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With the increasing number of processing cores in many-core chip-

multiprocessors (CMPs) and with the ever-growing number of IPs being integrated in

multiprocessor systems-on-chips (MPSoCs), the need for a scalable high-bandwidth

communication fabric becomes more evident. Networks-on-Chip (NoCs) have

successfully catered to these needs and are fast emerging as the de-facto communication

fabric in both the CMP and MPSoC domains. Both throughput and latency are important

performance metrics in the design of NoCs. This thesis focuses on a throughput-

driven NoC design paradigm where maximizing NoC throughput is the primary design

objective. NoCs that can sustain high throughput are necessary to handle high on-chip

traffic volumes expected in current and future many-core processors with a large number

of processing cores and potentially running a larger number of concurrent threads.
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For bandwidth-hungry applications, an increase in the sustainable throughput often

translates into significant reductions in communication latency during temporary traffic

bursts when the network is driven close to saturation.

The problem of maximizing throughput in NoCs is tackled using two different

approaches. First, novel oblivious and adaptive routing algorithms are proposed for

mesh and torus topologies that maximize throughput by load-balancing traffic over

all network links. The proposed oblivious routing algorithms guarantee optimal

worst-case throughput, which is the throughput sustained under the most adversarial

traffic. Providing such guarantees is important for general-purpose CMPs where target

applications and resulting traffic patterns are not known at design time. Compared

to existing solutions that achieve optimal worst-case throughput, the proposed

algorithms achieve significantly lower latency and higher average-case throughput.

The adaptive routing algorithm proposed for mesh networks improves the accuracy

of congestion estimation over prior solutions by maintaining fine-grained destination-

based congestion estimates that provide greater visibility into the global congestion

state of the network. This results in better routing decisions and more efficient load-

balancing. Next, a new router architecture is proposed that extends NoC throughput by

more efficiently multiplexing packets onto network links. It deviates from the input-

buffered router architecture traditionally used in NoCs. Instead, it practically emulates

an output-buffered router that is known to achieve higher throughput.
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Chapter 1

Introduction

1.1 Networks-on-Chip

Diminishing returns in the performance of uniprocessor architectures have led to

the advent of multi-core chips. With the increasing number of on-chip cores, the need

for a scalable and high-bandwidth communication fabric becomes more evident [4, 11].

Networks-on-chips (NoCs) have successfully catered to these needs and are fast
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Figure 1.2: Network-on-Chip.

emerging as the de facto interconnection fabric for both general-purpose chip multi-

processors (CMPs) and application-specific systems-on-chips (SoCs). Figures 1.1(a)

and 1.1(b) are examples of a 80-core research prototype from Intel [67] and a

commercial 64-core chip for embedded applications from Tilera [3] that employ an on-

chip network for inter-tile communication.

Packet-switched NoCs generally have a router connected to every node, which

in turn are connected to neighboring routers via local on-chip wiring, as shown in

Figure 1.2. Nodes in the network communicate with each other by transmitting

and receiving packets to and from the local router. The routers multiplex several

communicating flows onto a single physical network, making efficient use of the wires

and hence, providing a scalable and high-bandwidth communication fabric.

Power and area are critical constraints while designing on-chip communication

architectures. The distributed nature of the switches (routers) in a NoC sets it apart from

centralized communication fabrics like shared-buses and crossbars whose feasibility

greatly reduce with increasing core counts. Shared-buses suffer from reduction in

throughput (per node) and increasing complexity of the centralized arbiter as the number

of nodes increase. Similarly, the power and area of traditional crossbars increase

quadratically with the number of communicating elements. These scalability issues

with buses and crossbars have led to the broad adoption of NoCs for current and future

many-core CMPs and MPSoCs [3, 23, 27, 63, 67]. Along with the scalability advantage,
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NoCs are also built out of modular and repetitive structures, which enables extensive

design reuse and greatly eases the burden of verification.

1.2 Motivation for throughput-driven NoC design

This thesis focuses on delivering high throughput in NoCs. In this section, we

discuss the motivation behind solving this problem. Multi- and many-core processors

will be commonplace in a variety of computing domains. Some potential applications

include high performance graphics, high-performance computing applications like

scientific simulations and modeling, server consolidation in data-centers and high

throughput packet processing in multi-core network processors. Tera-scale CMP

architectures consisting of several tens of physical cores and hundreds of hardware

threads are highly suitable for high-performance throughput computing. Modern server

workloads exhibit a high degree of thread-level parallelism which can be efficiently

exploited by leveraging Moore’s law to integrate a larger number of simpler cores

within a chip rather than a few complex cores that only target single-thread performance.

Towards this end, Intel recently created an experimental “Single-chip Cloud Computer,"

(SCC) [23] a research microprocessor containing 48 IA32 cores. It incorporates

technologies intended to scale multi-core processors to 100 cores and beyond, and a

2D mesh-based on-chip network is an integral part of the system. With more threads

running concurrently, there will be a corresponding increase in demand for both on-

chip and off-chip memory bandwidth as well as increased competition for other shared

resources within a chip. Hence, in order to keep the threads busy, a high bandwidth on-

chip network connecting the processing cores to shared on-chip resources like caches

and memory controllers is crucial.

Along with general-purpose CMPs, throughput is also critical for GPUs since

achieving high computational throughput is the top priority in most graphics appli-

cations. GPUs are optimized for extremely parallel workloads and unlike current

CMPs, GPUs like Nvidia’s Tesla [42] and Fermi processors [19] already integrate

hundreds of simple processing elements with thousands of parallel threads running

concurrently to exploit data-level parallelism. Such highly parallel systems again
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require a high-bandwidth on-chip interconnection network to access shared resources

like caches and memory controllers within the chip. With the emergence of parallel

programming languages that leverage the computational power of GPUs for general-

purpose computing, the importance of co-operation between threads via inter-thread

communication is also gradually increasing. This is likely to add further bandwidth

strains on the interconnection network.

High-throughput NoCs are also gaining traction in the networking domain [22,

70] with the emergence of multi-core carrier-class network processors that take ad-

vantage of inherent packet-level parallelism in networking applications for feature-

rich packet processing at throughputs of 100Gb/s or higher. Like server and GPU

workloads, network processors also rely on extensive thread-level parallelism to attain

high throughputs by spawning a new thread for processing a packet. These multi-core

processors also need a high-bandwidth interconnection network to connect multiple

RISC processors to other on-chip resources like embedded memory, various hardware

accelerators, off-chip DRAM controllers and high-speed I/O interfaces.

All these application domains call for a throughput-oriented approach to NoC

design to handle the high on-chip traffic volumes expected in current and future

applications. In addition, for such bandwidth-hungry applications, throughput and

latency often go hand in hand. Since NoCs in CMPs connect general-purpose computing

elements, the exact application and the resulting network traffic are not known at design

time. To add to the unpredictability, network traffic is often very bursty in nature. Due to

the unpredictable nature of on-chip traffic, during the course of an application running

on a CMP, there may be temporary traffic bursts that may drive the network close to

saturation. Network saturation is characterized by a steep rise in communication latency

as packet backlogs deplete network buffers at a fast pace and long queueing delays are

incurred at intermediate routers. In many cases, local congestion hot-spots can rapidly

overwhelm large portions of the network, an effect also known as tree saturation [12].

Hence, increasing the throughput at which the network saturates can translate into

significant savings in communication latency, especially during periods of congestion.

High throughput NoCs, therefore, can greatly boost application performance both by

sustaining higher volumes of on-chip traffic and lowering communication delays during
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periods of congestion.

Parallel computing has been around for a while in the form of shared-memory

multiprocessors, multi-chassis supercomputers and clusters [24, 51]. Due to the

high delay overheads associated with off-chip communication as well as packaging

constraints like pin limitations, the processing elements in these parallel infrastructures

are more loosely coupled compared to tightly-coupled processors integrated on the same

die. In contrast to off-chip communication, on-chip communication is cheap since wires

are plentiful within a chip and on-chip latencies are an order of magnitude lower than

off-chip latencies. With significantly lower communication cost, many-core processors

are capable of exploiting parallelism at a much finer granularity through fine-grained

interaction between cores. Hence, the many-core wave is expected to spawn current and

future applications that leverage the processing power of many tightly-coupled cores,

and consequently demand high bandwidth from the on-chip communication fabric.

Although constraints on the number of wires and I/O pins are considerably eased

in on-chip networks compared to their off-chip counterparts, several new constraints

are also introduced that make NoC design starkly different from designing off-chip

networks. Since the routers and wires share the power and area budgets with other

components within the chip, NoCs have to be designed under strict power and area

constraints. Along with high-throughput, fine-grained interaction between cores also

requires low-latency communication. For example, in a multi-threaded workload that

requires synchronization between threads, communication latency directly impacts

application performance. Hence, minimizing the power, area, and latency overheads

are important constraints while maximizing throughput in the throughput-driven NoC

design paradigm.

1.3 Techniques for improving throughput in NoCs

There are several design knobs that can be tuned to improve throughput in NoCs.

1. Network topology: The network topology determines how the nodes are

physically laid out and connected to each other through network links.1 The
1Network links and channels are used interchangeably throughout the thesis.
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topology characterizes important properties like the bisection bandwidth of the

network, which plays an important role in determining overall throughput.

Bisection bandwidth is essentially the minimum number of wires that are cut

if the network is divided into two halves. A higher bisection bandwidth means

higher throughput under uniform traffic. The choice of the best topology for

general-purpose CMPs is a difficult one since the applications running on them

and the resulting traffic patterns are not known at design time. Due to a number of

factors like wire length, ease of physical layout, router complexity etc., general-

purpose network topologies like meshes [3, 23, 63, 67] and rings [27, 52] have

emerged as popular choices for on-chip networks. In this thesis, we assume a

given topology and focus on exploiting the throughput maximization techniques

that are discussed next.

2. Routing algorithm: Given a network topology, the routing algorithm determines

the paths that packets take from the source node to the destination node. The

routing algorithm’s ability to balance network load even under non-uniform traffic

patterns plays a key role in determining throughput. The overall throughput

that can be sustained by the network is generally constrained by the maximum

load on a network channel. A routing algorithm that does a poor job of load-

balancing traffic may cause some channels in the network to saturate at very low

packet injection rates. Once certain channels saturate, long packet backlogs are

created that consume significant network resources (like buffers) before finally

back-pressuring the source nodes and further throttling the injection rate. Hence,

the problem of maximizing throughput is equivalent to minimizing the maximum

channel load on any network channel. This objective is best realized by a routing

algorithm that balances network load uniformly over all channels.

The goal of load-balancing, however, is often at odds with minimizing the

length of the routing paths, which is necessary to ensure low latency. Ideally, we

would like a routing algorithm to just use minimal routing paths2 and maximize
2For regular network topologies like rings, meshes and tori, a path is said to be minimal if its length

in terms of the number of intermediate router hops is equal to the manhattan distance between the source
and destination.
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both worst-case and average-case throughputs. Here, worst-case throughput

represents the throughput that can be sustained under the most adversarial traffic

while average-case throughput signifies the average throughput over a large set

of random traffic patterns. Attaining optimal throughput and minimum delay may

not be always possible with oblivious routing where the routing paths are oblivious

to the network congestion state [46, 53, 59, 61]. When optimal throughput cannot

be attained with minimal routing, non-minimal routing paths need to be used

to trade off latency for throughput. An alternate approach to designing routing

algorithms is to adapt the routing paths to the current traffic conditions by routing

around heavily congested links. Such routing algorithms are categorized as

adaptive routing and employ more complex control hardware to sense and react to

network congestion [14,20,60]. The performance of an adaptive routing algorithm

depends to a great extent on the accuracy of its congestion estimates. In this thesis,

we explore new oblivious and adaptive routing algorithms as means of improving

network throughput.

3. Router architecture: A router’s role lies in efficiently multiplexing packets onto

the output ports/links determined by the routing algorithm. Buffers are generally

used in routers to house incoming flits3 that cannot be immediately forwarded due

to contention. An ideal router is expected to behave like an output-buffered router

where packets are queued at output ports and network links are always utilized

whenever there are flits available to use the links. However, implementing output-

buffering may not be practical for on-chip networks as it requires a switch speedup

equal to the number of router ports or a large P×P2 crossbar, where P is the

number of router ports. Both these techniques have prohibitively high power/area

costs, which is the primary reason why low-cost input-buffered routers [21, 45,

67] are the preferred choice in NoCs. Input-buffered routers, however, cannot

achieve the high levels of link utilization that can be attained using ideal output-

buffered routers due to inefficiencies along their datapath introduced by hardware

constraints. These inefficiencies stem from the fact that sophistication of matching

algorithms that can be implemented in hardware to match input and output ports
3A flit is a fixed-size unit of a packetized message.
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is quite limited under the stringent power and area budgets of on-chip routers.

Therefore, the router architecture plays a central role in determining the efficiency

of routers, which is a measure of how efficiently links in the network are utilized.

The closer a router comes to emulating the behavior of an ideal output-buffered

router, higher is the throughput it can sustain.

In addition to affecting throughput, a router is also the primary source

of communication latency in NoCs, which rely on hop-by-hop transmission of

packets. To meet the aggressive clocking needs of NoCs, routers are pipelined into

one or more stages. A lot of prior research has focused on reducing the number

of pipeline stages in input-buffered routers to minimize latency [21, 36, 45, 48].

Hence, any effort to improve throughput by attacking the bottlenecks along the

datapath of input-buffered routers must also ensure that the number of pipeline

stages and the complexity of each stage is not significantly increased during the

process.

4. Flow control: Flow control determines how resources (buffers) are allocated

to messages as they travel through the network. Unlike internet routers where

packets can be dropped when buffers are full, on-chip networks cannot tolerate

dropping of packets. This is because latency is important in most NoC appli-

cations and there may not exist a message retransmission protocol to recover

from packet losses. To keep the buffering low, buffers are commonly allocated

at the granularity of flits, an alternate name for a flow control unit. Credit-based

flow control or On/Off flow control is generally used to keep track of buffering

available in downstream routers and flits are forwarded from the current router

only when free buffering is available downstream. The physical buffers are

divided into virtual channels (VCs) to provide some degree of buffer isolation

between network flows. Virtual channels improve network throughput and reduce

packet latency by allowing unblocked packets to bypass blocked packets in the

network. VCs provide an illusion of multiple virtual networks that are multiplexed

onto the same physical network.

Some schemes that leverage flow-control to improve throughput include Flit-

Reservation Flow-Control [49], Express Virtual Channels [38] and Vichar [8].
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Flit-reservation Flow-Control sends control flits ahead of data flits and timestamps

these control flits so that buffers are allocated just-in-time when data flits arrive.

Express Virtual Channels are essentially multi-hop VCs that allow packets to

bypass the router pipeline stages at intermediate hops. Vichar extends throughput

in NoCs by supporting a variable number of virtual channels, so that the router can

use as many VCs as the current number of flows to maximize flow-multiplexing.

The work presented in this thesis focuses on using routing algorithms and router

architecture as primary means of improving throughput. Credit-based virtual

channel flow control is assumed at the routers for all our evaluations. Changes to

the router architecture may mandate some additional flow control between router

pipeline stages, which is explored as a part of the router architecture design. Most

of the flow-control related research is orthogonal to the thesis contributions and

it is conceivable that many innovations in the flow-control domain can be used in

conjunction with the ideas proposed in this thesis to further improve throughput.

1.4 Problem statement and contributions

The problem solved in this dissertation can be formally stated as follows:

How can we design NoC routers and routing algorithms that deliver high throughput

while ensuring low latency, low power and low area overheads?

The above problem is solved using two of the four different approaches discussed

in Section 1.3. First, efficient oblivious and adaptive routing algorithms are developed

that load-balance traffic uniformly over all network links. In particular, oblivious routing

algorithms for rings (1D torus), 2D torus, and 3D mesh networks are proposed that are

optimal in terms of worst-case throughput. In addition to their throughput optimality,

the proposed routing algorithms have the lowest latency (measured as the average

number of hops between any pair of network nodes) among all known oblivious routing

algorithms for the respective topologies that are also worst-case throughput optimal. As

an alternative to oblivious routing, a minimal adaptive routing algorithm for 2D mesh
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networks is also proposed, which uses fine-grained destination-based global congestion

estimates to accurately sense and react to network congestion. Second, in the domain of

router architecture design, a novel distributed-shared-buffer (DSB) router architecture

is proposed that deviates from the traditional input-buffered router architecture broadly

adopted by the NoC community and instead, practically emulates output buffering. In

doing so, the DSB router inherits the high-throughput and predictable delay properties

of output-buffered routers.

The main contributions of the dissertation are as follows:

• Worst-Case Throughput Optimal Oblivious Routing on 3D Mesh Networks:
A new oblivious routing algorithm for three (and higher) dimensional mesh

networks called Randomized Partially-Minimal routing (RPM) is proposed,

which provably achieves optimal worst-case throughput for 3D meshes when

the network radix k is even and within a factor of 1/k2 of optimal worst-case

throughput when k is odd. On average latency, as measured in network hops, RPM

does not achieve minimal-length routing because non-minimal routing is used in

one of three dimensions of the 3D mesh network. However, whereas the best

previously known worst-case throughput optimal routing for 3D meshes, Valiant

load-balancing [66], achieves optimal worst-case throughput at the cost of twice-

minimal latency, RPM achieves (near) optimal worst-case throughput with much

lower latency of 1.33 times minimal for symmetric mesh topologies. In practice,

the average latency of RPM is expected to be closer to minimal routing because

3D mesh networks are not expected to be symmetric in 3D chip designs. For

practical asymmetric 3D mesh configurations where the number of device layers

is far fewer than the number of nodes along the edge of a layer, the average latency

of RPM reduces to just a factor of 1.11 times minimal. A variant of RPM, referred

to as Randomized Minimal First (RMF) routing, is proposed to further reduce

the latency overhead of RPM over minimal routing under traffic patterns that are

inherently load-balanced. A novel layer-multiplexed (LM) architecture for 3D

on-chip networks is also presented that exploits the optimality of RPM together

with the short inter-layer wiring delays enabled in 3D technology by replacing

the one-layer-per-hop routing in a 3D mesh with simpler vertical demultiplexing
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and multiplexing structures. The LM architecture has several advantages over a

traditional 3D mesh with regards to latency, power and area. The details of this

work are discussed in Chapter 2.

• Worst-Case Throughput Optimal Oblivious Routing on Torus Networks:
A new weighted random oblivious routing algorithm for one-dimensional rings

(1D torus) referred to as Weighted Random Direction (WRD) is proposed that

offers both optimal worst-case throughput and the minimum average hop count

achievable while remaining worst-case throughput optimal for ring networks.

A new closed-form oblivious routing algorithm based on a weighted random

selection of paths with at most two turns is proposed for 2D torus topologies.

This algorithm, referred to as W2TURN, achieves optimal worst-case throughput

for 2D tori and has a simple deadlock-free implementation because of its 2-

turn paths. In comparison to IVAL [65], the best previously known worst-case

throughput optimal routing algorithm for 2D tori with a closed-form description,

W2TURN achieves lower average hop count and higher average-case throughput.

Both WRD and W2TURN are discussed in Chapter 3.

• Destination-Based Minimal Adaptive Routing on Mesh Networks: A

destination-based adaptive routing algorithm (DAR) for 2D mesh networks is

proposed. The performance of an adaptive routing algorithm is determined

by its ability to accurately estimate congestion in the network. In this regard,

maintaining global congestion state using a separate monitoring network offers

better congestion visibility into distant parts of the network compared to solutions

relying only on local congestion. DAR is a minimal destination-based adaptive

routing strategy (DAR), where every node estimates the delay to every other

node in the network, and routing decisions are based on these fine-grained

per-destination delay estimates. DAR outperforms Regional Congestion

Awareness [20], the best previously known adaptive routing algorithm for 2D

meshes that uses non-local congestion state, both in terms of throughput and

latency. DAR also significantly outperforms adaptive routing schemes based on

local congestion estimates. A scalable version of DAR, referred to as SDAR, is

also proposed to minimize the overheads associated with DAR in large network
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topologies. The design, implementation, and evaluation of DAR and SDAR is

described in Chapter 4.

• Emulating Output-Buffering using a Distributed Shared-Buffer Router Ar-
chitecture: Finally, a new on-chip router design based on a Distributed Shared-

Buffer (DSB) architecture [25, 50] is proposed that aims to emulate an ideal

output-buffered router. The DSB router comes close to matching the ideal

achievable throughput of output-buffered routers without any router speedup

that is needed to naively implement output-buffering. DSB routers significantly

outperform state-of -the-art input buffered routers in terms of the maximum

throughput they can sustain. The proposed architecture introduces innovations

to address the unique constraints of NoCs, including efficient pipelining and

novel flow control. The work also explores practical DSB configurations with the

objective of reducing the power overhead while ensuring negligible performance

degradation. The DSB router architecture is described in Chapter 5.



Chapter 2

Near-Optimal Oblivious Routing for
3D Mesh Networks

2.1 Introduction

There has been considerable discussion in recent years on the benefits of three

dimensional (3D) silicon integration in which multiple device layers are stacked on top

of each other with direct vertical interconnects tunneling through them [6, 15, 29, 40,

72]. 3D integration promises to address many of the key challenges that arise from

the semiconductor industry’s relentless push into the deep nano-scale regime. Recent

advances in 3D technology in the area of heat dissipation and micro-cooling mechanisms

have alleviated thermal viability and reliability concerns regarding stacked device layers.

Among the benefits, 3D integration promises the ability to provide huge amounts of

communication bandwidth between device layers and integrate disparate technologies

in the same chip.

The increasing viability of 3D technology has opened new opportunities for chip

architecture innovations. One direction is in the extension of two-dimensional (2D) tiled

chip-multiprocessor architectures [3, 21, 63, 67] into three dimensions [17, 31]. Many

proposed 2D tiled chip-multiprocessor architectures have relied on a 2D mesh network

topology as the underlying communication fabric. Extending mesh-based tiled chip-

multiprocessor architectures into three dimensions represents a natural progression for

13
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exploiting 3D integration. The focus of this chapter is on providing efficient routing for

such 3D mesh networks.

As in the case of 2D mesh networks, throughput and latency are important

performance metrics in the design of routing algorithms. Ideally, a routing algorithm

should maximize both the worst-case and average-case throughput and minimize the

length of routing paths. Although dimension-ordered routing (DOR) algorithm [59]

achieves minimal-length routing, it suffers from poor worst-case and average-case

throughput because it offers no route diversity. On the other hand, the routing algorithm

proposed by Valiant (VAL) [66] achieves optimal worst-case throughput by load

balancing globally across the entire network. However, it suffers from poor average-

case throughput and long routing paths. ROMM [46] provides another alternative

that achieves minimal routing and good average-case throughput by considering route

diversity in the minimal direction, but it suffers from poor worst-case throughput.

For the case of 2D mesh networks, Seo et al. [53] described a novel routing

algorithm called O1TURN that achieves both minimal-length routing and near-optimal

worst-case throughput. O1TURN simply chooses between two possible minimal-turn

paths (XY and YX) for routing. Despite the simplicity, it was shown that O1TURN

achieves optimal worst-case throughput when the network radix k is even and within a

factor of 1/k2 of optimal worst-case throughput when k is odd. However, as observed

in [53], the near-optimal worst-case throughput property of O1TURN does not extend

to higher dimensions1. Perhaps surprisingly, the worst-case throughput of O1TURN

degrades tremendously for higher dimensional meshes. For example, in the 3D case

for an 8× 8× 8 mesh, the worst-case throughput of O1TURN degrades to just 30%

of optimal. The corresponding worst-case throughput values for DOR and ROMM are

even less at around 13% and 26% of optimal, respectively.

In this chapter, we introduce a new oblivious routing algorithm called Random-

ized Partially-Minimal (RPM) routing that achieves near-optimal worst-case throughput,

higher average-case throughput than existing routing algorithms, and good average

latency. Conceptually, RPM works as follows: In the 3D case, we use Z to denote the

“vertical" dimension and XY to denote the two “horizontal" dimensions. RPM works
1Although technically the 3D version of O1TURN is called “O2TURN", we will simply refer to the

algorithm as O1TURN so that the same name can be applied to all higher dimensional meshes.
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by first routing a packet in the minimal direction to a random intermediate “layer" or

“plane" in the vertical dimension; i.e., it first routes a packet in the minimal direction

to a random intermediate Z position. It then routes the packet on the XY layer using

either minimal XY or YX routing with equal probability. Finally, it routes the packet in

the minimal direction in the Z vertical dimension to its final destination. The entire Z-

XY-Z or Z-YX-Z path makes at most three turns. Effectively, RPM load-balances traffic

uniformly across all k vertical layers and routes traffic minimally in the two horizontal

dimensions2.

Although RPM is worst-case throughput optimal, it is not minimal in terms

of latency since it routes packets non-minimally in one of the three dimensions. For

certain traffic patterns that are inherently load-balanced, the latency of RPM can be

further reduced by preferentially choosing an intermediate routing layer in the minimal

direction, while still ensuring uniform load-balancing across all layers. We propose a

variant of RPM called Randomized Minimal First (RMF) routing that uses destination-

aware intermediate layer selection to preferentially select intermediate layers in the

minimal direction to reduce latency.

Finally, we propose a novel layer-multiplexed (LM) architecture for 3D on-chip

networks that exploits the optimality of RPM together with the short inter-layer wiring

delays enabled in 3D technology by replacing the one-layer-per-hop routing in a 3D

mesh with simpler vertical demultiplexing and multiplexing structures. The adaptation

of RPM routing to the LM architecture, referred to as RPM-LM, can achieve the same

worst-case throughput as RPM on a 3D mesh while reducing latency, power and area.

The main contributions of the chapter are as follows:

• We propose a new routing algorithm for three (and higher) dimensional mesh

networks called RPM which provably achieves optimal worst-case throughput for

3D meshes when the network radix k is even and within a factor of 1/k2 of optimal

worst-case throughput when k is odd.

• RPM also significantly outperforms DOR, ROMM, O1TURN and VAL in

average-case throughput by 90-109%, 45-54%, 28-35%, and 24-52%, respec-
2RPM can be equivalently defined by randomizing on any one dimension and minimally routing on

the remaining two dimensions.
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tively, on different symmetric and asymmetric mesh topologies that were eval-

uated.

• On average latency, as measured in network hops, RPM does not achieve minimal-

length routing because non-minimal routing is used in one of three dimensions.

However, whereas VAL achieves optimal worst-case throughput at the cost of

twice-minimal latency, RPM achieves (near) optimal worst-case throughput with

much lower latency of 1.33 times minimal for symmetric mesh topologies. In

practice, the average latency of RPM is expected to be closer to minimal routing

because 3D mesh networks are not expected to be symmetric in 3D chip designs.

In particular, the number of available device layers is expected to be fewer than

the number of processor tiles that can be placed along an edge of a device layer.

For example, for a four layered 16× 16× 4 mesh3, the average latency of RPM

reduces to just a factor of 1.11 times minimal.

• We propose a variant of RPM called Randomized Minimal First (RMF) routing,

which uses the knowledge of a packet’s destination while load balancing traffic

across vertical layers and intelligently prefers minimal layers over non-minimal

layers. RMF leverages the inherent load-balancing properties of the network

traffic to reduce packet latency. On uniform traffic, the latency of RMF is only 0.4-

2.6% higher than DOR. RMF also retains the worst-case throughput optimality

property of RPM and performs at least as well or better than RPM on a wide

range of traffic patterns.

• Finally, we propose a layer-multiplexed architecture for 3D ICs that takes

advantage of the short inter-layer distances and abundance of vertical wiring in

3D ICs to replace the one-layer-per-hop routing in the vertical dimension with

simpler demultiplexing and multiplexing structures. The LM architecture enables

an efficient implementation of RPM with lower average latency and also reduces

router power and area cost compared to a conventional 3D mesh.
3A 16×16×4 3D tiled chip-multiprocessor design is expected to be viable in the future. Already, a

single-layer 16×16 multi-core design is in commercial use today in highend carrier class routers [70]. It
is a 188-core design with some tiles used for dedicated functions.
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The rest of the chapter is organized as follows: Section 2.2 provides a brief

background on performance metrics. Section 2.3 describes the RPM routing algorithm

and presents analytical results. Section 2.4 discusses how RPM can be efficiently

integrated into a typical on-chip router. Section 2.5 describes the RMF routing

algorithm. Section 2.6 presents the LM architecture and adaptation of RPM routing to

the LM architecture, referred to as RPM-LM. Section 2.7 evaluates the performance

of RPM, RMF, and RPM-LM and also estimates the power and area overheads for

implementing them in on-chip routers. Section 2.8 concludes the chapter.

2.2 Background

In this section, we provide a brief overview of the analytical methods used

to evaluate worst-case and average-case throughput. In particular, we elaborate on

the concept of network capacity and a method to compute worst-case throughput for

oblivious routing algorithms. We then elaborate on a method to compute average-case

throughput. To simplify the discussion on throughput analysis, we ignore flow control

issues and assume single flit packets that can be routed from a node to its adjacent

neighbor in a single cycle.

Network capacity is defined by the maximum channel load γ∗ that a channel

at the bisection of the network needs to sustain under uniformly distributed traffic.

Consider a network bisection that divides a k× k× k network into two parts: one with

k2�k/2� nodes and the other with k2�k/2� nodes. There are a total of k2 channels that

cross each direction of the bisection. To compute the load on the bisection channels, we

equate the number of flits generated under uniform traffic that would cross the bisection

with the number of flits that the bisection can sustain assuming all bisection channels

are equally loaded.

γ∗k2 =
�
k2� k

2�
�
(k2� k

2�)
k3 which implies γ∗ =

� k
2��

k
2�

k

When k is even, the expression simplifies to γ∗ = k/4. When k is odd, the expression
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simplifies to γ∗ = (k2−1)/4k. For any k-ary n-mesh, independent of n,

γ∗ =

�
k
4 k is even
k2−1

4k k is odd
(2.1)

The network capacity is the inverse of γ∗.
The maximum channel load γ(R,Λ) for a routing algorithm R and traffic matrix

Λ is the expected traffic load crossing the most heavily loaded channel under R and Λ.

The worst-case channel load γwc(R) for a routing algorithm R is the heaviest channel

load that can be caused by any admissible traffic, where admissible traffic is defined to

be any doubly sub-stochastic matrix Λ with all row and column sums bounded by 1.

Suppose a network consists of N nodes, a traffic matrix Λ = (λi j) is an N×N matrix

where λi j represents the expected traffic from node i to node j. The traffic matrix Λ is

doubly sub-stochastic and hence admissible if
N

∑
i=1

λi j ≤ 1,∀ j and
N

∑
j=1

λi j ≤ 1,∀i

and it is said to be doubly stochastic if
N

∑
i=1

λi j = 1,∀ j and
N

∑
j=1

λi j = 1,∀i

As shown in [64], an admissible traffic matrix that can cause the worst-case channel

load for a routing algorithm R can be found by solving a derived maximum weighted

matching problem. The worst-case saturation throughput for a routing algorithm R

is the inverse of the worst-case channel load. The normalized worst-case saturation

throughput, Θwc(R), is defined as the worst-case saturation throughput normalized to

the network capacity:

Θwc(R) =
�

γwc(R)
γ∗

�−1
(2.2)

Unless otherwise noted, we will simply refer to Θwc(R) as the worst-case throughput of

R. Using the methodology used in [53, 64], the average-case throughput for a routing

algorithm R can be computed by averaging the throughput over T , a large set of random

traffic patterns:

Θavg(R) =
1
|T | ∑

Λ∈T

�
γ(R,Λ)

γ∗

�−1
(2.3)

For our evaluations, we use |T | = 100,000.
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Figure 2.1: Examples of RPM routing.

2.3 Randomized partially-minimal routing

The idea behind RPM is fairly simple. Conceptually, RPM works by load-

balancing flits uniformly across all k vertical layers along the Z dimension, just like

VAL [66], but only along one dimension. RPM then routes flits on each XY plane using

minimal XY or YX routing with equal probability. Finally, RPM routes flits to their

final destinations along the Z dimension. Figure 2.1 depicts two possible RPM routing

paths. In particular, let (x1,y1,z1) be the source, (x2,y2,z2) be the destination, and ẑ be

the randomly chosen intermediate Z position. The two corresponding Z-XY-Z and Z-

YX-Z routing paths are (x1,y1,z1) → (x1,y1, ẑ) → (x2,y1, ẑ) → (x2,y2, ẑ) → (x2,y2,z2)

and (x1,y1,z1)→ (x1,y1, ẑ)→ (x1,y2, ẑ)→ (x2,y2, ẑ)→ (x2,y2,z2), respectively, with at

most three turns. When x1 = x2 and y1 = y2, the traffic is just uniformly randomized

along the Z dimension. In this case, when ẑ is greater than both z1 and z2, or when ẑ

is less than both z1 and z2, a loop is formed in the path z1 → ẑ → z2. These loops can

be removed online before routing a packet to reduce hop count. When the source and

destination are the same, no routing is necessary. It should be noted that although we

use load-balancing along the Z dimension for this description, RPM can be equivalently

defined by load-balancing uniformly along any one dimension and routing minimally in

the two remaining dimensions.



20

2.3.1 Throughput analysis

In this section, we prove that RPM achieves optimal worst-case throughput when

the network radix is even (k in a k× k× k mesh network) and within a factor of 1/k2

of optimal when k is odd. Since the 1/k2 term diminishes quadratically, the worst-

case throughput of RPM when k is odd rapidly converges to optimal with increasing k.

We prove this near-optimality in three parts. We first prove that for any doubly sub-

stochastic traffic matrix Λ for a k× k× k mesh, RPM’s uniform load-balancing along

the Z vertical dimension will guarantee that the corresponding traffic matrix Λ̂ for each

k× k horizontal plane is also doubly sub-stochastic. We next prove that the worst-

case channel load on each XY plane is bounded by k/2, meaning that the worst-case

channel load on any channel in the X or Y dimension is bounded by k/2. We also prove

that the worst-case channel load for the vertical channels is bounded by k/2. Finally,

using the expression shown in Equation 2.2 for computing the worst-case throughput,

we characterize the near optimal nature of RPM.

Claim 1. Given any 3D doubly sub-stochastic traffic matrix, the 2D traffic that will

traverse any XY plane using RPM will be doubly sub-stochastic.

Proof. It suffices to show that for any doubly stochastic traffic matrix Λ, each corre-

sponding 2D traffic matrix Λ̂ will be doubly stochastic. Let λ [(xs,ys,zs),(xd,yd,zd)] be

the traffic from (xs,ys,zs) to (xd,yd,zd). By definition of doubly stochastic, the traffic

from any source (xs,ys,zs) or to any destination (xd,yd,zd) in Λ must all sum to 1.

k−1

∑
x=0

k−1

∑
y=0

k−1

∑
z=0

λ [(xs,ys,zs),(x,y,z)] = 1 (2.4)

k−1

∑
x=0

k−1

∑
y=0

k−1

∑
z=0

λ [(x,y,z),(xd,yd,zd)] = 1 (2.5)

Let Λ̂ be the 2D traffic matrix for a plane at some z = ẑ, and let λ̂ [(xs,ys),(xd,yd)] be the

traffic between two nodes (xs,ys) and (xd,yd) on this plane. Given the two-phase load

balancing in the Z dimension, we have

λ̂ [(xs,ys),(xd,yd)] =
k−1

∑
zi=0

k−1

∑
z j=0

λ [(xs,ys,zi),(xd,yd,z j)]
k

(2.6)
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For Λ̂ to be doubly stochastic, the row sum from any (xs,ys) or the column sum to any

(xd,yd) in Λ̂ must all be 1. These conditions can be stated as follows:

k−1

∑
x=0

k−1

∑
y=0

λ̂ [(xs,ys),(x,y)] = 1 (2.7)

k−1

∑
x=0

k−1

∑
y=0

λ̂ [(x,y),(xd,yd)] = 1 (2.8)

First substituting Equation 2.6 and then Equation 2.4 into the LHS of Equation 2.7, we

have

k−1

∑
x=0

k−1

∑
y=0

k−1

∑
zi=0

k−1

∑
z j=0

λ [(xs,ys,zi),(x,y,z j)]
k

=
k−1

∑
zi=0

�
k−1

∑
x=0

k−1

∑
y=0

k−1

∑
z j=0

λ [(xs,ys,zi),(x,y,z j)]
k

�

=
k−1

∑
zi=0

1
k

= 1

Similarly, first substituting Equation 2.6 and then 2.5 into the LHS of Equation 2.8, we

have

k−1

∑
x=0

k−1

∑
y=0

k−1

∑
zi=0

k−1

∑
z j=0

λ [(x,y,zi),(xd,yd,z j)]
k

=
k−1

∑
z j=0

�
k−1

∑
x=0

k−1

∑
y=0

k−1

∑
zi=0

λ [(x,y,zi),(xd,yd,z j)]
k

�

=
k−1

∑
z j=0

1
k

= 1

Since all rows and columns in Λ̂ sum to 1, the 2D traffic matrix Λ̂ is doubly stochastic.

This analysis holds for all z ∈ [0,k).

Claim 2. The maximum channel load in a k× k× k mesh network with RPM routing is

k/2.

Proof. By Claim 1, load balancing uniformly in the Z dimension guarantees that the

2D traffic on each XY plane is doubly sub-stochastic. It has already been shown in the

context of 2D meshes that minimal XY and YX routing with equal probability results in
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a maximum channel load of k/2 [53]. Hence, it follows that the worst-case channel load

on any channel in the X or Y dimension using RPM is bounded by k/2. Given the two-

phase load balancing in the Z dimension, the one-dimensional (1D) traffic along any Z

line is twice uniform. For 1D meshes, the maximum channel load for uniform traffic

is k/4 when k is even and (k2− 1)/4k when k is odd. The maximum channel load for

twice uniform is simply 2(k/4) = k/2 when k is even and 2(k2− 1)/4k = (k2− 1)/2k

when k is odd. Since k/2 ≥ (k2−1)/2k, the worst-case channel load is upper bounded

by γwc(RPM) = k/2.

Claim 3. RPM achieves optimal worst-case throughput when k is even and within a

factor of 1/k2 of optimal when k is odd.

Proof. By Claim 2, γwc(RPM) = k/2. As discussed in Section 2.2, γ∗ = k/4 when k is

even. Therefore, using Equation 2.2, we have

Θwc(RPM) =
�

k/2
k/4

�−1
= 0.5

This is optimal since the optimal worst-case throughput has already been shown

previously to be half of the network capacity [12]. When k is odd, γ∗ = (k2− 1)/4k.

Therefore, we have

Θwc(RPM) =
�

k/2
(k2−1)/4k

�−1

=
�

k
2
· 4k
(k2−1)

�−1

=
k2−1

2k2

= 0.5
�

1− 1
k2

�

This is within a factor of 1/k2 of optimal.

Figure 2.2 shows the worst-case throughput of RPM in comparison to VAL,

DOR, ROMM, and O1TURN on symmetric 3D mesh networks with different radices.

This graph was derived using the technique discussed in Section 2.2 for determining
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Figure 2.2: Normalized worst-case throughput of different routing algorithms on

symmetric 3D mesh networks.

the worst-case throughput of oblivious routing algorithms. RPM achieves the same

optimal worst-case throughput as VAL when the network radix is even. The worst-case

throughput of RPM quickly converges to optimal for odd radices as the network radix

is increased. Note that the performance of DOR, ROMM, and O1TURN all degrade

tremendously with increasing radix. At k = 14, the worst-case throughput of RPM is 14

times higher than DOR and 5.26 times higher than both ROMM and O1TURN.

2.3.2 Latency analysis

Let Havg(R) denote the average packet latency of routing algorithm R measured

as the number of router hops. The average hop count calculation assumes equal traffic

between all source-destination pairs in the network. For a k× k× k mesh, the average

hop count for DOR is

Havg(DOR) = 3
�

k2−1
3k

�
=

k2−1
k

Each (k2 − 1)/3k component corresponds to the average hop count along a single

dimension using DOR [12].
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In RPM, minimal routing is used in the X and Y dimensions resulting in an

average hop count of (k2−1)/3k along each of these two dimensions. When two-phase

routing is used in the Z dimension without any loop removal, the average hop count

for this dimension is two times minimal, i.e., 2[(k2 − 1)/3k]. However, as mentioned

in Section 2.3, a possibility of loop removal exists in the Z dimension when the X and

Y coordinates of the source and destination are the same. Once loops are removed,

two-phases of Z routing reduce to a single phase of minimal routing. The X and Y

coordinates of source and destination nodes are equal with a probability of 1/k2. This

results in the following expression for the average hop count of RPM:

Hx(RPM) = Hy(RPM) =
�

k2−1
3k

�

Hz(RPM) =
�

k2−1
k2

�
×

�
2(k2−1)

3k

�
+

1
k2 ×

�
k2−1

3k

�

Havg(RPM) = Hx(RPM)+Hy(RPM)+Hz(RPM)

=
�

4
3
− 1

3k2

�
×Havg(DOR)

The penalty factor in average latency for using a partially minimal routing

algorithm like RPM instead of a minimal routing algorithm like DOR can be quantified

by computing the ratio of their average latencies. In particular, the latency ratio of two

routing algorithms R1 and R2, LR(R1,R2), is defined as

LR(R1,R2) =
Havg(R1)
Havg(R2)

(2.9)

Therefore, the penalty factor for RPM is given as:

LR(RPM,DOR) =
4
3
− 1

3k2 (2.10)

LR(RPM,DOR) converges to 1.33 for relatively large values of k. This is much smaller

than the penalty factor of LR(VAL,DOR) = 2 that VAL has to sacrifice to achieve

optimal worst-case throughput.

2.3.3 RPM on asymmetric meshes

Claim 4. RPM achieves optimal worst-case throughput when kmax = max(kx,ky,kz) = kz

and kmax is not equal to kx or ky. When kmax = kx or kmax = ky, RPM is optimal when
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kmax is even and is within a factor of 1/k2
max of optimal when kmax is odd.

Proof. The maximum channel load and worst-case throughput of an asymmetric mesh

topology is determined by its longest dimension. Claim 1 already shows that the 2D

traffic on any XY plane using RPM will be doubly sub-stochastic. Suppose kmax =

max(kx,ky,kz) is equal to either kx or ky. Since routing on the XY plane using RPM

is the same as O1TURN, it follows that RPM achieves optimal worst-case throughput

when kmax is even, and within a factor of 1/k2
max of optimal otherwise. If kmax is equal

to kz, the worst-case throughput of RPM only depends on the maximum channel load

in the Z dimension, which is optimal because the traffic along the Z dimension is twice

uniform (cf. proof of Claim 2).

The latency analysis for asymmetric meshes is also very similar to the symmetric

case. For an asymmetric kx× ky× kz mesh, the average hop count for DOR is given as

the sum of hop counts along the three dimensions:

Havg(DOR) =
�

k2
x −1
3kx

�
+

�
k2

y −1
3ky

�
+

�
k2

z −1
3kz

�
(2.11)

The average hop count for RPM, after loop removal along the Z dimension, is given as:

Havg(RPM) =
�

k2
x −1
3kx

�
+

�
k2

y −1
3ky

�
+

�
2− 1

kxky

��
k2

z −1
3kz

�
(2.12)

The ratio of the latencies of RPM and DOR for the asymmetric case can then be

calculated using Equation 2.9.

2.3.4 Extending RPM to higher dimensions

In this section, we extend RPM to consider higher dimensional asymmetric

meshes. Let a0, a1, . . . , an−2, an−1 be the dimensions of an n-dimensional mesh, and

let k0, k1, . . . , kn−2, kn−1 be the corresponding radices. RPM can be readily extended by

first uniformly load-balancing flits across the last (n−2) dimensions using dimension-

ordered routing, namely along a2,a3, . . . ,an−2,an−1. RPM then routes flits minimally
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along the two dimensions a0 and a1 using either the a0a1 or a1a0 order with equal

probability. Finally, RPM routes flits to their destinations along a2, a3, . . . , an−2, an−1

in dimension order.

Claim 5. RPM achieves optimal worst-case throughput when kmax =

max(k0,k1, . . . ,kn−1) is equal to any one of k2, k3, . . ., kn−1 and kmax is not equal

to k0 or k1. If kmax = k0 or kmax = k1, RPM is optimal when kmax is even and within a

factor of 1/k2
max of optimal when kmax is odd.

Proof. The proof for the above claim is a direct extension of the proof for Claim 4 and

is not presented here to avoid repetition.

2.4 Router implementation

In this section, we discuss how RPM can be efficiently integrated into a typical

on-chip router. We first explain how RPM can be made deadlock-free using virtual

channels. We then present some details about the modifications needed in existing on-

chip routers to implement RPM.

2.4.1 Virtual channels and deadlocks

In general, RPM can be defined by load-balancing uniformly along any one

dimension and routing minimally in the two remaining dimensions (Z-XY/YX-Z, X-

YZ/ZY-X or Y-XZ/ZX-Y). For practical asymmetric mesh topologies where the number

of device layers (Z dimension) is expected to be fewer than the number of nodes

along the edge of a layer (X and Y dimensions), two-phase routing along the short Z

dimension and minimal routing along the longer X and Y dimensions results in highest

average-case throughput. On the other hand, for symmetric 3D mesh topologies, a

randomized version of RPM where Z-XY/YX-Z, X-YZ/ZY-X, and Y-XZ/ZX-Y routings

are used with equal probability, yields the highest average-case throughput as it balances

channel load along all three dimensions. Randomization does not change the worst-case

throughput of RPM because each one of the three routing algorithms combined has the

same near-optimal worst-case throughput.
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Virtual channels (VCs) are needed in on-chip routers to avoid cyclic resource

dependencies, like buffer dependencies, which can result in deadlocks. If RPM is

implemented by load-balancing only along one dimension (lets say the Z dimension),

two virtual channels per physical channel are sufficient to achieve deadlock-free routing.

One approach is to divide the input buffers on links along the Z dimension into two VCs

− VC-0 reserved for phase-1 of Z routing and VC-1 reserved for phase-2 of Z routing.

The buffers on links along the X and Y dimensions are also divided into two VCs −
VC-0 reserved for packets using X-Y routing and VC-1 reserved for packets using Y-X

routing. This VC allocation scheme ensures deadlock-free operation as the resulting

channel dependency graph is acyclic [10].

The randomized version of RPM, which involves load-balancing packets along

each dimension with equal probability and routing minimally along the two remaining

dimensions, can be made deadlock-free using three VCs. One VC allocation approach

for this case is to let packets start in VC-0 and increment the VC number after every

YX, ZY or ZX turns. Since the routing paths have at most two of these three possible

turns, three VCs are sufficient. This VC allocation scheme results in an acyclic channel

dependency graph for randomized RPM.

2.4.2 RPM router

Baseline 3D router

Figure 2.3 shows the architecture of a typical 7-port router for 3D mesh

networks. This architecture is a direct extension of 5-port routers used in 2D mesh

networks, with the addition of two extra ports for vertical communication. At each input

port, buffers are organized as separate FIFO queues, one for each VC. Flits entering

the router are placed in one of these queues depending on their VC ID. The router is

generally pipelined into five stages comprising of route computation, VC allocation,

switch allocation, switch traversal and link traversal. The route computation stage

determines the output port of a packet based on its destination. This is followed by

VC allocation where packets acquire a virtual channel at the input of the downstream

router. A packet that has acquired a VC arbitrates for the switch output port in the switch
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Figure 2.3: Baseline router architecture.

arbitration stage. Flits that succeed in switch arbitration traverse the crossbar before

finally traversing the output link to reach the downstream router. Head flits proceed

through all pipeline stages while the body and tail flits skip the route computation and

VC allocation stages and inherit the output port and VC allocated to the head flit. The

tail flit releases the reserved VC after departing the upstream router.

In order to implement a new routing algorithm like RPM in place of existing

routing algorithms like DOR using this baseline architecture, only the route computation

and VC allocation stages of the router pipeline need to be modified.

Choosing an intermediate layer

Since RPM involves load-balancing packets to a randomly chosen intermediate

layer, some extra logic needs to be added to the baseline architecture to choose an

intermediate layer. In most NoCs there is a strict requirement that flits of a packet

need to arrive at the destination in-order. Hence, load-balancing across layers has to be

carried out at the granularity of packets and not flits.
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The logic for picking a random intermediate layer can be implemented using a

simple linear feedback shift register (LFSR), which is often used to generate a pseudo-

random sequence. Let us assume that packets are load-balanced uniformly along the Z

dimension. If kz is the number of layers in the topology, an LFSR with log2 kz bits

is sufficient to generate a pseudo random sequence of kz layer identifiers. In order

to increase the randomness of the LFSR sequence for small values of kz, a pseudo-

random sequence with greater than log2 kz bits can be generated and the intermediate

layer can be chosen by performing a modulo-kz operation on the generated sequence.

For example, in a 8× 8× 4 mesh topology with 256 nodes, layer load balancing can

be carried out using the last two bits of a 8-bit a pseudo-random sequence. To ensure

that the random number generators at the different nodes work independently, the LFSR

at a node can be initialized to the unique 8-bit node address. In general, for a network

with N nodes, a log2 N bit LFSR can be used to pick an intermediate layer. Each LFSR

can then be initialized to an unique initial state (which is the unique log2 N bit node

address) resulting in different pseudo-random sequences being generated at different

nodes. In the special case when the X and Y coordinates of the destination are same as

the corresponding coordinates of the source, the decision of the LFSR is overridden and

the intermediate layer is forced to be the Z coordinate of the destination. If the pseudo-

random sequence generation process and the packet injection process (determining

packet size) are independent, over a period of time the number of flits sent to different

layers is expected to be equal.

If more accurate load-balancing is desired, a more sophisticated credit-based

load balancing scheme can be employed for multi-flit packets. In this technique, every

node in the network maintains kz credit counters, one for each layer, all initialized

to 0. The first layer with non-negative credits is always chosen to route a packet.

When layer �∗ is selected to route an M flit packet, the credit counter corresponding

to �∗ is decremented by M−M/kz since layer �∗ receives an excess of M−M/kz flits

compared to ideal flit-level load-balancing across kz layers. At the same time, counters

corresponding to all other layers are incremented by M/kz to account for the flit deficit

with respect to ideal flit-level load-balancing. This layer selection approach requires

kz counters at each router to keep track of the credits associated with each layer. The
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counter size depends on the maximum packet length and the number of layers in the

topology. If the maximum packet length is L flits, the credit values can range from

−L to (kz − 1)L. As explained earlier, when the X and Y coordinates of a packet’s

destination are same as those of the source, the Z coordinate of the destination is forced

to be the intermediate layer in order to remove loops. The counters remain unchanged

in this special case as no extra load is added to links along the X and Y dimensions of

the destination layer.

After an intermediate layer is chosen at the time of packet injection, the

intermediate layer number must be included in the packet header to enable the route

computation stage to route packets to the appropriate layer. The intermediate layer

selection can be carried out at the source router one cycle before packet injection to

avoid increasing the critical path delay of the router.

Choosing XY/YX routing

RPM uses minimal XY or YX routing with equal probability on each horizontal

layer. The logic to choose XY or YX routing paths can be the same as the approach

described in [53], which uses a single signed counter to keep track of the excess/deficit

of flits using XY or YX routing. Another approach is to use one of the bits generated

by the LFSR used for layer selection to randomly choose between XY and YX routing.

The decision to use XY or YX routing can be taken before packet injection, in parallel

with intermediate layer selection, and the routing decision can be stored as a part of the

packet header. This approach avoids adding extra delay at intermediate routers.

Routing and VC allocation

In a baseline router using dimension-ordered routing, the routing can be

decomposed into the X, Y and Z dimensions. The route computation stage first routes

a packet along the X dimension, followed by the Y dimension and finally, the Z

dimension. For packets at the in jection, X+ and X- inputs of a router (refer Figure 2.3),

the route computation logic needs to determine the X, Y and Z offsets to a packet’s
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final destination and choose the first productive dimension.4 For packets at the Y+ and

Y- inputs, the routing decision is based on the Y and Z offsets to the packet’s final

destination and for packets at the Z+ and Z- inputs, the decision is based only on the Z

offset.

Next, we describe one possible high-level implementation of the route compu-

tation stage for asymmetric 3D mesh networks where packets are load-balanced only

along the Z dimension. Route computation is closely tied to the VC allocation scheme

used in the router. Packets are routed using either Z-XY-Z or Z-YX-Z routing paths

and two VCs are needed to make RPM deadlock-free in the asymmetric mesh case,

as described in Section 2.4.1. We assume that the input buffers at all router ports are

divided into two sets of VCs, VC set 0 and VC set 1. Each VC set can in turn have

one or more VCs. The two VC sets at different physical channels are associated with

different RPM routing segments, as summarized in Table 2.1. A packet is injected into

either VC set 0 or VC set 1 at the in jection port. The routing decisions for packets at

different input ports and input VCs are taken as follows:

• For packets at any VC set of the in jection port and VC set 0 of the Z+ and Z-

ports, the offset along the Z dimension to the intermediate layer is determined

along with the X and Y offsets to the final destination. If the packet has reached

the destination, it is simply ejected from the network. If the Z offset to the

intermediate layer is non-zero, packets are routed along the Z dimension on VC

set 0. On the other hand, if the Z offset is zero and a packet is chosen to use

XY routing, the packet is forwarded to the output port along the X dimension on

VC set 0, if the X offset is non-zero. If the X offset is also zero, the packet is

forwarded to the output port along the Y dimension on VC set 0. Alternatively, if

the packet is chosen to use YX routing, it is forwarded to the output port along the

Y dimension on VC set 1, if the Y offset is non-zero. If the Y offset is also zero,

the packet is forwarded to the output port along the X dimension on VC set 1.

• For packets at VC set 0 of X+ and X- ports, the X, Y and Z offsets to the final

destination are computed. If either X or Y dimensions are productive, packets
4A dimension is said to be productive if the packet has not yet reached the destination coordinate

corresponding to the dimension.
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Table 2.1: RPM VC allocation.

Physical Channel Virtual Channel Routing Segment
Injection Set 0, Set 1 Packet Injection
Z+, Z- Set 0 Z Phase-1
Z+, Z- Set 1 Z Phase-2

X+, X-, Y+, Y- Set 0 XY routing
X+, X-, Y+, Y- Set 1 YX routing

are forwarded on VC set 0 using XY routing. Once packets reach the X and

Y coordinates of the destination, they are either ejected, if the Z offset is 0, or

forwarded along the appropriate Z output port on VC set 1. Packets at VC set 0

of Y+ and Y- ports are routed similarly, the only difference being that the X offset

can be ignored for these packets as they are guaranteed to have reached the X

coordinate of the destination.

• For packets at VC set 1 of Y+ or Y- ports, the Y, X and Z offsets to the final

destination are computed. If either Y or X dimensions are productive, packets

are forwarded on VC set 1 using YX routing. Once packets reach the Y and

X coordinates of the destination, they are either ejected, if the Z offset is 0, or

forwarded along the appropriate Z output port on VC set 1. Packets at VC set 1 of

X+ or X- ports are routed similarly, the only difference being that the Y offset can

be ignored for these packets as they are guaranteed to have reached the destination

Y coordinate.

For symmetric mesh topologies, a randomized version of RPM that needs

three sets of VCs is used, as discussed in Section 2.4.1. In addition to choosing an

intermediate layer and the order of dimension traversal within a layer, the randomized

variant also needs to select one of X, Y or Z dimensions for load-balancing packets. This

decision has to be taken during packet injection and stored in the packet header. The

route computation at intermediate routers can then be divided into three parallel planes

to handle, X-YZ/ZY-X, Y-XZ/ZX-Y, and Z-XY/YX-Z routing, based on the routing

plane chosen for a packet at the time of injection. The VC allocation stage looks at the
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input port, the input VC set, and the output port of a packet to determine the output VC

set. The output VC set is equal to input VC set + 1 if the packet is making a YX, ZY or

ZX turn. Otherwise, the output VC set is equal to the input VC set.

2.5 Randomized minimal first routing

RPM achieves near-optimal worst-case throughput in 3D mesh networks by

load-balancing packets uniformly across all vertical layers and routing minimally on

the horizontal layers. However, RPM is not minimal in terms of latency since it needs

to route packets to a randomly chosen intermediate layer. As described in Section 2.4.2,

the intermediate layer selection process in RPM is oblivious to the packet’s destination,

which may result in routing in non-minimal directions. Non-minimal routing can be

avoided to some extent by using a packet’s destination in the layer-selection process and

preferentially choosing an intermediate layer in the minimal direction. In this section,

we present a destination-aware layer selection technique that can reduce the latency of

RPM when the traffic is inherently load-balanced, such as uniform random traffic. We

refer to this variant of RPM as Randomized Minimal First (RMF) routing.

In a simple preferential load-balancing approach where traffic is load-balanced

along the vertical Z dimension, a node keeps track of the number of flits sent to all kz

vertical layers. For routing a packet from source (xs, ys, zs) to destination (xd , yd , zd),

the route computation logic first looks at the number of flits sent to the minimal layers,

i.e. layers between zs and zd . If any of these layers have a deficit of flits, the packet is

sent to the first minimal layer with a flit deficit. If none of the minimal layers have a

deficit, the packet is routed to a non-minimal layer. This approach requires kz counters

at a node, similar to the load-balancing technique described in Section 2.4.2, and some

logic to identify minimal layers. The main intuition behind this approach is that if the

traffic is inherently load-balanced, packets can be routed to intermediate layers in the

minimal direction more often, without causing an overall imbalance in the traffic routed

to different layers. This simple preferential load-balancing technique, however, is not

provably worst-case throughput optimal.

As discussed in Section 2.3.1, the foundation for the worst-case throughput
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optimality of RPM is laid using Claim 1, which shows that the projected 2D traffic

on any XY plane using RPM is doubly sub-stochastic provided the 3D traffic matrix

is doubly sub-stochastic. The preferential load-balancing technique described above

satisfies Equation 2.4 because every node still sends only 1/kth
z fraction of the total

traffic it generates, to a particular layer. This approach, however, cannot guarantee that

Equation 2.5 is satisfied. This is because, it is possible that a node (x1, y1, m) on the

mth layer receives more flits than (x1, y1, n) on the nth layer as layer m might be in the

minimal direction of more traffic flows to coordinates (x1, y1), compared to layer n. As a

result, node (x1, y1, m) may receive more than 1/kth
z fraction of the total traffic destined

to the set of nodes at coordinates (x1, y1). A source node with just kz counters may not

see this imbalance as it may be sending more traffic to a different (x, y) coordinate of the

nth layer, (x2, y2, n), compared to (x2, y2, m). Therefore, in order to make RMF worst-

case throughput optimal, preferential layer load-balancing needs to be done individually

for each (x, y) column of the network. RMF routing, described next, does exactly that.

For implementing RMF, a node s in the network maintains a set of credit counters

Cs(x,y,z) that count the number of credits available to send flits to the (x,y) coordinate

of layer z. The counters C(x,y,z) are all initialized to zero. When source s at (xs, ys, zs)

needs to route an M flit packet to destination (xd , yd , zd), the route computation stage

looks at the values of kz credit counters, Cs(xd,yd,0 ... kz−1). If any one of the minimal

layers between zs and zd (including zs and zd) has non-negative credits, it is selected as

the intermediate routing layer. If all minimal layers have negative credits, a non-minimal

layer with non-negative credits is chosen as the intermediate layer. To guarantee flit-

level load-balancing similar to the counter-based layer selection technique described in

Section 2.4.2, if layer �∗ is chosen as the intermediate routing layer, Cs(xd,yd, �
∗) is

decremented by M−M/kz. At the same time, Cs(xd,yd,z) is incremented by M/kz for

all z �= �∗. Instead of choosing a minimal layer with non-negative credits, RMF can

be generalized to choosing a minimal layer �∗ with Cs(xd,yd, �
∗) > −T , where T is a

positive threshold. This approach allows packets to be routed minimally even when the

minimal layers are temporarily oversubscribed by at most T flits. However, over time,

the imbalance caused by T flits is negligible for small values of T .

In this way, RMF satisfies Claim 1, which implies that the worst-case channel
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load on any channel in the X or Y dimensions is max(kx,ky)/2. The load on the Z

channels with RMF is strictly less than the corresponding load on the Z channels with

RPM because the combined channel load of phases 1 and 2 of Z routing is reduced

by preferring minimal paths. Therefore, Claims 2 and 3 with regard to worst-case

throughput optimality also hold for RMF.

The above description can be extended to a randomized version of RMF, which

load balances packets along all three dimensions with equal probability (instead of

just the Z dimension) and routes minimally in the two remaining dimensions. The

randomized variant of RMF is better suited for symmetric mesh networks because

it balances the channel load equally between the X, Y, and Z channels. However,

randomized RMF requires a separate set of counters for load balancing flits along each

of the X, Y, and Z dimensions. As in the case of RPM, randomization is not needed for

practical asymmetric topologies where load-balancing along the shorter Z dimension

leads to higher throughput.

When the traffic is not inherently load-balanced, like permutation traffic patterns,

where a source sends all its traffic to a single destination, RMF routing degenerates

to RPM as the layer load-balancing requirement at each (x, y) column forces packets

to use non-minimal intermediate layers. The performance comparison of RPM and

RMF is presented in Section 2.7 along with an estimate of the overhead required for

implementing RMF.

2.6 Layer-multiplexed 3D architecture

The 3D router described in Section 2.4.2 is a natural extension to a 2D mesh

router where two extra ports are added in the 3D case to support vertical communication,

resulting in a 7× 7 crossbar compared to a 5× 5 crossbar in the 2D case. However,

since the crossbar power and area costs increase quadratically with the number of

ports, 3D routers have higher power consumption and a larger area footprint than

their 2D counterparts. Increased number of ports in 3D routers increases contention

in switches and the complexity of arbiters. Also, in a 3D mesh, packets are routed

in a one-layer-per-hop manner along the vertical dimension. When RPM routing is
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Figure 2.4: Packet injection and ejection stages of the layer-multiplexed architecture.

used, which involves two phases of vertical routing, a packet may need to traverse

2k layers (and hence 2k router hops) in the worst-case, resulting in long worst-case

latencies. Along with long delays, one-layer-per-hop communication is also inefficient

in terms of power consumption as a flit needs to traverse a router pipeline at every

hop despite the short inter-layer distances in 3D designs. These factors motivated us to

propose a new Layer-Multiplexed (LM) 3D on-chip network architecture that exploits

the throughput optimality of RPM together with the short inter-layer wiring delays and

the abundance of vertical wiring in 3D designs. The LM architecture has a lower power

cost, a smaller area footprint and higher performance compared to a 3D mesh, as shown

in Section 2.7.3.

2.6.1 Architecture

In the LM architecture, the one-layer-per-hop communication in a 3D mesh is

replaced with simpler demultiplexing and multiplexing structures to take advantage of

the short vertical wiring delays and the abundance of vertical wiring in 3D designs. The

high level architecture of these structures is shown in Figure 2.4 for k = 4 layers. These

demultiplexing and multiplexing stages are used to implement the layer load-balancing

of RPM. RPM requires two-phase routing along the vertical dimension to load-balance
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traffic across the layers. In the LM architecture, the two phases of vertical routing are

carried out at packet injection and packet ejection, respectively. At packet injection,

flits are demultiplexed uniformly to the k layers using the packet injection stage. The

packet injection demultiplexer gives every processor direct access to all the layers, thus

removing the necessity for one-layer-per-hop communication. Once demultiplexed to a

horizontal layer, packets are routed on this plane using either minimal XY or YX routing

with equal probability. At the destination (X, Y) coordinates, packets from different

layers are multiplexed at the destination processor in the packet ejection stage.

With this architecture, each horizontal plane is effectively a conventional 2D

mesh with just 5-port routers. Rather than connecting directly to these 5-port routers, a

processor is connected to a corresponding packet injection stage at the same (X, Y)

location. The packet injection stage is in turn connected to k 5-port routers at the

same (X, Y) location. This is depicted in Figure 2.4 for k = 4, with processors P1 to

P4 demultiplexing to layers L1 to L4. Similarly, on the packet ejection side, a packet

ejection multiplexer is used at each processor to multiplex flits arriving from layers L1

to L4. We refer to this adaptation of the RPM routing algorithm on the LM architecture

as RPM-LM.

As shown later in Section 2.7.3, the combined costs of these demultiplexers and

multiplexers together with the 5-port router costs are significantly lower than the 7-

port router costs of a conventional 3D mesh both in terms of power and area. The

microarchitectural details of these packet injection and ejection stages and the routers

are detailed next.

Packet injection

The details of the packet injection stage are shown in Figure 2.5 for k = 4

layers. It is essentially a 4-port switch with a typical router pipeline consisting of

route selection, virtual channel (VC) allocation, switch arbitration, switch traversal, and

link traversal. However, route selection is modified to implement layer load-balancing,

which has to ensure that statistically traffic does indeed get uniformly distributed across

all k layers. This is achieved by using a set of flit-counters for each ordered pair of input

and output ports in the load-balancing logic. A flit-counter (i, j) records the total number
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Figure 2.5: Packet injection/Demultiplexing stage.

of flits sent from input i to output j. When a new head flit is injected from processor Pi,

the route selection logic selects the output layer L j with the lowest flit-count (i, j). Ties

between layers are broken by a rotating output priority pointer for Pi that gets advanced

at each route selection.

The route selection logic keeps track of the ouput ports that are currently in use

in order to avoid allocating the same output to more than one input, which would reduce

throughput. The layer selection is done as follows:

• Each input port is given a unique priority that rotates every cycle over all inputs.

• When two or more inputs enter the route selection stage at the same cycle, the

highest priority input is served first.

• Suppose input i requests for an output port and F is the set of free outputs in that

cycle after the higher priority inputs have been served, the route selection logic

simply chooses an output port from F that has received the least number of flits

from input i.

This strategy guarantees that every input is always granted an unique output. It must
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be noted that route computation is only performed on the head flit of a packet. Once

a layer is chosen by the route selection stage for the head flit, all remaining flits of the

same packet will be routed on the same layer. The VC allocation stage further allocates

a virtual channel at the injection port of the 5-port router on the selected layer. Together,

flits belonging to the same packet are guaranteed to be routed on the same layer through

the same set of virtual channels, thus ensuring their in-order arrival at the destination.

Finally, we found that a single VC with a small amount of buffering (e.g. 5

flits) is sufficient at each input of the packet injection demultiplexing switch. For

implementation, the input buffers can be located on the same layer as the corresponding

processor. The crossbar of the packet injection demultiplexer can be spread across the k

layers, i.e., the cross points for a particular layer can be located at that layer. The route

selection, VC allocation and switch arbitration logic can be located on the middle layer

(or one of the middle layers when k is even) so that the wiring for the control signals is

minimized and also uniformly distributed across the layers.

Router microarchitecture

Figure 2.6 depicts the microarchitectural details of the 5-port routers used for

routing on a horizontal plane in the LM architecture. Once a packet is injected into

a router on one of the layers, RPM-LM uses either minimal XY or YX paths with

equal probability to reach the (X, Y) coordinates of its destination. This is essentially

O1TURN [53] routing on the horizontal plane. In turn, the microarchitecture of each

5-port router on the 2D plane is very similar to that of the O1TURN router [53]. The

injection port of the router receives flits from the corresponding output port of the packet

injection switch located at the same (X,Y) column. The virtual channels at each input

port are divided into two sets–one set for XY routing and another for YX routing. After

being injected into one of the routing layers (XY or YX), a packet is restricted to remain

in the virtual channels of that layer while being routed on the 2D plane. The routing and

VC allocation stages are duplicated as in the O1TURN router to independently handle

the corresponding decisions in the XY and YX routings. The switch arbitration stage

is common to both XY and YX routings since flits from all virtual channels at an input

contend for the same crossbar port.
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Packet ejection

The ejection port of each router is connected through packet ejection multi-

plexers to all processors at the same (X, Y) coordinate, as depicted in Figure 2.7. In

particular, each horizontal plane router sees at its ejection port four virtual channels,

each of which corresponds to an ejection queue of a processor connected to the router.

In the example depicted in Figure 2.7, a router on the first layer (L1) sees four virtual

channels, namely L1-P1, L1-P2, L1-P3, and L1-P4 as its ejection channels located at

processors P1, P2, P3, and P4, respectively. The VC allocation stage of the router chooses

the appropriate output VC for a packet based on its destination. For example, a packet

destined for processor P2 is assigned VC L1-P2 while being ejected from the horizontal

plane router. After leaving the horizontal plane router, the VC ID field of a flit is used

to determine the packet ejection multiplexer into which the flit is inserted.

For implementation, a packet ejection multiplexer can be implemented on the

corresponding processor layer. A flit ejected from a horizontal plane router can be

broadcast to the packet ejection multiplexers on all layers and a decision to accept a
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Figure 2.7: Packet ejection/Multiplexing stage.

flit can be made locally at the input buffer of each multiplexer, based on the flit’s VC

ID. Finally, each packet ejection multiplexer can independently choose a flit from one of

its input queues to forward to the corresponding destination processor every cycle. The

multiplexers also handle flow control for their respective input buffers. We found that

only a small amount of buffering (e.g. 5 flits per queue) is sufficient at the multiplexer

inputs to achieve good performance.

2.6.2 Analysis

Claim 6. The worst-case throughput of RPM-LM is equal to the worst-case throughput

of RPM on a 3D mesh, which is optimal when the network radix k is even and within a

factor of 1/k2 of optimal when k is odd.

Proof. For RPM-LM routing on the LM architecture, traffic is uniformly load-balanced

across the vertical layers just as in RPM routing on a 3D mesh. Using the same analysis

as Claim 1, the 2D traffic that will traverse any XY plane will be doubly sub-stochastic

under an doubly sub-stochastic traffic matrix Λ. Therefore, the maximum channel load

on the XY planes with RPM-LM will be the same as O1TURN and RPM. Given that

the demultiplexing packet injection stage and the multiplexing packet ejection stage are
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Table 2.2: Routing algorithms evaluated.

DOR Dimension-order routing [59]. Packets routed minimally first in X
dimension, then in Y, then in Z.

VAL Valiant’s routing algorithm [66]. Packets first routed from the
source to a random intermediate node, followed by routing to the
destination. Both phases use DOR.

ROMM ROMM [46]. Packets routed using two-phase routing, like VAL,
but intermediate nodes restricted to those within a cube bounded by
the source and the destination.

O1TURN O1TURN [53]. Packets routed using one of six minimal orthogonal
paths (XYZ, XZY, YXZ, YZX, ZXY, ZYX).

DUATO DUATO [16]. Minimal adaptive routing based on deadlock
avoidance. Uses next-hop buffer occupancy estimate to select
an output port in the minimal direction. It uses escape virtual
channels [16] to avoid deadlocks.

both non-blocking under ideal load analysis, the maximum channel load is dictated by

the load on the channels in the XY planes. Hence, RPM-LM on the LM architecture

achieves the same worst-case throughput as RPM on a 3D mesh. This analysis holds for

both symmetric and asymmetric meshes.

2.7 Evaluation

In this section, we compare the performance of RPM with the routing algorithms

described in Table 2.2. The first four are oblivious routing algorithms where the routing

paths are independent of the network state. DUATO [16] is a deadlock-free minimal

adaptive routing algorithm. We include an adaptive routing algorithm in our evaluation

to show that oblivious routing algorithms with good load-balancing capabilities can

perform as well and sometimes even better than adaptive routing algorithms, without

incurring the extra overheads associated with adaptive routing.

We evaluate the performance of RPM on two symmetric (4×4×4 and 8×8×8)

and two asymmetric (8× 8× 4 and 16× 16× 4) 3D mesh topologies. In practice, 3D

mesh networks are not expected to be symmetric in 3D chip designs. The number of

available device layers is expected to be fewer than the number of processor tiles that can
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Table 2.3: Traffic patterns evaluated.

Worst-Case Worst-case traffic that causes lowest throughput.
Average-Case Average throughput over 100,000 random permutations.
Transpose Packet at (x,y,z) sent to (y,z,x).

(asymmetric) Destination obtained by left shifting the concatenated bit
representation of the source xyz to yzx and repartitoning
the result.

Complement Packet at (x,y,z) sent to (kx− x−1,ky− y−1,kz− z−1).
DOR-WC Packet at (x,y,z) sent to (k− z−1,k− y−1,k− x−1).

(asymmetric) If x is represented using bx bits and z is represented
using bz bits, destination node of (x,y,z) is obtained
by swapping the positions of the first bx bits of the
concatenated bit representation of the source with the
last bz bits, repartitioning the result, and taking its
complement.

Uniform Random Packet sent to a destination chosen at uniform random.

be placed along the edge of a device layer. Hence, we chose to evaluate the performance

of RPM on asymmetric 8× 8× 4 and 16× 16× 4 mesh topologies, both with only 4

device layers. The randomized version of RPM discussed in Section 2.4.1 is used in the

symmetric mesh topologies. For asymmetric meshes, we load-balance only along the

short vertical dimension. Randomization improves the average throughput of RPM on

symmetric meshes while retaining the same worst-case throughput, since it distributes

traffic equally along all three dimensions. On the other hand, for asymmetric meshes,

the links along the short vertical dimension are more lightly loaded compared to the

links along the longer horizontal dimensions. Consequently, two-phase routing only

along the lightly loaded vertical dimension offers better performance.

This section is divided into three main parts. First, Section 2.7.1 compares

RPM with DOR, O1TURN, ROMM and VAL using a simplified throughput analysis

technique based on channel load measurement (refer Section 2.2). This analysis assumes

ideal single cycle routers with infinite buffers. Since these techniques are only applicable

to oblivious routing algorithms, we do not consider comparisons with adaptive routing

and destination-aware RMF routing in this section. We also defer comparisons with



44

RPM-LM on the LM architecture until the next section with cycle-accurate flit-level

simulations. This is because under ideal analysis, the packet injection and ejection

stages of the LM architecture are non-blocking structures and throughput is mainly

determined by load on the X and Y channels. So ideal throughput analysis is not

sufficient to reveal the performance advantages of the LM architecture over RPM routing

on a 3D mesh. Moreover, since the multiplexing and demultiplexing structures of

the LM architecture are tailored towards the two-phase load-balancing of RPM, we

restrict ourselves to just comparing the performance of RPM on the LM and 3D mesh

architectures. While other routing oblivious algorithms can be implemented with the

LM architecture, both the demultiplexing and multiplexing stages may not be needed

if the algorithm involves only a single phase of Z routing. Next, we back the results

obtained using ideal throughput analysis with more realistic flit-level simulations in

Section 2.7.2. Here, in addition to comparing RPM with existing oblivious routing

algorithms, we include performance comparisons with adaptive routing, performance

comparison of RMF with RPM and DOR and comparison of RPM-LM on the LM

architecture with RPM on a 3D mesh. Finally, Section 2.7.3 evaluates the power and

area overheads associated with implementing RPM and RMF in on-chip routers. Here,

we also discuss the potential power/area benefits of using the LM architecture in place

of a conventional 3D mesh.

2.7.1 Performance evaluation

The saturation throughput results normalized to the network capacity for each

oblivious routing algorithm on each traffic pattern of Table 2.3 are shown in Table 2.4

for the four different 3D mesh configurations. As discussed briefly in Section 2.2, we

use the methodology proposed in [64] to determine worst-case throughput. Similarly,

the average-case results were computed using the technique described in Section 2.2 by

averaging the throughput over 100,000 randomly generated permutation traffic patterns.

In addition to worst-case and average-case analysis, we also evaluate the throughput of

the routing algorithms on a mixture of benign traffic patterns like uniform random traffic

and adversarial traffic patterns like DOR-WC traffic, which is a worst-case traffic pattern

for DOR.



45

Table 2.4: Comparison of normalized throughput of different routing algorithms.

VAL DOR ROMM O1TURN RPM
4×4×4 Network

Worst-Case 0.5 0.125 0.205 0.25 0.5
Average-Case 0.5 0.322 0.427 0.472 0.62
Transpose 0.5 0.25 0.327 0.5 0.6
Complement 0.5 0.5 0.308 0.5 0.5
DOR-WC 0.5 0.125 0.214 0.25 0.5
Random 0.5 1 0.813 1 0.75

8×8×8 Network
Worst-Case 0.5 0.0625 0.13 0.15 0.5
Average-Case 0.5 0.32 0.45 0.52 0.67
Transpose 0.5 0.25 0.29 0.48 0.6
Complement 0.5 0.5 0.19 0.5 0.5
DOR-WC 0.5 0.06 0.15 0.15 0.5
Random 0.5 1 0.74 1 0.75

8×8×4 Network
Worst-Case 0.5 0.1 0.177 0.25 0.5
Average-Case 0.5 0.352 0.475 0.54 0.73
Transpose 0.5 0.25 0.313 0.333 0.5
Complement 0.5 0.5 0.242 0.5 0.5
DOR-WC 0.5 0.1 0.198 0.286 0.5
Random 0.5 1 0.777 1 1

16×16×4 Network
Worst-Case 0.5 0.083 0.148 0.25 0.5
Average-Case 0.5 0.4 0.525 0.597 0.762
Transpose 0.5 0.25 0.303 0.286 0.5
Complement 0.5 0.5 0.196 0.5 0.5
DOR-WC 0.5 0.083 0.192 0.267 0.533
Random 0.5 1 0.758 1 1

The worst-case analysis results validate that RPM indeed achieves (near) optimal

worst-case throughput for both symmetric and asymmetric mesh topologies. For the

symmetric 4× 4× 4 and 8× 8× 8 mesh topologies, RPM achieves the same optimal

worst-case throughput as VAL and outperforms DOR, ROMM, and O1TURN by 300-

700%, 144-284%, and 100-233%, respectively. In terms of average-case throughput

for the two symmetric mesh topologies, RPM significantly outperforms VAL, DOR,

ROMM, and O1TURN by 24-34%, 92-109%, 45-49%, and 29-31%, respectively.



46

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

Normalized saturation throughput

Pe
rc

en
ta

ge
 (%

)

(a) DOR

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

Normalized saturation throughput

Pe
rc

en
ta

ge
 (%

)

(b) ROMM

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

Normalized saturation throughput

Pe
rc

en
ta

ge
 (%

)

(c) O1TURN

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

Normalized saturation throughput

Pe
rc

en
ta

ge
 (%

)

(d) RPM

Figure 2.8: Histograms of saturation throughputs under random permutation traffic

patterns for a 4×4×4 mesh.

Figures 2.8 and 2.9 present the histograms of the normalized saturation throughputs for

the symmetric 4×4×4 and 8×8×8 topologies, respectively, under randomly generated

permutation traffic patterns that were used to measure average-case throughput. The

normalized saturation throughput of VAL is 0.5 for all traffic patterns. The histograms

clearly show that the saturation throughput of RPM is higher than the minimal routing

algorithms over the wide range of traffic patterns evaluated. Moreover, for all traffic

patterns, the normalized saturation throughput of RPM is greater than 0.5, which

validates its worst-case throughput optimality and also shows that it achieves higher

throughput than VAL in all cases. RPM also performs very well under adversarial traffic

patterns, namely on transpose and DOR-WC traffic. The throughput of DOR, ROMM,

and O1TURN degrade tremendously under both these traffic patterns. Compared to the

best of the three minimal routing algorithms evaluated, RPM performs 25% better on
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Figure 2.9: Histograms of saturation throughputs under random permutation traffic

patterns for a 8×8×8 mesh.

transpose and 233% better on DOR-WC traffic for the 8×8×8 configuration. Although

DOR and O1TURN can achieve better normalized throughput than RPM on symmetric

meshes when the traffic has already been uniformly randomized, the results for both

are significantly worse in the average and worst cases to justify the use of RPM when

worst-case performance is critical.

For the asymmetric 8× 8× 4 and 16× 16× 4 mesh topologies, RPM again

achieves optimal worst-case throughput (same as VAL) and outperforms DOR, ROMM,

and O1TURN by 400-500%, 182-238%, and 100% respectively. For these topologies,

RPM performs strictly better than all other routing algorithms considered, both in terms

of average-case throughput and throughput for the different traffic patterns except for

uniform and complement traffic, where it performs as well as DOR and O1TURN.

In terms of average-case throughput for the two asymmetric configurations, RPM
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Figure 2.10: Histograms of saturation throughputs under random permutation traffic

patterns for a 8×8×4 mesh.

outperforms VAL, DOR, ROMM, and O1TURN by 46-52%, 90-107%, 45-54%, and

28-35%, respectively. Figures 2.10 and 2.11 show the histograms of the normalized

saturation throughputs for the asymmetric 8 × 8 × 4 and 16 × 16 × 4 topologies,

respectively, under randomly generated permutation traffic patterns used to determine

average-case throughput. The results show that over a large sample space of traffic

patterns, RPM has higher saturation throughput compared to both the minimal routing

algorithms and VAL, whose normalized saturation throughput is 0.5 independent of the

traffic.

As stated in Equation 2.10, the latency of RPM is at most 1.33 times minimal

for symmetric meshes. RPM pays a significantly smaller latency penalty compared

to VAL (two times minimal) to achieve optimal worst-case throughput. The latency

penalty of RPM is greatly reduced for practical asymmetric topologies like the ones
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Figure 2.11: Histograms of saturation throughputs under random permutation traffic

patterns for a 16×16×4 mesh.

evaluated. Using the expressions in Equations 2.11 and 2.12, the average hop count of

RPM reduces to just a factor of 1.19 of DOR for the 8×8×4 topology and 1.11 of DOR

for the 16×16×4 topology.

2.7.2 Detailed flit-level simulation

The results obtained using ideal throughput analysis represent upper bounds to

the actual achievable throughput because it assumes ideal single-cycle routers with

infinite buffers and ignores issues like flow control and contention in switches. In

this section, we evaluate the performance of different routing algorithms using cycle-

accurate flit-level simulations which provide more realistic insights into the performance

of routing algorithms. We first describe the simulation setup and then evaluate the

performance of RPM, RMF and RPM-LM.
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Simulation setup

We modified the PopNet [54] on-chip network simulator to perform flit-level

simulations. PopNet models a typical input-buffered VC router with five pipelined

stages. Route computation is performed in the first stage followed by VC allocation,

switch arbitration, switch traversal and link traversal. The head flit of a packet proceeds

through all five stages while the body and tail flits bypass the first two stages and inherit

the output port and output VC reserved by the head flit. Credit-based flit-level flow

control is used between adjacent routers. We assume 8 virtual channels per physical

channel, each 5 flits deep. For the asymmetric topologies, the 8 VCs are divided into

two sets of four VCs to avoid deadlocks, as described in Section 2.4.1. Similarly, for the

symmetric topologies, the 8 VCs are divided into two sets of 3 VCs and one set of 2VCs

to avoid deadlocks. We include 8 VCs in our setup because it is well known that VCs

improve the throughput of any routing algorithm by reducing head-of-line blocking and

enabling better statistical multiplexing of flits. So, having a reasonably large number

of VCs lets us compare the best performance of all routing algorithms. The injected

packets are of a fixed size of 5 flits. The packet size and buffer size used are the same

as the parameters identified by Wang et.al. [68] as representative approximations of the

on-chip networks of RAW [63] and TRIPS [21].

We used PopNet to evaluate the average routing delays under different injection

loads. For each simulation, we ran the simulator for 500,000 cycles. The latency of a

packet is measured as the delay between the time the head flit is injected into the network

and the time the tail flit is consumed at the destination. The four traffic patterns used in

the previous section, i.e., Uniform random, Complement, Transpose and DOR-WC are

also used for flit-level simulations. In addition to comparing RPM with the oblivious

routing algorithms, we also implement a minimal adaptive routing algorithm based on

deadlock avoidance (DUATO [16]) for comparison. The adaptive routing algorithm uses

next-hop buffer occupancy to select the least congested output port. In this case, one out

of the 8 VCs serves as an escape VC to avoid deadlocks.



51

0 0.2 0.4 0.6 0.8 120

40

60

80

100

120

140

Normalized throughput

Av
er

ag
e 

La
te

nc
y 

(c
yc

le
s)

 

 

DOR
ROMM
O1TURN
RPM
VAL
DUATO

(a) Uniform Random

0 0.2 0.4 0.6 0.8 120

40

60

80

100

120

140

Normalized throughput

Av
er

ag
e 

La
te

nc
y 

(c
yc

le
s)

 

 

DOR
ROMM
O1TURN
RPM
VAL
DUATO

(b) Transpose

0 0.2 0.4 0.6 0.8 120

40

60

80

100

120

140

Normalized throughput

Av
er

ag
e 

La
te

nc
y 

(c
yc

le
s)

 

 

DOR
ROMM
O1TURN
RPM
VAL
DUATO

(c) Complement

0 0.2 0.4 0.6 0.8 120

40

60

80

100

120

140

Normalized throughput

Av
er

ag
e 

La
te

nc
y 

(c
yc

le
s)

 

 

DOR
ROMM
O1TURN
RPM
VAL
DUATO

(d) DOR-WC

Figure 2.12: Performance of RPM on a 4×4×4 mesh.

Evaluation of RPM

Figures 2.12, 2.13, 2.14 and 2.15 present the flit-level simulation results

comparing the performance of RPM with existing oblivious and adaptive routing

algorithms on the four 3D mesh configurations. The results follow a trend similar to

the simplified throughput analysis presented in the previous section. RPM consistently

achieves good throughput over all traffic patterns considered. The saturation throughput

of RPM is higher than VAL and its latency is strictly lower than VAL over all traffic

patterns evaluated and for all four topologies considered.

RPM can closely match the high throughput of adaptive routing (DUATO) on

adversarial traffic like transpose and DOR-WC while other oblivious routing algorithms
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Figure 2.13: Performance of RPM on a 8×8×8 mesh.

perform poorly. RPM can, however, match DUATO’s performance without adding any

overhead associated with adaptive routing.

Although DOR and O1TURN perform well on uniform and bit-complement

traffic, their performance degrades significantly under transpose and DOR-WC traffic,

where both are clearly outperformed by RPM. The normalized throughput of O1TURN

and DOR under DOR-WC traffic degrades with the increase in network radix from 4

to 8. On the other hand, the normalized throughput of RPM changes very little when

the network radix is increased. RPM also outperforms ROMM on all traffic patterns

considered, except uniform traffic on the 4× 4× 4 topology. The poor performance of

ROMM and DUATO on bit-complement traffic, despite having sufficient path diversity,
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Figure 2.14: Performance of RPM on a 8×8×4 mesh.

can be attributed to the fact that they are restricted to routing in the minimal cube. This

results in congestion on links in the middle of the network under complement traffic.

RPM achieves better load balancing by using non-minimal paths.

For the asymmetric mesh topologies, RPM is comparable to DOR and O1TURN

and better than ROMM on uniform traffic. This is because, for the asymmetric

topologies, two phase routing on the short vertical dimension no longer forms a

throughput bottleneck and the overall throughput is primarily determined by the

saturation throughput of the horizontal channels. For the two asymmetric topologies,

RPM sustains the highest (or close to highest) throughput over all oblivious routing

algorithms for all four traffic patterns evaluated.
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Figure 2.15: Performance of RPM on a 16×16×4 mesh.

Lastly, the latency of RPM is higher than the minimal routing algorithms when

the network is lightly loaded. The average latency overhead of RPM over DOR can be

deduced from the difference in latencies of the two routing algorithms under uniform

random traffic. For the symmetric mesh configurations, the latency overhead under

uniform random traffic is around 23% for the 4×4×4 topology and 30.3% for the 8×
8× 8 topology. The overheads are slightly lower than those predicted using hop-count

analysis because packet delays in flit-level simulations include the transmission delay

of multi-flit packets and the router pipeline delay at the destination, which are ignored

while measuring hop count. The latency difference is considerably less when compared

to VAL and reduces significantly for the two asymmetric configurations. In accordance



55

with our hop-count based calculations, the latency overhead of RPM over DOR under

uniform traffic was observed to be only around 15% for the 8×8×4 topology and 10%

for the 16×16×4 topology.

To summarize, the results clearly validate the claim that O1TURN, which

achieves near-optimal worst case throughput for 2D meshes, performs poorly in the

worst-case sense when extended to 3D. RPM, on the other hand, handles adversarial

traffic much better than existing routing algorithms and it does so while paying a

far smaller latency penalty compared to VAL. RPM is ideally suited for practical

asymmetric 3D mesh configurations which have fewer device layers compared to the

number of nodes along the edge of a layer. For such asymmetric topologies, RPM

achieves the highest throughput among all oblivious routing algorithms and also pays

negligible penalty in terms of latency over minimal routing.

Evaluation of RMF

In this section, we compare the performance of RMF with RPM and DOR

under uniform random, transpose, bit complement, and DOR-WC traffic patterns. As

described in section 2.5, RMF can reduce the average packet latency over RPM when

the traffic is inherently load-balanced by preferentially choosing intermediate layers in

the minimal direction in a destination-aware manner. Among the four traffic patterns

considered, three of them (transpose, bit complement, and DOR-WC) are permutation

traffic patterns where a source sends all its traffic to a single destination. Under such

traffic patterns, we expect RMF routing to degenerate to RPM since RMF needs to load-

balance flits across all kz vertical layers at each (x, y) column (refer Section 2.5). On

the other hand, for uniform random traffic, the packet destinations are already uniformly

distributed across the vertical layers at every (x, y) column. RMF takes advantage of this

fact and preferentially chooses intermediate layers in the minimal directions, thereby

reducing latency without disrupting the overall balance.

Figures 2.16 and 2.17 compare the performance of RMF with RPM and DOR on

the asymmetric 8×8×4 and 16×16×4 topologies, respectively. For these asymmetric

topologies, Z-XY/YX-Z routing is used and destination-aware load-balancing is carried

out at every node using a set of credit counters, as discussed in Section 2.5. The
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Figure 2.16: Performance of RMF on a 8×8×4 mesh.

performance of RMF using three different threshold values are presented. A threshold

of T implies that the minimal layers are preferentially chosen even when they have a

credit deficit of T flits with respect to the non-minimal layers.

As expected, the average latency of RMF is lower than RPM under uniform

random traffic. The latency reduction increases as the threshold for preferring minimal

layers is increased. For the 8× 8× 4 topology, the latency of RMF is 7.5%, 11%,

and 12.1% lower than RPM when the threshold is 0, 4, and 8 flits, respectively. This

represents latency penalties over DOR of just 8%, 4%, and 2.6%, respectively, for the

three thresholds. Slightly lower latency reductions of 8-9% over RPM are observed for

the 16× 16× 4 topology where the latency penalty of RPM over minimal routing is
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Figure 2.17: Performance of RMF on a 16×16×4 mesh.

even smaller. Here, the latency of RMF is just 0.4-1.2% higher than DOR for the three

thresholds.

Finally, Figures 2.16(b), 2.16(c), 2.16(d), 2.17(b), 2.17(c), and 2.17(d) show

that RMF is at least as good as RPM on the three permutation traffic patterns both

in terms of latency and throughput. This proves that using RMF in place of RPM

has no downside in terms of performance. Implementing RMF, however, requires

the management of N counters, where N is the number of nodes in the network, as

discussed in Section 2.5. The number of bits per counter depends on a number of

factors like maximum packet size, threshold value (T ) and the number of layers in the

topology. Increasing the threshold T increases the number of bits per counter. Hence,
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Figure 2.18: Performance of RPM-LM on a 8×8×4 mesh.

selecting a threshold for preferential load-balancing is a tradeoff between latency and

router overhead. Section 2.7.3 compares the power and area overheads associated with

implementing RPM and RMF in on-chip routers.

Evaluation of RPM-LM

Next, we compare the performance of RPM-LM on the LM architecture with

RPM and RMF routing on a conventional 3D mesh. Since the multiplexing and

demultiplexing structures of the LM architecture are tailored towards the two-phase

load-balancing of RPM, we restrict ourselves to evaluating RPM routing on the LM

architecture. While other routing oblivious algorithms can be implemented with the LM
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Figure 2.19: Performance of RPM-LM on a 16×16×4 mesh.

architecture, both the demultiplexing and multiplexing stages may not be needed if the

algorithm involves only a single phase of Z routing.

Both the LM architecture and RMF routing can be considered as optimizations

for reducing the latency penalty of RPM. RMF routing relies on maintaining extra

state in the form of credit counters to implement preferential layer-load-balancing to

reduce latency. On the other hand, the LM architecture leverages the short inter-layer

distances and high vertical bandwidth in 3D ICs. Figures 2.18 and 2.19 compares

the latency-throughput curves of RPM, RMF and RPM-LM on asymmetric 8× 8× 4

and 16× 16× 4 topologies, respectively. Both RMF and RPM-LM are well-suited

for practical asymmetric topologies with few device layers to keep the overheads (i.e.,
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low radix switches in the LM architecture and fewer counters for RMF routing) low.

One advantage of the LM architecture is that it achieves lower latency than RPM under

all traffic patterns by replacing one-layer-per-hop routing with the demultiplexing and

multiplexing stages. In this regard, it is clearly superior to RMF routing which can

reduce latency only when the traffic is inherently load-balanced.

From our simulations, we observe that RPM-LM can achieve comparable

latency to RMF under uniform traffic but, unlike RMF, it achieves 9-10% lower

latency than RPM under complement, transpose and DOR-WC traffic patterns on the

8× 8× 4 topology. For the 16× 16× 4 case, under low loads, the latency of RPM-

LM is 4-6% lower than both RPM and RMF on complement, transpose and DOR-WC

traffic patterns. Hence, lower packet latency is an important benefit of using the LM

architecture in place of a 3D mesh. We evaluate the power and area benefits of the LM

architecture in the next section.

2.7.3 Power and area evaluation

In this Section, we evaluate the power and area overheads associated with the

RPM/RMF routers over a baseline 3D router. We also evaluate the power savings

achievable by using the LM architecture in place of a conventional 3D mesh. To provide

accurate comparisons, we implemented the baseline 3D router, RPM router, RMF router,

LM router, LM demultiplexing stage and the LM multiplexing stage down to the gate

level, and use post-layout power and area results for our comparisons. In particular,

the Verilog RTL implementation for the baseline 3D router was generated using

NetMaker [1], a fully-synthesizable parameterized router generator that implements an

input-buffered pipelined virtual channel router. We consider a baseline 7-port router

with 8 VCs per port, 5 flits per VC and a flit width of 16 bytes.

For the RPM and RMF routers, we extended the Verilog design of the baseline

router by incorporating the additional logic needed to implement RPM and RMF,

respectively. The routers are specifically designed for a 8× 8× 4 mesh topology. For

RPM, we used the last two bits of an 8 bit LFSR to select an intermediate layer, as

discussed in Section 2.4.2. We used one of the remaining bits from the LFSR to choose

between XY and YX routing. The additional logic required for RMF is a set of 256
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Table 2.5: Power and area evaluation.

Baseline RPM RMF LM router
router router router (amortized cost)

Router Demux Mux Total
Power (mW) 413.46 413.53 420.56 246.3 17.75 26.73 290.78
Area (mm2) 625987 626114 647411 375792 54895 72459 503146

counters arranged as 64 registers, each 20 bits wide. Each register contains four 5-bit

counters associated with a particular (x, y) column of the network. The (x, y) coordinates

of a packet’s destination are used to extract the right set of counters and the operations

discussed in Section 2.5 are performed to preferentially load-balance packets in minimal

directions. The layer selection operation is carried out one cycle before packet injection

to avoid adding to the critical path of the router pipeline.

As discussed in Section 2.6.1, the LM router is a 5-ported virtual-channel router

with 8VCs per port and 5 flits per VC. For the packet injection (demultiplexing) stage

of the LM architecture, we used the Verilog design for a 4-port router with a single

VC per port and 5 flits per VC. We assume a 8× 8× 4 mesh topology where the cost

of a single demultiplexing stage is amortized across four processors on the four layers.

Similarly, the total cost of the packet ejection (multiplexing) stages was estimated using

a 4-port router with 4VCs per port and 5flits per VC. In a four-layered topology, each

VC represents the ejection queue associated with one of the layers (refer Figure 2.7).

The cost of a single multiplexing stage is again estimated by dividing the cost of the

4-port router by the number of layers. Since we assume inter-layer communication

using Through-Silicon Vias (TSVs), the vertical wiring occupies some area on each

device layer. For estimating the area overhead due to the extra wiring needed in the

LM architecture, we assume vertical via pitch of 4 um [33] and eight 144 bit bundles

(128 bit flits and 16 bit control signals, four bundles for demultiplexing and four for

multiplexing) running vertically through all four device layers. The extra area overhead

due to wiring is added to the amortized area of the demultiplexing and multiplexing

structures.

The router RTLs were synthesized using Synopsys design compiler with TSMC
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65 nm GP process libraries, and Cadence SoC Encounter was used for placement and

routing. The frequency of operation was set at 1GHz. Table 2.5 presents the post-layout

power and area for the baseline, RPM, RMF and LM routers. In comparison to the

baseline 3D router, the post-layout results show that both the power and area overheads

associated with implementing RPM are just around 0.02%, which are quite negligible.

For the RMF router, the power and area overheads over the baseline router are 1.7% and

3.4%, respectively. The LM router requires considerably less power and area compared

to 3D mesh routers. The amortized power and area per router for the LM architecture is

29.7% and 19.7% less than a baseline 3D router, which are significant improvements.

2.8 Conclusion

In this chapter, we proposed a new oblivious routing algorithm for 3D mesh

networks called Randomized Partially-Minimal (RPM) routing. Although minimal

routing with near-optimal worst-case throughput has already been achieved for the 2D

mesh case using an algorithm called O1TURN [53], the optimality of O1TURN does

not extend to 3D or higher dimensions. RPM provably achieves optimal worst-case

throughput for 3D meshes when the network radix k is even and within a factor of

1/k2 of optimal worst-case throughput when k is odd. Furthermore, RPM significantly

outperforms DOR, ROMM, O1TURN and VAL in average-case throughput by 90-

109%, 45-54%, 28-35%, and 24-52%, respectively, on the different symmetric and

asymmetric mesh topologies evaluated. Whereas Valiant’s routing algorithm (VAL) [66]

achieves optimal worst-case throughput at a penalty factor of 2 in average latency

over DOR, RPM achieves (near) optimal worst-case throughput with a much smaller

penalty of 1.33. In practice, the average latency of RPM is expected to be closer to

minimal routing because 3D mesh networks are not expected to be symmetric in 3D

chip designs. For practical asymmetric 3D mesh configurations where the number of

device layers is far fewer than the number of nodes along the edge of a layer, the

average latency of RPM reduces to just a factor of 1.11 of DOR. We also proposed

a variant of RPM called Randomized Minimal First (RMF) routing which uses the

knowledge of a packet’s destination while load balancing traffic to intermediate layers.
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RMF leverages the inherent load-balancing properties of the network traffic to reduce

packet latency. On uniform traffic, the latency of RMF is only 0.4-2.6% higher than

DOR. RMF also retains the worst-case throughput optimality property of RPM and

performs at least as well or better than RPM on a wide range of traffic patterns. Finally,

we proposed a new layer-multiplexed 3D architecture to efficiently implement RPM in

3D ICs. The LM architecture replaces the one-layer-per-hop routing in 3D meshes with

simpler demultiplexing and multiplexing structures. This leverages the short inter-layer

distances and abundance of vertical wiring in 3D ICs to reduce both power and area

costs by around 30% and 20%, respectively, over a 3D mesh router while achieving

comparable (or better) performance.

Chapter 2, in part, is a reprint of the material as it appears in the following

publications:

• Rohit Sunkam Ramanujam and Bill Lin, “Randomized Partially-Minimal Routing

on Three-Dimensional Mesh Networks”, IEEE Computer Architecture Letters,

vol. 7, no. 2, pp. 37-40, July 2008.

• Rohit Sunkam Ramanujam and Bill Lin, “Near-Optimal Oblivious Routing on

Three-Dimensional Mesh Networks”, IEEE Conference on Computer Design

(ICCD), October 2008, pp. 134-141.

• Rohit Sunkam Ramanujam and Bill Lin, “A Layer-Multiplexed 3D On-Chip

Network Architecture”, IEEE Embedded Systems Letters, vol. 1, no. 2, August

2009, pp. 50-55.

• Rohit Sunkam Ramanujam and Bill Lin, “A Novel 3D Layer-Multiplexed On-

Chip Network”, ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), Princeton, NJ, October 19-20, 2009.

Chapter 2, in part, has been submitted for publication of the material as it may appear

in IEEE Transactions on Very Large Scale Integration, Rohit Sunkam Ramanujam, Bill

Lin, “Randomized Partially-Minimal Routing: Near-Optimal Oblivious Routing for 3D

Mesh Networks”. The dissertation author was the primary investigator and author of the

papers.



Chapter 3

Weighted Random Oblivious Routing
on Torus Networks

3.1 Introduction

Several different network architectures such as torus, mesh, and flattened

butterfly networks [2, 11, 63, 67] have been considered as candidates for on-chip

interconnection networks. Chapter 2 focused on designing a routing algorithm with

optimal worst-case throughput for 3D mesh networks. In this chapter, we study the

problem of optimal oblivious routing for another important architecture class, namely,

the torus network.

In the design of routing algorithms, both throughput and latency are important

metrics. Although dimension-ordered routing (DOR) [59] can achieve minimal-length

routing on torus networks, it suffers from poor worst-case throughput as it offers no

route diversity. On the other hand, it is well known that Valiant routing (VAL) [66]

can achieve optimal worst-case throughput by load-balancing globally across the entire

network, but it does so at the expense of destroying locality. Other oblivious routing

algorithms such as ROMM [46] and RLB [57] have good locality, but they fail to achieve

optimal worst-case throughput.

To the best of our knowledge, among the closed-form oblivious routing al-

gorithms that can guarantee optimal worst-case throughput for torus networks, an

64
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improved Valiant routing algorithm called IVAL [65] achieves the lowest average hop

count. Like two-phase Valiant routing, IVAL load-balances packets to a randomly

chosen intermediate node, but reverses the order of traversal of dimensions between

the two routing phases (e.g., XY routing, followed by YX routing). In doing so, loops

are often formed, and IVAL improves over Valiant routing by removing such loops at

runtime.

In this chapter, we introduce a new closed-form oblivious routing algorithm

called W2TURN that achieves optimal worst-case throughput for 2D torus networks.

W2TURN is based on a weighted random selection of paths with at most two turns. The

restriction imposed on the number of allowed turns results in a simple deadlock-free

implementation. In comparison to IVAL, W2TURN achieves lower average hop count

and higher average-case throughput. We also present another weighted random routing

algorithm based on selecting paths with at most two turns, called I2TURN. We show

that I2TURN is in fact equivalent to IVAL in the sense that packets are routed over the

same set of paths with the same probabilities. However, I2TURN eliminates the need for

loop removal at runtime and provides a closed-form analytical expression for evaluating

the average hop count. The latter enables us to demonstrate analytically that W2TURN

does indeed strictly outperform IVAL (and I2TURN) in average hop count.

W2TURN also performs well in comparison to optimization-based solutions.

Optimal routing for 2D torus networks has been formulated as a multicommodity flow

problem [65], which can be expressed as linear programs. Using this formulation, worst-

case throughput optimal routing with minimum average hop count can be computed.

However, it is difficult to guarantee deadlock-free operation for this approach since the

resulting solution may include arbitrary paths with arbitrary number of turns. Motivated

in part by this difficulty, Towles et al. proposed a modified formulation called 2TURN

that guarantees optimal routing when the choice of routing paths is restricted to those

with at most two turns. As noted in [65], the key advantage of 2TURN over the

optimal solution is the fact that its paths can be described in simple terms, allowing for a

simple deadlock-free implementation. However, like the optimal solution, 2TURN does

not have a closed-form description, thus requiring a separate linear program for each

instance of network size. These linear programs grow quickly, making them difficult to
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scale to large networks.1 When the network radix is odd, W2TURN achieves the same

average hop count as optimal-2TURN, but this optimal result is achieved with a closed-

form algorithm without the issues mentioned above. When the network radix is even,

W2TURN comes very close to optimal-2TURN in terms of average hop count, within

just 0.72% of optimal-2TURN on a 12×12 torus.

We also present a new weighted random oblivious routing algorithm for one-

dimensional rings called WRD (Weighted Random Direction). WRD offers both

optimal worst-case throughput and the minimum average hop count achievable while

remaining worst-case throughput optimal for ring networks. RLB routing [57] on rings

achieves these optimality conditions when the network radix is odd, but we are unaware

of any previous oblivious routing algorithms that can achieve the same for even-radix

ring topologies.

Finally, we present detailed evaluations comparing the performance of WRD

and W2TURN with the best previously known worst-case throughput optimal routing

algorithms with closed-form descriptions for ring and torus topologies, respectively.

In this regard, we compare W2TURN with IVAL/I2TURN in terms of average hop

count, average-case throughput and throughputs under a wide range of benign and

adversarial traffic patterns. Similarly, we compare WRD with RLB over the same set of

performance metrics. We observe that W2TURN can achieve up to 13.4% reduction in

hop count and a similar increase in throughput over I2TURN under uniform random

traffic. WRD can significantly reduce average hop count over RLB by up to 25%

when the network radix is even. By means of cycle-accurate flit-level simulations,

we also demonstrate that the reduction in hop count together with the improvement

in saturation throughput achieved by W2TURN and WRD can translate into significant

latency reductions under moderate to high network loads over a wide range of traffic

patterns.

The rest of this chapter is organized as follows: Section 3.2.1 provides a brief

background on the torus topology. Section 3.2.2 discusses the techniques used to
1The largest 2D torus networks solved in [65] had k = 11 and k = 13, respectively, for optimal and

optimal-2TURN routing, where k is the network radix. Interconnection networks with thousands of nodes
are already in use today. Although larger instances may be solved with increasing computing power, the
size of interconnection networks continues to grow as well.
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Figure 3.1: Layout of a 8×8 folded torus.

evaluate the performance of a routing algorithm. Section 3.3 then presents our optimal

routing algorithm, WRD, for the case of rings. Section 3.4 describes the I2TURN

routing algorithm and shows its equivalence to IVAL. Section 3.5 describes W2TURN

for the case of 2D torus networks. Finally, Section 3.6 evaluates the performance of

WRD and W2TURN and Section 3.7 concludes the chapter.

3.2 Background

In this section, we first provide a brief overview of the torus topology. We

follow it up with some preliminaries about computing the worst-case and average-case

throughput of routing algorithms.

3.2.1 Torus networks: A candidate on-chip network topology

Torus networks can be described as k-ary n-cubes, where k is the number of

nodes along each dimension and n is the number of dimensions. Rings belong to the

torus family of network topologies denoted as k-ary 1-cubes and have been often used

as the interconnection fabric in commercial multi-core chips [27, 52]. One and two

dimensional torus topologies are well suited for on-chip networks as they map well

to a planar substrate. A 2D torus has to be physically arranged in a folded form to
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equalize wire lengths (as shown in Figure 3.1) and avoid employing long wrap-around

links between edge nodes. A torus is a regular topology with symmetric links, which

makes it easier to load-balance traffic over all links in the network. This is different from

a network with asymmetric links like a 2D mesh, where links at the center of the network

are generally more heavily loaded compared to the links at the edge of the network, even

under uniform traffic.

3.2.2 Preliminaries

As discussed previously in Section 2.2, the worst-case throughput of a routing

algorithm is typically defined relative to the capacity of a network, which is in turn

defined by the maximum channel load γ∗ that a channel at the bisection of the network

needs to sustain under uniform traffic. For any n-dimensional tori with radix k, using

the results in [12],

γ∗ =






k
8

k is even

k
8
− 1

8k
k is odd

The network capacity is the inverse of γ∗.
As shown in [64], the worst-case channel load for a routing algorithm R

over all admissible traffic matrices can be found by solving a derived maximum

weighted matching problem for each channel in the network. The worst-case saturation

throughput for a routing algorithm R is the inverse of the worst-case channel load.

Further, using the same notations as Section 2.2, the normalized worst-case saturation

throughput, Θwc(R), is defined as the worst-case saturation throughput normalized to

the network capacity:

Θwc(R) =
γ∗

γwc(R)
(3.1)

Valiant routing (VAL) [66] is known to be worst-case throughput optimal with

Θwc(VAL) = 0.5. Therefore, to show that a routing algorithm R̂ is worst-case throughput

optimal for a torus network with radix k, it is sufficient to show that the maximum

channel load under the worst-case traffic pattern identified using maximum weighted
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matching is at most

γwc(R̂) =
γ∗

0.5
=






k
4

k is even

k
4
− 1

4k
k is odd

(3.2)

which could be demonstrated analytically or empirically over a wide range of network

sizes.

In order to show that a routing algorithm R̂ provides the minimum average

hop count achievable while remaining worst-case throughput optimal, we use the

multicommodity flow formulation proposed by Towles et al. [65] to derive worst-case

throughput optimal routings with minimum hop count over a range of network sizes. We

then compare the average hop counts of R̂ with those of the optimal routing solutions

over the same range of network sizes.

Finally, along with worst-case throughput, average-case throughput is also an

important performance metric for routing algorithms. Using the methodology used

in [53, 64], the average-case throughput of a routing algorithm R can be computed by

averaging the throughput over T , a large set of random traffic patterns:

Θavg(R) =
1
|T | ∑

Λ∈T

�
γ(R,Λ)

γ∗

�−1
(3.3)

3.3 Optimal routing on rings with WRD

In this section, we consider the optimal oblivious routing problem for one-

dimensional rings. Our proposed algorithm called WRD works as follows. Suppose

source s sends traffic to destination d, the minimal distance around the loop is given as:

∆(s,d) = min(|s−d|,k−|s−d|) (3.4)

where k is the number of nodes in the ring. When there is no confusion, we will simply

refer to ∆(s,d) as ∆. We consider two cases: first when k is odd, second when k is even.

For odd k, WRD routes traffic in the minimal and non-minimal directions with
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the following probabilities:

Podd =






k−∆
k

in minimal direction

∆
k

in non-minimal direction

(3.5)

This is precisely what the RLB algorithm [57] does in the case of rings, and this has

already been shown to be worst-case throughput optimal. Given the above routing

probabilities and the fact that the minimal direction has ∆ hops while the non-minimal

direction has k−∆ hops, the average hop count for the odd-radix case can be computed

as follows:

Hodd(WRD) = E
�

2∆(k−∆)
k

�
=

k
3
− 1

3k
(3.6)

where E[.] denotes the expectation operator over all possible destination nodes for a

given source.

For even k, WRD routes traffic using the following probabilities when ∆ > 0 and

k > 2:

Peven =






k−∆−1
k−2

in minimal direction

∆−1
k−2

in non-minimal direction

(3.7)

When ∆ = 0 (i.e., s = d), no routing is necessary. When k = 2 and ∆ > 0, WRD routes in

both directions at equal distance with equal probability, which is the same as RLB. Note

that the traffic distribution in the minimal and non-minimal directions for the even radix

case when k > 2 is different from RLB. The average hop count of this route distribution

can be computed as follows:

Heven(WRD) =

E
��

∆(k−∆−1)
k−2

+
(k−∆)(∆−1)

k−2

�����∆ > 0
�

P(∆ > 0)

=
k
3
×

�
k−1

k

�
=

k
3
− 1

3
WRD achieves lower average hop count than RLB when the network radix k is

even and when k > 2 since
k
3
− 1

3
<

k
3
− 1

3k
∀k > 1
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We next show that WRD indeed achieves optimal worst-case throughput for all network

radices.

Claim 7. WRD is worst-case throughput optimal.

Proof. For the odd-radix case, WRD is the same as RLB, which has already been shown

to be worst-case throughput optimal in [55]. For the even-radix case, we use the same

proof methodology that was used in [55] for showing RLB is worst-case throughput

optimal on a ring. The proof uses the method in [64] to identify a worst-case traffic

pattern for WRD. We then verify that the maximum channel load using WRD on this

worst-case traffic pattern is indeed at most k/4, as shown necessary and sufficient for

worst-case throughput optimality for even k in Equation 3.2 of Section 3.2. Using the

technique described in [64], a worst-case traffic pattern for WRD is Tornado traffic [12].

Suppose under the tornado traffic pattern each node sends all its traffic to a node k/2−1

hops away in the clockwise direction (∆ = k/2− 1), the corresponding load on every

clockwise channel is given by the sum of the contributions from the k/2− 1 nodes

preceding the channel. Using the probability for routing in the minimal direction from

Equation 3.7, each of these k/2− 1 preceding nodes route in the clockwise (minimal)

direction with a probability of k/(2(k−2)). Therefore, the maximum channel load on a

clockwise channel, γclk(WRD), is given as:

γclk(WRD) =
k/2

k−2
×

�
k
2
−1

�
=

k
4
∀k > 2

Similarly, the maximum channel load on a counter-clockwise channel can be computed

as the sum of the contributions from (k/2 + 1) nodes preceding the channel. Using the

probability of routing in the non-minimal direction from Equation 3.7, each of these

nodes contribute (k− 4)/(2(k− 2)) of their traffic, and the sum of their contributions,

γcclk(WRD), is given as:

γcclk(WRD) =
(k +2)(k−4)

4(k−2)
<

k
4
∀k > 2

The worst-case channel load with WRD for even k is then given as:

γwc(WRD) = max(γclk(WRD),γcclk(WRD)) =
k
4
∀k > 2

Hence, WRD is worst-case throughput optimal.



72

S

D

1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 3,2

0,3 1,3 2,3 3,3

0,0

2,2

Figure 3.2: Routing with 2-turn paths.

Claim 8. WRD achieves the minimum average hop count achievable while remaining

worst-case throughput optimal.

Proof. Using the methodology discussed in Section 3.2, we have verified this claim by

comparing the average hop counts of WRD with those of optimal routing, which were

computed using a multicommodity flow formulation [65].

3.4 The I2TURN routing algorithm

In this section, we describe the I2TURN routing algorithm for two-dimensional

torus networks. As the name suggests, I2TURN considers routing paths with at most

two turns, as shown in Figure 3.2. The dashed line shows an XYX 2-turn path that

starts from (0,0), makes the first turn at (1,0), makes the second turn at (1,2), and goes

finally to (2,2). The solid line shows an alternative XYX 2-turn path that starts from

(0,0), loops left and around to first turn at (3,0), loops down and around to (3,2), and

goes finally to (2,2).

The idea of using 2-turn paths was proposed in [65] in their optimal 2TURN

algorithm. However, the proposed 2TURN algorithm does not have a closed-form

algorithmic description. It only has a closed-form description of the possible paths that



73

a packet may take through the network, but requires solving a separate linear program

to determine the path distribution for each given network radix. The size of these

linear programs grow quickly making them difficult to scale to large networks. The

I2TURN algorithm and the W2TURN algorithm, which is described next, have closed-

form descriptions and can be easily extended to arbitrarily large networks.

We first consider a version of I2TURN that only uses XYX 2-turn paths.

Suppose (x1,y1) is the source and (x2,y2) is the destination. The three segments of

the XYX 2-turn paths are generated as follows:

1. X-segment: Choose at uniform random an X position x∗ ∈ [0,k−1] and route in

the X dimension from (x1,y1) to (x∗,y1) in the minimal direction.

2. Y-segment: Next, route in the Y dimension from (x∗,y1) to (x∗,y2) in the minimal

and non-minimal directions with the following probabilities:

P =






k−∆y
k

in minimal direction

∆y
k

in non-minimal direction

Here ∆y is the minimum distance in Y from (x∗,y1) to (x∗,y2) computed using

Equation 3.4. The routing along the Y dimension is identical to RLB and WRD

for the odd-ring case (Equation 3.5).

3. X-segment: Finally, route in the X dimension from (x∗,y2) to (x2,y2) in the

minimal direction.

There are several degenerate cases. When x∗ = x1, there is no need to route on the first

X-segment. Similarly, when x∗ = x2, then there is no need to route on the last X-segment.

When y1 = y2, packets only need to be routed along the X dimension with no turns and

any loop formed as a result of two-phase minimal routing on the X ring can be removed.

In this case, the packet is routed with probability (k−∆x)/k in the minimal direction,

where ∆x is the minimum distance in X between x1 and x2, and with probability (∆x)/k

in the non-minimal direction. Finally, when the source and destination are the same, no

routing is necessary. Unless otherwise noted, we will regard these “degenerate" cases as

“2-turn" paths as well.
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3.4.1 Equivalence to IVAL

Claim 9. I2TURN routes packets using the same statistical distribution of paths as IVAL.

Proof. IVAL routes packets from the source to the destination via a random intermediate

node, using minimal XY and YX routing in the two phases. IVAL identifies and removes

any loop formed at runtime, resulting in the construction of loop-free 2-turn XYX paths.

To show that IVAL and I2TURN route packets along the same paths with the same

probabilities, we consider three cases. Suppose (x1,y1) is the source and (x2,y2) is the

destination. In the first case, when the source and destination are the same, no routing

occurs in both IVAL and I2TURN.

In the second case, when y1 �= y2, I2TURN chooses at uniform random the

intermediate X position x∗. The routing in the X dimension from x1 to x∗ and x∗ to

x2 are each unique in the corresponding minimal directions. For the Y segment, the

packet is routed in either the minimal or non-minimal Y direction. In IVAL, there are

k2 possible intermediate nodes (xi,yi) that can be chosen at uniform random. It follows

that the probability of choosing an intermediate node with xi = x∗ is uniformly 1/k. As

in I2TURN, the routing for IVAL in the X dimension from x1 to x∗ and x∗ to x2 are

in the same corresponding minimal directions. Since IVAL paths are loop-free after

runtime loop removal, we are guaranteed that the path will be a 2-turn XYX path where

the packet will be routed in the Y dimension at X position x∗ in either the minimal or

non-minimal direction. Since routing in the X dimension is equivalent, we can reduce

the proof to equivalent path selection on the Y ring.

For I2TURN, there are two possible acyclic paths on the Y ring – a minimal path

in the short direction with a distance of ∆y that is chosen with probability (k−∆y)/k,

and a non-minimal path in the long direction with a distance of (k−∆y) that is chosen

with probability ∆y/k. For IVAL, any of the k nodes on the Y ring can be chosen as the

intermediate node. Since the definition of minimal and non-minimal paths is relative to

y1 and y2, it suffices to consider the case where y1 = 0 and y2 = ∆y, effectively shifting

the origin to the coordinates of the source. By definition of minimal distance, ∆y≤ k/2.

In the subsequent discussion, minimal and non-minimal directions (paths) refer

to the short and long paths, respectively, between the source and the destination. Let i

be the Y coordinate of the intermediate node chosen by IVAL. There are two situations
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when a packet is guaranteed to be routed along the minimal path after loop removal:

when 0≤ i < k/2 or when (i−∆y) > k/2. There are �k/2� possible intermediate nodes

that satisfy 0 ≤ i < k/2, and there are �k/2�−∆y− 1 possible intermediate nodes that

satisfy (i−∆y) > k/2, with a combined total of �k/2�+ �k/2�−∆y− 1 intermediate

nodes that will always result in IVAL routing along the minimal path after loop removal.

When k is even and i = k/2, the distance between y1 = 0 and i will be the same in both

directions, giving it a 50% chance that a packet will be routed in the minimal direction

after loop removal. Similarly, when k is even and i−∆y = k/2, the distance between

i and y2 = ∆y will be the same in both directions, again giving it a 50% chance that a

packet will be routed in the minimal direction following loop removal. Assuming all

intermediate nodes are chosen with equal probability, the total probability of choosing

the minimal path along the Y ring in IVAL is given by (�k/2�+�k/2�−∆y−1)/k when

k is odd and (�k/2�+ �k/2�−∆y)/k when k is even. When k is odd, �k/2�+ �k/2� =

k + 1. When k is even, �k/2�+ �k/2� = k. Therefore, the probability of choosing the

minimal path is equal to (k−∆y)/k when k is either even or odd.

Finally, in the third case, when y1 = y2, but x1 �= x2, the proof reduces to showing

that IVAL will choose the same loop-free path on the X dimension as I2TURN. The

same analysis presented above for the Y ring can be applied to the X dimension to show

that both IVAL and I2TURN will choose the minimal (and non-minimal) paths with the

same probability.

Claim 10. I2TURN is worst-case throughput optimal.

Proof. The proof follows from its equivalence to IVAL.

The above discussion applies to I2TURN with XYX 2-turn paths. I2TURN

can be equivalently defined using YXY 2-turn paths by swapping dimensions. Also,

I2TURN can be implemented using a randomization of XYX and YXY paths. When

XYX and YXY routings are used with equal probability, I2TURN routing is symmetric

and balances load equally between the X and Y channels.
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3.4.2 Average hop count of I2TURN

The I2TURN routing algorithm for torus networks is described in terms of

weighted random selection of 2-turn paths. Although I2TURN is equivalent to IVAL, its

description of 2-turn paths based on probabilities makes it easier to derive an analytical

expression for its average hop count. The average hop count for I2TURN can be

expressed as the sum of the average number of hops for the three routing segments of

the 2-turn paths: minimal routing on the first and last X segments, and weighted random

routing on the middle Y segment. Let Hmin denote the average hop count for minimal

routing on a ring [12].

Hmin =






k
4

k is even

k
4
− 1

4k
k is odd

Since the routing on the middle Y segment is same as the WRD algorithm for the odd-

ring case, the average hop count for this segment can be computed using Equation 3.6.

As analyzed in the proof of Claim 9, we have to consider 1-in-k cases when the source

and destination have the same Y coordinate. For these cases, loops formed on the X

ring can be removed and the routing along the X ring becomes identical to the weighted

random routing used in the Y dimension. Taken together, the average hop count for

I2TURN is presented as follows:

Havg(I2TURN) = Hx(I2TURN)+Hy(I2TURN)

Hx(I2TURN) =
�

1− 1
k

�
2Hmin +

�
1
k

��
k
3
− 1

3k

�

Hy(I2TURN) =
k
3
− 1

3k

Havg(I2TURN) = 2
�

1− 1
k

�
Hmin +

�
1+

1
k

��
k
3
− 1

3k

�

It must be noted here that I2TURN routing described using YXY routing paths

or a randomization of XYX and YXY routings will have the same average hop count as

computed above.
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3.5 The W2TURN routing algorithm

Next, we describe the W2TURN routing algorithm for 2D-torus networks. Like

I2TURN, W2TURN also considers different routing paths with at most two turns, as

shown in Figure 3.2. However, the probabilities with which the 2TURN paths are chosen

are different, giving W2TURN an edge over I2TURN in terms of average hop-count.

The W2TURN algorithm was developed in part from examining the path distribution

derived out of the optimal 2TURN formulation. W2TURN was also based on the

intuition gained from studying optimal routing for the 1D ring case (WRD) and the

I2TURN algorithm.

In the remainder of this section, we present the W2TURN routing algorithm and

analyze its worst-case throughput and average hop count. Like WRD, we consider the

odd-k and even-k cases separately.

3.5.1 When k is odd

We first describe the weighted random selection of XYX routing paths in

W2TURN. ∆(x1,x2) refers to the minimum distance on the X-ring between nodes having

X-coordinates x1 and x2 and the same Y-coordinate. ∆(y1,y2) refers to the minimum

distance on the Y-ring between nodes having Y-coordinates y1 and y2 and the same

X-coordinate. The definition of minimum distance along a dimension follows from

Equation 3.4.

Suppose (x1,y1) is the source and (x2,y2) is the destination, the three segments

of the XYX 2-turn paths are generated as follows:

1. X-segment: Choose at uniform random an X position x∗ ∈ [0,k − 1]. Then,

consider two cases:

(a) Route in the minimal direction from (x1,y1) to (x∗,y1) if any of the following

conditions are satisfied:

• ∆(x1,x∗) < � k
2�,

• (x2,y1) is not on the minimal path from (x1,y1) to (x∗,y1), or

• ∆(x1,x2) = � k
2�.
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(b) Otherwise, route from (x1,y1) to (x∗,y1) on the X ring with the following

probabilities:

P =






k−∆(x1,x2)
k

in minimal direction
∆(x1,x2)

k
in non-minimal direction

where minimal and non-minimal directions refer to the short and long paths,

respectively, on the X ring from (x1,y1) to (x∗,y1).

2. Y-segment: Next, route in the Y dimension from (x∗,y1) to (x∗,y2). We again

consider two cases:

(a) Route in the minimal direction from (x∗,y1) to (x∗,y2) if all of the following

conditions are satisfied:

• x1 �= x2,

• ∆(y1,y2) < � k
2�, and

• (x∗ = x1 or x∗ = x2).

(b) Otherwise, route from (x∗,y1) to (x∗,y2) on the Y ring using WRD.

3. X-segment: Finally, route in the X dimension from (x∗,y2) to (x2,y2), again with

two cases:

(a) Route in the minimal direction from (x∗,y2) to (x2,y2) if any of the following

conditions are satisfied:

• ∆(x∗,x2) < � k
2�,

• (x1,y2) is not on the minimal path from (x∗,y2) to (x2,y2), or

• ∆(x1,x2) = � k
2�.

(b) Otherwise, route from (x∗,y2) to (x2,y2) on the X ring with the following

probabilities:

P =






k−∆(x1,x2)
k

in minimal direction
∆(x1,x2)

k
in non-minimal direction

where minimal and non-minimal directions refer to the short and long paths,

respectively, on the X ring from (x∗,y2) to (x2,y2).
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There are several degenerate cases. When x∗ = x1, there is no need to route on

the first X-segment. Similarly, when x∗ = x2, there is no need to route on the last X-

segment. When y1 = y2, packets only need to be routed along the X dimension with no

turns using WRD. Finally, when the source and destination are the same, no routing is

necessary.

Given the above XYX routing algorithm, the version with YXY routing can

be equivalently defined by swapping dimensions. To achieve worst-case throughput

optimality for the odd k case, W2TURN requires using both XYX and YXY routing

with equal probabilities.

3.5.2 When k is even

For the even-radix case, we first describe the weighted random selection of XYX

routing paths. Suppose (x1,y1) is the source and (x2,y2) is the destination, the three

segments of the XYX 2-turn paths are generated as follows:

1. X-segment: First, choose at uniform random an X position x∗ ∈ [0,k− 1]. Then

route minimally from (x1,y1) to (x∗,y1). If the number of hops in both directions

are equal, choose the direction that does not contain the node (x2,y1). If x∗ = x2,

and the number of hops in both directions are equal, choose either direction with

equal probability.

2. Y-segment: Route from (x∗,y1) to (x∗,y2) using WRD.

3. X-segment: Route minimally from (x∗,y2) to (x2,y2). If the number of hops

in both directions are equal, choose the direction that does not contain the node

(x1,y2). If x∗ = x1, and the number of hops in both directions are equal, choose

either direction with equal probability.

There are several degenerate cases. When x∗ = x1, there is no need to route on

the first X-segment. Similarly, when x∗ = x2, then there is no need to route on the last

X-segment. When y1 = y2, the packet only needs to be routed along the X dimension

using the same algorithm described above. For this case, any loop formed as a result of

an overlap in the routing paths of the two X segments should be removed. Following
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loop removal, the probabilities of routing in the minimal and non-minimal directions are

given as follows when ∆(x1,x2) < k/2 and ∆(x1,x2) > 0 :

P =






k−∆(x1,x2)−1
k

in minimal direction

∆(x1,x2)+1
k

in non-minimal direction

When ∆(x1,x2) = k/2 a packet is routed in either direction with equal probability.

Finally, when the source and destination are the same, no routing is necessary.

The YXY routing paths can be equivalently defined by swapping dimensions. To

achieve worst-case throughput optimality for the even k case, W2TURN requires inter-

polating over the following four routings with the corresponding specified probabilities:

• XYX routing with probability k
2(k+1)

• YXY routing with probability k
2(k+1)

• Dimension-ordered XY routing with probability 1
2(k+1)

• Dimension-ordered YX routing with probability 1
2(k+1)

3.5.3 Throughput optimality

In this section, we show that W2TURN is indeed worst-case throughput optimal.

Claim 11. W2TURN is worst-case throughput optimal.

Proof. We again use the same proof methodology that was used in [55], which uses

the method in [64] for identifying a worst-case traffic pattern. We then show that the

maximum channel load using W2TURN on this worst-case traffic pattern is indeed at

most k/4 when k is even and at most (k/4−1/(4k)) when k is odd, as shown necessary

and sufficient in Equation 3.2. For a network with radix k, a worst-case traffic pattern

for W2TURN is shown as follows:

Node(x,y) sends packets to (x+ �k/2�,y+ �k/2�)
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The above traffic pattern is same as Tornado traffic [12] when k is odd. Using worst-case

load analysis, the maximum channel load for the worst-case traffic pattern was found to

be the same as Equation 3.2 for all values of k analyzed2.

3.5.4 Latency analysis

Next, we express the average hop count of W2TURN in terms of the average

hop count expressions derived for WRD and the network radix k. Later, in Section 3.6

we show that W2TURN indeed outperforms I2TURN in average hop count. We treat

the even and odd k cases separately.

Odd k

The average hop count of XYX routing is presented in this section. YXY routing

will have identical hop count due to symmetry. The average hop count for XYX routing

is given by the sum of the average hop counts of the two X segments and the Y segment.

We first consider the average hop count for the X segments. Suppose (x1,y1) is the

source and (x2,y2) is the destination, when y1 = y2, which is one of the degenerate

cases, WRD is used to route on the X ring. The average hop count for this case is equal

to the average hop count of WRD with odd radix.

Hcase1 =
k
3
− 1

3k

When y1 �= y2, minimal routing is used on both X segments if either of the three

conditions stated in Section 3.5.1 are satisfied. In this case, we first compute the

probability of routing non-minimally in the X dimension (when all three conditions

are not satisfied) and multiply it by the extra hops added (over minimal) as a result

of non-minimal routing. We denote this penalty paid over minimal routing by routing

non-minimally as Hpenalty.

Hpenalty =
2
k



1
k

� k
2 �−1

∑
∆(x1,x2)=0

∆(x1,x2)
k





2Maximum channel load was verified for k up to 40.
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The latency of each X segment is then given as:

Hcase2 = Hmin +Hpenalty

Hcase1 denotes the combined latency of the two X segments when y1 = y2 and Hcase2

denotes the average latency of each X segment when y1 �= y2. Hence, the average latency

of the two X segments can be expressed as follows:

Hx(XYX) =
1
k

Hcase1 +
(k−1)

k
(2×Hcase2) (3.8)

Next, we consider the average hop count of the Y segment. In the Y dimension, a

packet is routed minimally if all the conditions stated in Section 3.5.1 are satisfied. Else,

it is routed using WRD. The probability that the first condition is true, i.e. x1 �= x2 is

(k−1)/k and the probability that the third condition is true, i.e. x∗ = x1 or x∗ = x2, given

x1 �= x2 is 2/k. Using these results, the average hop count savings by routing minimally

in the Y dimension instead of using WRD when all three conditions are true is given as

follows:

Hsavings =

2
k

(k−1)
k



2
k

� k
2 �−1

∑
∆(y1,y2)=0

∆(y1,y2)
k

(k−2∆(y1,y2))





The average latency in the Y dimension can then be expressed as:

Hy(XYX) = Hodd(WRD)−Hsavings

=
k
3
− 1

3k
−Hsavings (3.9)

From Equations 3.8 and 3.9 and using the fact that YXY routing will have the same

average hop count as XYX routing,

Hodd(W2TURN) = Hx(XYX)+Hy(XYX)

Even k

W2TURN routing for an even network radix is an interpolation of four different

routings - XYX, YXY, XY and YX. We first consider the average hop count for the XYX
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routing paths. When y1 = y2, no routing is necessary along the Y dimension and there

is a possibility of loop removal on the X ring after two phases of X routing. Following

loop removal, using the probabilities described in Section 3.5.2 the combined average

hop count of the two X segments is given as follows:

Hcase1 =
1
2

+
k
3
− 4

3k

For the case when y1 �= y2, a packet is routed in the minimal direction on both the X

segments. Hence, the average hop count for each X segment in this case is given as:

Hcase2 = Hmin =
k
4

Therefore, the average hop count for the two X segments of the XYX routing paths can

be expressed as:

Hx(XYX) =
1
k

Hcase1 +
(k−1)

k
(2×Hcase2) (3.10)

Since WRD is used along the Y dimension, the average hop count along this dimension

is given as:

Hy(XYX) = Heven(WRD) =
(k−1)

3
(3.11)

From Equations 3.10 and 3.11,

H(XYX) = Hx(XYX)+Hy(XYX)

The hop count for YXY routing is identical to XYX routing due to symmetry. The

average hop counts for minimal XY and YX routings are given as:

H(XY) = H(YX) =
k
2

The average hop count of W2TURN when the network radix is even, Heven(W2TURN),

is given by the weighted mean of the average hop counts of XYX, YXY, XY and YX

routings with weights k/2(k +1), k/2(k +1), 1/2(k +1), and 1/2(k +1), respectively.

3.5.5 Deadlock-free implementation

W2TURN uses the same set of 2-turn paths as the optimal 2TURN formulation

proposed in [65]. When k is odd, W2TURN distributes traffic over these 2-turn paths
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with the same probabilities as optimal 2TURN. When k is even, W2TURN also uses

the same set of 2-turn paths, although with different probabilities. Since W2TURN

uses the same set of 2-turn paths as optimal-2TURN, a deadlock-free implementation

requires exactly the same number of virtual channels, which has been shown to be

four virtual channels per physical channel (the same requirement for VAL [66]). In

particular, W2TURN can be made deadlock-free by incrementing a packet’s virtual

channel set after each turn from the Y to the X dimension. Since any 2-turn path

has at most one turn from Y to X, this approach requires two virtual channel sets.

Each set requires two virtual channels to resolve intra-dimension deadlocks, therefore

requiring four virtual channels per physical channel in total. As stated earlier, the key

advantage of W2TURN over optimal-2TURN is that W2TURN provides a closed-form

algorithm that can achieve comparable performance with the same simple deadlock-

free implementation. Further, the W2TURN algorithm only involves simple conditional

checks and probability calculations that can be readily implemented in parallel.

3.6 Performance Evaluation

In this section, we evaluate the performance of WRD and W2TURN in terms

of latency and throughput. Both WRD and W2TURN have already been shown

to be worst-case throughput optimal for one-dimensional and two-dimensional torus

topologies, respectively. This section focuses on other throughput metrics like average-

case throughput and throughputs under different benign and adversarial traffic patterns.

3.6.1 Evaluation of WRD

Hop count analysis

Figure 3.3 compares the average hop count of WRD with RLB [57] and

optimal routing [65]. All three routing algorithms considered achieve optimal worst-

case throughput for ring networks. WRD and RLB have closed-form algorithmic

descriptions, while the optimal routing results were obtained using the multicommodity

flow formulation proposed in [65]. The average hop counts are normalized to minimal
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Figure 3.3: Comparison of the average hop counts of WRD with RLB [57] and

optimal routing [65] on ring networks with different radices.

routing. As shown in Figure 3.3, WRD achieves the same hop-count as optimal routing

for all network radices.

When k is odd, WRD and RLB are equivalent and therefore have the same hop

count, as shown in Figure 3.3. When k is even, WRD outperforms RLB because WRD

routes in the minimal direction more often. In this case, WRD can achieve up to 25%

reduction in average-hop count over RLB.

Throughput evaluation

WRD is optimal in terms of worst-case throughput, but is not minimal in terms

of latency as it employs non-minimal routing paths. Here, we compare the throughput of

WRD with two other routing algorithms for rings with closed-form descriptions, namely,

RLB and DOR. RLB also achieves the same optimal worst-case throughput as WRD but

has a higher average hop count when the network radix is even. DOR, on the other hand,

achieves minimal hop count while sacrificing worst-case throughput. The throughput

metrics used in this section are average-case throughput and throughput under uniform

random traffic and tornado traffic [12]. Uniform random traffic is a benign traffic pattern

which is easy to route since it is inherently load-balanced. In contrast, tornado traffic
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(a) Average-case throughput
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(b) Uniform random traffic
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(c) Tornado traffic

Figure 3.4: Throughput evaluation of WRD for different network sizes.

is an adversarial pattern, which is also a worst-case traffic pattern for both DOR and

WRD.

The throughput analysis is carried out in two steps. Initially, we perform a

simplified throughput analysis for a range of network sizes from 4 nodes to 16 nodes.

This analysis assumes ideal single-cycle routers with infinite buffers. In the next

section, we back these results with more realistic flit-level simulations for an 8-node ring

topology. All throughput results presented subsequently are normalized to the network

capacity (refer Section 3.2).

Figure 3.4(a) compares the average-case throughput of WRD with RLB and

DOR. As discussed in Section 3.2, average-case throughput of a routing algorithm

is computed by averaging the throughput over a large set of randomly generated
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permutation traffic patterns.3 We average the throughput over a set of 10,000 randomly

generated permutation traffic matrices. WRD is identical to RLB when the network

radix is odd and this is reflected in the average-case throughput results as well. RLB

is slightly better than WRD for even radices when the network radix is low. For larger

topologies (beyond 10 nodes), the difference in throughputs is negligible and by radix

16, WRD even slightly outperforms RLB. Both WRD and RLB outperform DOR in

terms of average-case throughput. On average, over all network radices evaluated, WRD

outperforms DOR by around 9.8% in average-case throughput.

As shown in Figure 3.4(b), DOR is the best routing algorithm under uniform

random traffic, where traffic from a node is equally distributed to all nodes in the

network. Non-minimal routing in WRD and RLB prevent these algorithms from

sustaining throughputs as high as DOR when the traffic is uniform. However, for

even network radices, the lower average hop count of WRD compared to RLB directly

translates into a corresponding gain in throughput. For even radices, the throughput of

WRD is 12.3% higher than RLB on average under uniform traffic.

Finally, Figure 3.4(c) proves that the throughput of a minimal routing algorithm

like DOR can degrade tremendously under an adversarial traffic pattern like tornado

traffic. Therefore guaranteeing a level of worst-case performance using optimal routing

algorithms like WRD is important. As discussed in Section 3.3, tornado traffic is a

worst-case traffic pattern for WRD, which sustains optimal worst-case throughput of

half the network capacity under the tornado traffic pattern. On an average over all

radices, this is 64% higher than what DOR can sustain under the same traffic pattern.

RLB performs comparably to WRD and its throughput converges to half the network

capacity for high radices.

Flit-level simulations

The results obtained using ideal throughput analysis represent upper bounds

to the actual achievable throughput because it assumes ideal single-cycle routers with

infinite buffers and ignores issues like flow control and contention in switches. Hence,
3A permutation traffic matrix is one in which a source sends all its traffic to a single destination,

obtained from a one-to-one mapping between pairs of nodes in the network [12].
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we use cycle-accurate flit-level simulations to gain more realistic insights into the

performance of the routing algorithms. We restrict ourselves to an 8-node ring topology.

A topology with odd radix is not considered because WRD is identical to RLB for odd

radices.

We modified the PopNet [54] on-chip network simulator to perform flit-level

simulations. PopNet models a typical input-buffered VC router with five pipelined

stages. Route computation is performed in the first stage followed by VC allocation,

switch arbitration, switch traversal and link traversal. The head flit of a packet proceeds

through all five stages while the body and tail flits bypass the first two stages and

inherit the output port and output VC reserved by the head flit. Credit-based flit-level

flow control is used between adjacent routers. We assume 8 virtual channels (VCs)

per physical channel, each 5 flits deep. For ring topologies, two virtual channels are

sufficient to avoid intra-dimension deadlocks. However, it is well known that VCs

improve the throughput of any routing algorithm by reducing head-of-line blocking and

enabling better statistical multiplexing of flits. So, having a reasonably large number

of VCs lets us compare the best performance of all routing algorithms. 3-flit packets

are injected into the network and we use PopNet to evaluate the average routing delays

under different injection loads. For each simulation, we ran the simulator for 500,000

cycles. The latency of a packet is measured as the delay between the time the head flit

is injected into the network and the time the tail flit is consumed at the destination.

Uniform random traffic and tornado traffic are used for comparing WRD with

RLB and DOR. In order to capture average-case performance, we generated 250 random

permutation traffic patterns and ran the simulation on each pattern for 20,000 cycles.

Finally, we report the average delay over the 250 patterns under different injection loads.

The maximum latency used for averaging is clipped at 75 cycles in order to keep the

impact of a single observation on the computed average within bounds. We refer to

this traffic pattern as dynamic random traffic as the averaged results correspond to the

performance of the routing algorithms under a traffic matrix that dynamically changes

with time.

Figure 3.5 presents the flit-level simulation results for the three traffic patterns.

The actual throughput obtained is around 60-70% of the throughput predicted using
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Figure 3.5: Performance of WRD on a 8-node ring.

ideal analysis, but the saturation throughput trends remain unchanged. As expected

from the ideal throughput analysis, DOR outperforms WRD, which in turn outperforms

RLB in terms of saturation throughput under uniform random traffic. The latency of

WRD under low loads is 8.3% lower than RLB and 11.5% higher than DOR. These

numbers are slightly less than the corresponding numbers obtained using hop count

analysis, where the hop count of WRD is 11.2% lower than RLB and 16.5% higher than

DOR. This is because packet delays in flit-level simulations include the transmission

delay of multi-flit packets and the router pipeline delay at the destination, which are

ignored while measuring hop count.

For tornado traffic, although DOR has lower latency under very low loads,
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Figure 3.6: Comparison of average hop counts for several routing methods with

optimal worst-case throughput on 2D-torus networks with different radices. Optimal

routing and optimal routing with restriction to 2-turn paths are included.

it saturates earlier compared to WRD and RLB. WRD and RLB have comparable

saturation throughput and latency under tornado traffic. Finally, for dynamic random

traffic, we observe that WRD in fact achieves 9-10% lower latency compared to RLB

over the entire range of injection rates. WRD also starts achieving lower latency

compared to DOR beyond injection loads of 25% of network capacity. Hence, in

addition to being worst-case throughput optimal, WRD performs well in the average

case.

3.6.2 Evaluation of W2TURN

Hop count analysis

Figure 3.6 compares the average hop count of W2TURN with I2TURN, optimal

2TURN routing [65], and optimal routing [65]. The average hop counts are again

normalized to minimal dimension-ordered routing. The optimal and optimal-2TURN

routing results are obtained using the corresponding multicommodity flow formulations

proposed in [65]. As shown in Figure 3.3, the average hop count of W2TURN is lower
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than I2TURN for all network radices. When the network radix is odd, W2TURN

achieves the same average hop count as optimal-2TURN, but this optimal result is

achieved with a closed-form algorithm. When the network radix is even, W2TURN

comes very close to optimal-2TURN, within just 0.72% in average hop count for k up

to 12. Also, as shown in Figure 3.6, the hop count of W2TURN is very close to optimal

routing when k is even4, within just 1.4% for k = 10. Although optimal routing performs

noticeably better when k is odd, it is difficult to guarantee deadlock-free operation for

optimal routing because the resulting solution may include arbitrary paths and turns.

Throughput evaluation

Similar to our evaluation of WRD, in this section, we compare the throughput

of W2TURN with IVAL/I2TURN, the best previously known worst-case throughput

optimal routing algorithm with a closed-form description for 2D torus networks. We

evaluate a randomized version of I2TURN that uses XYX and YXY routing paths with

equal probabilities. The randomization balances the load between the X and Y channels

and improves the average-case throughput of I2TURN over a non-randomized version

using just XYX (or YXY) routing paths. We also include DOR in our evaluation to

compare W2TURN with a minimal routing algorithm and to emphasize the importance

of worst-case throughput optimality.

Throughput analysis is again carried out in two steps. We first present results

using ideal throughput analysis over a range of network radices from 4 (16 nodes) to 16

(256 nodes) and then back these results using cycle-accurate flit-level simulations for an

even-radix 8×8 topology and an odd-radix 7×7 topology. The traffic patterns used for

evaluating W2TURN are two-dimensional versions of the patterns used for evaluating

WRD, i.e., uniform random traffic and tornado traffic. In addition, we present average-

case throughput results based on averaging the throughput of the routing algorithms over

10,000 randomly generated permutation traffic patterns.

Figure 3.7(a) compares the average-case throughput of W2TURN with I2TURN

and DOR. W2TURN performs marginally better than I2TURN over all the network sizes

considered. The average-case throughput of W2TURN is slightly higher than I2TURN
4The largest 2D-torus network with an even radix solved for optimal routing in [65] was k = 10.
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Figure 3.7: Throughput evaluation of W2TURN for different network sizes.

when the network radix is even, but the difference is negligible when the network radix

is odd. Both W2TURN and I2TURN, however, significantly outperform DOR in terms

of average-case throughput. On average, the average-case throughput of W2TURN

is 47.3% higher than DOR. This shows that although W2TURN (and I2TURN) are

designed for optimal worst-case performance, they also perform well in the average

case.

As in the case of one-dimensional rings, DOR achieves the highest throughput

when the traffic is inherently load-balanced, as shown in Figure 3.7(b). W2TURN and

I2TURN achieve lower throughputs due to their non-minimal nature. The average hop-

count reduction of W2TURN over I2TURN helps it achieve a proportional increase in
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throughput under uniform traffic. As shown in Figure 3.6, the hop count reduction is

higher when the network radix is even, resulting in higher throughput improvements.

On average, under uniform random traffic, the saturation throughput of W2TURN is

7.75% higher than I2TURN for even-radix networks and 1.25% higher than I2TURN

for odd-radix networks. Maximum improvement of up to 13.5% over I2TURN can be

observed for the 4×4 topology.

Finally, tornado traffic is an adversarial traffic pattern for all three routing

algorithms. In fact, it is the worst-case traffic pattern for W2TURN, I2TURN and DOR

when the network radix is odd. Therefore, for odd radices, W2TURN and I2TURN

achieve the optimal worst-case throughput of half the network capacity. The worst-

case throughput of DOR is significantly lower. For odd network radices, W2TURN

degenerates to I2TURN under tornado traffic. This can be deduced from the descriptions

of the two algorithms in Sections 3.4 and 3.5.1 assuming ∆(x1,x2) = ∆(y1,y2) = �k/2�.
When the network radix is even, W2TURN can outperform I2TURN by up to 9.4% for

low network radices. However, for high network radices, the throughput of W2TURN

and I2TURN converge to half the network capacity for even-radix topologies.

Flit-level simulations

Next, we compare the performance of W2TURN, I2TURN and DOR using

flit-level simulations. We use an even-radix 8× 8 torus topology and an odd-radix

7× 7 torus topology for our experiments. The simulation setup is similar to the one

described in Section 3.6.1. The simulator models 5-port pipelined routers for the two-

dimensional networks. The number of VCs used is still 8 but the buffering is increased

to 8 flits per VC to accommodate the increased traffic volume in two-dimensional

networks. As discussed in Section 3.5.5, 4VCs are sufficient to avoid deadlocks in

2-turn paths. However, increasing the number of VCs helps in significantly improving

the performance of all the routing algorithms.

Figures 3.8(a), 3.8(b) and 3.8(c) present the flit-level simulation results for a

8×8 torus topology under uniform random traffic, tornado traffic and dynamic random

traffic, respectively. The actual throughput sustained is around 50-60% of the throughput

predicted using ideal analysis due to the non-idealities in the routers. However, the
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Figure 3.8: Performance of W2TURN on a 8×8 torus topology.

throughput trends are consistent with the ideal results. For uniform traffic, W2TURN

achieves around 6% higher saturation throughput compared to I2TURN and at the

same time, the latency under low loads is reduced by 6.5%. The latency reduction is

quite close to the hop count difference of 8.2% predicted in Figure 3.6. The observed

difference in latency is lower because the transmission delay of the 3-flit packets and

the router pipeline delay at the destination node are ignored while calculating hop

count. Both W2TURN and I2TURN, however, pay a latency penalty of 40% and 50%,

respectively, over DOR as they select both minimal and non-minimal routing paths.

Tornado traffic is an adversarial traffic pattern for all three routing algorithms.

Therefore, the maximum throughputs sustained are less than the throughputs sustained

under uniform random traffic. The reduction is drastic for DOR, which does not
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Figure 3.9: Performance of W2TURN on a 7×7 torus topology.

guarantee optimal worst-case throughput. The maximum throughput sustained with

DOR under tornado traffic falls by more than 60% compared to the maximum

throughput sustained under uniform traffic. On the other hand, the throughput reduction

for W2TURN and I2TURN are less severe at just 22% and 18%, respectively. W2TURN

marginally outperforms I2TURN under tornado traffic, both in terms of latency and

saturation throughput. W2TURN outperforms DOR significantly by 55% in terms of

saturation throughput.

Figure 3.8(c) presents results for dynamic random traffic, which captures the

average-case behavior of the routing algorithms. The results correspond to the average

packet latency measured over 250 randomly generated permutation traffic patterns.

The maximum latency of each observation is clipped at 125 cycles to prevent biasing



96

the average to a few large delays observed when the network saturates or approaches

saturation. Under low loads of less than 20% of the network capacity, the average

latency of W2TURN is 6-7% lower than I2TURN. However, for moderate to high

loads, latency reductions of 12-40% can be achieved. This is because the saturation

throughput of W2TURN is higher than I2TURN for most of the traffic patterns

evaluated. The packet latencies tend to increase rapidly when the network approaches

saturation, resulting in much higher latency reductions under high loads. W2TURN also

outperforms DOR in terms of latency at and beyond injection rates of 30% of network

capacity.

Finally, Figure 3.9 compares W2TURN with I2TURN and DOR on an odd-

radix 7× 7 topology. The throughput and latency differences between W2TURN and

I2TURN are smaller for the odd-radix case, as expected from the ideal throughput

analysis. W2TURN has marginally lower latency and marginally higher throughput

under uniform and dynamic random traffic patterns. Under tornado traffic, W2TURN

and I2TURN algorithms are identical.

3.7 Conclusion

This chapter presented an optimal closed-form routing algorithm for rings called

WRD and a closed-form worst-case throughput optimal routing algorithm for 2D torus

networks called W2TURN. WRD can achieve the minimum average hop count on rings

while remaining worst-case throughput optimal. When the network radix is even, WRD

achieves lower latency than RLB, the best-known worst-case throughput optimal routing

algorithm for rings, under a wide range of traffic patterns. W2TURN routing algorithm

for 2D torus networks is based on a weighted random selection of paths with at most 2

turns, which enables a simple deadlock-free implementation with just 4 virtual channels.

W2TURN is shown to achieve optimal-2TURN routing when the network radix is odd

and is within just 0.72% of the average hop-count of optimal-2TURN routing when the

network radix is even. However, unlike optimal-2TURN, which requires solving large

linear programs that do not scale, W2TURN has a closed-form algorithmic description

that can scale to arbitrarily large networks. The chapter also presented an algorithm



97

called I2TURN that, like W2TURN, is based on a weighted random selection of 2-turn

paths. We prove that I2TURN is equivalent to IVAL and hence, is worst-case throughput

optimal. We also derive analytical expressions for the average hop counts of I2TURN

and W2TURN. These are used to show that the average hop count of W2TURN is

strictly less than I2TURN (and IVAL), the best previously known worst-case throughput

optimal algorithm with a closed-form description. Finally, we show that W2TURN

outperforms I2TURN both in terms of latency and throughput over a wide range of

traffic matrices.

Chapter 3, in part, is a reprint of the material as it appears in the following

publications:

• Rohit Sunkam Ramanujam and Bill Lin, “Weighted Random Routing on Torus

Networks”, IEEE Computer Architecture Letters, vol. 8, no. 1, January 2009.

• Rohit Sunkam Ramanujam and Bill Lin, “Weighted Random Oblivious Routing

on Torus Networks”, ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), Princeton, NJ, October 19-20, 2009.

Chapter 3, in full, has been submitted for publication of material as it may appear in

IEEE Transactions on Computers, Rohit Sunkam Ramanujam, Bill Lin, “Randomized

Throughput-Optimal Oblivious Routing for Torus Networks”. The dissertation author

was the primary investigator and author of the papers.



Chapter 4

Destination-Based Adaptive Routing
on 2D Mesh Networks

4.1 Introduction

Oblivious routing algorithms where routing paths are independent of the network

state have been the focus of Chapters 2 and 3. Oblivious routing has generally been

preferred for on-chip networks because they are easy to implement and enable simple

and fast router designs. These algorithms are designed to provide certain worst-case and

average-case performance guarantees under relatively static network loads [53, 61, 65,

66]. However, network traffic in CMPs tends to be bursty in nature and oblivious routing

algorithms sometimes perform poorly under such conditions [21]. On the other hand,

adaptive routing, where routing paths can be dynamically changed depending on the

network’s congestion state, can achieve significantly better performance under bursty

conditions. Along with the performance benefits, adaptive routing also offers better

tolerance towards link and router failures compared to oblivious routing.

Ideally, every router in the network needs to have a perfect picture of global

network congestion in order to make the best local routing decisions. Traditionally,

adaptive routing algorithms have relied on local congestion metrics that are readily

available at the routers in the form of flow control state. Although this approach adds

very little router overhead (over oblivious routers), it is too slow to react to congestion

98
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in more distant parts of the network as it relies on network backpressure to propagate

congestion state.

More recently, an adaptive routing algorithm called regional congestion aware-

ness (RCA) [20] was proposed for 2D mesh networks, which uses a lightweight

monitoring network to propagate non-local (regional) congestion state from more distant

parts of the network, like along a dimension or quadrant. While knowledge of regional

congestion is better than just local congestion, it does not always accurately reflect

delays along the actual paths a packet can take to its destination. We consider a minimal

adaptive routing model for 2D mesh topologies where packets are only routed along

the minimal directions. Under this model, the regional congestion estimates used to

route a packet may encompass congestion on links outside the admissible paths to

a packet’s destination, thereby, degrading the quality of the estimates. To counter

this drawback, we propose an adaptive routing algorithm that takes into account a

packet’s destination while making routing decisions. In our proposed destination-based

adaptive routing (DAR), every node estimates the average delay to every other node

in the network through each of the candidate output ports (assuming minimal adaptive

routing). Routing is then carried out using per-destination traffic split ratios at every

router, which provide fine-grained control for independently load-balancing traffic flows

to different destinations based on the per-destination delay estimates. This is different

from the coarser approach used in RCA where all flows going to a common region in the

network use the same congestion estimate. In our evaluations, we find that maintaining

finer congestion state helps DAR outperform RCA and local adaptive routing in terms

of latency and throughput on both real and synthetic workloads.

The main contributions of this chapter are as follows:

• We propose a destination-based adaptive routing algorithm called DAR for on-

chip mesh networks.

• We describe the router microarchitecture to implement DAR and show that the

logic, storage and bandwidth overheads are quite reasonable for moderately sized

networks. We explore different implementations of the monitoring network,

which affects the rate at which congestion state is measured and updated in DAR.
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• We also propose a scalable version of DAR called SDAR that reduces the

implementation overhead of DAR for large networks.

• Finally, we evaluate the performance of DAR and SDAR on a number of real

and synthetic workloads. DAR achieves latency reductions of 58% maximum and

13% average over RCA, 79% maximum and 21% average over local adaptive

routing, and 96% maximum and 40% average over O1TURN [53] on eight

SPLASH-2 benchmarks. SDAR also outperforms existing adaptive and oblivious

routing algorithms under a wide range of synthetic traffic workloads on a 16×16

mesh topology.

The rest of the chapter is organized as follows. Section 4.2 discusses related

work. Section 4.3 describes the DAR algorithm. Section 4.4 discusses the router

microarchitecture for practically implementing DAR. Section 4.5 presents a scalable

version of DAR called SDAR. Section 4.6 compares the performance of DAR and SDAR

with existing adaptive and oblivious routing algorithms. Finally, Section 4.7 concludes

the chapter.

4.2 Related work

A lot of prior research has focused on designing good oblivious routing

algorithms for on-chip networks [53, 61, 65, 66]. These algorithms are simple to

implement and are designed to achieve a certain level of worst-case or average-case

performance under relatively static network loads. However, network traffic in CMPs

is generally bursty in nature [21] and dynamic traffic conditions can cause temporary

congestion hot spots in the network. Oblivious routing fails to deliver high performance

under such dynamic conditions since it cannot react to network congestion by adapting

its routing paths.

Adaptive routing has been extensively studied for multi-chip interconnection

networks [24, 26, 43, 51]. However, the constraints for off-chip adaptive routing are

vastly different from the constraints for the on-chip scenario and the best solutions in

both domains are likely to be very different. This is because on-chip networks have
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to operate under very tight power and area budgets and as a consequence, the routing

overheads at both the end-nodes and network switches need to be kept to a minimum.

Adaptive routing algorithms can be classified as either minimal or non-minimal,

based on whether non-minimal routing is permitted. Non-minimal adaptive routing [26,

56] has the potential to improve performance over minimal routing, but it is more

complex to implement and results in longer packet latencies due to extra router

complexity and non-minimal routes. Most non-minimal adaptive routing approaches

have been proposed for networks with greater path diversity than a 2D mesh, like torus

and dragonfly topologies.

In [20], Gratz. et al. present a taxonomy of adaptive routing policies based

on the measured congestion state. Traditionally, most adaptive routing algorithms that

sense network congestion only use local congestion metrics like free VC count [14],

downstream buffer count [34] and output queue lengths [56]. Although local congestion

metrics are easy to sense, greedy routing decisions based on these metrics can result

in global imbalances in network load. Gratz et al. propose an adaptive routing

algorithm called Regional Congestion Awareness (RCA) [20] that uses a lightweight

monitoring network to propagate remote congestion state from more distant parts of

the network. It was shown in [20] that sensing regional congestion along a dimension

or quadrant in a 2D mesh can significantly improve performance over local adaptive

routing. Other approaches that use remote congestion state are Token Flow Control

(TFC) [37] and Indirect Adaptive Routing (IAR) [26]. TFC is complementary to DAR as

it is conceivable that it can be used in conjunction with any adaptive routing algorithm.

IAR deals with the challenges of large scale multi-processor systems as opposed to

DAR, which is designed for on-chip 2D mesh networks.

4.3 Destination-based adaptive routing

To the best of our knowledge, Regional Congestion Awareness (RCA) is the

only known adaptive routing algorithm for on-chip mesh networks that uses non-local

congestion state. Although RCA shows significant performance improvements over

local adaptive routing, it still faces a difficult challenge of balancing remote and local
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Figure 4.1: Drawback of region-based congestion estimation.

congestion state. This is because under minimal adaptive routing, the relevance of

congestion on a downstream link while routing a packet is greatly dependent on whether

the link is likely to be used by the packet to reach its destination. RCA deals with this

issue by weighing local and non-local congestion state equally, but this may not lead

to the best routing decisions. For example, consider the congestion snapshot of a 4×4

mesh network shown in Figure 4.1. At this instant of time, source S needs to send a

packet to destination D and the RCA-quadrant algorithm is used for routing. There are

two candidate output ports for routing the packet, i.e., the east and north ports. The

routing decision is taken based on the congestion estimated on the two output ports.

For simplicity, the congestion on links is categorized into only three categories−low,

moderate, and high. The congestion on the east port is measured as the mean of the

congestion on the local link and an exponentially weighted average of the congestion on

all links in the north-east quadrant, represented by region A. Similarly, the congestion

on the north port is a measured as the exponentially weighted average of the congestion

on links in region B. The exponential averaging is done based on distance to ensure that

links further away from a node have less impact on its congestion estimates. Since the

links in region C contribute equally to the congestion estimates along the north and east

ports, the routing decision depends only on the difference in congestion between regions

(A−C) and (B−C). In this example, congestion (or lack of congestion) on links that are
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outside the minimal routing paths to the destination (two links at the north-west corner

of region (B−C) are congested while two links at the south-east corner of region (A−C)

are not congested) mislead the router at node S into taking the wrong routing decision.

As a result, RCA-quadrant chooses a sub-optimal path from S to D with much higher

congestion, as shown. This example illustrates that the relevance of remote congestion

state is greatly dependent on the packet’s destination and the congestion on links outside

the admissible paths to a packet’s destination can corrupt the congestion estimates in

region-based schemes.

This leads us to Destination-Based Adaptive Routing (DAR), where every node

maintains per-destination congestion state in the form of expected delays to all other

nodes through the candidate output ports permitted by minimal adaptive routing. The

measured delays more accurately represent the congestion along paths from the source

to the destination without being corrupted by congestion on links outside the admissible

paths. However, the main challenge in estimating and maintaining such fine-grained

congestion state in on-chip routers lies in having a lightweight implementation that can

fit into the tight on-chip power, delay, and area budgets. In this section, we describe the

adaptive routing strategy used in DAR and deal with the implementation issues later in

Section 4.4.

4.3.1 Minimal adaptive routing model

In this chapter, we focus on adaptive routing using only minimal paths in a

2D mesh topology. Minimal routing is preferred due its simplicity and lower latency

compared to non-minimal routing. Under this assumption, if a packet needs to be routed

from source i to destination j, at every intermediate node starting from i, it has a choice

of at most two output ports along minimal routes to j. For example, in Figure 4.2, a

packet originating at node 1 can use either the east (E) or the north (N) ports to reach

node 10, but not the west (W) port. The candidate output ports at intermediate routers

for routing packets along minimal routes from node 1 to node 10 are shown using arrows

in Figure 4.2.

At a high level, DAR works as follows:

• Every node periodically estimates the expected delay to all other nodes in
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Figure 4.2: Adaptive routing along minimal routes.

the network through the candidate output ports. Due to constraints of time,

bandwidth, and hardware resources required for distributed delay measurement,

all of which are scarce in on-chip networks, delays are estimated periodically with

a period T , rather than being estimated every cycle.

• The router associated with a node controls the distribution of traffic to its next-

hop routers using per-destination traffic split ratios. This means that at a given

router, all packets destined for the same node are distributed in the same ratio

to the downstream routers. Packets going to different destinations can, however,

be distributed independently in different ratios. The split ratios are also updated

every T cycles, based on the measured delays. In DAR, traffic split ratios are used

instead of simply choosing the output port with lower delay, like in RCA or local

adaptive routing. This is done in order to prevent overloading the output port with

lower delay during the relatively longer periods between delay measurements in

DAR compared to RCA or local adaptive routing.

Based on this high-level description, there are two main tasks involved in DAR.

First, every node estimates the delay to every other node in the network through the

candidate output ports in a distributed manner. Second, the measured delays are

used to determine the ratio in which traffic for a given destination is split among the

candidate outputs at a router. Next, we explain the first task, which is distributed delay

measurement.
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Table 4.1: Notations.

W [p][ j] Fraction of traffic for destination j forwarded on port p.
l[p] Estimated delay to downstream router through port p.
A[p][ j] Average delay from downstream router connected to port p to node j.
L[p][ j] Average delay from current node to node j through port p.
Avgi[ j] Average delay from node i to node j.

4.3.2 Distributed delay measurement

Consider a mesh topology with N nodes. Each node maintains the following

state information that is used in the delay measurement process:

• W [p][ j] ∀ j ∈ 1 to N: Fraction of traffic for destination j forwarded on port

p. This is maintained for all ports p permitted by minimal adaptive routing to

destination j.

• l[p] ∀p ∈ {N, S, E, W, Ej}: Estimated delay to downstream router through port

p. N, S, E, W and Ej represent the north, south, east, west and ejection ports,

respectively.

With minimal adaptive routing, a packet1 can choose between at most two output ports

at each intermediate router. If px and py denote the two candidate output ports to

reach destination j, the weights W [px][ j] and W [py][ j] control the ratio in which traffic

destined for node j is split between output ports px and py, and are called the traffic split

ratios for destination j.

The delay measurement process starts with each router periodically estimating

the local delays on all five output ports. This is denoted by l[p] and it represents the delay

incurred on the link connecting output port p to the downstream router. We assume an

input buffered router model, where exact delays depend on the implementation of the

virtual channel (VC) allocator and the switch arbiter modules of the router. However,

since we are mainly interested in the relative delays through the candidate output ports,

we use buffer occupancy estimates to approximate link delays. There are two main

sources of contention in an input buffered router. First, flits destined for the same
1Adaptive routing is done at the granularity of packets. Like any adaptive routing algorithm, a

reordering buffer is needed at the end-node to order packets, if ordering is required.
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Figure 4.3: Example of local delay measurement.

output port contend for output VCs2 during VC arbitration and access to the crossbar

output during switch arbitration. Second, flits stored in different VCs at the same input

port contend for access to the crossbar input. We take both these contentions into

consideration while estimating local delays. The local delay through output port p, l[p],

is measured as the sum of the number of flits in the current router that have acquired a

VC at the input of the downstream router connected to port p and the number of flits

already stored in the input buffers of the downstream router at port p. For example,

consider the pair of routers shown in Figure 4.3. The flits at router A that are shaded in

dark gray have already acquired a VC at the west input of router B. Hence, in this case,

the local delay on the east port of router A is estimated as 17, which is the sum of 10

flits in router A that have acquired a VC at the west input of router B and 7 flits already

stored in the west input of router B. The first part of the sum estimates the delay due to

output port and output VC contention while the second part contributes to the contention

between input VCs when flits try to leave router B. Since output port selection and VC

allocation are done in the same cycle in the DAR router (refer Section 4.4.2), the output

port is fixed only for packets that have acquired a VC at a downstream router. Hence,

only these packets are counted while estimating the delay through output port p.
2Output VCs refer to VCs at the input of the downstream router.
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All nodes in the network periodically estimate the delay to all other nodes

through the candidate output ports in a distributed manner by sharing delay information

with neighbors over a separate monitoring network. The distributed delay measurement

algorithm works as follows. Suppose all nodes need to measure the delay to node j.

The first node that has this information is node j itself, which periodically measures the

delay on its ejection port. Node j then shares this information with all its neighbors.

Let us say that node k, which is a neighbor of j receives the delay update from node j

on port p. Node k can now estimate its delay to j through output port p by adding its

locally measured delay on port p with the update received from j. Since node k is only

one hop away from j, it can reach j through only one port under the minimal routing

assumption. So the average delay from k to j is equal to the delay from k to j through

port p. Node k shares this average delay information with all neighboring nodes other

than j. A node s further away from j can receive delay updates to j through more than

one port (at most two). Let us call the two ports px and py. In such a situation, node

s estimates the delay to j through both ports by adding the local delays on ports px

and py to the corresponding delay updates received along these ports. It then computes

its average delay to j by weighing the delays through the ports by the traffic split ratios

W[px][j] and W[py][j]. The average delay from s to j is then transmitted to nodes further

upstream. In this manner, average delay information to j is propagated from j, first to

all nodes one hop away, then to all nodes two hops away and so on until every node in

the network has estimated its delay to j. At every hop, a node aggregates its local delay

with the delay update received from downstream neighbors and propagates its average

delay to j to nodes further upstream.

Next, we illustrate the computations involved in the delay measurement algo-

rithm using an example. The notations used in this context are explained in Table 4.1.

Consider a 4× 4 mesh topology shown in Figure 4.4(a). Suppose all nodes in the

network need to measure the delay to node 10.

• Delay from node 10 to itself is just the delay on the ejection port of node 10.

A10[10] denotes the average delay from node 10 to itself and is computed at node

10 as:

A10[10] = l[Ej]
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Figure 4.4: Delay measurement to node 10 in a 4×4 mesh.

• A10[10] is propagated to the neighbors of node 10. Assuming it takes 1 unit of

time for delay updates to propagate, at the next time slot, nodes 9, 11, 6, and 14

receive A10[10] through their east (E), west (W), south (S), and north (N) ports,

respectively, as shown in Figure 4.4(a).

• Each of these nodes that are one hop away estimate their delay to node 10 by

adding their locally measured delays on the port leading to node 10 to A10[10].

For example, at node 9, the delay to node 10 through the east port, L[E][10], is

estimated as follows:

L[E][10] = l[E]+A[E][10]

where A[E][10] = A10[10] is the delay update received from node 10 through the

east port. Since the nodes that are one hop away can reach node 10 through

exactly one port, the average delay from each of these nodes to node 10 is given

by L[p][10] where p is the port leading to node 10. For example the average delay
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from node 9 to node 10 is given as:

Avg9[10] = L[E][10]

The nodes that are one hop away from node 10 share their average delay estimate

to node 10 with their neighbors that are two hops away from node 10, as shown

in Figure 4.4(b).

• At time slot 2, nodes 5, 8, 13, 15, 7, and 2 receive updates for the delay to node

10. For example, node 5 receives updates about the average delay to node 10 from

nodes 6 and 9 connected to the east and north ports, respectively.

A[E][10] = Avg6[10], A[N][10] = Avg9[10]

Node 5 then estimates the delay to node 10 through its east and north ports by

adding its locally measured delay on these ports to the delay update received from

the downstream node.

L[E][10] = A[E][10]+ l[E], L[N][10] = A[N][10]+ l[N]

Finally, node 5 estimates its average delay to node 10 by computing a weighted

mean of the delays through the east and north ports, the weights given by the

traffic split ratio for destination 10 at node 5.

Avg5[10] = W [E][10]∗L[E][10]+W [N][10]∗L[N][10]

Avg5[10] is then propagated to the neighbors of node 5 that are three hops away

from node 10, as shown in Figure 4.4(c). Similarly, nodes 8, 13, 15, 7, and 2 also

compute and propagate their average delay to node 10 to their neighbors which

are 3 hops away from 10.

• Carrying on in this manner, after 4 time units, all nodes in the network are able

to measure their delay to node 10 through the candidate output ports permitted by

minimal adaptive routing.
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4.3.3 Adaptation of split ratios

After delay measurement, the next task is to use the measured delays through

the valid output ports to update the per destination traffic split ratios. In this section,

we describe the adaptation of traffic split ratio at a router for a single destination

node. The same algorithm is repeated for all destination nodes and at all routers. As

discussed earlier, due to various on-chip resource constraints and the nature of the delay

measurement algorithm, delays are measured periodically with a period T . The split

ratios are also adapted with period T , whenever delays are updated.

Suppose at node i, there are two candidate output ports px and py along minimal

routes to destination j. Using the delay estimation mechanism described previously,

node i can estimate L[px][ j] and L[py][ j], the delay to node j through ports px and py,

respectively. In DAR, the ultimate goal is to load-balance traffic uniformly over all

minimal paths to the destination. Since the router at node i only controls the distribution

of traffic to the next-hop routers, it individually contributes towards the overall load-

balancing goal by attempting to equalize the delay to node j through output ports px and

py. So periodically, with a period T , the split ratio for traffic to node j is adapted such

that the volume of traffic being sent on the port with a higher delay to j is decreased

and vice versa. Let pl denote the port with lower delay to j and ph denote the port with

higher delay to j. The split ratios W [pl][ j] and W [ph][ j] are normalized such that their

sum is always equal to 1.

W [pl][ j]+W [ph][ j] = 1

We first determine ∆, the change in the split ratios in time period T . The magnitude of

∆ is computed as follows:

∆ = min(λ
�

(L[ph][ j]−L[pl][ j])
L[ph][ j]

�
,W [ph][ j]) (4.1)

Intuitively, ∆ is proportional to the ratio of the delay difference between the ports to

the magnitude of the delay. Since the split ratios cannot be negative, ∆ can be at most

equal to W [ph][ j]. In the special case when ∆ equals W [ph][ j], all traffic to node j is sent

through port pl . The new split ratios are then computed as:

W [ph][ j] = W [ph][ j]−∆, W [pl][ j] = W [pl][ j]+∆
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The quantity λ in Equation 4.1 represents the maximum possible shift in the split

ratios in time period T . The value of λ is dependent on T and is empirically chosen to

ensure that the delay values through the two ports do not oscillate much and converge

to the same value. The parameter T , which is the period over which the split ratios are

updated, is determined by the bandwidth and logic requirement of the delay estimation

algorithm. We further discuss this parameter in Section 4.4.

It must be noted here that split ratios are updated as a reaction to the measured

delays. When a node receives a delay update for destination j (once every T cycles), it

first computes and its delay to j through the candidate output ports (L[p][ j]) and the

average delay value that needs to be propagated to its upstream neighbors (Avg[ j]).

Following delay computation, it updates the split ratio for j. Therefore, the delay value

propagated is based on the split ratio that was updated T cycles back. This is done

because the delay measured in the current time period is mainly a reflection of the split

ratio that was used in the last T cycles. In response to the delay imbalance caused by the

existing split ratios, each node then individually tries to update its split ratio to achieve

better load balancing.

4.4 Router implementation

In this section, we discuss the modifications to the baseline adaptive router

architecture required for practically implementing DAR. On-chip routers operate under

tight power, area and delay budgets. Compared to existing adaptive routing algorithms,

DAR measures congestion state at a much finer granularity of a single destination,

as opposed to local or regional congestion. Hence, we expect to add some overhead

in storage, logic and bandwidth. However, our goal is to keep these overheads to a

minimum and ensure that the extra logic added does not increase the critical path delay

of the router. First, in Section 4.4.1 we describe the architecture of a baseline adaptive

router. Section 4.4.2 then presents the modified architecture for implementing DAR.

Finally, Section 4.4.3 discusses a practical implementation of the DAR router for an

8×8 mesh.
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Figure 4.5: Baseline adaptive router.

4.4.1 Baseline adaptive router

Figure 4.5 shows the architecture of a baseline adaptive router for minimal

routing on a 2D mesh topology based on Kim et al.’s design [34]. The original design

proposed in [34] and used in [20] has a two-stage router pipeline with an additional

cycle required for link traversal. For our evaluation, we use a router architecture with a

three-stage pipeline as our baseline. The three pipeline stages include port-preselection,

look-ahead route computation, and VC allocation in the first stage, switch arbitration in

the second stage and switch traversal in the third stage. The head flit of a packet passes

through all three stages and the body flits bypass the first pipeline stage and directly

enter switch arbitration. As demonstrated by Mullins et al. [45], speculation can be used

to reduce router latency to a single cycle. However, our work on adaptive routing is

orthogonal to reducing the zero-load latency of routers. Hence, we use a non-speculative

router as a baseline for our comparisons.

In Figure 4.5, the extra logic needed for adaptivity is shaded. The local

congestion values for each output port are stored in the Congestion Value Registers.

At the start of a cycle, the port pre-select module does a pairwise comparison of the
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values stored in the Congestion Value Registers to determine the preferred output port

for each of the four quadrants in a 2D mesh. When minimal adaptive routing is used, a

packet arriving at an input port can have a choice of at most two output ports which maps

to one of the four quadrants. So based on the packet’s destination quadrant the preferred

output port for that quadrant is chosen for routing the packet. When the destination is

along the same dimension, a packet has no choice of output ports and the decision of the

port-preselect logic is overridden. The port-preselection is done in the same cycle as VC

allocation and route computation for the head flit of a packet. The route computation

stage uses look-ahead routing to determine the destination quadrant of a packet at the

next-hop router. The switch arbitration and switch traversal stages make up the rest of

the router pipeline followed by link traversal. This baseline adaptive router architecture

has very little overhead over routers used for oblivious routing. Next, we look at the

router architecture for implementing DAR.

4.4.2 Router architecture for implementing DAR

Figure 4.6 shows the router architecture for implementing DAR. It uses the same

3-stage router pipeline with an additional cycle for link traversal. The storage and logic

overheads over the baseline router are shaded in light and dark gray, respectively. In

this architecture, instead of just maintaining congestion state for each output port like

the baseline implementation, the DAR router stores a set of traffic split ratios, W [p][ j],

for every destination j in the network. At the start of a cycle, the port-preselection logic

computes a preferred output port for every destination node in the network using the

traffic split ratio for that node. These values are latched onto the preferred output port

registers. When a packet arrives at an input, its destination field is directly used to choose

the preferred output port corresponding to its destination. After the port-preselect stage,

the data path of the packet is identical to the baseline adaptive router.

Next, we take a look at the logic needed to determine these per-destination

split ratios. As described in Section 4.3, there are two different computations being

performed in the DAR router. First, there are the delay measurement and propagation

blocks for carrying out the computations described in Section 4.3.2. The delay

measurement block estimates the delay to all other nodes in the network through the
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Figure 4.6: Architecture of the DAR router.

candidate output ports using updates received from downstream routers (A[p][ j]) and the

local delays measured for each output port (l[p]). An exponentially weighted average

of the local delay to each output port is maintained in order to make the estimates more

robust to sudden changes in traffic. The delay propagation block computes the average

delay from the current router to all other nodes (Avg[ j]) and propagates this information

to upstream neighbors. The measured delays (L[p][ j]) are then used to adapt the traffic

split ratios using the equations described in Section 4.3.3.

Storage requirement

The extra storage required for the DAR router can be categorized as follows:

Split Ratios W [p][ j]: As described in Section 4.3.3, the split ratios are normalized

such that they always add up to one. Hence, storing the fraction of traffic

through one of the output ports is sufficient as the traffic through the other port

can be computed by subtracting the stored value from one. We assume a 5-bit
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representation of the split ratios. So, for a network with N nodes, the storage

overhead for split ratios is 5N bits.

Local delays l[p]: In a 2D mesh, a router needs to store local delays for each of its

five output ports. The number of bits used for representing local delays depends

on the amount of buffering at the input ports. In addition to the current delay

values, an older copy of the delay values also need to be stored for maintaining

an exponentially weighted average of local delays.

Preferred output ports p[ j]: For 2D mesh routers with 5 ports, this field requires 3

bits per destination.

Assuming 6 bits for storing local delays, the total storage overhead of the DAR

router over a baseline adaptive router is (8N +60) bits, where N is the number of nodes

in the network. For a network with 64 nodes, the storage overhead is 71.5 bytes per

router. Assuming a typical input buffered router has 200 flits of buffering (8 VCs/port,

5flits/VC) and assuming a modest flit width of 64 bits, the extra storage required for

DAR is only around 4.5%. However, since the storage increases linearly with the

number of nodes, for a network with 1024 nodes, the overhead can be more than 60%

of the total buffering in an input buffered router.

Bandwidth requirement

DAR uses a separate congestion monitoring network to propagate delay updates

between nodes. As described in Section 4.3.2, the delay to a node j is propagated

throughout the network in a hop-by-hop manner once every T cycles. During this

process, an intermediate node i propagates its average delay to node j to only those

neighbors whose hop-count to j is greater than the hop-count from i to j. This

propagation scheme ensures that a link in the network propagates an update for node

j at most once every T cycles. Hence, in a network with N nodes, a network link may

have to carry at most N updates every T cycles. In fact, we can get a much tighter upper

bound on the maximum bandwidth required and show that in a symmetric bidirectional
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mesh with N nodes, a link in the monitoring network will have to carry at most N−
√

N

updates every T cycles. Hence, the value of T and the width of the monitoring network

are two inter-dependent parameters and fixing one of them determines the value of the

other.

4.4.3 Practical implementation of DAR

In this section, we discuss the details of the DAR router and the design of the

monitoring network for a 8× 8 mesh topology. In DAR, the delay measurement and

propagation block and the split ratio adaptation block need to perform computations

on a per destination basis. However, since computations for a destination need to be

performed once every T cycles, T can be set to be large enough to stagger computations

in such a way that at a given time slot, a router in the network works on measuring

the delay and adapting the split ratio of exactly one destination. This provides a

straightforward strategy for reusing hardware, which is essential for making the on-

chip implementation of DAR feasible. Before stating the problem of staggering the

computations, we first define a time slot as follows:

Definition 1 (Time slot). A time slot is defined as the total time taken to process delay

updates for a single destination at a router and to transmit the aggregated update to

upstream routers.

Next, the problem of staggering the computations at nodes can be defined as:

Problem 1. Find a vector Start_update whose element, Start_update[ j], represents the

time slot at which node j starts propagating its own delay (Avg j[ j]) to its neighbors such

that when the updates are propagated, no node in the mesh receives updates for more

than one destination in the same time slot.

The time taken for one round of delay updates from all nodes to reach all other

nodes in the network determines the value of T . Figure 4.7 shows an example of a

Start_update vector for a 8× 8 mesh, where the time slot at which a node in the

mesh starts propagating its delay update is marked on the node. Such an assignment

ensures that under deterministic hop-by-hop update propagation, where each hop takes
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Figure 4.7: Start_update vector example for a 8×8 mesh.

one time slot, no node receives updates for more than one destination in the same slot.

The deterministic update propagation scheme also ensures that updates for the same

destination (through different ports) arrive at the same time slot. Using the assignment

shown in Figure 4.7, the value of T has to be 103 time slots.3

The number of cycles per time slot is determined by two factors−the number

of cycles needed to compute the aggregated update that needs to be propagated and the

width of the monitoring network, which determines the time taken for propagating the

aggregated update to the upstream router. We first look at the detailed implementation

of the different blocks to determine the number of cycles required for the computations.

Delay measurement and propagation

Using the same notations used in Section 4.3.2, for every destination j, the delay

measurement block needs to compute:

L[px][ j] = A[px][ j]+ l[px], L[py][ j] = A[py][ j]+ l[py]

For a 8× 8 mesh we use 9 bits to represent L[p][ j], which means that delays of up to

512 cycles can be measured.
3T = 96 + 7 time slots to avoid a conflict between updates from nodes starting at time slot 96 and time

slot 0.
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Figure 4.8: Delay measurement and propagation logic.

In order to make the routing algorithm more robust to sudden changes in local

delays, an exponentially weighted average of the local delay is maintained for all output

ports. This weighted average can be calculated at a finer timescale compared to T (e.g.

T/8) as it is not in the critical path of the delay computation. Let cnt[p] represent the

current delay for output port p. This can be measured using a set of counters which

count the number of flits in the input buffers that have already reserved buffering at the

next-hop router connected to output port p and the credit counters which keep track of

the number of flits at the input buffers of downstream routers. Let l[p] represent the

exponentially weighted average delay estimate for port p,

l[p] = 0.5∗ (l[p]+ cnt[p])

The exponentially weighted averaging of the local delays can be done sequentially for

the five output ports using a single adder.

The delay propagation block needs to compute:

Avg[ j] = L[px][ j]∗W [px][ j]+L[py][ j]∗W [py][ j] (4.2)

= L[px][ j]∗W [px][ j]+L[py][ j]∗ (1−W [px][ j]) (4.3)

Figure 4.8 shows details of the delay measurement and propagation block. It uses 4

adders and two multipliers which multiply 9 bit delay values with 5 bit split ratios. Only
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Figure 4.9: Logic for adaptation of weights.

the first 9 bits of the multiplier output are used for the final addition. Since the critical

path contains a multiplier, the logic can be pipelined and implemented over 2 clock

cycles to avoid adding to the critical path delay of the router. The choice of the number

of stages, however, will also depend on the target frequency. For lower frequency of

operation, alternative implementations that minimize logic and power can be used.

Split ratio adaptation

Using the same notations as in Section 4.3.3, the computations involved with

adaptation of split ratios are given as follows:

∆ = min(λ
�

L[ph][ j]−L[pl][ j])
L[ph][ j]

�
,W [ph][ j])

W [px][ j] = W [px][ j]±∆

To simplify the implementation of these computations in hardware we always assume λ
to be a power of 2 (eg. λ = 0.25), which reduces the multiplication to a shift operation.

Division is also reduced to a shift operation by extracting only the most significant bit

of L[ph][ j] that is set and ignoring the remaining less significant bits. This optimization
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Figure 4.10: Port preselection logic.

can cause an error of a factor of at most two and can be viewed as having a variable

λ (e.g. λ = 0.25 to 0.5). In our evaluations, we observe that DAR performs well even

with these approximations. Figure 4.9 shows the hardware implementation of the block.

It requires four 9-bit adders, five 2-input multiplexers (three 5-bit multiplexers and two

9-bit multiplexers), two barrel shifters, and block to determine the first bit of L[ph][ j]

that is 1. The logic to adapt the split ratios can also be pipelined across two cycles.

Port pre-select

The port-preselect stage shown in Figure 4.10 uses a 5-bit pseudorandom

number generator to generate a single random number every cycle. All split ratios

are compared against the same random number to select an output port for each

destination. This requires 64 5-bit comparators that run in parallel and a shift-register

based pseudorandom number generator.

Power and area overheads

We synthesized the additional logic (gates+registers) used in the DAR router

using Synopsys Design Compiler with TSMC 65nm GP process libraries at 1V and an
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Table 4.2: Power and area overheads of DAR router.

Router Additional DAR logic DAR overhead
Power (mW) 246 10.62 4.3%
Area (um2) 375792 10912 2.9%

operating frequency of 1GHz. Table 4.2 compares the post-synthesis power and area

overheads of the DAR router with the power consumed by a typical 5-ported mesh

router with 8 VCs per port, 5 flits per VC and 128-bit flit width. The Verilog RTL

implementation for the router was generated using NetMaker [1], a fully-synthesizable

parameterized router generator that implements an input-buffered pipelined virtual

channel router. The mesh router assumes an oblivious routing algorithm and does not

include the additional logic for adaptive routing. The router pipeline stages are similar

to the ones described in Section 4.4.1 and comprise route selection, VC and switch

allocation, and switch traversal. The router RTL was synthesized using the same TSMC

65 nm GP process libraries at 1V and 1GHz. The power and area consumed by the

additional logic in the DAR router is 10.6 mW and 10912 um2, respectively, which

represent corresponding overheads of just 4.3% and 2.9% over a typical 5-ported mesh

router.

Determining the value of T

The main computation in the critical path of the DAR router that determines the

length of a time slot is the delay computation and propagation block that requires two

cycles. In addition to the two cycles for computation, a time slot also needs to include

the number of cycles needed to transmit the delay update from one node to the next. A

delay update needs to include the 9-bit delay field and possibly a 6-bit destination field

making it 15 bits. The 6-bit destination field is not mandatory as a router can decipher

the destination from the time slot at which the update is received. This involves using

the Start_update vector to generate a lookup table at every router that maps time slots to

destinations. However, if delay computation takes two cycles to complete, it is possible

to hide the transmission time of the destination field from the critical path by overlapping
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Figure 4.11: Processing of delay updates using a 5-bit monitoring network.

it with the ongoing delay computation, thereby avoiding the use of an extra lookup table

at routers. Various possible scenarios leading to different values of T are described next.

• Monitoring network is 5 bits wide: In this case, it takes two cycles to transfer

9-bit delay updates over the 5-bit control network. The sequence of operations

performed at a node for processing delay updates received in successive time slots

for two destination nodes j and k are shown in Figure 4.11. The minimum length

of a time slot is 4 cycles and using the Start_update vector of Figure 4.7, T

needs to be 412 cycles (103 timeslots × 4 cycles) to ensure that a router processes

delay updates for a single destination every time slot. The split ratio for a given

destination is updated one time slot after delay computation and propagation, as

shown.

• Monitoring network is 9 bits wide: In this case, only one cycle is required

to transfer delay updates between neighboring routers. The transmission of the

destination field can again be overlapped with one of the two computation cycles,

resulting in a time slot of 3 cycles and T = 309 cycles. One way of further
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reducing the value of T in order to make delay updates more frequent is to reduce

the critical path of the delay computation stage to just one cycle, resulting in a

2-cycle time slot and T = 206 cycles.

• Monitoring network is 3 bits wide: In this scenario, 3 cycles are required to

transfer 9-bit delay updates between adjacent routers. The transmission of the

destination field requires two cycles, which can be overlapped with the two cycles

required for delay computation. This results in a time slot of 5 cycles and T = 512

cycles.

Assuming 64 bit data flits, a 5 bit monitoring network results in a wiring

overhead of only around 8% while 3-bit monitoring network represents a mere 4.6%

overhead. In comparison, RCA-1D requires 8 bit wires per link and RCA-quadrant

requires 16 bit wires per link for the congestion propagation network in a 8 × 8

mesh [20]. We show in Section 4.6 that even with a narrower control network, DAR

can outperform RCA-quadrant under both real and synthetic traffic. In Section 4.6, we

analyze the impact of T on performance of DAR to help us reach the right tradeoff

between overhead and performance.

4.5 Scaling DAR to larger networks

As discussed in Section 4.4.2, both storage and bandwidth requirements for DAR

do not scale to networks with a large number of nodes. In this section, we describe a

variation of DAR called SDAR that can easily scale to large 2D mesh networks. We use

a lookahead window approach for implementing SDAR. In this scheme, for a k×k mesh,

instead of maintaining per-destination split ratios, a node i only maintains accurate delay

information for a M×M mesh centered at i where M < k. For example, in Figure 4.12, a

7×7 lookahead window is shown for node S. When a packet’s destination, node j, lies

outside the lookahead window, it uses the delay estimate to the node closest to j within

the lookahead window for determining its output port. The node within the lookahead

window, whose delay estimates are used by traffic to node j, is called the proxy of j.
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Figure 4.12: Lookahead window for implementing SDAR.

Every node outside the lookahead window can be uniquely mapped to a proxy node

that is closest to it (in terms of number of hops) within the window. For example, in

Figure 4.12, nodes P(A), P(B), and P(C) represent the proxies of nodes A, B, and C,

respectively. The lookahead window is different for every node in the network. As a

packet is routed from the source to the destination node, the lookahead window shifts

at every hop. The main intuition behind why such an approach works is that the final

destination is guaranteed to be inside the look ahead window when the packet is at least

(M−1)/2 hops away from it. If (M−1)/2 is large enough, the packet has enough time

to route around any congestion hot-spot on its path to the destination.

In SDAR, the storage and bandwidth requirement at a node is determined by

the dimensions of the lookahead window and not by the dimensions of the network.

The value of M is always odd as the window for node j is symmetric with respect to j

and offers a visibility of at least (M−1)/2) hops (whenever possible) in all directions.

For any destination node d that lies outside the window, the proxy of d with respect

to the lookahead window of j can be easily calculated by truncating the coordinate of
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d that is greater than (M− 1)/2 hops away from the corresponding coordinate of j, to

(M− 1)/2. The delay propagation scheme is similar to DAR except for the fact that a

node propagates a delay update for node j further upstream only if the upstream node

is within the lookahead window of j. The Start_update vector used for staggering the

latency updates for different destinations looks the same as that of a (M +1)× (M +1)

mesh, repeated multiple times to cover the entire k× k mesh.

The choice of window size, M, is a tradeoff between performance and overheads

associated with storage, bandwidth, and logic complexity. Increasing the window size

increases the accuracy of the delay estimates but also forces the latency update frequency

(1/T ) to be low due to bandwidth constraints. In Section 4.6 we explore the effect of the

lookahead window size on the performance of SDAR on a 16×16 mesh.

4.6 Evaluation

In this section, we compare the performance of DAR and SDAR with known

adaptive and oblivious routing algorithms.

4.6.1 Experimental setup

The adaptive routing algorithms used for comparison are local adaptive and

RCA-quadrant. The local congestion metric measured in both these adaptive routing

algorithms is the same metric used in DAR to measure delays on the local output ports.

We experimented with a few other local congestion metrics like downstream free VC

count, free buffer count, demand for crossbar outputs, and different combinations of

these metrics, but found that free buffer count used in conjunction with crossbar output

demand performs best. In addition to the adaptive routing algorithms, we also compare

the performance of DAR and SDAR with O1TURN routing [53], which is known to be

the best oblivious routing algorithm for 2D mesh networks.

We modified PopNet [54], a cycle-accurate flit-level on-chip network simulator

to implement the routing algorithms. The simulator models the router pipeline described

in Sections 4.4.1 and 4.4.2 for local adaptive routing and DAR, respectively. The

RCA router includes minor modifications to the baseline router for aggregation and
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propagation of remote congestion information along quadrants (RCA-quadrant) as

described in [20]. The routers employ credit-based virtual channel flow control. Virtual

channels (VCs) are also used for deadlock avoidance using escape VCs [16]. For our

evaluation, input buffers comprise of 8 VCs, each 5-flit deep. One out of 8 VCs is

used as an escape VC to ensure deadlock freedom. The simulator computes the average

packet latency over all packets injected into the network. The latency of a packet is

measured as the delay between the time the head flit is injected into the network and the

tail flit is consumed at the destination.

We evaluate the routing schemes under both real and synthetic workloads.

For real workloads, we use memory traces from eight SPLASH-2 benchmarks [71],

representing a typical chip multiprocessor (CMP) scientific workload.The traces used

are for a 49-node shared memory CMP [38] arranged as a 7× 7 mesh. The SPLASH-

2 traces were gathered by running the corresponding benchmarks with 49 threads4

on Bochs [39], a multiprocessor simulator with an embedded Linux 2.4 kernel. The

memory trace was captured and fed to a memory system simulator that models the

classic MSI (Modified, Shared, Invalid) directory-based cache coherence protocol, with

the home directory nodes statically assigned based on the least significant bits of the

tag, distributed across all processors in the chip. Each processor node has a two-level

cache (2MB L2 cache per node) that interfaces with a network router and 4GB off-chip

main memory. Access latency to the L2 cache is derived from CACTI to be six cycles,

whereas off-chip main memory access delay is assumed to be 200 cycles. For synthetic

traffic, we generate uniform, transpose, and perfect shuffle traffic traces with different

injection rates. The traces are generated using a self-similar injection process [47] with

a Hurst constant of 0.8 and a standard deviation of 30% about the mean injection rate. A

self-similar injection process accurately models the burstiness or temporal correlations

in network traffic. A 7×7 mesh topology is used to evaluate DAR under the SPLASH

workloads and a 8× 8 mesh is used for the synthetic traffic traces. For evaluating the

performance of SDAR, we use a larger 16× 16 mesh topology. Since it is difficult

to generate real traffic traces for the large 256-node topology, we tried to emulate the
4Two of the eight traces, fft and radix could not be run with 49 threads. They were run with 64

threads instead. The memory traces of the first 49 threads were captured and the addresses were mapped
onto a 49-node system.
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spatial traffic characteristics of real workloads by generating a set of 20 traffic patterns

where traffic from a node is equally distributed to a randomly chosen subset of 16 nodes

in the network. We also ensured that each node receives traffic from at most 16 other

nodes. The SPLASH traces were simulated for 10 million cycles or the entire duration

of the trace, whichever came first. All synthetic traces were simulated over a million

cycles and latency was measured after a warm up period of 20,000 cycles.

For DAR, we experiment with two different values of λ , λ = 0.25 and λ = 0.5.

We also evaluate the four possible configurations described in Section 4.4.3 resulting in

four different values of T ranging from 206 cycles to 512 cycles for the 8× 8 mesh

topology. For the 7× 7 mesh, a Start_update vector similar to the one shown in

Figure 4.7 is derived, which requires 83 time slots for completing a round of delay

updates. Varying the number of cycles per time slot again results in four different values

of T for the 7× 7 topology ranging from 166 cycles to 415 cycles. In subsequent

discussions, a DAR configuration is described using parameters T and λ as DAR(T ,

λ ). We evaluate SDAR with different lookahead window sizes, ranging from a 3× 3

window to a 9× 9 window. The value of T increases with increasing window size. A

SDAR configuration is described using three parameters, T , λ and length of a side of

the lookahead window, M, as SDAR(T , λ , M).

4.6.2 Performance on SPLASH-2 benchmarks

In this section, we first compare the performance of DAR with known adaptive

routing algorithms and then with oblivious O1TURN routing [53].

Comparison of DAR with adaptive routing algorithms

Figure 4.13 compares the average packet latency of DAR with RCA-quadrant

and local adaptive routing on eight SPLASH-2 benchmarks. The latencies are

normalized to the average latency of local adaptive routing. The DAR configuration

used for comparison is one that uses a 5-bit monitoring network, with T = 332 cycles

and λ = 0.25. DAR significantly outperforms both RCA and local adaptive routing

on three of the eight benchmarks, namely, fft, waterns, and waters. In [20], the

authors categorize the benchmarks into contended and uncontended categories based
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Figure 4.13: Comparison of DAR with adaptive routing algorithms on SPLASH-2

benchmarks.

on the fraction of packet latency that can be attributed to contention in routers. For

the contended traces (fft, waters, waterns, and lu), DAR outperforms RCA by a

maximum of 58% on the waters trace and by 28% on average over all four traces.

The maximum improvement is seen for the waters benchmark. This trace contains a

single traffic hot spot and is the same benchmark for which RCA has the maximum

benefit over local adaptive routing. We see that DAR, as a result of maintaining more

fine-grained congestion state, can outperform RCA significantly under such conditions.

DAR outperforms local adaptive routing on the contended benchmarks by a maximum

of 79% on the waters trace and by 39% on average over the four traces. For the

uncontended benchmarks (radix, raytrace, barnes, and ocean), the scope for

improvement is limited as contention doesn’t contribute significantly to packet delays in

these benchmarks. However, the average packet latency of DAR is comparable or better

than the other adaptive routing algorithms even on these traces. The final set of bars

show the arithmetic mean of the latencies over all eight benchmarks. DAR outperforms

RCA by 13% and local adaptive routing by 21% on average over all eight traces.

Figure 4.14 presents the variation of the mean packet latency (normalized to the

latency of local adaptive routing) over all eight SPLASH benchmarks with parameters



129

!"#$%

!"#$$%

!"#&%

!"#&$%

!"##%

!"##$%

!"#'%

!"#'$%

!"#(%

!"#($%

)*+,-&&.%!"/$0%)*+,/1(.%!"/$0%)*+,22/.%!"/$0%)*+,1-$.%!"/$0% )*+,-&&.%!"$0% )*+,/1(.%!"$0% )*+,22/.%!"$0% )*+,1-$.%!"$0%

!
"#
$
%&
'(
)*

+,
%-
.)
/+&
%/
)0

-1
+

%2
)#
%3
)*

+"
2)
#+%

&&+
45
67

48
+/#
%-
)9
+

Figure 4.14: Performance sensitivity of DAR to λ and T . The DAR configurations are

annotated as DAR(T , λ ).

T and λ . As explained in Section 4.6.1, T is varied between 166 cycles and 415

cycles, corresponding to time slots ranging from 2 cycles to 5 cycles. λ varies

between 0.25 and 0.5. The results show the variation between the different DAR

configurations is negligible compared to the reductions achieved over existing adaptive

routing algorithms. This indicates that spatial and temporal variations in traffic in the

SPLASH benchmarks are generally much slower than the range of time periods used

for updating delays and split ratios. Moreover, maintaining an exponentially weighted

average of local delays at a much finer time scale (local delays are measured every 8

cycles) in all configurations makes DAR less sensitive to transient traffic variations.

Comparison with oblivious routing

Figure 4.15 compares the performance of DAR with O1TURN, the best per-

forming oblivious routing for 2D mesh networks. DAR outperforms O1TURN by up to

96% maximum and by 40% on average over all eight benchmarks. This shows that under

real workloads with time varying injection rates, adaptive routing performs considerably

better than even the best oblivious routing solution.
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Figure 4.15: Comparison of DAR with O1TURN on SPLASH-2 benchmarks.

4.6.3 Performance on synthetic traffic

Figure 4.16 compares the performance of DAR with RCA-quadrant, local

adaptive routing, and O1TURN under synthetically generated transpose, shuffle, and

uniform traffic traces. A self-similar injection process with a standard deviation of 30%

about the mean is used to emulate the bursty nature of network traffic. The throughput

is normalized to the network capacity, which is defined as the maximum throughput that

can be ideally sustained under uniform traffic.

In transpose traffic, a node with coordinates (x,y) sends packets to a node with

coordinates (y,x). Transpose is an adversarial traffic pattern, especially for oblivious

routing using O1TURN. O1TURN performs poorly under this workload while DAR

and RCA have the highest saturation throughput. In perfect shuffle traffic, assuming

nodes are indexed from 0 to N − 1, a node with index i sends packets to a node with

index 2i when i is less than N/2. Otherwise, node with index i sends packets to a node

with index (2i + 1−N). This traffic pattern is interesting because DAR outperforms

RCA-quadrant by more than 12% in terms of saturation throughput. This is because the

shuffle traffic pattern has a number of source-destination pairs that are close to each other

and separated by only one or two hops along one of the dimensions. For these cases,

misleading congestion estimates from links beyond the permitted minimal paths (as

shown in Figure 4.1) can force a packet to reach one of the two destination coordinates,

following which the packet is forced to travel along the remaining productive dimension.
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(b) Shuffle
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Figure 4.16: Performance of DAR on a 8×8 mesh under synthetic traffic patterns.

This route may be more congested than other available routes to the destination but

packets lose the choice of output ports once a destination coordinate is reached. Local

adaptive routing also performs poorly on this traffic pattern because shuffle has a mix

of source-destination pairs with long and short separations and local adaptive routing is

too slow to react to remote congestion.

For uniform traffic, the destination is chosen at uniform random. It is a benign

traffic pattern since network load is implicitly balanced over the links by randomizing

the destination. All routing algorithms perform well on this workload. DAR has a

slightly higher latency than RCA at moderate loads because it is slower than RCA in
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Figure 4.17: Performance sensitivity of DAR to λ and T under uniform traffic. The

DAR configurations are annotated as DAR(T , λ ).

adapting congestion state. DAR adapts the split ratios every 412 cycles compared to

RCA which updates congestion state every cycle. However, the latency difference is

very small, which justifies our case for maintaining more fine-grained congestion state

than RCA, and updating the state at a slower rate.

Figure 4.17 compares the average packet latency of eight DAR configurations

with different values of T and λ under uniform traffic. Since a bursty injection process

is used, the variations in latency between different configurations is larger than those

seen for the SPLASH benchmarks, especially under injection loads greater than 70% of

network capacity. As a general trend, for moderate to high injection loads, the latency

increases slightly with increasing T , which is expected, since lowering T results in

faster delay computation and more frequent split ratio updates. DAR configurations

with T = 309 cycles and 206 cycles can in fact match the slightly lower delays of

RCA-quadrant under uniform traffic. The variation with λ is negligible until very high

injection rates, when small changes in split ratio cause significant shifts in traffic and

hence, large changes to path delays. Therefore, a smaller value of λ results in better

load-balancing. However, if λ is too small, the algorithm may be too slow to react to

congestion.
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(b) Shuffle
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Figure 4.18: Performance of SDAR on a 16×16 mesh under synthetic traffic patterns.

4.6.4 Performance of SDAR on a 16×16 mesh

In this section, we evaluate the performance of SDAR on a 16× 16 mesh

topology. Figure 4.18 compares the performance of SDAR with a 7× 7 lookahead

window with RCA-quadrant, local adaptive routing and O1TURN under transpose,

shuffle, and uniform traffic workloads. The SDAR configurations are described using

three parameters, T , λ and M, where M is the length of one side of the lookahead

window. SDAR implemented using a 7× 7 lookahead window gives a packet at least

three hops to accurately detect and avoid congestion since a destination within 3 hops

of a node in any direction is guaranteed to be within the lookahead window. In terms of
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Figure 4.19: Performance sensitivity of SDAR to lookahead window size under

uniform traffic. The SDAR configurations are annotated as SDAR(T , λ , M), where M

is the length of a side of the lookahead window.

saturation throughput, SDAR outperforms RCA and local adaptive routing algorithms

under all three traffic traces. The saturation throughput of SDAR under transpose,

shuffle and uniform traffic are 6%, 18%, and 5% higher, respectively, than RCA.

These improvements are better than the improvements seen for the smaller 8× 8 mesh

topology, indicating that measuring congestion only along the relevant routing paths

becomes more important as the network size increases. Although the improvements in

saturation throughput may seem small, they can significantly reduce average packet

latency during temporary bursts of congestion when the network is driven close to

saturation, as seen in some of the SPLASH traces for the smaller mesh topology.

Next, we look at the effect of the lookahead window size on average packet

latency under uniform traffic. Figure 4.19 presents the average packet latency of

different SDAR configurations with lookahead window size ranging from a 3 × 3

window to a 9× 9 window. A larger window size has greater congestion visibility but

suffers from slower delay measurement and slower split ratio refresh rates compared to

configurations with smaller windows, as indicated by the values of T for the different

configurations. We derived the values of T based on the assumption that the width of the
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Figure 4.20: Performance of SDAR on uniform subset traffic. The SDAR

configurations are annotated as SDAR(T , λ , M), where M is the length of a side of the

lookahead window.

monitoring network is the same for all configurations. As expected, the average packet

latency decreases with increase in window size, at least at moderate injection rates of 40-

75% of network capacity. The magnitude of difference, however, is almost negligible

between configurations with 5× 5, 7× 7, and 9× 9 windows. Moreover, we observe

that under high injection load of 80% capacity, the configuration with a 7× 7 window

slightly outperforms the configuration with a 9×9 window. This can be attributed to the

lower value of T associated with the smaller window size. From these observations we

can conclude that although a lookahead window has relatively low visibility compared

to a 31× 31 window required to have accurate delays to all nodes in a 16× 16 mesh,

as long as packets have enough room to route around newly detected congestion, the

performance is not greatly affected.

Finally, to analyze the performance of SDAR on a broader spectrum of traffic

traces, we generate uniform subset traffic patterns where every node sends packets to

a randomly chosen subset of 16 nodes in the network. By mapping nodes to different

subsets, we generate 20 different traffic patterns. Figure 4.20 compares the mean packet

latency averaged over the 20 traces for SDAR (with different lookahead window sizes),
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RCA and local adaptive routing. The latency bars are clipped at 250 cycles. We observe

that SDAR configurations with 7×7 and 9×9 lookahead windows perform consistently

well up to very high injection rates of 80% of capacity. The latency of SDAR under

low and moderate loads is slightly higher than RCA, which benefits from having faster

congestion updates compared to SDAR. However SDAR outperforms RCA significantly

by 25-90% in terms of average packet latency under high injection rates. As mentioned

earlier, during the course of an application running on a CMP, there may be temporary

periods of congestion during which the network may be driven close to saturation.

SDAR is better suited than existing routing algorithms to tackle such bursts, which can

result in significant improvements in average communication latency over the entire

duration of an application, as was seen in the experiments with SPLASH benchmarks

for the 7×7 mesh.

4.7 Conclusion

In this chapter, we proposed a new minimal destination-based adaptive routing

algorithm called DAR for 2D mesh networks. DAR makes routing decisions on a per-

destination basis using delay estimates along the minimal paths to the destination. With

such fine-grained destination-based congestion state, DAR can sense global network

congestion more accurately than existing adaptive routing algorithms, which only sense

regional or local congestion. On SPLASH-2 benchmarks, DAR outperforms Regional

Congestion Awareness (RCA) by up to 58% and local adaptive routing by up to 79%

in average latency. We discuss the challenges in implementing DAR under tight on-

chip power and area constraints and propose a scalable version of DAR called SDAR

for large mesh topologies. We show that SDAR outperforms RCA and local adaptive

routing under a wide range of synthetic workloads on a 16×16 mesh.

Chapter 4, in part, is a reprint of the material as it appears in ACM/IEEE

Symposium on Architectures for Networking and Communications Systems (ANCS),

2010, Rohit Sunkam Ramaujam, Bill Lin, “Destination-based Adaptive Routing on 2D

Mesh Networks”. Chapter 4, in full, has been submitted for publication of material as

it may appear in ACM Transactions in Embedded Computing Systems, Rohit Sunkam
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Ramanujam, Bill Lin, “Destination-Based Congestion Awareness for Adaptive Routing

in 2D Mesh Networks”. The dissertation author was the primary investigator and author

of the papers.



Chapter 5

Extending the Effective Throughput of
NoCs with Distributed Shared-Buffer
Routers

5.1 Introduction

In the design of NoCs, high throughput and low latency are both important

design parameters and the router microarchitecture plays a vital role in achieving these

performance goals. High throughput routers allow an NoC to satisfy the communication

needs of multi- and many-core applications, or the higher achievable throughput can

be traded off for power savings with fewer resources being used to attain a target

bandwidth. Further, achieving high throughput is also critical from a delay perspective

for applications with heavy communication workloads because queueing delays grow

rapidly as the network approaches saturation.

A router’s role lies in efficiently multiplexing packets onto the network links.

Router buffering is used to house arriving flits that cannot be immediately forwarded to

the output links due to contention. This buffering can be done either at the inputs or

the outputs of a router, corresponding to an input-buffered router (IBR) or an output-

buffered router (OBR). OBRs are attractive for NoCs because they can sustain higher

throughputs and have lower queueing delays than IBRs under high loads. However,

138
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a direct implementation of an OBR requires each router to operate at a speedup of P,

where P is the number of router ports. This can either be realized with the router being

clocked at P times the link clock frequency, or the router having P times more internal

buffer and crossbar ports. Both of these approaches are prohibitive given the aggressive

design goals of most NoC applications, such as high-performance CMPs. This is

a key reason behind the broad adoption of IBR microarchitectures as the preferred

design choice and the extensive prior effort in the computer architecture community

on aggressively pipelined IBR designs.

In this chapter, we propose a new router microarchitecture that aims to emulate

an OBR without the need for any router speedup. It is based on a distributed shared-

buffer (DSB) router architecture that has been successfully used in high-performance

Internet packet routers [25, 50]. Rather than buffering data at the output ports, a DSB

router uses two crossbar stages with buffering sandwiched in between. These buffers

are referred to as middle memories. To emulate the first-come-first-served (FCFS) order

of an output-buffered router, incoming packets are timestamped with the same departure

times as they would depart in an OBR. Packets are then assigned to one of the middle

memory buffers with two constraints. First, packets that are arriving at the same time

must be assigned to different middle memories. Second, an incoming packet cannot be

assigned to a middle memory that already holds a packet with the same departure time1.

It has been shown in [25, 50] that a DSB router can emulate a FCFS output-buffered

router if unlimited buffering is available.

However, just as the design objectives and constraints for an on-chip IBR are

quite different from those for an Internet packet router, the architecture tradeoffs and

design constraints for an on-chip DSB router are also quite different. First, limited power

and area budgets restrict a practical router microarchitecture implementation to contain

small amounts of buffering. It is therefore imperative to explore power- and area-

efficient DSB configurations suitable for on-chip design. Next, a flow-control protocol

which can work with few buffers is necessary since NoC applications and protocols,

such as cache coherency, cannot tolerate dropping of packets. A suitable flow-control

mechanism is also needed to support a wide range of delay-sensitive applications with
1This is necessary to avoid switch contention.
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ultra-low latency requirements. This can be achieved with flit-level flow control that

allows allocation of network resources at the granularity of flits. This is different from

internet routers which typically employ store-and-forward packet-level flow control.

Finally, another key difference is the need for on-chip routers to operate at aggressive

clock frequencies. This can be achieved with efficient router pipelining where circuit

delay and complexity are balanced across all router pipeline stages. Our proposed

router microarchitecture tackles all these challenges with appropriate solutions and new

designs.

Our evaluation shows that the proposed on-chip DSB router achieves up to 19%

higher saturation throughput in comparison to a state-of-the-art pipelined IBR and up

to 94% of the ideal saturation throughput for the synthetic traffic workloads evaluated.

On the set of SPLASH-2 benchmarks [71] that exhibit high contention and demand high

bandwidth, our results further show that the proposed DSB router reduces packet latency

by 61% on average when compared with IBRs.

The remainder of this chapter is organized as follows. Section 5.2 provides

background information on throughput analysis and on existing router architectures.

Section 5.3 describes our proposed distributed shared-buffer router microarchitecture

for NoCs. Next, Section 5.4 provides extensive throughput and latency evaluations of

our proposed DSB architecture using a detailed cycle-accurate simulator on a range of

synthetic network traces and traffic traces gathered from real system simulations, while

Section 5.5 evaluates the power and area overhead of DSB routers. Section 5.6 reviews

related work. Finally, Section 5.7 concludes the chapter.

5.2 Background

In this section, we first provide a brief background on throughput analysis.

We then present a short description of OBR and IBR microarchitectures, focusing on

their deficiencies in practically attaining ideal throughput, before discussing distributed-

shared-buffer Internet routers and how they mimic output buffering [25, 50].
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5.2.1 Throughput analysis

Here, we provide a brief overview of the analysis techniques used to evaluate

ideal network throughput. In particular, we elaborate on the concepts of network

capacity, channel load, and saturation throughput. These concepts are intended to

capture what could be ideally achieved for a routing algorithm R on a given traffic pattern

Λ. To decouple the effects of the router microarchitecture, including buffer sizing and

the flow control mechanism being used, ideal throughput analysis is based on channel

load analysis. We first review the concept of network capacity.

Network capacity: Network capacity is defined by the maximum channel load, γ∗, that

a channel at the bisection of the network needs to sustain under uniformly distributed

traffic. As shown in [12], for any k× k mesh,

γ∗ =

�
k
4 for even k
k2−1

4k for odd k

The network capacity, N , in flits per node per cycle is then defined as the inverse of γ∗:

N =
1
γ∗

=

�
4
k for even k

4k
k2−1 for odd k

For example, for a k× k mesh, with k = 8, N = 4/8 = 0.5 flits/node/cycle. Next, we

review the concept of saturation throughput.

Saturation throughput: For a routing algorithm R and a given traffic pattern Λ, the

expected channel load on a channel c is denoted as γc(R,Λ). The normalized worst-

case channel load, γwc(R,Λ), is then defined as the expected number of flits crossing the

most heavily loaded channel, normalized to γ∗.

γwc(R,Λ) =
maxc∈C γc(R,Λ)

γ∗

where C is the set of all channels in the network.

Given this definition of normalized worst-case channel load, the saturation

throughput corresponds to the average number of flits that can be injected per cycle

by all the nodes in the network so as to saturate the most heavily loaded channel to its

unit capacity. This is given as:

Θ(R,Λ) =
1

γwc(R,Λ)
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Table 5.1: Traffic patterns and their corresponding ideal saturation throughput under

dimension-ordered XY routing.

Saturation
Traffic Description throughput

Uniform Destination chosen at random, uniformly 1.0
Tornado (x,y) to ((x+

� k
2
�
−1)%k, (y+

� k
2
�
−1)%k) 0.66

Complement (x,y) to (k− x−1, k− y−1) 0.5

Saturation throughput is defined specifically for a given routing algorithm R and traffic

pattern Λ. Table 5.1 shows a few commonly used traffic patterns and their corresponding

saturation throughput under dimension-ordered XY routing (DOR-XY). Note that 100%

capacity cannot always be achieved with DOR-XY routing even under an ideal router

design, defined as the one that can handle injection loads up to the saturation throughput.

For example, for an adversarial traffic pattern like bit-complement traffic, it is well-

known that DOR-XY routing saturates at 50% of network capacity. To decouple the

effects of the routing algorithm on network performance, we assume DOR-XY routing

throughout the remainder of this chapter. The goal of our router design is to reach the

ideal router performance and thus approach the achievable saturation throughput.

5.2.2 Output-buffered routers

Fact 1. An OBR with unlimited buffering can achieve the theoretical saturation

throughput.

Fact 2. OBRs with unlimited buffering have predictable and bounded packet delays

when the network is below saturation.

Emulating the first-come, first-served (FCFS) behavior of OBR architectures

is important for exploiting their attractive high-throughput and low-latency properties.

Throughput guarantees offered by all oblivious routing algorithms [12], which are often

used in NoCs because of their simplicity, assume ideal output-buffered routing with

infinite buffers when performing throughput analysis. When the network topology
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Figure 5.1: Output-buffered router (OBR) architecture model.

and the traffic matrix are both known, the saturation throughput for oblivious routing

algorithms can be computed based on worst-case channel load analysis (as described in

Section 5.2.1). Even when no information about the spatial characteristics of the traffic

is available, which is often the case, worst-case throughput guarantees of oblivious

routing functions can be provided by solving bipartite maximum-weight matching

problems for each channel [64]. These throughput guarantees do not hold if the

routers used do not emulate an OBR. Generally, using IBRs, the worst-case saturation

throughput of an oblivious routing algorithm can be quite far off from the value predicted

by worst-case throughput analysis (Figure 5.3). So one key advantage of OBR emulation

is to provide and retain such guarantees with the limited hardware resources available in

on-chip routers.

OBRs also have lower and more predictable queueing delays than IBRs because

of their FCFS servicing scheme. Flits are not delayed in OBRs unless the delay is

unavoidable due to multiple flits arriving at the same time at different input ports

destined for the same output port. On the other hand, the switch arbitration schemes used

in IBRs for multiplexing packets onto links are sub-optimal and result in unpredictable

packet delays. The predictability of packet delays is an important concern for delay-

sensitive NoC applications and OBR emulation is a step forward in this direction.

Figure 5.1 depicts the OBR architecture. In this architecture, incoming flits are

directly written into the output buffers through a concentrator. Since up to P flits may
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arrive together for a particular output in the same cycle, a direct implementation of an

OBR would require a router speedup of P, where P is the number of router ports (i.e.,

P = 5 in Figure 5.1). Router speedup can be realized in two ways. First, by clocking the

router at P times the link frequency, which is highly impractical with today’s aggressive

clock rates. Even if realizable, this will lead to exorbitant power consumption. Second,

it can be realized with higher internal port counts at the buffers and the crossbar: each

output buffer needs P write ports, with input ports connected to the output buffers

through a P×P2 crossbar. This scenario leads to huge CMOS area penalties. High

power and area requirements for OBR implementation are the key reasons behind

the broad adoption of IBR microarchitectures as the principal design choice and the

extensive prior effort in the computer architecture community on aggressively pipelined

IBR designs (see Section 5.6), despite the very attractive property that an OBR can

theoretically reach the ideal saturation throughput. Subsequently, in Section 5.2.4 we

review a distributed shared-buffer (DSB) router architecture that emulates an OBR,

inheriting its elegant theoretical properties, without the need for P times router speedup.

We first review the IBR microarchitecture that is widely used in on-chip interconnection

networks.

5.2.3 Input-buffered router microarchitecture

Figure 5.2-A sketches a typical input-buffered router (IBR) microarchitec-

ture [12] that is governed by virtual-channel flow control [13]. We adopt this as

the baseline input-buffered router for comparisons with our DSB architecture. The

router has P ports, where P depends on the dimension of the topology. In a 2-

dimensional mesh, P = 5, which includes the 4 North, South, East, West ports and

the injection/ejection port from/to the processor core. At each input port, buffers are

organized as separate FIFO queues, one for each virtual channel (VC). Flits entering the

router are placed in one of these queues depending on their VC ID. All VC queues at

an input port typically share a single crossbar input port, as shown in Figure 5.2-A, with

crossbar output ports directly connected to output links that interconnect the current

(upstream) router with its neighboring (downstream) router.

Figure 5.2-B shows the corresponding IBR router pipeline. The router uses look-
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Figure 5.2: (A) A typical input-buffered router (IBR) microarchitecture with

virtual-channel flow control and 2 virtual channels (VCs), and (B) its 3-stage pipeline:

(1) route computation (RC) + virtual-channel allocation (VA) + switch arbitration (SA),

(2) switch traversal (ST), and (3) link traversal (LT).

ahead routing and speculative switch allocation resulting in a short three-stage router

pipeline. The route computation (RC) stage determines the output port based on the

packet destination and is done one hop in advance to shorten the length of the router

pipeline by executing RC concurrently with other router functions. Speculative switch

allocation (SA) and VC allocation (VA) are also carried out in parallel in the first pipeline

stage and priority is given to non-speculative switch requests to ensure that performance

is not hurt by speculation. Once SA and VA are completed, flits traverse the crossbar

(ST) before finally traversing the output link (LT) towards the downstream router. Head

flits proceed through all pipeline stages while the body and tail flits skip the RC and VA

stages and inherit the VC allocated to the head flit. The tail flit releases the reserved VC

after departing the upstream router.

To attain high throughput, an IBR relies on several key microarchitectural
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Figure 5.3: Latency-throughput curve of an input-buffered router with unlimited

buffering, virtual channels and perfect allocation (Ford-Fulkerson matching

algorithm [18]).

components to effectively multiplex flits onto the output links. First, additional buffering

allows a greater number of flits to be housed at a router during high contention. This

increases the number of competing flit candidates to eventually traverse a link towards

a downstream router, while also alleviating congestion at upstream routers. Second,

a higher number of VCs allows a greater number of individual packet flows to be

accommodated, increasing buffer utilization and ultimately link utilization. Finally, the

VC and switch allocators need to have good matching capability, i.e. they should ensure

that VCs and crossbar switch ports never go idle when there are flits waiting for them.

To explore the throughput limits of an IBR, we simulated an 8×8 mesh network

of IBRs with a pipelined microarchitecture as described above, but with unlimited

buffering and VCs, and perfect matching (Ford-Fulkerson allocation [18]). Four-flit

packets were sent uniformly to random destinations and routed using DOR-XY routing.

Section 5.4 describes the detailed simulation methodology. Figure 5.3 compares the

latency-throughput curve of the ideal IBR with the curve of an OBR having the same

number of pipeline stages. Despite unlimited buffering, VCs and perfect matching,
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Figure 5.4: Distributed shared-buffer router architecture model.

all of which are impractical as they command impossibly huge area, power and delay

overheads, the IBR obtained only about 81% of ideal saturation throughput. This is

because of the bottlenecks that exist along the datapath of an IBR: buffers are partitioned

per input port, and all VC queues at an input port share a single port into the crossbar.

So when multiple packet flows at an input port wish to depart through different output

ports, they need to queue up and leave the input buffer one at a time. Output-buffered

routers precisely tackle this deficiency and can achieve near-ideal saturation throughput,

as Figure 5.3 shows.

5.2.4 Distributed shared-buffer routers

DSB routers have been successfully used in high-performance Internet packet

routers [25, 50] to emulate OBRs without any internal router speedup. Rather than

buffering data directly at the output ports, a DSB router uses two crossbar stages with

buffering sandwiched in between. Figure 5.4 depicts the DSB microarchitecture used

in Internet routers. The input ports are connected via a P×N crossbar to N middle

memories. These N middle memories are then connected to the output ports via a second

N×P crossbar. At every cycle, one packet can be read from and written to each middle

memory. It should be noted here that when contention occurs in Internet routers, packets

can be dropped. This scenario is not allowed in our proposed on-chip DSB architecture

(see Section 5.3).

To emulate the first-come, first-served (FCFS) packet servicing in OBRs, a DSB
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router has to satisfy two conditions: (a) a packet is dropped by the DSB router if and

only if it will also be dropped by an OBR, and (b) if a packet is not dropped, then the

packet must depart the DSB router at the same cycle as the cycle in which it would have

departed an OBR. To achieve this emulation, each packet arriving at a DSB router is

timestamped with the cycle in which it would have departed from an OBR (i.e., in FCFS

order). When a packet arrives, a scheduler chooses a middle memory to which to write

this incoming packet and to appropriately configure the corresponding first crossbar

(XB1). Also, at each cycle, packets whose timestamp is equal to the current cycle time

are read from the middle memories and transferred to the outputs through the second

crossbar (XB2).

In [25,50], it was shown that a middle memory assignment can always be found

and a DSB router can exactly emulate an OBR if the following condition is satisfied:

Fact 3. A distributed shared-buffer router with N ≥ (2P− 1) middle memories and

unlimited buffering in each middle memory can exactly emulate a FCFS OBR with

unlimited buffering.

At least (2P− 1) middle memories are needed to ensure that two types of

conflicts can always be resolved: The first type of conflict is an arrival conflict. A

packet has an arrival conflict with all packets that arrive simultaneously at other input

ports since packets arriving at the same time cannot be written to the same middle

memory. With P input ports, the maximum number of arrival conflicts a packet can

have is (P− 1). The second type of conflict is a departure conflict. A packet has a

departure conflict with all other packets that have the same timestamp and need to depart

simultaneously through different output ports. With P output ports, a packet can have

departure conflicts with at most (P− 1) other packets. Therefore, by the pigeonhole

principle, N ≥ (2P−1) middle memories are necessary and sufficient to find a conflict-

free middle memory assignment for all incoming packets.

5.3 Distributed shared-buffer (DSB) router for NoCs

In this section, we describe the details of the proposed DSB router for NoCs.

In particular, Section 5.3.1 presents the key architectural contributions that differentiate
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our DSB router for on-chip networks from DSB routers used for routing in the Internet.

Section 5.3.2 then goes on to describe the router microarchitecture and pipeline. Finally,

Section 5.3.3 discusses lower level details associated with practically implementing the

router pipeline stages.

5.3.1 Key architectural contributions

The proposed DSB NoC router architecture addresses the bottlenecks that exist

in the data path of IBRs which lead to lower than theoretical ideal throughput. At the

same time, it tackles the inherent speedup limitations and area penalties of OBRs while

harnessing their increased throughput capabilities. The middle memories decouple

input virtual channel queueing from output channel bandwidth, as any flit can acquire

any middle memory provided that there are no timing conflicts with other flits already

stored in the same middle memory. Essentially, middle memories provide path diversity

between the input and output ports within a router. Although based on the DSB

architecture used in Internet routers, the proposed NoC router architecture faces a

number of challenges specific to the on-chip domain.

First and foremost, NoC applications such as cache coherence protocols cannot

tolerate dropping of packets unlike in Internet protocols. As a result, the DSB

architecture used in Internet routers cannot be directly applied to the on-chip domain.

To guarantee packet delivery, a flow control mechanism needs to be in place. The

proposed DSB router uses credit-based flit-level flow control. To implement credit-

based flow control, we introduce input buffers with virtual channels and distribute the

available router buffers between the input ports and the middle memories. Flow control

is applied on a flit-by-flit basis, advancing each flit from an input queue towards any

time-compatible middle memory and ultimately to the output link. Flits are timestamped

and placed into a compatible middle memory only when the next-hop router has buffers

available at its corresponding input port. Further, since the middle memory buffering is

limited due to power and area constraints, flits are held back in the input buffers when

they fail to find a compatible middle memory.

Next, since power is of utmost importance in the NoC domain, the power-

performance tradeoff of different DSB configurations needs to be explored. Although,
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theoretically, 2P− 1 middle memories are needed in a P-ported router to avoid all

possible arrival and departure conflicts, having a large number of middle memories

increases power and area overheads by increasing the crossbar size. Therefore, we

evaluate DSB configurations with fewer than 2P−1 middle memories and estimate the

impact of the reduced number of middle memories on performance.

Finally, on-chip routers need to operate at aggressive clock frequencies, pointing

to the need for careful design of router pipelines with low complexity logic at each stage.

Our design assumes a delay and complexity-balanced 5-stage pipeline. The proposed

DSB architecture can achieve much higher performance than virtual-channel IBRs with

comparable buffering while adding reasonable power and area overheads in managing

middle memories and assigning timestamps to flits.

5.3.2 DSB microarchitecture and pipeline

Figure 5.5 shows the router microarchitecture of the proposed DSB router and

its corresponding 5-stage pipeline. Incoming flits are first buffered in the input buffers

which are segmented into several atomic virtual channels (VCs). The route computation

stage (RC) employs look-ahead routing like the baseline IBR architecture, where the

output port of a packet is computed based on the destination coordinates one hop in

advance. Only the head flit of a packet participates in route computation. The remaining

pipeline stages of a DSB router are substantially different from those of IBRs. Instead

of arbitrating for free virtual channels (buffering) and passage through the crossbar

switch (link), flits in a DSB router compete for two resources: middle memory buffers

(buffering) and a unique time at which to depart from the middle memory to the output

port (link).

The timestamping stage (TS) deals with the timestamp resource allocation. A

timestamp refers to the future cycle at which a flit will be read from a middle memory,

through the second crossbar, XB2, onto the output port. Timestamping is carried out in

conjunction with lookahead routing. A flit (head, body, or tail) enters the TS stage and

issues a request to the timestamper if it is at the head of a VC or if the flit ahead of it

in the same VC has moved to the second stage of the pipeline. A flit can also re-enter

the TS stage if it fails to find either a conflict-free middle memory or a free VC at the
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Figure 5.5: (A) Distributed shared-buffer router microarchitecture with N middle

memories and (B) its 5-stage pipeline: (1) Route computation (RC) + timestamping

(TS), (2) conflict resolution (CR) and virtual-channel allocation (VA), (3) first crossbar

traversal (XB1) + middle memory write (MM_WR), (4) middle memory read

(MM_RD) and second crossbar traversal (XB2), and (5) link traversal (LT).

input of the next-hop router, as will be explained later. If multiple VCs from the same

input port send simultaneous requests to the timestamper, it picks a winning VC and

assigns the earliest possible departure time for the output port requested by the flit in

the selected VC. Let us assume that the output port requested is p. In order to find the

earliest possible departure time through port p, the timestamper first computes the time

the flit would leave the middle memory assuming there are no flits already stored in the

middle memories that need to depart through port p. Let us denote this time as T [p],

T [p] = Current Time+3

since two pipeline stages, namely, CR+VA (Conflict resolution + VC allocation) and



152

XB1+MM_WR (Crossbar 1 and Middle Memory Write) lie between the TS and

MM_RD + XB2 (Middle Memory Read and Crossbar 2) stages in the DSB pipeline

(see Figure 5.5). Next, we consider the case when there are flits in the middle memories

destined for output port p. To handle this case, the timestamper remembers the value

of the last timestamp assigned for each output port until the previous cycle. The

last assigned timestamp for output port p is denoted as LAT [p]. As timestamps are

assigned in a strictly increasing order, the assigned timestamp for output port p in the

current cycle must be greater than LAT [p]. In other words, a flit that is currently being

timestamped can depart the middle memory through output port p only after all flits that

are destined for the same output port and were timestamped at an earlier cycle, depart

the middle memory. This emulates the FCFS servicing scheme of OBRs. Hence, the

earliest timestamp that can be assigned to a flit for output port p is given as:

Timestamp = max(LAT [p]+1,T [p]) (5.1)

If flits at more than one input port request a timestamp for output port p in the same

cycle, the timestamper serves the inputs in an order of decreasing priority (either fixed

or rotating). The timestamp of a flit at the highest priority input is computed as above

and the remaining flits at other inputs are assigned sequentially increasing timestamps

in the order of decreasing priority.

Conflict resolution (CR) and virtual-channel allocation (VA) comprise the

second pipeline stage of the DSB router. The CR and VA operations are carried out

in parallel. The task of the CR stage is to find a conflict-free middle memory for flits

that were assigned timestamps in the TS stage. As mentioned earlier, there are two kinds

of conflicts in shared-buffer routers – arrival conflicts and departure conflicts. Arrival

conflicts are handled by assigning a different middle memory to every input port with

timestamped flits. Departure conflicts are avoided by ensuring that the flits stored in

the same middle memory have unique timestamps. Figures 5.6 and 5.7 illustrate how

arrival and departure conflicts are resolved in a simplified DSB architecture with two

input ports (no VCs), two output ports, and two middle memories, MM[0] and MM[1],

each with a 3-flit capacity. Figure 5.6 shows how an arrival conflict is resolved by having

two middle memories. In this example, two flits FA and FB need to depart through the

same output port. They are timestamped at the same current cycle i. FA is assigned a
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Figure 5.6: Arrival conflict resolution in a simplified DSB architecture.

timestamp of i + 3 while FB is assigned a timestamp of i + 4, assuming input 1 has a

higher priority than input 2 and there are no flits already stored in the middle memory

buffers. Although FA and FB are in different input ports and have different departure

times, they cannot be simultaneously written into the same middle memory, as each

memory has a single write port. So FA and FB are assigned to MM[0] and MM[1],

respectively. In Figure 5.7, a departure conflict is illustrated. Flit FA enters the TS stage

at current time i for output port 1 and is assigned a timestamp of i+3 since there are no

flits in any middle memory destined for output port 1. When it enters the CR stage in the

next cycle, there are two flits already stored in MM[0] having timestamps i+2 and i+3

destined for output port 2. Although MM[0] has an empty slot to store an additional

flit, FA cannot be assigned to MM[0] since it has a conflicting departure time with a flit

already stored in MM[0] and MM[0] has one read port that can read out only a single

flit at a given time. So, flit FA has to be assigned to MM[1]. From these examples, it

can be seen that conflicts are caused because middle memories are uni-ported2 and only
2Single-ported memories are power and area-efficient.
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Figure 5.7: Departure conflict resolution in a simplified DSB architecture.

one flit can be written into (via XB1) and read from (via XB2) a middle memory in a

given cycle. The implementation details of the TS and CR stages are explained in the

next section.

The virtual-channel allocator arbitrates for free virtual channels at the input port

of the next-hop router in parallel with conflict resolution. VC allocation is done only

for the head flit of a packet. The VC allocator maintains two lists of VCs – a reserved

VC pool and a free VC pool. VC allocation is done by picking the next free output

VC from the free VC list of the given output port, similar to the technique used in [36].

Additionally, when output VCs are freed, their VC number is moved from the reserved
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VC list to the end of the free VC list. If a free VC exists and the flit is granted a middle

memory, it subsequently proceeds to the third pipeline stage, where it traverses the first

crossbar (XB1) and is written to its assigned middle memory (MEM_WR). If no free

VC exists (all VCs belong to the reserved VC list), or if CR fails to find a conflict-free

middle memory, the flit has to be re-assigned a new timestamp and it therefore re-enters

the TS stage.

When the timestamp of a flit matches the current router time, the flit is read from

the middle memory (MM_RD) and passes through the second crossbar (XB2) in the

fourth pipeline stage. We assume that the output port information is added to every flit

and stored along with it in the middle memory. Finally, in the link traversal (LT) stage,

flits traverse the output links to reach the downstream router.

5.3.3 Practical implementation

In this section, we describe the implementation details of the timestamping

and conflict resolution stages, which are unique to the proposed DSB architecture. It

must be noted here that the proposed implementation is only one among a range of

possible design implementation choices that span a spectrum of area/delay tradeoffs.

We specifically focus on the implementation of a 5-ported 2D mesh router. However,

our design can be extended to higher or lower radix routers.

The high level block diagrams of the logic used in the TS stage are shown in

Figures 5.8(a)- 5.8(c). The five input ports are labeled from i0 to i4. First, as shown in

Figure 5.8(a), when multiple VCs from the same input port send simultaneous requests

to the timestamper, a winning VC is selected using a matrix arbiter. In addition to the

timestamping requests, the arbiter also takes as input the size of the f ree VC lists for the

output ports requested by each of the flits in the TS stage. The free VC count is used to

give priority to body and tail flits that have already acquired a VC at the next-hop router

over head flits that are likely to fail in the VC allocation stage. This optimization avoids

wasted cycles resulting from re-timestamping of flits.

After choosing a winning VC at each input port i, the output ports requested by

the flits in the selected VCs, OPi, are used to generate timestamp offsets for each of these

flits, as shown in Figure 5.8(b). Timestamp offsets are required to assign sequentially
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Figure 5.8: Block diagrams of the TS stage.

increasing timestamps to flits based on input priority when flits from more than one

input port simultaneously request a timestamp for the same output port, as discussed in

Section 5.3.2. Internally, the offset generator block comprises of separate sub-blocks,

one for each output port. The offsets are generated on a per output port basis and the

offset value for a flit is the number of higher priority flits requesting a timestamp for the

same output port in the same cycle. The offset generation sub-block for an output port

is a simple combinational function of the requests received from the input ports (OPi)

and the input priorities. The final timestamp assigned to a flit at input i is the sum of the

timestamp assigned to the highest priority flit requesting the same output port (given by

Equation 5.1) and the computed offset.

T Si = max(LAT [OPi]+1,Current time + 3)+offseti (5.2)
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In the DSB architecture, flits are stored in middle memories only after they

have reserved buffering at the next-hop router. Let the total buffering at each input

port be B flits. If the current time is denoted by curr_time, we restrict the maximum

timestamp assigned for an output port to curr_time +B−1. This is because, assigning

a timestamp equal to curr_time + B means that there are B flits before the current flit

(with timestamps curr_time to curr_time + B− 1) that have been timestamped for the

same output port and have not yet departed the router. If all timestamped flits succeed in

acquiring an output VC and a conflict-free middle memory, these B flits would reserve

all available buffering at the input of the next-hop router and any flit with a timestamp

greater than curr_time + B− 1 would fail to reserve an output VC. Hence, assigning

timestamps greater than curr_time+B−1 is not necessary. This fact is used to simplify

the hardware for detecting departure conflicts. From this discussion, at most B unique

timestamps are assigned for an output port, which can be represented using �log2 B�
bits. We ensure that each middle memory has exactly B flits of buffering so that a flit

with timestamp T is always stored at the Tth location within the middle memory. In this

way, a flit with timestamp T can only have departure conflicts with flits stored at the Tth

location of any one of the N middle memories.

With timestamps represented using �log2 B� bits, the timestamp assignment

has to be carried out using modulo-B arithmetic. Under this scheme, the current

time rolls over every B clock cycles, implemented using a mod-B counter. The

assigned timestamps can take B unique values and also roll over beyond B. Hence,

if curr_time%B has a value t, flits stored in the middle memories can have B unique

timestamps between t and (t−1)%B, representing times from curr_time to curr_time+

B− 1. The last assigned timestamp for an output port can fall behind curr_time when

the output port is not used for a while. If the last assigned timestamp for output port

OP falls behind curr_time%B (i.e. LAT [OP] = curr_time%B), it is advanced along

with the current time to ensure that the last assigned timestamp is always either equal

to or ahead of curr_time%B. This prevents old values of LAT [OP] from appearing

as future timestamps after rollover. Figure 5.8(d) presents the logic diagram for the

timestamp computation block shown in Figure 5.8(c). When assigning a timestamp for

output port OPi, (LAT [OPi]+1)%B is simultaneously compared to (curr_time +1)%B
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Figure 5.9: Block diagram of the CR stage.

and (curr_time + 2)%B, and the results are ORed together. A logic 1 at the output of

the OR gate signifies that (LAT [OPi] + 1)%B is behind (curr_time + 3)%B and vice-

versa. The greater of the two times is chosen and the corresponding flit offset is added

to obtain the final timestamp according to Equation 5.2. If the timestamp computed

using Equation 5.2 is greater than B, it is rolled over by subtracting B from the result, as

shown.

In the last block of Figure 5.8(c), the timestamps are shuffled according to input

priority, which is assumed to be a rotating priority over all inputs. In this respect, PT S0

is the timestamp of the input with priority 0, PT S1 is the timestamp of input with priority

1, and so on. This helps with the priority-based middle memory assignment during the

CR stage. If an input does not hold a flit that needs to be timestamped, an invalid

timestamp value is stored instead.

The task of the conflict resolution stage (CR) is to detect arrival and departure

conflicts. To keep track of the occupancy of the middle memory buffers, we use an

auxiliary data structure called the middle memory reservation table (MMRT). For N

middle memories, with B flits of buffering per middle memory, the MMRT is an array

of B registers, each N bits wide. The registers are indexed from 0 to B− 1. If bit

MMRT [i][ j] is set, it implies that memory bank j holds a flit with timestamp i and vice

versa. Departure conflicts are resolved using the middle memory reservation table. For

each timestamp that needs to be assigned a middle memory (PT S0 ... PT S4), the MMRT

register indexed by the timestamp represents the middle memory compatibility bitmap

for the timestamp. In Figure 5.9, the bits C[i][0] to C[i][N− 1] represent the individual

bits of the N-bit register, MMRT [PT Si]. If bit C[i][ j] is 1, it means that middle memory
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j already has a flit with timestamp PT Si and hence, has a departure conflict with any

flit with this timestamp. On the other hand, if C[i][ j] is 0, the flit with timestamp PT Si

is compatible with middle memory j. If an input does not have a flit that needs to

be timestamped, the compatibility bits for all middle memories are set to 1 (meaning

incompatible).

Next, arrival conflicts are resolved in the middle memory assignment stage. The

middle memories are assigned fixed priorities with memory N − 1 given the highest

priority and memory 0 the lowest priority. In the middle memory assignment stage,

the inputs are granted the highest priority compatible middle memory in the order of

decreasing input priority while ensuring that more than one input is not granted the

same middle memory. Bit G[i][ j] denotes the grant bit and it is set to 1 if the input

with priority i has been granted middle memory j. This memory assignment scheme

was specifically designed to have low middle memory miss rates when the number of

middle memories is fewer than 2P−1 (P being the number of ports) for 5-ported mesh

routers. Having less than 2P−1 middle memories is necessary to reduce the power and

area of DSB routers as shown in Section 5.5. When the number of middle memories is

at least 2P− 1, memory assignment schemes with less delay can be implemented as it

is much easier to find conflict-free middle memories.

The above logic distribution between the TS and CR stages was architected to

even-out the Fan-Out-of-4 (FO4) delays across the four stages (excluding LT) of the

DSB pipeline. The FO4 calculations were carried out using the method of Logical

Effort [62], and was applied to each logic block. For a 5-ported DSB router with 5

VCs per input port, 4 flits per VC (B = 20 flits) and 5 middle memories with 20 flits

per middle memory, the critical path delays of the TS and CR pipeline stages were

estimated at 19 FO4s and 18 FO4s, respectively. A delay of less than 20 FO4 for each

stage in the proposed architecture enables an aggressively-clocked high-performance

implementation. In particular, assuming a FO4 delay of 15ps for Intel’s 65nm process

technology, our proposed design can be clocked at a frequency of more than 3GHz.



160

5.4 Throughput and latency evaluation

5.4.1 Simulation setup

To evaluate the effectiveness of our proposed DSB router against a baseline

input-buffered router (IBR) architecture with virtual-channel (VC) flow control, we

implemented two corresponding cycle-accurate flit-level simulators. The baseline IBR

simulator has a three-stage pipeline as described in Section 5.2.3. The DSB simulator

models the five-stage router pipeline described in Section 5.3.2. Both simulators support

k-ary 2-mesh topologies with their corresponding 5-ported routers. DOR-XY routing is

used for all our simulations where packets are first routed in the X-dimension followed

by the Y-dimension. We use DOR-XY because our main focus is on highlighting the

improvement in performance due to the DSB router architecture, rather than the routing

algorithm.

We present results for both synthetic and real traffic traces. The three synthetic

traffic traces used are uniform, complement and tornado traffic, shown in Table 5.1.

These three traces represent a mixture of benign and adversarial traffic patterns. The

ideal saturation throughputs that can be achieved for these three traffic patterns using

DOR-XY (based on channel load analysis) are also shown in Table 5.1. All throughput

results presented subsequently are normalized to the ideal saturation throughput for the

given traffic pattern. An 8×8 mesh topology is used for our simulations with synthetic

traffic. Multi-flit packets composed of four 32-bit flits are injected into the network and

the performance metric considered is the average packet latency under different traffic

loads (packet injection rates). The latency of a packet is measured as the difference

between the time the head flit is injected into the network and the time the tail flit is

ejected at the destination router. The simulations are carried out for a duration of 1

million cycles and a warm-up period of ten thousand cycles is used to stabilize average

queue lengths before performance metrics are monitored.

In addition to the synthetic traces, we also compare the performance of the two

router architectures on eight traffic traces from the SPLASH-2 benchmark suite [71].

The traces used are for a 49-node shared memory CMP [38] arranged as a 7×7 mesh.

The SPLASH-2 traces were gathered by running the corresponding benchmarks with 49
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Table 5.2: Nomenclature of the router microarchitectures compared.

Input buffers (per port) Middle memory buffers
Config. #Middle Total

#VCs #Flits/VC Memories Flits/MM buffers
(MM)

IBR160 8 4 - - 160
IBR200 8 5 - - 200
IBR240 8 6 - - 240
DSB160 4 4 5 16 160
DSB200 5 4 5 20 200
DSB240 6 4 5 24 240
DSB300 5 4 10 20 300

threads3 on Bochs [39], a multiprocessor simulator with an embedded Linux 2.4 kernel.

The memory trace was captured and fed to a memory system simulator that models the

classic MSI (Modified, Shared, Invalid) directory-based cache coherence protocol, with

the home directory nodes statically assigned based on the least significant bits of the

tag, distributed across all processors in the chip. Each processor node has a two-level

cache (2MB L2 cache per node) that interfaces with a network router and 4GB off-chip

main memory. Access latency to the L2 cache is derived from CACTI to be six cycles,

whereas off-chip main memory access delay is assumed to be 200 cycles. Simulations

with SPLASH-2 traces are run for the entire duration of the trace, typically in the range

of tens of millions of cycles, which is different for each trace.

5.4.2 Performance of the DSB router on synthetic traces

The nomenclature of IBR and DSB configurations referred to in this section is

presented in Table 5.2, along with details of the buffer distribution in each configuration.

For the DSB architecture, the number of flits per middle memory is always equal to

the number of input buffers to simplify departure conflict resolution, as discussed in

Section 5.3.3. Theoretically, a 5-ported DSB router needs 9 middle memories to avoid
3Two of the eight traces, fft and radix could not be run with 49 threads. They were run with 64

threads instead. The memory traces of the first 49 threads were captured and the addresses were mapped
onto a 49-node system.
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Figure 5.10: Performance comparison of different router architectures under various

synthetic traffic patterns. The X axis normalized to the ideal saturation throughput that

can be achieved for a given traffic pattern.

all conflicts in the worst case, i.e., when all possible arrival and departure conflicts occur

simultaneously. However, keeping the power overhead in mind, we evaluate a DSB

configuration with only 5 middle memories (DSB200) and compare its performance to

a configuration with 10 middle memories (DSB300).

In addition to the configurations shown in Table 5.2, we also simulated an OBR

with a very large number of buffers (10,000-flit buffers) at each output port, emulating

infinite output buffer capacities. Redundant pipeline stages are introduced in the OBR

simulator totaling a pipeline depth of five, to ensure the same pipeline length as our
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Figure 5.11: Normalized saturation throughput comparison for different NoC router

microarchitectural configurations. The throughputs are normalized to the ideal

saturation throughput that can be achieved for a given traffic pattern.

DSB router for fair comparisons. This helped us to compare the performance of DSB

configurations with an OBR with the same number of pipeline stages, but which behaves

ideally and incurs no delay due to switch arbitration and buffer capacity limitations. We

refer to this OBR configuration as OBR-5stage.

We first compare the performance of IBR200, DSB200, DSB300 and OBR-

5stage. IBR200 and DSB200 have the same number of buffers (200 flits). DSB300 has

the same number of input buffers but double the number of middle memories compared

to DSB200. The average packet latencies at different packet injection rates are shown in

Figure 5.10 for the three synthetic traffic patterns and the saturation throughput values

are presented in Figure 5.11. The saturation throughput is assumed to be the injection

rate at which the average packet latency is three times the zero-load latency.

Figure 5.11 shows that with an aggregate buffering of 200 flits, DSB200

outperforms IBR200 by 11.25%, 9.5% and 18.5% on uniform, complement and tornado

traffic, respectively, in terms of saturation throughput. Although IBR200 has a slightly

lower latency than DSB200 under low loads due to the shorter router pipeline, the

higher saturation throughput of DSB200 gives it a definite edge under moderate to
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high loads. It must be noted here that during the course of an application running

on a CMP, there may be transient periods of high traffic or localized traffic hotspots

during which parts of the network are driven close to (or past) saturation. A router with

higher saturation throughput can minimize the occurrence of such transient hotspots

and provide tremendous latency savings during these periods, which can far outweigh

the slightly higher latency observed under low loads. This is more clearly depicted in

the SPLASH-2 results presented in Section 5.4.3.

The saturation throughput of DSB200 is also close to that of OBR-5stage. For

uniform, tornado and complement traffic, the saturation throughput of the DSB200

architecture is within 9%, 4% and 8%, respectively, of the throughput of OBR-5stage.

The slightly lower saturation throughput of DSB routers is a result of having far fewer

buffers compared to OBR-5stage’s infinite buffering.

The performance of DSB200 is nearly identical to DSB300, with negligible

difference in saturation throughputs for all three traffic patterns. This is because the

probability of more than five arrival and departure conflicts occurring simultaneously is

very low. We observe in our experiments that even under very high injection loads, in the

worst case, less than 0.3% of the flits failed to find a conflict-free middle memory over

all traffic patterns. Hence, it can be concluded that although theoretically nine middle

memories are needed to resolve all conflicts, in practice, five middle memories result in

very little degradation in throughput. Fewer middle memories are very attractive from a

power and area standpoint because they lead to smaller crossbars and fewer buffers.

Next, we explore the sensitivity of performance to the aggregate router buffering

for both the IBR and DSB architectures. Figure 5.12 shows the average packet

latency curves under different injection loads and Figure 5.13 compares the saturation

throughput of IBR and DSB routers with 160, 200 and 240 flits of buffering for the

three synthetic workloads. For both the IBR and DSB architectures, the partitioning of

input buffers into VCs is done in such a way that the throughput is maximized. The

IBR configurations show very little variation in saturation throughput with change in

the number of buffers. However, for the case of DSB routers, we observe that the

effective throughput can be improved by increasing the aggregate buffering. DSB240

has a saturation throughput of 92% for uniform traffic which is a 3.4% gain over
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Figure 5.12: Performance sensitivity of IBR and DSB architectures to total buffering

under various synthetic traffic patterns.

DSB200. DSB200 in turn has higher throughput than DSB160 under all workloads.

Therefore, while the performance of IBRs saturate beyond a certain number of buffers,

the performance of DSB routers can be improved further at the expense of more

buffering (power). This is because the performance of IBRs is limited by the efficiency

of the switch arbitration stage. On the other hand, the throughput of DSB routers,

which aim to emulate an OBR, approaches the ideal saturation throughput as buffering

is increased. For the three synthetic traffic traces evaluated, the saturation throughput

of DSB240 is within 7% of the saturation throughput of OBR-5stage. We also observe

that DSB160, with a total buffering capacity of 160 flits can significantly outperform
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Figure 5.13: Sensitivity of saturation throughput to buffer size.

IBRs with more buffers. This indicates that if power consumption is critical, DSB

configurations with fewer buffers can be used to minimize the router’s power overhead.

5.4.3 Performance of the DSB router on real traffic traces

In this section, we present simulation results using the eight benchmark traces

from the SPLASH-2 suite [71]. For uniform, tornado, and complement traffic, the traffic

matrix Λ is assumed to be fixed and stationary. As discussed in Section 5.2.1, using

channel load analysis, the ideal saturation throughput for these traffic patterns can be

computed based on just Λ and the routing algorithm R. However, in the case of real

traffic traces, like the SPLASH-2 traces, the traffic pattern is space- and time-varying.

Therefore, the notion of ideal saturation throughput can neither be clearly defined nor

easily determined. Instead, we compare the average packet latencies over the entire

trace duration using our cycle-accurate flit-level simulators. The communication latency

for memory accesses is directly proportional to the application performance on shared-

memory many-core systems.

Figure 5.14 shows the latency results of all the IBR and DSB router config-

urations, normalized to the average packet latency of IBR200. The first observation

we make is that the average packet latency of the DSB configurations is comparable
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Figure 5.14: Network latency for SPLASH-2 benchmarks.

to OBR-5stage for seven of the eight SPLASH-2 benchmarks evaluated. For the

water-nsquared trace, OBR-5stage has a lower latency than DSB routers because this

trace has traffic hot spots where packets are injected at rates that saturate both OBR and

DSB routers. In such cases, the large number of output buffers available in OBR-5stage

help in attaining a lower average latency. On average, across all eight traces, OBR-

5stage has 14% lower average packet latency than DSB-240. In most traces, the ability

of a DSB router to closely match an OBR in terms of latency illustrates its ability to

emulate OBRs, even with limited buffering.

Next, we observe that DSB200 outperforms IBR200 on fft, water-nsquared,

water-spatial and radix traces by 72%, 64.5%, 97.5% and 8%, respectively.

For the three traces where the performance improvement is over 50%, i.e., fft,

water-nsquared and water-spatial, IBR200 saturates during portions of all three

traces while DSB200 saturates only in the case of the water-nsquared trace. It is

during these transient periods of congestion that the communication delay can shoot

up and the network can become a serious performance bottleneck. The high relative

packet delays of the IBR configurations seen in these three traces is expected to directly

impact application performance as communication delays will constitute the bulk of
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the application runtime. It can therefore be inferred from these results that a relatively

small increase in saturation throughput translates into tremendous reductions in packet

latency for applications that demand high bandwidth. IBR200, however, has 32%, 18%

and 24% lower latency for raytrace, barnes and ocean benchmarks. This is because

these traces have negligible output port contention and the higher delay of DSB routers

can be attributed to their longer pipeline depth of 5 as compared to 3 for IBR200. This

is proved by the fact that even OBR-5stage, which has no extra delay introduced as

a result of switch contention, has higher average packet latency than IBR200. For

the SPLASH-2 benchmarks with high output port contention (fft, water-nsquared,

water-spatial and radix), on average, DSB200 has 61% lower latency than IBR200.

Averaging across all eight traces, DSB200 has 17% lower latency than IBR 200. Hence,

for applications that demand high throughput and drive the network towards saturation

or close to saturation, DSB routers are clearly superior to IBRs.

Although DSB160 has lower saturation throughput compared to the DSB200

and DSB240 configurations under all three synthetic traffic traces, the difference in

average packet latency in real application traces, like the SPLSH benchmarks, is

less notable. The biggest difference in average packet latencies of DSB160 and

DSB240 configurations is seen for the water-spatial trace, where DSB240 has 18%

lower latency than DSB160. On average, the difference in average packet latency

between the DSB160 and DS240 configurations across all eight traces is less than 4%.

However, compared to IBR240 and IBR200 configurations with much higher aggregate

buffering, DSB160 achieves 60% lower average packet latency for the four SPLASH-2

benchmarks with high contention.

Lastly, there is negligible difference in performance between DSB200 with 5

middle memories and DSB300 with 10 middle memories. This further shows that even

with real application traces, more than five simultaneous arrival and departure conflicts

occur very rarely. Hence, 5 middle memories are sufficient to achieve comparable

performance to a 10-middle memory configuration, with the added advantage of

significantly lower power and area overheads, which will be shown in the next section.
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Table 5.3: Router power and area comparison with full-swing crossbars.

Router Power Area
Buffer Xbar Arbiter MM Clock Total

IBR160 74 52.7 53.4 – 52 232 0.17
DSB160 53.2 105.4 48 30.4 70 307 0.28
IBR200 76.4 52.7 53.4 – 54.2 237 0.19
DSB200 58.4 105.4 58.7 34.6 71.5 328.6 0.3
IBR240 79.3 52.7 53.4 – 57 242.4 0.21
DSB240 63.5 105.4 68 38.9 73 348.8 0.32

Table 5.4: Power overhead of using DSB routers.

Router config. Total power Power penalty
Per router Per tile, NoC power =

(mW) 10% 15% 20%
IBR160 232
DSB160 307 1.32 1.032 1.048 1.064
IBR200 237
DSB200 328.6 1.39 1.039 1.06 1.08
IBR240 242.4
DSB240 348.8 1.44 1.044 1.066 1.088

5.5 Power and area evaluation

Table 5.3 compares the power consumption and area requirements of IBR and

DSB router microarchitectures with the same aggregate buffering. We use the power

and area models in Orion 2.0 [28, 69] for our analysis. The models use parameters

from TSMC 65nm process libraries and include both dynamic and leakage power

components. The operational frequency used is 3GHz at 1.2V. A typical flit arrival

probability of 0.3 is assumed at each input port and the flit width is set to 32 bits. SRAMs

are used as input and middle memory buffers and low threshold voltage transistors are

used to ensure low delays for 3GHz operation. The VC allocator is configured to simply

select a free VC from a free VC list as described in Section 5.3.2 in both DSB and IBR

architectures while a matrix arbiter is used for switch arbitration in IBRs. The power

and area of the arbitration logic of the DSB router were extrapolated from the power and
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area numbers of the arbitration logic of an IBR, based on the the number of 2-input gates

required to implement the logic blocks in the two architectures. The arbiter power of the

DSB routers includes the power of all logic blocks needed to implement timestamping

and conflict resolution, as described in Section 5.3.3.

As shown in Table 5.4, DSB160, DSB200 and DSB240 consume 32%, 39% and

44% more power and occupy 64%, 58% and 52% more area than an IBR router with the

same amount of buffering. The higher power consumption and area requirements of the

DSB router is due to the presence of an extra crossbar and a more complex arbitration

scheme (involving timestamping and conflict resolution) compared to the switch arbiter

in an IBR. The DSB160 configuration, which uses fewer buffers than IBR240, achieves

significantly better performance on both synthetic and real traffic, but exhibits a 27%

power and a 33% area overhead over IBR240.

Although the power cost per router for a DSB router is substantially greater than

that of an IBR, the overall power increase for an NoC-based CMP application is often

relatively smaller. In Table 5.4, the power penalty per tile (processor + router) of using

a DSB router is presented for three different scenarios where the NoC consumes 10%,

15% and 20% of the total CMP tile power. Even for applications where the router

consumes as high as 20% of the tile power, the power per tile with a DSB200 router

is only 8% higher than the tile power with IBR200. On the other hand, if the router

consumes only 10% of the tile power, the power per tile with a DSB200 router is just

3.9% higher than the tile power with IBR200. We believe that the increased power cost

is justified for applications that demand high bandwidth and exhibit high contention

since latency reductions of more than 60% can be achieved using DSB routers. As with

power, in the case of area requirements, the increase in area of the entire tile as a result

of using a DSB router in place of an IBR is again very low since the router area is only

a small portion of the total tile area.

As discussed earlier, the DSB200 configuration with 5 middle memories and the

DSB300 configuration with 10 middle memories exhibit similar performance. However,

DSB200 consumes 37% less power and occupies 40% less area compared to DSB300

(Table 5.5). The power and area savings are achieved by using fewer buffers and two

5×5 crossbars in DSB200 instead of 5×10 and 10×5 crossbars used in DSB300.
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Table 5.5: Comparison of DSB routers with 5 and 10 middle memories.

Router Power (mW) Area
Config. Buffer Xbar Arbiter MM Clock Total (mm2)
DSB200 58.4 105 58.7 34.6 71.5 329 0.3
DSB300 58.4 203 84 70.9 104 520 0.5

Table 5.6: Router power comparison of DSB and IBR architectures with low-swing

crossbars.

Router Power (mW) Router Power (mW) Penalty
config. Config. (per router)
IBR160 206 DSB160 254 1.23
IBR200 210 DSB200 276 1.31
IBR240 216 DSB240 296 1.37

Another technique with which the power overhead of DSB routers can be further

reduced is by employing customized low-swing crossbars [35]. It has been shown in [35]

that crossbar power can be reduced by approximately 60% compared to a baseline

unoptimized design by using differential low-voltage signaling. As a conservative

estimate, our extrapolated low-swing crossbar power model reduces the power of the

5×5 crossbar used in the DSB and IBR architectures by 50% compared to a full-swing

crossbar. The power consumption of the two architectures with optimized low-power

crossbars is presented in Table 5.6. The power penalty per router for DSB160, DSB200

and DSB240 routers can be reduced to 23%, 31% and 37%, respectively, compared to

an IBR router with the same aggregate buffering.

5.6 Related work

5.6.1 On-chip routers

Most previous works focus on efficient buffer organization as a means of

extending the effective throughput of NoCs. Sophisticated extensions to input-buffered

router microarchitectures have been proposed for improving throughput, latency and
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power. For throughput, techniques like flit-reservation flow control [49], variable

allocation of virtual channels [8] and express virtual channels [38] have been proposed.

As these designs are input-buffered, they are only able to multiplex arriving packets

from their input ports across the crossbar switch, unlike our proposed DSB architecture

which can shuffle incoming packet flows from all input ports onto the middle memories

and then onto the crossbar switch. The DSB architecture offers better opportunities

for packet multiplexing and improved packet flow, which helps in mimicking the high

throughput and predictable delay characteristics of output-buffered routers. The Xpipes

NoC architecture [5] targeted towards gigascale systems-on-chip uses output buffering

without any switch speedup. The Xpipes switch implementation and flow control mainly

target low latency rather than high-throughput, the latter being the primary objective of

DSB routers.

There have been several input-buffered router proposals that target network

latency, making single-cycle routers feasible, such as speculative allocation [44, 45,

48] and lookaheads [21, 36]. For power savings, techniques such as row-column

separation [32] and segmentation of crossbars and straight-through buffers [68] have

been proposed. These latency and power optimization techniques are orthogonal to our

proposal as they do not target throughput. Some of these techniques can be applied to

the DSB router as well to reduce network latency and energy consumption.

As discussed in Chapters 2, 3 and 4, another way to improve throughput in

NoCs is by designing routing algorithms that balance the network load over all links.

In general, any oblivious routing algorithm can be used with the DSB architecture as

the route computation stage operates in the same way as in an IBR. Also, adaptive

routing algorithms can be easily incorporated into the DSB architecture as follows:

adaptive routing decisions are usually based on the next-hop input queue length as

an indication of downstream congestion during output-port selection. Since the DSB

architecture emulates an OBR, instead of input queue length, the corresponding output

queue length can be used as an indicator of downstream congestion. The output

queue length can be determined by considering the “Last-Assigned-Timestamp” of the

already timestamped flits. The local delay measurement technique can be extended

to estimate regional or destination-based congestion to implement more sophisticated
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adaptive routing algorithms like Regional Congestion Awareness [20] and Destination-

Based Adaptive Routing [60] that monitor global network congestion.

5.6.2 Off-chip routers

As already mentioned, distributed shared-buffer routers [25, 50], which can

emulate an output-buffered router without router speedup, have been successfully used

for Internet routing. Stunkel et al. [58] proposed the IBM Colony router which is a

customized architecture for off-chip interconnection networks with large central buffers

and three crossbars. Although the architecture is similar to DSB, it does not use

timestamping of flits for OBR emulation. Instead, packets potentially incur large de-

serialization and serialization latencies to support wide SRAM accesses.

Chuang et al. [9] showed that an input-buffered router can also emulate an

output-buffered router. This emulation requires a router speedup of 2 and an impractical

complex matching problem, both of which are hard to achieve with on-chip designs. In

addition, load-balanced routers [7, 30, 41] have been proposed as scalable architectures

for Internet routing. To ensure packet ordering, they typically employ aggregation or

scheduling schemes that incur long latencies, which is not acceptable in the context of

on-chip networks.

5.7 Conclusions

In this chapter, we proposed a distributed-shared-buffer (DSB) router for on-

chip networks. DSB routers have been successfully used in Internet routers to emulate

the ideal throughput of output-buffered routers, but porting them to on-chip networks

with more stringent constraints presents tough challenges. The proposed DSB router

achieves up to 19% higher saturation throughput than input-buffered routers (IBRs) and

up to 94% of the ideal saturation throughput for synthetic traffic patterns. The higher

saturation throughput translates to large reductions in network latency with SPLASH-2

benchmarks. For SPLASH-2 applications which exhibit high contention and demand

high communication bandwidth, DSB routers on average have 61% lower network

latency than IBRs.
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Chapter 5, in full, is a reprint of the material as it appears in the following

publications:

• Vassos Soteriou, Rohit Sunkam Ramanujam, Bill Lin, and Li-Shiuan Peh, “A

High-Throughput Distributed Shared-Buffer NoC Router”, Computer Architec-

ture Letters, April, 2009.

• Rohit Sunkam Ramanujam, Vassos Soteriou, Bill Lin, and Li-Shiuan Peh,

“Design of a High-Throughput Distributed Shared-Buffer NoC Router”, The 4th

ACM/IEEE International Symposium on Networks-on-Chip (NOCS), May 3-6,

2010, Grenoble, France.

• Rohit Sunkam Ramanujam, Vassos Soteriou, Bill Lin, and Li-Shiuan Peh,

“Extending the Effective Throughput of NoCs with Distributed Shared-Buffer

Routers”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol.30, no.4, pp.548-561, April 2011.

The dissertation author was the primary investigator and author of the papers.



Chapter 6

Conclusion and Future Directions

The many-core era has reached a phase where widespread adoption of NoCs

is inevitable to facilitate efficient communication between the increasing number of

components integrated within a chip. This dissertation tackles the critical problem

of throughput-driven NoC design where communication throughput is the primary

performance metric that is maximized, while minimizing costs related to latency, power

and area. We propose two different approaches to achieve this goal, first, by designing

efficient routing algorithms that load-balance traffic uniformly over all network links

and second, by improving the router microarchitecture to alleviate bottlenecks along

the datapath of routers and improve their packet-multiplexing capabilities. Both

these approaches provide substantial improvements in both worst-case and average-

case throughputs over existing solutions. In bandwidth-hungry workloads, throughput

and latency often go hand in hand, i.e., increasing the saturation throughput of the

network results in significant improvements in average packet latencies brought about by

avoiding or delaying network saturation during temporary bursts of congestion. Hence,

throughput-driven NoC design can significantly improve application performance in

many-core chips both by increasing communication throughput and reducing commu-

nication delays.

A key challenge in exploring and evaluating routing algorithms and router

architectures is to accurately model the on-chip traffic that needs to be sustained

by the communication fabric. One approach is to run full-system simulations that

accurately model the entire system and can directly evaluate how changes in the

175
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NoC affect application performance. Full system simulations, however, are extremely

time-consuming and do not scale well to large systems. One option to expedite

the exploration process is to run a single full-system simulation (assuming a certain

underlying interconnect model) to derive network traffic traces for different applications,

and use these traces to drive NoC design. Significant portions of the evaluations

carried out in this dissertation involve such trace simulations. Simple traffic traces,

however, cannot keep track of dependencies between packets and fail to model the self-

throttling nature of most CMP applications. This is due to the absence of a feedback

mechanism that changes the injection times of packets in response to communication

delays currently experienced in the network. Hence, one open problem in this area is to

explore trace-based evaluation techniques that are more accurate than trace simulations

currently being used in NoC research, but that are significantly faster than a full-

blown system simulation or emulation. Such trace-based methods need to incorporate

abstract models for different chip components within the NoC simulator for deriving

approximate packet service times. They also need to include information about inter-

packet dependencies (like request-response dependencies) within a trace to model the

self-throttling nature of applications under network congestion.

As discussed in Chapter 1, potential application domains for throughput-

centric NoCs will rely on hundreds of processor cores and thousands of threads to

exploit different forms of parallelism like data-level parallelism in GPUs, packet-level

parallelism in network processors, request-level parallelism in servers, etc. With a large

number of threads accessing shared resources, ensuring fairness and guaranteeing QoS

for network flows becomes important for most applications. Some of these capabilities

can be incorporated into the on-chip network while others can be implemented at higher

layers. The work presented in this dissertation does not differentiate between network

flows and treats all flows equally. Depending on the requirements of applications and the

way fairness between communicating flows is defined, bandwidth and latency fairness

issues need to be suitably addressed in NoCs.

Finally, 3D ICs promise “more than Moore” integration by packing a great deal

of functionality into small form factors, while improving performance and reducing

costs. Research on 3D integration is still in its early stages and new capabilities need to
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be added to existing toolkits to provide an unified design and verification environment

for 3D ICs. In the context of NoCs, 3D ICs are expected to have heterogenous

2D layers interconnected by through-silicon vias. The short inter-layer distances and

low latency vertical interconnects provide new opportunities to innovate with new

interconnect topologies for 3D ICs. One such architecture using crossbars for inter-

layer communication has been proposed in this dissertation, but this architecture still

assumes homogenous communicating elements. Depending on the organization of 3D

ICs, the all-to-all communication model often used in NoC research may not apply for

heterogenous 3D chips. There is certainly scope for developing new routing algorithms

and network architectures specifically tailored for such heterogenous systems.
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