 

structure and function. PanGIA (Physical and Genetic Interaction Alignment) is a 

plugin for the bioinformatics platform Cytoscape, designed to integrate physical and 

genetic interactions into hierarchical module maps. PanGIA identifies ‘modules’ as 

sets of proteins whose physical and genetic interaction data matches that of known 

protein complexes. Higher-order functional cooperativity and redundancy is identified 

by enrichment for genetic interactions across modules. This protocol begins with 

importing interaction networks into Cytoscape, followed by filtering and basic 

network visualization. Next, PanGIA is used to infer a set of modules and their 

functional inter-relationships. This module map is visualized in a number of intuitive 

ways, and modules are tested for functional enrichment and overlap with known 

complexes. The full protocol can be completed between 10 minutes and 30 minutes 

depending on the size of the dataset being analyzed. 

 

Chapter 2.2: Introduction 

Genetic interactions are defined as functional relationships between genes that 

result when the phenotypic effect of one gene is altered by one or several other 

genes8,38. Such interactions have been used to uncover pathway architecture in model 
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organisms7,9,14,15. In humans, genetic interactions are thought to influence numerous 

phenotypes of interest from expression39 to complex diseases23 to drug resistance40. 

Recently a number of technologies such as synthetic genetic arrays (SGA)7,10,41,42 and 

heterozygote diploid-based synthetic lethality analysis with microarray (dSLAM)11 

have facilitated the rapid screening of genetic interactions in model organisms. In 

human cell lines, combinatorial RNAi screening technologies have begun to show 

promise in uncovering genetic interactions43,44. As a result of these high-throughput 

technologies, the amount of genetic interaction data available in the public domain has 

increased rapidly. As of December 2010, the BioGRID interaction database houses 

nearly 175,000 genetic interactions spanning 11 different species6.  

 Interpreting the functional significance of each genetic interaction remains a 

daunting task. One promising solution has been to interpret genetic interactions in the 

context of their relationships to physical protein-protein interactions (Figure 2.1A)18-

20,45. At least two distinct models have been put forth to reconcile genetic and physical 

interactions. The “within-cluster” model seeks to identify clusters of proteins that are 

enriched for both physical and genetic interactions (Figure 2.1B). We refer to such 

clusters of proteins and the interactions occurring among them as a module. Modules 

are often interpreted as functional protein complexes7,19,20,45 or signaling pathways40. 

In contrast, the “between-cluster” model seeks genetic interactions that are enriched 

across two clusters of interacting proteins (Figure 2.1B).   Such inter-module links 

have been shown to identify synergistic or compensatory relationships between 

protein complexes or signaling pathways9,18,19. Figure 2.1C shows an example module 
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map consisting of four modules connected by three inter-module links. The genes in 

each of these four modules are associated with a strong “within-cluster” signal and 

furthermore coincide with known Sacchromyces cerevisiae physical complexes 

(Figure 2.1C). Setp3p and Rpd3s are both histone deactylase complexes involved in 

transcriptional regulation. The Hir complex functions in replication-independent 

nucleosome assembly, while the UTP-C complex is a component of the 90S pre-

ribosome. The inter-module link between Set3p and Rpd3s suggests a functional 

synergy between the two complexes. Consistent with this hypothesis, several studies 

have illustrated that the two cooperate in the activation of DNA damage genes through 

recruitment of RNA polymerase II46.   

Several methods have been previously published19,20,45,47 for analyzing 

interactions to identify both within-cluster and between-cluster functional 

organization. However, these methods have not yet been made available through a 

publicly-accessible software package. Here, we introduce a novel software tool, 

PanGIA (Physical and Genetic Interaction Alignment), along with a general 

bioinformatics protocol for integrative analysis of genetic interactions. PanGIA  

implements a previously published framework18 as a plugin for the open-source 

network analysis platform, Cytoscape48,49, and allows the user to easily generate maps 

of modules and module inter-relationships from genetic and physical interaction data 

(see Figure 2.1 for an overview). A number of options are available to the user for 

constructing and visualizing the resulting module map. PanGIA is built on the new 

Cytoscape 2.8 architecture50 which features the ability to view and manipulate nested 
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networks, enabling the user to explore both the global map as well as individual 

modules in an intuitive manner. Finally, individual modules can be interrogated using 

a number of functional enrichment options.  

The computational workflow presented here has been used in the analysis of 

genetic networks centered on genes involved in chromosomal biology9,18, RNA 

processing13, secretory pathways15, and DNA-damage response40. This analysis has 

also been employed in comparing genetic networks across two different species51. In 

each case, the module maps generated have helped to identify novel pathways as well 

as new components and functions for existing complexes18-20,40,51. While this 

workflow has proven useful in the analysis of numerous genetic interaction datasets, 

the module search process works best when there is a high density of protein and 

genetic interactions among the set of genes being studied. For species for which there 

is a scarcity of either genetic interaction or physical interaction data, this protocol may 

not identify a significant number of modules or inter-module relationships. This 

limitation will become less relevant as large-scale interaction screens continue to 

populate the scientific databases. 

This protocol is divided into five basic sections (Figure 2.1). The first section, 

‘Importing Physical and Genetic Networks into Cytoscape’ describes the available 

sources of interaction data and means of acquiring these data within Cytoscape. 

Second, ‘Generating a Module Map Using the PanGIA Plugin’ covers the usage of the 

PanGIA plugin and is further broken into four sub-sections covering the various 

aspects of its use (‘Selecting a Physical and Genetic Network’, ‘Setting the Module 
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Size and Edge Reporting Parameters’, ‘Training PanGIA’, and finally, ‘Labeling 

Modules’). The third section, ‘Visualization of the Module Map Using Nested 

Networks’ introduces ways in which the user can navigate and visualize the resulting 

module map. Fourth, ‘Functional Enrichment of the Modules’ illustrates methods to 

identify enriched biological functions and pathways among the identified modules. 

Finally, ‘Exporting the Results’ covers the various ways in which the module map can 

be exported from Cytoscape for further analysis or for inclusion as figures in a 

publication. We now briefly describe each of the sections comprising this protocol: 

The first section (‘Importing Physical and Genetic Networks Into Cytoscape’)  

describes the various ways in which a physical or genetic network can be imported for 

analysis into Cytoscape. A previous protocol has outlined in detail the various file 

formats Cytoscape can recognize as well as provided detailed instructions on how 

each file type can be imported49. The present protocol will instead focus on importing 

networks in a tab-delimited format. Table 2.1 provides examples of several different 

databases from which interaction data (both genetic and physical) can be downloaded 

in a tab-delimited format for over 50 organisms. 

The second section (‘Generating a Module Map Using the PanGIA Plugin – 

Selecting a Physical and Genetic Network’) describes the steps necessary to select 

which physical and genetic networks are to be analyzed. At this point, PanGIA is fully 

configured and the module search process can be initiated. However, PanGIA is 

designed with four optional features designed to fine-tune and enhance the search 

process. We describe these optional features in the subsequent sections.  
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The first optional feature is the ‘Module Size’ parameter. This parameter helps 

to control both the size and number of modules by rewarding the formation of larger 

modules. Thus, higher values of this parameter results in the formation of larger, but 

fewer modules. Lower values produce the opposite effect (Figure 2.1B). It is 

recommended that the ‘Module Size’ parameter initially be left at the default value. If 

the resulting module map contains very large modules, the ‘Module Size’ parameter 

can be suitably altered and the module search process re-run to produce smaller and 

more biologically meaningful modules (see Troubleshooting).  

 The second optional feature is dependent on the presence of quantitative 

genetic interaction data. Many of the recent experimental technologies for measuring 

genetic interactions go beyond reporting interactions in a simple binary format 

(interacting or non-interacting) and provide some measure of confidence in a given 

interaction. For example, in the SGA technology42 and a recent variant called E-MAP 

(epistatic mini-array profiles)9,10, each double mutant is assigned a quantitative signed 

score, where positive scores indicate that the double mutant grew better than expected 

(e.g. suppression) and negative scores indicate pairs for which the double mutant grew 

worse than expected (e.g. synthetic sick or synthetic lethal)10,42. Table 2.1 outlines 

numerous databases that contain quantitative interaction data.. 

 If quantitative genetic interaction data is provided, each inter-module link can 

be assessed for significance. A p-value is assigned by comparing the sum of the 

interaction confidence values for all genetic interactions spanning two modules (i.e., 

inter-module link) to a distribution of sums of equal interaction confidence values 
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drawn from random genetic interactions18 (Figure 2.1C). Thus, inter-module links 

consisting of very confident genetic interactions will be assigned a significant p-value. 

The ‘Edge Reporting’ parameter serves as a threshold used to filter insignificant inter-

module links from the final module map. By default, this parameter is set to 0.1, thus 

filtering inter-module links with a p-value above 0.1 from the final module map.  

The next optional feature relies on the presence of a biological annotation set. 

Examples of an annotation set that can be used include physical complexes, signaling 

pathways, metabolic pathways, or even broad biological processes. Table 2.2 provides 

a list of databases where an annotation set can be downloaded for a range of different 

organisms. 

  The optional training procedure built into PanGIA is designed to help identify 

modules which are more likely to be biologically relevant, i.e., modules which contain 

genes that operate in the same complex or biological process. By default, the module 

search process is designed to identify sets of genes that are densely connected by 

physical and genetic interactions. However, some interactions can be given more or 

less influence based on their quantitative score. PanGIA can determine how likely a 

certain interaction (either physical or genetic) is to connect two genes within a known 

complex or biological process using an existing annotation set. Examples of such a set 

include physical complexes (e.g. INO80 complex), signaling pathways (e.g., the 

MAPK pathway), metabolic pathways (e.g., glycolysis), or biological processes (e.g. 

DNA Damage Response Genes). Using this annotation set, PaNGIA assigns each 

interaction a weight based on the unsigned logistic regression of all interaction 
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confidence scores of a given type (physical, genetic) against its proteins’ co-

membership in an annotation. If no quantitative scores are available, PanGIA uses 

logistic regression to assign a constant confidence score for all interactions of a given 

type. For specific details regarding the regression procedure please see 

Bandyophadyay et al18. The module search process will now seek to identify sets of 

genes which are connected by highly weighted physical and genetic interactions. Since 

the weight of an interaction corresponds to how likely it is to connect two genes 

belonging to the same physical complex or pathways, the modules identified will 

contain genes which are functionally similar.   

The genes comprising a module may function in the same biological process or 

encode members of the same protein complex. If a biological annotation set is 

provided, PanGIA will check to see if the set of genes comprising each module 

overlaps with the set of genes comprising each annotation. Here, overlap is defined 

using the Jaccard similarity coefficient (intersection/union) which ranges from 0 (no 

overlap) to 1 (perfect overlap). If the Jaccard coefficient exceeds a user-specified 

threshold, then the module will labeled with the name of the annotation in the final 

module map (Figure 2.1C). This sub-section (‘Generating a Module Map Using the 

PanGIA Plugin – Labeling Modules’) covers how this labeling feature can be enabled 

and provides instructions on how to set the overlap threshold.  

PanGIA is built on the new Cytoscape 2.8 architecture which features the 

ability to view nested networks, i.e., each node in a network can represent an entire 

sub-network. Instructions are provided for laying out the network of modules and 
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inter-module links and for probing individual modules. This section is broken into 

three sub-sections, ‘Navigating the Module Map’, ‘Finding Modules of Interest’, and 

‘Exploring Modules of Interest’, which cover the various ways in which both the 

module map and individual modules can be interrogated. 

Modules will often contain genes of unknown function. One way to dissect the 

function of modules uncovered in this workflow is to examine if they are significantly 

enriched for any functional annotations. This can be used to identify new components 

of existing complexes or to identify entirely new physical complexes or 

pathways9,18,19. This section (‘Functional Enrichment of the Modules’) outlines the 

steps for checking for enriched Gene Ontology functional terms52 using the BiNGO 

plugin53.  

The final section (‘Exporting your Results’) covers the various options for 

exporting the resulting module map. 

 

Chapter 2.3: Materials 

Equipment 

PC with Internet access and an Internet Browser. 

Equipment Setup 

Hardware Requirements: PanGIA hardware requirements depend on the size 

of the physical and genetic networks to be imported and analyzed. For 

networks up to 200,000 edges, we recommend a 2.0 GHz CPU or higher, a 

medium-end graphics card, 150 MB of available hard disk space, and at least 2 
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GB of free physical RAM. If analyzing very large networks (>500,000 

interactions), at least 8 GB of free physical RAM is recommended. For 

viewing of the modular map produced by PanGIA we recommend a monitor 

with a minimum screen resolution of 1024 x 768. 

Operating System: PanGIA and Cytoscape are supported on Windows (XP, 

Vista, and Windows 7), Mac OS X (version 10.6 [i.e., Snow Leopard] or 

higher) and Linux. 

Java Standard Edition: version 1.6 or higher (can be downloaded from 

http://www.java.com).  

A three button-mouse: This is recommended (but not required) as an aid in 

navigating the module map. 

Cytoscape v2.8.0: PanGIA requires Cytoscape version 2.8.0 or higher. The 

steps for downloading and installing the latest version of Cytoscape can be 

found in a previously published protocol49 or online at 

http://www.cytoscape.org/documentation_users.html. 

Plugins: The analysis capabilities of Cytoscape are expandable and extensible 

through add-on software packages called plugins. This protocol requires the 

installation of four plugins, PanGIA, BiNGO53, Enhanced Search54, and 

CyThesaurus55. Instructions for installing these plugins are outlined in Steps 2–

4. 

MeV version 4.6 or higher: MeV or MultiExperiment Viewer56 is an integrated 

toolkit that that includes sophisticated algorithms for the clustering and 
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visualization of large-scale genomic data. This protocol uses MeV to view 

modules as a hierarchically clustered heat map. Instructions for downloading 

and installing MeV can be found at http://www.tm4.org/mev/.  

Data files: PanGIA requires both a physical and genetic network in a tab-

delimited format. Sample protein and genetic interaction networks are 

provided as examples to illustrate the protocol. The physical interaction 

network (Supplementary Data 1) was taken from a recent computational 

integration of two large datasets generated using tandem affinity purification 

followed by mass spectrometry (TAP-MS)57. Each physical interaction was 

assigned a Purification Enrichment score (PE Score), with larger values 

representing greater confidence in the physical interaction. The genetic 

interaction network (Supplementary Data 2) was obtained from a large E-MAP 

screen which measured all possible genetic interactions among 743 genes 

involved in yeast chromosomal biology9. Each gene pair is assigned an S-score 

representing both the magnitude and confidence of the genetic interaction. The 

supplementary information can be accessed on the supplementary website 

(http://prosecco.ucsd.edu/PanGIA/). Table 2.1 lists several public databases 

where protein and genetic interaction data can be downloaded for many 

different species. 

Additional data files: The file CYC2008_Complexes.txt contains a list of 408 protein 

complexes in the yeast Saccharomyces cerevisiae hosted by the CYC2008 

database58,59. This file illustrates an example of a Cytoscape node attribute file, which 
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allows nodes in a network to be mapped to a particular. In this case, yeast genes are 

mapped to the various physical complexes in which they participate. This file is used 

to demonstrate how a set of known biological modules can be used to train PanGIA to 

identify more biologically meaningful modules and inter-module relationships 

(covered in the ‘Training PanGIA’ sub-section). Additionally, this file is used during 

the ‘Module Labeling’ portion of this protocol to check if the identified modules 

correspond to known protein complexes. Table 2.2 outlines several different public 

databases from which an annotation set can be downloaded for a variety of species. 

 

Chapter 2.4: Protocol 

Chapter 2.4.1: Importing physical and genetic networks into Cytoscape 

1. Start Cytoscape. If Cytoscape is not yet installed on your computer, instructions 

for downloading and installing the latest version can be found at 

http://www.cytoscape.org/documentation_users.html. Cytoscape can be started by 

navigating to the directory in which it was installed and executing the file 

cytoscape.bat (Windows users) or cytoscape.sh (Linux and Mac OS X users). 

Critical step. PanGIA requires Cytoscape version 2.8.0 or higher. If your current 

installation of Cytoscape doesn’t meet this requirement, download and install the 

latest version from http://www.cytoscape.org 

2. Next install the required plugins by navigating to the Plugins menu and clicking on 

‘Manage Plugins’.  
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3. Double click on the folder titled Analysis located under the ‘Available for Install’ 

folder and select the plugin PanGIA version 1.1 or later. Click Install. Accept the 

Plugin License Agreement and then click Finish. 

4. Repeat the above step with BiNGO53 version 2.42 or later (located in the 

Functional Enrichment Folder), EnhancedSearch54 version 1.2 or later (located in 

the Analysis Folder) and CyThesaurus version 1.2 or later (located in the Network 

and Attribute I/O Folder). 

5. After installing the required plugins, start the PanGIA plugin by navigating to the 

Plugins menu and selecting Module Finders  PanGIA. 

6. After PanGIA has started the PanGIA console will appear (Figure 2.3). The 

console is divided into three main panels: the Physical Network panel, where 

details regarding the physical network will be entered, the Genetic Network Panel, 

where details regarding the genetic network will be entered, and the Advanced 

Options Panel, which can be expanded by clicking on the triangle located next to 

the word ‘Advanced’. This panel contains multiple advanced options for tuning the 

module-finding process. Four additional areas of interest are the Cytoscape canvas 

which displays network visualizations and may be initially blank, the Data panel 

which is used to display node, edge, and network attribute data, the Toolbar which 

contains numerous command buttons, and the Network Browser which can be 

accessed by clicking on the tab titled “Network” (Figure 2.3). The Network 

Browser provides a list of networks currently available along with the number of 

nodes and edges in each network. 
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7. Next we import both a physical and a genetic network to be used in the analysis. 

Assemble the data in a tab-delimited format. Users wishing to follow this protocol 

as a tutorial should download the Supplementary Data File 1 

(Collins_physical_network_example.txt) and Supplementary Data File 2 

(Collins_genetic_network_example.txt) and continue with Step 8. Critical step. 

PanGIA is designed to work with both quantitative and non-quantitative 

interaction data. However, any single network (either physical or genetic) must 

consist of a single type of interactions (i.e., either all quantitative interactions or all 

non-quantitative interactions). 

8. Click on the File menu, then select Import  Network From Table (Text/MS 

Excel). A window titled ‘Import Network and Edge Attributes from Table’ will 

appear. 

9. Click on the button titled ‘Select File(s)’ and specify the file containing the 

physical interaction network. A preview of the file should appear in the ‘Preview’ 

panel located at the bottom. Select the column number representing the gene which 

is the source node in the selection box titled ‘Source Interaction’. Select the 

column number representing the target node in the selection box named ‘Target 

Interaction’. If the example files (Supplementary Data 1 & 2) are being used, the 

source and target nodes are, respectively, columns 1 and 2. 

10. Specify an interaction type which will enable Cytoscape to differentiate between 

protein and genetic interactions. Check the box titled ‘Show Text File Import 

Options’ and under ‘Network Import Options’ enter a meaningful string character 
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in the box titled ‘Default Interaction’ (e.g. ‘pi’ or ‘gi’ depending on whether 

physical interactions or genetic interactions are being imported). 

11. Optional Step: Use this step if quantitative interaction strengths are attached to the 

network. In the file Preview panel launched in Step 8, left click the column which 

represents the quantitative attribute under the ‘Preview’ panel to enable the import 

of this attribute into Cytoscape. Right-click the same column and when prompted, 

type in an appropriate Attribute name (e.g., ‘PScore’ or ‘GScore’ depending on 

whether the physical or genetic network is being imported) and click ‘OK’.  Make 

sure to note the name used. You will need it later when selecting the attribute to be 

used in the training process. Critical step. The quantitative attribute provided 

should be either an integer (e.g., numbers like 1, -2, or 514) or a floating point 

(e.g., numbers like 2.343, -45.7687, or 74.3).  

12. Click the button ‘Import’ located in the lower right hand corner. The physical 

network should now appear in the Cytoscape canvas area. The title of the network 

should be the name of the file provided. 

13. Repeat Steps 8 – 12 to import the genetic network.  

14. Optional Step: Steps 14 – 18 should be used if the physical and genetic networks 

use different gene identifiers (e.g. Uniprot ID versus Ensemble ID). PanGIA 

requires that the two networks use the same gene identifier. To convert the gene 

identifiers in a given network, assemble an ID translation file into a tab-delimited 

format. This file should contain a map between the gene identifier currently being 
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used and the target gene identifier. Users following this protocol as a tutorial using 

the sample data provided should skip to Step 19. 

15. Optional Step: Start the CyThesaurus plugin by clicking on the Plugins menu and 

then selecting CyThesaurus. A window titled ‘CyThesaurus plugin’ should appear. 

16. Optional Step: Configure the CyThesaurus plugin to use the ID mapping file 

generated in Step 14 by clicking on the button ‘ID Mapping Resources 

Configuration’. A new window titled ‘ID Mapping Source Configuration’ will 

open up. In the left panel of this window click on the folder titled ‘Local Remote 

Files’ which will bring up another window titled ‘File-based ID Mapping 

Resources Configuration’. Under the panel named ‘Data source’, click the button 

‘Select file’ and specify the location of the ID mapping file and click ‘Open’. 

Next, click ‘Okay’ and finally ‘Close’. 

17. Optional Step: Select both the physical and genetic networks by clicking on them 

in the ‘Available Networks’ panel, then clicking the right arrow button. The two 

networks will appear in the ‘Selected Networks’ panel.  

18. Optional Step: Choose the two different gene identifier names used in the genetic 

and physical network in the ‘Source ID Type(s)’ selection box. In the ‘Target ID 

Type’ selection box choose the target gene identifier you with to map to. Finally, 

in the selection box titled ‘All target ID(s) or first only?’ selection the option 

‘Keep the first target ID only’. Now press OK. A message will pop up indicating 

how many gene identifiers were successfully mapped.  



31 
 

 
 

Chapter 2.4.2: Generating a Module Map Using the PanGIA Plugin – Selecting the 

Physical and Genetic Network 

19. In the top-most panel in the PanGIA console (‘Physical Network’ panel, see Figure 

2.3), select the physical network to be used in the ‘Network’ selection box. The 

name of the physical network will correspond to the name of the file from which 

the network was imported.  

20. Select the genetic network to be used in the ‘Network’ selection box located in the 

‘Genetic Network’ panel. Again, the name of the network will correspond to the 

name of file from which it was imported.    

21. Optional Step: Use this step if quantitative interaction data are being used.  In the 

‘Attribute’ drop-down menu located in the ‘Physical Network’ panel, select the 

appropriate attribute name (i.e., the name assigned to the quantitative attribute for 

physical interactions from Step 11). Similarly, select the appropriate attribute 

name for genetic interactions in the ‘Attribute’ drop-down menu located in the 

‘Genetic Network’ panel. 

22. Optional Step: Use this step if quantitative interaction data are being used and no 

biological annotation data is present. Even without a set of known complexes or 

pathways, PanGIA can leverage the confidence values assigned to each interaction 

(physical or genetic) to identify modules and inter-module links that contain highly 

confident interactions. However, it is necessary to let PanGIA know how the 

quantitative information is scaled. In the ‘Scale’ selection menu located in both the 
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‘Physical Network’ and ‘Genetic Network’ sub-panels (Figure 2.3) choose one of 

the following options: 

a) ‘lower – This option indicates that smaller quantitative values (both positive 

and negative) represent more confident interactions. 

b) ‘upper’ – This option indicates that larger quantitative values (both positive 

and negative) represent more confident interactions. 

c) ‘none (prescaled)’ -  This option should only be chosen if the quantitative 

attribute attached to either the physical or genetic interactions already 

represents the likelihood that a given interactions falls within a known 

biological module. This option enables the user to perform the training 

procedure outside of PanGIA and use the subsequent results in the module-

search process.  

If the example files are being used, simply choose ‘none’. During the training 

process, PanGIA will automatically scale the score attached to each interaction to 

reflect how likely that interaction is to fall either ‘within’ a module or ‘between’ 

two modules. 

23. Optional Step: Use this step if the gene identifiers in either the physical or genetic 

network were mapped to a new gene identifier. In the Advanced Optional panel, 

select the target gene identifier to which genes in both networks were mapped to 

under the ‘Node Identifiers’ sub-panel. If no gene identifier mapping was 

performed or if the user is following this protocol with the sample data, skip to 

Step 24. 
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Chapter 2.4.3: Generating a Module Map Using the PanGIA Plugin – Setting the 

Module Size and Edge Reporting Parameters 

24. Optional Step: PanGIA features a number of advanced options for tuning the 

search process. The size and number of modules returned by the search process 

can be controlled by changing the ‘Module Size’ parameter (located in the 

Advanced Options panel). This can be done using the graphical slider in the 

‘Search Parameters’ panel. Dragging the slider to the right will result in fewer 

modules with larger average size, while dragging the slider to the left will result in 

more modules with a smaller average size (Figure 2.1B). The value of the ‘Module 

Size’ parameter will be displayed in a text box to the right of the slider. It is 

recommended to leave the slider in its default position for the first run and to 

adjust it later if the results are unsatisfactory (see Troubleshooting). For the sample 

data provided, set the ‘Module Size’ parameter to -1.6 by moving the slider to the 

left.  

25. Optional Step: Oftentimes, the physical network being used covers a much larger 

set of proteins than those examined in the genetic interaction screen. In such a 

case, it is often useful to trim the physical network to include only proteins which 

are either present in the genetic network or are neighbors of such proteins within 

the physical network. This trimming is controlled by setting the ‘network filter 

degree’ parameter (located in the Advanced Options panel). A value of 0 will trim 

the physical network to only include nodes from the genetic network. Higher 

values represent the acceptable distance (through edges) separating a protein in the 
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physical network from a node in the genetic network. If no trimming is desired, 

leave the box blank to prevent PanGIA from filtering any nodes. If the samples 

data file are being used, leave the ‘network filter degree’ parameter at its default 

value of two. Critical step. The ‘network filter degree’ parameter provided should 

be a positive integer (e.g., numbers like 1, 2, or 10).    

26. Optional Step: Use this step only if quantitative interaction data is present. Every 

inter-module link found by PanGIA can be assigned a p-value, after which 

insignificant edges are filtered from the resulting module map. The significance 

threshold can be set by changing the position of the slider in the ‘Edge Reporting’ 

sub-panel. Dragging the slider to the left (towards ‘Less’) will result in a higher 

significance threshold and less inter-module links in the final map (Figure 2.1C). 

The p-value cutoff will be displayed in a text box immediately to the right of the 

slider. If the example files are being used, move the slider to the left and set the 

threshold to 0.05. 

27. Optional Step: Steps 27–29 should be used only if an annotation set is present. The 

training and module labeling steps requires a list of annotations to be imported into 

Cytoscape. Assemble your list of annotations into the node attribute file format. 

Import this file into Cytoscape by navigating to File  Import  Node 

Attribute…. Navigate to the appropriate file and click ‘Open’. If using the sample 

data, the file cyc2008_complexes.txt should be used in this step.  

28. Optional Step: In the ‘Annotation’ sub-panel under Advanced Options, select the 

annotation attribute that will be used during the training and labeling process. The 
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name of annotation set is specified in the node attribute file which was uploaded in 

the previous step. If the sample data have been used, the attribute name will be 

‘CYC2008’.  Select the annotation set name in the selection box titled ‘Annotation 

attribute.’  

29. PanGIA can be trained to better identify module and inter-module links by 

examining actual examples of biological modules provided in the annotation set. 

To train PanGIA, simply check the box titled ‘Train PanGIA’ in the Annotation 

sub-panel. If the sample data is being used, make sure this box is checked. 

 

Chapter 2.4.4: Generating a Module Map Using the PanGIA Plugin – Labeling 

Modules 

30. Optional Step: This step should only be used if an annotation set is present. 

PanGIA can label individual modules with the name of an annotation, if their 

member genes overlap with the genes belonging to that annotation (Figure 2.1C). 

To have PanGIA label modules, check the box titled ‘Label modules’ in the 

Annotation sub-panel (Figure 2.3). Next, specify the overlap threshold (defined 

here as the Jaccard index) in the text box named ‘Labeling Threshold’. If the 

sample data is being used, set the ‘Labeling Threshold’ to 0.2. ?Troubleshooting 

31. Optional Step: If desired, PanGIA can output a report containing a summary of the 

module-finding process. This includes: (i) a summary of the networks used by 

PanGIA, (ii) the results of the training process and, (iii) a summary of the resulting 
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module map. To have PanGIA output a report, specify an output file in the sub-

panel ‘Report’. Following a successful search, an HTML file will be created which 

can be viewed using any internet browser.  

32. At this point, PanGIA is fully configured. The module search process can be 

initiated by clicking the ‘Search’ button located at the bottom-right corner of the 

PanGIA console. Depending on the size of the network and the computer 

hardware, the module-finding process should take anywhere from one to ten 

minutes. If the sample data is being used, the search process should take less than a 

minute (see Timing for additional details). 

 

Chapter 2.4.5: Visualization of the module map using nested networks – Navigating 

the Module Map 

33. Once the search process is complete, a window titled ‘Module Overview Network’ 

will appear in the Cytoscape Canvas panel (Figure 2.4A). This network is the 

resulting global module map. Each node represents an individual module 

comprised of a set of genes densely interconnected by genetic and physical 

interactions. The area of a module scales according to the number of genes that it 

contains. Links between modules are comprised of genetic interactions; the 

thickness of the interactions corresponds to the number of genetic interactions 

spanning the two modules. If the labeling option was chosen, modules that overlap 

with one of the annotations provided will be labeled as such (Figures 2.4A – B). 
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34. You can zoom into the module map using the “Zoom In” button on the tool bar. 

This icon is displayed as a magnifying glass with a ‘+’ symbol in the middle. You 

can zoom out by clicking on the “Zoom Out’ button (magnifying glass with a ‘-‘ 

symbol in the middle) Alternatively, one can zoom in and out using the scroll 

wheel on the mouse. Scrolling up zooms into the area centered on the mouse 

pointer. Scrolling down zooms out on the area centered on the mouse pointer.  

35. To pan around the module map, two options are available: 

(A) Using the mouse. Click the middle button on the mouse anywhere in the 

active network being viewed in the Cytoscape canvas (or the scroll wheel if 

present) and drag the mouse in the desired direction. 

(B) Using the network browser. Navigate to the ‘Network Browser’ by clicking 

on the ‘Network’ tab (Figure 2.3) located to the left of the PanGIA tab. In 

the bottom half of the ‘Network Browser’ is a bird’s-eye view of the active 

network being viewed in the Cytoscape canvas; a blue selection box 

highlights the particular region of the network currently being viewed. To 

pan around the network, click and hold the blue selection box and move it 

in the desired direction. 

 

Chapter 2.4.6: Visualization of the module map using nested networks – Identifying 

Modules of Interest 

36. To further investigate modules of interest (i.e., function enrichment or detailed 

visualization), the module or modules of interest must be selected. This protocol 
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describes three different options for doing so: direct selection of modules (option 

A), direct selection of inter-module links (option B), and search-based selection of 

modules (option C).   

(A) Direct selection of modules. Select any single module by clicking on it the 

with the left mouse button. The selected module will turn yellow. Several 

modules can be selected by holding down and dragging the left mouse button 

to define a rectangular selection region. Alternatively, multiple modules may 

by holding down the ‘Shift button and left clicking on multiple modules. 

(B) Direct selection of inter-module links. To select any edge, click on the edge 

with the left mouse button. The selected edge will turn red. Several edges can 

be selected by holding down and dragging the left mouse button to define a 

rectangular selection region. 

(C) Search-based selection of modules. To find and highlight modules in the map 

which contain a gene of interest, enter the name of the gene into the Enhanced 

Search Plugin search box located in the command toolbar (the box is named 

‘Enhanced Search; see Figure 2.3). If your gene of interest falls within a 

module, that module and its inter-module links will be highlighted yellow. 

 

Chapter 2.4.7: Visualization of the module map using nested networks – Exploring 

Modules of Interest 

37. PanGIA returns numerous useful statistics or attributes regarding the modules 

identified, including module size, number of physical/genetic interactions among 
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the genes in this module, etc. A complete list of attributes returned by PanGIA is 

provided in Table 2.3. The Data Panel (Figure 2.3) can display any/all of the 

attributes listed in Table 2.3. Select a module(s) of interest from the module map 

displayed in the Cytoscape Canvas as described in Step 33. When a single module 

or groups of modules have been selected in the Cytoscape Canvas, the selected 

modules will be listed in the Data Panel (Figure 2.3). Next, click on the Select 

Attributes Button located in the upper left corner of the Data Panel. This will cause 

a list of attributes to appear; select which attributes you wish to view by clicking 

on their name. Exit this menu by clicking anywhere else. 

38. The Data Panel can also display detailed information regarding inter-module links 

in the map. Select one or more inter-module links of interest in the map as 

described in Step 36. In the Data Panel, click on the tab labeled ‘Edge Attribute 

Browser’. The panel will display the edges that have been selected. Similar to the 

modules, inter-module links identified by PanGIA also have several informative 

attributes as outlined in Table 2.3. These attributes can be viewed by selecting 

them through the Select Attributes menu (see Step 37). 

39. To visually inspect a single module or a group of modules in greater detail, select 

the module(s) of interest as outlined in Step 36. Next, right-click any of the 

selected module(s) and choose PanGIA  Create Detailed View. A new window 

will appear in the Cytoscape Canvas area containing the module (Figure 2.4C) or 

modules (Figure 2.4D) of interest. In this detailed view, each node represents a 

single gene. Edges represent either physical interactions (colored black) or genetic 



40 
 

 
 

interactions (colored turquoise). If quantitative genetic interaction data is used, 

positive genetic interactions will be colored yellow, while negative genetic 

interactions will be colored turquoise (Figure 2.4E).  

40. The network displayed in the detailed view can be laid out and manipulated similar 

to the module map as described in Steps 33 – 35. Individual genes and interactions 

between genes can be selected similar to the way in which modules are selected in 

the module map as described in Step 36. 

41. Optional Step: Steps 41 – 44 should be followed if quantitative interaction data is 

present. An alternate means of visualizing a single module or a set of connected 

modules is via a hierarchically clustered heat map (Figure 2.4F). In this view, each 

row or column represents a single gene. Each cell in the matrix is colored to 

represent the quantitative value attached to the interaction between those two 

genes. For example, Figure 2.4F is a hierarchically clustered representation of the 

‘between-cluster’ model shown in Figure 2.4E. The colors in the heat map 

represent the genetic interaction confidence scores between the genes. PanGIA can 

output a matrix containing either the genetic interaction confidence scores or 

physical interaction confidence scores between individual genes (option A), 

between all genes in a module or set of modules (option B): 

(A) Output interaction matrix for a select number of genes. Select the genes of 

interest from a detailed view as described in Step 36. Right click on any of the 

selected genes and select PanGIA  Save Selected Nodes to Matrix File. 

Next, choose the desired quantitative attribute to be outputted (i.e., physical 
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interaction confidence or genetic interaction confidence). The names of these 

quantitative attributes will be the ones assigned by the user in Step 11. A 

dialog box will appear prompting to you enter the output file name. Enter the 

file name and click ‘Save’. 

(B) Output interaction matrix for all genes in a module or set of modules. Select a 

module(s) of interest as outlined in Step 36. Right click on any of the selected 

modules and select PanGIA  Save Selected Nodes to Matrix File. Choose the 

desired attribute to be outputted. Enter the output filename and click ‘Save’. If 

using the Sample data, select the modules labeled ‘Swr1p complex’ and ‘Set3p 

complex’ Right click on one of these two modules and select PanGIA  Save 

Selected Nodes to Matrix File  GScore. Provide an appropriate file name and 

click Save. 

42. Optional Step: Start the MeV program. A window titled ‘Multiple Array Viewer’ 

should pop up. Load the interaction matrix generated in the previous by navigating 

to File  Load Data. The ‘Expression File Loader’ dialog window will appear. 

Click the ‘Browse’ button and specify the file containing the interaction matrix. A 

preview of the interaction matrix should appear in the ‘Expression Table’ panel. 

Click the upper-leftmost interaction confidence score and then click ‘Load’. A heat 

map of the interaction matrix will appear in the ‘Multiple Array Viewer’ window. 

43. Optional Step: To hierarchically cluster the heat map, click on the ‘Clustering’ tab 

located near the top of the window and then select ‘Hierarchical Clustering’. In the 

‘HCL: Hierarchical Clustering’ window which will open, check the boxes 
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‘Optimize Gene Leaf Order’ and ‘Optimize Sample Leaf Order’. This will ensure 

that genes with similar interaction profiles will be placed close to one another. 

Finally, click ‘OK’. 

44. Optional Step: In the right-most panel of the ‘Multiple Array Viewer’ window 

navigate to ‘Analysis Results’  ‘HCL (1)’  ‘HCL Tree’. A hierarchically 

clustered version of the heat map will appear. This image can be saved by clicking 

on File  Save Image. Multiple output formats are available. If using the data, the 

heat map should look similar to Figure 2.4F.   

45. In cases where a module may contain one or more genes with an unknown 

function, it is useful to be able to query an external web-database like Ensemble or 

Entrez. Cytoscape features the ability to automatically connect to and query 

external web-databases. Right-click on a gene of interest within the Detailed View 

and navigate to the ‘LinkOut’ menu. Numerous databases will be listed including 

Ensembl, KEGG, Uniprot, and Entrez. Select one of these databases. An internet 

browser window will open automatically displaying any information the selected 

database has on the gene of interest. This feature provides an effective way to 

interrogate the function of unannotated genes. 

 

Chapter 2.4.8: Functional Enrichment of the Modules 

46. Start the BiNGO plugin by selecting Plugins  Start BiNGO. The BiNGO 

Settings window will appear.  
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47. Select the module or modules of interest which will be examined for an enriched 

function. Create a Detailed View as outlined in Step 39. Select the genes contained 

in the module(s) which will be screened for an enriched GO function. To select all 

genes, simply press ‘Ctrl’ (or ‘Cmd’ if using Mac OS X) and ‘A’ simultaneously. 

48. Type in a meaningful name for the set of genes being examined in the box titled 

‘Cluster name’. Under the menu titled ‘Select Organism/Annotation’, choose the 

appropriate organism (for the sample data choose Saccharomyces cerevisiae). For 

the remaining options, the default values will typically suffice. Click ‘Start 

BiNGO’. Depending on the number of genes selected and the computer hardware, 

this process will take roughly 5-10 minutes. ?Troubleshooting 

49. BiNGO will return an output window containing a list of GO terms that were 

found to be enriched along with their respective p-values. BiNGO will also return 

a network of GO terms showing the inter-relationships between the various GO 

terms that were found to be enriched. The color of each term represents its 

significance of enrichment. 

 

Chapter 2.4.9: Exporting your results 

50. Cytoscape enables multiple ways to export individual modules as well as the 

global module map. For a thorough explanation of each of these export methods, 

please refer to the online tutorial 

(http://www.cytoscape.org/documentation_users.html).  
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(A) Export Network as a Graphics Object 

(i) The module map, as well as individual modules can be exported as a 

graphics file. Numerous output formats are supported including PDF, 

JPEG, SVG, PNG, and BMP. 

(ii) To export a network as a graphics object, make sure it is the active 

window and then select File  Export  Network View as 

Graphics….  

(iii) In the ‘Export Network View as Graphics’ dialog box, select the 

output file name and choose the desired output format. Click ‘OK’. 

(iv)  If the graphics object will be further manipulated in a graphics 

software package such as Adobe Illustrator, we recommend exporting 

the network as a PDF file. Make sure to also check the box titled 

‘Export text as font’, which will enable the manipulation of the text 

labels in the network image. 

(B) Export Modules as a Tab-Delimited File 

(i) Each of the individual modules can be exported in a tab-delimited file, 

where each line consists of two parts separated by a tab character: the 

name of the module and the genes comprising the module. If multiple 

genes have been assigned to a module, each gene will be separated by 

the ‘|’ character.  

(ii) To export the modules as a tab-delimited file, right-click on any 

module in the module map (i.e., the network in the Cytoscape Canvas 
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titled ‘Module Overview Network’) and select PanGIA  Export  

Export Modules to Tab-Delimited file. 

(iii) Specify the output file in the dialog box which pops up and click 

‘Save’. 

(C) Export Module Map as a Tab-Delimited File 

(i) The entire module-map can be exported as tab-delimited file, where 

each single line represents a single interaction between two modules. A 

single line is split into nine different parts separated by a tab character. 

The first two parts represent the source and target module. The 

remaining seven parts represent various attributes describing each 

interaction as outlined in Table 2.3.   

(ii) To export the module-map as a tab-delimited file, right-click on any 

module in the module map (i.e., the network in the Cytoscape Canvas 

titled ‘Module Overview Network’) and select PanGIA  Export  

Export Module Map to Tab-Delimited file. 

(iii) Specify the output file and click ‘Save’. 

(D) Export the Entire PanGIA session as a Cytoscape Session File 

(i) The entire session PanGIA session can be saved to file. A session file 

contains all of the results of this entire workflow. This includes all 

networks which were loaded or generated (physical, genetic, module 

map, individual modules), any custom visualization styles which were 

employed, and any enrichment results obtained from BiNGO. Saving to 
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a session file will enable the user to continue the analysis at a later 

point.  

To save the entire PanGIA session to file, select File  Save As. Type in the 

name of the output file and click ‘Save’. 

 

Chapter 2.5: Timing 

 The time required to complete this protocol is almost entirely dependent on the 

size of the genetic and physical networks being analyzed. Table 2.4 charts the amount 

of time required for the module search process (under default options) using various 

sized networks as input. For a physical and genetic network containing less than 

100,000 interactions each (~200,000 interactions total) PanGIA takes on average 10 

minutes. 

 

Chapter 2.6: Troubleshooting 

Troubleshooting advice for specific steps in the protocol can be found in Table 

2.5. In addition, we outline two of the biggest problems a user may face and potential 

solutions to these problems below: 

Module Size Issues. In some cases PanGIA may fail to return any modules or it 

may return modules that are either very large or very small (i.e. that consist of a single 

gene). The problem may be addressed by moving the ‘Module Size’ slider bar in the 

‘Advanced Panel’ (see Step 24). Dragging the slider to the right will generally result in 

fewer, but larger modules. Dragging it to the left will have the opposite effect. Once 
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the slider has been set to a new position, make sure the rest of PanGIA is properly 

configured (Steps 19-31) and hit the ‘Search’ button located at the bottom of the 

PanGIA console. 

Edge Reporting Issues. Another common issue is that the module map may 

contain either too few or too many inter-module links. PanGIA utilizes a sampling 

based procedure to assign p-values to every inter-module link and subsequently filters 

out links which fall below a specified threshold. If the threshold is set too low, this 

may cause a number of spurious interactions to appear in the module. On the other 

hand, if the threshold is set too high, this may cause PanGIA to filter out inter-module 

links of biological interest. This problem may be addressed by adjusting the threshold 

by moving the ‘Edge Reporting’ slider bar in the ‘Advanced Panel’ (as described in 

Step 26). Moving the slider to the left will result in a lower threshold and subsequently 

a larger number of inter-module links in the final map. Moving it to the right will have 

the opposite effect. 

 

Chapter 2.7: Anticipated Results 

 Using the sample physical (Supplementary Data 1) and genetic 

(Supplementary Data 2) interaction networks with PanGIA configured as suggested in 

this protocol (module size parameter = -1.6, edge filtering parameter = 0.05, network 

filter = 2, training enabled, labeling threshold = 0.2), will produce a module map 

containing 82 modules and 164 inter-module links (Figure 2.4A). 34 of these modules 

overlap with known complexes provided in the file CYC2008_Complexes.txt 
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(Supplementary Data 3) and will be labeled accordingly. 

 The resulting module map provides a wealth of hypotheses that can form the 

basis for follow-up experiments. Because PanGIA has been trained on databases of 

known complexes and pathways, it is likely that many modules will correspond to 

known protein complexes in the PanGIA results18-20. Other modules which do not 

correspond to prior knowledge are prime candidates for novel complexes or pathways. 

The module map produced using the sample data contains 21 modules (out of 82) with 

two or more genes that do not overlap with any known S. cerevisiae physical 

complexes. One could test the members of these 21 modules for co-complex 

membership. An alternate strategy for revealing novel biological functions is to 

identify modules that are enriched for a common biological function, yet contain some 

genes that are not yet annotated to that particular function. For example, Module 24 

(Figure 2.4B) is enriched for genes involved in nuclear pore organization (P<7.05x10-

11). However, two of the genes in Module 24, SEC31 and SEC16, are not annotated to 

this function. The logical hypothesis in this case would be that these two genes are 

involved in nuclear pore organization and that a deletion or knockdown of these genes 

should have an impact on this structure.  

 Inter-module links, on the other hand, predict functional overlap or synergy 

between the two connected modules18,19. For example, a large number of genetic 

interactions span the two modules corresponding to the Rpd3S complex and Swr1p 

complex (Figures 2.4D–E). The Swr1p complex has been well established as a 

chromatin remodeler which deposits H2A.Z, a histone variant, onto chromatin. The 
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function of the Set3p complex is much less well understood. The inter-module link 

between the two complexes suggests that Set3p may play a role in the deposition and 

remodeling of Htz1-containing nucleosomes. Indeed, a recent publication has provided 

evidence suggesting that this may be the case60. 

 

Chapter 2.8: Author Contributions 

G.H., R.S., and T.I. conceived and led the project. G.H. coded PanGIA with 

supporting code from R.S., J.R., K.O., P.W., and M.S. R.S., G.H., and T.I. wrote the 

paper. All authors have contributed to the design of PanGIA and all have read and 

approved the paper. 

 

Chapter 2.9: Acknowledgements 

 The authors gratefully acknowledge Sourav Bandyophadyay and Ryan Kelley 

for their role in the development of the framework used in PanGIA. Magall Michaut 

provided useful feedback on the manuscript. Colleen Doherty and Maital Ashkenazi 

provided helpful beta testing of the PanGIA plugin. This study was supported by 

grants from the National Institute of General Medical Sciences (GM070743), the 

National Science Foundation (NSF425926), and Microsoft (Computational Challenges 

in Genomewide Association Studies). 

 Chapter 2, in full, is a reprint of the material as it appears in the following 

publication: “Srivas R*, Hannum G*, Ruscheinski J, Ono K, Wang PL, Smoot M, 

Ideker T. Assembling global maps of cellular function through integrative analysis of 



50 
 

 
 

physical and genetic networks. Nat. Protoc. 6(9) (2011)”. The dissertation author was 

the primary investigator and author of this paper. For the sake of brevity, all 

Supplementary Datasets have not bee included here. These items can be accessed at 

http://prosecco.ucsd.edu/PanGIA/ 

  



51 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Overview of PanGIA’s method for identifying a module map of 
cellular function from physical and genetic networks 

(A) PanGIA takes as input a physical and genetic network. Black edges refer to 
physical interactions, while turquoise edges refer to genetic interactions. (B) Both 
‘within-cluster’ and ‘between-cluster’ models are identified using the physical and 
genetic network. A ‘within-cluster’ model or module consists of a set of genes 
connected by a large number of physical and genetic interactions. In this example four 
‘within-cluster’ models are identified. A ‘between-cluster’ model or inter-module link 
consists of two ‘within-cluster’ models spanned by a bundle of genetic interactions. 
Here, five putative ‘between-cluster’ models have been identified. The size of ‘within-
cluster’ models can be controlled via the ‘Module Size’ parameter. Higher values of 
the ‘Module Size’ parameter lead to larger complexes (denoted by the dashed line). 
(C) If quantitative interaction data have been made available, the significance of each 
‘between-cluster’ model can be assessed. Only significant inter-module links are 
displayed in the final module-map (three of the five putative inter-module links are 
significant in this example). The thickness of the line reflects the score of the inter-
module link, which is based on the number of physical and genetic edges spanning the 
two modules. If a biological annotation set is provided, PanGIA will check the overlap 
between the set of genes comprising the annotation and the set of genes comprising 
each module. If the overlap exceeds a user-specified threshold, the module will be 
labeled with the name of the annotations. Here, all four modules overlap with known 
complexes and are labeled accordingly. 
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Figure 2.2: Outline of the protocol 

Analyses listed in black indicate required steps in the protocol. Analysis listed 
in orange represent optional steps which may be performed if quantitative interaction 
data is present; those listed in light blue are optional steps which may be performed if 
a biological annotation data-set is present. The yellow boxes indicate the desired 
outcome at the end of each major section in the protocol. 
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Figure 2.3: The PanGIA console 

The Cytoscape canvas displayed the network data and, may initially be blank. 
The Data Panel (bottom) is used to display node, edge, and network attribute data. The 
Tool Bar (top) contains numerous command buttons used for navigating the network. 
The PanGIA console (left) is divided into three main panels including the Physical 
Network Panel, the Genetic Network Panel, and the Advanced Options Panel. The 
Network Browser may be accessed by clicking on the Network tab located to the left 
of the PanGIA console tab. 
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Figure 2.4: PanGIA Output 
 
(A) The module map returned by PanGIA. Each node is a separate module or 

complex and the area of the node reflects the number of genes contained within the 
module. (B) A zoomed in portion (blue box) of the module map seen in (A). If an 
annotation set was provided and the labeling option was chosen, modules which 
overlap substantially with an annotation are labeled as such (e.g., Rpd3S complex). 
Modules not overlapping with any of the provided annotations are either given a 
generic name (e.g. Module 24) or labeled with a gene name (e.g. [SAC3,THP1]) if the 
module contains only one or two genes. (C) A detailed view for a single module. Each 
node represents a single gene which was assigned to this module. Physical interactions 
are colored black, while genetic interactions are colored turquoise. (D) A detailed 
view for two modules. Edges are colored similar to (C). The layout algorithm seeks to 
physically separate each module. (E) The same network as shown in (D) but 
visualized as a hierarchically clustered heat map using MeV56. 



55 
 

 
 

Table 2.1: List of databases of physical and genetic interaction data 

Database 
Name 

URL 
# of Organisms 
Covered 

Physical 
Interact
ion 
Data 
Availabl
e? 

Genetic 
Interact
ion 
Data 
Availabl
e? 

Quantita
tive 
Interacti
on Data 
Available
? 

STRING string-db.org 630 yes no yes 

DIP 
dip.doe-
mbi.ucla.edu/dip/Main
.cgi 

372 yes no yes 

IntAct 
www.ebi.ac.uk/intact/
main.xhtml 

305 yes no yes 

ConsensusPat
hDB 

cpdb.molgen.mpg.de 3 yes no no 

BioGRID thebiogrid.org 18 yes yes no 

MINT 
mint.bio.uniroma2.it/
mint/Welcome.do 

30 yes no yes 
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Table 2.2: Examples of databases from which to obtain annotation data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Database 
Name URL # of Organisms 

Covered Annotation Type 

Gene 
Ontology 

(GO) 

www.geneontology.org/
GO.downloads.annotati

ons.shtml 
48 

Physical complexes, 
biological processes, 
signaling pathways, 
metabolic pathways 

MIPS 
CORUM 

mips.helmholtz-
muenchen.de/genre/proj

/corum 
3  Physical complexes 

KEGG www.genome.jp/kegg/p
athway.html 833 Metabolic pathways, 

signaling pathways 

CYC2008 wodaklab.org/cyc2008/ 1 (S. cerevisiae) Physical complexes 

SGD 
Pathways 

pathway.yeastgenome.o
rg 1 (S. cerevisiae) Metabolic pathways 

MetaCyc metacyc.org 2000 Metabolic pathways 

Reactome www.reactome.org 20 Metabolic pathways 
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Table 2.3: Description of Module-Level Attributes Returned by PanGIA 

Attribute Name Attribute Type  
(Node or Edge) Description 

PanGIA Member Count Node Number of genes present in module 

PanGIA Module Physical 
Interaction Count Node Number of physical interactions 

present in this module. 

PanGIA Module Genetic Interaction 
Count Node Number of genetic interactions 

present in this module. 

PanGIA Source Size Edge Member count of the source module 

PanGIA Target Size Edge Member count of the target module 

PanGIA Genetic Interaction Count Edge 
Number of genetic interactions 

spanning the two modules connected 
by this edge 

PanGIA Physical Interaction Count Edge 
Number of physical interactions 

spanning the two modules connected 
by this edge 

PanGIA P-value Edge Significance of the inter-module link 

PanGIA Edge Score Edge 
The total score of genetic interactions 

spanning two modules minus the 
score of the physical interactions 

PanGIA Genetic Interaction Density Edge Represents the Edge Score divided 
by the Genetic Interaction Count.  
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Table 2.4: Time Required to Run PanGIA on Networks of Various Sizes 

Number of 
interactions  
(Genetic + 
Physical) 

Run Time 

 
Processor: Dual Core, 32-bit (3.2 GHz) 

Memory: 2 GB 
Graphics Card Memory: 256 MB  

Processor: 8-core, 64-bit (2.8 
GHz) 

Memory: 8 GB 
Graphics Card Memory: 256 MB 

10,000 <1 minute <30 seconds 
50,000 1 minute <1 minute 

100,000 2 minutes 1.5 minutes 
500,000 15 minutes 10 minutes 

1,000,000 Insufficient Memory 30 minutes 
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Table 2.5: Troubleshooting Table 

Step Problem Possible Reason Solution 

1 

Executing cytoscape.bat 
(Windows) or Cytoscape.sh 
(Mac OSX, Linux) does not 

open Cytoscape. 

Java is not installed 
properly. 

Make sure Java Version 
1.6.014 or higher is installed. 
Java can be downloaded at 

http://www.java.com 

30 
PanGIA fails to label any of 

the modules in the final 
module map. 

Threshold for labeling 
may be set too high. 

Set the labeling threshold 
slightly lower to allow more 

modules to be labeled. 

32 The module search process is 
taking a very long time. 

Insufficient memory 
and/or processing 

power. 

Very large physical or genetic 
networks (>500,000 

interactions) require a larger 
amount of memory than 

specified in the Equipment 
Setup section. See the Timing 
section for recommendations 

on the amount of memory and 
processing power required for 

larger networks. 

45 
The queried database fails to 
return any information on the 
selected gene(s) of interest. 

Mismatched gene 
identifiers. 

When querying an external 
database, the identifier of the 

selected gene(s) must be 
identical to the identifier used 
by the external database. For 

example, if querying the 
Ensemble database, selected 
genes need to use Ensembl 
identifiers in order to have 

any information returned. Use 
one of the recommended 

website to map gene 
identifiers if there is any 

discrepancy61,62.  

48 
BiNGO supplies an error 
message asking to ‘Please 
select one or more nodes.’ 

No genes were selected 
for examining functional 

enrichment. 

Visualize the module(s) of 
interest as outlined in Step 
39. In the detailed view, 

select one or more genes of 
interest. All nodes (genes) 

can be selected in a detailed 
view by pressing ‘Ctrl’ (or 

‘Cmd’ if using Mac OS X) + 
‘A’ 
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Chapter 3. Dissection of DNA Damage Response Pathways using a Multi-

Conditional Genetic Interaction Map 

 

Chapter 3.1: Abstract 

To protect the genome, cells have evolved a diverse set of pathways designed 

to sense, signal and repair multiple types of DNA damage. To assess the degree of 

coordination and crosstalk among these pathways, we systematically mapped changes 

in the cell’s genetic network across a panel of mechanistically distinct DNA-damaging 

agents, resulting in ~1,800,000 differential measurements. Each agent was associated 

with a distinct interaction pattern, which, unlike single mutant phenotypes or gene 

expression data, has high statistical power to pinpoint the specific repair mechanisms 

at work. The agent-specific networks revealed novel roles for the histone 

acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation 

machinery in checkpoint control and genome stability, while the network induced by 

multiple agents implicates Irc21, a previously uncharacterized protein, in cell cycle 

regulation and DNA repair. Our multi-conditional genetic interaction map provides a 

unique resource that identifies both agent-specific and general DNA damage response 

pathways. 

 

Chapter 3.2: Introduction 

 Failure of cells to respond to DNA damage is associated with genome 

instability and the onset of diseases such as premature aging and cancer63. To combat 
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DNA damage, cells have evolved an intricate system, known as the DNA damage 

response (DDR), which senses DNA lesions and activates downstream pathways such 

as chromatin remodeling, cell cycle checkpoints and DNA repair64. Many studies have 

sought to use genome-scale technologies to better define and map the DDR, including 

systematic phenotyping of single mutants65, RNAi screening66 and gene expression 

profiling67.  

While these strategies have met with success in identifying new DDR genes, 

they have raised a number of questions with regard to how DDR pathways coordinate 

with one another. For instance, the initial view of DNA damage checkpoints was as a 

collection of pathways with the sole task of coordinating cell cycle progression with 

DNA repair68. However, recent studies have implicated checkpoints in other 

processes, including transcription regulation, telomere length maintenance, and 

apoptosis, suggesting that there is extensive crosstalk between such processes during 

the DDR69,70. Increasing evidence suggests that much of this crosstalk is likely to be 

dependent on the nature of the DNA lesion. For example, the Bloom syndrome 

helicase (BLM; Sgs1 in budding yeast) functionally interacts with components of the 

S-phase replication checkpoint (e.g. Mrc1/Claspin) when replication forks stall, 

whereas it cooperates with factors of the DNA damage checkpoint (e.g. 

Rad17/hRAD9 of the 9-1-1 complex) after DNA double-stranded break (DSBs) 

formation71. An important next step is therefore to understand how functional inter-

connections between the various components of DDR pathways are formed and 

altered in response to various genotoxic insults.   
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To address this issue, we turned to a recently-developed interaction mapping 

methodology called differential epistasis mapping or dE-MAP16. This approach is 

based on Synthetic Genetic Array (SGA) technology72 which enables rapid 

measurement of genetic interactions, i.e., combinations of mutations to two or more 

genes that produce an unexpected effect on growth. Genetic interactions fall into one 

of two categories10: positive interactions (i.e., epistasis) which typically occur among 

genes involved in the same complex or pathway, and negative interactions (i.e., 

synthetic sickness or lethality) which identify genes in compensatory pathways. In the 

dE-MAP approach, SGA is used to measure genetic interactions under standard 

conditions as well as under perturbations of interest and, by comparing the resulting 

networks, interactions that are altered in response to perturbation can be quantitatively 

assessed. These ‘differential’ genetic interactions reveal a unique view of cellular 

processes and their inter-connections under specific stress conditions17.  

Here, we apply our dE-MAP technique to systematically map the genetic 

modules and networks induced by distinct types of DNA damage, which we anticipate 

will be an important resource for the study of the DDR and its associated diseases. 

Based on this map of both agent-specific and general differential interactions, we 

investigate and validate a number of new pathways and factors involved in DDR. In 

addition, our work demonstrates that differential interaction mapping across a panel of 

treatments is a powerful and general approach for disentangling a web of distinct but 

interrelated signaling processes. 
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Chapter 3.3: Results 

Chapter 3.3.1: Mapping differential genetic networks across distinct types of DNA 

damage 

 We constructed a dE-MAP in the budding yeast S. cerevisiae centered on the 

measurement of all possible interactions between a set of 55 query genes and a set of 

2,022 array genes (Figure 3.1A). The 55 query genes were chosen to provide coverage 

of the pathways that define the DDR including representatives of the distinct DNA 

repair processes (Table S1). The array genes included all of the queries and, to explore 

crosstalk between DNA repair and other cellular functions, genes involved in cell 

cycle regulation, chromatin organization, replication, transcription, and protein 

transport (Table S2). Double mutant strains were constructed six different times for 

each query–array gene pairing (Methods). Growth rates were measured in standard 

conditions (Untreated) and after exposure to three chemical agents that induce distinct 

types of DNA damage: the DNA alkylating agent methylmethane sulfonate (MMS), 

the topoisomerase I inhibitor camptothecin (CPT), and the DNA intercalating agent 

zeocin (ZEO). In each condition, double mutants were assigned quantitative S 

scores10, which quantify the extent to which the double mutant grew either better 

(positive S Score) or worse (negative S Score) than expected. In total, the genetic 

interaction map contained quantitative scores for 97,578 pairs of genes (Table S3). 

Several routine quality control measures were employed to ensure a high-quality 

dataset (Supplemental Figure 3.1 and Supplementary Methods).  
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Using established scoring thresholds to highlight significant positive and 

negative interactions (S ≥ 2.0 or S ≤ -2.5)10, we uncovered 8222 significant 

interactions in untreated conditions versus 10584, 9418, and 9969 significant 

interactions in MMS, CPT, and ZEO, respectively. A first comparison of these sets of 

interactions reveals numerous differences in genetic interactions between the treated 

and untreated conditions (Figure 3.1B). On average, 48% of positive interactions and 

33% of negative interactions were unique to the treated networks, indicating the 

presence of DNA damage-induced epistasis and synthetic lethality (Figure 3.1C). To 

identify which of these differences were statistically significant, we used a previously 

published scoring methodology16 to assess the difference in S score for each gene pair 

before versus after treatment. A p-value of significance was assigned by comparing 

this quantitative difference to a null distribution of differences derived from replicate 

genetic interaction screens from the same condition. We refer to this network as the 

‘differential’ genetic network since it is derived by examining the difference between 

two static networks (Figure 3.1D). At a p-value threshold of 0.002 (FDR = 8.7%; 

Supplementary Methods), we identified 3150 significant differential interactions when 

comparing MMS to untreated conditions, versus 1120 and 1474 differential 

interactions when comparing CPT and ZEO to untreated conditions, respectively 

(Figure 3.1E).  

Across all three differential networks, the number of differential positive 

interactions (interaction becomes more positive under DNA damage) was roughly 

equal to the number of differential negative interactions (interaction becomes more 
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negative under DNA damage, Figure 3.1E). We did note however that many 

differential interactions become more significant in response to treatment (‘Gain of 

Interaction’), whereas only a small fraction of interactions are lost or reduced in 

significance (‘Loss of Interaction’; Figure 3.1F). This finding is consistent with the 

notion that the cell activates new pathways in response to DNA damage. Intriguingly, 

we also observed a third class of interactions which were insignificant in either 

condition yet had a significant change across conditions, from weakly positive to 

weakly negative or vice versa (‘Sign Switching’; Figure 3.1F). These interactions go 

unnoticed in either condition yet show changes strong enough to be detected in the 

differential analysis. 

 

Chapter 3.3.2: Differential interactions effectively discriminate among different DNA 

damage responses 

 We next examined all networks, differential and static, for their ability to 

highlight genes that function in the DDR (Methods). All three differential networks 

had high enrichment for interactions with known DNA repair genes, while static 

networks had much less enrichment (MMS) or no enrichment (CPT, ZEO, Untreated) 

in this regard (Figure 3.2A). Instead, all four static networks showed the strongest 

enrichment for genes involved in chromatin organization, as had been noted in the 

original report of the dE-MAP method16. Moreover, 15 of the top 20 differential 

interaction ‘hubs’ (those with the greatest number of interactions) were annotated as a 

DNA repair gene, whereas the top interaction hubs in static networks were largely 



66 
 

 
 

associated with chromatin organization (Figure 3.2B). Thus, in contrast to static 

interactions, differential interactions measured across a shift in conditions tend to 

highlight gene functions related to that condition. 

Despite the strong enrichment for DNA repair genes across all differential 

networks, we found that these networks were strikingly different from one another. 

Few differential interactions (584 interactions; 11%) were induced by more than one 

agent and only 45 interactions were induced by all agents (Figure 3.2C). In contrast, a 

control experiment indicated much better agreement between replicate differential 

networks generated in response to the same agent (Supplemental Figure 3.2A). To 

determine whether the distinct interaction patterns induced by each agent were 

indicative of distinct DNA repair mechanisms, we examined the differential networks 

for enrichment of interactions with genes involved in six major DDR pathways 

(Figure 3.2D, Table S4, Methods). The CPT network was highly enriched for DSB 

repair (P = 10-143) and DNA damage checkpoint functions (P = 10-74), consistent with 

the known mechanism of action of CPT which stabilizes DNA topoisomerase 1–DNA 

complexes. During S-phase the replication machinery collides with these structures 

resulting in the production of DSB specifically during this phase of the cell cycle73. 

The MMS network displayed only a mild enrichment (P = 0.009) for interactions with 

components of base excision repair (BER), an unexpected result given the mechanism 

of action of MMS which modifies guanine and adenine bases leading to base 

mispairing and replication fork blocks74. However, replication-blocking lesions can be 

bypassed by post-replication repair pathways (PRR) such as translesion synthesis 
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(TLS) and DNA damage avoidance or, in case of fork collapse and subsequent 

chromosome breakage, are counteracted by DSB repair pathways75. All these 

pathways showed strong enrichment in the MMS network (Figure 3.2D). Finally, the 

ZEO network was found to enrich for interactions with genes involved in BER and 

PRR rather than for genes involved in DSB repair (P = 0.002), suggesting that our 

ZEO treatment leads to the formation of abasic sites rather than DNA strand breakage, 

consistent with the mode of action of this intercalating agent at lower concentrations76. 

These functional enrichments suggest that the differential networks help 

decode the particular combination of DDR pathways underlying the response to each 

agent. To test this hypothesis explicitly, we measured the statistical association 

between the three agents and the six major DDR pathways as revealed by differential 

interactions (modified Pearson’s Chi-Square Test, see Supplementary Methods). In 

contrast to functional enrichment, statistical association measures the extent to which 

interactions induced by each agent implicate a set of genes that discriminates among 

the six pathways (i.e., genes which associate with some DDR functions but not 

others). We found that differential interactions were indeed able to elicit a significant 

association between agents and pathways, especially for the top 5% of interactions 

(Figure 3.2E). Moreover, differential interactions performed very favorably at this task 

in comparison to single-mutant fitness65 or differential mRNA-expression profiles 77,78 

gathered previously for the same three agents (Supplementary Methods). Neither of 

these data types was able to significantly link DNA damaging agents to particular 

responses (Figure 3.2E). A likely explanation for the better performance of differential 
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networks lies in the greater sample size afforded by this technology. Whereas single-

mutant fitness and gene expression profiling are limited to measurements of individual 

genes (181 genes across the six DDR pathways), the differential networks cover 

interactions between DDR genes and over 30% of the yeast genome (39,973 

interactions in total). Thus, while single mutant and gene expression profiling are 

adept at defining high-level biological functions (e.g., DNA repair), differential 

genetic interactions can begin to tease apart a very specific set of (partially 

overlapping) mechanisms. 

 

Chapter 3.3.3: Neddylation affects genome integrity and checkpoint control after CPT 

 Next, we turned to analysis of novel gene functions and pathways implicated 

by the differential networks. As a starting point for this analysis we examined the 

genes which were highly connected within the differential network (i.e., hubs). The 

gene with the greatest overall number of differential interactions was RAD17 (Figure 

3.22B), a component of the 9-1-1 checkpoint complex which is recruited to DSB sites 

to activate the Mec1-kinase signaling cascade, resulting in cell cycle arrest and 

repair68. Consistent with the role of Rad17 in the DSB response79, we found that the 

majority of its interactions were induced specifically in response to CPT (73%, Figure 

3.3A). To gain further insight into potential CPT-induced pathways involving the 

checkpoint, we examined the entire CPT-induced genetic interaction profile of RAD17 

(Figure 3B), which revealed strong differential negative interactions with prominent 

DSB repair genes (RAD59) and checkpoint regulators, such as TEL1. This is 
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consistent with reports showing that Tel1 functions parallel to Rad17 to regulate 

checkpoint activation following DSBs80.     

Two additional genes, RUB1 and UBC12, which encode key components of 

the yeast neddylation machinery, displayed strong differential negative interactions 

with RAD17 (Figure 3.3B). Neddylation is a process by which the Rub1 protein 

(NEDD8 in humans) is conjugated to target proteins in a cascade of reactions that 

involves E1 activating, E2 conjugating (in S. cerevisiae only Ubc12) and E3 ligating 

enzymes in a manner analogous to ubiquitylation and SUMOylation81. Whereas 

ubiquitylation and SUMOylation have been shown to regulate a myriad of cellular 

processes, including DDR82, those that involve neddylation remain largely unknown 

due to the limited number of neddylation substrates that have been identified83. In 

further support of a potential link between neddylation and checkpoint pathways, the 

CPT network revealed a number of additional differential negative interactions 

between RUB1/UBC12 and other checkpoint genes, including DDC1, RAD9 and 

RAD24 (Figure 3.3C). These interactions were also observed via spot dilution assays, 

confirming that cells defective for neddylation and DNA damage checkpoints are 

hypersensitive to CPT (Figure 3.3D). 

To investigate a role for the neddylation machinery in DNA damage 

checkpoint control, we assessed rub1Δ and ubc12Δ mutants for their progression 

through the cell cycle in the presence of CPT. After arrest in G1 and release into 

medium containing CPT, rub1Δ and ubc12Δ mutants had significant accumulation of 

cells in G2 at 90 and 105 minutes whereas wild-type cells efficiently progressed 
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through G2 and M-phase into the next cell cycle (Figure 3.3E and Supplemental 

Figure 3.3A). As this delay was not observed in the absence of CPT (Supplemental 

Figure 3.3B), we demonstrate for the first time that neddylation mutants display 

perturbations in cell cycle progression. Since defects in cell cycle checkpoints have 

been shown to contribute to genome instability63, we decided to measure the rate of 

gross chromosomal rearrangements (GCR) in the neddylation mutants (Supplementary 

Methods). The rate of GCR events in the ubc12Δ mutant was nearly 2.7-fold greater 

than in wildtype, whereas the rad17Δubc12Δ double mutant showed, respectively, a 7- 

and 2-fold increase in GCR rates when compared to the ubc12Δ and rad17Δ mutants 

(Figure 3.3F), suggesting that neddylation and checkpoint pathways are likely to 

cooperate in promoting genome stability. 

The best-studied NEDD8/Rub1 targets are cullin proteins, which are scaffolds 

for the assembly of multi-subunit cullin-RING ubiquitin ligases (CRLs)81,84. CRLs are 

responsible for the turnover of a vast majority of proteins and consequently play a 

major role in maintaining cellular homeostasis85. Strikingly, another interaction hub in 

the differential network was the cullin Rtt101 (Figure 3.22B), which has been shown 

to play a critical role in regulating the G2/M checkpoint by promoting proteasomal 

degradation of Mms2286. Given the role of neddylation in CRL modification, we 

examined whether this process would affect the steady state levels of Mms22. We 

observed a faster degradation of Mms22 in a rub1Δ strain when compared to wildtype, 

suggesting that neddylation, in contrast to Rtt101-dependent ubiquitylation86, 

promotes Mms22 stability (Figures 3.3G–H). Taken together, these data implicate the 
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neddylation machinery as a novel factor that regulates cell cycle progression in 

response to DNA damage and contributes to genome stability, most likely by 

regulating the steady state levels of DDR factors such as Mms22.  

While CRLs are the most well-studied Rub1 substrates to-date, emerging 

evidence suggest that many other proteins may be modified by neddylation83. For 

example, ribosomal proteins and E3 ubiquitin ligases, such as the p53 regulator 

Mdm2, have been shown to be substrates for neddylation83,87. We infer from this that 

the stability of DDR factors such as Mms22 may be regulated by direct neddylation, or 

indirectly by the neddylation of E3 ubiquitin ligases or CRLs (Figure 3.3I). Although 

further work will be required to resolve the precise mechanisms, these data confirm 

the power of differential genetic data to identify novel agent-induced functional 

connections. 

 

Chapter 3.3.4: Irc21 is a general response factor in checkpoint control, repair and 

genome stability 

 While the interactions induced by the three agents were largely divergent, the 

differential analysis did implicate a ‘conserved’ network of 584 interactions that were 

altered in response to at least two agents (Figure 3.4A). Many known DNA repair 

factors were highly connected within this network including DSB repair factors 

(Rad52, Sae2, Mre11, Rad59), PRR genes (Rad18), and chromatin remodelers (Swr1) 

which have well-documented roles in the DDR88,89. In particular, our analysis once 

again highlighted the damage checkpoint gene RAD17 as a hub not only of the CPT 
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network (see above), but also of conserved interactions across agents (Figure 3.4A, top 

inset). These included a differential positive interaction with IRC21, an as yet 

uncharacterized gene, in response to both CPT (differential P = 4.7x10-7) and MMS (P 

= 8.3x10-7), but not ZEO (P = 0.53).  

We confirmed that Irc21 is expressed in vivo in yeast (Supplemental Figure 

3.4A), and that deletion of IRC21 in a rad17Δ mutant suppresses its sensitivity to CPT 

and MMS (Figure 3.4B). Analysis of the Irc21 protein sequence revealed the presence 

of a cytochrome b5-like domain (Supplemental Figure 3.4B), which is usually found 

in proteins that are involved in cytochrome P450-dependent metabolic processes90. To 

rule out that the suppression was due to Irc21 affecting drug metabolism via its 

cytochrome b5 domain, we exposed cells to ultraviolet light (UV) and ionizing 

radiation (IR) and were able to re-produce the suppressive phenotype in both cases 

(Figure 3.4B). Ectopic expression of Irc21 in the irc21Δrad17Δ mutant restored the 

sensitivity to DNA damaging agents to that observed for the rad17Δ mutant (Figure 

3.4B and Supplemental Figure 4.4E). These results suggest that Irc21 affects cell 

survival in response to genotoxic insult by modulating the DNA damage checkpoint 

rather than affecting drug metabolism. 

To further explore this possibility, we profiled rad17Δ, irc21Δ and 

rad17Δirc21Δ mutants for their cell cycle progression in the presence of MMS. While 

the wildtype and irc21Δ strains displayed slow S-phase progression and accumulated 

in G2 two hours after release from G1, the checkpoint-deficient rad17Δ strain rapidly 

progressed through S-phase and accumulated in G2 within an hour (Figure 3.4C and 
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Supplemental Figure 3.4C). Remarkably, deletion of IRC21 in the rad17Δ strain 

partially suppressed the checkpoint deficiency as we noted an increased fraction of 

cells remaining in S-phase (20.7% versus 10.7% at two hours after release; Figure 

3.4C). In support of this observation, we noted that while the rad17Δ mutant failed to 

activate the central checkpoint kinase Rad53, denoted by the absence of 

phosphorylated forms of Rad53 (Figure 3.4D), the irc21Δrad17Δ double mutant 

displayed almost a complete restoration of this phenotype with Rad53 becoming 

hyperphosphorylated at near wild-type levels (Figure 3.4D). 

Checkpoint proteins detect DNA lesions, arrest the cell cycle and trigger DNA 

repair63,88. Given that Irc21 modulates the DNA damage checkpoint, we examined 

whether it also functions in the timing of repair. The Rad52 repair protein has been 

shown to accumulate into subnuclear foci representing active repair center 91. We used 

this phenotype to investigate the capacity of wildtype, rad17Δ, irc21Δ and 

rad17Δirc21Δ strains to repair MMS-induced DNA damage (Figure 3.4E).  In all 

strains the maximum number of Rad52 foci was reached one hour after exposure to 

MMS. While Rad52 foci gradually disappeared by 2–4 hours, persistent foci were 

observed in the rad17 mutant, indicating abrogation of repair. However, deletion of 

IRC21 alleviated the repair defect seen in the rad17Δ strain, as indicated by the 

enhanced dissolution of Rad52 foci in the irc21Δrad17Δ strain compared to that in the 

rad17Δ strain (4 hour time point, Figure 3.4E).  

Finally we found that, whereas irc21Δ cells showed no alterations in genomic 

stability, rad17Δ cells displayed an 8.2-fold increase in GCR events compared to 
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wildtype (Figure 3.4F). However, irc21Δrad17Δ cells only showed only a 4.5-fold 

increase, suggesting that deletion of IRC21 partially rescues the deleterious impact of 

Rad17 loss on GCR (Figure 3.4F). Together, these results suggest that Irc21 not only 

modulates DNA damage checkpoints, but also promotes efficient repair of DNA 

damage and contributes to genome stability. 

In contrast to previous high throughput localization studies, which reported 

Irc21 localization in the cytoplasm92, we found that Irc21-GFP localizes in both the 

cytoplasm and nucleus (Supplemental Figures 3.4D–E). Irc21-GFP, however, did not 

accumulate into MMS-induced sub-nuclear foci as observed for Rad52-YFP 

(Supplemental Figure 3.4D), suggesting that it may not operate directly at DNA 

lesions. Interestingly, we observed that irc21∆ strains are hypersensitive to MMS 

when combined with the TOR inhibitor rapamycin, a compound that leads to increased 

autophagy (Supplemental Figure 3.4F), suggesting that Irc21 may affect the DDR 

through TOR signaling and autophagy-mediated protein degradation, a process which 

has been recently linked to DDR93. Although further work will be required to work out 

this intriguing connection, our analysis of the set of commonly perturbed genetic 

interactions identified Irc21 as a novel DDR factor that regulates cell cycle 

progression, repair and genome stability. 
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Chapter 3.3.5: An integrated module map reveals a novel role for Rtt109 in translesion 

synthesis 

 An especially powerful approach for interpreting genetic interactions is in 

conjunction with knowledge of physical protein-protein interactions and protein 

complexes45,94. We have previously demonstrated that, while static genetic interactions 

are enriched among components of the same physical complex, differential genetic 

interactions tend to occur between distinct but functionally-related complexes16,95,96. 

Based on this idea we used a recently-described integrative clustering algorithm97 to 

transform our differential genetic interaction data for all agents into a map of 179 

modules and 452 module-module interactions (Figure 3.5A and Tables S5– 6). 

Modules group genes with similar patterns of both genetic and physical interactions, 

many of which were found to coincide with known DNA repair complexes. Module-

module interactions represent bundles of differential genetic interactions which span 

across the genes in the two modules and point to DNA damage-induced cooperativity. 

The low overlap we had observed among the genetic networks of the three 

agents (Figure 3.2C) was reproduced in the module map, as the vast majority (~90%) 

of module-module interactions were found to occur in response to a single agent. 

Indeed, each of the agents highlighted a different module as a central hub of 

interactions (Figure 3.5A); these were the 9-1-1 DNA damage checkpoint complex 

(CPT), the Mms2/Ubc13 E2 ubiquitin conjugase complex (MMS) and the MRX 

double strand break repair complex (ZEO). Many of the interactions involving these 

hub modules recapitulate known drug-specific DDR mechanisms. For example, the 9-
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1-1 complex was found to genetically interact with the S-phase checkpoint complex 

Csm3/Tof1, which is consistent with recent work showing that both complexes are 

required for the response to CPT98. We also observed an MMS-dependent link 

between the INO80 chromatin remodeling complex and the Mms2/Ubc13 and 

Rad6/Rad18 ubiquitin E2 conjugase/E3 ligase complexes, which are involved in DNA 

damage tolerance. These observations are in line with recent work implicating a role 

for INO80 in this pathway that operates to overcome MMS-induced replication fork 

blocks61.  

 The module map also highlighted several MMS-dependent interactions with 

the histone acetyltransferase Rtt109, including an interaction with the replicative 

polymerase Polδ, which is consistent with its known role in maintaining the integrity 

of replisomes (Figure 3.5B)99. Unexpectedly, we also observed a differential positive 

relationship between Rtt109 and the TLS polymerases Rev1 and  Polζ, a complex 

composed of Rev3 and Rev7 (Figure 3.5B), which we validated using a spot dilution 

assay (Supplemental Figure 3.5A). Polζ-dependent TLS enables cells to replicate 

through DNA lesions, ensuring that such lesions do not result in the collapse of 

replication forks100. Moreover, Polζ, in conjunction with Polδ, is responsible for as 

much as 85% of the bypass events at abasic sites101, with much of this occurring in an 

error-prone fashion100. 

To validate the link between Rtt109 and TLS, we utilized a CAN1 forward 

mutation assay (Supplementary Methods) which reports any mutation that disrupts 

Can1 function, resulting in a canavanine-resistance (can1r) phenotype. Cells with 
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proficient TLS activity will accrue mutations at this locus at a much higher rate 

enabling them to survive selection on media containing canvanine. As expected, 

deletion of REV3, which impairs Polζ function, produced almost no can1r colonies 

mutants, indicating an almost complete loss of TLS activity (Figure 3.5C and 

Supplemental Figure 3.5B). Surprisingly the rtt109∆ strain showed a 2-fold decrease 

in the rate of canr colonies when compared to wild type (Figure 3.5C and 

Supplemental Figure 3.5B). A similar phenotype was observed for cells expressing 

H3K56R, a mutant form of histone H3 that cannot be acetylated by Rtt109 (Figure 

3.5D and Supplemental Figure 3.5C). This suggests that Rtt109 affects TLS through 

acetylation of H3K56. Finally, the rev3∆rtt109∆ and rev3∆H3K56R mutants 

displayed a reduction in the rate of canr colonies which was comparable to that of the 

rev3∆ mutant (Figures 3.55C– D), suggesting that the TLS defect in the absence of 

Rtt109 activity may depend on the Polζ complex.   

Recent work has shown that Rtt109 mediates acetylation of newly synthesized 

histones that are deposited onto synthesized DNA during DNA replication102. In 

support of this, rtt109∆ or H3K56R mutants have been found to genetically interact 

with several genes involved in DNA replication, including DNA polymerase α and 

PCNA103. Moreover, these mutants fail to stabilize Pol α and PCNA at stalled 

replication forks104. Since PCNA serves as a clamp for the loading of TLS 

polymerases105, we suggest a model in which Rtt109-dependent H3K56 acetylation 

regulates PCNA-dependent loading of TLS polymerases, including Pol ζ, at sites of 

MMS-induced fork stalling. 
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Chapter 3.4: Perspective 

 Here, we have measured ~100,000 differential interactions of DDR genes in 

response to three genotoxic agents with distinct modes of action. While the networks 

induced by each agent were largely divergent (Figure 3.2C), each was highly effective 

in pinpointing a set of pathways involved in specific types of DNA repair. To further 

aid in the discovery and mapping of these pathways, we integrated our multi-

conditional genetic network with protein interaction data to uncover a global map of 

gene modules and their inter-functional relationships (Figure 3.5A). Here again, the 

module interactions induced by each agent were largely divergent, pointing to many 

agent-specific repair mechanisms. For example, the module map identified a link 

between the histone acetyltransferase Rtt109 and the Polζ complex suggesting a role 

for Rtt109 in the bypass of alkylated bases (Figures 3.5B–C). Together, the multi-

conditional dE-MAP and module map provide a major resource for further discovery, 

with hundreds of agent-specific functional links involving novel combinations of DDR 

pathways as well as connections to uncharacterized proteins. 

Because DNA repair pathways are remarkably well conserved64, this resource 

is not limited to yeast biology but also informs the response to DNA damage in 

humans 106 and related diseases such as cancer. For example, the dependency we 

uncovered between neddylation and the DNA damage checkpoint (Figure 3.3C) is 

echoed in a recent study in humans, in which an inhibitor targeting the NEDD8 

(ortholog of Rub1) activating enzyme (NAE1) lead to extreme sensitivity to ionizing 

radiation in pancreatic cancer cells expressing mutated p53. Here, we have found that 
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cells lacking both neddylation and checkpoint machinery exhibit not only increased 

cell killing following exposure to CPT (Figure 3D), but also display a marked G2/M 

arrest (Figures 3.3E and Supplemental Figure 3.3A) and higher levels of genomic 

instability (Figure 3.3F). Moreover, our data suggests neddylation may regulate the 

turnover of DDR factors, such as Mms22 (Figure 3.3G) indicating a potential 

mechanism for this functional link. In addition to shedding light on human DDR 

pathways, differential synthetic lethal interactions may serve as a key resource in the 

emerging "synthetic-lethal" approach to cancer therapy63,108. In this respect, our multi-

conditional dE-MAP provides an extensive catalog of genes that display differential 

synthetic-lethal interactions with orthologs of genes implicated in tumorigenesis. Such 

genes could be targeted (e.g., NAE1) to enhance the killing power of 

chemotherapeutics in specific cancer types (e.g., p53 deficient cancers). 

Finally, this study illustrates that differential network analysis is a powerful 

approach for annotating gene function that is complementary to existing functional 

genomics technologies. Widespread availability of genome-wide knockout/RNAi 

libraries coupled with advances in sequencing technology has driven down both the 

cost and effort required to phenotype a large collection of gene knockouts or mutations 

or conduct differential mRNA expression profiling across dozens of conditions. 

However, the resolution of these technologies is ultimately limited to the total number 

of genes in a genome. In contrast, differential interaction mapping taps into a much 

larger (quadratic) space of gene–gene interactions, which we have shown enables the 

dissection of gene function in greater detail (Figure 3.2D). This power comes at a cost, 
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as screening all gene pairs is presently arduous and expensive even in model 

organisms such as S. cerevisiae, requiring us to restrict coverage of the network map 

to a focused set of query genes. This tradeoff in precision versus coverage is 

analogous to the two complementary strategies that have been employed in mapping 

disease-causing mutations: analysis of genotyped pedigrees, involving no more than 

two to three generations, provides a ‘coarse’ mapping to identify a large candidate 

region of the genome109, after which ‘fine mapping’ techniques such as gene 

association studies, which leverage large unrelated populations, are used to pinpoint 

the location of the causal mutation more precisely110. 

Here, we have pursued a similar strategy by seeding our differential genetic 

interaction screen with genes which have been previously annotated to high-level 

DDR processes. The resulting network highlights dynamic functional connections 

between numerous pathways and complexes at high resolution (Figure 3.5A), 

suggesting a new paradigm for dissecting the mechanism of action of a family of 

related drugs or cellular responses. 

 

Chapter 3.5: Experimental Procedures 

Chapter 3.5.1: Differential genetic interaction screens 

Genetic interaction screens were performed as described41, except that the last 

selection step was performed by replica-plating cells on medium containing 1% 

DMSO (Untreated), 0.01% MMS, 5µg/ml CPT or 75µM ZEO. Pictures were taken 48 

hours after the final replication step. Colony sizes were then quantified using the HT 
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Colony Grid Analyzer program and genetic interaction scores (S Scores) were 

calculated using the E-MAP toolbox10. Differential p-values were calculated as 

previously described16. 

 

Chapter 3.5.2: Functional enrichment analysis  

Both static and differential genetic networks were examined for enrichment of 

interactions with various sets of functionally related genes (Table S4). Significance 

was assessed using the hypergeometric distribution where the four parameters were 

defined as follows: 

k. Total number of significant interactions containing a gene involved in a 

function of interest (e.g. DNA repair). 

m. Total number of tested interactions containing a gene involved in a function 

of interest. 

n. Total number of significant genetic interactions. 

N. Total number of tested genetic interactions. 

A significant differential genetic interaction was defined as having a differential p-

value below 0.002. A significant static genetic interaction was defined as S≥2.0 or S≤-

2.5. The total number of tested interactions was the same across all networks (97,578). 

The enrichment results presented in Figure 2A were robust to the choice of 

significance threshold (Supplemental Figures 3.2B–C) as well as alternate definitions 

of DNA repair genes or chromatin organization genes (Supplemental Figure 3.2D). 
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Chapter 3.7: Supplemental Experimental Procedures 

Chapter 3.7.1: Assessing the Quality of the Genetic Interaction Data 

To ensure a high-quality dataset we examined several different quality control 

metrics: 

(i) Correlation of replicate colony size measurements:  Each query mutant in this 

screen was crossed against all array mutants six different times for each 
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condition (Untreated, MMS, ZEO, and CPT). Supplemental Figure 3.1A 

displays the histogram of the average correlation seen amongst the colony size 

measurements made across the six replicates for each query in each condition. 

The average Pearson’s correlation seen amongst replicates was 0.78. 

(ii) Correlation of NAT x KAN swaps: A subset of interactions in this dataset were 

screened twice with the only difference being the orientation of the drug 

resistance markers, i.e., xxx∆::KAN yyy∆::NAT versus xxx∆::NAT 

yyy∆::KAN. Each of these ‘swaps’ were scored independently. Across all four 

conditions, we observed a high correlation between the genetic interactions 

scores (S Score) for these ‘swap’ replicates (Supplemental Figures 3.2B-E). 

These correlation values are in line with previously published datasets10,51.  

(iii)  Examination of linkage plots: Although each query mutant was checked via 

colony PCR for insertion of the drug resistance marker at the proper genomic 

location, it is not uncommon for ~10-15% of strains screened to be 

incorrect10,111. One useful tool for identifying these incorrect strains is to 

examine the interaction scores for pairs of genes that are located relatively 

close to one another on the genome. Due to linkage, such strains will fail to 

inherit both drug resistance markers following sporulation and as a result will 

appear as a negative interaction when plated on double selection media. As 

Supplemental Figure 3.1F shows gene-pairs located within 100 kbp of each 

other tended to exhibit a much more negative S score, indicating that the 
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majority of strains are indeed correct. Individual strains which deviated from 

this trend were identified and removed from the final dataset. 

 

Chapter 3.7.2: Assessing the False Discovery Rate (FDR) of Differential Genetic 

Interactions 

We assessed the false discovery rate (FDR) of the differential genetic 

interactions using two different methods.  In the first method, we corrected the 

differential p-value assigned to each gene-pair across all three conditions using the 

Benjamini-Hochberg procedure. At P≤0.002, the threshold used in this study, we 

observed an FDR of 6.2%, 17.4%, and 13.2% respectively for the MMS, CPT, and 

ZEO differential networks (Supplemental Figure 3.1G). As an alternate method, we 

obtained five previously published E-MAP datasets, which had been generated in 

untreated conditions13,14,16,112,113, and scored each pair of networks (which had tested at 

least 100 interactions in common) for differential interactions. Any interaction which 

appears significant in this analysis is essentially a false discovery since the comparison 

is being made between genetic interactions measured under the same condition. 

Supplemental Figure 3.1H shows the average false discovery rate across all pair-wise 

comparisons as a function of the differential significance threshold. At a threshold of 

P≤0.002, we observed an average FDR of 8.2%. 
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Chapter 3.7.3: Description of Single Mutant and Gene Expression Datasets Used In 

This Study 

We obtained single mutant data from a previously published chemogenetic 

screen which had examined the fitness of 4,722 homozygous diploid mutants in 

response to hundreds of different compounds65. To ensure the closest comparison with 

the perturbations in this study, we used fitness data generated under the following 

concentrations:  MMS (0.002%) and CPT (30 µg/mL). For ZEO, we used the fitness 

data generated under bleomycin (1.7 µg/mL), a chemical compound which induces 

similar effects to zeocin. Differential gene expression data for MMS (0.12%) and ZEO 

(again using data generated under bleoymycin [0.15 U/ml]) was obtained from78. 

Expression data for CPT was obtained from 77. 

 

Chapter 3.7.4: Testing for Association Between Agent and DNA Repair Pathway 

For each experimental technology, we generated a 3x6 contingency table (C), 

where each cell (Ci,j) was defined as follows: 

Differential networks: Ci,j is the number of significant differential interactions 

observed in condition i containing a gene in pathway j. 

Single mutant data: Ci,j is the number of genes displaying a significant 

sensitivity in condition i which also fall in pathway j. 

Gene expression data: Ci,j is the number of differentially expressed genes 

observed in condition i which are also in pathway j. 
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where i ∈ {MMS, CPT, ZEO} and j  ∈ {Double-strand break repair, DNA 

damage checkpoint, nucleotide excision repair, mismatch repair, post-replication 

repair, base excision repair}. All pathway definitions have been provided in Table S4. 

A standard chi-square statistic (Χ2) was then computed on this contingency 

table. To assess significance, the chi-square statistic was re-calculated over 1000 

permutations in which the set of sensitive genes or differentially expressed genes were 

randomly re-assigned to a different compound, while ensuring (i) the total number 

sensitive/differentially expressed genes seen in the actual data was maintained in each 

permutation and, (ii) any dependencies seen amongst compounds was  maintained in 

the permutation, i.e., if there were 40 differentially expressed genes seen in both MMS 

and CPT, the same number was maintained in each permutation.  

For the differential networks, we generated 1000 randomized networks by 

scrambling the node labels, after which the chi-square statistic was re-computed. This 

null distribution of chi-square statistics was subsequently used to assign each 

experimental technology a p-value for the association between agent and pathway. 

 

Chapter 3.7.5: Spot Dilution assays 

Cells were grown to mid-log phase in YPAD and 10-fold serial dilutions were 

spotted on YPAD plates containing the drug of interest. Images of the colonies were 

taken after 2 – 3 days at 30°C. 
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Chapter 3.7.6: Cell cycle checkpoint analysis 

Exponentially growing cells were synchronized in G1 with α-factor (7.5µM). 

Cells were either exposed to MMS in G1 for 30 minutes and then released in fresh 

medium, or released in fresh medium containing CPT. FACS analysis was performed 

using a BD™ LSRII instrument and FACS data were processed using WinMDI 

software. Rad53 phosphorylation analysis was performed as previously described 

using anti-Rad53 antibody (Santa Cruz Biotechnologies, SC-6749)114. Membranes 

were imaged using the Biorad Universal Hood II instrument and signal intensities 

were quantified using the Quantity One software package. 

 

Chapter 3.7.7: GCR and Mutagenesis assays 

Gross chromosomal rearrangement and mutagenesis assays were performed as 

previously described previously115,116.  

 

Chapter 3.7.8: Analysis of Mms22 turnover 

Gal1-HA-MMS22 containing cells were grown in rich medium 3% glycerol, 

2% lactic acid and  0.05% glucose for 12 hours. Next, 2% galactose was added to 

induce HA-MMS22 expression for 3 hours. Finally, cells were washed and 

resuspended in glycerol and lactic acid-based rich medium containing 2% glucose. 

HA-Mms22 expression was analyzed by western blot analysis using an anti-HA 

antibody (Santa Cruz Biotechnology, SC-7392). 
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Chapter 3.7.9: Analysis of Rad52 foci 

Cells containing a Rad52-YFP expression vector were grown to mid-log phase, 

exposed to MMS for 1 hour, washed and concentrated in 1% low melting agar 

(Cambrex). Images were captured using a Leica AF6000 LX microscpe at 100-fold 

magnification using a HCX PL FLUOTAR 100x 1.3 oil objective lens.  

 

Chapter 3.7.10: Integrative analysis of differential genetic interactions and protein 

interactions  

Protein interactions were obtained from a previous integration of several 

primary protein interaction screens57, from which we selected interactions with PE >= 

2.0. Each static network was analyzed using a previously published workflow to 

identify multi-genic modules, i.e. sets of genes spanned by many physical and genetic 

interactions97. This list was further augmented with a set of literature-curated protein 

complexes59 resulting in a final set of 332 modules after removing overlapping 

modules (Table S5). To identify functional relationships between modules, we 

searched for enrichment of differential genetic interactions between each module pair. 

Significance was assessed using the hypergeometric distribution as previously 

described117. The full list of module-module interactions (P ≤ 0.05) is provided in 

Table S6. 
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Figure 3.1: Overview of the Multi-Conditional Differential Network 
 

(A) Experimental design of the differential genetic interaction screen. The 
stacked barplot illustrates the functional breakdown of array genes. A full list of the 
query and array genes is provided in Tables S1 and S2. (B) Overlap in significant 
static interactions (S≥2.0, S≤-2.5) between treated and untreated conditions. The 
negative control represents the overlap seen amongst previously-published networks 
measured in untreated conditions 13,103. (C) The percentage of positive and negative 
interactions that are unique to the treated network (Network 1) when compared to the 
untreated network (Network 2) for all three conditions. (D) Schematic overview of 
how differential genetic networks are derived by examining the difference between 
static treated and untreated genetic networks. The thickness of the edge scales with the 
magnitude of the genetic interaction. (E) Overview of the number of significant 
positive and negative differential interactions uncovered in each condition. (F) 
Breakdown of significant differential interactions into three categories: ‘Gain of 
Interaction’, ‘Loss of Interaction’, and ‘Sign Switching’ (see text). 
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Figure 3.2: Differential networks reveal specific pathways induced by different 
types of DNA damage 

 
(A) The significance of enrichment for interactions with genes that function in 

either DNA repair (green bars) or chromatin organization (purple bars) is plotted for 
all static and differential genetic networks. (B) The total number of significant static 
(y-axis) and differential (x-axis) interactions for each gene considered in this study. 
(C) The differential networks have very different patterns of interactions. The overlap 
in significant (P≤0.002) differential interactions induced by each agent (MMS, CPT, 
and ZEO) is shown. (D) Enrichment of differential interactions containing genes 
involved in six different specific DNA repair pathways: double-stranded break repair 
(DSBR), DNA damage checkpoint (DDC), nucleotide excision repair (NER), base 
excision repair (BER), mismatch repair (MMR) and post-replication repair (PRR). (E) 
The significance of association between agents and DNA repair pathways is computed 
using differential networks, single mutants, and differential gene expression across a 
range of thresholds. 
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Figure 3.3: Neddylation regulates cell cycle progression after DNA damage and 
preserves genome integrity 

(A) Percentage of RAD17’s significant differential genetic interactions arising 
in response to MMS, CPT, ZEO, or multiple agents. As a control, the average 
percentage of significant differential interactions in each of these categories across all 
genes is shown. (B) Entire CPT-induced genetic interaction profile for RAD17 sorted 
(left to right) in order of most differential negative to most differential positive. A 
subset of the top differential negative interactions is also shown. (C) Genetic 
interactions seen between components of the neddylation machinery and the DNA 
damage checkpoint. (D) Viability of cells deficient for both neddylation and 
checkpoint processes is impaired in the presence of CPT. 10-fold serial dilutions of 
log-phase cells of the indicated genotypes were spotted onto YPAD and YPAD 
containing CPT (15 µM) and incubated for 3 days at 30°C. (E) Neddylation mutants 
display perturbed G2/M progression in the presence of CPT. Exponentially (exp) 
growing WT, rub1Δ and ubc12Δ cells were arrested in G1 with α-factor and released 
in fresh medium containing 50 µM CPT. Cells were analyzed by FACS at the 
indicated timepoints. (F) Cells deficient for both neddylation and checkpoint processes 
have increased Gross Chromosomal Rearrangements (GCR). GCR frequencies were 
determined as described in the Supplemental Experimental Procedures. The mean ± 
standard deviation of three independent experiments is presented. (G) Neddylation-
deficient cells display a more rapid turnover of the G2/M checkpoint protein Mms22. 
The expression of GAL1-HA-Mms22 expression was induced in WT, rtt101Δ and 
rub1Δ cells by growing the cells in 2% galactose for 3 hours. Cells were released in 
2% glucose to shut-off expression of HA-Mms22, after which levels of HA-Mms22 
were monitored by Western blot analysis. (H) Bar-plot showing the rate of HA-
Mms22 protein degradation in WT, rtt101Δ and rub1Δ. The levels of HA-Mms22 
protein were quantified and normalized to tubulin. The ratio at the start of shut-off was 
set to 100%. The mean ± standard deviation of four independent experiments is 
presented. (I) Schematic illustrating proposed mechanisms by which the Neddylation 
machinery may regulate DNA damage checkpoints and genome stability. See text for 
details. 
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Figure 3.4: Irc21 affects checkpoint control, DNA repair and genome stability 

(A) Network of all 584 differential genetic interactions induced by at least two 
agents. The top 25 hubs in this network have been labeled. The sub-network of 
interactions involving RAD17 and RAD52 is also shown. (B) IRC21 deletion rescues 
the viability of rad17Δ cells in the presence of DNA damage. 10-fold serial dilutions 
of log-phase cells of the indicated genotypes were either spotted onto YPAD plates 
containing 0.03% MMS, 15 µM CPT, or spotted on YPAD and exposed to UV 
(75J/m2) or IR (300 Gy), followed by incubation for 3 days at 30°C. (C) Exponentially 
(exp) growing WT, irc21Δ, rad17Δ, rad17Δirc21Δ cells were arrested in G1 with α-
factor and released in fresh medium containing 0.02% MMS and 15µg nocodazole. 
Cells were analyzed by FACS at the indicated timepoints (see Figure S4C for FACS 
plots). The bar-plot shows the percentage of S-phase cells. The mean ± standard 
deviation of three independent experiments is presented. (D) Western blot analysis of 
Rad53 phoshorylation in cells from (C). (E) Irc21 affects the dissolution of MMS-
induced Rad52 foci. Exponentially growing WT, irc21Δ, rad17Δ, rad17Δirc21Δ cells 
expressing Rad52-YFP were exposed to 0.02% MMS for 1h and then released in fresh 
medium. Images were taken at the indicated timepoints and scored for the presence of 
Rad52-YFP foci. At least 100 nuclei were analyzed per strain and per time point. Data 
represent the mean ± standard deviation from three independent experiments. (F) Irc21 
affects genomic instability. GCR frequency was determined in WT, irc21Δ, rad17Δ, 
rad17Δ irc21Δ cells. Data represent the mean ± standard deviation from three 
independent experiments. 
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Figure 3.5: A global map of DDR modules reveals a novel role for RTT109 in 
translesion synthesis 

(A) A map of multi-protein modules connected by bundles of differential 
genetic interactions. Node size scales with the number of proteins present in the 
module. Edge size scales with the significance of the enrichment for differential 
interactions spanning the two modules. For the sake of clarity only a portion of the 
entire map has been shown. The full list of module-module interactions is provided in 
Table S6. (B) Genetic interactions observed between Rtt109 and members of the Polδ 
and Polζ complexes. (C) Rtt109 and H3K56 acetylation affect MMS-induced 
mutagenesis in NER-defective rad14Δ cells. MMS-induced can1r mutation 
frequencies were examined in rad14Δ, rad14Δrtt109Δ, rad14Δrev3Δ and 
rad14Δrev3Δrtt109Δ cells. (D) As in C, except that rad14ΔH3K56R and 
rad14Δrev3ΔH3K56R cells were used. The data represent the mean ± standard 
deviation of three independent experiments. 
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Supplemental Figure 3.1: Quality of Genetic Interaction Data.   

(A) Each query mutant was crossed against the set of array mutants six 
different times. This histogram displays the average correlation seen in colony size 
measurements between the six replicates for each query across all four conditions 
(Untreated, MMS, CPT, and ZEO). The dotted red-line indicates the average 
correlation seen across all queries and all conditions (r2 = 0.78). (B–E) Correlation of 
genetic interaction scores derived from ‘marker swap’ experiments for (B) Untreated, 
(C) CPT, (D) MMS, and (E) ZEO. (F) Genetic interaction scores for pairs of genes in 
linkage. (G) For each condition, the differential p-value (x-axis) is plotted versus the 
corresponding multiple hypothesis corrected false discovery rate (FDR) (corrected 
using the Benjamini-Hochberg procedure). (H) Same as (G), but FDR was determined 
empirically by comparing five previously published genetic interaction datasets (see 
Supplementary Methods). 
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Supplemental Figure 3.2: Comparison of Replicate Differential Networks and 
Robustness of Functional Enrichment Results 

 (A) The overlap in replicate differential networks seen amongst the same 
condition (black line) or between two different conditions (grey line). Replicate 
networks are derived by splitting the six replicates obtained for each double mutant 
into two sets and scoring each set independently. Enrichment over random (y-axis) is 
defined as the ratio of overlapping interactions seen amongst the top percent of 
differential interactions (x-axis) to the number of overlapping interactions expected at 
random. (B – C) The significance of enrichment with either (B) DNA Repair or (C) 
chromatin organization genes is plotted for all static and differential genetic networks 
across a range of thresholds. For static networks the absolute-value of the S Score is 
used as a threshold. For differential networks the –log10(differential p-value) is used as 
a threshold. (D) Enrichment results using different databases to define DNA repair and 
chromatin organization gold-standard genes. 
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Supplemental Figure 3.3: Neddylation regulates mitotic progression after DNA 
damage  

(A) Quantification of FACS data from Figure 3E. The bar-plot represents the 
percentage of WT, rub1Δ and ubc12Δ cells in G1, S or G2 phase 90 minutes after 
their release from G1 in fresh medium containing CPT. Data represent the mean ± 
standard deviation from three independent experiments. (B) Exponentially (exp) 
growing WT, rub1Δ and ubc12Δ cells were arrested in G1 with α-factor and released 
in fresh medium. Cells were analyzed by FACS at the indicated time points. 
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Supplemental Figure 3.4: Irc21 localizes in both the cytoplasm and nucleus and 
may be linked to autophagy  

(A) Western blot analysis of cells expressing Myc-tagged Irc21. Cells from 
non-tagged and Nhp10-Myc expressing strains were used as negative and positive 
controls, respectively. (B) Schematic of the Irc21 protein showing a cytochrome b5-
like domain in its C-terminus. (C) Exponentially (exp) growing WT, irc21Δ, rad17Δ, 
rad17Δirc21Δ cells were arrested in G1 with α-factor and released in fresh medium 
containing 0.02% MMS and 15µg nocodazole. Cells were analyzed by FACS at the 
indicated time points. (D) Exponentially growing irc21Δ cells expressing Irc21-GFP 
and Nup49-RFP were treated with 0.03% MMS for 1 hour and then examined for 
Irc21 localization. Wild-type cells expressing Rad52-YPF were treated similarly and 
examined for Rad52 focus formation. (E) Ectopic expression of Irc21-GFP in 
rad17Δirc21Δ renders cells as sensitive to UV as rad17Δ cells, demonstrating the 
functionality of GFP-tagged Irc21. 10-fold serial dilutions of log-phase cells of the 
indicated genotypes were spotted onto YPAD plates and exposed to UV (75J/m2) 
followed by incubation for 3 days at 30°C. (F) irc21∆ cells are hypersensitive to MMS 
when combined with the TOR inhibitor rapamycin (RAP). 10-fold serial dilutions of 
log-phase cells of the indicated genotypes were either spotted onto YPAD plates 
containing 0.015% MMS, 50 ng/ml RAP or both and incubated for 3 days at 30°C. 



100 
 

 
 

 

 

Supplemental Figure 3.5: Integrative Analysis of Differential Genetic 
Interactions Reveals a Role for RTT109 in Translesion Synthesis.  

(A) RTT109 displays epistatic interactions with components of the polymerase 
ζ complex (REV1, REV3, REV7) in the presence MMS. 10-fold serial dilutions of log-
phase cells of the indicated genotypes were spotted onto YPAD plates containing 
0.005% MMS and incubated for 3 days at 30°C. (B) MMS survival of NER-deficient 
rad14Δ, rad14Δrev3Δ, rad14Δrtt109Δ and rad14Δrev3Δrtt109Δ, and of (C) NER-
deficient rad14ΔH3K56R and rad14Δrev3ΔH3K56R cells were examined. Log-phase 
cells were exposed for 20 minutes to the indicated MMS concentrations. Appropriate 
dilutions of were plated on SC(-Arg) and colony formation was scored. The data 
represent the mean standard deviation of three independent experiments. 
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Chapter 4. Genome-wide association data reveal a global map of genetic 

interactions among protein complexes 

 

Chapter 4.1: Abstract 

 This work demonstrates how gene association studies can be analyzed to map a 

global landscape of genetic interactions among protein complexes and pathways. 

Despite the immense potential of gene association studies, they have been challenging 

to analyze because most traits are complex, involving the combined effect of 

mutations at many different genes. Due to lack of statistical power, only the strongest 

single markers are typically identified. Here, we present an integrative approach that 

greatly increases power through marker clustering and projection of marker 

interactions within and across protein complexes. Applied to a recent gene association 

study in yeast, this approach identifies 2,023 genetic interactions which map to 208 

functional interactions among protein complexes. We show that such interactions are 

analogous to interactions derived through reverse genetic screens, and that they 

provide coverage in areas not yet tested by reverse genetic analysis. This work has the 

potential to transform gene association studies, by elevating the analysis from the level 

of individual markers to global maps of genetic interactions. As proof of principle, we 

use synthetic genetic screens to confirm numerous novel genetic interactions for the 

INO80 chromatin remodeling complex. 
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Chapter 4.2: Author Summary 

One of the most important problems in biology and medicine is to identify the 

catalog of genes that underlie disease. Currently, genome-wide association studies are 

employed to detect genes that are associated with a particular disease or phenotype. 

However, this approach to date has yielded very few genes leading to growing interest 

in mapping gene-gene interactions that may be more prevalent due to the complex 

nature of most diseases. Mapping epistatic interactions, however, presents numerous 

challenges. The search space of all possible gene-gene interactions that must be 

examined is enormous leading to a loss in statistical power to detect such interactions. 

Furthermore, simple lists of gene-gene interactions provide no insight into the 

molecular mechanisms behind these interactions. Here, we present a fundamentally 

new approach that leverages genome-wide association data to reveal how gene-gene 

interactions function together within a unified map of complexes and pathways. This 

map elevates the analysis of genome-wide association studies from the level of 

individual gene-gene interactions to functional interactions between physical 

complexes. We demonstrate that such pathway-based interpretations provide novel 

hypothesis regarding the mechanism through which combinations of polymorphisms 

may affect a phenotype. 

 

Chapter 4.3: Introduction 

 A central challenge in genetics is to understand how interactions among 

different genetic loci contribute to complex traits7,9,11,13,31,39,118. In model organisms 
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such as yeast, genetic interactions have been rapidly elucidated using reverse genetic 

approaches, in which double gene knockouts are introduced into various strains and 

subsequently scored for their effects on fitness. Genetic interaction is indicated when 

the growth rate of the double mutant is slower than expected (e.g., synthetic sickness 

or lethality) or faster than expected (e.g., suppression)7,8,10. The systematic and high-

throughput screening of such interactions has been made possible through a variety of 

methods including Synthetic Genetic Array (SGA) analysis7, diploid Synthetic 

Lethality Analysis by Microarray (dSLAM)11, and epistatic miniarray profiles (E-

MAP)9,13,14,51.  

While the above techniques have been instrumental in model organisms, 

performing genetic interaction analysis in higher eukaryotes has been less 

straightforward. First, genetic screens have relied on easy-to-measure cell-based 

phenotypes, such as fitness in rich growth conditions. However, genetic interactions 

governing complex traits in humans (such as body weight, blood pressure, or 

incidence of disease) are difficult to study using cell-based assays and are highly 

condition-dependent. Second, systematically engineering a series of double gene 

disruptions in mammals remains technically difficult, although combinatorial RNAi 

knockdowns show promise in this regard44.   

As an alternative to engineered genetic perturbations, high-throughput 

genotyping and sequencing platforms have made it possible to characterize the 

millions of polymorphic genetic markers present in the genome. Genome-wide linkage 

or genome-wide association studies (GWAS) attempt to identify polymorphic markers 
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that have associations, ideally causal associations, with a phenotype of interest23. 

Numerous technologies are currently available for measuring upwards of 105 Single 

Nucleotide Polymorphisms (SNPs) in the human genome24. 

Similar to reverse genetic interaction screens, GWAS have been screened for 

pairs of loci underlying complex trait variation25,29,119. Mapping pair-wise locus 

associations has proven remarkably difficult, however. The most basic approach is to 

perform an exhaustive two-dimensional (2D) scan, in which all pairs of genetic 

markers are tested for joint association with the phenotype. Because billions of marker 

pairs must be tested, 2D scans are computationally demanding and suffer from low 

statistical power due to multiple hypothesis testing. One method to address this 

problem is to initiate searches for pair-wise interactions only for markers with strong 

individual effects26,27. Two recent studies by Storey et al. and Litvin et al. used this 

approach while accounting for information shared across multiple traits to further 

enhance statistical power28,120. These results indicate a major role for genetic 

interactions in the heritability of complex traits. However, it is likely that the 

interactions uncovered to date represent only a fraction of the true genetic network.  

Here, we show that both the power and interpretation of genetic interactions 

derived from association studies can be significantly improved through integration 

with information about the physical architecture of the cell. We apply this integrative 

approach to an association study conducted in yeast, yielding a genetic network that 

complements, extends, and validates networks assembled through reverse genetic 

methods. 
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Chapter 4.4: Results 

Chapter 4.4.1: Bi-clustering of marker pairs defines a network among genomic 

intervals 

 We analyzed a recent GWAS in yeast which analyzed a population of 112 

segregants resulting from a cross of a laboratory S. cerevisiae strain with a wild 

isolate31. For each segregant, the states of 1,211 unique markers (genotypes) were 

mapped along with the expression profile of 5,727 genes (traits) (Table S1). To 

identify pairs of markers that genetically interact— i.e. for which the joint state of the 

marker pair was associated with one or more gene expression traits— we considered 

the method of Storey et al.28 which provides the best marker pair for each expression 

trait, resulting in a set of 4,687 distinct marker-marker interactions (removing 

redundancies due to marker pairs that associate with multiple traits). 

A preliminary examination of the genotype data showed few recombinations 

between neighboring markers, indicating that markers in close proximity were in 

linkage disequilibrium (LD). As a result, neighboring markers were often found to 

display similar patterns of interactions (Figure 4.1A). In much the same way that LD 

has allowed neighboring markers to be grouped into haplotype blocks121, we reasoned 

that LD between neighboring markers could also be exploited to enhance marker-

marker interactions. To this end, we developed a bi-clustering algorithm to identify 

groups of marker-marker interactions that fall across common genomic intervals 

(Figure 4.11B; see Methods). We reasoned that bi-clustering the marker pairs might 

provide two distinct advantages: First, it allows many statistically insignificant 
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marker-marker interactions to reinforce a single interval-interval interaction. Second, 

it leverages the structure between neighboring marker pairs to identify with greater 

precision the interval of DNA underlying the variance in a given trait.  

Applied to the marker pairs from Storey et al., the bi-clustering procedure 

yielded a network of 2,023 interactions between 1,977 genomic intervals (Figure 

4.1C). Of these, 695 interval pairs garnered support from multiple marker pairs (five 

on average). The remaining 1,328 interval pairs consisted of singleton marker-marker 

interactions, which were not found to cluster with any others. The complete network 

of interval-interval interactions can be found in Table S2. We refer to this network as a 

natural genetic network since it is derived from natural rather than engineered 

mutations. 

 

Chapter 4.4.2: Natural interactions define a map of functional links between protein 

complexes 

 A common interpretation of genetic interactions measured in reverse genetic 

screens has been the “between-complex” or “between-pathway” model, in which 

interactions are found to span pairs of protein complexes or functional annotations. 

Such complex-complex interactions have been instrumental in identifying synergistic 

or compensatory relationships7,8,19. Similarly, pairs of functional terms have served to 

identify functions that are cooperative or buffer one another7. 

To evaluate natural networks in this fashion, we examined all pairs of 

documented protein complexes (out of 302 in Gavin et al.5 or the Munich Information 



107 
 

 
 

Center for Protein Sequences [MIPS]122) and all pairs of functional terms (out of 1,954 

terms in the Gene Ontology [GO]52) for enrichment for natural genetic interactions. As 

further described in Methods, we inspected all complex pairs and found 208 

significant interactions in the natural network (False Discovery Rate < 5%; Table 1). 

Similarly, we identified 17,714 significant interactions between functional terms. In 

contrast, far fewer results were found for complex or term interactions derived from 

the raw marker pairs of Storey et al. prior to bi-clustering these data into intervals 

(Table 4.1). The full set of complex-complex and term-term interactions are available 

as a resource in Table S3 and on the Supplemental Website 

(http://www.cellcircuits.org/qtlnet/).  

 Figure 4.2A shows a map of the 50 most significant complex-complex 

interactions.  Because gene expression is the phenotypic trait, each complex-complex 

interaction is linked to a cluster of gene expression levels that it regulates (with each 

cluster containing an average of 287 genes). As the map integrates many traits 

simultaneously, it is distinct from previously-published genetic networks which have 

relied on cell viability as the single readout of interest. We found that two-thirds of the 

complex-complex interactions were linked to gene expression clusters that were 

highly functionally coherent (Figure 4.2A). In contrast, less than one one-hundredth of 

interval-pairs were found to influence a set of genes belonging to a single pathway or 

function. Thus, we conclude that integration of epistatic interactions with protein 

complex maps helps to filter spurious interactions while simultaneously providing a 

putative mechanism for the pair-wise associations. 
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As an illustrative example, Figure 4.2B shows the natural genetic interactions 

supporting a functional link between the synaptonemal complex and RNA Polymerase 

II. Mutations in the TOP2 gene of the synaptonemal complex have been shown to lead 

to higher levels of mitotic recombination in rDNA which can result in amplification 

and deletion of the rDNA array123. RNA polymerase II is responsible for the 

transcription of small nucleolar RNAs (snoRNAs) that physically and functionally 

interact with many other proteins required for ribosomal biogenesis124. Indeed, we 

found that the gene expression traits linked to this interaction were enriched for 

ribonucleoprotein complex biogenesis and ribosome biogenesis (both P′ = 10-8 by 

hypergeometric test; P′ is a Bonferroni corrected p-value).  

Figure 4.2C centers on the Tim9-Tim10 complex, an essential component of 

the TIM machinery responsible for the transport of carrier proteins from the cytoplasm 

to the inner mitochondrial membrane125. Tim9-Tim10 is genetically connected with 

two other complexes, Mannan Polymerase II and the TRAPP complex. Mannan 

Polymerase II is a component of the secretory pathway and is involved in lengthening 

the mannan backbone of cell wall and periplasmic proteins126; the TRAPP complex 

plays an important role in trafficking of proteins from the golgi to the cell periphery127. 

The abundant genetic interactions between Tim9-Tim10 and these two complexes 

suggest they may jointly influence the make-up of cell surface proteins, possibly 

through control of trafficking. Consistent with this hypothesis, disruption of 

mitochondrial function has been shown to influence cell wall composition, including 

levels of phosphopeptidomannans128.  
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 For comparison to the between-complex model, we also examined the natural 

genetic network for support for a “within-complex” model, in which single functional 

terms or complexes are enriched for genetic interactions among their member 

genes7,8,19. Searching across the 1,954 GO terms and 302 complexes, the natural 

network identified only 12 enriched GO terms and no significant complexes (Table 4.1 

and Table S3). Thus, genetic interactions in naturally-derived networks are far less 

likely to occur within a single pathway than to span between pathways. This result 

mirrors what has been observed in analysis of reverse genetic interaction networks, 

particularly amongst interactions characterized as synthetic lethal or synthetic sick, 

which have been shown to interconnect different pathways that are functionally 

synergistic or redundant19,20. 

 

Chapter 4.4.3: Complementarity between natural and synthetic genetic networks 

 Next, we asked whether the natural genetic network had any direct overlap 

with “synthetic” networks derived using reverse genetic approaches such as SGA, 

dSLAM, or E-MAP platforms. To address this question, we considered four synthetic 

interaction networks: a work by Tong et al.7 reporting comprehensive interaction 

screens for 132 genes using SGA, a genetic network governing DNA integrity 

identified using dSLAM11, and E-MAPs centered on chromosomal biology9 and RNA 

processing13. The combined network from these four sources consisted of 2,117 genes 

linked by 29,275 genetic interactions. As with the natural network, we confirmed that 
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interactions in the combined synthetic network were more likely to fall between 

functional terms and protein complexes than within them (Table 4.1 and Table S4).  

To evaluate overlap, an interaction in the synthetic network was considered 

“supported” if the two genes mapped into two different intervals that were found to 

interact in the natural network. As shown in Figure 4.3A, the natural network 

supported on average 8.7% of interactions across the four synthetic networks as 

opposed to 5.7 ± 0.5% expected by chance (Supplementary Methods). Thus, some 

regions are shared in common between natural and synthetic networks, but these 

regions appear to represent a minority of all genetic interactions. 

We found that these common genetic interactions took place among genes 

encoding basal transcriptional activators (“regulation of nucleotide metabolism”, 

Figure 4.3B) including components of RNA polymerase II, Kornberg’s mediator 

complex, the holo TFIIH complex, INO80, SET3, and COMPASS (Figure 4.4A). 

Moreover, the expression traits linked to these common interactions were for genes 

encoding the cytosolic ribosome (P′ < 10-47), cell cycle checkpoints (P′ < 10-15, 

including RAD9 and DDC1), and mitochondrial electron transport (P′ < 10-12). Thus, 

interactions that overlap between natural and synthetic genetic networks seem to take 

place among core transcriptional activators and influence expression of core metabolic 

processes. 
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Chapter 4.4.4: Novel interactions of the INO80 complex as suggested by natural 

networks 

 One prominent complex highlighted by both natural and synthetic interactions 

was INO80, a multi-subunit ATP-dependent chromatin remodeling complex (Figure 

4.4A). At its core is the Ino80 protein, an ATPase of the SNF2 family which functions 

as the catalytic subunit. Recent studies have demonstrated that INO80 chromatin 

remodeling activity contributes to a wide variety of pivotal processes, including 

transcription, DNA replication, and DNA repair114,129-131. Consistent with these 

processes, both the natural and synthetic networks supported interactions of INO80 

with TFIIH and alpha(I)-primase. However, INO80 had far more interactions in the 

natural network than the synthetic one. This result is reflected in Figure 4.4A (large 

height versus width of the INO80 node) and more explicitly in Figure 4.4B, which 

plots the p-values in the natural versus synthetic network for all complex pairs 

involving INO80. This plot shows that the reason for few synthetic interactions is lack 

of coverage: most complex pairs (82%) have simply not yet been tested for interaction 

using reverse genetic screens, placing them at a significance score of P = 1 (i.e., on the 

y-axis of Figure 4.4B).  

 To fill this gap, we genetically analyzed three genes encoding members of the 

INO80 complex (Arp8, Ies3, Nhp10) using the quantitative E-MAP approach. 

Complete genomic deletions of each gene were screened against a standard array of 

1,536 mutants to select double mutant combinations whose growth rates were slower 

or faster than expected (Methods). This screen uncovered 496 novel genetic 
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interactions (Table S5) supporting 20 complex-complex relationships (P < 0.05; Table 

S6). Nine of the complex-complex interactions were also supported by the natural 

network, including interactions with four complexes (tRNA splicing, RNA polymerase 

II, Actin-associated proteins, and the Vps35/Vps29/Vps26 complex) that were already 

present in the common complex interaction map (see Figure 4.4B and Figure 4.4C).  

The relationships identified here implicate a number of novel links between 

INO80-mediated chromatin remodeling and a wide range of important cellular 

processes. For example, numerous genetic interactions were identified between INO80 

and RNA Polymerase II. There is substantial evidence demonstrating that the rate of 

transcriptional elongation by RNA Polymerase II is reduced in the presence of 

nucleosomes and requires chromatin-modifying activities132. Since INO80 has been 

shown to mobilize/remove nucleosomes130,133, this functional link may indicate that 

the two complexes co-operate: INO80 may exchange histones at a particular location 

to facilitate transcriptional elongation by RNA polymerase II. Indeed, while this 

manuscript was in review, a new report has implicated a role for INO80 in histone 

redeposition during RNA polymerase II-mediated transcription of stress-induced 

genes134. 

Four of the nine novel INO80 interactions are involved in various aspects of 

vacuolar protein degradation including transport of hydrolases to the vacuole 

(Vps35/Vps29/Vps26 complex and Vps27/Hse1 complex), vacuole biogenesis 

(Vacuolar assembly complex), and targeting of proteins for degradation (Rubiquitin-

activating complex). Given INO80’s role in transcription130, the new interactions 
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suggest that these complexes work in tandem to regulate the expression level of 

certain proteins, with INO80 controlling the level of transcription and these four 

complexes controlling the rate of protein degradation. This work serves as an example 

of how the broad coverage in the natural network can be used to focus future genetic 

screens and provide the basis for many mechanistic follow-up studies. 

 

Chapter 4.5: Discussion 

 Currently, mapping genetic interactions using GWAS faces two major 

challenges: a lack of statistical power for finding genotype-phenotype associations, 

and a lack of tools for understanding the molecular mechanisms behind the 

associations found to be significant25-27. In this study, we have demonstrated that such 

challenges can be partly overcome by (1) accounting for bi-cluster structure in the data 

and (2) by integrating genetic interactions derived from GWAS with protein 

complexes and functional annotations. The result is a map of protein complexes and 

pathways interconnected by dense bundles of genetic interactions, which raises 

statistical power and provides biological context to the genetic interactions uncovered 

in natural populations. 

Despite exhibiting some overlap (8.7%), there was also much divergence 

between the natural and synthetic networks. Such divergence might be explained by a 

number of factors. First, the two types of genetic networks have major differences 

with respect to coverage and power. Natural networks are based on genome-wide 

variations and thus nearly all gene pairs are tested for pairwise interaction— i.e., the 
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coverage of gene pairs is practically complete. This large coverage comes at the price 

of low statistical power: gene association studies are limited by the number of 

individuals that can be surveyed which, in turn, limits the power of natural genetics to 

detect any given genetic interaction. On the other hand, a reverse genetic interaction 

screen explicitly tests the growth rate of gene pairs, with high power to detect 

interaction. However, the set of gene pairs that can be tested in a single study is 

limited by the throughput of the screening technology. The synthetic genetic network 

used here was a combination of four such studies which collectively cover 

approximately 5% of yeast gene pairs. Future efforts may seek to complement the 

coverage of reverse genetic screens by using natural genetics, or to improve the power 

of gene association studies through focused reverse genetic analysis. Here, we have 

demonstrated this concept by expanding the coverage of the synthetic network around 

the INO80 complex, based on the conserved interactions we found for this complex in 

both types of networks. 

Even with equivalent coverage and power, the two types of network would still 

likely diverge due to their different means of perturbation. The natural network is 

driven by variations in genome sequence including SNPs, repeat expansions, copy 

number variations, and chromosomal rearrangements which lead to a variety of effects 

on gene function such as hypo- and hypermorphic alleles, null alleles, and so on. In 

contrast, synthetic networks predominantly consist of complete gene deletion events, 

which are rarely experienced in nature and lead exclusively to null alleles. 
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A final difference is phenotype— the natural and synthetic networks in this 

study differ markedly in the underlying phenotypic traits they have measured, relating 

to gene expression versus cell growth, respectively. It is important to note, however, 

that the differences in traits are specific to the currently available data sets. They are 

not inherent to either mapping approach, and in general one can imagine synthetic 

genetic interactions related to gene expression (see Jonikas et al. for a recent 

example135) or natural interactions related to a single phenotypic trait such as cell 

viability or disease (which in fact describes the majority of GWAS data generated to-

date for humans)23. 

Despite all of these differences, we did observe a significant number of natural 

and synthetic genetic interactions in common. It is tempting to speculate that these 

common interactions might share certain characteristics with regard to cellular 

function. In particular, we found that natural interactions also present in the synthetic 

network were linked to expression levels of ribosomal genes as well as to core 

components of respiration and cell cycle. Several studies have noted a correlation 

between the expression levels of ribosomal or mitochondrial genes and growth 

rate136,137. Thus, the overlap between natural and synthetic interactions seems to occur 

among genes that strongly influence expression traits related to growth.  

A common issue in association studies, known as the “fine mapping 

problem”30,138, is that a strongly associated marker will fall near many candidate 

genes, leaving it ambiguous as to which of these candidates is the causal factor. 

Numerous methods have been developed to refine or prioritize these candidates, often 
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through incorporation of orthogonal information139. An extension of this problem 

applies to marker-marker interactions, which typically implicate one of many possible 

pairs of genes. Here, we have mitigated this problem by summarizing markers into 

protein complexes and functional terms. However, ambiguities can still arise in cases 

where several complex-complex interactions are supported by the same underlying set 

of marker pairs. Since it is likely that only one of these interactions is causally linked 

to phenotype, further work may be necessary to prioritize these candidates. It is 

important to note, however, that fine-mapping issues will be less of a concern in 

humans than in yeast, given the higher density of available markers which will 

improve the resolution in identifying causal genes.  

In summary, we have demonstrated that the logical framework developed for 

analysis of synthetic genetic networks can also be readily applied to natural genetic 

networks. Biologically and clinically, the clear and immediate application is towards 

the analysis of genome-wide association studies in humans. Many diseases, both 

common and rare, have so far been opaque to genome-wide association analysis140. 

The key question will be whether, using integrative maps such as those developed 

here, they can become less so. 

 

Chapter 4.6: Methods 

Chapter 4.6.1: Marker pair bi-clustering 

 An interval is defined as a set of one or more contiguous markers along the 

chromosome. A pair of intervals induces a set of m tested marker pairs of which k 
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pairs are found to interact, drawn from a total genome-wide pool of N tested marker 

pairs of which n are found to interact. An exhaustive genome-wide scan is performed 

to identify interacting interval pairs, i.e. those that are enriched for marker-marker 

interactions, as follows. The counts (m, k) are tallied for all possible pairs of intervals 

(up to a maximum of 60 markers per interval) using a recursive algorithm in which the 

entire space of marker pairs is represented as an upper-triangular matrix A with each 

row and column denoting a marker. An interval pair is represented by a submatrix 

Ai,j,a,b, where i,j are the starting row and column indices and a,b are the dimensions 

of the submatrix. The number ki,j,a,b of interacting marker pairs in a submatrix is 

determined using the formula: 

ki,j,a,b = ki,j,a-1,b-1 + ki+a,j,1,b-1 + ki,j+b,a-1,1 + ki+a,j+b,1,1 

An identical formula is used to count the number of tested marker pairs in each 

interval pair (substitute m for k). Following computation of the (m, k) counts, every 

interval pair is assigned a p-value of enrichment for marker-marker interactions based 

on the four parameters m, k, N, n using the hypergeometric distribution. The natural 

network is then assembled in an iterative fashion, where the most significant interval 

pair is selected from among all possible interval pairs, after which all interval pairs 

which contain any overlapping marker pairs (interacting or non-interacting) are 

removed from consideration. The process is repeated until there are no interval pairs 

remaining, which ensures that the final set of interval-interval interactions comprising 

the natural network is disjoint. 
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Chapter 4.6.2: Comparison of bi-clustering to a naïve algorithm 

We considered that the improved performance of bi-clustering might be non-

specific, i.e., that simpler methods for expanding marker-marker pairs to form 

genomic intervals might perform equally well. As one possibility, we compared the bi-

clustering approach to a naïve algorithm for generating interval-interval interactions, 

in which raw marker pairs were expanded to encompass the nearest x neighboring 

markers on either side. However, as shown in Supplemental Figure 4.1 this naïve 

expansion method performed substantially worse than bi-clustering at identifying 

term-term or complex-complex interactions, for any choice of x, suggesting that bi-

clustering identifies more appropriate interval boundaries for each natural genetic 

interaction. 

 

Chapter 4.6.3: Mapping genes to intervals 

 The chromosomal coordinates of open reading frames (ORFs) for all yeast 

genes were obtained from the Saccharomyces Genome Database141. Each gene was 

assigned to all markers found within its ORF and to the nearest marker within a 

window of x = 100 kb on either side (Supplemental Figure 4.2). This mapping 

procedure resulted in a discrete number of genes mapped to a given marker. Intervals 

were mapped to all genes assigned to their constituent markers, again resulting in a 

discrete number of genes mapped to an interval. 

The complex-complex interactions identified in the natural network were 

robust to the particular choice of window size x. We varied x over a range of distance 
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thresholds from 0 to 100 kb. As shown in Supplemental Figure 4.3, the resulting 

complex-complex interactions implicated by the natural network had a high degree of 

overlap with the results obtained using the original mapping procedure. 

 

Chapter 4.6.4: Enrichments of interactions within and between complexes and terms 

 A within-complex (within-term) model is defined as the set of all gene pairs 

falling within a given physical complex (functional GO term). A between-complex 

(between-term) model is defined as the set of all gene pairs that span two complexes 

(terms), such that one gene belongs to the first complex, the other gene belongs to the 

second complex, and neither gene belongs to both. For each model we compute k, the 

number of gene pairs “supported” (see main text) by the network. The significance of 

this support is assessed using the hypergeometric distribution, governed by k and three 

additional parameters: 

n.  The total number of gene pairs induced by the model. 

m.  The total number of gene pairs having support in the entire network. 

N.  The total number of gene pairs in the tested space of the entire network. 

Counts for all four parameters are based only on pairs of genes found in the 

corresponding space of interactions tested by the network and covered by the given 

annotation set (complexes or terms). Further details are given in Text S1. All models 

are visualized using Cytoscape48. 
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Chapter 4.6.5: Removing the effects of non-random gene order on annotation 

enrichment 

 The above enrichment tests assume independence of genetic interactions from 

protein complexes and functional terms. However, intervals in the natural network 

typically cover several consecutive genes, which are more likely to be of similar 

function than genes chosen at random142. To correct for this effect, each complex/term 

annotation is assigned a score Pmin∈[0, 1] measuring the degree to which its member 

genes are clustered [Pmin → 0] versus dispersed [Pmin → 1] along the genome (see Text 

S1 for more details). Annotations with Pmin < pT are removed from further 

consideration. We use a stringent threshold of pT=0.1 for physical complexes and 

pT=0.3 for functional terms resulting in less than one erroneous complex-complex or 

term-term interaction identified in randomized networks (Supplemental Figures 4.4 

and 4.5). Further details regarding the randomization procedure is provided in Text S1. 

A list of the complexes used in this study is provided in Table S8. 

 

Chapter 4.6.6: INO80 Epistatic Mini-Array Profile (E-MAP) 

The arp8∆, nhp10∆, and ies3∆ knockout strains were constructed and E-MAP 

experiments were performed as described previously41. The array used to generate the 

double-knockout strains contained 1,536 strains involved in chromatin metabolism 

(including chromatin remodeling, repair, replication, and transcription) as well as 

global cellular processes like protein trafficking and mitochondrial metabolism (see 

Table S5). Genetic interaction scores were computed as described previously10. 
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Chapter 4.8: Supplementary Methods 

Chapter 4.8.1: Mapping interacting marker pairs using an exhaustive 2D scan 

For comparison to the Storey et al.28 approach, we performed a complete 2D 

scan of the Brem et al.29 linkage data to identify interacting marker pairs. First, 

redundant markers were merged in a manner identical to Storey et al. (see Table S1 for 

a list of all markers and genomic positions). Next, for each gene-expression trait 

marker-pairs were assigned a baseline F-score for interaction using a two-way analysis 

of variance with a fixed-effects model143. To assess significance, the complete scan 

was repeated over 100 permutations in which each segregant strain was randomly re-

assigned a gene-expression value. The best F-score for each trait in each permutation 
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was used to construct an empirical null distribution. This distribution was 

subsequently used to assign a p-value to each marker pair. For comparison with the 

Storey et al.28 marker-pair list, marker pairs across all traits were pooled together and 

thresholded at P < 0.18 which produced an identical number of marker pairs (4,687; 

Table S7A). This network was bi-clustered (Table S7B), and examined for annotation 

enrichment (Table 4.1 in the main text). It performed substantially worse than the 

network derived from Storey et al. 

 

Chapter 4.8.2: Annotation datasets 

The following annotation datasets were used in this study: 

1. GO terms: We obtained gene functional annotations from the Gene 

Ontology (GO) Database revision 5.814 (July, 2008) 52. 

2. Physical complexes: A set of yeast protein complexes was obtained 

from MIPS 122 and from Gavin et al. 5 (“Core” Set). The union of these 

sets was filtered to ensure no two complexes shared a Jaccard score 

(intersection / union) greater than 0.1.  When two complexes exceeded 

this threshold, priority was given to MIPS literature-curated complexes 

followed by complexes with greater numbers of proteins. A list of all 

complexes used can be found in Table S8. 
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Chapter 4.8.3: Defining the marker pair test spaces 

Two sets of interacting marker pairs were considered in this study: (1) marker 

pairs from the Storey et al. dataset and (2) marker pairs identified through an 

exhaustive 2D scan. For the Storey et al. dataset, a marker pair was defined as tested if 

it had been examined for joint linkage with at least one trait. This produced 691,039 

tested marker pairs. For the exhaustive 2D scan, all marker pairs were tested except 

those with markers that were highly correlated in the segregant population. Correlated 

marker pairs violate the assumption of balance in two-way ANOVA, the method used 

in the exhaustive 2D scan as described above.  Two markers were considered highly 

correlated if the number of segregants with the most common pair-wise genotype was 

more than twice that of the least common pair-wise genotype. Using this criterion, the 

exhaustive scan tested a total of 623,073 marker pairs (representing approximately 

85% of all pairs).   

 

Chapter 4.8.4: Defining the gene pair test spaces  

To determine the significance of enrichment of genetic interactions within or 

between annotations, we determined four parameters for the hypergeometric 

distribution k, m, n, and N as described in the main Methods.  To compute these 

values, it was first necessary to determine the set of gene pairs tested by each genetic 

network. This space was computed differently depending on the network type, 

consisting of either (1) raw marker-marker interactions, (2) interval-interval 
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interactions, or (3) synthetic gene-gene interactions. A test space (4) was also 

constructed for the physical complexes and functional terms. 

A gene pair (g1, g2) was considered “tested” iff: 

Case (1): There exists a tested marker pair (m1, m2) such that m1  g1 

and m2  g2 (the arrows  denote mapping of markers to genes as 

described in the main Methods; the definition of tested marker pairs is 

given in the section above). 

Case (2): There exists any marker pair (tested or untested) such that m1 

 g1 and m2  g2. The rationale is that an interval covers a 

contiguous range of markers, regardless of whether any individual 

marker was explicitly tested for interaction. 

Case (3): Its corresponding double mutant had been created and 

examined as part of a synthetic screen, regardless of the growth rate of 

the mutant. This information is not reported in every genetic interaction 

study but was available for the four included in our paper. 

Case (4): The physical complex and functional term sets were each 

assigned a test space consisting of all pair-wise interactions between 

genes annotated in each set. 

All four parameters of the hypergeometric distribution were considered 

only within the subset of N, the intersection of the test space of the 

analyzed network and the test space of the complexes/terms. 
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Chapter 4.8.5: Defining a colocalization score and determining a suitable threshold 

For each annotation A, a co-localization score Pmin was computed as follows. 

Define: 

G = {g1, g2, …, g|G|}, the set of genes in annotation A.  Define a partition Gc
⊆

G which contains all g in G that fall on chromosome c.  

x = (x1, x2, …, x|G|), the genomic position of each g in G on its chromosome, 

measured in bp from the left chromosome end to the middle of the ORF 

encoding g (as given in the SGD database 141). 

m = (m1, m2, …, m16), the co-localization score to be determined for each 

chromosome. 

 

For each chromosome c  = (1,2, …16): 

For all (gi, gj) in Gc, compute the intergene distance dij = |xi – xj|. 

Define dc = (d1
*, d2

*, …) as the sorted list of these intergenic distances. 

Compare each di
* to a corresponding null distribution of distances di

0. 

di
0 is the distribution of gene-gene distances at rank i in the sorted list 

produced by sampling without replacement the same number of genes 

|Gc| at random from the chromosome 106 times.  Define p = (p1,p2, …) 

where pi is the p-value of di
* indexed against di

0. 

mc = min(p). 

Pmin = min(m) 
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Given this metric, Pmin, co-clustered annotations were filtered by removing 

those annotations with Pmin < pT from further consideration. We chose a suitable 

threshold pT  so as to ensure that no complex-complex or term-term associations 

would be reported if the network were permuted. Permuted interval networks were 

generated by randomly assigning a new starting marker-index to each interval in the 

natural network, while ensuring that interval pairs remain disjoint and that no interval 

crosses the edge of a chromosome. We computed the number of significant 

associations found by 100 permuted networks over a range of pT values (Figure S4). 

Based on this analysis, we chose a stringent colocalization threshold of Pmin>0.1 for 

physical complexes and Pmin>0.3 for functional terms (blue arrows in Supplemental 

Figure 4.4) resulting in less than one erroneous complex-complex or term-term 

interaction identified per permuted network. 

To further validate the annotation models, we performed two additional 

permutation methods and examined how many significant complex-complex 

interactions could be identified in either case. First, we re-assigned interactions 

between intervals in the natural network. Second, we performed 100 randomized scans 

for marker-marker interactions using the method of Storey et al.28, in which the 

associations between segregant strains and gene expression traits were randomly 

permuted while leaving the associations between segregrant strains and genotypes 

intact. Each of these random marker-marker networks was subsequently bi-clustered 

to produce interval-interval networks. Across, 100 permuted interval networks derived 
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through these two methods very few complex-complex interactions were identified 

(<2 on average; Supplemental Figure 4.5). 

Physical complexes and terms with a score above these thresholds were 

removed prior to enrichment analysis. The filtering process removed approximately 

16% of the physical complexes and 40% of the functional terms, resulting in a reduced 

set of 302 physical complexes (Table S8) and 1,954 functional terms after further 

processing as described above. 

 

Chapter 4.8.5: Determining significance of overlap between natural and synthetic 

networks 

The overlap between the natural and synthetic networks was based on the 

number of synthetic genetic interactions that were supported by the natural network. A 

genetic interaction was considered supported if the two genes mapped into two 

different genomic intervals that were found to interact. Significance was determined 

using 1,000 natural network permutations using a procedure based on the re-

positioning of interval-interval interactions. In this scheme, each interval of an 

interval-interval interaction in the natural network was randomly assigned a new 

starting marker-index, while ensuring that interval pairs remain disjoint and that no 

interval crosses the edge of a chromosome. This effectively disrupts any biological 

signal, while preserving the distribution of interval sizes. 
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Chapter 4.8.6: Mapping broad GO terms 

As shown in Figure 4.3B of the main text, we characterized the functional 

relationships for the natural and synthetic networks by mapping all identified 

functional term and term-term interactions to a set of “broad” terms defined at the fifth 

and sixth levels of the GO hierarchy (1,285 possible terms). For each of these broad 

terms, the number of term and term-term interactions among the mapped children was 

tabulated. Similarly, for each pair of broad terms, the number of term-term interactions 

between the respective children was tabulated. The 10 broad terms and 30 term-term 

interactions with the most counts were considered a good representation of the 

functional relationships evident in the natural and synthetic networks. 
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Figure 4.1: Using genome-wide linkage data to identify natural genetic 
interaction.  

 
(A) Two interacting interval pairs (green and blue) which represent 

significantly dense groups of marker-marker interactions are shown. (B) A matrix 
view of the same genomic regions. The blue and green interval pairs appear as two 
rectangles. (C) The entire set of marker pairs was bi-clustered to form a set of high-
confidence interval pairs (blue rectangles). 
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Figure 4.2: Natural genetic networks elucidate pathway architecture  

 
(A) A global map of the complex-complex interactions found using the natural 

network. Each node represents a protein complex and each interaction represents a 
significant number of genetic interactions (False Discovery Rate < 5%)144. We 
analyzed the set of gene expression traits associated with each complex-complex 
interaction for functional enrichment using the hypergeometric test. Nodes and edges 
are colored according to the functional enrichment of gene expression traits underlying 
the natural interactions (Bonferroni P′ < 0.05). Node sizes are proportional to the 
number of proteins in the complex. When known, nodes have been labeled with the 
common name of the complex. (B – C) Two specific examples of complexes spanned 
by dense bundles of natural genetic interactions. 
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Figure 4.3: Comparison of the natural and synthetic networks 

 
(A) The overlap between the natural network and four previously-published 

synthetic genetic networks (Tong7, Pan11, Collins9, Wilmes13) is shown as a 
percentage of the synthetic network size. An asterisk indicates significance at P < 
0.05.  (B) A map of the functions and functional relationships supported by either the 
natural or synthetic networks. Each node represents a broad GO term, with colors 
(green, orange, blue) indicating terms that contain many within-term interactions. 
Edges show the top 30 between-term interactions for each of the natural and synthetic 
networks. Two broad GO terms (regulation of nucleotide metabolism and DNA repair) 
contained many within-term interactions in both the natural and synthetic networks. 
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Figure 4.4: Guiding synthetic genetic screens using natural genetic networks.   

 
(A) Complex-complex interactions common to both the natural and synthetic 

networks at a relaxed threshold of P < 0.05. Many of these complexes, including 
INO80 (orange), have more coverage in the natural network (node height) than in the 
synthetic network (node width).  (B) Each point in the scatter plot represents the 
significance of support for a possible complex-complex interaction with INO80 from 
the natural (x-axis) versus synthetic (y-axis) networks. Due to low coverage, 
comparatively few complex pairs have support in the synthetic network. New E-MAP 
data for INO80 support nine new complex-complex interactions predicted by the 
natural network (blue arrows). (C) A network of natural genetic interactions for 
INO80 validated by the new E-MAP. Functional enrichment for traits is shown as in 
Figure 4.2. The thickness of each link is proportional to its support in the new genetic 
interaction screen. 
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Table 4.1: Correspondence of interval and marker pairs with complexes and 
functions 

 Between Within 

  Nodes† Edges‡ Complexes Terms Complexes Terms 

Storey et al.                

 Bi-clustering* 1,977 2,023 208 17,714 0 12 

 Raw Marker Pairs 1,157 4,687 38 3,546 0 3 

       

Full 2D ANOVA scan**       

 Bi-clustering 1,387 964 0 19 0 0 

 Raw Marker Pairs 1,141 4,687 0 0 0 0 

       

Synthetic Genetic 
Analysis 

2,117 29,275 140 1,833 13 33 

 

 

† Node definition: For Storey et al. and Full 2D ANOVA, nodes represent genomic 
intervals. For the synthetic network, nodes represent genes. 

‡ All cases report the number of distinct interactions in the network, removing 
redundancies due to marker pairs that associate with multiple traits (Storey et al., Full 
2D ANOVA) or gene pairs scoring positive in multiple data sets  (Synthetic Genetic 
Analysis). 

* These bi-clustered interval pairs were used to define the “Natural Network” explored 
in this work. 
 
** We also considered an exhaustive scan of all marker pairs using two-way analysis 
of variance (ANOVA). The most significant 4,687 marker-marker interactions (Table 
S7) were taken to match the number of interactions from Storey et al. (Text S1). Both 
the raw marker-pairs and the bi-clustered interval network identified substantially 
fewer enrichments than the Storey et al. method. 
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Supplemental Figure 4.1: Comparison of the bi-clustering method to a naïve 
approach 
  

A naïve approach for identifying interval-interval interactions was compared to 
the bi-clustering approach. In the naïve approach, markers involved in a marker-
marker interaction were expanded to encompass the nearest k neighboring markers on 
either side. The naïve approach identified substantially fewer between-pathway 
enrichments. 
 

 
 

Supplemental Figure 4.2: Interval to gene mapping 
 
Each gene (diamond) was assigned to all markers (vertical bars) found within 

its ORF and to the nearest marker within a window of x = 100 kb on either side. Each 
interval (green bar) inherited the mapping of all constituent markers. 
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Supplemental Figure 4.3: Sensitivity of pathway identification to marker-gene 
mapping threshold 

 
Genes were mapped to their nearest marker within 100 kbp. We varied this 

threshold from 0 kbp to 100 kbp to determine what effect it would have on the 
resulting complex-complex interactions. Overlap of the resulting complex-complex 
interactions with the results in the manuscript are shown as a Jaccard score. 
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Supplemental Figure 4.4: Choosing a colocalization threshold 
 
The number of interactions identified from permuted natural networks were 

examined at several colocalization thresholds. Thresholds were chosen which resulted 
in fewer than one interaction in a typical permuted network (blue arrows). 
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Supplemental Figure 4.5: Additional permutation methods for pathway 
validation 

 
The number of complex-complex interactions identified by the natural network 

(dotted line) is compared to the average number of complex-complex interactions 
identified across 100 permuted interval networks generated using three different 
procedures. Complex-complex interactions were mapped using either all complexes 
(unfiltered) or only those with a co-localization p-value above 0.1 (filtered). Error bars 
indicate one standard deviation. 
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Chapter 5. Allele Specific Compatibility of Locus Interactions Underyling 

Yeast DNA Repair Phenotypes 

 

Chapter 5.1: Abstract 

Recent studies revealed that many phenotypes, including common diseases, are 

complex and are likely governed by multiple loci and interactions between these loci. 

The need to preserve the functionality of these interactions may lead to co-evolution of 

interacting components. In genetic crosses such interactions can be perturbed, leading 

to a phenotype change. Such perturbation can, for example, explain the emergence a 

drug sensitive progenies in genetic cross of two drug resistant strains. Here, we 

develop a novel computational method, called LoCAp (Locus Compatibility 

Approach) which is based on proposed interaction models explaining such phenotype 

change. LoCAp searches for interacting loci consistent with the model using a graph 

based method. Application of LoCAp to a recent genome-wide linkage study in yeast, 

identified 12 significant allele specific locus interactions underlying the sensitivity to a 

panel of genotoxic agents. Moreover, we identified the DNA helicase Rad5 as an 

interaction hub, which we verified experimentally. These findings serve as a proof of 

principle for exploring allele specific compatibility in identifying interactions between 

genetic loci. 
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Chapter 5.2: Background 

 It is generally accepted that complex traits are subject to polygenic inheritance, 

and are controlled by many, potentially interacting, loci with small individual 

effects35,145. Therefore, inferring interactions between various loci remains one of the 

most important challenges in mapping the genetic basis of complex traits. 

 Genetic interactions can be detected by observing phenotype changes in 

response to genetic perturbations. Large-scale knockouts experiments have been used 

to uncover genetic interactions on a genome-wide scale146,147 or in the context of 

particular biological pathways, such as DNA repair16 or RNA processing13. In 

contrast, natural genetic variability can often be used for uncovering more subtle 

dependencies28,29.  

The basic approach to identify the relation between variability in a genomic 

locus and a phenotype, Quantitative Trait Loci (QTL) analysis, looks for correlations 

between changes in genotype and quantitative changes in a phenotype. Such basic 

QTL analysis can be extended to allow identification of interacting loci, that is, loci 

which jointly control a complex trait in a nonadditive (non-independent) way. 

Empowered by large scale genotyping techniques, QTL analysis has led to uncovering 

numerous cases of interacting loci in several model organisms including S. 

cerevisiae148 and C. elegans149. In humans, genetic interactions have been linked to 

diseases such as diabetes150, autism151, and bipolar disorder152.  

There are several obstacles that render computational detection of multiple 

locus interactions to be very challenging. First, the search space increases 
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exponentially as the number of considered loci increases leading to a computationally 

intractable problem. Second, the huge number of possible locus interactions 

exasperates the multiple testing problem, making it difficult to uncover statistically 

significant associations27.  

To mitigate challenges of exhaustive search methods153,154, a number of 

methods have been developed to detect significant pairwise interactions by reducing 

the number of interactions which must be tested26,28,120,155-163. For example, step-wise 

methods26,28,120 first detect a set of primary loci that have relatively significant effect 

on the phenotype individually and then search for a secondary interacting loci amongst 

this primary set. As another example, the SEE (Symmetric Epistasis Estimation) 

method, developed to detect eQTL epistasis, considers pairs of loci simultaneously, 

but reduces the number of tests by focusing exclusively on specific patterns of 

genotypes and gene expression that are expected to be enriched in such interactions164. 

For interested readers, comprehensive reviews on various methods designed to detect 

multiple locus interactions can be found in165-168.  

Genetic crosses provide an informative context that can be used for capturing 

interacting loci. In this work, we considered the scenario where both parental strains 

share a specific phenotype, for example they are both drug resistant, but this 

phenotype is lost in a fraction of their progeny. In such a case, the emergence of the 

alternative phenotype in the progeny strains cannot be explained by a perturbation in 

one locus only, but rather is likely to involve perturbation of interaction between at 
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least two loci. Building on the between and within pathway models for genetic 

interactions8,94,97, one can propose two basic models for loci interaction.  

The between pathway model explains a genetic interaction via the existence of 

two parallel pathways converging on the phenotype of interest, where each of the two 

interacting genes belongs to one of these two pathways. As long as one of the two 

pathways is “active” the phenotype is preserved. In contrast, the within pathway 

model describes a situation where both genes are in the same pathway, but perturbing 

of only one of them is not disruptive enough to change the phenotype. These two 

concepts can be translated to genetic interactions in the context of genetic crosses. 

Namely, assume that two loci, l and l’ function in two parallel biological pathways, 

each controlling the phenotype and as long as one of these pathways is “active” the 

cell is resistant (Figure 5.1A). In such a context loss of the original phenotype, in our 

case drug resistance, can be explained as follows. Suppose that the drug resistance 

phenotype is mediated by the pathway involving locus l’ in the first parental strain and 

by the pathways involving locus l in the second parental strain. Then the progenies 

which inherit locus l form the first parent and locus l’ from the second parent lose drug 

resistance (Figure 5.1A). Note that we refer to this as a “asymmetric” loss of 

complementarity since allele 1 in locus l and allele 0 in locus l’ jointly cause different 

phenotype compared to the case of allele 0 in locus l and allele 1 in locus l’.  

The alternative model parallels the within pathway model and builds on the 

assumption that loci from the same pathway are likely to co-evolve to maintain the 

interaction properties as interacting proteins do169-173. Such co-evolution of interacting 
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loci might lead to allele specific locus interaction compatibility as illustrated in Figure 

1b. Namely, assume that interacting loci, l and l’, have been a subject of compensatory 

mutations in one strain, say strain 0. However, in a genetic cross where loci l and l’ are 

inherited form different parent the interaction might be perturbed or lost. We have two 

possibilities: (i) the symmetric case: the interaction is perturbed causing phenotype 

change whenever loci l and l’ are inherited form different parents or (ii) asymmetric 

case – only one combination leads to phenotype loss (Figure 1b). In fact a recent study 

by Heck et al. identified such an interaction between two DNA repair genes, MLH1 

and PMS1 from a genetic cross of two strains of yeast174. The resulting progeny which 

had inherited MLH1 and PMS1 from different parents were observed to display a 

severe DNA repair defect not seen in either parent.  

Such results indicate that data generated from genetic crosses can serve as 

fruitful source in understanding how interacting amongst different genetic loci can 

contribute to complex traits. Here we develop a computational framework, termed 

LoCAp (Locus Compatibility Approach), which models loss of the parental phenotype 

as a loss of compatibility between interacting loci, where the interactions are modeled 

by the within pathway or between pathway loci interaction models described above. 

Finding interacting loci where potential loss of compatibility is correlated with loss of 

phenotype is reduced to identification of specific genotype-phenotype patterns. For 

computational efficiency and to reduce statistical challenges, LoCAl encodes progeny 

and phenotype data in a graph and identifies corresponding patterns by an efficient 

graph mining strategy.  
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We applied LoCAp to a QTL study conducted in S. cerevisiae175, which 

mapped the genetic basis of sensitivity to four unique DNA damaging agents, and 

found 12 significant locus interactions. These results not only demonstrate that the 

proposed allele specific compatibility approach provides considerable power in 

detecting interacting loci, but also highlights the importance of allele specific 

interaction in controlling complex phenotypes. 

 

Chapter 5.3: Results and Discussion 

Chapter 5.3.1: LoCAp: A novel method for identifying allele specific interactions 

LoCAp is applicable in the case where parental strains have the same 

phenotype and this phenotype is loss in a fraction of progeny. It models the loss of the 

phenotype by loss of compatibility between two interacting loci as a result of genetic 

crossing (Figure 5.1). The model accounts for both between and within pathways 

interaction models. However, we note that the loss of compatibility for between 

pathway model and the asymmetric version of the within-pathway model have the 

same genotype-phenotype patterns. Specifically, if both loci are inherited from the 

same strain then the phenotype is the same as in the parental phenotype, while the 

phenotype of the 01 hybrid (a hybrid where first loci is inherited from strain 0 and the 

second loci is inherited from strain 1) is opposite to the phenotype in the 10 hybrid. 

This asymmetric case, termed by Litvin et al. “allele specific” is in fact more 

prevalent120. Therefore LoCAp focuses on uncovering pairs of loci consistent with this 

particular genotype phenotype pattern.  
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A brute force approach to identify putatively interacting locus pairs based on 

the genotype -phenotype pattern consisted with the proposed model would look at all 

possible pairs of loci and test if the inherence pattern is consistent with the above 

scenario. However, such brute force approach would have a limited statistical power 

and be computationally inefficient. To bypass these problems we used a graph 

theoretical approach to efficiently filter promising pairs. Simply put, we represented 

genotype and phenotype relation as a graph and applied an efficient graph searching 

algorithm to select locus pairs which, for a large enough set progenies, show 

phenotype and genotype combinations consistent with the LoCAp model. To assess 

significance, we randomly permuted data repeatedly and then applied the same 

method to search for locus pairs in random data.  

We applied LoCAp to a QTL study conducted in S. cerevisiae, which analyzed 

123 progenies resulting from a cross of a laboratory strain BY with a wild type isolate 

RM175. For each progeny the genotype at 2956 genomic loci were measured along 

with their growth rate under four different DNA damaging agents methyl methane 

sulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), bleomycin, and caffeine. Two 

parental strains have the same phenotype only in the case of 4-NQO, bleomycin and 

caffeine. Hence we only consider these three drugs. We identified four, three, and five 

interactions underlying sensitivity to 4-NQO, bleomycin, and caffeine, respectively. 

Below, we provide a detailed analysis for each of these predictions.  

Separately, we considered symmetric model for compatibility loss where both 

01 and 10 hybrids are associated with phenotype loss. The fact that we did not detect 
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any interaction based on loss of symmetric compatibility could indicate that 

asymmetric incompatibility is more prevalent – an observation that parallels a similar 

result in eQTL studies120. 

 

Chapter 5.3.2: RAD5 identified as a genetic hub underlying 4-NQO sensitivity 

In the response to 4-NQO treatment reported by Demogines et al.175, 31 

progenies show sensitive phenotype and 53 progenies show resistant phenotype (see 

Methods for the definition of the phenotype). Applying LoCAp to this data (see 

Methods), we found four candidate locus pairs, each of which contained a locus that 

was in close proximity to the Rad5 open reading frame (Figure 5.2). 

 For each of the identified four loci interacting with Rad5 locus, we 

investigated nearby genes as possible causal genes (Table 5.1). Interestingly, using 

BioGRID database176, we were able to confirm that gene Rdh54(YBR073W) and 

Pol31(YJR006W), which are close to two of the four loci respectively, genetically 

interact with Rad5. The probability of finding such overlapping by chance is about 

0.005. In particular, evidence suggested that Pol31 and Rad5 could be in two parallel 

pathways. The work by Motlagh et al. indicated that Pol31 and Mgs1 could function 

in the same pathway for modulating replication fork movement177. This pathway is 

essential in cells with defective Rad6-dependent DNA damage tolerance pathway178, 

where Rad5 resides on an error-free branch.  

Next, we investigated if any of the above four loci interacting with Rad5 locus 

has small main effect individually since multiple locus interactions often occur 
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between loci that individually have some small main effects26. However, due to the 

limited number of progeny genotyped in this dataset, the identification of small main 

effects from each of these four loci proved difficult. Recently, Ehrenreich et al. 

developed a new experimental technique termed Extreme QTL (X QTL) technique, 

where they used ~107 unique BYxRM MATa haploid segregants, giving the study a 

much higher power to detect loci with small effects179. They identified 14 loci, 

including Rad5 locus, as associated with sensitivity of yeast to 4-NQO. In their model, 

Rad5 had strong effect on phenotype and 13 other loci only had small effects, 

explaining less than 10% of phenotype variation individually179. We compared the 

four loci in our result to the 13 small effect loci identified by X-QTL. One of our loci 

(4023_s_at_x02) on chromosome 9 is in significant linkage disequilibrium (LD) with 

its closest X-QTL (p < 0.05; see Methods). This indicates that this locus is also likely 

to have a small main effect on the phenotype.  

As another line of support, we performed double knock-out experiments under 

the presence of MMS (an alkylating agent which induces damage similar to 4-NQO) 

to test if Rad5 might act as a genetic hub. Our screen identified 332 genetic 

interactions containing Rad5 out of a total of 1252 tested interactions (Supplementary 

File 1). Recent large-scale genetic interaction screens have shown that on average less 

than 2% of tested interactions show a significant genetic interaction146. As Rad5 

exhibits a much higher rate of genetic interactions (26.2%) it provides further evidence 

that the Rad5 locus may serve as a hub in the response to 4-NQO. 
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Chapter 5.3.3: Prediction and literature based support for locus pairs related to 

sensitivity to bleomycin 

For bleomycin, 36 segregants displayed a sensitive phenotype while 43 segregants 

showed a resistant phenotype. We detected three significant locus pairs (p < 0.005). 

Interestingly, all three pairs included the marker located on chromosome 4 (around 

position 520kb).  

We identified one gene Rad28 (YDR030C) close to this locus, and two genes 

Rfc4 (YOL094C) and Msh2 (YOL090W) close to locus 8666_at_x04 as potential 

underlying genes which could affect the phenotype. Their functional annotation 

suggests their possible involvement in DNA repair process. Rad28 is involved in 

transcription-coupled repair nucleotide excision repair180. Kim et al. showed that Rfc4 

was required in both DNA replication and DNA repair checkpoints181. In addition, 

Rfc4 is known to function in the RFC-RAD24 complex loaded at DNA repair sites182. 

Msh2, along with Msh3 and Msh6, has important function in mismatch repair 

system183.  

For two loci in other two candidate locus pairs (7026_at_x11, 6453_at_x15) 

and (7222_at_x11, 6453_at_x15), both are close to a gene with function in DNA 

repair. Cdc28 is close to 7026_at_x11 and Mec1 is close to 7222_at_x11. Though 

Cdc28 is not required to initiate DNA damage checkpoint, it was showed that it helps 

cell viability during DNA damage184. Mec1p is a well-known essential DNA damage 

checkpoint protein that transduces signals in response to DNA damage. 
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Chapter 5.3.4: Prediction and literature based support for locus pairs related to 

sensitivity to caffeine 

 As a purine analog, caffeine affects many cellular processes and the specific 

mechanism by which it acts is still largely unclear185. In S. cerevisiae a recent study 

showed evidence that caffeine inhibited the target of rapamycin complex 1 

(TORC1)186. In S. pombe it is known to influence DNA damage checkpoints187.  

Using LoCAp, we obtained five candidate locus pairs with p < 0.01. We 

noticed that some loci appear more than once in our result. For example, locus 

4075_at_x02 appears twice in five locus pairs. We identified that Irc24 could be a 

putatively causal gene close to 4075_at_x02. The biological function of Irc24 is 

unknown. However, its deletion is known to cause increased level of Rad52 foci188, 

indicating it could potentially affect homologous recombination for repairing DNA 

double strand break. Furthermore, the protein level of Irc24p increased at least three 

fold without change in the transcript level in response to DNA damaging chemical 

MMS189. Gene Tor2 is close to both 10428_at_x12 and 10803_at_x05, each of which 

appears in one locus pair respectively. Tor2 and Tor1 regulate cell growth in response 

to nutrient availability and cellular stresses.  

We note that some loci in the above five locus pairs are close to loci related to 

the resistance to 4-NQO or bleomycin. Locus 4009_at_x00 is close to 4023_s_at_x01, 

which is related to the resistance to 4-NQO. Locus 6453_at_x15 itself shows up in 

locus pairs for bleomycin. This suggest that the genes underlying those loci could 

contribute to drug resistance to both chemical agents, highlighting the potentially 



149 
 

 
 

important role of Imp2’ and Rad28 in DNA repair pathways. For locus 9198_s_at_x06 

in the pair (4009_at_x00, 9198_s_at_x06), we identified two genes Ddi3 and Rpd3. It 

is known that the expression level of Ddi3 is induced over 10-fold by DNA damage 

caused MMS190. Though Rpd3 is not traditionally thought to directly impact DNA 

repair pathway, the newest evidence has shown that it and other deacetylases have a 

key role in DNA repair response191.  

For locus pair (2276_at_x03, 10044_at_x09), we identified two potential 

causal genes. Mcm3 is close to one locus and Mcm5 is close to the other locus of the 

pair. Both are subunits of six-member MCM2-7 complex, a ring-shaped 

heterohexamer, which binds chromosomal replication origins. It has been suggested 

that the MCM complex could be crucial S-phase checkpoint targets for fork 

stabilization, and may also mediate DNA damage repair and related signaling192. The 

protein-protein interaction between Mcm3 and Mcm5 may explain the observed 

interacting locus pair. 

 

Chapter 5.4: Conclusions 

In this work we developed a method that utilizes allele specific interaction 

compatibility to predict locus interactions. Such allele specific compatibility might 

arise when interacting loci, in the same pathway co-evolved within each parental strain 

in a way that maintains a given phenotype. By linking phenotype change to specific 

inheritance pattern, we could identify allele specific interaction between loci.  
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Focusing on asymmetric loss of compatibility has been particularly fruitful. In 

fact we have not detected any symmetric compatibility loss. This is consistent with the 

finding of Litvin et al.120 in the context of eQTL analysis. In their expression 

Quantitative Trait Loci (eQTL) study where gene expression was phenotype, they 

found that majority of two-locus interactions are allele-specific and asymmetric with 

regard to the primary locus, where “the secondary locus exerts an influence on the 

phenotype only when the primary locus has a particular allele (and has little or no 

influence when the primary locus has another allele)”120. Thus asymmetric loss of 

compatibility seems to be common for both gene expression phenotypes as well as 

more macroscopic phenotypes such as cell growth under drugs. In addition, the 

genotype/phenotype pattern for between pathways compatibility model is identical to 

the asymmetric within pathway model. Without additional information we will not be 

able to distinguish between two underlying models.  

Applying LoCAp to a recent QTL study on yeast DNA repair phenotype 

responding to chemical agents175, we were able to detect candidate locus interaction 

pairs for 4-NQO, bleomycin and caffeine. In particular, we predicted that the Rad5 

locus is an interaction hub responsive to DNA damage and supported our prediction 

through experimental validation. Our prediction for other interacting locus pairs also 

show promise to be biologically relevant based on known physical or functional 

interactions between genes underlying the loci. In addition, although it is difficult to 

distinguish between pathway and within pathway using only computational approach, 

we were able to identify possible cases for between pathway and within pathway 
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based on biological knowledge. For example, locus pair (11041_at_x12, 

10260_at_x09) (with underlying gene Pol31 and Rad5) in response to 4-NQO could fit 

between pathway model. Locus pair (2276_at_x03, 10044_at_x09) (with underlying 

gene Mcm3 an  Mcm5) in response to caffeine could be an example of within pathway 

model.  

In this study, we utilized drug resistance as the phenotype under study. It is 

likely that our method benefited from the fact that the strong selective pressure related 

to such phenotype193,194 can potentially make the co-evolution of the phenotype 

determining loci particularly pronounced and more easily detectable. If a phenotype of 

interest is a subject of selection, it is more readily possible to obtain strains that 

acquired independently the given phenotype, making our method particularly well 

suited in such setting. However, uncovering interactions underlying drug resistance is 

one of the fundamental problems in human health. In fact our approach suggests a 

general technique for uncovering interactions related to drug resistance or other 

phenotype that might be a subject of selection. Our method provides an important tool 

to achieve this goal. 

 

Chapter 5.5: Materials and Methods 

Chapter 5.5.1: Datasets 

We obtained DNA repair phenotype data from the recent study of the response 

of 123 spore progenies derived from a BYxRM yeast cross to four DNA damaging 

chemicals175.The phenotype was measured as the sensitivity of progenies to several 
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DNA damaging agents. Saturated progeny culture was put onto plates containing 

various concentrations of DNA damaging chemical agents. The four DNA damaging 

chemicals were methyl methane sulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), 

bleomycin, and caffeine. MMS methylates DNA on N7-deoxyguanine and N3-

deoxyadenine, which can cause double-strand breaks. Since one of parental strains 

shows sensitivity to MMS, which does not meet the assumption of our hypothesis, we 

did not consider MMS in our study. 4-NQO can lead to DNA lesion and often 

stimulate nucleotide excision repair. Bleomycin is a chemotherapeutical cancer agent, 

acting by causing DNA strand break. Though the mechanism of caffeine in DNA 

damage is not clear, it is thought to interfere with DNA damage checkpoints instead 

directly inducing DNA damage187. The phenotype values of strains were recorded as 

follows: “very sensitive”, “sensitive”, “slightly sensitive”, “wild-type resistance”, 

“increased resistance” and “not tested”. We only considered those relatively strong 

phenotype values. Unless otherwise noted, we consider “very sensitive” and 

“sensitive” as sensitive phenotype and “wild-type resistance” and “increased 

resistance” as resistant phenotype in our study.  

We obtained yeast genotype data for the same BYxRM cross from the study by 

Brem et al195, covering 2,956 genetic markers. A genotype 0/1 indicates the parental 

strand the marker is inherited from RM/BY. To reduce the computational burden, we 

binned adjacent markers if the Hamming distance between their genotype data 

(without considering missing data) did not exceed 8 as proposed by120. The leftmost 
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locus in each bin was taken as the representative locus of the bin. This way, we 

reduced the number of markers (or loci) to 558. 

 

Chapter 5.5.2: Main idea of the computational method 

To identify pairs of interacting loci consistent with our model, we developed a 

graph theory based method that allows us to identify a small number of likely 

candidates which are subsequently subjected to statistical test. We label the two 

parents as 0 and 1 respectively. Consistently, we label the genotype of a locus in a 

progeny with 0 or 1, indicating parent the locus is inherited from. As explained in the 

main text and Figure 1, we search for pairs of loci such that the genotype 01 

correspond to opposite phenotypes than genotype 10 and whose genotype 00 and 11 

correspond to the parental phenotype.  

We encode the relation between genotypes of progenies and phenotype with a 

bipartite graph. In this graph for each locus li there are two nodes li0 and li1 

representing locus inherited the parent 0 and parent 1, respectively. Each progeny 

strain, s, is also represented by a node. An edge between li0/li1 and s indicates that the 

locus li has the genotype 0/1 in the progeny s. Bipartite cliques in such graph provide a 

set of progenies sharing genotype combinations of any subset of loci in the clique. 

Thus identification of such cliques allows to point to a pair of loci with consistent 

genotype-phenotype patterns over some set of progenies. We searched for locus pairs 

consistent with model in two steps. We first utilized bipartite cliques to find locus 

pairs such that majority of progenies having 01 genotype for the locus pair have 
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opposite phenotype from majority of progenies having 10 genotype with the help of 

bipartite cliques. Then from those pairs we selected the pairs whose genotype 00 and 

11 correspond to resistance phenotype.  

More specifically, we identified maximal bipartite cliques meeting the 

following three conditions: (i) Each clique contains one locus from BY and one locus 

from RM (ii) The total number of progenies is at least t. (iii) The majority of progenies 

in the bipartite clique have the same phenotype as formalized in the model parameter 

description section. Cliques satisfying the three conditions will be called 

predominantly sensitive/resistant depending on the phenotype of majority of progenies 

in the clique. The main idea is to search for a locus pair (li, lj), which is associated 

with two cliques: predominantly sensitive for joint genotype 01 (or 10) and 

predominantly resistant for the opposite genotype 10 (or 01). After getting a small 

number of locus pairs this way, the second step is a filtering step. We required that, for 

each locus pair, the number of resistant progenies is not smaller than the number of 

sensitive progenies for its genotype 00 and 11. This is to ensure that selected candidate 

locus pairs fit our model hypothesis.  

To evaluate the significance of our result, we ran the method with the same 

parameters on random data. We calculated p-value by comparing the number of loci 

obtained from random data to the one from real data. 
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Chapter 5.5.3: Accounting for linkage disequilibrium 

Since nearby loci are often in linkage disequilibrium (LD), to account for such 

fact in practice, we would search for locus pairs (li, lj) so that they have joint genotype 

01 or 10 in predominantly sensitive cliques and there exists a locus pair (li’, lj’) with 

genotype 10 or 01 in predominantly resistant cliques, where there are at most h loci 

between two ends on i , i' l l (and ' , j j l l ), where ' , i i l l is used to indicate the 

genomic region between locus li’ and li including themselves. If we could find such 

locus pair (li, lj) and (li’, lj’), it indicates that there are two interacting loci, one on 

region ' , i i l l and the other on region ' , j j l l . 

 

Chapter 5.5.4: Description of model parameters 

Since the number of bipartite cliques in a bipartite graph can be exponential 

with respect to the size of the graph, we applied an efficient algorithm to generate 

bipartite cliques with the number of progenies in the cliques not smaller than a 

threshold. The algorithm has been successfully applied in our previous P. falciparum 

eQTL study196. For computation with each chemical agent, we had to determine the 

threshold, t, of the number of progenies, in each bipartite clique to consider locus 

pairs. There is a tradeoff between this threshold and the number of candidate locus 

pairs we are going to find and subsequently subject to statistical testing. With a low 

threshold we are likely to recover many candidate locus pairs with large false 

discovery rate. Since each such candidate pair is then tested for statistical significance, 

generating and testing too many cliques is neither feasible nor desirable. Additionally, 
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due to our manual validation process, we want parameters to be stringent enough so 

that we obtain a small set of candidate locus pairs first. However, making parameters 

too stringent, we could end up without detecting any candidate locus pairs even when 

less stringent parameters would recover statistically significant pairs. Hence, we 

determined the minimal number of progenies in bipartite cliques by testing multiple 

thresholds and choosing the appropriate one as described below.  

To select big enough cliques where the majority of strains in the clique show 

the same phenotype, we set the fraction of progenies showing majority phenotype in a 

clique to be larger than or equal to a threshold r.  

It is important to keep in mind that our goal is to discover small number of 

locus pairs with small false discovery on the expense of large number of false 

negative. It is possible that different parameters will lead to different pairs that are also 

statistically significant.  

We set t approximately equal to one quarter of total number of progenies since 

there are four genotype value combinations (00, 10, 01, and 11) for a pair of loci. 

Additionally, we set r to be 0.7. For 4-NQO, there are 84 progenies showing either 

resistant or sensitive phenotype. Accordingly, we set t to be 22 and h to be 1 and 

obtain four candidate locus pairs. For drug bleomycin, applying the same parameters 

used with 4-NQO study (t = 22, r = 0.7 and h = 1), we detected three candidate locus 

pairs.  

For caffeine treatment, 22 progenies have sensitive phenotype and 50 

progenies have resistant phenotype. By setting t = 20, r = 0.7 and h = 1, we did not 
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find any predominantly sensitive cliques. Finally, by changing r = 0.65, we obtained 

five candidate locus pairs. 

 

Chapter 5.5.5: Testing significance 

To test the significance of candidate locus pairs, we performed the following 

test. We randomly permuted the phenotype of progenies and kept their genotype data. 

Then we ran our method on such randomized data 10 times with the same parameters 

that we selected through the procedure described above. Finally, we compared the 

vector containing the numbers of “interacting” locus pairs found in random data with 

the one found in real data using Wilcoxon signed rank test to obtain p-value. 

 

Chapter 5.5.6: Genetic interaction profiling of Rad5 and Ies3 in MMS using Epistatic 

Mini-Array Profiles (EMAP) 

The rad5Δ and ies3Δ single mutants were constructed as previously 

described41. Double mutants were generated and scored for genetic interaction through 

the E-MAP technique using a previously defined protocol10,111. Haploid double 

mutants were ultimately grown on selective media containing 0.01% MMS for 72 

hours. 
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Table 5.1: Candidate locus interaction pairs detected for sensitivity phenotype to 
three chemical agents. Potential candidate causal genes close to each locus are 
also given 

 candidate locus 
interaction pair (li, lj) 

candidate genes 
close to li 

candidate genes 
close to lj 

4_NQO  (4023_s_at_x01, 
10322_at_x15) 

Imp2’ (YIL154C)  
Rrd1 (YIL153W) 

Rad5 (YLR032W)  
Ies3 (YLR052W) 

4_NQO (7292_at_x05, 
10322_at_x15) 

Rdh54 
(YBR073W) 

Rad5 (YLR032W)  
Ies3 (YLR052W) 

4_NQO (11041_at_x12, 
10260_at_x09) 

Pol31 (YJR006W) Rad5 (YLR032W)  
Ies3 (YLR052W) 

4_NQO (5038_at_x05, 
10268_at_x01) 

Ckb1 (YGL019W)  
Alk1 (YGL021W) 

Rad5 (YLR032W)  
Ies3 (YLR052W) 

Bleomycin (7026_at_x11, 
6453_at_x15)  

Cdc28 
(YBR160W) 

Rad28 
(YDR030C)   

Bleomycin (7222_at_x11, 
6453_at_x15) 

Mec1 
(YBR136W)  

Rad28 
(YDR030C) 

Bleomycin (6453_at_x15, 
8666_at_x04) 

Rad28 
(YDR030C) 

Rfc4 (YOL094C)   
Msh2 
(YOL090W) 

Caffeine ( 4009_at_x00, 
9198_s_at_x06) 

Imp2’ (YIL154C)  
Rrd1 (YIL153W) 

Ddi3(YNL335W) 
Rpd3 (YNL330C) 

Caffeine (6453_at_x15, 
10831_s_at_x15) 

Rad28 
(YDR030C)   

Mgm101 
(YJR144W) 

Caffeine (2276_at_x03, 
10044_at_x09) 

Mms21 
(YEL019C)  
Mcm3 
(YEL032W) 

Mec3 (YLR288C)  
Mcm5 
(YLR274W) 

Caffeine (4075_at_x02, 
10428_at_x12) 

Irc24 (YIR036C) Tor2 (YKL203C)  
Doa1 (YKL213C) 

Caffeine (10803_at_x05, 
8707_at_x08) 

Tor2 (YKL203C)  
Doa1 (YKL213C) 

Pms1 (YNL082W) 
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Figure 5.1: Illustration of two models for allele specific locus interaction 
compatibility 

 
(A) Between pathway model: Two loci l and l’ function in two parallel 

pathways, controlling a phenotype in a complementary way. In strain 0 (blue) the 
phenotype is mediated by one pathway involving locus l’. In strain 1 (green) the 
phenotype is mediated by the other pathway involving locus l.  Then the progenies 
where l is from strain 0 and locus l’ is from strain 1 will lose resistance (two loci are 
not complementary) (B) Within pathway model: Interacting loci l and l’ in the same 
pathway have been a subject of compensatory mutations in strain 0. Mutated loci can 
still maintain their interaction in strain 0 (they are compatible in strain 0). However in 
a cross, where locus l comes from strain 0 and locus l’ comes from strain 1 the 
interaction is not compatible. For the opposite case when locus l comes from strain 1 
(green) and locus l’ comes from strain 0 the loci may also be incompatible (symmetric 
case) or compatible (asymmetric case), indicated by a question mark. 
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Figure 5.2: Four interacting locus pairs detected by LoCAp for yeast DNA repair 
phenotype in response to 4-NQO, where Rad5 locus appears in each pair.  
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Chapter 6. Conclusion 

 Despite nearly a decade’s worth of progress in trying to map genetic variants 

responsible for complex human diseases such as diabetes, obesity, cardiovascular 

disease, and various neurological disorders, the variants identified, thus far, account 

for only a small fraction of the total heritability seen in these various diseases197. 

While there are multiple potential explanations for this so-called “missing 

heritability”, epistatic interactions between genetic variants or loci have become one 

compelling explanation. However, the study of epistatic or genetic interactions in 

mammalian systems is complicated by the fact that, (i) generating deletions of genes 

remains a difficult task, rendering mammalian cell systems difficult to reverse genetic 

analysis198, and (ii) mining forward genetic datasets (e.g., GWAS) is hampered by a 

lack of power due to limited sample sizes199.  

 My work on the analysis of epistatic or genetic interactions in the model 

eukaryotic organism, Saccharomyces cerevisiae, suggests both potential challenges 

and potential suggestions for how to move forward in the analysis of genetic networks 

in humans. On the one hand, as described in Chapter 3, I observed that there was 

substantial re-wiring of genetic interactions in response to an external stimulus. More 

over, the changes in genetic interactions induced by the various genotoxic agents we 

examined were markedly different. Taken together, this suggests that genetic 

interactions are likely to be highly context dependent and will dramatically vary 

depending on the particular cell type (e.g. heart versus liver cells) or the 

microenvironment (e.g. hypoxic conditions) indicating a potentially large space of 
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interactions which will need to be tested in various mammalian cell lines. On the other 

hand, we described a computational method for organizing these differential genetic 

interactions in a map of protein modules and their inter-relationships (Chapter 2). 

While the relationships between modules and complexes were strikingly different, the 

modules identified in each condition were relatively stable. Thus, future combinatorial 

RNAi experiments may benefit by restricting the potential search space to include 

orthologs of the modules identified in this thesis.  

 In Chapters 4 and 5, I developed methods for analyzing genetic interaction data 

generated from forward genetic approaches. Our methods were able to boost our 

power for detecting genetic interactions as well provide a putative mechanism for the 

interaction by:  (1) accounting for bi-cluster structure in the data and (2) by integrating 

genetic interactions derived from GWAS with protein complexes and functional 

annotations. Biologically and clinically, the clear and immediate application is 

towards the analysis of genome-wide association studies in humans. Many diseases, 

both common and rare, have so far been opaque to genome-wide association 

analysis140. The key question will be whether, using integrative maps such as those 

developed here, they can become less so. 
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