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Abstract

Monitoring changes of precipitation phase from space is important for understanding the mass 

balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest 

neighbor approach for prognostic detection of precipitation and its phase using passive microwave 

observations from the Global Precipitation Measurement (GPM) satellite. The method uses the 

weighted Euclidean distance metric to search through an a priori database populated with 

coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The 

algorithm performance is evaluated using data from GPM official precipitation products, ground-

based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. 

Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation 

detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm 

demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the 

probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow 

cover, when compared to other surface types. The main reason is found to be related to the ability 

of the algorithm in capturing the signal of increased liquid water content in snowy clouds over 

radiometrically cold snow-covered surfaces.
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1. Introduction

More than two billion people rely on glacier and snowmelt for their water supply (Mankin et 

al. 2015). Snowfall accounts for approximately 30%–90% of the global precipitation over 

mid-to high latitudes (Levizzani et al. 2011) and is the main input to the accumulation 

processes of snowpack and glaciers (Radić et al. 2014). In recent decades, snowpack 

reservoirs have declined and are projected to further decline in the twenty-first century (Karl 

et al. 1993; Mote et al. 2005; Pederson et al. 2011). Thus, global monitoring of snowfall 

from space is key for improved understanding and prediction of ongoing changes in the 

cryosphere and the implications for sustainable management of water and food resources—

especially in mountainous areas of the world.

In the past three decades, significant progress has been made in microwave precipitation 

retrieval as part of the Tropical Rainfall Measuring Mission (TRMM) satellite in 1997 

(Kummerow et al. 1998). The launch of the Global Precipitation Measurement (GPM) core 

satellite (Kidd and Huffman 2011; Hou et al. 2014) has provided a unique opportunity for 

improved understanding of midlatitude precipitation and its phase change beyond what the 

TRMM satellite could offer (Skofronick-Jackson et al. 2017).

The snowfall microwave scattering signal can be captured at frequencies above 80 GHz as 

these high frequencies are more sensitive to ice scattering compared to lower frequencies, 

which largely respond to variations of surface emissivity (Kulie et al. 2010; Skofronick-

Jackson and Johnson 2011; Gong and Wu 2017; You et al. 2017). Among high-frequency 

channels, Bennartz and Bauer (2003) found that frequencies around and above 150 GHz 

provide a strong polarization signal for snowfall detection (Gong and Wu 2017; You et al. 

2017; Panegrossi et al. 2017).

Remote sensing of snowfall is among the most challenging tasks in precipitation retrieval 

algorithms (Bennartz and Bauer 2003; Skofronick-Jackson et al. 2004; Noh et al. 2009; 

Kongoli et al. 2015). Detection of snowfall is challenging because it involves complex and 

dynamic interactions between the snowfall scattering signal and the surface. First, compared 

to rainfall, the snowfall backscattering is much weaker (Grody 1991; Kim et al. 2008; Kulie 

et al. 2010) and depends on more complex microphysical characteristics snowfall such as 

shape and density of snowflakes (Liu 2008; Petty et al. 2010; Skofronick-Jackson and 

Johnson 2011). These characteristics are difficult to accurately parameterize as of today. 

Second, the already weak snowfall scattering signal tends to be masked by the increased 

atmospheric emissivity and liquid water content in precipitating conditions (Liu and Seo 

2013; Wang et al. 2013; Panegrossi et al. 2017). Third, changes in surface emissivity due to 

snow accumulation on the ground can significantly alter the snowfall microwave signal. Dry 

snow cover scatters the upwelling surface radiation at frequencies above 20 GHz (Ulaby and 

Stiles 1980; Hallikainen et al. 1987) similar to the snowfall (Grody 2008). As a result, the 

snowfall microwave signature gradually weakens as snow accumulates on the ground 

(Ebtehaj and Kummerow 2017). The snow-cover scattering evolves with time as a function 

of snow-cover metamorphism. For example, a small amount of liquid water content (e.g., 

2%) significantly reduces the snow-cover scattering and increases its absorptivity (Stiles and 
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Ulaby 1980; Hallikainen et al. 1986,1987). Hence, snow cover has a time-varying effect on 

snowfall upwelling signal.

Physical and empirical approaches have been developed for microwave retrievals of 

snowfall. Skofronick-Jackson et al. (2004) presented a physical method to retrieve snowfall 

during a blizzard over the eastern United States using high-frequency observations from the 

Advanced Microwave Sounding Unit B (AMSU-B) instrument. Kim et al. (2008) simulated 

atmospheric profiles of a blizzard storm with the mesoscale MM5 model and a delta-

Eddington-type radiative transfer (RT) model to produce a storm-scale database for snowfall 

retrieval using AMSU-B observations. Noh et al. (2009) used a large number of snowfall 

profiles from airborne, surface, and satellite radars, as well as an atmospheric RT model (Liu 

1998) to generate a regional database for snowfall retrievals using the AMSU-B data. The 

study used the NESDIS Microwave Land Surface Emissivity Model (Weng et al. 2001) to 

provide surface emissivity as an input to the RT model. The largest retrieval errors were 

found to be over snow-covered surfaces.

Empirical passive microwave snowfall retrieval algorithms largely rely on ancillary data of 

precipitation radar and air temperature profile. A family of these algorithms relies on 

thresholding the brightness temperature at different channels (e.g., Staelin and Chen 2000; 

Chen and Staelin 2003; Kongoli et al. 2003). For example, Kongoli et al. (2015) developed a 

statistical approach that partitions high-frequency brightness temperatures (≥89 GHz) into 

two distinct warm and cold weather regimes by thresholding the brightness temperature at 

53 GHz.

Another class of empirical approaches relies on Bayesian techniques. These techniques use a 

database or a lookup table that relates brightness temperatures of snowing clouds to the radar 

snowfall observations along with the atmospheric temperature profile. As an example, Liu 

and Seo (2013) used matched observations from the CloudSat Profiling Radar (CPR), the 

AMSU-B, and NOAA’s Microwave Humidity Sounder (MHS). More recently, Sims and Liu 

(2015) used the CloudSat radar and multiple ground-based reanalysis data, including near-

surface air temperature, atmospheric moisture, low-level vertical temperature lapse rate, 

surface skin temperature, surface pressure, and land cover types to diagnose precipitation 

phase partitioning. This algorithm is deployed in the GPM operational precipitation 

retrievals (Kummerow et al. 2015). It is worth noting that most of these algorithms use 

reanalysis wet-bulb temperature that exhibits the strongest correlation with the precipitation 

phase (Matsuo et al. 1981; Motoyama 1990; Lundquist et al. 2008; Kienzle 2008; Ye et al. 

2013). However, the reanalysis data are often available at coarse spatial scales with 

significant uncertainty, which hamper the applicability for accurate detection of snowfall 

(Harpold et al. 2017).

In this paper, we examine a prognostic Bayesian k-nearest neighbor (KNN) algorithm that 

strictly relies on observed passive microwave brightness temperatures and does not use any 

online reanalysis data of temperature and moisture profiles. This approach is based on a 

weighted distance metric applied on an a priori database to detect overland precipitation 

phase. The a priori database is populated with combined radar–radiometer observations from 

the GPM satellite. This database is then stratified using data from the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) sensor to account for effects of the background snow-

cover emission. We demonstrate that the algorithm shows improved skill in detection of 

snowfall over snow cover and can predict the likelihood of precipitation phase changes in the 

atmospheric boundary layer, which is not well observed by the GPM radar.

In summary, the presented algorithm isolates a few physically relevant candidate vectors of 

brightness temperatures in the database via a weighted Euclidean distance. Using these 

isolated candidates, the method detects the precipitation and its phase, based on a 

probabilistic decision rule. To test the performance of the proposed approach, the database is 

populated by merging the outputs of both passive (Sims and Liu 2015) and active (Iguchi et 

al. 2017) GPM products using all overland observations from June 2015 to May 2016. We 

compare the results with the ground-based Multi-Radar Multi-Sensor (MRMS) data over the 

conterminous United States (CONUS; Zhang et al. 2011,2016). The outputs of a high-

fidelity mesoscale simulation model are also used for further evaluation of the results over 

high altitudes, during the Olympic Mountains Experiment (OLYMPEX) in 2015 (Houze et 

al. 2017).

The paper is structured as follows. Section 2 briefly describes the database and the phase 

detection method used on the operational GPM radar and radiometer products. Section 3 

elaborates on the effects of snow cover on passive microwave signal of snowfall at different 

frequency channels by analyzing a large dataset of GPM observations. Section 4 explains the 

proposed KNN algorithm followed by the results presented in section 5. Concluding remarks 

and future directions of the research are discussed in section 6.

2. Database description

The Dual-Frequency Precipitation Radar (DPR) aboard the GPM core satellite detects 

precipitation reflectivity at Ka (35 GHz) and Ku band (13.6 GHz). The GPM Microwave 

Imager (GMI) captures the upwelling emission/ scattering signals of the surface and the 

atmosphere at 13 frequency channels ranging from 10 to 183 GHz. On the one hand, 

observations by the DPR and the GMI high-frequency channels (>80 GHz) provide 

information about the microwave signature of precipitation and more specifically about 

snowfall ice scattering. On the other hand, observations by the low-frequency channels (>80 

GHz) add information about the land surface characteristics that leads to improved detection 

skill by the presented algorithm. This study uses level-II near-surface precipitation phase 

retrieval from DPR (active) product (2A-DPR-V04, normal scan), GMI (passive) product 

(2A-GPROF-V04), and the level 1B calibrated GMI brightness temperatures.

In DPR level II, the precipitation phase is determined by the dual-frequency retrieval 

approach that uses the differential attenuation between the Ku-and the Ka-band reflectivity 

values (Iguchi et al. 2012, 2017). The differential attenuation method ingests ancillary 

atmospheric profile data such as air temperature, pressure, and the microphysical 

parameterization of the snow and rain particle size distribution. The DPR surface retrieval is 

inferred from the near-surface reflectivity observations in the clutter-free region. Above 

relatively flat surfaces, the altitude of this region varies from 1 to 2 km from nadir to the 

edge of the DPR swath. The depth of this region is often increased over complex terrains. As 
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a result, any precipitation within the ground clutter region cannot be detected by the radar. 

Moreover, DPR has limited capability to detect light precipitation with a rate below 

~0.2mmh–1 (Hou et al. 2014; Kubota et al. 2014).

Unlike the DPR that provides range-resolved information about the precipitation 

backscattering, the GMI observes an integration of precipitation scattering in a continuum 

that extends from the land surface to the top of the atmosphere. As previously explained, the 

current operational algorithm for passive detection of precipitation phase relies on 

thresholding of the near-surface wet-bulb temperature (Sims and Liu 2015). The wet-bulb 

temperature is processed offline from reanalysis of ancillary data, which often suffer from 

different sources of uncertainty, especially due to its coarse resolution over topographic 

features and structurally complex land surfaces (Li et al. 2008).

For implementing and testing the proposed algorithm, we create a reference product (REF) 

for precipitation occurrence and phase change. This REF product is based solely on the 

occurrence information from the DPR data. For determining the precipitation phase, we use 

the inner-swath phase information from both GPM active and passive products. None of 

these products provides direct phase estimation; however, each has unique information based 

on the atmospheric and surface conditions. Specifically, the REF product determines the 

phase by applying a logical operator to both active and passive products. The radar phase 

retrieval is reported as solid, liquid, and mixed, while the phase probability in GPROF is 

from zero (solid) to one (liquid). We therefore first discretize the GPROF phase probability 

into solid (phase probability less than 0.5) and liquid (phase probability greater than 0.5) to 

match the radar phase. Second, we assign the phase of REF precipitation as solid or liquid 

when both active and passive phases are solid or liquid. Otherwise, the phase is labeled as 

mixed. Therefore, the mixed phase in the REF product refers to those cases where the 

precipitation phases from the passive and active products do not agree and thus should not 

be literally interpreted. By combining the active and passive phase information through this 

logical rule, we implicitly address the limitations of DPR in identifying precipitation phase 

change in the ground clutter region which overlaps with the boundary layer.

It is important to note that the so-called mixed category depends on the threshold (0.5), used 

for discretization of the passive phase. Understanding the impacts of this threshold on the 

retrieval requires a thorough investigation outside the scope of this study. It is worth noting 

that choosing this threshold results in 12% of mixed phase data in the REF product, in which 

10% corresponds to liquid passive phase and solid active phase (scenario 1) and 2% 

otherwise (scenario 2). The first scenario might be related to those conditions where the 

melting layer is in the clutter region. The second scenario may be related to a temperature 

inversion near the surface that causes a refreezing of precipitation.

The MODIS daily snow-cover fraction (M0D10A1; Hall et al. 2002) and land surface skin 

temperature (M0D11A1; Wan 2014) are added to the database. The data are used from the 

MODIS sensor on board the Terra satellite. The MODIS snow cover and surface temperature 

data are available at a resolution of 500 and 1000 m, respectively. We assume that the total 

daytime snow-cover fraction does not change significantly between consecutive overpasses 

of the GPM and Terra satellites within one day. Note that this assumption could give rise to 
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some degree of uncertainty when the data are matched with nighttime precipitation. We 

consider a 5-km DPR pixel as a snow-covered surface when more than 50% of the enclosed 

high-resolution snow fraction data indicates the presence of snow cover on the ground. It is 

also assumed that the temperature does not vary significantly within a 5-km DPR pixel and 

is considered to be the average of the cloud-free MODIS temperature data. As the liquid 

water content of global snowpack is not available, we define dry (wet) snow when the skin 

and air temperature are both below (above) 0°C (Baggi and Schweizer 2009).

To account for atmospheric radiometric signals, we also added the integrated liquid and ice 

water content of the clouds, as well as the integrated water vapor content of the atmospheric 

column from the second version of the Modern-Era Retrospective Analysis for Research and 

Applications (MERRA-2-M2I1NXASM; Gelaro et al. 2017). The MERRA-2 data are 

hourly single-level diagnostic products at 0.625° × 0.5°, which are derived from version 5 of 

the NASA Goddard Earth Observing System (GEOS-5) and the Atmospheric Data 

Assimilation System (ADAS).

To form the database with a uniform spatial sampling density, the GMI brightness 

temperatures and the MERRA-2 reanalysis data are mapped onto the DPR grids and 

scanning time using the spatial nearest neighbor interpolation and temporal linear 

interpolation techniques. The high-resolution MODIS snow-cover data are mapped onto and 

then averaged over the nearest DPR grids. We collect and process two consecutive years of 

data, from June 2014 to May 2016, which lead to a database with more than 5 × 109 

matched data pairs. The data from the first year (June 2014–May 2015) are applied to build 

the database and the data from the second year (June 2015–May 2016) are used to test the 

proposed algorithm.

3. The effect of snow cover on terrestrial snowfall signal

Precipitation spectral signatures and their dependence on snow-cover scattering are studied 

by analyzing the entire dataset (June 2014–May 2016) for three surface types (ground 

without snow cover, wet snow, and dry snow) and for both liquid and solid phases of 

precipitation. Each land–atmospheric class is further divided into five bins of precipitation 

intensity r with equal logarithmic width, log2(ri+1/ri) = 1, centered at 0.5,1, 2, 4, and 8 

mmh–1. We first quantify the effects of snow cover on the precipitation signal over each 

surface type by calculating the mean values of the brightness temperatures for different 

precipitation phases and intensities at frequency bands 10–19, 36–89,166,183 ± 3, and 183 

± 7 GHz (Fig. 1). Then, we demonstrate that the snowfall signal exhibits a weaker scattering 

signal than rainfall and reveal that there exists a nonunique relationship between the 

brightness temperatures and snowfall rate over snow-covered surfaces. Last, we high-light 

why precipitation phase detection could be less uncertain over dry than wet snow cover 

using the presented approach.

The first three columns in Figs. 1a–i focus on the signatures of rainfall over land surfaces 

with no snow cover, wet snow cover, and dry snow cover, where both active and passive 

products indicate liquid phase. The signatures over the ground with no snow cover are 

mainly affected by the upwelling surface emission, the upwelling emission by cloud liquid 
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water path, as well as scattering by the cloud ice particles and large raindrops. As it is well 

understood, due to strong background emission at frequencies 10–36 GHz, the overland 

precipitation microwave signal is difficult to be separated from the surface contributed signal 

in these channels. For example, due to the rainfall emission, the mean brightness 

temperature at 10h GHz only increases by less than 5 K as the intensity increases from 0.5 to 

8mmh–1 (Fig. 1a).

On average, we observe that over all three land surface types, the brightness temperatures 

monotonically decrease for frequencies above 80 GHz as the rainfall intensity increases. 

However, the significance of scattering decreases over snow-covered surfaces (Figs. 1d–i). 

For example, at 89 and 166 GHz, the average decrease of brightness temperature per 1 

mmh–1 increase in rainfall intensity is about 3.0 and 3.6 K (Figs. 1d,g), while these rates are 

around 1.2 and 2.3 K over the dry snow cover (Figs. 1h,i). As expected, the 183 6 3 GHz is 

the least sensitive channel to the changes of rainfall rate. This channel becomes almost 

insensitive to the rainfall intensity when the snow accumulates on the ground and exhibits 

less than 0.2 K of cooling effect per unit rainfall (Fig. 1i).

The last three columns in Figs. 1j–r present brightness temperatures of snowfall over the 

three explained land surface types, where both active and passive products indicate solid 

phase. Similar to the overland rainfall, the emission and the scattering signals become more 

significant from low-to high-frequency channels. Over the surfaces with no snow cover, 

when the snowfall intensity increases from 0.5 to 8mmh–1, the brightness temperatures at 

frequencies ≤ 36 GHz increase ~6K (Fig. 1 j). This warming could be due to increased cloud 

liquid water path (from 75 to 101 gm–2; Figs. 2a,d), water vapor path (from 9.5 to 13.1 kg 

m–2; Figs. 2c,f), and surface temperature (from 273 to 274.2 K; Figs. 2g,i).

As a result of the snowfall scattering, the average brightness temperature at the 166–GHz 

frequency channel (Figs. 1l,o,r) decreases about 14–20 K, which corresponds to a cooling 

rate of 1.75–2.50 K per unit snowfall rate. This observation reaffirms the importance of 166 

GHz for snowfall retrieval compared to the 89-GHz channel (see Bennartz and Bauer 2003; 

Shi et al. 2010; Skofronick-Jackson et al. 2013; You et al. 2017). When the precipitation 

intensity increases from 0.5 to 8mmh–2, the average decrease in brightness temperatures at 

166 (89) GHz is about 18–30 (10–22) K for rainfall and 10–20 (2–9) K for snowfall over all 

examined land surface types. Therefore, the scattering signal weakens when the precipitation 

falls in the solid form; however, this weakening effect is less significant at 166 GHz than 89 

GHz. In particular, over the ground with no snow cover, the signal becomes weaker 

approximately by 30% and 57% at 166 and 89 GHz, respectively, while these rates are 44% 

and 80% over the dry snow cover.

Observations demonstrate that the snowfall scattering signal decreases at frequencies ≥ 89 

GHz when snow begins to accumulate on the ground. An interesting observation is the 

nonmonotonic response of the observed brightness temperatures to the snowfall rate over 

snow-covered surfaces. For example, over the dry snow, the brightness temperatures at ≥89 

GHz increase when the snowfall intensity varies from 2 to 4mmh–2, showing an irregular 

transition from a scattering to an emission regime (Figs. 1q,r). Although less pronounced, a 

similar pattern is observed over the wet snow cover (Figs. 1n,o).
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The possible reasons for this anomaly could be related to an emission signal from either the 

atmosphere or the land surface. The atmospheric-related reasons can be due to the enhanced 

emission from the cloud liquid water and/or the water vapor path; both of them often 

increase with increasing snowfall intensity (Liu and Seo 2013; You et al. 2017; Ebtehaj and 

Kummerow 2017). The land-surface-related causes largely correspond to the increased 

surface temperature and/or changes in the snow-cover physical properties. To find the most 

prominent contributing factor, we analyzed the variations of liquid, ice, and vapor water path 

derived from MERRA-2 data, the surface temperature derived from MODIS, and the mean 

snowfall intensity at different latitudes (Figs. 2a–f).

Over the ground with no snow cover, as the average precipitation intensity increases, the 

liquid and ice water path increase during rainfall and even more significantly during 

snowfall. Specifically, the liquid water path increases from 14% to 26% (Figs. 2a,d) and the 

ice water path increases about 23% and 37% (Figs. 2b,e) for raining and snowing events, 

respectively. Over dry snow cover, there is no evidence of any additional changes either in 

liquid or in ice water path that could cause the observed irregularity. Figure 2f shows that the 

water vapor path increases about 2.5 kg m–2 between snowfall intensities of 2 and 8mmh–1 

over the dry snow cover, which cannot be the main reason for the observed anomaly. The 

reason is that the sensitivity of the 166-GHz channel to variation of water vapor decreases 

significantly for snowfall intensities > 0.8mmh–1 (You et al. 2017). Therefore, we speculate 

that the anomaly could be largely due to a surface effect.

The MODIS surface temperature data (Wan 2014) do not show any significant dependency 

on the rate of snowfall (Fig. 2i). Therefore, we hypothesize that the detected emission could 

be due to either an unknown retrieval uncertainty or, more likely, to the climatology of the 

snowfall and snow cover dynamics. The database shows that light but prolonged snowfall 

intensities (<2 mmh–1) occur at latitudes above >55°N over dry and thicker snow cover (Fig. 

2j). However, high-intensity but less-frequent snowfall is more likely to occur over lower 

latitudes with a thinner snow-cover climatology. In other words, the high snowfall rates 

mostly represent the climatology of lower latitudes with thinner depth of snow cover, less 

volume scattering, and thus stronger surface emission than the thicker snow cover of higher 

latitudes.

The above observations from Figs. 1 and 2 lead us to hypothesize that the distance between 

vectors of brightness temperature encodes a similarity metric that can be used to 

discriminate the precipitation from the background signal. A larger distance indicates larger 

radiometric dissimilarity that could be used for improved detection of the precipitation from 

the background signal. Using the database, we calculate the average distance between the 

vectors of brightness temperatures for the clear sky (no precipitation) and precipitating 

atmosphere over the three land surface types (Fig. 3). In this figure, the shaded areas in light 

blue (orange) represent the detected emission (scattering) signal. The key observation is that 

when the snow-cover scattering increases, the precipitation signal transitions from a 

scattering to an emission regime. The wet snow cover weakens the precipitation scattering as 

it is less emissive than the ground with no snow cover. However, the less emissive dry snow 

reveals the precipitation emission signal.
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For the liquid phase, we can see that the rainfall scattering over the ground with no snow 

cover is manifested by a large distance between the high-frequency channels ≥ 89 GHz, 

while the distance over lower-frequency channels is insignificant (Fig. 3a). This distance 

shrinks over the wet snow cover (Fig. 3b), where the dominant precipitation signal is still 

due to its scattering over high-frequency channels. This shrinkage is largely explained 

because wet snow is not a strong scatterer and thus reduces slightly the surface emission and 

the high-frequency scattering of rainfall. However, when the surface emission is significantly 

reduced over the dry snow (Fig. 3c), the emission of rainfall can be detected as a warming 

signal across almost all frequency channels.

For the solid phase, the distance is relatively large between the background and precipitation 

signals when there is no snow on the ground (Fig. 3d). This distance captures a shift across 

all frequency channels and a reduced polarization signal above 37 GHz. The shift is largely 

due to the differences between the surface temperature of clear sky versus a snowing 

atmosphere, while the reduced polarization is chiefly due to diffused scattering of the 

snowflakes. Similar to the liquid precipitation, this distance shrinks when the ground is 

covered with wet snow, where the shift between the background temperatures almost 

vanishes as the surface temperature increases. We can see that when the snowfall is 

occurring over dry snow, an emission signal is observed, chiefly in response to the increased 

liquid and water vapor paths (see Liu and Seo 2013; You et al. 2015,2016; Ebtehaj and 

Kummerow 2017). The MERRA-2 data indicate increases of ~ 58g m–2 and 4.8 kg m–2 in 

liquid and vapor water paths, respectively, when snowfall occurs. This emission signal 

indirectly indicates the likelihood of precipitation by increasing the brightness temperatures 

rather than a direct physical signature of precipitation. Because of this emission signal, the 

vector of snowfall brightness temperatures becomes dissimilar to the surface emission, 

which could lead to improved snowfall retrievals over dry snow cover—if a proper distance 

metric is used to quantify the dissimilarity.

4. A nested nearest neighbor algorithm for precipitation phase detection

The nearest neighbor matching has been successfully utilized for passive microwave 

retrieval of rainfall using the TRMM data (Ebtehaj et al. 2015, 2016) and for microwave 

mapping of flood inundation using the Special Sensor Microwave Imager/Sounder 

observations (Takbiri et al. 2017). In this section, we introduce a prognostic algorithm that 

relies on a nested k-nearest neighbor matching that finds the best representation of a query 

brightness temperature in the database to detect precipitation occurrence and phase. The 

criterion for matching relies on the hypothesis that similar vectors of brightness temperatures 

represent similar atmospheric profiles. in other words, an observed pixel-level vector of 

brightness temperature for a precipitating atmosphere is more similar to a collection of 

precipitating brightness temperatures in the database than those that refer to a 

nonprecipitating atmosphere. Here, we define the similarity metric by a weighted Euclidean 

distance between the query vector of observed brightness temperatures and those stored in 

the a priori database, described in section 2.

To set the notation, hereafter, the vector of brightness temperatures is denoted by Tb and the 

ancillary data containing information on the precipitation occurrence, phase, and snow cover 

Takbiri et al. Page 9

J Hydrometeorol. Author manuscript; available in PMC 2020 February 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



are represented by the vector r. The database is pruned to contain balanced information over 

two different land surface types ℒ s = 1
2  and four independent atmospheric conditions 

𝒜 a = 1
4 .The land surface types are defined only based on the presence (s = 1) and absence 

(s = 2) of snow cover, while the atmospheric conditions refer to the clear sky (a = 1), liquid 

(a = 2), solid (a = 3), and mixed (a = 4) precipitating atmosphere.

To reduce the algorithmic complexity, we do not differentiate between the dry and wet snow 

cover in the database. Each land class consists of pairs of Tbm, rm m = 1
M , where M = 2 × 

107 are evenly distributed between clear and precipitating sky. Those pairs in the 

precipitating sky are also evenly distributed between a raining A2, mixed A3, and snowing 

A4 atmosphere. It is important to note that the pairs are randomly selected from their parent 

class to avoid any bias toward a specific land or atmospheric class.

In summary, for a given land surface type and a query vector of brightness temperatures y, 

the algorithm relies on a 3-tuple ka, Wa, pa a = 1
3 , where ka is the number of nearest 

neighbors, Wa is the atmospheric weight matrix over each land surface type used in the 

weighted Euclidean distance dm = y − Tbm
TWa y − Tbm , and pa denotes a detection 

probability measure. The weight matrix accounts for the relative importance of the channel 

combinations for detection of precipitation and its phases (Ebtehaj and Kummerow 2017). 

Specifically, given the land surface types Ls, after finding the k-nearest neighbors 

Tbi, ri i = 1
k  of each query vector y, a nested decision-making process is made to detect 

precipitation and its phase based on the probability measure pa.

In the first step, the algorithm uses (k1, W1, p1) to search for the k1-nearest neighbors of

Tbi i = 1
k1  and the corresponding ancillary information in the database. Then, a binary 

decision is made to label the vector y as a precipitating observation, when the number of 

precipitating neighbors np is greater than p1 × k1. For precipitating y, the algorithm identifies 

the precipitation phase by running a new k-nearest neighbor search using (k2, W2, p2) 

through those precipitating neighbors Tb j, r j j = 1

np
 that are found in the first step, where 

k2 < p1 × k1. Then, as explained before, a binary decision is made to label y as liquid 

precipitation, if the number of raining neighbors nl = max(nl, ns, nm) is greater than p2 × k2, 

where nm and ns are the number of mixed and solid precipitation elements among the k2-

nearest brightness temperatures Tbi i = 1
k2 . If those conditions are not satisfied, the algorithm 

continues similarly to find if the phase of y is solid or mixed. An algorithmic flowchart is 

presented in Fig. 4.

To determine the optimal values of the input parameters ka and pa, we compute the receiver 

operating characteristic (ROC) curves (Fig. 5), which characterize the trade-off between the 

hit and false alarm rates. The probability of hit is defined as the fraction of occurred events 

that were correctly detected, while the false alarm rate is a fraction of events that did not 
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occur but were incorrectly detected by the algorithm. Let a represent the number of correctly 

detected events, c the number of missed events, b the number of false detection, and d the 

number of correct rejection. Then, the probabilities of hit and false alarm are defined as a/(a 
+ c) and b/(b + d), respectively. The optimal value of ka is chosen based on the maximum 

area under the ROC curves (Hanley and McNeil 1982), while the best detection probability 

pa is chosen where the curvature of the ROC is maximum.

5. Results and validation

To test the performance of the proposed approach, the terrestrial precipitation and its phase 

are retrieved over the inner swath of the GMI overpasses from June 2015 to May 2016. As 

the phase outputs of the algorithm are discrete values for solid (0), mixed (0.5), and liquid 

(1), the temporal mean values associated with these phases could reveal the overall 

sensitivity of the algorithm to the seasonal variations of surface temperature and emissivity. 

To that end, the phase indices are averaged at orbital levels over the summer and winter for 

the nested KNN algorithm and the standard active and passive GPM products (Fig. 6). To 

quantify statistical agreements between the results of the algorithm and those of the REF 

maps, we calculate the annual probability of detection, false alarm, and the Heidke skill 

score (Doswell et al. 1990) for the presented results in Figs. 7–9. We also compare the 

algorithm outputs with the precipitation phase products of the MRMs on a seasonal basis 

(Figs. 10, 11). Finally, some results are presented at a storm scale to demonstrate the 

detection capabilities of the algorithm for a few precipitation events that are coincidentally 

captured by the DPR and high-resolution ground-based radars (Figs. 12, 13) and simulated 

by the Weather Research and Forecasting (WRF) Model (Fig. 14) during OLYMPEX 

(Houze et al. 2017).

a. Global retrievals

The seasonal average of the quasi-global maps of precipitation phase are presented in Fig. 6, 

for the inner-swath data products by the DPR, GPROF, KNN, and REF. The results are 

shown as a probability continuum of phase transition from the liquid (0) to solid (1), at the 

grid resolution 0.1°. These results are mapped where the precipitation is detected only by the 

DPR for two seasons. The seasons are defined as summer (June–October 2015 and May 

2016) and winter (November 2015–April 2016) of the Northern Hemisphere.

Overall, since the phase of the passive product is dictated by the reanalysis data, the results 

mostly follow the climatology patterns of near-surface wet-bulb temperature and are 

smoother than those of the active product (Figs. 6a–d). The smoothness of the GPROF 

retrievals could also be due to its ability in retrieving the light precipitation with intensities 

below the minimum detectable rate by the DPR (<0.2mmh–1), as the GPROF also uses 

precipitation data from MRMS ground-based radar in its a priori database to increase the 

retrieval sensitivity to snowfall. Comparison of the official passive and active products 

remains outside the scope of this research; however, there seem to be notable differences in 

the spatial patterns of precipitation phases in these products. The difference in the source of 

ancillary data could be a reason for the observed discrepancies, which largely exist over 

mountainous terrains such as the Andes, Tibetan highlands, Rockies, Scandinavian 
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Mountains, Alps, and Zagros Mountains (Figs. 6e,f)—where precipitation is mostly 

triggered by topographic features.

The observed differences are not surprising because of complications in both active and 

passive retrievals due to reduced ice scattering in shallow orographic lifting, heterogeneity of 

surface roughness, and radiometric complexity of high-elevation snow and ice cover (Tian 

and Peters-Lidard 2010). The phase discrepancies also seem to be larger when it comes to 

identifying precipitation phase in the summer. For example, over the Tibetan highlands, the 

active products classify most of the summer precipitation as snowfall while the passive 

product results in more liquid precipitation, especially over the Hengduan Mountains in 

southeast China.

Figures 6i and 6j show the results of the KNN algorithm in summer and winter and compare 

them with the REF map (Figs. 6k,l). Overall, we observe a good agreement between the 

KNN outputs and the REF target precipitation product. The differences are more pronounced 

in the summer than the winter and mostly accumulated over the mountainous and dense 

vegetation regions (Figs. 6k,l). For example, we observe that, in the summer, the detection 

probability of solid and mixed phases are negatively biased (~ –12%) over the Rockies and 

the Andes. However, in winter, this probability is positively biased over small parts of the 

Scandinavian Mountains in northern Europe (~ + 15%). Some of these mountainous biases 

are mainly attributed to the false detection of precipitation occurrence rather than its phase 

(Fig. 7b). Additionally, over the tropical forests, the algorithm falsely detects some mixed 

precipitation phases. Over dense vegetative surfaces the microwave polarization signal 

becomes very weak (Prigent et al. 1997) due to incoherent vegetation scattering. The lack of 

a pronounced polarization signal could be the main reason for the reduced discriminatory 

power of the KNN approach that relies on the Euclidean distance as a similarity metric.

Visual inspection of the global maps shows a good spatial and seasonal agreement between 

the KNN and REF. The proximity of these two products at the global scale is quantified by 

three measures including the Spearman’s correlation ρ, the root-mean-square error (RMSE), 

and the Kullback–Leibler (KL) divergence in Table 1. The KLdivergence 

KL (P Q) = ∑i = 1
n P(i)/Q(i) is a nonsymmetric and nonnegative measure that captures the 

proximity of two probability distributions P and Q and is zero when they are identical. To 

compute the KL divergence, between the probability histograms of the REF (P) and KNN 

outputs (Q), we discretize P and Q with n = 20 probability intervals. The RMSE and KL 

values are normalized between 0 and 1 for interpretation convenience. As is evident, the 

correlation between the KNN and REF products is around 0.89–0.91 in winter and summer, 

indicating that the algorithm is not excessively sensitive to the seasonal changes in land 

surface radiometric properties. The normalized RMSE also remains below 14% in both 

seasons. We see that the KL values slightly increase from winter (0.06) to summer (0.10), 

which indicates that, on average, the KNN method may exhibit improved detection skills 

when the extent of the global snow cover is larger in winter than summer.

To further reveal the error structure of the instantaneous pixel-level retrievals, we used three 

statistical measures including the probability of hit, probability of false alarm, and the 

Heidke skill score HSS = 2(ad – bc)/ [(a + c)(c + d) + (a + b)(b + d)] (Doswell et al. 1990), 
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which ranges from a no skill (– ∞) to a perfect skill (1). Recall that a is the number of 

correctly detected events, c is the number of missed events, b is the number of false 

detection, and d is the number of correct rejection. To have an adequate number of samples, 

these quality measures are calculated using the entire validation period from June 2015 to 

May 2016 (Table 2, Figs. 7, 8).

The annual maps of the probability of hit, false alarm, and HSS score are used to evaluate 

the detection skill of the KNN approach against the DPR as a reference (Fig. 7). The 

probability of hit over the snow-covered regions is relatively high. The reason is that the 

presence of snow on the ground reduces the surface emission, which could lead to better 

detection of the precipitation emission signal (Fig. 3)—similar to radiometrically cold ocean 

surfaces. The low detection rates are mostly over the areas where the DPR has a low 

sampling rate. Thus, lack of skills in these regions could be partly due to lack of samples in 

the database. A high probability of false alarm (~0.2) is seen over some mountainous regions 

such as the Tibetan highlands and the western Rockies. The false detection, mostly in liquid 

phase, gives rise to negative biases in detecting frozen and mixed precipitation (Fig. 6l). 

High (~0.80), medium (~0.66), and low values (~0.50) of HSS are observed over the snow 

cover, tropical forests, and undersampled deserts such as the Sahara, respectively (Fig. 7c).

The conditional probability of hit and false alarm are calculated for liquid, mixed, and solid 

phases (Fig. 8), with respect to the REF product. For separating the errors of the 

precipitation and phase detection, the probabilities are obtained assuming that the 

precipitation is correctly detected by the KNN algorithm. Similar to the precipitation 

detection, the algorithm displays improved phase detection capabilities over snow-covered 

surfaces (Fig. 8). The probability of hit for the liquid, mixed, and the solid phase is mostly 

greater than 0.85 and reaches 0.95 over the high altitudes of North America. However, we 

observe a relatively lower detection rate of around 0.74 for liquid precipitation over the 

tropical and subtropical regions such as the rain forest of Amazonian and central Africa. The 

results show that the low probability of detection for the liquid phase is mostly because the 

algorithm detects some false mixed phase precipitation (Fig. 8d). We speculate that this error 

could be partly attributed to the reduced skill of the algorithm over vegetated surfaces. The 

reduced detection skill of the algorithm could also be partly due to warm rain occurrences 

over the heterogeneous land surface of tropical and subtropical regions where cloud ice 

scattering is not significant.

To understand the reasons for improved retrievals over snow-covered surfaces, the averaged 

values of the probability of hit and false alarm are stratified based on precipitation 

occurrence D1 at liquid D2, mixed D3, and the solid D4 phase over different land surface 

types ℒ s = 1
3 , where s = 1–3 denotes the ground, wet, and dry snow cover (Table 2). The 

probability of precipitation detection increases by almost 11% from the ground to the dry 

snow cover, and 3% from wet to dry snow. An increase of 8%–11% is also observed in the 

probability of hit in detection of solid and liquid phase over dry snow, where the largest 

detection rate of 94% is obtained for the snowfall. The results show that the probability of 

false alarm also increases in detection of precipitation occurrence over snow cover, whereas 

it decreases when it comes to the detection of its phase. Because, once precipitation is 
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detected, due to significant differences between the signatures of rain and snowfall, the 

probability of false alarm is markedly reduced. Table 2 quantifies the dependency of the 

probability of hit and false alarm on the annual percentage of the dry snow cover. For 

precipitation detection, the probability of hit increases by about 10% as the annual 

percentage of dry snow increases from zero to more than 70%, while the probability of false 

alarm increases between 2% and 4%. As is evident, for precipitation phase detection, both 

probabilities show improvements of around 4%.

b. Comparison with the ground-based radar

1) COMPARISON WITH MRMS SYSTEM—To further evaluate the performance of the KNN 

algorithm, we compare its outputs against a precipitation product derived from the MRMs 

system (Zhang et al. 2011, 2016). MRMS mosaics three-dimensional volume scan 

observations from 146 S-band dual-polarization Weather Surveillance Radar-1988 Doppler 

(WSR-88D) and 31 C-band single polarization Canadian radars. The product optimally 

integrates the radar observations with simulations of atmospheric models as well as hourly 

gauge data to produce seamless precipitation rate and phase estimates over the CONUS, at 

spatial resolution of 1 km at every 2 min. The MRMS products are further quality controlled 

and gauge adjusted at finescale following the procedure described in Kirstetter et al. (2012) 

to derive a consistent and high-quality surface precipitation.

To determine the precipitation phase, MRMS uses thresholds on the wet-and dry-bulb 

temperatures. Specifically, the precipitation is labeled as snowfall when the radar reflectivity 

exceeds 5 dBZ, the surface temperature is below 2°C, and the surface wet-bulb temperature 

is below 0°C (Zhang et al. 2016). Thus, the MRMS rain–snow delineation is subject to 

similar uncertainties as in the passive GPM data (Chen et al. 2016). However, the 

uncertainties in detecting precipitation are significantly lower than the satellite data because 

of the higher sensitivity and resolution of the ground-based radar observations, especially 

over landscapes with no significant orographic features (Kirstetter et al. 2012). To compare 

with the outputs of the KNN algorithm, a reference surface precipitation is derived by 

mapping the high-resolution MRMS data onto, and then averaging over, the nearest DPR 

grids (see Kirstetter et al. 2012, 2014).

Figure 10 shows that the spatial variations of the probability of phase change in the KNN 

and MRMS are consistent in the winter and summer seasons. The calculated values of KL 

divergence between KNN and MRMS are 0.27 and 0.15 in winter and summer, respectively. 

The values of other calculated similarity metrics (i.e., ρ and RMSE) are also deteriorated 

from summer to winter (Table 3). These results indicate that even though the KNN shows 

improved wintertime detection of precipitation compared to those in summertime when 

compared with the REF product (Table 3), the intrinsic error between the satellite and 

ground-based data is still much larger than the satellite retrieval error, especially in the 

winter. The zonal mean of the phase transition probabilities (Fig. 11) indicates more 

similarities at lower latitudes (<40°N), where the uncertainty of precipitation phase change 

is lower or remains close to zero. At higher latitudes, KNN generates a higher (lower) 

probability of snowfall occurrence relative to the MRMS in winter (summer). In particular, 
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larger departures occur at latitudes higher than 37°N in winter and 43°N in summer, where 

the ground is usually covered with snow.

Figure 12 shows four different satellite overpasses that capture large storms with 

distinguishable spatial phase change. Overall, the KNN approach is skillful in capturing the 

occurrence and phase of the near-surface precipitation. As is evident, in case of a single-

phase precipitation event (e.g., orbit 12155), the KNN can accurately detect the extent of the 

storm, especially when a large part of the storm is in liquid form. However, when several 

phases coexist within the storm (e.g., orbits 10412, 10796, and 12149), discrepancies arise 

between the satellite active/passive products and the MRMS data. The produced mixed 

phase by the KNN retrieval reflects the uncertainty between the satellite active/passive 

retrievals where a freezing point is likely to occur in the DPR ground clutter zone. For 

example, the storm on the northern shores of Lake Huron (orbit 12149) is well detected in 

terms of its spatial extent. The phase detection in the GPM passive product (GPROF) and the 

MRMS products is consistent since both products rely significantly on the wet-bulb 

temperature data. However, the DPR product differs significantly from other products and 

produces more liquid phase over the southern edge of the storm. As is evident, the KNN 

retrievals capture this discrepancy through a mixed phase detection.

It is surprising that in orbits 10412 and 12149 (Fig. 12), the DPR reports the phase as liquid 

where the GPROF classifies the phase largely as solid since the discrepancy is often in the 

other direction. Based on the atmospheric temperature profile derived from environmental 

ancillary data (2A-DPRENV) used in the active retrieval algorithm, we conclude that the 

there is a temperature inversion when the storm is happening (see Fig. 13). In this case, 

liquid precipitation can refreeze near the surface and may not be captured by the DPR.

2) COMPARISON WITH THE WRF SIMULATIONS DURING OLYMPEX—The MRMS data lack 

coverage over mountainous regions, thus we need a venue with rich ground-based 

observations for further evaluation of the presented approach. There is a wealth of 

orographic precipitation data during the GPM OLYMPEX (Houze et al. 2017) from 1 

November to 23 December 2015. The Olympic Mountains are located in the northwestern 

corner of Washington State, United States (Fig. 14), with a dominant orographic 

precipitation regime. This regime is a result of the abrupt uplift of moisture-laden southwest 

airflow coming from the midlatitude baroclinic storm systems. A few high-elevation snow 

and precipitation gauges were used during the OLYMPEX field campaign. However, the 

coarse temporal resolution of the DPR (i.e., 117 partial overpasses), relative to the 56-day 

duration of OLYMPEX, hamper their use for our purpose. Therefore, we choose the outputs 

of a high-resolution (1.33 km) hourly WRF simulation by the Northwest Modeling 

Consortium over the Olympic Mountains (Mass et al. 2003).

Currier et al. (2017) used the microphysical scheme of WRF to estimate precipitation phase 

and showed that the results are relatively unbiased when compared with the OLYMPEX 

ground-based observations. The data are available from November 2015 to May 2016 and 

contain almost 117 full or partial overlaps with DPR overpasses. First, the DPR retrievals are 

spatially resampled to match the 1.33-km WRF outputs. Then, the hourly outputs of the 

WRF are interpolated to match the scanning time of the DPR. To convert the interpolated 
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WRF outputs to discrete precipitation phase, we follow a simple rule. If the ratio of reported 

snowfall to rainfall intensity is higher (lower) than 0.66 (0.33), then the precipitation is 

considered as solid (liquid) phase; otherwise, it is labeled as mixed.

Figure 14 illustrates the precipitation phase for the DPR, GPROF, KNN, and the WRF for 

three GPM orbits (9722, 9773, 10019). We observe that at high-elevation regions, the KNN 

detects mixed phase over the areas that exhibit phase discrepancies between the GPROF and 

DPR. We see that these KNN results are in a good agreement with the WRF simulations. 

However, it is important to note that the precipitation phase partitioning in the WRF outputs 

is based on cloud microphysical parameters in the atmospheric boundary layer, and thus its 

mixed-phase precipitation is physically different than the defined mixed-phase category in 

KNN retrievals.

We calculate and compare the average phase outputs of the DPR, GPROF, KNN, and WRF 

data for all 117 coincident DPR overpasses. We found that compared with the average phase 

probability of WRF, the KNN precipitation phase is positively biased by about 28% (i.e., 

KNN captures more solid phase than WRF; Fig. 14). However, this bias is about 31% at 

elevations above 800 m, while reduced to about 24% for lower elevations. Additionally, the 

results show that over areas with elevations higher than 800 m, the KNN phase bias is 

significantly smaller compared to both DPR (positive bias ~48%) and GPROF (negative bias 

~56%). At elevations below 800 m, the KNN is less biased than the positively biased DPR 

(~41%), but about 9% more biased than GPROF with a negative bias of ~19%. Overall, 

these results indicate that even though the KNN phase detection is consistent with the 

satellite products, there are notable discrepancies with the WRF simulations over the 

mountainous regions, which need further investigation.

6. Summary and discussion

We proposed a Bayesian algorithm for detection of precipitation occurrence and phase from 

satellite observations, with particular emphasis on snowfall detection over snow cover. The 

algorithm relies on a nested k-nearest neighbor (KNN) search and probabilistic vote rules for 

detection of precipitation occurrence and its phase. The a priori database in the algorithm 

contains collocated GMI brightness temperatures (10.65–183 GHz) and DPR precipitation 

data that were stratified based on snow-cover retrievals from the MODIS sensor on board the 

Terra satellite. The precipitation phase data from the GPM passive and active products were 

combined to provide a reference database for testing the skill of the algorithm.

The results demonstrated that the weighted Euclidean distance can be used as a similarity 

metric for precipitation phase detection in a Bayesian setting, with improved results over 

snow-covered surfaces. We demonstrated that the KNN is able to identify precipitation 

phase with minimal dependency on ancillary data, such as the near-surface air temperature 

and moisture. The results showed that the global probability of hit for detection of solid 

precipitation over dry snow cover could reach up to ~94%. However, the detection skill of 

the algorithm is decreased over regions with dense vegetation due to reduced polarization 

signal. A larger phase discrepancy was found when the KNN results were compared with the 

ground-based precipitation phase, which remains to be addressed in future research.
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It is important to emphasize that we have used V04 GPM official products. We expect to see 

fewer discrepancies between the GPM retrievals and the ground-based phase products in the 

following versions, because the latest version of the GPROF phase detection algorithm 

benefits from the longer GPM radar/radiometer joint records and the new DPR algorithm 

relies on an improved parameterization of ice microphysics.

Linking the algorithm with physical or observational databases that contain additional 

information on snow-cover physical properties (e.g., snow thickness, density, and liquid 

water content) and vegetation density can be a promising line of research. Furthermore, 

exploring the ways to constrain the output of the algorithm to the snowfall retrievals by the 

CloudSat radar may also help to improve the accuracy of snowfall detection. A physically 

realistic definition of mixed-phase precipitation based on cloud microphysics may reduce 

the uncertainties in phase retrievals. Finally, future research is also required to expand and 

evaluate the proposed algorithm with direct comparison of its results with ground-based 

gauge observations.
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Fig. 1. 
Variation of mean brightness temperatures (June 2014–May 2016) in response to changes in 

precipitation intensity for different land–atmosphere classes including the (a)–(i) liquid and 

(j)–(r) solid precipitation phase over the ground (no snow) and wet and dry snow cover. The 

bins are five logarithmically (base 2) spaced intervals with the width of 1 mmh–2 in the log 

space.
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Fig. 2. 
Average variations of the (a),(d) cloud liquid water path (LWP); (b),(e) cloud ice water path 

(IWP); (c),(f) water vapor path (WVP); (g),(i) skin temperature (Ts); and (h),(j) latitudes 

against the precipitation intensity. The ice and liquid water paths are extracted from the 

MERRA-2 data (M2I1NXASM; Gelaro et al. 2017) and the surface temperature data are 

from MODIS (MOD11A1; Wan 2014) from June 2014 until May 2016. The intensity bins 

are the same as Fig. 1.
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Fig. 3. 
Average distance between vectors of mean brightness temperatures in the database from 

June 2014 to May 2016 for a clear sky (r = 0) and a near-surface precipitating atmosphere (r 
> 0) with (a)–(c) liquid and (d)–(f) solid phase overland precipitation with no snow cover, 

wet snow cover, and dry snow cover. The blue and orange shaded areas indicate the cooling 

(scattering) and warming (emission) signals of precipitation. The mean root squared distance 

between the no precipitating (clear sky) and precipitating atmosphere is also presented for 

each land–atmosphere class.
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Fig. 4. 
Algorithm flowchart of the proposed weighted KNN algorithm for detection of precipitation 

occurrence and phase.
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Fig. 5. 
Trade-off curves between the probability of hit pH and false alarm pF calculated with 

different numbers of k-nearest neighbors for detection of the precipitation occurrence and 

phase over (a)–(c) non-snow-covered surfaces and (d)–(f) snow-covered surfaces. The 

optimal values of k and the detection probabilities p are given in each subplot.
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Fig. 6. 
Seasonal probability of the precipitation phase change. The average phase of the (a),(b) 

DPR; (c),(d) GPROF; (g),(h) REF (merged); and (i),(j) KNN algorithm, as well as the 

differences between (e),(f) the DPR and GPROF products and (k),(l) the REF and KNN 

products. The differences are shown where both products detect the precipitation occurrence.
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Fig. 7. 
The mean annual map of the (a) probability of hit, (b) probability of false alarm, and (c) 

HSS obtained by comparing the pixel-level results of the KNN algorithm with the REF 

product for the detection of precipitation occurrence. (d) The map of snow-cover fraction is 

also obtained from the MODIS data (MOD10A1; Hall et al. 2002) coincident with GPM 

inner-swath overpasses from June 2015 to May 2016.
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Fig. 8. 
The mean annual map of the probability of hit and false alarm by the KNN algorithm for the 

detection of the (a),(b) liquid phase; (c),(d) mixed phase; and (e),(f) solid phase. The results 

are obtained for all GPM inner-swath overpasses from June 2015 to May 2016
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Fig. 9. 
Zonal mean values of the probability of precipitation phase change from liquid (p = 0) to 

solid (p = 1) by the KNN, DPR, GPROF, and REF products in (a) winter (November–April) 

and (b) summer (May–October). Zonal mean values of (c) probability of hit and (d) false 

alarm for the detection of the precipitation occurrence and its phase change by comparing 

the KNN results with the REF product.
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Fig. 10. 
Mean seasonal maps of the probability of precipitation phase change from liquid (p = 0) to 

solid (p = 1) for KNN in (a) winter and (b) summer, and for the MRMS in (c) winter and (d) 

summer, from June 2015 to May 2016.
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Fig. 11. 
The zonal mean of the probability of precipitation phase change from liquid (p = 0) to solid 

(p = 1) by the KNN and MRMS products in (a) winter (November–April) and (b) summer 

(May–October), from June 2015 to May 2016.
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Fig. 12. 
Orbital-level precipitation phase detection from the KNN, DPR, GPROF, and MRMS for a 

few GPM overpasses including (top) 10412 on 28 Dec 2015, (top middle) 10796 on 22 Jan 

2016, (bottom middle) 12149 on 18 Apr 2016, and (bottom) 12155 on 18 Apr 2016.
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Fig. 13. 
Inversion of the air temperature at (top) orbit 10412 on 28 Dec 2015 and (bottom) orbit 

12149 on 18 Apr 2016. The data (2A-DPRENV) are presented at four ranges from 0 

(surface) to 1.5 km.
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FIG. 14. 
(top) The digital elevation map (DEM) of the Olympic Mountains and (middle) the 

precipitation phase by the DPR, GPROF,WRF, and KNN for orbits 9722 (14 Nov 2015, first 

row), 9773 (17 Nov 2015, second row), and 10019 (3 Dec 2015, third row). (bottom) 

Average probability of phase for 117 GPM inner-swath overpasses from 1 Nov to 23 Dec 

2015. The last column shows the 2-m airtemperature from the WRF simulations.
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TABLE 1.

Quality metrics obtained by comparing the annual probability of phase transition between the KNN results and 

the reference product (REF). Shown statistics are the normalized root-mean-square difference (RMSD), 

Spearman’s correlation ρ, and the KL divergence.

Metrics ρ RMSD KL (Δp = 0.05)

Winter (November–April) 0.91 0.12 0.06

Summer (May–October) 0.89 0.14 0.10
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TABLE 3.

Quality metrics obtained by comparing the annual probability of phase transition between the KNN retrievals 

and MRMS observations. Shown statistics are the normalized RMSD, Spearman’s correlation ρ, and the KL 

divergence.

Metrics ρ RMSD KL(Δp = 0.05)

Winter (November–April) 0.72 0.29 0.27

Summer (May–October) 0.78 0.21 0.15
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