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Abstract

Spin Determination and Physics Beyond the Standard Model at the LHC and ILC

by

Vikram Rentala

Doctor of Philosophy in Physics

University of California, Berkeley

Hitoshi Murayama, Chair

Many of the proposed solutions to the hierarchy and naturalness problems postulate new “partner” fields
to the Standard Model (SM) particles. Determining the spins of these new particles will be critical in
distinguishing among the various possible SM extensions, yet proposed methods rely on the underlying
models. We propose a new model-independent method for spin measurements which takes advantage
of quantum interference among helicity states. By looking at the azimuthal angular dependence of the
differential cross section in the production followed by decay of a new particle species one can determine
its spin by looking at the various cosine modes. We demonstrate that this method will be able to dis-
criminate scalar particles from higher spin states at the ILC, and discuss application to higher spins and
possible uses at the LHC. Supersymmetry and Universal Extra Dimensions models prove problematic at
the LHC because missing energy signatures result in too many unknowns while reconstructing events.
However, warped extra dimension models in certain setups allow for events whose kinematics can be
fully reconstructed. In such scenarios, the heavy spin-2 Kaluza-Klein (KK) graviton provides a unique
signature with a cos (4φ) mode.We study the feasibility of this approach to measuring the spin of the KK
graviton in the warped Randall-Sundrum Model at the LHC.

In chapter 5 of this thesis, taking a phenomenological approach, we study a color sextet scalar
at the LHC. We focus on the QCD production of a color sextet pair Φ6Φ̄6 through gg fusion and qq̄
annihilation. Its unique coupling to ψ̄cψ allows the color sextet scalar to decay into same-sign diquark
states, such as Φ6 → tt/tt∗. We propose a new reconstruction in the multijet plus same sign dilepton
with missing transverse energy samples (bb + `±`± + ��ET + Nj, N ≥ 6) to search for on-shell ttt̄t̄
final states from sextet scalar pair production. Thanks to the large QCD production, the search covers
the sextet mass range up to 1 TeV for 100 fb−1 integrated luminosity.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) of particle physics is described by an SU(3)c ⊗ SU(2)L ⊗ U(1)Y
gauge theory. Here, the SU(3)c represents strong interactions of “colored” particles (Quantum Chro-
modynamics or QCD), responsible for holding together protons and neutrons in the nuclei of atoms and
SU(2)L ⊗ U(1)Y represents the electroweak interaction which spontaneously breaks down to a theory
of electromagnetism and is also responsible for nuclear β-decay.

The particle content of the SM is as follows. Fermions in the SM are all spin-1/2 and are split
into two categories, quarks and leptons. Quarks are charged under SU(3)c and are said to be colored.
There are 3 left-handed quark electroweak or SU(2)L doublets, each of which comes in 3 colors. There
are three left-handed lepton doublets. Additionally, there are 6 right-handed quark singlets (again in three
colors each) and 3 right-handed lepton singlets.

Bosons in the SM are of two types, the vector gauge bosons of spin-1 and the Higgs field
of spin-0. The gauge bosons are in the adjoint representation of their corresponding gauge groups and
hence there are 8 gluon fields, 3 W bosons of SU(2)L, and a B boson field from U(1) hypercharge.
The Higgs field acquires a vacuum expectation value (vev) of 250 GeV which is known as the scale of
electroweak symmetry breaking (EWSB). This process breaks the SU(2) ⊗ U(1) symmetry down to
U(1)EM , the well-known gauge group of electromagnetism. In this process, the gauge bosons W+ and
W− (which are linear combinations of the W fields) acquire a mass, along with the Z boson which is
a linear combination of the W 3 and B fields. This leaves behind 1 massless gauge boson, which is the
photon of electricity and magnetism. In addition to giving mass to the W± and Z gauge bosons, the
Higgs field is also believed to generate fermion masses via coupling of left- and right-handed quark and
lepton fields. Since the Higgs field is a complex doublet with four real components and three of those
components are “eaten” by the gauge bosons when they acquire a mass, this leaves behind a single scalar
field called the Higgs field associated with which is the Higgs boson. This is the only particle of the SM
that has been predicted but not yet been observed.

The SM of particle physics has been very successful at describing all known particle inter-
actions except gravity. In an effective Quantum Field Theory approach we can include gravitational
interactions which are mediated by a massless graviton. However, this theory is non-renormalizable and
we expect it to break down at the Planck scale, ∼ 1019 GeV. There are, however, many unanswered
puzzles even within the SM and the framework of TeV-scale physics. In what follows, I will discuss two
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significant problems with the SM, one theoretical and the other experimental.

1.2 Problems with the Standard Model

1.2.1 The Hierarchy Problem

The Hierarchy Problem has arguably been one of the driving forces in particle physics model
building over the last 30 years. In Quantum Field Theory, the physical masses of particles are determined
by a “bare” mass term, which is a parameter in the Lagrangian, added to quantum corrections arising
from loop diagrams. Gauge bosons are protected by gauge symmetry and do not acquire a mass unless
there is spontaneous symmetry breaking. In the case for fermions, the quantum corrections to the “bare
mass” are of the form mf log(Λ/mf ), where Λ is the cutoff of the theory. It is easy to see that since the
correction runs logarithmically with the cutoff, the corrections are small even for a cutoff many orders
of magnitude above the scale of the fermion mass. This implies that the theory is valid up to a very high
scale (like the Planck scale of ∼ 1019 GeV). Thus, for fermions, there is no problem in claiming that the
theory makes sensible predictions up to very high energies.

The unfortunate problem in the SM, then, appears to be the existence of the scalar field Higgs
boson. For a scalar boson, the relationship between the physical mass and the bare mass is given by

m2
phys = m2

bare −
Nc|yt|2

8π2

[
Λ2 − 3m2

t log

(
Λ2 +m2

t

m2
t

)]
. (1.1)

Here, only the leading contribution from the diagram with the top quark running in the loop is taken into
account. Nc = 3 is the number of colors, yt ≈ 1 is the top quark Yukawa coupling, and mt is the top
quark mass. The problem is the large quadratic dependence of the quantum correction to the Higgs mass
square on the cutoff of the theory.

Since we expect the physical mass of the Higgs to be ∼ 100 GeV, we have two choices. First
we can take the bare mass to be of the order of the physical mass, and then give up on perturbation
theory once our cutoff approaches a few TeV and the correction term becomes comparable to the bare
parameter. Alternatively, we can claim a very high cutoff to the theory (say Planck scale,∼ 1019 GeV), if
we crank up the bare mass in order to give a fine cancelation between the bare mass term and the quantum
corrections; this cancelation would have to be very precise, up to one part in 1034. This hierarchy of
scales between the electroweak and the Planck scale and the problem of naturalness or “fine tuning” of
the bare mass parameter is referred to as the Hierarchy or Naturalness problem. Thus, there is a strong
expectation that even if we do find a Higgs boson, we must find new physics at the TeV scale that solves
this hierarchy problem.

1.2.2 Dark Matter

Dark matter is matter that pervades the universe but has extremely suppressed or no coupling
to electromagnetic waves. The presence of dark matter has thus been inferred through its gravitational
coupling in many astrophysical processes such as galactic rotation curves, weak lensing experiments and
observations of the cosmic microwave background (CMB). In fact, dark matter is more ubiquitous in
the universe than ordinary baryonic matter that we are familiar with. Dark matter makes up about 23
percent of the current energy budget of the universe, whereas baryonic matter makes up only 4 percent



4

(the rest is dark energy). We would like to measure other interactions of dark matter, if they exist in order
to explain the production of dark matter in the early universe. Currently, direct detection experiments
have not seen any evidence from dark matter recoiling against nuclei, but have placed strong bounds on
such processes. Many models of dark matter parameter space are expected to be tested in the near future.
Dark matter provides a strong experimental confirmation that there exists physics beyond the SM that is
yet to be understood.

Another fascinating aspect of dark matter is the so-called “WIMP miracle.” To get the right
abundance of thermally produced dark matter, a weakly interacting massive particle (WIMP), a particle
with about TeV-scale mass and weak-scale interaction strength, seems to do the job. This is another
indicator that the TeV scale holds interesting physics.

1.3 Solutions to the Hierarchy Problem and Dark Matter candidates

1.3.1 Supersymmetry

Supersymmetry (SUSY) is a symmetry of the Lagrangian that relates bosons (integer spin) and
fermions (half-integer spin). If nature were truly supersymmetric this would imply that the electron (say)
in the SM would have a spin-0 boson “sfermion” partner (called the selectron) that had exactly the same
mass and charge as the electron but differed only in spin. We have not observed any such partners with
masses identical to SM particles. Thus, one would expect that if SUSY is a true symmetry of nature, it
must be a broken symmetry. The breaking is such that the superpartners to the SM particles have masses
larger than their SM counterparts, and from direct search bounds they must be at least a few 100 GeV.

How does SUSY solve the hierarchy problem? SUSY predicts a partner to the top quark called
the “stop.” The stop also runs in the loop that gives quantum corrections to the Higgs boson mass and
by the symmetries of unbroken SUSY gives an equal and opposite contribution to the top loop. If the
stop and top mass were identical, as in unbroken SUSY, this would result in an exact cancelation of
the quadratic and logarithmic cutoff dependences, thus negating the fine-tuning problem. However, if
SUSY is softly broken, this would still lead to a cancelation of the quadratic piece but leave behind a less
problematic logarithmic dependence on the cutoff.

In order to not violate the well constrained proton decay limit, one needs to impose a symmetry
called R-parity which effectively assigns superpartners a parity of -1 and SM particles a parity of +1.
One can easily write down SUSY interactions analogous to SM interactions by taking any SM vertex
and replacing two of the incoming lines with superpartners. One interesting consequence of imposing
the R-parity symmetry is that the lightest superpartner (LSP) is stable against decay and becomes a viable
dark matter candidate.

For a review of SUSY phenomenology, see [4].

1.3.2 Extra Dimensions

Extra dimension theories predict the existence of extra spatial dimensions. Since, these extra
dimensions are not visible to us, there are two possibilities. The first is that SM particles cannot propagate
in these extra dimensions. That is, all known particles and fields are confined to a 3+1 dimensional
“brane.” However, since gravity describes the structure of space-time, gravitons or gravity waves can
travel in the extra dimensions. The second possibility is that these dimensions are compact or curled up
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such that they are too tiny to be readily detectable. It turns out from tests of gravity at small length scales
that gravity-only extra dimensions must be sub-millimeter size or less (for flat extra dimensions).

Quantum mechanics predicts an interesting result if extra dimensions are compact. For every
known particle that can propagate in the extra dimensions, the momentum in the extra dimension must
be quantized in order for the wave function of the particle to be single valued ((anti-)periodic boundary
conditions). If px is the magnitude of momentum in the extra dimension, it will be of the form n/R for
integers n where R is the radius of an extra dimension compactified on a circle S1. Heuristically, we
then have

E2 = m2 + p′2 (1.2)

= m2 + p2 + p2
x (1.3)

=

(
m2 +

n

R

2
)

+ p2 (1.4)

= m2
n + p2. (1.5)

Here p′ is the total magnitude of momentum and p is the magnitude of momentum in the 3 visible
spatial dimensions; we have set c = 1. Thus, the effect of compact extra dimensions and quantization
of momentum in the extra dimension can be treated as an effective set of new particles with masses
m2
n = m2 + (n/R)2. So, extra dimensional theories predict a tower of particles, identical to the SM

ones but much heavier, with masses ∼ 1/R heavier than their SM counterparts. These heavy partners
are called Kaluza-Klein (KK) partners. Note that these partners not only have similar charges to their
SM counterparts, but they also have excactly the same spins.

Imposing a discrete Z2 orbifold symmetry on S1 allows for chiral, zero-mode fermions and
prevents proton decay. This symmetry is also known as KK parity. Interestingly, the lightest Kaluza-
Klein partner (LKP) is stable against decays in this case and thus gives rise to a viable dark matter
candidate.

Just like with SUSY, one can construct vertices by analogy with the SM, by replacing two
legs at each vertex with KK partners in such a way that the momentum flow in the extra dimension is
conserved and KK parity is respected.

In this thesis we will study only two particular setups for extra dimensions, Universal extra
dimensions and Warped Randall-Sundrum (RS) extra dimensions. For a review on the various extra
dimension models and phenomenology, see [5].

Universal Extra Dimensions

In this approach, all SM fields propagate in the d + (3 + 1) dimensional bulk where d is the
number of extra spatial dimensions. Universal extra dimensions (UED) must be very small, with inverse
radiiR−1 ∼ 300 GeV in order to satisfy experimental bounds. UED provides a solution to the Hierarchy
problem by providing a cutoff at the scale of compactification, which we take to be around a TeV.

Warped Extra Dimensions

Here we describe the so called RS-1 setup. The extra dimension has two branes called the TeV
brane and the Planck brane. We will assume for the purposes of this thesis, that only gravity propagates
in the 5-d bulk, while the SM fields are confined to a TeV brane. The 5-d bulk has a bulk cosmological
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constant, Λ. The two branes have tensions, which are related to the bulk cosmological constant. This
setup results in a 5-d metric that has the form

ds2 = e−2krcφηµνdx
µdxµ + r2

cdφ
2, (1.6)

where k is given in terms of Λ and the 5-d Planck scale. The parameter rc parameterizes the distance
between the two branes. Since the metric has a warped exponential form, we can generate a huge
hierarchy between energy scales on the Planck brane and energy scales on the TeV brane by choosing
krc ≈ 20 and hence we can solve the hierarchy problem. Note that there is no discrete symmetry in
this case and thus we have no natural dark matter candidate. This will, however, turn out to be useful
when we do collider studies, since there will be no missing energy signatures. Since in our setup only
gravity propagates in the bulk, only gravitons will have KK modes which have a very characteristic
spin-2 behavior.

1.4 Distinguishing New Physics by Spin

We have seen that generically, beyond SM (BSM) models predict new particles with identical
properties to their SM counterparts; that are heavier but otherwise have similar properties (like couplings)
as their SM counterparts. It becomes critical to ask if there is any way we can distinguish between BSM
models. One clear distinction between SUSY and extra dimensions theories, such as UED, is that SUSY
predicts only one partner per SM particle, whereas UED predicts a whole tower of partners. However, in
practise, it is very likely that the energy reach of the LHC may prevent us from accessing the second KK
modes. There is, however, one crucial difference that we can still exploit to distinguish between these
theories: SUSY predicts partners that are offset by spin-1/2 from their SM counterparts, whereas UED
predicts partners with identical spin to their SM counterparts. So, spin measurement of new particles can
provide a key tool in distinguishing between models of new physics.

1.5 LHC, ILC, and TeV-scale Physics

The Large Hadron Collider (LHC) is a high energy proton-proton collider. It has been designed
to run at 14 TeV center-of-mass energy. Since the partons within the proton carry only a fraction of the
proton energy, we expect center-of-mass collisions of the partons to be on the order of a TeV. Thus,
the LHC is the first machine that will be able to directly probe the electroweak scale in a controlled
setting. The International Linear Collider (ILC) is a proposed linear electron-positron collider that is
also expected to probe the electroweak scale. If the LHC discovers new physics at the TeV scale, it will
be very hard to pin down precise properties of the new particles because of numerous unknowns, such as
the center-of-mass frame for each event. To study precise properties of the new particles, we will need
to build a linear collider where we have control over the center-of-mass energy and momentum.

The goals of studying TeV physics have already been established: we expect to find the Higgs
boson if it exists, or at least probe the origin of electroweak symmetry breaking. In addition, we expect
to find new models of particle physics such as SUSY or UED. Finally, we may also be able to produce
dark matter in a lab and study its properties.
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1.6 Color Exotics

One aspect of the LHC that is underemphasized is that the LHC is really a QCD machine. New
strongly interacting particles such as color sextets and color octets are thus expected to be produced in
copious amounts if they exist. These particles are predicted to exist from partial unification theories such
as Pati-Salam models [69]. In terms of SU(3) group representations, 3⊗ 3 = 6 + 3̄. This implies that the
color sextet couples to same-sign quarks. Thus, if we produce a heavy color sextet and it decays to two
same-sign top quarks, we can pick this signal out easily from the decay of the top quarks into same-sign
dileptons. The striking “same sign dilepton” signature of color sextet decay makes it one of the easiest
exotic particles to observe at the LHC.

1.7 Organization of This Thesis

This thesis is based on three papers by the author and various collaborators. In chapter 2,
we review the problem of spin determination and briefly discuss some proposed techniques to measure
spin. In chapter 3, we describe a new model independent spin-determination technique using azimuthal
angular dependence. This chapter is based on the work in [1]. The idea will be to produce one or more
new particles whose spin we wish to measure and to look at the kinematic distribution of their decay
products. The main obstacle to spin determination turns out to be the missing energy signatures that
accompany SUSY and UED cascade decays from the stability of the LSP or LKP. We then describe the
process of distinguishing between SUSY and UED at a linear collider (where we have control over the
center-of-mass energy and momentum). Even at a linear collider, we find that there is a discrete two-fold
ambiguity in solving the kinematics of simple decay chains. Applying this to the LHC, where we have no
control over the parton energies and hence more unknowns, makes spin measurement at the LHC using
this technique a seemingly intractable problem. Thus, in chapter 3 we will only study discrimination
between SUSY and UED scenarios at the ILC. In chapter 4, we describe a case where we can solve for
the kinematics at the LHC, the case of KK gravitons from RS models. This chapter follows work studied
in [2]. In chapter 5, we discuss an entirely new candidate for BSM physics, the color sextet. We analyze
the feasibility of detection and measurement of the properties of this new particle. This work is based
on [3]. Conclusions to each avenue of inquiry are presented separately within the relevant chapter rather
than at the end, to allow for more streamlined reading. We summarize all of our conclusions in a brief
note at the end.
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Chapter 2

Spin Measurement Techniques

The Large Hadron Collider (LHC) is already up and running, granting us at long last access to
the scale of electroweak symmetry breaking and beyond. One of the major puzzles to which we hope the
LHC may provide answers is the hierarchy problem [6][7][8][9]: the origin and stability of the orders
of magnitude gulf between the Higgs vev at ∼ 300 GeV and the Planck scale at ∼ 1019 GeV. Without
experimental results, theorists over the years have collected an impressive array of possible solutions to
this problem. Arguably, the leading contender is supersymmetry [10], but there are many others: extra
dimensions [11][12][13][14][15][16][17], technicolor [18][7][8], and little Higgs [19] to name a few.
Many of these models also provide a long-lived, weakly coupled particle suitable to be a dark matter
candidate.

In many of these possibilities the immediate experimental signature from the LHC would be
the presence of beyond the SM (SM) particles partnered with some or all of the known particles. For
example, the minimal supersymmetric SM (MSSM) doubles the number of particles by adding a new
field with the same gauge quantum numbers and Yukawa couplings as in the SM, but spins differing
by one half of a unit. Alternatively, the minimal universal extra dimensions (UED) model [20] has
compactified extra dimensions which solve the hierarchy problem by ‘ending physics’ at the scale of
electroweak symmetry breaking. That is, the Planck scale of the true 4 + d dimensional theory is not far
above a TeV, but appears much larger in 4D once the compactification occurs. This results in a tower
of KK states, each containing a heavier version of the SM particles with identical quantum numbers,
including spin.

It is well known that, due to the similarities in the particle spectrum and quantum numbers, it
may be difficult to distinguish the signatures of MSSM particles from the KK=1 modes of UED at future
collider experiments [21][22]. The existence of the KK=2 modes could serve as a discriminator between
supersymmetry and extra dimensions, but their high masses may make them kinematically inaccessible.
Even if produced, they typically decay through KK=1 states, and so their presence would only be felt
through an increase in the KK=1 production cross section [23][24]. Determining the spin of the new
particles will be necessary to confirm the theory underlying any new particles.

There have been several proposals for measuring spin in future collider experiments. The
possibilities at a linear collider are far more numerous, due to the control over the center-of-mass energy
in each event. Threshold scans can distinguish scalars from spinors or vector bosons, as the former cross
section rises like β3 while the latter two are proportional to β [25]. However, such a method cannot be
used at a hadron collider, and cannot discriminate between spin 1/2 and spin 1. The differential cross
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section with respect to production angle in s-channel pair-produced scalars is proportional to sin2 θ,
while for spinors it is 1 + E2−m2

E2+m2 cos2 θ. Model dependence may be present in the form of t-channel
diagrams, which introduce a forward peak that is similar for both spin statistics [25]. Such diagrams
make the production angle measurement of spin more difficult, but may be possible in some cases [26].

The polar angular dependence in decays can also be used for spin measurements. However,
extracting spin from these measurements assumes knowledge of the final state spins and also requires
chiral couplings, introducing a model dependence on the spin measurement [27]. While this method was
originally proposed for the ILC, it was shown that, with sufficiently long decay chains and exploitation
of the asymmetry in production of squarks versus antisquarks, supersymmetric spinors could be distin-
guished from phase-space decays at the LHC [23][27][28][29][30][31]. Yet this method relies heavily
on the underlying models as the entire decay chain must be considered.
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Chapter 3

Spin Determination using Azimuthal
Angle Dependence at the ILC

Clearly, determination of spin is a problem still requiring novel solutions. In this chapter we
investigate a model-independent method to determine the spin of new particles at the ILC, first proposed
in [32]. Through interference between the different helicity states in a coherent sum, the cross section
of pair-produced particles decaying to two-body final states develops a nontrivial dependence on the
azimuthal angle φ of the decay. By extracting this dependence, one can determine which helicity states
entered into the sum, and thus the spin of the decaying particle. This method is similar to (and was
inspired by) the determination of the quark spin measurement at SPEAR [33]. At the end of this chapter,
we will discuss how this general method may be extended to the LHC.

This chapter is organized as follows. In section 3.1 we derive the angular dependence of the
cross section as a function of particle spin. We then determine appropriate experimental quantities and
develop the necessary measurement techniques. In section 3.2 we apply our method to distinguish scalars
in pair production at the ILC from production of higher spin states. Spin 1/2 and 1 measurements are
considered in section 3.3 and we conclude in section 3.4. Additional calculations are supplied at the end
of the chapter in sections 3.5 and 3.6.

3.1 Azimuthal Angular Dependence

To determine the azimuthal dependence of the cross section for pair production followed by
decay, we start with a particle of helicity h moving in the ẑ direction. When this decays into a two-
body final state, the momenta of the daughter particles are confined to a decay plane. If we consider the
rotation of this plane about the ẑ axis by an angle φ, it is clear that the action of the rotation on the matrix
element of the decay must be equivalent to the action of the rotation on the parent particle.

Rotations of the particle about the ẑ axis introduce a phase e−iJzφ, where Jz is the total angular
momentum in the ẑ direction. However, as the momentum is defined to be in the ẑ direction, the orbital
component is zero, and Jz reduces to h:

Jz =
(~s+ ~x× ~p) · ~p

|~p|
=
~s · ~p
|~p|

= h. (3.1)
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Therefore, the dependence of the decay matrix elementMdecay on φ must be

Mdecay(h, φ) = eihφMdecay(h, φ = 0). (3.2)

Were we to produce particles in only one helicity state, then the total cross section (proportional to the
square ofMprod.Mdecay) would be independent of φ. However, if several helicity states are produced
and then decay, the total cross section is proportional to the coherent sum squared:

σ ∝

∣∣∣∣∣∑
h

Mprod.(h)eihφMdecay(h, φ = 0)

∣∣∣∣∣
2

. (3.3)

This expression is true only within the validity of the narrow-width approximation. However, for ‘weakly-
coupled’ physics, such an approximation is justified [36].

As a result of this interference among the various helicity states, the cross section develops
a cos(nφ) dependence, where n is an integer running from zero to twice the largest value of h for the
decaying particle. That is to say, the φ dependences for a scalar, spinor, and massive vector boson can be
written as

σ(s = 0) = A0 (3.4)

σ(s = 1/2) = A0 +A1 cos(φ) (3.5)

σ(s = 1) = A0 +A1 cos(φ) +A2 cos(2φ) (3.6)

where the Ai are not functions of φ (though they are nontrivial functions of the other kinematics of
the problem). The exact forms of the cross section must be worked out from the standard rules of
constructing matrix elements from Feynman diagrams, in which case the φ dependence will become
apparent. However, from this general argument the relationship between spin and φ dependence is made
clear.

To exploit this φ dependence, we consider pair production of particles from e+e− at the future
ILC. As motivated by solutions to the dark matter problem, we expect the production of particles beyond
the SM to cascade down to some weakly coupled particle which will escape the detector. Such WIMPs
are present in the supersymmetric spectrum as the lightest supersymmetric particle (LSP), typically the
lightest neutralino, or in universal extra dimensions as the lightest Kaluza-Klein odd particle (LKP),
typically theB1. Examples of such event topologies in the UED and SUSY models are shown in Fig. 3.1.
However, our methods do not rely on such specific models.

Measuring the azimuthal dependence of the cross section requires that we are able to recon-
struct the momentum of the parent particle. For simplicity, we specialize to cases where the pair-produced
particles each decay to a charged lepton and missing energy, in which case the events of interest con-
sist of `±`∓ /E. While we risk losing some model independence at this stage, such signatures are fairly
generic in many extensions to the SM.

Let the pair-produced particles whose spin we wish to measure (µ1 in Fig. 3.1a or µ̃ in
Fig. 3.1b) have 4-momenta pA and pB and mass M . These particles each decay to visible (effectively
massless) leptons and a weakly coupled particle with mass m (the χ̃0

1 or B1 in Fig. 3.1). We label the
visible lepton momentum p1 and p2, and assume that the particles running in each leg are identical. The
production angle θ and decay angles θi and φi (i = 1 for the decay of A and i = 2 for the decay of B)
defined relative to the production plane are shown in Fig. 3.2.
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Figure 3.1: a) Pair production of KK= 1 muons in universal extra dimensions decaying to opposite-sign
muons and missing energy in the form of two B1 gauge bosons (the LKP). b) Pair production of smuons
in supersymmetry decaying to opposite-sign muons and the lightest neutralinos as LSP missing energy

At the ILC, assuming knowledge of the masses M and m, it is possible to completely recon-
struct the 4-momenta pA and pB (and thus the angles φ1 and φ2) up to a two-fold ambiguity [37][38].
We note that there are 4 unknown values for both of the missing particles in the decay, for a total of 8 un-
knowns. There are 4 measured values of the total missing 4-momentum /p; also, for each massive particle
in the diagram there is a mass relation, for a total of 4 constraints. Therefore, one would expect this event
to be completely reconstructible. When solving the mass relations, however, one finds an ambiguity in
sign when taking a square root, leading to the two-fold ambiguity in the reconstructed momentum. For
the details of the reconstruction, see Appendix 3.5.

With less than perfect knowledge of the masses, muon momenta, and center-of-mass energy
(from beamstrahlung [39] and initial state radiation), the true solution will not be reconstructed perfectly.
At the ILC, the masses of lepton and gaugino partners are expected to be measured to one part per mille
[40][41], the tracking resolution as good as ∼ 5 × 10−5(pT /GeV) [42], and beamstrahlung/ISR should
be a few percent [43]. Thus, we expect that the errors introduced in φ from these effects will be minimal.

As we have two solutions for the momenta pA and pB , this leads to two solutions each for φ1

and φ2. The extracted signal in the azimuthal distribution is therefore obtained in the combination of
the true and false solutions and compared to the expected values given in Eqs. (3.4), (3.5), and (3.6). In
particular, a particle of spin n/2 should have Ai = 0 for all i > n.

3.2 Scalars vs. Spinors

To demonstrate the utility of this method of spin determination, we consider the pair production
of scalar right-handed smuons in supersymmetry which decay to muons and LSP χ̃0

1s (e−e+ → µ̃−Rµ̃
+
R →

µ−µ+χ̃0
1χ̃

0
1). We compare the azimuthal distributions of φ1 and φ2 in this scenario to that in the pair pro-
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Figure 3.2: The pair-produced µ̃ or µ1 in the lab frame. The beam axis is defined as the z axis, with
the production angle θ in the x − z plane. The ẑ axis is defined to point along the production axis. The
decay angle φ1 is invariant to boosts along ẑ, and so may be defined in either the lab frame or the frame
of the decaying particle. The angle θ1 is defined in the rest frame of µ̃−/µ−1 . Decay angles θ2 and φ2

(not shown) are defined equivalently for the µ̃+/µ+
1 .

duction of µ1Rs decaying to muons and LKP B1s in a UED model (e−e+ → µ−1Rµ
+
1R → µ−µ+B1B1).

The Feynman diagrams for these processes are shown in Fig. 3.1. Analytic formulae for the production
and decay cross sections for both models are presented in Appendix 3.6. We stress that SUSY and UED
are chosen only as benchmark models with differing spins and similar final states; the method used to
determine spin can in principle work equally well for any other scenario.

Representative spectra are required for both supersymmetry and universal extra dimensions.
In addition, we wish to avoid any possible model-specific effects on the azimuthal distributions arising
from different choices of spectra for supersymmetry and extra dimensions. Therefore, as the masses of
the µ̃/µ1 and χ̃0

1/B1 are assumed to be known, we perform our analysis twice for each model. In the
first case we assign the masses of the µ and B partners as per a SUSY spectrum, and then repeat the
processes with the UED case.

As a representative supersymmetry point, we chose SPS 3 [44][45] in mSUGRA parameter
space, which hasm0 = 90 GeV,m1/2 = 400 GeV,A0 = 0, tanβ = 10, and a positive µ parameter. The
universal extra dimensions model is represented by the minimal version (MUED) [46], which requires
only four parameters: the number and radiusR of the extra dimensions, the scale Λ to set flavor-universal
boundary terms equal to zero, and the Higgs mass. We chose one extra dimension withR−1 = 300 GeV,
Λ = 20R−1 and a Higgs mass of 120 GeV. The resulting particle spectra at the TeV scale are shown in
Table 3.1.

Backgrounds consist of the SM production of W−W+ pair production with leptonic decays
to muons and neutrinos, ZZ production with decays to muons and neutrinos, and model-background of
χ̃+

1 χ̃
−
1 /W

+
1 W

−
1 production decaying to muons and ν̃/ν1. While kinematic cuts on the invariant mass of

the muon pairs can greatly reduce the SM background, more efficient cuts can be obtained by requiring
successful reconstruction of the µ̃R/µ1R momentum as outlined in Appendix 3.5.
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SPS 3 MUED
χ̃0

1/B1 161 GeV 302 GeV
˜̀
R/`1R 181 GeV 304 GeV

˜̀
L/`1L 289 GeV 309 GeV

χ̃±1 /W
±
1 306 GeV 327 GeV

ν̃`/ν1` 276 GeV 309 GeV

Table 3.1: Relevant particle spectra for the mSUGRA parameter point SPS 3 and the minimal universal
extra dimension parameters R−1 = 300 GeV, Λ = 20R−1, and mH = 120 GeV. The MUED spectrum
was derived using the MUED package [47] for CalcHEP [48]. Here, ` refers to the light charged leptons:
electrons or muons.

The reconstruction algorithm assumes that the masses of the produced and escaping particles
are known. By assuming that the signature of µ−µ+ /E arises from pair production of µ̃R (or µ1R)
decaying to LSP or LKP, all other events with the same signature but different particle masses develop
inconsistencies in their reconstruction. That is, the visible momenta are not compatible with the pair
production of particles with masses other than that for the µ̃R/µ1R decaying into particles with masses
other than that of the LSP/LKP. In practice, the parameter y defined in Eq. (3.17) becomes imaginary.

With perfect knowledge of masses and muon momentum, requiring reconstruction to succeed
cuts nearly all of the background events. Once detector smearing and mass measurement errors are
included, it is inevitable that some background will survive the reconstruction cut. Again, with the small
errors in mass measurements available at the ILC, we do not expect large backgrounds to pollute the data
set.

The total center-of-mass energy at the ILC is expected to reach up to 1 TeV, and an integrated
luminosity of 500 fb−1 is not unrealistic. For the mass spectra chosen, the resulting cross sections times
branching ratios are shown in Fig. 3.3 for

√
s running from threshold up to 1 TeV. As a result, we expect

several thousand to several hundreds of thousands of events available.
To simulate the effects of necessary cuts due to the geometry of the detector, we place cuts on

the pseudo-rapidity η. We require η to be less than 2.5 for both visible muons, as otherwise the leptons
would vanish unseen down the beam. Also, if the missing momentum also points down the beam pipe,
we cannot be sure that the missing energy is truly in the form of WIMPs and not merely unobserved SM
particles, so we cut on η for missing ~pT as well.

Using HELAS [34] the production and decay matrix elements were calculated at tree level for
each helicity state. Using the narrow-width approximation, the cross sections as a function of θ, φ1, θ1,
φ2, and θ2 were obtained. BASES [35], an adaptive Monte Carlo program, was used to integrate over
the other kinematic angles to determine the differential cross sections with respect to φ1 and φ2. As both
decaying particles have the same spin statistics, the differential distributions are the same for both φ1 and
phi2; hence, to increase statistics, the distributions for φ1 and φ2 were added.

Representative distributions for scalars and spinors (including rapidity cuts) are shown in
Fig. 3.4. As can be clearly seen in Fig. 3.4a, both the true and false UED distributions have a clear
cosφ dependence, as expected from spinor decay (Eq. (3.5)). The true distributions for the scalar SUSY
decay in Fig. 3.4b is flat, as expected from Eq. (3.4). It is therefore apparent even at this level of analysis
that the φ dependence of the distribution contains the spin information necessary for our method.

Considering the combined true and false distribution in Fig. 3.4, a systematic issue for our
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Figure 3.3: Cross sections times branching ratios as a function of the beam energy for the UED process
e−e+ → µ−1Rµ

+
1R → µ−µ+B1B1 and the SUSY process e−e+ → µ̃−Rµ̃

+
R → µ−µ+χ̃0

1χ̃
0
1. Figure a) uses

the SPS 3 spectrum, while b) uses the MUED spectrum (see Table 3.1).

method becomes readily apparent. An unexpected cos 2φ dependence develops due to the false distri-
bution and rapidity cuts, a situation we regard as an indication of practical limitations to our method,
not a fundamental flaw. Whereas the cos 2φ dependence may be unimportant for the discrimination of
scalar versus higher spin states, it will become important in distinguishing spinor from vectors (section
3.3). Though harder to see by eye, the UED distribution also develops a cos 2φ dependence in the false
solution. As such, we fit not to A0 +A1 cosφ but rather to A0 +A1 cosφ+A2 cos 2φ.

The overall scaling of the Ai parameters in Eqs. (3.4), (3.5), and (3.6) depends on the total
number of events, which is a function of the total cross section. To remove this model-dependent effect,
the parameter of interest in spin determination is not A1, but A1/A0, which is independent of the scaling
due to total cross section.

Using the least-squares method the generated distributions were fit toA0+A1 cosφ+A2 cos 2φ.
The errors for each parameter Ai were obtained after marginalizing over the other two parameters. The
ratio A1/A0 for the scalar µ̃R and spinor µ1R are shown in Fig. 3.5. As can be seen, for both the SPS3
and MUED spectra the values of A1/A0 for µ̃R are consistent with zero for all energies and for both the
true and false distributions. For the spinor µ1R, the ratio is manifestly nonzero, allowing us to distinguish
scalars from higher spin states.

Several aspects of Fig. 3.5 require closer examination. The large error bars for the supersym-
metric particles in both spectra are due to the relatively poor statistics compared to the pair production
of the spinor KK modes in universal extra dimensions. This is especially apparent near threshold. For
the spinor particles we also note that, near threshold, the signal is on the order of 10%, and decreases
toward zero at progressively higher energies. This decrease can be readily explained as follows: far from
threshold, the mass of the pair-produced particles becomes less relevant, and so their spins become more
correlated due to chirality conservation. To determine the distribution of φ1 (φ2), we integrate over all
other angles in the problem, including φ2 (φ1). Due to the correlation of spins in this energy regime,
this integration results in decoherence of the sum of matrix elements. That is, rather than considering
|
∑

hM(h)|2, at high energies the cross section becomes proportional to
∑

h |M(h)|2, which has no
azimuthal angle dependence due to the lack of interference between terms.
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Figure 3.4: Histograms of number of events per azimuthal angle φ for both the true solution to the
reconstruction algorithm and the combined true and false distribution. The center-of-mass energy is√
s = 370 GeV and the luminosity if 500 fb−1. Figure a) shows the UED distribution for e−e+ →

µ−1Rµ
+
1R → µ−µ+B1B1 while b) is the SUSY distribution for e−e+ → µ̃−Rµ̃

+
R → µ−µ+χ̃0

1χ̃
0
1.

Finally, in considering the distribution of true solutions versus that of the combined solutions,
we note that for the spinor case the signal is lower once the false solutions are added in. At low energies
the difference between the two is comparatively small, but grows as we move away from threshold. This
agrees well with the naive intuition that the false distribution should be flat in φ1 and φ2; however, we
stress that at higher frequencies such intuition fails us, and the flat distribution may develop nontrivial
cos 2φ dependences.

To demonstrate this effect, we plot in Fig. 3.6 the ratio A2/A0 for the decay of spinor µ1R

(using SPS3 parameters). As can be seen in the top plot, the true solution without cuts has a coefficient
of zero for the cos 2φ term, as predicted by Eq. (3.5) for spinor decay. However, once cuts and the false
solutions are added, a nonzero value is generated. Clearly, this can cause confusion between a spin-1/2
particle and a vector or higher spin state.

To attempt to correct for this effect, we generate events in which the particles decay according
to phase space. This flat distribution is reconstructed using the method outlined in Appendix 3.5 and
rapidity cuts are applied just as in the SUSY and UED cases. As a result, the flat distributions also
develop a cos 2φ dependence. The resulting values forA2/A0 using only true solutions (with and without
cuts) and then both solutions (with and without cuts) are subtracted from the appropriate spinor ratios to
isolate the spin-dependent effect. The resulting corrected A2/A0 values are displayed in the lower plot
in Fig. 3.6. As can be seen, the flat distribution corrects the cos 2φ contribution due to cuts but does not
remove the false distribution’s effect, leaving a ∼ 0.5% spurious signal at high energies. For reasons we
do not yet fully appreciate, at low energies the false distribution’s effects are minimal, allowing for the
possibility of accurate spin measurements. However, it is exactly in this regime that statistics are poor
due to the proximity of the threshold.
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Figure 3.5: Top: Ratio A1/A0 for mSUGRA parameter point SPS3 as a function of energy for both
scalar (SUSY) and spinor (UED) pair production with 500 fb−1 luminosity.. Error bars correspond to
95% exclusion region. Blue lines correspond to true solution only with no rapidity cuts, black dashed
lines are true solutions with rapidity cuts, red lines are true and false solutions without cuts, and green
are true and false solutions with cuts. Bottom: Ratio A1/A0 for MUED parameters as in Table 3.1 for
both scalar (SUSY) and spinor (UED) production. Color labeling identical to the above.
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Figure 3.6: Top: Ratio A2/A0 for mSUGRA parameter point SPS3 as a function of energy for spinor
(UED) pair production with 500 fb−1 luminosity. Error bars correspond to 95% exclusion region. Blue
lines correspond to true solution only with no rapidity cuts, black dashed lines are true solutions with
rapidity cuts, red lines are true and false solutions without cuts, and green are true and false solutions
with cuts. Bottom: Ratio A2/A0 for SPS3 parameters for spinor (UED) production after correcting for
effects of false distribution and cuts on a flat distribution. Color labeling identical to the above.
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3.3 Spinor vs. Vector

Due to the large A1/A0 signal for non-scalars (on the order of 10%) and the minimal effect of
rapidity cuts and false distributions on this ratio, the ILC should have little difficulty discerning that a
particle is spin-0. However for higher spins the cuts and false solutions introduce potentially dangerous
higher frequency contributions, as has been demonstrated.

Consequently, the question still remains whether this method may be practically applied to
discriminate spinors from vectors in general cases. We therefore consider a case of pair production of
massive vector bosons in UED contrasted with spinor production in SUSY. In particular, we consider
e−Le

+
L → W−1 W

+
1 → `−`′+ν̄1`ν1`′ in universal extra dimensions and e−Le

+
L → χ̃−1 χ̃

+
1 → `−`′+ν̃∗`′ ν̃`′

in supersymmetry where the leptons ` and `′ can be either muon or electron type (see Fig. 3.7). Even
though the ν1/ν̃ are not the LSP/LKP, they decay to neutrinos and the LSP, neither of which is visible in
the detector.
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Figure 3.7: a) s-channel and b) t-channel pair production of KK= 1 W bosons in universal extra di-
mensions decaying to opposite-sign leptons and missing energy in the form of two ν1s. c) s-channel and
d) t-channel pair production of charginos χ̃±1 in supersymmetry decaying to opposite-sign leptons and
sneutrino missing energy

For these final states, the total cross sections times branching ratios as a function of energy are
shown in Fig. 3.8. Once again, the supersymmetric cross section is considerably less than that in extra
dimensions. Furthermore, the small mass splittings in the MUED spectrum lead to small cross sections
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Figure 3.8: Cross sections times branching ratios as a function of beam energy for the UED process
e−Le

+
L → W−1 W

+
1 → `−`′+ν̄1`ν1`′ and the SUSY process e−Le

+
L → χ̃−1 χ̃

+
1 → `−`′+ν̃∗`′ ν̃`′ . Figure a)

uses the SPS 3 spectrum, while b) uses the MUED spectrum (see Table 3.1).

compared to the SPS 3 case. Backgrounds include SM W± and ZZ production, and model backgrounds
from χ̃0

2χ̃
0
2/W

3
1W

3
1 , and ˜̀− ˜̀+/`−1 `

+
1 pair production decaying to charged leptons and missing energy.

However, we once again find that demanding successful reconstruction effectively cuts the background to
negligible levels. In addition, we apply the η ≤ 2.5 cuts on the charged leptons and missing momentum.

We perform fits to A0 + A1 cosφ+ A2 cos 2φ as in section 3.2 and consider the ratio A2/A0,
using 1 ab−1 of integrated luminosity (due to the smaller cross sections). The results for the SPS3
spectrum are displayed in Fig. 3.9, and those of the MUED spectrum are shown in Fig. 3.10. Note that
the true solutions for the vector bosons consist of an approximately 1% signal in the SPS3 spectrum and
∼ 0.5% in MUED. In both spectra the true solution for spinors is consistent with zero. As with the
production of µ1R, however, the presence of the false distribution introduces significant spurious values
of A2/A0, dwarfing the true signal by a factor of ∼ 5.

In the SPS3 spectrum, even with 1 ab−1 the error bars on the true solution for the vector bosons
barely exclude zero at 95% confidence. For the MUED case, the situation is much worse, as a smaller
signal is combined with cross sections suppressed by nearly an order of magnitude compared to those in
the SPS3 case. Thus, statistics may be a limiting factor in measuring nonzero spins.

We attempt to correct for the effects of cuts and false solutions by generating events which
decay according to phase space. As the production angle may be measured up to the two-fold recon-
struction ambiguity, we generate the particles with the correct θ distributions and flat θi, φi distributions
and run the resulting events through the reconstruction and detector simulator. The resulting values for
A2/A0 are subtracted from those in Figs. 3.9 and 3.10 in an attempt to isolate the spin effects arising from
quantum interference from the nonzero A2/A0 coming from cuts and the false solutions. The adjusted
results are shown in Fig. 3.11 for the SPS3 spectrum. Due to the small signal and poor statistics in the
MUED spectrum, even the uncorrected signal in the true solution cannot be distinguished from zero, so
we do not adjust for cuts or the false solutions.

Examining Fig. 3.11, we find that the flat distribution captures the effects of cuts on the ratio
A2/A0 but does not correctly account for the false distributions. We do find that the false distributions
do not contribute significantly to the ratio near threshold, as in the measurements of A1/A0. Once again,
this behavior is not well understood and statistics in this regime are limited. It is conceivable that better
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Figure 3.9: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor production e−Le
+
L →

χ̃−1 χ̃
+
1 → `−`′+ν̃∗`′ ν̃`′ for the SPS3 spectrum. Bottom: Ratio A2/A0 for the UED vector boson produc-

tion e−Le
+
L → W−1 W

+
1 → `−`′+ν̄1`ν1`′ for the same spectrum. Color coding as in Fig. 3.5. Error bars

correspond to 95% exclusion region assuming 1 ab−1 luminosity.



22

350 400 450 500

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Beam Energy (GeV)

A
  /

A
0

2

True/no cuts
True/cuts
True & False/no cuts
True & False/cuts

350 400 450 500

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Beam Energy (GeV)

A
  /

A
0

2

True/no cuts
True/cuts
True & False/no cuts
True & False/cuts

-0.05

Figure 3.10: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor production e−Le
+
L →

χ̃−1 χ̃
+
1 → `−`′+ν̃∗`′ ν̃`′ for the MUED spectrum (see Table 3.1). Bottom: RatioA2/A0 for the UED vector

boson production e−Le
+
L →W−1 W

+
1 → `−`′+ν̄1`ν1`′ for the same spectrum. Color coding as in Fig. 3.5.

Error bars correspond to 95% exclusion region assuming 1 ab−1 luminosity.
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Figure 3.11: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor production e−Le
+
L →

χ̃−1 χ̃
+
1 → `−`′+ ˜̄ν`′ ν̃`′ for the SPS3 spectrum adjusted to account to detector and cut effects. Bottom:

Ratio Adjusted values ofA2/A0 for the UED vector boson production e−Le
+
L →W−1 W

+
1 → `−`′+ν̄1`ν1`′

for the same spectrum. Color coding as in Fig. 3.5. Error bars correspond to 95% exclusion region
assuming 1 ab−1 luminosity.
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results would be obtained by coupling a flat decay in φi with the measured distribution of θi to attempt
to account for the false distribution. This matching has not been performed as yet.

Thus, while the quantum interference measurement for spin-0 stands on solid ground, the
situation for higher spins is less certain. Even neglecting the issue of false solutions, the vector boson
ratio A2/A0 is on the order of 1%, and so requires significant statistics in order to distinguish from
spinor decays. Furthermore, the false distribution introduces a spurious A2/A0 value which has not
been fully understood by the authors and can dwarf the signal. Finally, the case of the MUED spectrum
demonstrates that, while the method of spin measurement is model independent, it is vulnerable to model-
dependent effects such as total cross section, which control the statistical error of the fit. However, note
that we could do much better statistically by adding hadronic final states for one of the χ̃±1 /W1 while
requiring leptonic final states for the other. We again would have two-fold ambiguity, but the rest of the
measurement remains the same as long as we can measure the hadronic energies well enough. This may
be possible by using the energy flow method that matches tracking and calorimeter information.

3.4 Conclusions

We have demonstrated that the quantum interference of multiple helicity states can provide
a model independent method of spin measurements at the ILC. Specifically, with reasonable luminosi-
ties, scalar particles can be easily distinguished from spin-1/2 or higher possibilities in pair production
followed by decays to visible leptons and missing energy.

Determining whether a particle is spin-1/2 or spin-1 suffers from two major problems. The
first is simply statistics: as the signal is on the order of 1%, the requisite luminosity will be a stretch for
the ILC, at least in the SUSY and UED models considered. The second issue concerns the false solution
to the reconstruction of the pair-produced particles’ 4-momentum, and hence the derived values of the
azimuthal angles φ1 and φ2. With 8 missing momentum components from the two weakly interacting
particles escaping the detector, 4 measured total missing momenta, and 4 mass constraints, the system
can be solved only up to a two-fold ambiguity. While the cosφ distribution is flat in the false solution,
non-trivial dependences on cos 2φ develop. From explicit calculations, these dependences appear to be
different for flat, spinor, and vector boson distributions, and so cannot be subtracted from the combined
solutions without losing the desired model-independence.

It therefore behooves us to consider methods for full reconstruction of the event. If the decay
proceeds by emitting several visible particles in a cascade of particles with known mass down to the
LSP/LKP, then we may overconstrain the decay, allowing for full reconstruction. In particular, if the
pair-produced particles decay to the LSP through an intermediate state, then there would be 6 mass
constraints on the system. With only 8 unknown quantities and 4 measured values, the false solution is
no longer present. Unfortunately, all such decays considered by the authors so far have too low a cross
section to provide useful spin measurements.

However, such lengthy decay chains raises the possibility of applying this method to the LHC.
At a hadron collider the center-of-mass energy and frame of reference are unknown for a particular
parton-parton level event. Thus, only 2 measured quantities may be obtained in the event: the compo-
nents of missing transverse momentum /pT . With a multi-step decay we obtain 6 mass constraints and,
combining these with the measured /pT we can solve the system of 8 missing momentum components up
to the two-fold ambiguity. Additionally, the reconstruction algorithm can be used in a modified form [38]
to measure the masses in the decay chain as a necessary preliminary step to determining the azimuthal
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angles. As the cross section for producing TeV-scale particles with color charge at the LHC is very large
(e.g., ∼ 1 pb for g̃ or q̃ pair production [49]), it seems likely that we may obtain enough statistics in such
a case to at least measure the spin of scalar particles, if not those of spin 1 or 1/2. This may possibly
allow discrimination between the gluino and the KK gluon.

Note that the method we proposed can be used and tested already in the Tevatron top-quark
sample. The interference between the two helicity states of the top quark should give rise to cosφ
dependence. For the lepton+jet mode, one can fully reconstruct the event without a two-fold ambiguity,
but this suffers from W+multi-jet background and the less than stellar jet energy resolution. The purely
leptonic mode has two-fold ambiguity but less background and better momentum resolution. Run-II
should already have enough statistics to attempt the study of azimuthal distributions, giving the first
direct experimental hint on the spin-1/2 nature of the top quark.

3.5 Reconstruction

The two charged leptons in the events shown in Fig. 3.1 have momenta p1 and p2, respectively.
We define the perpendicular momentum in the event ~p⊥ = ~p1 × ~p2. We refer to the pair-produced
unstable particles as A (for µ−1R or µ̃−R) and B (µ+

1R or µ̃+
R). The missing 4-momentum from the decay of

A is /p1
, while /p2

is the missing momentum from the decay of B. Both the particles escaping the detector
have mass m, which is assumed to be known.

Since the pair-produced particles A and B (with mass M ) are back to back, it suffices to solve
for pA, as ~pA = −~pB . The final-state leptons are effectively massless, so p2

1 = p2
2 = 0. For the massive

particles, we have

p2
A = p2

B = M2 (3.7)

/p
2
1

= /p
2
2

= m2. (3.8)

Finally, since pA (pB) decays into /p1
(/p2

) and p1 (p2),

/p1
= pA − p1

/p2
= pB − p2. (3.9)

At the ILC, the energy of the beams E is known, and for pair production the total energy in
the event must be split equally, so p0

A = p0
B = E. Therefore, using Eqs. (3.7), (3.8), and (3.9) we may

define the following variables:

c1 ≡ ~pA · ~p1 =
1

2
(m2 −M2 + 2Ep0

1) (3.10)

c2 ≡ ~pA · ~p2 = −1

2
(m2 −M2 + 2Ep0

2) (3.11)

b2 ≡ ~pA · ~pA = E2 −M2 (3.12)

aij ≡ ~pi · ~pj (i, j = 1, 2). (3.13)

We can write the momentum ~pA as

~pA = t1~p1 + t2~p2 + y~p⊥. (3.14)
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Using this definition in Eq. (3.10) and (3.11), we find

c1 = t1a11 + t2a12

c2 = t1a12 + t2a22

t1 =
a22c1 − a12c2

a11a22 − a2
12

(3.15)

t2 =
a11c2 − a12c1

a11a22 − a2
12

. (3.16)

Finally, using Eqs. (3.12), (3.15), and (3.16), we have

b2 = (t21a11 + 2t1t2a12 + t22a22) + y|~p⊥|2

y = ±

√
b2 − (t21a11 + 2t1t2a12 + t22a22)

|~p⊥|2
. (3.17)

The ± sign in this last equation is the two-fold ambiguity in the reconstruction.

3.6 Amplitudes

The matrix elements for right-handed smuon pair production from polarized e−e+ beams are

M(e−Le
+
R → µ̃−Rµ̃

+
R) = (−ie2)

√
1−

4m2
µ̃

s2
sin θ×(

1 +
s(−1/2 + s2

W )

c2
W (s− 4m2

Z)

)
(3.18)

M(e−Re
+
L → µ̃−Rµ̃

+
R) = (−ie2)

√
1−

4m2
µ̃

s2
sin θ×(

1 +
s2
W s

c2
W (s− 4m2

Z)

)
.

Here,
√
s is the center-of-mass energy and mµ̃ is the mass of the right-handed smuon. The angle θ is

defined as in Fig. 3.2.
The decaying µ̃± goes to µ±R and a right-handed χ̃0

1. We make the approximation that the
neutralino is primarily bino, and so the decay matrix element is

M(µ̃± → µ±χ̃0
1) = −

√
2g′
√
m2
µ̃ −m2

χ̃, (3.19)

where g′ is the hypercharge gauge coupling g′ = e
cos θw

. Making the narrow-width approximation, the
cross section for the four-body final state is simply the incoherent sum over initial helicities,

dσ =
dΦ4

4

∑
L,R

∣∣∣M(e−L/Re
+
R/L → µ̃−µ̃+)M(µ̃−R → µ−Rχ̃

0
1)×

M(µ̃+
R → µ+

Rχ̃
0
1)
∣∣2 2πδ(sµ+χ̃0

1
−m2

µ̃)×

2πδ(sµ−χ̃0
1
−m2

µ̃)
1

(2mµ̃Γ)2
, (3.20)
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where Γ is the total width of the µ̃1R. Note the lack of dependence on φ1 and φ2, in accordance with
Eq. (3.4).

Pair production for right-handed µ1 requires four helicity combinations for the µ1Rs. Recall
that KK states of the chiral muons are massive particles, and as such they can have either helicity. Thus,
the production matrix elements are

M(e−Le
+
R → µ−1R(↓)µ+

1R(↑)) = (ie2)(1− cos θ)×(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↓)µ+

1R(↑)) = (−ie2)(1 + cos θ)×(
1 +

s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↓)µ+

1R(↓)) = (−ie2)
2mµ1√

s
sin θ(

1 +
s(−1/2 + s2

W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↓)µ+

1R(↓)) = (−ie2)
2mµ1√

s
sin θ(

1 +
s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↑)µ+

1R(↓)) = (−ie2)(1 + cos θ)×(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↑)µ+

1R(↓)) = (ie2)(1− cos θ)×(
1 +

s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↑)µ+

1R(↑)) = (ie2)
2mµ1√

s
sin θ(

1 +
s(−1/2 + s2

W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↑)µ+

1R(↑)) = (ie2)
2mµ1√

s
sin θ(

1 +
s2
W s

c2
W (s−m2

Z)

)
.

(3.21)

Here, ↑ corresponds to right-handed helicity, while ↓ is left-handed.
In the rest frame of the decaying µ1R, there are two possible helicities (↑ and ↓) decaying to

right-handed muons and three possible polarization vectors for the B1 (ελ, λ = ±1, 0). For the decay of
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the µ−1R, the matrix elements are

M(µ−1R(↑)→ µ−RB1(−1)) = 0

M(µ−1R(↑)→ µ−RB1(0)) = g′
mµ1

mB1

√
m2
µ1 −m

2
B1
×

e+iφ1/2 cos
θ1

2

M(µ−1R(↑)→ µ−RB1(+1)) = −
√

2g′
√
m2
µ1 −m

2
B1
×

e+iφ1/2 sin
θ1

2
M(µ−1R(↓)→ µ−RB1(−1)) = 0

M(µ−1R(↓)→ µ−RB1(0)) = g′
mµ1

mB1

√
m2
µ1 −m

2
B1
×

e−iφ1/2 sin
θ1

2

M(µ−1R(↓)→ µ−RB1(+1)) =
√

2g′
√
m2
µ1 −m

2
B1
×

e−iφ1/2 cos
θ1

2
. (3.22)

We see here the dependence on the helicity of the µ1R as in Eq. (3.5). Similar equations hold for the
decay of µ+

1R, with φ1 → φ2 and θ1 → θ2.
The total cross section for the event is the coherent sum over µ1R helicities and the incoherent

sum over the helicities h of the electrons and polarizations λ of the KK photons:

dσ =
dΦ4

4

∑
L,R,λλ′

∣∣∣∣∣∑
hh′

M(e−L/Re
+
R/L → µ−1R(h)µ+

1R(h′))

M(µ−1R(h)→ µ−RB1(λ))M(µ+
1R(h′)→ µ+

RB1(λ′))
∣∣2

2πδ(sµ+B1
−m2

µ1)2πδ(sµ+B1
−m2

µ1)
1

(2mµ1Γ)2
. (3.23)

Once again, Γ is the total width of µ1R and there is an implied momentum-conserving δ function.
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Chapter 4

KK Gravitons at the LHC

The Large Hadron Collider (LHC) at CERN is expected to produce a wealth of discoveries
by probing the TeV scale for the first time. Apart from finally accessing the electroweak symmetry
breaking scale and thus potentially discovering the elusive Higgs boson, we expect to see new physics
that resolves the hierarchy/naturalness problem [6, 7, 8, 9] and perhaps provides an insight into the nature
of dark matter. One exciting possible solution to the hierarchy problem is the existence of warped extra
dimensions [16, 17] which allows for TeV scale gravitational interactions. There are many variations of
the basic theory [50], but one common feature that they share is the existence of heavy Kaluza-Klein
(KK) gravitons.

For the purpose of this chaper we will consider a Randall-Sundrum model with 3+1 dimen-
sional spacetime with one additional warped extra dimension (RS1). The SM fields are confined to a 3+1
dimensional TeV brane and the graviton propagates freely in the 4+1 dimensional bulk. Quantization of
the graviton wave function in the extra dimension, with boundaries between the TeV brane and a Planck
brane, leads to various modes which appear as heavy spin-2 fields in the 3+1 dimensional effective theory
on the TeV brane.

One of the challenges at the LHC will be to determine the spins of newly discovered particles
in order to distinguish various theoretical models. The KK graviton provides a unique signature of
gravitational physics at the TeV scale by virtue of its spin-2 nature. Thus, it becomes crucial to have
techniques to identify its spin. So far, the technique proposed to measure KK graviton spin at the LHC
relies on resonant graviton production followed by decay into a lepton pair [51, 52, 53, 54, 55]. By
looking at the polar angular dependence of the leptons relative to the beam axis, one sees a quartic
behavior of the differential cross section,

dσ

d cos θ
= A cos4 θ +B cos2 θ + C. (4.1)

Recently, a new technique for measuring spin has been proposed. One can look at quantum
interference of helicity states in the azimuthal angular dependence of particle decays to study their spin
in a model-independent way [32, 1]. The goal of this chapter is to apply this technique to study the KK
graviton spin and look at its feasibility at the LHC.
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4.1 Model Parameters

The interaction between the massive KK gravitons and the SM fields in the 4-d effective theory
is given by the Lagrangian [57, 58],

Lint = − 1

Λ

∑
n

G(n)µνTµν . (4.2)

Here, G(n)µν represents the nth KK graviton mode, and Tµν is the stress-energy tensor of the SM La-
grangian given by

Tµν = −ηµνLSM + 2
δLSM
δgµν

∣∣∣∣
gµν=ηµν

. (4.3)

Λ is the coupling, given by
Λ = e−krcπM̄pl, (4.4)

where k is of the order of the Planck scale, rc is the compactification radius of the extra dimension and
M̄pl ≡ Mpl/

√
8π is the reduced Planck scale. Note the absence of KK-parity which allows the heavy

graviton modes to decay into purely SM particles.
The mass of the nth KK-graviton is given by,

mn = xnΛ
k

M̄pl
, (4.5)

where xn are the nth zeros of the J1 Bessel function. While studying the properties of the n = 1 KK
graviton we can thus regard this theory as being dependent on only two parameters, Λ and k, or equiva-
lently the dimensionless coupling c ≡ k

M̄pl
and m1, the mass of the KK graviton of interest.

Naturalness constraints require Λ to be less than about 10 TeV. In order for an effective field
theory description of gravity to be valid we require that the 5-d curvature bound, |R5| < M2

5 , is satisfied,
where M5 is the 5-d Planck scale. By looking at the various theoretical and experimental constraints
on the model parameters [52] (Figure 4.1), we expect c to lie roughly between 0.01 (weakly coupled)
and 0.1 (strongly coupled). We consider m1 in the range of 750 GeV - 2 TeV. The decay width of the
graviton to SM particles can be evaluated by using the expressions given in [58, 53, 59]. In the limit that
decay particle masses can be neglected, the decay width of the graviton is given by

Γn = αmn(xnc)
2, (4.6)

where α is a constant depending upon the number of open decay channels. If one assumes decay to only
SM particles, the ratio Γ1 : m1 is found to be 1.37% for c = 0.1 (assuming a Higgs mass of 120 GeV and
decay into SM particles only). This value is in disagreement with the value 1.43% cited in the literature
[60].

4.2 Using Azimuthal Angular Dependence to Measure Spin

To determine the spin of a particle X , we consider the production process A + B → X + Y ,
whereX further decays toM +N . Here, A andB refer to beam particles or partons, andX is the parent
particle whose spin we wish to measure. M and N are the daughter particles that X decays into.
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Figure 4.1: Experimental and theoretical constraints on the KK graviton parameters in the c − m1

plane. Red curves show experimental constraints and blue curves show theoretical constraints. The
green shaded region shows the allowed parameter space.

This gives us two planes to consider, namely the production plane (defined by the beam di-
rection and the parent momentum) and the decay plane (defined by the parent momentum and either
daughter) (Figure 4.2).

Now consider the daughter M with momentum ~pM . The angle it makes with the parent mo-
mentum ~pX is defined to be θ. Projecting out the component of ~pM parallel to ~pX and looking at the
angle between the residual vector and the production plane we define an angle φ. Thus, φ describes
azimuthal rotations of the vector ~pM in the x − y plane with ~pX taken to be the z-axis. From the figure
it is clear that, equivalently φ can be defined as the angle between the production plane and the decay
plane. More explicitly, we define the two vectors,

~pprod = ~pA × ~pX (4.7)

and
~pdecay = ~pX × ~pM . (4.8)

Then
cosφ = p̂prod × p̂decay, (4.9)

where p̂ denotes the normalized vectors.
In the limit of the narrow-width approximation, the amplitude can be split into Mprod and

Mdecay,
Mprod = 〈X,Y |Tprod|A,B〉 (4.10)
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Figure 4.2: Production and decay planes of the process A + B → X + Y → M + N . The angle φ is
defined as the azimuthal angle between ~pX and ~pM , or equivalently the angle between the production
and decay planes.

Mdecay(φ) = 〈M,N, φ|Tdecay|X〉, (4.11)

where we have explicitly shown the φ dependence of the the final state and decay amplitude. We also
have

Mdecay(φ) = 〈M,N(φ = 0)|e+iJzφTdecay|X〉, (4.12)

where Jz generates rotations about the ~pX direction. We can now think of the rotation operator as acting
on the interaction T -matrix plus ket, rather than on the bra. Assuming Tdecay is rotationally invariant,
we only need to consider rotations of the particle X about its own momentum axis. In this case,

Jz = ~J · p̂ = (~s+ ~r × ~p) · p̂ = ~s · p̂ = h. (4.13)

Thus, rotations about the momentum axis of a given helicity state, h for X only produce a
phase e+ihφ. So,

Mdecay(φ) = e+ihφMdecay(φ = 0). (4.14)

Thus, allowing for production over all possible helicity states of X we must sum coherently over all
possible amplitudes, and the differential cross section takes the form

dσ

dφ
∝

∣∣∣∣∣∑
h

Mprode
+ihφMdecay(φ = 0),

∣∣∣∣∣
2

(4.15)

where h runs from −s to +s and X has spin s. From this it is clear that, if we look at the differen-
tial distribution dσ/dφ, interference between various helicity states is responsible for a non-trivial φ
dependence,

dσ

dφ
= A0 +A1 cos (φ) +A2 cos (2φ) + ....+A2s cos (2sφ). (4.16)

Note the absence of sin (nφ) modes, which would be present in the case of CP violating processes.
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The SM has no particles with spin greater than 1 and so the largest mode from the SM would
only be cos (2φ), corresponding to X being a gauge boson. We can now see the unique signature that
the KK graviton will produce, namely a cos (4φ) mode.

Also, we note that this result is valid in any reference frame, but the size of the coefficients Ai
will be different in different reference frames. To maximize this unique signature for the KK graviton,
we need to choose a reference frame in which A4/A0 has a large value.

4.3 Signal and Background

We assume that the mass of the graviton will be well measured using resonant graviton pro-
duction through the process pp→ G→ l+l− [51, 52].

The process we are considering is pp→ G + jet followed by G→ l+ l−, where l are muons
or electrons. The dominant parton level subprocess comes from gg → Gg with subdominant q(q̄) g →
G q(q̄) and the crossed channel q q̄ → G g. Here G represents the graviton, g represents gluons, and q
represents the various quarks.

The SM background comes from the subdominant channels with G replaced by an off-shell
Z, γ. This is the exact analog of Drell-Yan background in resonant graviton production. Cutting on
the invariant mass of the lepton pair in a mass window around the graviton mass gets rid of most of the
background. The SM background consists of spin-1 states and can not give any contribution to A4. At
most it can affect the value of A0 and dilute the value of A4/A0.

4.4 Calculating the Differential Cross Section

4.4.1 Zero Rapidity Frame

The dilepton + jet events that we are looking for are fully reconstructible at the LHC. The key
reason for this is that we have a signature with no missing energy-momentum which in turn is a direct
consequence of the absence of KK parity. The graviton 4-momenta should have minor errors compared
to the jet reconstruction since it is reconstructed from the dilepton 4-momenta. As previously mentioned,
the size of the nonzero coefficients Ai are frame dependent, and so we must choose a frame in which
the normalized coefficient S4 ≡ |A4/A0| is large. It was found that in the center-of-mass frame of the
partonic processes, S4 was larger than in the lab frame. However, transforming from the lab frame to
the center-of-mass frame would have an error dependent on the error of the jet reconstruction. To avoid
this error and still make an improvement in the signal, we studied S4 in the zero-rapidity frame of the
graviton, i.e., the frame where the graviton is purely transverse to the beam axis (Figure 4.3). The reason
for this is that the boost factor can be calculated from just the graviton momentum in the lab frame, which
is well reconstructed from the leptons.

4.4.2 Cuts

The first set of cuts used included a pseudo-rapidity (|η| < 2.5) cut and a pT > 20 GeV cut for
the jet. The second set of cuts was a mass-window cut on the invariant mass distribution of the lepton
pair. This gets rid of a large portion of the SM background. The size of the window was determined
by detector resolution at ATLAS [63, 64] for an e+e− pair. The third set of cuts involved rapidity cuts
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Figure 4.3: Boost from the center-of-mass or laboratory frame to the zero-rapidity frame

(|η| < 2.6) on each of the leptons with a requirement that pT > 10 GeV for either one of the leptons and

pT > 20 GeV for the other. An isolation cut, ∆r ≡
√

(∆η)2 + ∆φ2 > 0.7, was imposed between the
lepton and the jet. However, the third set of cuts affects the angular distribution of the leptons and can
create false cosine modes in the differential distribution.

To solve this problem one imposes “rotationally invariant cuts,” first introduced in [56]. Thus,
it is not sufficient for the observed lepton to simply pass these cuts; the leptons are rotated around the
graviton momentum axis in small increments and at each step it is checked that the lepton passes the
cuts. The added complication is that the rotations must be made in the zero-rapidity frame to preserve
rotational invariance in that frame (Figure 4.4). So, the procedure is as follows:

1. First, reconstruct the event completely using the dilepton and jet signals.

2. Calculate the boost factor to take us from the lab frame to the zero-rapidity frame of the graviton.

3. Boost all momenta to the zero-rapidity frame. Rotate the leptons about the graviton momentum
direction by a small angle, say 1◦.

4. Reboost the new lepton and jet momenta to the lab frame. Check if they pass the cuts; if they
don’t, throw out the event.

5. If they do pass the cuts go back to step 3.

6. Repeat this procedure until we have made a full 360◦ rotation of the lepton momenta about the
graviton momentum axis in the zero-rapidity frame.

This procedure ensures that the cuts do not affect the azimuthal angular distribution in the
zero-rapidity frame.

4.4.3 Simulations

We used HELAS [34] with spin-2 particles [65] to calculate the helicity amplitudes for the
graviton scattering process. LHApdf [66] was used to fold in the parton distribution functions for the
protons. We used the pdf set CTEQ6L [78]. An adaptive Monte-Carlo package, BASES [35], was used
to perform the integration over phase space and produce the differential cross section dσ/dφ.
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Figure 4.4: The leptons are rotated about the graviton momentum axis in the zero rapidity frame. The
dilepton + jet momenta must be reboosted to the lab frame at each step to make sure that they pass the
cuts.

4.5 Determining the Coefficients of the Various Cosine Modes

Once we have the binned distribution dσ/dφ with 2n bins (For the purposes of calculation in
this chapter we used 50 bins), we try to fit coefficients of the form

xi ≡
1

Binsize

∫ 2πi
2n

2π(i−1)
2n

dσ

dφ
dφ

=
1

2π/2n

∫ 2πi
2n

2π(i−1)
2n

n−1∑
j=0

Aj cos (jφ)

+
n∑
j=1

Bj sin (jφ)

 dφ, (4.17)

where i runs over 0, 1, 2, ..., 2n−1. The integration accounts for the binning process and the 2n coef-
ficients A0, ..., An−1, B1, ...., Bn correspond to the strengths of the various cosine and sine modes that
can be resolved from each other.

Thus, we have a simple linear relationship between the 2n binned values of dσ/dφ (xi)
and the 2n binned-Fourier coefficients (yj) of the form xi = pijyj . Here, pij are either of the form∫ 2πi

2n

2π(i−1)
2n

cos (jφ)dφ or
∫ 2πi

2n

2π(i−1)
2n

sin (jφ)dφ.

Now, we can simply invert this matrix for a given value of n to recover the amplitudes of the
various harmonics. For the dσ/dφ distribution for the graviton we expect to see only the coefficients A0,
..., A4 to be nonzero. Also, since the beams are identical, we expect to see only the even cosine modes.
The odd cosine modes drop out since they flip sign when the beams are switched (φ→ π − φ).
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Figure 4.5: Differential distribution (dσdφ ) for m1 = 1 TeV and c = 0.05. A strong cos (2φ) mode can be
seen but there is also a cos (4φ) component. The theoretical curve (produced from simulations) is shown
in green. The red dots indicate the binned values, with error bars corresponding to Gaussian errors for a
luminosity of 500 fb−1.

4.6 Results and Discussion

Simulations were done for the process pp → e+e−j at 7 TeV beam energy using a dilepton
invariant mass window cut around the graviton mass. Figure 4.5 shows the dσ/dφ distribution for a 1
TeV graviton with c = 0.05. Figure 4.6 shows the normalized fitted coefficients. The normalized cosine
coefficients (Si) are shown in the first 25 bins, with the zero mode suppressed. The next 25 bins show the
sine modes. The size of the S4 coefficient is 3.14%. Note the absence of odd cosine modes; this arises
from the fact that we are using identical beams.

To look at the dependence of the signal on graviton mass, simulations were performed for
c = 0.1 and m1 = 750 GeV, 1 TeV, 1.5 TeV, and 2 TeV. The results are summarized in Table 4.1. The

m1 (TeV) ∆m (GeV) σtotal (fb) σbgd (fb) S2 S4

0.75 24.4 871.7 0.39 20.00% 3.50%

1.0 30.7 229.8 0.15 20.48% 3.16%

1.5 42.8 28.7 0.03 20.70% 1.52%

2.0 55.0 5.52 0.01 20.08% 0.80%

Table 4.1: Signal strength S4 ≡ |A4/A0| as a function of the mass of the graviton. c = 0.1 for all entries.
S2 is shown for comparison. The mass window (based on the ATLAS detector resolution for e+e−

invariant mass [63, 64]) cuts out most of the background.
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Figure 4.6: Fitted cosine coefficients of the binned differential cross section shown in Figure 4.5 corre-
sponding to 50 bins. The first 25 modes label the normalized cosine modes, the next 25 show the sine
modes. (The large 0-mode which would be 100% is not shown.) See text for how the error bars in this
plot are calculated using error bars from the binned differential cross section.

total cross section decreases rapidly with graviton mass, as expected. The background is negligible and,
as we will see in the next paragraph, has little effect even if the coupling c is reduced. The main concern
is therefore the decrease in S4 and the low cross section at large values of m1.

The results for a 1 TeV graviton at different values of the coupling c are shown in Table 4.2.
In the absence of cuts the graviton cross section is expected to approximately scale like c2. The SM
background level is 0.15 fb which is ∼ 5% at c = 0.01. The value of S4 is expected to be diluted slightly
by the background because of a corresponding 5% increase in A0. As c is increased, the background as
a percentage of the cross section decreases and S4 is restored to its maximum strength.

c σtotal (fb) S2 S4

0.01 3.27 18.62% 3.05%

0.02 12.51 20.02% 3.15%

0.05 72.75 20.42% 3.14%

0.1 229.8 20.48% 3.16%

Table 4.2: Signal strength S4 ≡ |A4/A0| as a function of the coupling c. All entries are for m1 = 1 TeV.
S2 is shown for comparison. The SM background cross section is 0.15 fb.
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4.7 Error Analysis

As we have seen, the effect of background is small and does not contribute to A4. Its only
effect is to dilute the normalized coefficient S4. Thus, the experimental error will be determined by event

statistics. We assumed Gaussian errors (∆xj = xj

√
Nj
Nj

) in the jth bin assumingNj = Lσ xj∑
xj

events in
each bin for integrated luminosities L of 10, 100, and 500 fb−1. Since the coefficients Ai are determined
from the binned values xj through a simple linear relationship (via the matrix qij = p−1

ij ), it is then
straightforward to work out the errors in the normalized coefficients (∆Si):

∆Si =

√√√√∑
j

(
qij
A0
− Si
A0
q0j

)2

∆x2
j . (4.18)

The first term in the parentheses arises from the simple linear relationship between Ai and xj . The
second term comes from the error associated with the normalization factor A0. The relative errors (∆S4

S4
)

for various integrated luminosities at different points in the parameter space of the model are given in
Table 4.3. A value > 1 for the relative error indicates that statistics would be poor and gives no reason
to doubt S4 being consistent with 0. A value of 0.20 or less indicates at least a 5σ effect, indicating high
likelihood of confirmation of the spin-2 nature of the KK graviton.

m1 (TeV) c 10 fb−1 100 fb−1 500 fb−1

0.75 0.1 0.43 0.14 0.06

1.0 0.01 8.03 2.54 1.14

1.0 0.02 3.97 1.26 0.56

1.0 0.05 1.65 0.52 0.23

1.0 0.1 0.93 0.29 0.13

1.5 0.1 5.42 1.71 0.77

2.0 0.1 23.52 7.44 3.32

Table 4.3: Statistical error ∆S4/S4 for different integrated luminosities for the process pp → e+e−j.
∆S4/S4 < 0.5(0.71) corresponds to a 2σ confirmation of the graviton spin, and ∆S4/S4 < 0.2(0.28)
corresponds to a 5σ confirmation. The values in brackets denote the 2σ and 5σ confidence levels if one
includes µ+µ−j production channels as well.

Alternatively, if one requires only a 95% confidence level (2σ) effect, then a value of 0.5 or less
for ∆S4/S4 should suffice. If we assume information from µ+µ−j statistics in addition to the e+e−j
channel (assuming that detector resolution for the invariant mass is the same for both lepton species), then
we can see a factor 2 improvement in the statistics. This would in turn result in a factor

√
2 drop in the

error. Thus, in this case the parameter space in Table 4.3 for which ∆S4/S4 < 0.71 would correspond
to potential for a 2σ confirmation of the graviton spin, and ∆S4/S4 < 0.28 would correspond to a 5σ
confirmation.
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4.8 Comparison with Resonant Graviton Production Method and Dis-
tinction from Spin-0

Osland et al. [54, 55] consider the resonant graviton production process pp → G → l+l− to
measure the spin of the graviton using the quartic angular dependence of the polar angle of the lepton.
This results in a center-edge asymmetry (ACE) in the differential distribution dσ/d cos θ. Their results
indicate (2σ) identification of the graviton spin for c = 0.01 and 10−1 fb of luminosity for masses up to
1.1 TeV. For c = 0.1 they claim identification up to masses of 2.4 TeV.

The azimuthal angular dependence method that we considered has inherently lower statistics
compared to resonant graviton production because of the extra recoiling jet. Our method suffers from
lower statistics, but given higher luminosities, it can still provide an independent confirmation of the KK
graviton spin for a large region of the expected parameter space of the KK graviton.

The center-edge asymmetry method can distinguish a spin-1 particle (Z ′) from a KK graviton
more readily than it can distinguish it from a spin-0 particle.

Our method proves complementary, since the KK graviton also produces a large cos(2φ) mode
(S2 ≈ 20%) and can thus easily be distinguished from a scalar which would not produce any nonzero
modes. The results for ∆S2/S2 are shown in Table 4.4.

m1 (TeV) c 10 fb−1 100 fb−1 500 fb−1

0.75 0.1 0.07 0.02 0.01

1.0 0.01 1.30 0.41 0.18

1.0 0.02 0.62 0.19 0.09

1.0 0.05 0.25 0.08 0.04

1.0 0.1 0.14 0.04 0.02

1.5 0.1 0.39 0.12 0.06

2.0 0.1 0.93 0.29 0.13

Table 4.4: Statistical error ∆S2/S2 for different integrated luminosities for the process pp → e+e−j.
∆S2/S2 < 0.5(0.71) corresponds to a 2σ distinction from a spin-0 particle, and ∆S2/S2 < 0.2(0.28)
corresponds to a 5σ distinction. The values in brackets denote the 2σ and 5σ confidence levels if one
includes µ+µ−j production channels as well.

Assuming, as before, inclusion of µ+µ− statistics, ∆S2/S2 < 0.71 corresponds to a 2σ dis-
tinction from a spin-0 particle, and ∆S2/S2 < 0.28 corresponds to a 5σ distinction. In regions of the
parameter space of m1, where the SM background is comparable to the cross section of interest (Ta-
ble 4.1), the confidence levels are altered slightly because the off-shell γ and Z, being spin-1, contribute
to the A2 coefficient.

From the table, we can see that even with 10 fb−1 of luminosity, the spin-0 hypothesis can be
ruled out for a large portion of the allowed parameter space. Thus, our method proves complementary
to the approach by Osland et al. by ruling out spin-0 more easily than spin-1. In both methods the
distinction from spin-0 can be made from comparable integrated luminosities.
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4.9 Summary and Conclusion

We studied the process pp → G jet → l+l− jet and looked at the differential distribution
dσ/dφ. The distribution was found to have a cos (4φ) mode, characteristic of a spin-2 particle, with
strength parametrized by S4. The parameter S4 was ∼ 3% for values of m1 below a TeV. As we go
to higher graviton masses the signal drops off, but what is of more concern is the drop in cross cross
section with large m1 or low values of c. Both of these scenarios are unlikely to occur in conjunction of
naturalness constraints (see Figure 4.1).

In conclusion, observing higher cosine modes (> 2) in the differential distribution would be a
clear signal of physics beyond the Standard Model. Observing the cos(4φ) mode at the LHC would be
a strong indicator of gravitational physics at the TeV scale. If the coupling is strong enough, ∼ 0.05 or
greater, and the mass is sufficiently low, ∼ 1 TeV or less, we expect to have a clear signal of the spin-2
nature of the KK graviton at the LHC.

For regions of parameter space with larger masses or lower couplings, the azimuthal angular
dependence of the cross section is still useful in ruling out the spin-0 hypothesis and this can be done for
fairly low luminosities (∼ 10 fb−1) as well.

This method provides an important complementary and independent approach to measuring
the spin of the KK graviton, as compared to the method of using polar angular dependence from resonant
KK-graviton production.
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Chapter 5

Sextet

The Large Hadron Collider (LHC) at CERN will soon provide a great opportunity for exploring
physics at the TeV scale. As a proton-proton collider with a total center-of-mass energy of 14 TeV, the
LHC is truly a Quantum Chromodynamics (QCD) machine. We therefore wish to study color exotics,
since any accessible new physics in the strong interaction sector will appear in the early stages of LHC
operation. Many models of physics beyond the SM naturally require the presence of color exotics, such
as gluinos and squarks in supersymmetric extensions of the SM, KK-gluons and KK-quarks in extra
dimensional models, or the top-prime in Little Higgs or twin Higgs models. All of these are either quark
or gluon partners which belong (respectively) to the fundamental and adjoint representations of the QCD
gauge group SU(3)C respectively. It is natural to consider colored particles in other representations;
in this chapter, we focus on a scalar which is in the sextet(6) representation of SU(3)C . Color sextet
particles have been widely discussed in nuclear physics as diquark condensate states; in the SSC era,
sextet quarks were discussed in [68].

Color sextet scalars are naturally present in partial unification [69], grand unification [70],
and composite models; in some cases they may be present around the weak scale. For instance, in
a supersymmetric Pati-Salam SU(2)R × SU(2)L × SU(4)C model, light color sextet scalars can be
realized around the weak scale, even though the scale of SU(2)R × SU(4)C symmetry breaking is
around 1010 GeV due to the existence of accidental symmetries, with the masses of color sextet Higgs
arising only through high-dimension operators [71, 72]. In this case, the introduction of a color sextet
Higgs will not lead to proton decay but only to neutron-antineutron (n − n̄) oscillation, and is fully
compatible with present limits [71, 72]. In a similar framework, light color sextet scalars also help in
post-sphaleron baryogenesis [74]. In this chapter, however, we will take a purely phenomenological
approach toward the sextet scalar without assuming any model a priori.

Among all the color exotics, the color sextet scalar is unique in its coupling to quarks. In group
theory language, the color sextet lies in 3⊗ 3 = 6⊕ 3̄ as a symmetric second rank tensor under SU(3)C .
The Lorentz structure for this scalar coupling to quarks is given by ψTC−1ψφ, where ψ is a Dirac spinor
and φ is the scalar. Under the SM gauge group SU(3)C × SU(2)L × U(1)Y , the sextet scalar can be
∆6, a SU(2)L adjoint (6, 3, 1/3); Φ6, a SU(2)L singlet (6, 1, 4/3); φ6, a SU(2)L singlet (6, 1,−2/3);
or δ6, a SU(2)L singlet (6, 1,+1/3). The color sextet scalars are also charged under the global baryon
symmetry U(1)B and the electromagnetic symmetry U(1)EM. To avoid breaking U(1)EM, these scalar
fields should not develop a nonzero vacuum expectation value. This condition removes any possibility
of n− n̄ oscillation in the minimal model involving color sextet scalars. We may write down the flavor-
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independent Lagrangian of such a minimal model by only considering SM gauge invariants and keeping
U(1)EM unbroken,

L = Tr[(Dµ∆6)†(Dµ∆6)]−M2
∆Tr[∆†6∆6] + f∆Q

T
LC
−1τ2∆†6QL

+ (DµΦ6)†(DµΦ6)−M2
ΦΦ†6Φ6 + fΦu

T
RC
−1uRΦ†6

+ (Dµφ6)†(Dµφ6)−M2
φφ6

†φ6 + fφd
T
RC
−1dRφ

†
6

+ (Dµδ6)†(Dµδ6)−M2
δ6δ6

†δ6 + fδd
T
RC
−1uRδ

†
6

− λ∆(Tr[∆†6∆6])2 − λΦ(Φ†6Φ6)2 − λφ(φ6
†φ6)2 − λδ(δ6

†δ6)2

− λ′∆Tr[∆†6∆6∆†6∆6]− Tr[∆†6∆6](λ1Φ6
†Φ6 + λ2φ6

†φ6 + λ3δ6
†δ6)

− λ4Φ6
†Φ6φ6

†φ6 − λ5Φ6
†Φ6δ6

†δ6 − λ6φ6
†φ6δ6

†δ6 , (5.1)

where the QCD covariant derivative is defined asDµ = ∂µ− igsGaµT ar , and the T ar are the representation
matrices for the sextet; M2

i , λi, and fi are all positive-definite model parameters.
If we consider the SU(2)L adjoint sextet scalar ∆6, there will be three physical sextet scalar

states that couple to up-type quark pairs, down-type quark pairs, and up-down-type quark pairs. When
the sextet scalar decays into light quark states, the existing search strategies for massive octet scalars or
vectors [75] may be employed. ∆6, Φ6, and δ6 may all contribute to the single top plus jet signal and
tt̄+Nj signal from pair production. Here we consider the scenario in which a color sextet scalar decays
into a top-quark pair so that one can use the leptons from the top quark decay to determine the features
of the sextet. The signature that contains multi-top final states has been discussed in the context of many
new physics models as resonance decaying into top quarks or top composite[72, 73]. To illustrate this and
simplify our search, our study will focus on the color sextet SU(2) singlet scalar Φ6 that only couples to
right-handed up-type quarks.

5.1 Decay of the Color Sextet Scalar

The decay of the Φ6 depends on its mass, MΦ6 , and its couplings to quarks, fij (i, j = u, c, t).
To illustrate our reconstruction algorithm in the discussion of discovery, we consider the case where
MΦ6 > 350 GeV and the Φ6 decays into two onshell top quarks; other mass ranges are discussed in the
conclusion section. Above threshold, the general expression for the decay partial widths of the sextet
scalar are

Γii =
3

16π
|fii|2MΦ6λ

1/2(1, r2
i , r

2
i )(1− 4r2

i )

Γij =
3

8π
|fij |2MΦ6λ

1/2(1, r2
i , r

2
j )(1− r2

i − r2
j ), (5.2)

where λ(x, y, z) = (x− y − z)2 − 4yz and ri = mi/MΦ6 .
By far, the most stringent bounds on these parameters come from D0 − D̄0 mixing, to which

Φ6 would make a tree-level contribution proportional to f11f22/M
2
Φ6

. The off-diagonal coupling fij will
contribute to flavor violation processes, for instance D → ππ which is proportional to f12f11/M

2
Φ6

. The
current bounds require that

f11f22 . 10−6; f11f12 . 10−2, (5.3)
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Figure 5.1: Decay-width contour for Φ6 in the mass and coupling plane.

for MΦ6 of a few hundred GeV to TeV mass range [72, 76, 77]. One will also expect less stringent
constraints from a one-loop process such as c → uγ. To escape from the bound, for accessible values
of MΦ6 we expect at least one of the couplings, f11 or f22, to be negligible. However, from our purely
phenomenological perspective, we take the decay branching fraction BR(Φ6 → tt) to be a completely
free parameter whose value may be determined at the LHC.

Because the sextet is a colored object, we need to consider the possibility of it hadronizing
before decaying. For example, it may form a tetraquark-like bound state with 3̄3̄, such as Φ6ūū, Φ6ūd̄,
or Φ6d̄d̄, with charges 0, 1, and2, respectively. If the total width is less than ΛQCD ≈ mπ, then the
colored object will hadronize before it decays. To determine the constraint imposed by the possibility
of hadronization, in Fig. 5.1 we plot the contour for which decay width of Φ6 is equal to ΛQCD as a
function of the couplings and the mass. Setting fuu = 0.001, fut = 0.001, and eliminating any coupling
to c, we see the possibility that a large portion of our parameter space will be protected from the risk of
hadronization.

5.2 Production of Φ6

Because it carries color, Φ6 can be produced directly through the QCD strong interaction at the
LHC. The pair of Φ̄6Φ6 is produced from gluon-gluon fusion or qq̄ annihilation:

g(p1) + g(p2)→ Φ̄6(k1) + Φ6(k2)

q(p1) + q̄(p2)→ Φ̄6(k1) + Φ6(k2). (5.4)

The total production cross section depends only on the mass of Φ6, since the vertex is just the strong
coupling, gs, as shown in Eq. (5.6). By comparison, the electroweak production of Φ̄6Φ6 is small
enough to be neglected in our search.
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dR 3 6 8
C(R) 1/2 5/2 3
C2(R) 4/3 10/3 3

Table 5.1: Normalization factor C(R) and quadratic Casimir C2(R) for dR = 3, 6, 8 under SU(3).

From the scalar QCD gauge interaction

(DµΦ6)†(DµΦ6), where Dµ = ∂µ − igsGaµT a, (5.5)

one may obtain the Feynman rules

GaµΦ6Φ̄6 : igs(p1 − p2)µT
a

GaµG
b
νΦ6Φ̄6 : −ig2

sgµν(T aT b + T bT a). (5.6)

The momenta are assigned according to VµS(p1)S̄(p2) and all momenta are outgoing. In group-theory
langauge, this is 6⊗ 6̄ = 27⊕ 8⊕ 1.

The parton-level cross sections for a color sextet pair production are given by

σ(qq̄ → Φ̄6Φ6) = πC(3)C(R)
d8

d2
3

α2
s

3s
β3 =

10π

27s
α2
sβ

3 (5.7)

and

σ(gg → Φ̄6Φ6) = dRC2(R)π
α2
s

6s

1

d2
8

[3β(3− 5β2)− 12C2(R)β(β2 − 2)

+ ln|β + 1

β − 1
|(6C2(R)(β4 − 1)− 9(β2 − 1)2]

=
5π

96s
α2
s[β(89− 55β2) + ln|β + 1

β − 1
|(11β4 + 18β2 − 29)] , (5.8)

where
√
s is the total energy, β =

√
1− 4M2

Φ6
/s, and R is 6 with the normalization factor C and

Casimir C2 satisfying
Tr[T aRT

b
R] = C(R)δab and T aRT

a
R = C2(R)1. (5.9)

We list the values for different representations under SU(3) in Table 5.1.
The QCD production cross sections for the color sextet scalar pair Φ̄6Φ6 at both LHC and

Tevatron are plotted in Fig. 5.2 with factorization scale µF = MΦ6 , renormalization scale µR = mZ ,
and the CTEQ6L [78] parton distribution function (PDF). The matrix elements in our calculations here
and elsewhere are generated by SUSY-Madgraph [79] with modified color factors. For comparison, we
also show the pair-production cross sections for SU(3)C triplet and octet scalars at the LHC. As we can
see, the total production cross section of the sextet scalar is similar to that of the octet scalar, but is about
one order maginitude larger than that of the triplet scalar, which can be understood from values of C and
C2 for different reprensentations in Table 5.1.

As discussed in the introduction, the color sextet scalar Φ6 only couples to the righthanded
up-type quark-quark pair. Thus, we may also have single production of a Φ6 through

uu(cc)→ Φ6. (5.10)



45

10
-3

10
-2

10
-1

1

10

400 600 800 1000 1200 1400

M∆_R (GeV)

σ(
pb

)

10
-3

10
-2

10
-1

1

10

200 300 400 500

Mφ6 (GeV)

σ(
pb

)

Figure 5.2: Production of Φ̄6Φ6 at the LHC and Tevatron with µF = MΦ6 , fixed scale αS(µR) with
µR = mZ . The PDF set CTEQ6L has been used in all calculations.

However, the production cross section is proportional to the coupling |fuu|2 and |fcc|2, and may therefore
be suppressed due to the D0 − D̄0 mixing constraint. Some studies of the single Φ6 production at the
Tevatron and the LHC have been done in Ref. [72].
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5.3 Searching for the Color Sextet Scalar through ttt̄t̄

As discussed in the previous sections, the most distinct feature of the color sextet scalar is its
decay mode Φ6 → tt, which leads to a same-sign dilepton signature in the final state if both top quarks
decay semileptonically, i.e., t → W+b → `+νb. To avoid ambiguities in lepton assignments during
reconstruction, we require the anti-top quark pair from the Φ̄6 to decay hadronically. Hence, the final
state of Φ̄6Φ6 is

pp→ Φ̄6Φ6 → ttt̄t̄→ 4b+ `±`± +��ET +Nj, (5.11)

where ` = e and µ, and N ≥ 4 to allow initial and final state QCD radiation. In our study, however, the
QCD radiation is not included. To get this final state, the decay branching ratio will be

BR = BR2(Φ6 → tt)×
(

2

9

)2

×
(

2

3

)2

× 2, (5.12)

where the situation that the top quark decays hadronically and the anti-top quark decays semileptonically
is also included. Figure 5.2 also clearly shows that a color sextet with MΦ6 ≥ 350 GeV will not be
bounded by Tevatron data as the same-sign dilepton plus multi-jet final state from ttt̄t will be less than
one event for 2 fb−1 luminosity.

To illustrate the kinematic features of the color sextet scalar pair, we consider the decay process
Φ6Φ̄6 → ttt̄t̄ → bbb̄b̄`+`

′+ + 4 jets and take MΦ6 = 600 GeV. The leading and second-leading jet pT
distributions are shown in Fig. 5.3. The typical hardness of these jets is the basis for one of our selection
cuts introduced later in this section. In order simulate the detector effects on the energy-momentum
measurements, we smear the electromagnetic energy and the muon momentum by a Gaussian distribution
whose width is parameterized as [80]

∆E

E
=

acal√
E/GeV

⊕ bcal, acal = 5%, bcal = 0.55%, (5.13)

∆pT
pT

=
atrackpT

TeV
⊕ btrack√

sin θ
, atrack = 15%, btrack = 0.5%. (5.14)

The jet energies are also smeared using the same Gaussian formula as in Eq. (5.13), but with [80]

acal = 100%, bcal = 5%. (5.15)

We first reconstruct the two on-shell hadronically decaying W ’s. Our procedure is to consider
all dijet invariant masses except for those containing one of the two tagged b-jets, since we require b-
tagging in the event selection discussed later, and choose the two closest Mjj combinations, which we
then require to lie within the mass window

|Mjj −mW | < 15GeV. (5.16)

From this, we get the two reconstructedW momenta. We then consider all combinations of reconstructed
pW with all jets and again choose the two closest invariant masses MjW . In this way, we reconstruct the
two hadronically decaying anti-top quarks. The distributions of these reconstructed invariant masses are
shown in Fig. 5.4.
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Figure 5.4: Reconstructed hadronic top pair. The black(red) line represents the first(second) recon-
structed hadronically decaying anti-top quark.

Once we have the reconstructed two anti-top quarks, the reconstruction of the sextet (Φ̄) can
be done using the 6-jet invariant massM6j for the two hadronic anti-top quarks. Although the production
of neutrinos prevents us from fully reconstructing the sextet which produces the leptonic decays, we may
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Figure 5.5: Reconstructed Sextet from m6j and MT .

reconstruct the transverse mass MT for the remaining two jets plus same-sign dilepton and��ET as

MT =

√
(
∑
j

ET +
∑
`

ET +��ET )2 − (
∑

~p(j) +
∑

~p(`) + ��~p)
2
T . (5.17)

As seen in Fig. 5.5, our reconstruction shows a clear resonance in both the M6j and MT distributions.
Finally, since the two anti-top quarks may be fully reconstructed, we can boost back to the rest

frame of the Φ̄6 and study its spin. As shown in Fig. 5.6, the angular distribution of the anti-quark clearly
shows that the Φ̄6 is a scalar. Since there are two missing neutrinos from the decay of two top quarks,
it is challenging to fully reconstruct the top quark’s momentum, and study the spin information of top
quarks, which can be used to check this model since Φ6 only decays into a right-handed top quark pair.
We leave this for future work.

We next consider the backgrounds for our signal. We require at least 2 tagged b-jets plus a
same-sign dilepton and multijet. The irreducible SM background for this final state consists of tt̄W± +
Nj, bb+W±W± +Nj and tt̄tt̄. We estimate the QCD bb+W±W± +Nj background by computing
jjW±W± production. This is only 14 fb, and one expects that the bb + W±W± + Nj is about three
orders of magnitude lower and therefore . 0.1 fb. The SM 4-top tt̄tt̄ is less than 0.1 fb to start with.
The leading background thus comes from tt̄W± with one hadronic top decay and one semileptonic top
decay with the same sign as W± leptonic decay.

We propose the following selection cuts:

• min{pT (j)} > 15 GeV, max{pT (j)} > 100 GeV, next-to-max{pT (j)} > 75 GeV, |η(j) < 3.0|;

• same-sign dilepton with pT (`) > 15 GeV, |η(`) < 2.8|;

• ∆Rjj , ∆Rjl, ∆Rll > 0.4;
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Figure 5.6: Distribution of cos θ between reconstructed top momentum and reconstructed sextet momen-
tum. Dashed(solid) line shows the distribution without(with) smearing effects and kinematic cuts.

• at least two b-tagged jets; and

• ��ET > 25 GeV.

Since the production rate of our signal only depends on the mass MΦ6 and the branching ratio
of Φ6 decay to a top-quark pair, we scan these two parameters to study the discovery potential. We
summarize our results in Fig. 5.7 as the signal production rate for bbb̄b̄ + `±`± +��ET + 4j from Φ6Φ̄6

with SM tt̄W± background included. We use a factor of 25% in both plots in Fig. 5.7 for tagging two
b jets with 50% effeciency to tag each b-jet. The SM background is taken as 1 fb in the significance
contour. As we can see in the left plot of Fig. 5.7, for 100 fb−1 luminosity, the statistical significance
can surpass the 5σ level for MΦ6 . 800GeV if BR(Φ → tt) is about 0.5. Also note that the mass of
the sextet scalar can be determined by reconstructing two hadronically decaying top (or anti-top) quarks,
and the branching ratio of Φ6 → tt can be roughly estimated from the total signal event rate if one can
understand the background sufficiently well. No reconstruction selection has been implemented since we
did not simulate the events with initial state/final state radiation and the reconstruction efficiency is thus
unknown. In principle, we expect that the S/

√
B can be further improved by including reconstruction.

5.4 Conclusion

In this chapter, we discuss the production of a new exotic particle, a color sextet scalar, at
the CERN Large Hadron Collider. Taking a purely phemenological approach, we discuss the discovery
of the color sextet scalar through its decay into a top-top quark pair. The unique feature of same-sign
dilepton plus multijet makes it easy to identify and reconstruct the color sextet scalar object. Due to its
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Figure 5.7: Production rate normalized by BR(Φ6 → tt)2 and significance contour. Dashed(solid) curves
in the left plot represent production before(after) selection cuts.

large QCD production, it is possible to cover the color sextet scalar up to a mass range of 1 TeV for 100
fb−1 integrated luminosity.

In the text, we only consider the case of MΦ6 > 2mt, where Φ6 decays into two on-shell top
quarks. In the case 2MΦ6 < mZ , there is a possiblity of a Z decaying into a sextet pair, since Φ6 carries
a U(1)Y charge, which we expect is highly constrained by LEP data. We also expect to find strong
constraints from Tevatron data. For example, for MΦ6 just above mt + mb threshold, the Φ̄6Φ6 signal
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will directly contribute to the tt̄X sample as the off-shell top decay products are soft.
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Chapter 6

Conclusions

The coming years should be an exciting time in particle physics. With the LHC already up and
running at 7 TeV center-of-mass energy and further expected luminosity and beam-energy upgrades, we
expect to finally probe the electroweak scale. Besides finding the Higgs boson, we expect to discover
a wealth of new particles. Measuring the spins of these new particles will be crucial in determining
the correct underlying theory of BSM physics. We expect that with about 100-500 fb−1 of integrated
luminosity, we will be able to measure spins with good accuracy in cases where there is no missing
energy. However, most new physics scenarios predict signals with missing energy, and they pose a
serious problem, hampering reconstruction and hence spin determination. New reconstruction schemes
which do not sacrifice too much on statistics will likely be needed if we are to probe spins of new particles
in a model-independent way in the most favored scenarios such as SUSY and UED. In the future, the
ILC may be able to probe these scenarios more accurately.

In addition, it should be remembered that the LHC is really the most powerful QCD machine
ever built. It is an ideal testing ground for theories of new strongly interacting particles such as color
sextets. The striking “same-sign dilepton” signature of color sextet decay makes it one of the easiest
exotic particles to observe at the LHC.
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