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ABSTRACT OF THE DISSERTATION

Estimation of Parameters for Logistic Regression Model
in Dose Response Study with

A Single Compound or Mixture of Compounds

by

Hiya Banerjee

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2010

Dr. Subir Ghosh, Chairperson

We investigate the estimation issues for count data in dose response model. In this thesis,

we are considering logistic dose response model for a mixture experiment with two drugs.

We propose two new methods of estimation of parameters for this model by forming the

observation pairs. The standard maximum likelihood estimation method uses the numerical

methods for solving the estimating equations. This method requires an initial set of values

for the parameters in the model. The standard procedure normally uses the initial values as

zero or some convenient numbers without any justification. We present two very systematic

methods of finding the initial values of parameters of the maximum likelihood estimating

equations (MLEE). Our methods are based on two criterion functions, the log-likelihood and

the other function ∆. We then use the initial values and the corresponding criterion function

to obtain the final solution of MLEE. We demonstrate that when we consider only two doses

from the data, we do have an exact analytic expression for the solution of estimating equa-

tions. We use that fact to obtain the initial values of parameters in these models. Then we

have used the search algorithm for performing the optimization to find the final estimates.

The proposed methods are transparent in the selection of the initial values of parameters.

The proposed methods are computer intensive like bootstrap and jackknife methods popular

among statisticians. We have also compared our estimates with the estimates obtained by

SAS and R. The proposed methods compare favorably with SAS and R in terms numerical

values of the estimates and the performance time of the estimates. We illustrate our meth-
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ods with a data set (Giltinan, 1998). We present also some simulated data to illustrate our

methods.
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Chapter 1

Introduction

There was an incident reported in the Winter of 1961 regarding the use of the drug Thalido-

mide. The incident reported that the thousands of babies born with deformities from the

mothers who have taken this drug during their pregnancy. The drug could be a toxic sub-

stance. According to Beedie and Davies (1981), it had not been tested on animals for

teratogenicity. This fiasco illustrated the adverse effect of the toxic substance on human

being. This is a motivating example to study toxicity of a drug or a medication. A dose

response model determines the toxic effect of a chemical substance. Dose-Response is a

relationship that describes the changes brought in an organism when it is exposed to differ-

ent levels (doses) of a chemical compound. In this study, the main interest is to study the

relationship between exposure levels of drugs (doses) and the responses obtained from the

experiment. Dose-response relationship is always based on two simple assumptions:

• There is always a minimum dose to have an observed effect.

• There is always a maximum dose.

We can apply dose response analysis for single drug experiment, for the mixture of two drugs

experiments and for the mixture of multiple drugs experiments. In this thesis we consider

the dose-response relationship of the mixture of two drugs experiment and a single drug

experiment.
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There are many statistical models available in literature (Finney, 1971) to analyze dose-

response relationship of chemical compounds. In this thesis, we use the Logistic Regression

Model (Bliss, 1935) for its computational simplicity. With our fitted model, we analyze the

data and the parameter estimates of the assumed model.

1.1 Literature Review

Dose-Response assessment is a two step procedure. The first step analyze the data that are

available or gathered from the experiments. And the second step is to estimate the risk or

the adverse effect beyond the observe data. First step of the assessment deals with the mod-

eling of the data and the estimation of potency of a chemical substance. The potency is a

measure of a drug amount that is required to produce an effect of given intensity. Some of the

commonly used potency estimators are, ED50, LD50 etc. There are many statistical models

exist in the literature to address the dose response assessment of chemical substances. We

have considered logistic regression model in our thesis for the assessment. We can use probit,

complementary log-log models for the assessment (Finney, 1971). Among other numerous

existing models, we found the model proposed by Chen (2007) is relevant to our work. In

Pharmaceutical experiments, animals responses are recorded over different time points under

different dose levels. Logit and probit models are not appropriate in this situation because

it neglects the dependency on time. Chen (2007) proposed a multinomial generalized linear

model. We can extend this model with the higher order dose-time interaction terms. With

the fitted model, we are generally interested in estimating the potency of the drug or relative

potency if we have drug interactions. We have discussed the estimation of most commonly

used potency estimator, ED50 in our thesis. Since we also consider the drug interactions in

our thesis, we discuss about the estimation of relative potency for drug interactions. There

are numerous literature exist on the estimation of relative potency. One of the most com-

monly used method of estimation is Isobologram. This is a graphical method which was

2



introduced many years ago (Loewe, 1927). This graph is generally constructed on a coor-

dinate system composed of the individual drug doses. It is commonly contains a straight

line of additivity that help use to distinguish between different type of drug interactions.

However, we have discussed the numerical estimation procedure for relative potency in our

thesis.

As we mentioned earlier that dose-response assessment also deals with the risk character-

ization of chemical substances exposed to the human population. This is the attempt to

estimate the chance of obtaining an adverse effect of exposure to an agent (Glowa 1996).

The earliest practice used to predict safe level was the acceptable daily intake (ADI) which

attempted to predict a dose that could be tolerated over the life time without producing

harm. However, arguments in support of the fact that it was impossible to determine the

entirely safe dose which led to a revised term called reference dose (RfD) approach. This

approach first finds a dose level with no effect ( i.e. no observable adverse effect level or

NOAEL) or a minimal effect (i.e. lowest observable adverse effect level or LOAEL). NOAEL

is the highest experimental dose at which there is no statistically significant increase in the

adverse toxicological end point. This NOAEL approach is based on the assumption that if

the critical toxic effect is prevented, then all toxic effects are prevented (Barnes and Dourson

, 1988). There are several ways of determining NOAEL dose.Besides finding NOAEL we can

find ”virtually safe” doses (VSDs). A virtually safe dose of a drug is one which produces a

very low incidence of response. Several ways of estimating VSDs exist.

1.2 Thesis contribution

In this thesis we discuss the statistical models for the drug interactions between two drugs.

We consider logistic regression model for describing dose-response relationship between two

drugs. We are interested to determine the mathematical approach to estimate the relative

potency of drug interaction. We also consider the potency estimation of ED50 for a single

3



drug experiment. The potency estimation depends on the estimation of parameters in the

proposed models. The standard maximum likelihood estimation method uses the numerical

methods for solving the estimating equations. These methods requires an initial set of values

for the parameters in the model. The standard procedure normally uses the initial values as

zero or some convenient numbers without any justification. We propose two new methods of

estimation of the parameters for these models by forming the observation pairs. We present

two very systematic methods for finding the initial values of parameters of maximum likeli-

hood estimating equations (MLEE). Our methods are based on two criterion functions, the

log-likelihood and the other function ∆. We then use the initial values and the corresponding

criterion function to obtain the final solution of MLEE. We demonstrate that when we con-

sider only two doses from the data, we do have an exact analytic expression for the solution

of estimating equations. We use that fact to obtain the initial values of parameters in these

models. Then we use the search algorithm for performing the optimization to find the final

estimates. The proposed methods are transparent in the selection of the initial values of

parameters. Our methods are highly computer intensive and comparable with the standard

methods of estimation used by the software R and SAS.

1.3 Thesis description

In Chapter 2, we present the models that are used to describe the dose response relationship

for mixture of experiments. We have considered a data set given by Giltinan (1998) for the

computational purpose. In this chapter we present the standard and popular estimation

procedures for estimating the unknown parameters in the defined models. In Chapter 3, we

present a special case of one of our proposed model from Chapter 2. In this chapter, we

present a systematic way to find the initial values of the parameters which can be used for

the iteration of the new estimation method . We also present our new estimation method to

estimate the unknown parameters in the model that uses our initial values. Our proposed

4



methods are illustrated on a data set given by Bliss (1935). In Chapter 4, we present a

direct performance comparison of our new estimation method with the couple of the standard

estimation methods. We also present the comparison with respect to the performance times

for our proposed methods and the standard methods. In Chapter 5, we present a systematic

way to find the initial values of the parameters in the model which defines the mixture

of experiments. We also propose new methods of estimation of the unknown parameters

using our proposed initial values. In Chapter 6, we present a comparison study between our

methods and the standard methods used for estimating the unknown parameters. Chapter

7 presents the conclusion of this dissertation.
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Chapter 2

Model and Estimation

2.1 Summary

In this chapter, we present the statistical models for the dose-response data of mixture of

two drugs experiment. Discussions on statistical models can be found at (Finney,1978; Chen,

Gaylor, and Laborde,1998; Piegorsch and Bailer, 1997). Generally we have count data for

analyzing the dose response relationship between doses and response. The statistical models

for describing the count data in drug interactions are developed within the framework of

generalized linear models. A detailed expositions on generalized linear models can be found

in (McCullag, Nelder, 1989). There are many literature on Maximum Likelihood Estimation

(MLE) for estimating the unknown parameters in these models. Some of the studies can be

found in (Agresti, 2001). We present MLE of the unknown parameters in these models using

Newton-Raphson and Fisher Scoring iteration methods. Besides that we present the results

on maximum likelihood estimates of the unknown parameters for a data set from (Giltinan,

1998) using the above two standard iterative procedures.

2.2 Statistical Modeling of Dose response data

As we discussed earlier, dose-response study examines the relationship between dose level of

toxic substance and animal mortality. We want to model the probability of mortality (p) as

a function of dosages (x).
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We define a random variable z for an animal who is exposed to a particular dose. The

variable z takes the value 1 when the animal gets killed by the dosages and z = 0 when the

animal does not get killed by the dosage. A reasonable model assumes that the animal has

a certain tolerance T to the toxic substance, with mortality occurring if the dosage is above

the tolerance. Then the probability that an animal dies when dosage x is given is,

P (z = 1) = P (T ≤ x) =

∫ x

−∞
f(t)dt. (2.1)

where f(t) is the density function associated with the tolerance. The logistic, probit, com-

plementary log-log link function are the possibly describe the tolerance density models. We

use the logistic link function for our analysis.

2.3 Genralized linear model

2.3.1 Binary data

We consider the case where the response Y is binary, assuming only two values, that for

convenience coded as one or zero. Suppose yi is a realization of the random variable Yi, i =

1, . . . , N , that can take the values one and zero with probabilities πi and 1−πi, respectively.

The distribution of Yi is called a Bernoulli distribution with parameter πi, can be written in

the compact form as,

Pr{Yi = yi} = πyi

i (1− πi)(1−πi). (2.2)

The expectation and variance of Yi can be expressed as,

E(Yi) = πi,

var(Yi) = πi(1− πi). (2.3)

2.3.2 Count data

When the response variable is binary (e.g. death or survival), then the probability distri-

bution of the number of deaths in a sample of a particular size is usually assumed to be
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binomial. Let ni denote the number of observations in group i, and let yi denote the number

of units who have the same attribute of interest (e.g. no. of death or survival) in group i. yi

can take the values 0, 1, . . . , ni. If the ni observations in each group are independent, and if

they all have the same probability πi of having the attribute of interest, then the distribution

of Yi is binomial with parameters ni and πi, we write,

Yi ∼ B(ni, πi), (2.4)

The probability distribution function of Yi is given by,

Pr{Yi = yi} =

(
ni
yi

)
πyi

i (1− πi)(1−πi), (2.5)

The expectation and variance of Yi can be expressed as,

E(Yi) = µi = niπi,

var(Yi) = niπi(1− πi). (2.6)

For a generalized linear model there is a transformation of µi such that

g(µi) = θi = x
′

iβ, (2.7)

In the above equation g is a monotone and differentiable function which is called the link

function; xi is the p x 1 vector of explanatory variables, β is the p x 1 vector of parameters

and we use a canonical link function involving the natural parameter θi

A wide choices of link functions are available in the literature. The most commonly used

functions are logit, probit and complimentary log-log. We consider logit link function where

the monotonic function g is defined as,

g(µi) = log
πi

1− πi
, (2.8)
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In logistic regression model, πi can be defined as,

πi =
exp(θi)

1 + exp(θi)
. (2.9)

2.3.3 Likelihood function for the count data

We consider the general case of N independent random variables Y1, . . . , YN corresponding to

the numbers of successes in N different subgroup. We assume that the mortality probability

for a subject in the ith group is πi and the mortalities for subjects are independent. Given

that Yi follows from binomial distribution with parameters (ni, πi), the complete likelihood

function can be written as,

L(πi, . . . , πN ; yi, . . . , yN) =
N∏
i=1

(
ni
yi

)
πyi

i (1− πi)ni−yi , (2.10)

The log-likelihood function is,

l(πi, . . . , πN ; yi, . . . , yN) =
N∑
i=1

yi log(
πi

1− πi
) + ni log(1− πi) + log

(
ni
yi

)
,

Substituting πi in (2.9) in the above equation, we get,

log(L(θ)) = l(θ) =
N∑
i=1

yix
′

iθ −
N∑
i=1

ni log(1 + exp(x
′

iθ)) +
N∑
i=1

log

(
ni
yi

)
. (2.11)

The likelihood in (2.9) are based on the assumption that the count response variable yi ’s

for a given subject are independent over the period of the time of study. Under the above

structure of likelihood, one can define several classes of models.

2.4 Mixture of Drugs

We, the humans are usually exposed to several toxic substances or chemicals such as envi-

ronmental pollutants in food, water, air and therapeutic agents etc everyday. Some of the

examples are - (i) hospital patients on the average receives 4 drugs daily, (ii) home influenza

treatment consists of more than one of the medicine like aspirin, antihistamines, antibiotics,
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and cough syrup taken simultaneously, (iii) drinking water and food may contain small

amounts of organic and inorganic chemicals, (iv) air often contains mixtures of hundreds of

chemicals such as urban and industrial combustion products, (v) cigarette smoke etc., (vi)

gasoline vapors include several hydrocarbons and additives etc. (Khan, 2007) There could be

an effect of toxicity of these chemicals simultaneously in our body. however, toxicity testing

of mixtures is usually difficult because it is impossible to predict the possible combinations

of chemicals that will be present in multiple-chemical exposures. Sometimes chemicals which

administered simultaneously may act independently of each other. However, in many cases,

the presence of one chemical may drastically affect the response to another chemical. The ef-

fectiveness or toxicity of a mixture of chemicals may be less or more than would be predicted

from the known effects of each individual chemical. The effect that one chemical has on the

toxic effect of another chemical is known as an interaction between two chemicals. We have

considered drug interactions between two drugs in our thesis. There are three basic types

of drug interactions. Before we discuss about the drug interactions, we discuss about the

Relative potency of two drugs. Assume two drugs namely, A and B are separately active.

We assume that the ratio of equally effective doses of two compounds is constant for all levels

of response and is referred as relative potency, ρ, of the drugs. If the potency of B is ρ then z

units of B have the same effect as ρz units of A. If a mixture containing xi units of A and zi

, i = 1, . . . , N units of B results in a response (i) equivalent to, (ii) greater than or (iii) less

than that for xi +ρzi units of A, we shall say that the two drugs exhibit (i)additive behavior

(simple similar action), (ii) synergism behavior or (iii) antagonism behavior. these three are

the basic type of drug interaction for the mixture of drugs (Giltinan, 1998). Synergism and

Antagonism represent deviations from Similar Action in the positive and negative directions

respectively. We consider simple similar action interaction between two drugs as our inter-

est. The models and the estimation procedure for estimating the unknown parameters are

discussed in the coming chapters.
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2.4.1 Models

Model 1 (MM1)

We propose two different models for describing simple similar action of two drug compounds.

Model 1 describes the simple similar action of two drugs when the relative potency is un-

known. As we have discussed earlier that we will use logistic regression model to define our

models, so that we have considered the mortality probability πi as

πi = logit−1(θi) =
exp(θi)

1 + exp(θi)
, (2.12)

Here

θi = β1 + β2 log(xi + ρzi), (2.13)

Hence πi becomes,

πi =
exp(β1 + β2 log(xi + ρzi))

1 + exp(β1 + β2 log(xi + ρzi))
, (2.14)

where β1 , β2 and ρ are the unknown parameters. xi and zi are the covariates used as the

measurements of drug amount of drug A and drug B , respectively.

We define di = log(xi + ρzi), i = 1, . . . , N . The equation (2.14) can be written as

πi =
exp(β1 + β2di)

1 + exp(β1 + β2di)
. (2.15)

Model 2 (MM2)

Model 2 describes the joint action of two drugs when the relative potency (ρ) is known. We

denote the known relative potency as ρ0 in Model 2. We consider logit link function to define

our model as in similar fashion as Model 1. The θi in (2.12) is defined as

θi = β1 + β2 log(xi + ρ0zi), (2.16)

Hence πi becomes,

πi =
exp(β1 + β2 log(xi + ρ0zi))

1 + exp(β1 + β2 log(xi + ρ0zi))
, (2.17)
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We consider d0i = xi + ρ0zi. The equation (2.17) can be written as

πi =
exp(β1 + β2d0i)

1 + exp(β1 + β2d0i)
. (2.18)

In (2.17) , xi and zi are the covariates i.e., the measurements of drug amounts and β1 , β2

are the unknown parameters.

In this thesis we are developing a new estimation procedure for the unknown parameters

in both MM1 and MM2 in the subsequent chapters.

2.5 Estimation of unknown parameters for two models

In this section, we discuss about the estimation procedure for the unknown parameters for

two models. There are several estimation procedures exist in the literature, however, the most

popular estimation procedure is maximum likelihood estimation procedure (MLEE). The

idea behind the maximum likelihood parameter estimation is to determine the parameters

that maximize the likelihood function given the sample data. The likelihood function and

estimating equations for two models are discussed in the subsequent sections.

2.6 Maximum Likelihood estimation: model MM1

2.6.1 Likelihood function

The maximum likelihood estimates of the parameters β1 , β2 and ρ are β̂1 , β̂2 and ρ̂ can be

evaluated satisfying

(β̂1, β̂2, ρ̂) = arg max
β1,β2,ρ

l(β1, β2, ρ), (2.19)

where l(β1, β2, ρ) is the log likelihood function of model MM1 defined in (2.13).

Since, Yi, the number of responses follows from binomial distribution with parameters (ni, πi),

the complete likelihood function can be written as

L(π1, . . . , πN ; y1, . . . , yN) =
N∏
i=1

(
ni
yi

)
πyi

i (1− πi)ni−yi , (2.20)
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In the above equation, ni subjects are exposed to xi units of drug A and zi units of drug B.

The log-likelihood of model MM1 after substituting πi from (2.15) can be derived as

l(β1, β2, ρ) =
N∑
i=1

(β1 + β2di)yi −
N∑
i=1

ni log(1 + exp(β1 + β2di)) +
N∑
i=1

log

(
ni
yi

)
. (2.21)

2.6.2 Estimating Equations

As we mentioned, the maximum likelihood estimates can be obtained by maximizing the

maximum likelihood function. We need the estimating equations for maximizing the log

likelihood equation. The estimating equations can be found taking the partial derivative of

the log-likelihood equation with respect to unknown parameters. We have three unknown pa-

rameters in model MM1 namely β1, β2 and ρ. The maximum likelihood estimating equations

are,

δl(β1, β2, ρ)

δβ1

=
N∑
i=1

(
yi −

ni exp(β1 + β2 log(xi + ρzi))

1 + exp(β1 + β2 log(xi + ρzi))

)
= 0,

δl(β1, β2, ρ)

δβ2

=
N∑
i=1

log(xi + ρzi)

(
yi −

ni exp(β1 + β2 log(xi + ρzi))

1 + exp(β1 + β2 log(xi + ρzi))

)
= 0,

δl(β1, β2, ρ)

δρ
=

N∑
i=1

β2zi
(xi + ρzi)

(
yi −

ni exp(β1 + β2 log(xi + ρzi))

1 + exp(β1 + β2 log(xi + ρzi))

)
= 0.

(2.22)

The solutions β̂1 , β̂2 and ρ̂ of (2.22) are called maximum likelihood estimates of β1 , β2 and

ρ. From (2.15), we get π̂i is

π̂i =
exp(β̂1 + β̂2d̂i)

1 + exp(β̂1 + β̂2d̂i)
, (2.23)

and hence the fitted values of yi are,

ŷi = ni
exp(β̂1 + β̂2d̂i)

1 + exp(β̂1 + β̂2d̂i)
. (2.24)
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The estimating equations in (2.22)can be rewritten as

N∑
i=1

(yi − ŷi) = 0,

N∑
i=1

log(xi + ρzi)(yi − ŷi) = 0,

N∑
i=1

β1zi
(xi + ρzi)

(yi − ŷi) = 0,

(2.25)

where d̂i = log(xi + ρ̂zi).

2.6.3 Iteration methods used for estimating the parameters

The estimating equations are nonlinear in parameters β1, β2 and ρ. The exact closed-form

expressions of the solutions of (2.22) do not exist. Some popular iterative methods are

commonly used in the literature, textbooks and software packages for solving nonlinear

equation (2.22). We consider Newton-Raphson and Fisher Scoring iteration methods for

estimating the parameters in model MM1 and Model MM2 in this chapter.

Newton-Raphson Method

The Newton-Raphson is frequently used iterative method for solving nonlinear equations.

This method starts with an initial values for the solution. It improves the initial values

through iterations. It improves the solution at the next step by approximating the objective

function in a neighborhood of the initial value by a second degree polynomial and then

finding the location of that polynomial’s maximum value. Then it approximate the function

in a neighborhood of the solution at second step by another second degree polynomial and

the solution at the third step is the location of its maximum. In this manner, the method

generates a sequence of solutions. These converge to the location of its maximum when

the function is well behaved and initial value is good choice. Mathematically, the Newton-
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Raphson method determines the value of θ̂ = (β̂1, β̂2, ρ̂) at which the log likelihood function

in (2.19) is maximum. We define

u
′
= (

δl(θ)

δβ1

,
δl(θ)

δβ2

,
δl(θ)

δρ
). (2.26)

Let H is the Hessian matrix,

H =


δ2l(θ)
δ2β1

δ2l(θ)
δβ1δβ2

δ2l(θ)
δβ1δρ

δ2l(θ)
δβ1δβ2

δ2l(θ)
δ2β2

δ2l(θ)
δβ2δρ

δ2l(θ)
δβ1δρ

δ2l(θ)
δβ2δρ

δ2l(θ)
δ2ρ

 . (2.27)

We define u(t) and H(t) are u and H evaluated atθ= θ(t), where t is the number of iterations.

At the tth step of iteration, the solutions are

θ(t+1) = θ(t) − (H(t))−1u(t), (2.28)

when H(t) is nonsingular. Iteration proceeds until changes in l(θ(t)) between successive cycles

are sufficiently small.

Fisher Scoring Method

Fisher-Scoring is an alternative and very popular iterative methods for solving non-linear

equations. This method resembles the Newton-Raphson method with the distinction that

Fisher scoring method uses the expected value of the Hessian matrix whereas Newton-

Raphson uses the matrix itself. We define I, the expected information matrix

I =


−E( δ

2l(θ)
δ2β1

) −E( δ2l(θ)
δβ1δβ2

) −E( δ
2l(θ)
δβ1δρ

)

−E( δ2l(θ)
δβ1δβ2

) −E( δ
2l(θ)
δ2β2

) −E( δ
2l(θ)
δβ2δρ

)

−E( δ
2l(θ)
δβ1δρ

) −E( δ
2l(θ)
δβ2δρ

) −E( δ
2l(θ)
δ2ρ

)

 . (2.29)

The estimation of parameters θ is given by

θ(t+1) = θ(t) − (I(t))−1u(t), (2.30)
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where t is the number of iteration and u(t) is the same defined in the Newton Raphson

Method. Iteration will converge if the differences of two successive values of l(θ(t)) are

sufficiently small.

2.7 Maximum Likelihood estimation: Model MM2

2.7.1 Likelihood

The maximum likelihood estimates of the parameters β1 and β2 are β̂1 and β̂2 can be evalu-

ated satisfying

(β̂1, β̂2) = arg max
β1,β2

l(β1, β2), (2.31)

where l(β1, β2) is the log likelihood function of model MM2 defined in (2.16). Model MM2

describes the joint action of two drugs; when relative potency ρ = ρ0 is known. Combining

(2.11) and (2.18), log likelihood function of the MM2 is written as

l(β1, β2) =
N∑
i=1

(β1 + β2d0i)yi −
N∑
i=1

ni log(1 + exp(β1 + β2d0i)) +
N∑
i=1

log

(
ni
yi

)
, (2.32)

where ni, yi and d0i are same as defined in section (2.3.2). We need to find the estimating

equations for estimating these unknown parameters taking derivative of the log likelihood

function with respect to β1 and β2.

2.7.2 Estimating Equations: MM2

Model MM2 has only two unknown parameters. The estimating equations are obtained by

maximizing the log likelihood l(β1, β2) in (2.33) with respect to β1 and β2. The equations

are

δl(β1, β2)

δβ1

=
N∑
i=1

(
yi − ni

exp(β1 + β2d0i)

1 + exp(β1 + β2d0i)

)
= 0,

δl(β1, β2)

δβ2

=
N∑
i=1

d0i

(
yi − ni

exp(β1 + β2d0i)

1 + exp(β1 + β2d0i)

)
= 0.

(2.33)
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The solutions β̂1 and β̂2 of (2.32) are called maximum likelihood estimates of β1 and β2.

From (2.17), we get π̂i as

π̂i =
exp(β̂1 + β̂2d̂0i)

1 + exp(β̂1 + β̂2d̂0i)
, (2.34)

and hence the fitted values of yi are

ŷi = ni
exp(β̂1 + β̂2d̂0i)

1 + exp(β̂1 + β̂2d̂0i)
. (2.35)

These equations are further written as

N∑
i=1

(yi − ŷi) = 0,

N∑
i=1

d0i(yi − ŷi) = 0.

(2.36)

2.7.3 Iteration methods

The estimating equations in (2.36) are nonlinear in parameters β1 and β2. And there is

no closed form solution for them. Hence the iteration methods are used to estimate the

parameters. We have already discussed some of the standard iterative methods for the

Model MM1 in the earlier chapters. We will use the same iterative methods to estimate the

parameters for model MM2. Since we have only two unknown parameters in model MM2,

the Hessian matrix in Newton-Raphson method and the Information matrix in Fisher Scoring

method will be different than (2.29) and (2.30). The new Hessian matrix and Information

matrix can be written as

H =

 δ2l(θ)
δ2β1

δ2l(θ)
δβ1δβ2

δ2l(θ)
δβ1δβ2

δ2l(θ)
δ2β2

 , (2.37)
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and

I =

 −E( δ
2l(θ)
δ2β1

) −E( δ2l(θ)
δβ1δβ2

)

−E( δ2l(θ)
δβ1δβ2

) −E( δ
2l(θ)
δ2β2

)

 , (2.38)

where θ = (β1, β2) in Model MM2.

2.8 Results obtained from the above methods

For the Giltinan (1998) data presented in Table (5.1) in Chapter 5, we present the standard

initial values used by the statistical softwares and numerical values of parameter estimates

using Newton-Raphson and Fisher Scoring iterative methods for model MM1 in Table (2.1)

and Table (2.3). The estimation procedures are performed using SAS 9.2.

In Model MM2, the relative potency ρ is known. We have taken the known ρ = 0.89 for

Table 2.1: The Initial values of the parameters of Model MM1

Model Iteration method Initial β1 Initial β2 Initial ρ
MM1 Newton-Raphson 0 0 0.1
MM1 Fisher Scoring 0 0 0.1

Table 2.2: The parameter estimates of Model MM1

Model Iteration method β̂1 β̂2 ρ̂
MM1 Newton-Raphson −4.6348929151 1.7352218691 0.8961564623
MM1 Fisher Scoring −4.6348929151 1.7352218691 0.8961564623

Giltinan data and then estimated the parameters (β1, β2). The parameter estimates obtain

for MM1 and MM2 are presented in Table (2.2) and Table (2.4) respectively.

The parameter estimates obtained by Newton-Raphson and Fisher Scoring methods are

identical up to 7 decimal places for MM1. The parameter estimates using Newton-Raphson

and Fisher Scoring methods are identical up to two decimal places for MM2.
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Table 2.3: The Initial values of the parameters of Model MM2

Model Iteration method Initial β1 Initial β2

MM2 Newton-Raphson 0 0
MM2 Fisher Scoring 0 0

Table 2.4: The parameter estimates of Model MM2

Model Iteration method Initial β1 Initial β2

MM2 Newton-Raphson −4.6348883598 1.7352202923
MM2 Fisher Scoring −4.628610787 1.735021315
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Chapter 3

Estimation when relative Potency is
known: Initial values and New
Methods

3.1 Summary

In this chapter, we consider the dose-response assessment of a single drug experiment. We

proposed two methods of finding the initial values of parameters of the maximum likelihood

estimating equations (MLEE) for a logistic regression model using two criterion functions.

Our proposed approach starts with all possible pairs of doses from the doses considered in

the experiment. It then chooses the pair giving the optimum value of a criterion function

and the corresponding exact solutions for the parameters based on two observations in the

pair as the initial values of parameters for solving MLEE for all observations. We then use

the initial values and the corresponding criterion functions to obtain the final solutions of

MLEE. We use our estimates to determine a lethal dose like ED50. We illustrate our two

methods of finding the initial values with an observed beetle mortality data (Dobson, 2002,

page 119; originally from Bliss,1935). We also present a simulation study to illustrate our

proposed methods.
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3.2 Model for single drug experiment

We consider a single drug is applied to the subjects. Mathematically, our new model can be

seen as a special case of the model MM2, since the model MM2 describes the dose-response

model when the relative potency ρ is known and ρ = 0. We call this model MM3 which is

derived from the model MM2, substituting ρ = 0. The MM3 can be expressed as

MM3 : θi = β1 + β2xi, (3.1)

where β1 and β2 are unknown parameters and xi is the drug amount given to the subjects.

We consider a dose-mortality trial where the ith group of ni subjects are exposed to a drug

amount xi for a specified period of time, i = 1, . . . , N . The mortality count for the ith group

at the end of the period is y(xi). We assume that the mortality probability for a subject in

the ith group is π(xi), the dependence of π(xi) on xi can be described by

π(xi) =
eβ1+β2xi

1 + eβ1+β2xi
. (3.2)

3.2.1 Likelihood Equation

The likelihood of the collected observations can be described as

L =
N∏
i=1

(
ni
y(xi)

)
[π(xi)]

y(xi)[1− π(xi)]
ni−y(xi). (3.3)

The log-likelihood function is

l(β1, β2) = logeL, (3.4)

Combining (3.2) and (3.3), the log-likelihood becomes

l(β1, β2) =
N∑
i=1

yi(β1 + β2xi)− ni log(1 + exp(β1 + β2xi)) + log

(
ni
y(xi)

)
. (3.5)
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3.2.2 Estimation

We want to estimate the dose which achieves 50% subject mortality, is known as ED50 and

is equal to

ED50 = −β1

β2

. (3.6)

The estimation of the unknown parameters (β1 and β2) is usually done by the maximum

likelihood estimation procedure. The maximum likelihood estimates of β̂1 and β̂2 satisfy

(
β̂1, β̂2

)
= arg max

β1,β2

l(β1, β2). (3.7)

We obtain the following score functions after taking the derivative of the log-likelihood in

(3.5) with respect to β1, β2 and setting them equal to 0.

δl(β1, β2)

δβ1

=
N∑
i=1

(
yi −

ni exp(β1 + β2xi)

1 + exp(β1 + β2xi)

)
= 0,

δl(β1, β2)

δβ2

=
N∑
i=1

(
yixi −

nixi exp(β1 + β2xi)

1 + exp(β1 + β2xi)

)
= 0. (3.8)

The estimating equations can be rewritten as

N∑
i=1

(y(xi)− ŷ(xi)) = 0,

N∑
i=1

xi (y(xi)− ŷ(xi)) = 0, (3.9)

where

ŷ(xi) = niπ̂(xi) = ni
eβ̂1+β̂2xi

1 + eβ̂1+β̂2xi

. (3.10)

The β̂1 and β̂2 are solutions of the equations in (3.8). The exact solution of (3.8) do not exist

since the equations are non-linear in variables. The numerical methods like Newton-Raphson

and Fisher scoring are commonly used in the literature, textbooks, and software packages

[Morgan(1992), Dobson (2002), Givens and Hoeting (2005)]. The iterative procedure for

finding the maximum likelihood estimates β̂1 and β̂2 from (3.8) require the use of initial
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values. Standard softwares usually assume log( p
1−p) as the initial value for β1 and 0 for β2,

where p =
∑N

i=1 y(xi)∑N
i=1 ni

. An alternative choice is 0 for both β1 and β2. We do not have sufficient

justifications for such choices of the initial values in the iterative process and whether one

choice is better over other. We feel strongly about the need for such justifications on any

choice of the initial values, particularly in view of solving the estimating equations. An

advantage of this new choice is that the initial values chosen are always close to the values

for the final solution of the estimating equations right from the beginning of our iterative

process. Moreover, the new choice has a solid logical basis. In the next section, we describe

the new methodology to find the initial values of β1 and β2 using a very logical and systematic

way.

3.3 Initial values

The new method starts with the special situation N = 2, i.e., we consider only two doses

applied to the subjects. The score functions for N = 2 can be written as,

n1 exp(β1 + β2x1)

1 + exp(β1 + β2x1)
+

n2 exp(β1 + β2x2)

1 + exp(β1 + β2x2)
= y1 + y2,

n1x1 exp(β1 + β2x1)

1 + exp(β1 + β2x1)
+
n2x2 exp(β1 + β2x2)

1 + exp(β1 + β2x2)
= y1x1 + y2x2. (3.11)

We now substitute exp(−β1) = a and exp(−β2) = b and the score functions reduce to,

n1

1 + abx1
+

n2

1 + abx1
= y1 + y2,

n1x1

1 + abx1
+

n2x2

1 + abx1
= y1x1 + y2x2. (3.12)

We can obtain exact analytic solution of a and b from (3.12). Hence exact analytic solution

exist for β̂1 and β̂2.

It follows from equation (3.12)

n1

y(x1)
− 1 = e−â−b̂x1 ,
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n2

y(x2)
− 1 = e−â1−b̂x2 . (3.13)

The solution of â and b̂ is given as,

b̂x1−x2 = e−β̂2(x1−x2) =

n1

y(x1)
− 1

n2

y(x2)
− 1

,

âx1−x2 = e−β̂1(x1−x2) =

(
n2

y(x2)
− 1
)x1(

n1

y(x1)
− 1
)x2

. (3.14)

The exact analytic expression of β̂1 and β̂2 can be derived easily from (3.14). The estimates

are written as,

−β̂1(x1 − x2) =

[
x2 loge

y(x1)

n1 − y(x1)
− x1 loge

y(x2)

n2 − y(x2)

]
,

β̂2(x1 − x2) =

[
loge

y(x1)

n1 − y(x1)
− loge

y(x2)

n2 − y(x2)

]
. (3.15)

Hence an estimator of ED50 is

−β̂1

β̂2

=
x2 loge

y(x1)
n1−y(x1)

− x1 loge
y(x2)

n2−y(x2)

loge
y(x1)

n1−y(x1)
− loge

y(x2)
n2−y(x2)

. (3.16)

The exact closed-form expression of β̂1 and β̂2 do not exist for for N ≥ 3. We use the above

observation from N = 2 for the estimation of the parameters when N ≥ 3.

We consider for general N , all S
(
≤
(
N
2

))
subsets of two groups with 0 < y(x1) < n1 and

0 < y(x2) < n2. For the group pair u, u = 1, . . . , S we calculate β̂1 and β̂2 from (3.14). We

denote them β̂1u and β̂2u. If the pair u consists of group i1 and group i2, we obtain from

(3.14)

−β̂1u(xi1 − xi2) =

[
xi2 loge

y(xi1)

ni1 − y(xi1)
− xi1 loge

y(xi2)

ni2 − y(xi2)

]
,

β̂2u(xi1 − xi2) =

[
loge

y(xi1)

ni1 − y(xi1)
− loge

y(xi2)

ni2 − y(xi2)

]
. (3.17)
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We obtain from (3.2) π̂u(xi) by substituting β̂1u for β1 and β̂2u for β2. Finally, we get ŷu(xi)

from(3.10) by substituting π̂u(xi) for π̂(xi). We write

L(1) =
N∑
i=1

ŷ(xi), L(2) =
N∑
i=1

xiŷ(xi),

R(1) =
N∑
i=1

y(xi), R(2) =
N∑
i=1

xiy(xi). (3.18)

We define two criterion functions for finding the initial values of β̂1 and β̂2 based on the

above idea. The criterion functions are defined below

4 = |L(1)
u −R(1)|+ |L(2)

u −R(2)|, (3.19)

l =
N∑
i=1

yi(β1 + β2xi)− ni log(1 + exp(β1 + β2xi)) +

(
ni
yi

)
. (3.20)

The criterion function4 is proposed in (3.19) for finding the accurate final solution of MLEE

in (3.8). We obtain the most accurate final solution of MLEE when the numerical value of

4 is equal to zero. So the smaller numerical value to 4 means the better accuracy on the

final solutions of MLEE in (3.8).

The criterion function l is proposed in (3.20) because we obtain the most accurate fitted ob-

servations in (3.10) when the numerical value of l is maximum, or equivalently the numerical

value of (−l) is minimum.

For u = 1, . . . , S, we find from (3.18) , L(1), L(2), R(1), R(2). Similarly we find for u = 1, . . . S,

4u and lu from (3.19) and (3.20).

We calculate for u = 1, . . . , S to calculate

u1 = arg min
u
4u,

u2 = arg max
u

lu = arg min
u

(−lu). (3.21)

to obtain two possible sets of initial values β̂1u and β̂2u of β1 and β2, respectively, one set

of initial value from u = u1 using 4 criterion function and another set of initial value from

25



Table 3.1: The Observed Beetle Mortality Data

Group Dose Number of Number of Beetle
( i ) ( xi ) beetles ( ni ) Mortality ( y(xi) )

1 1.6907 59 6
2 1.7242 60 13
3 1.7552 62 18
4 1.7842 56 28
5 1.8113 63 52
6 1.8369 59 53
7 1.8610 62 61
8 1.8839 60 60

u = u2 using l criterion function. In the next section, we take one data set to illustrate our

described method.

3.3.1 An observed beetle mortality data

We present the beetle mortality data (Dobson (2002), page 119; originally from Bliss (1935))

in Table 3.1. The numbers of beetle mortality were observed (y values) when the groups of

beetles were exposed to gaseous carbon disulphide at various doses measured in the log scale

(x values). The numbers of beetles in the groups considered are the n values.

We have N = 8 groups of doses. For the group 8, we have y(x8) = n8. Therefore, we

will not take the group in forming the group pairs. Consequently, we have S =
(
8
2

)
− 7=(

7
2

)
= 21. We have from Table 3.1, R(1) = 291 and R(2) = 532.2083. In Table 3.2, we present

the numerical values of β1u, β2u , 4u and lu for u = 1, . . . 21.

From Table 3.2, we observe that 4u is minimum at u1 = 15 which is 3rd and 7th dose from

the Beetle data, similarly l is maximum at the pair u2 = 10 which is 2nd and 6th dose from

the data. We remember that we got u1 from the criterion function 4 and u2 from another

criterion function l. Table 3.3 presents the four initial values, labeled by I1, I2, I3 and I4 of

β1 and β2 as well as the numerical values of 4, l. In this table we present the numerical

value of ED50 for I1 and I2. The initial values labeled by I1 and I2 represent the groups
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Table 3.2: The numerical value of β1u, β2u,4u and lu

u Pair β1u β2u 4u lu
1 (1,2) -47.26390952 26.66669254 15.887702808 -22.867605143
2 (1,3) -35.85398858 19.91805532 168.342338336 -55.066025005
3 (1,4) -41.57152500 23.29981224 84.452813350 -33.094452175
4 (1,5) -54.49603676 30.94428599 52.660997436 -22.343838473
5 (1,6) -52.56491827 29.80208542 36.136253396 -21.353149001
6 (1,7) -64.61834011 36.93133475 122.635812612 -37.678204257
7 (2,3) -23.05352182 12.62517317 261.410614322 -102.349265395
8 (2,4) -38.21751179 21.41997074 87.787626111 -36.964042009
9 (2,5) -57.47603869 32.58951424 41.983011552 -20.808719716
10 (2,6) -54.27689703 30.73407887 26.044500842 -20.223575463
11 (2,7) -69.29621820 39.44497155 87.916809572 -30.028626959
12 (3,4) -54.99137429 30.82130607 74.101113252 -24.846009639
13 (3,5) -77.45828005 43.62150306 14.488150434 -23.398215771
14 (3,6) -66.89858265 37.60526708 37.642859856 -21.042366568
15 (3,7) -83.92061317 47.30332458 3.332652221 -26.713599605
16 (4,5) -102.26879325 57.31913084 58.703389201 -46.487813019
17 (4,6) -73.75593145 41.33837655 65.346208667 -26.884243201
18 (4,7) -95.50287954 53.52700344 59.838270704 -40.660238789
19 (5,6) -42.68086158 24.42124994 101.569072648 -35.263354320
20 (5,7) -91.65481635 51.45926395 42.372869149 -34.726327307
21 (6,7) -145.10437022 80.18014190 211.481591055 -188.439733656
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Table 3.3: The initial values of β1 and β2 with the values of 4, l and ED50

Label Group Initial β1 Initial β2 4 l ED50

I1 u1 −83.920613 47.303325 3.332651 −26.713600 1.774095
I2 u2 -54.276897 30.734079 26.044501 -20.223575 1.766017
I3 0 0 151.285350 -165.883525 -
I4 0.426299 0 10.195562 -155.200244 -

u1 and u2 respectively, defined in (3.21). The initial values (0, 0) and (log p
1−p , 0), where

log p
1−p = 0.426299, are labeled by I3 and I4, respectively.

The initial values labeled I1 are better over the other initial values in Table 2 with

respect to the criterion function 4. On the other hand, the initial value labeled I2 are better

over the other initial values in Table 3.3 with respect to the criterion function l. Hence the

initial values labeled I1 are better over the other initial values in Table 3.3 for achieving more

accurate final solutions of Maximum likelihood estimating equations (MLEE) in (3.8) and

the initial values labeled I2 are better over the other initial values in Table 3.3 for achieving

more accurate fitted observations in (3.9). The numerical values of ED50 are also fairly close

for u1 and u2.

3.4 Final solutions

We want to investigate the effect of the initial values and the criterion functions for deter-

mining the initial values to the final solutions of MLEE as well as the values of ED50. For

this purpose, we present two methods for obtaining the final solutions as well as ED50. First

method uses 4 as the criterion function to perform search algorithm while second method

uses l as the criterion function to perform search algorithm using our initial values.

3.4.1 Method 1 (M1)

Method 1 uses 4 as the criterion function for performing the search algorithm to achieve

the final answer of MLEE using the initial values I1 and I2. We use MATLAB to perform
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Table 3.4: Final Solutions of β1 and β2 using Method 1 with the values 4, l∗ and ED50

Method Initial Value Final β1 Final β2 4 x 106 l∗ Final ED50

M1 I1 -60.717474 34.270337 0.769880 -186.235403 1.771721
M1 I2 -60.717454 34.270325 0.929338 -186.235403 1.771721
M1 I3 -60.717455 34.270326 0.021737 -186.235403 1.771721
M1 I4 -60.717455 34.270326 0.022106 -186.235403 1.771721

the search algorithm. We start with the initial values labeled either I1 or I2.Then use

the optimset function in MATLAB with 4 criterion function in TolFun option and the

parameters β1 and β2 in TolX option, the chosen initial values in fminsearch function to

perform the iterative process with the stopping rule requiring that the iteration stops when

two consecutive 4 values as well as two consecutive values of each β1 and β2 simultaneously

become less than or equal to a specific small value. We have chosen this value to be 10−6 in

our calculations. If

|β1v − β1v−1| ≤ 10−6, |β2v − β2v−1| ≤ 10−6, (3.22)

and

|4v −4v−1| ≤ 10−6, (3.23)

are true simultaneously then we will get the final estimate of MLEE, where 4v and 4v−1 are

the values of criterion function4 in (3.18) at the v and (v−1) stages of iteration respectively.

Similarly, β1v and β1v−1 are the values of β1 at v and (v − 1) stages of iteration respectively

and β2v and β2v−1 are the values of β2 at v and (v− 1) stages of iteration respectively. Table

3 presents the final solutions of β1 and β2 obtained from M1 with the initial values I1, I2, I3

and I4. Table 3.4 also presents the numerical values of 4 , l∗ and ED50 for M1 using four

initial values. The numerical values of the final solutions of both β1 and β2 are identical up

to at least four decimal places and their ED50 values are identical up to sixth decimal places.
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Table 3.5: Final Solutions of β1 and β2 using Method 2 with the values 4, l∗ and ED50

Method Initial Value Final β1 Final β2 4 x 106 l∗ Final ED50

M2 I1 -60.717471 34.270335 2.706614 -186.235403 1.771721
M2 I2 -60.717454 34.270325 1.165784 -186.235403 1.771721
M2 I3 -60.717456 34.270326 2.313600 -186.235403 1.771721
M2 I4 -60.717455 34.270326 2.461417 -186.235403 1.771721

3.4.2 Method 2 (M2)

Method 2 uses l as the criterion function for performing the search algorithm to achieve the

final answer of MLEE using the initial values I1 and I2.We start with the initial values either

I1 or I2. Then we use the optimset function in MATLAB with the l criterion function in

TolFun option and the parameters β1 and β2 in TolX option, the chosen initial values in

fminsearch function to perform the iterative process with the stopping rule requiring that

the iteration stops when two consecutive l values as well as two consecutive values of each of

β1 and β2 simultaneously become less than or equal to a specified small value as in Method

1. In the computation of l at the stages of iteration, it is unnecessary to keep the terms(
ni

y(xi)

)
because they do not depend on β1 and β2. We therefore exclude this term from l in

(3.5) and perform the iteration. The new term is now denoted by l∗. If

|β1v − β1v−1| ≤ 10−6, |β2v − β2v−1| ≤ 10−6, (3.24)

and

|l∗v − l∗v−1| ≤ 10−6, (3.25)

are true simultaneously then we will get the final estimate of MLEE, where l∗v and l∗v−1 are

the values of criterion function l∗ at the v and (v− 1) stages of iteration respectively. Table

3.5 presents the final solutions of β1 and β2 obtained from M2 with the initial values I1, I2,

I3 and I4. Table 3.5 also presents the numerical values of 4 , l∗ and ED50 for M2 using four

initial values. The numerical values of the final solutions of both β1 and β2 are identical
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up to at least four decimal places and their ED50 values are identical up to sixth decimal

places. Our method is comparable with other methods. We have done some comparison

with some standard softwares in the next chapter. Now we want to discuss some properties

of the fitted values.

3.5 Goodness of fit test

In this section, we discuss the goodness of fit to our data. After fitting the logistic regression

model, we want to evaluate the goodness of fit of this model (Dobson, 2001). The null and

alternative hypotheses for this test are

H0 : The logistic regression model is a good fit to the data.

Ha : The logistic regression model is not a good fit to the data.

The numerical values of standard Deviance statistic and Chi-square statistics are

D = 2
N∑
i=1

[
yi log (

yi
ŷi

) + (ni − yi) log(
ni − yi
ni − ŷi

)

]
= 11.23,

χ2 =
N∑
i=1

(yi − ŷi)2

ŷi
= 4.946178,

where ŷi is defined in (3.10)

The test statistics follow χ2 distributions with df = (8-2) = 6 under H0. The p-value for

Deviance test is 0.081523 and the p-value for Chi-Square test is 0.550745. We do not reject

the null hypothesis for both of cases since our p-values are greater than α = 0.05. Therefore,

we conclude that there is significance evidence the logistic regression in (3.1) is a good fit to

the data.

3.6 Properties of the fitted values

The group pairs of mortality observations formed out of all groups play a central role in

finding the initial values discussed in Section (3.3). We now present some properties of the
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fitted values in (3.10) obtained from the group pairs of observations.For two group pairs u

and u
′
, the exact estimates of the parameters β̂1 and β̂2 obtained from (3.17) are denoted

by (β̂1u and β̂2u)and (β̂1u′ and β̂2u′ ). We have from (3.10)

ŷ(u)(xi) = ni
exp(β̂1u + β̂2uxi)

1 + exp(β̂1u + β̂2uxi)
, (3.26)

ŷ(u
′
)(xi) = ni

exp(β̂1u′ + β̂2u′xi)

1 + exp(β̂1u′ + β̂2u′xi)
. (3.27)

It follows from (3.26) and (3.27) that

ŷ(u)(xi) = ŷ(u
′
)(xi) if and only if β̂1u + β̂2uxi = β̂1u′ + β̂2u′xi,

ŷ(u)(xi) > ŷ(u
′
)(xi) if and only if β̂1u + β̂2uxi > β̂1u′ + β̂2u′xi,

ŷ(u)(xi) < ŷ(u
′
)(xi) if and only if β̂1u + β̂2uxi < β̂1u′ + β̂2u′xi. (3.28)

Suppose that a group pair u consists of groups i1 and i2 with the mortality observations yi1

and yi2 . We have from (3.10)

ŷ(u)(xi1) = yi1 , ŷ(u)(xi2) = yi2 . (3.29)

For the final solutions β̂1 and β̂2 of (3.6), we get ŷ(xi) as given in (3.10) for i = 1, . . . , N . It

follows from (3.29) that

(N
2 )∑

u=1

[
ŷ(u)(xi1) + ŷ(u)(xi2)

]
(N − 1)

=
N∑
i=1

yi =
N∑
i=1

ŷ(xi),

(N
2 )∑

u=1

[
xi1 ŷ

(u)(xi1) + xi2 ŷ
(u)(xi2)

]
(N − 1)

=
N∑
i=1

xiyi =
N∑
i=1

xiŷ(xi). (3.30)
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Table 3.6: The Simulated Beetle Mortality Data

Group Dose Number of Number of Beetle
( i ) ( xi ) beetles ( ni ) Mortality ( y(xi) )

1 1.6907 59 14
2 1.7242 60 26
3 1.7552 62 34
4 1.7842 56 40
5 1.8113 63 47
6 1.8369 59 48
7 1.8610 62 57
8 1.8839 60 55

We denote the set of all (N − 1) group pairs u containing the group i1 by S i1 . From (3.28),

we get ∑
Si1

[
ŷ(u)(xi1) + ŷ(u)(xi2)

]− (N − 2)yi1 =
N∑
i=1

yi =
N∑
i=1

ŷ(xi),

∑
Si1

[
xi1 ŷ

(u)(xi1) + xi2 ŷ
(u)(xi2)

]− (N − 2)xi1yi1 =
N∑
i=1

xiyi =
N∑
i=1

xiŷ(xi). (3.31)

3.7 A simulated Beetle Mortality data

We generate a data from (3.2) and (3.3) so that β1 = −35, β2 = 20, and (ni, xi), i = 1, . . . , 8

are the same as Table 3.1. The data y(xi) ’s are given in Table 3.6. We have N = 8 groups

of doses as well. So our S =
(
8
2

)
= 28. We have R(1) = 321 and R(2) = 582.5376. We

estimate β1u, β2u, ∆u and lu for all u = 1, . . . , 28 combinations. We find that ∆u is minimum

at u1 = 18 from this simulated data. Similarly, lu is maximum at u2 = 18 combination for

this data. We again remember that we got u1 from criterion function ∆ and we got u2 from

criterion function l. The initial values from (0, 0) and (log p
1−p , 0), where log p

1−p = 0.696267

are leveled by I3 and I4 respectively. Table 3.7 presents the initial values labeled as I1, I2 ,

I3 and I4 of β1 and β2 as well as the numerical values of ∆, l and ED50. We use Method 1

and Method 2 to get the final estimates of β1 , β2 and ED50 and the results are presented in
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Table 3.7: The initial values of β1 and β2 with the values of 4, l and ED50

Label Group Initial β1 Initial β2 4 l ED50

I1 u1 −29.860258 17.123071 3.62035404 −17.6672618 1.743861
I2 u2 -29.860258 17.123071 3.62035404 -17.6672618 1.743861
I3 0 0 -101.5552
I4 0.696267 0 -74.08311

Table 3.8: Final Solutions of β1 and β2 using Method 1 with the values 4, l∗ and ED50 for
simulated data

Method Initial Value Final β1 Final β2 4 l∗ Final ED50

M1 I1 -31.982569 18.32682 4.42993837e-08 -249.313185 1.7451237
M1 I2 -31.982569 18.32682 4.42993837e-08 -249.313185 1.7451237
M1 I3 -31.982568 18.32682 1.7181536e-05 -249.313185 1.7451237
M1 I4 -31.982568 18.326826 3.72867276-06 -249.313185 1.7451231

Table 3.8 and Table 3.9. The numerical values of the final solutions of both β1 and β2 are

identical up to at least four decimal places and their ED50 values are identical up to sixth

decimal places. So our method is showing favorable results for simulated data also.

Table 3.9: Final Solutions of β1 and β2 using Method 2 with the values 4, l∗ and ED50 for
simulated data

Method Initial Value Final β1 Final β2 4 l∗ Final ED50

M2 I1 -31.982569 18.32682698 4.429938e-08 -249.31318 1.745123
M2 I2 -31.982569 18.32682698 4.429938e-08 -249.31318 1.745123
M2 I3 -31.982568 18.32682 1.7181536e-05 -249.31318 1.745123
M2 I4 -31.982568 18.326826 3.72867276-06 -249.31318 1.745123
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Chapter 4

Performance comparisons with
standard softwares

4.1 Summary

In this chapter, we present the performance comparisons between our proposed methods (M1,

M2) and the methods using two standard softwares, SAS and R. We present the comparison

of numerical values of ED50 obtained by our method as well as the numerical values ED50

obtained from SAS and R. We also present the performance times of M1 and M2 as well

as SAS and R. The numerical values of ED50 and performance times are also presented for

the simulation study. The numerical values of ED50 obtained by our approach are almost

the same as the numerical values of ED50 obtained from SAS and R. This closeness of the

estimated ED50 values from the comparisons make our proposed methods very special. In

addition, the proposed methods M1 and M2 stand favorably with SAS and R in terms of the

CPU time values.

4.2 Comparison of estimates with SAS

We will compare our methods with two standard numerical methods using two standard

softwares. We have considered SAS and R two softwares for the comparison. SAS uses Proc

Logistic or Proc Genmod for estimating the maximum likelihood estimates of β1 and β2.
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Table 4.1: Final Solutions of β1 and β2 using SAS PROC LOGIT with the values 4, l∗ and
ED50

Method Initial Value Final β1 Final β2 4 x 106 l∗ Final ED50

SAS I1 -60.717455 34.270326 0.000009 -186.235403 1.771721
SAS I2 -60.717455 34.270326 0.000021 -186.235403 1.771721
SAS I3 -60.717455 34.270326 0.000008 -186.235403 1.771721
SAS I4 -60.717454 34.270325 0.888890 -186.235403 1.771721

Table 4.2: Final Solutions of β1 and β2 using R with the values 4, l∗ and ED50

Method Initial Value Final β1 Final β2 4 x 106 l∗ Final ED50

R I1 -60.717455 34.270326 0.000011 -186.235403 1.771721
R I2 -60.717453 34.270325 1.108823 -186.235403 1.771721
R I3 -60.717455 34.270326 0.000001 -186.235403 1.771721
R I4 -60.717454 34.270325 0.888862 -186.235403 1.771721

We have used Proc Logistic to obtain the final estimates of (β̂1, β̂2) defined in (3.6). Table

4.1 presents the values of β̂1, β̂2,4, l and ED50 values for each initial values I1, I2, I3 and

I4. SAS PROC Logistic use the Newton Raphson iterative method for obtaining the final

estimates.

The software R uses GLM procedure for estimating the parameters in a logistic regression

model. We use R to obtain the final estimates (β̂1, β̂2) defined in (3.8). R uses the Fisher

Scoring iterative method for obtaining the final estimates. Table 4.2 presents the values of

β̂1, β̂2,4, l and ED50 values for each initial values I1, I2, I3 and I4 using R software.

4.2.1 Effects on the final solutions and ED50 compared with SAS
and R

The numerical values of the final solutions of both β1 and β2 of our methods are identical up

to at least four decimal places and their ED50 values are identical up to the sixth decimal

places compared with SAS and R results. So our methods are performing favorably compared

with all standard methods. We want to compare the performance time of Method 1 and
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Method 2 with SAS and R.

4.3 Performance time

We now present the performance times of M1 and M2 as well as SAS and R. We want to

evaluate whether the performance times of M1 and M2 are comparable to the performance

times of SAS and R. In all four programs the stopping rules are different. Furthermore,

different runs with the same program give different CPU time values. These issues are major

obstacles in our comparisons among the methods with their CPU time values. However,

the overall comparisons on closeness of the CPU time values for different programs are

meaningful.

In SAS, we have chosen ABSFCONV stopping rule option which is

|lv − lv−1| < ε1, (4.1)

where lv and lv−1 are the values of l in (3.5) at the v and (v−1) stages of iteration, respectively.

The ε1 is specified as 10−6. In R, the stopping rule depends on the deviance

D = 2
N∑
i=1

[
y(xi) log

(
y(xi)

ŷ(xi)

)
+ (ni − y(xi)) log

(
ni − y(xi)

(ni − ŷ(xi))

)]
, (4.2)

and the stopping rule is

|Dv −Dv−1|
|Dv|+ 0.1

< ε2, (4.3)

where Dv and Dv−1 are the values of D in (4.2) at the v and (v − 1) stages of iteration,

respectively. The ε2 is also specified as 10−6 at the beginning. In M1 and M2 using MATLAB,

the stopping rule depends on TolX and TolFun in Optimset. The TolX value represents the

common values of ε3 and ε4 in the conditions for stopping rules

|βv1 − βv−1
1 | < ε3, |βv2 − βv−1

2 | < ε4, (4.4)
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where (βv1 , β
v
2) and (βv−1

1 , βv−1
2 ) are the values of (β1, β2) at the v and (v − 1) stages of

iteration, respectively. The ε3 and ε4 are equal and their common value is specified as 10−6.

In M1, TolFun generally represents the value of ε5 in the condition for the stopping rules

|∆v −∆v−1| < ε5, (4.5)

where ∆v and ∆v−1 are the values of ∆ at the v and (v− 1) stages of iteration, respectively.

In M2, TolFun generally represents the value of ε6 in the condition for the stopping rules

|l∗(v) − l∗(v−1)| < ε6, (4.6)

where l∗(v) and l∗(v−1) are the values of l∗ at the v and (v−1) stages of iteration, respectively.

We note that

l∗(v) − l∗(v−1) = lv − lv−1, (4.7)

which implies that the rules (4.1) and (4.7) are identical. The combinations of optimset and

fminsearch with the objective functions ∆ in M1 and l∗ in M2 are performed in our proposed

methods M1 and M2. In order to make our CPU time values as meaningful as possible in

terms of their comparative merits for the four methods M1, M2, SAS, and R, we choose the ε

values starting with 10−6 so that in M1, the numerical values of ∆ become less than or equal

to 1.588192276358313 x 10−6; in M2, the numerical values of l become greater than or equal

to -18.71513465725594 or equivalently the numerical values of l∗ become greater than or

equal to -186.23540327176846; in SAS and R, the numerical values of ∆ become less than or

equal to 1.588192276358313 x 10−6 as well as the numerical values of l become greater than

or equal to -18.71513465725594 or equivalently the numerical values of l∗ become greater

than or equal to -186.23540327176846 in addition to satisfying the stopping rule conditions

for these methods.

Repeated runs of the same program give different CPU time values. We repeat each

program 10 times and present the mean, standard deviation (SD), minimum (Min), first
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Table 4.3: The Distributions of CPU Time Values for M1

Mean SD Min Q1 Median Q3 Max
I1 0.0663 0.0019 0.0640 0.0650 0.0660 0.0678 0.0690
I2 0.0548 0.0040 0.0510 0.0520 0.0530 0.0575 0.0610
I3 0.0544 0.0141 0.0440 0.0453 0.0480 0.0595 0.0900
I4 0.0436 0.0052 0.0370 0.0390 0.0430 0.0478 0.0510

Table 4.4: The Distributions of CPU Time Values for M2

Mean SD Min Q1 Median Q3 Max
I1 0.0518 0.0079 0.0450 0.0460 0.0470 0.0560 0.0670
I2 0.0457 0.0030 0.0430 0.0433 0.0450 0.0470 0.0520
I3 0.0598 0.0152 0.0210 0.0600 0.0615 0.0683 0.0760
I4 0.0580 0.0069 0.0520 0.0530 0.0540 0.0628 0.0710

quartile (Q1), median, third quartile (Q3), and maximum (Max) of CPU time values from

our ten repetitions of the programs. The CPU time values for Method 1 is presented in

Table 4.3. The CPU time values for Method 2 is presented in Table 4.4. The CPU time

values from SAS and R are presented in Table 4.5 and in Table 4.6.

4.3.1 Effects of CPU time values compared with SAS and R

The CPU time values in Tables 4.3-4.6 demonstrate that the mean CPU values lie between

0.0400 and 0.0676 in all four methods with the initial values I1, I2, I3, and I4. The proposed

methods M1 and M2 stands favorably with the established popular methods in SAS and R

Table 4.5: The Distributions of CPU Time Values for SAS

Mean SD Min Q1 Median Q3 Max
I1 0.0450 0.0158 0.0300 0.0325 0.0400 0.0500 0.0800
I2 0.0470 0.0142 0.0200 0.0400 0.0450 0.0575 0.0700
I3 0.0530 0.0133 0.0300 0.0425 0.0550 0.0600 0.0700
I4 0.0400 0.0170 0.0200 0.0225 0.0400 0.0575 0.0600
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Table 4.6: The Distributions of CPU Time Values for R

Mean SD Min Q1 Median Q3 Max
I1 0.0648 0.0196 0.0290 0.0600 0.0650 0.0775 0.0900
I2 0.0676 0.0225 0.0290 0.0623 0.0700 0.0865 0.0900
I3 0.0675 0.0122 0.0500 0.0593 0.0645 0.0768 0.0900
I4 0.0624 0.0174 0.0300 0.0590 0.0.0640 0.0698 0.0890

Table 4.7: The Distributions of CPU Time Values for M1(Simulated Data)

Mean SD Min Q1 Median Q3 Max
I1 0.0597 0.018 0.021 0.05825 0.06050 0.07400 0.08000
I2 0.0597 0.018 0.021 0.05825 0.06050 0.07400 0.08000
I3 0.0508 0.013 0.04000 0.04225 0.04550 0.05475 0.08600
I4 0.0458 0.012 0.0250 0.0425 0.0475 0.0535 0.0650

with a special feature that the initial values in the proposed methods give the values of ED50

that are almost identical with its common final value from all the four methods.

4.4 Performance time for simulated data

We now present the performance time comparison of our method with SAS and R for the

simulated data. The simulated data were presented in the previous chapter. The stopping

rules are kept same as the Beetle mortality data computation. Here we present the CPU

time values for Method M1, M2, SAS and R in the Tables 4.7 ,4.8, 4.9 and 4.10.

The CPU times are varying from 0.01 to 0.09 in all methods. The proposed methods M1

Table 4.8: The Distributions of CPU Time Values for M2 (Simulated Data)

Mean SD Min Q1 Median Q3 Max
I1 0.0567 0.0090 0.0410 0.0535 0.0580 0.0640 0.0670
I2 0.0567 0.0090 0.0410 0.0535 0.0580 0.0640 0.0670
I3 0.0598 0.0152 0.0210 0.0600 0.0615 0.0683 0.0760
I4 0.0580 0.0069 0.0520 0.0530 0.0540 0.0628 0.0710
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Table 4.9: The Distributions of CPU Time Values for SAS (Simulated Data)

Mean SD Min Q1 Median Q3 Max
I1 0.045 0.017 0.0100 0.0425 0.0500 0.0500 0.0700
I2 0.045 0.017 0.0100 0.0425 0.0500 0.0500 0.0700
I3 0.0646 0.016 0.022 0.064 0.065 0.070 0.0830
I4 0.0655 0.009 0.0530 0.0570 0.0665 0.07075 0.0840

Table 4.10: The Distributions of CPU Time Values for R (Simulated data)

Mean SD Min Q1 Median Q3 Max
I1 0.071 0.017 0.0400 0.0600 0.0750 0.0875 0.0900
I2 0.071 0.017 0.0400 0.0600 0.0750 0.0875 0.0900
I3 0.061 0.014 0.0400 0.0525 0.0600 0.0700 0.0800
I4 0.066 0.017 0.030 0.060 0.070 0.0775 0.0900

and M2 stands favorably with the established popular methods in SAS and R with respect

to CPU time values for simulated data also. Hence, We can conclude that our methods are

performing favorably in comparison to the other standard and popular methods.

4.5 Conclusion

We can conclude that our proposed method is equally competent as the other methods

in terms of performance time and numerical time. However, our proposed methods are

very transparent in selecting the initial values of the parameters and these initial values are

generally very close to the final solution. So our proposed methods which performs favorably

well compared to other methods, have an unique merit.
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Chapter 5

Estimation when relative potency is
unknown: Initial values and New
methods

5.1 Summary

In this chapter, we consider the model in Chapter 2 for the mixture experiments with un-

known relative potency. We propose two methods of finding the initial values of the maximum

likelihood estimating equations (MLEE) using two criterion functions. Our proposed meth-

ods start with a fixed value of relative potency (ρ) and then we obtain all possible pairs of

doses in the experiment. It then chooses the fixed value ρ giving the optimum value of a

criterion function with the corresponding exact solutions for the parameters (β1, β2) based

on two observations in the pair as the initial values of parameters. We then use the initial

values and the corresponding criterion functions to obtain the final solutions of MLEE. We

illustrate our proposed methods of finding the initial values and the final estimates with an

observed mortality data (Giltinan, 1998) and also with a simulated data.

5.2 Model when ρ is unknown

In this chapter we consider a mixture of two drugs applied to the subjects with relative po-

tency is assumed to be unknown. In the earlier chapter, we have discussed the dose-response
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model when ρ is unknown in (2.13) with where β1, β2 and ρ as the unknown parameters.

The mortality probability πi is given in (2.14) and the log-likelihood function l(β1, β2, ρ) for

MM1 is given in (2.19). The Maximum likelihood estimates of β1 , β2 and ρ satisfy

(β̂1, β̂2, ρ̂) = arg max
β1,β2,ρ

l(β1, β2, ρ). (5.1)

We want to estimate the unknown parameters in (5.1). In the earlier chapter, we have defined

the estimating equations of model MM1 in (2.22). We do not have a closed-form solution

for β1, β2 and ρ and, therefore, we use the iterative procedure for estimating them. We have

discussed two of the standard iteration methods - Newton Raphson and Fisher Scoring in

Chapter 2. In all these iterative methods we have to define initial values of β1, β2 and ρ.

We do not have any systematic way of defining the initial values of these parameters. In the

earlier Chapters, we have proposed new methods for finding the initial values of β1 and β2

for a single drug experiment with only x. We want to use the same idea in here to determine

the initial values of the parameters. When ρ is known, we can use the same method for

finding the initial values of β1 and β2 as in Chapter 3. So we define a range of known ρ’s

and for different fixed values of ρ, we perform the same procedure to find the initial values

of β1, β2 and ρ.

5.3 Initial values

The new method starts with the special situation N = 2 , i.e., we consider only two mixture

of doses applied to the subjects. The estimating equations in (2.22) for N = 2 can be written

as

n1
exp(β1 + β2d1)

1 + exp(β1 + β2d1)
+ n2

exp(β1 + β2d2)

1 + exp(β1 + β2d2)
= y1 + y2,

n1d1
exp(β1 + β2d1)

1 + exp(β1 + β2d1)
+ n2d2

exp(β1 + β2d2)

1 + exp(β1 + β2d2)
= y1d1 + y2d2,
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n1
β2z1

(x1 + ρz1)

exp(β1 + β2d1)

1 + exp(β1 + β2d1)
+ n2

β2z2

(x2 + ρz2)

exp(β1 + β2d2)

1 + exp(β1 + β2d2)

= y1
β2z1

(x1 + ρz1)
+ y2

β2z2

(x2 + ρz2)
, (5.2)

where di = log (xi + ρzi), i = 1, 2. We cannot obtain the exact analytic solution of β1, β2

and ρ from (5.2). However, if ρ is known, we can obtain the exact analytic solution for β1

and β2 from (5.2). If ρ is known then we have two estimating equations in two unknown

parameters β1 and β2. For a fixed value of ρ0 of ρ, the estimating equations in (5.2) become

n1
exp(β1 + β2d01)

1 + exp(β1 + β2d01)
+ n2

exp(β1 + β2d02)

1 + exp(β1 + β2d02)
= y1 + y2,

n1d01
exp(β1 + β2d01)

1 + exp(β1 + β2d01)
+ n2d02

exp(β1 + β2d02)

1 + exp(β1 + β2d02)
= y1d01 + y2d02, (5.3)

where d0i = log(xi + ρ0zi), i = 1, 2. The exact analytic solutions of β1 and β2 for the

estimating equations in (5.3) are

exp (−β̂2(d1 − d2)) =

n1

y1
− 1

n2

y2
− 1

,

exp (−β̂1(d1 − d2)) =

(
n2

y2
− 1
)d1

(
n1

y1
− 1
)d2 . (5.4)

We have observed in the earlier chapter that the exact solutions of β1 and β2 do not exist for

N ≥ 3. We use the above observation from N = 2 for the estimation of the parameters when

N ≥ 3. We consider, for a general N , all S(≤
(
N
2

)
) subsets of two groups with 0 < y1 < n1

and 0 < y2 < n2. For the group pair u, u = 1, . . . , S, we calculate β̂1 and β̂2 from (5.4). We

denote them β̂1u and β̂2u. If the pair u consists of group i1 and group i2, we obtain from

(5.4)

−β̂1u(di1 − di2) =

[
di2 loge

yi1
ni1 − yi1

− di1 loge
yi2

ni2 − yi2

]
,
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β̂2u(di1 − di2) =

[
loge

yi1
ni1 − yi1

− loge
yi2

ni2 − yi2

]
. (5.5)

We obtain from (2.14) π̂ui by substituting β̂1u for β1 and β̂2u for β2. Finally we get ŷui from

(2.22) by substituting π̂ui for π̂i.

We define two criterion functions for finding the initial values of β̂1 and β̂2 in the similar way

as in Chapter 3. The criterion functions are

∆|(ρ = ρ0) =| L(1)
u −R(1) | + | L(2)

u −R(2) | + | L(3)
u −R(3) |, (5.6)

l|(ρ = ρ0) =
N∑
i=1

yi(β1 + β2di)− ni log (1 + exp(β1 + β2di)) +
N∑
i=1

(
ni
yi

)
, (5.7)

where

L(1)
u =

N∑
i=1

ŷi, L(2)
u =

N∑
i=1

diŷi,

L(3)
u =

N∑
i=1

β̂2zi
xi + ρ0zi

ŷi, (5.8)

R(1) =
N∑
i=1

yi, R(2) =
N∑
i=1

diyi,

R(3) =
N∑
i=1

β̂2zi
xi + ρ0zi

yi. (5.9)

We obtain the most accurate solution of β1 and β2 when the numerical value of ∆|(ρ = ρ0)

is equal to zero. So the smaller numerical value of ∆|(ρ = ρ0) means the better accuracy on

the solutions of β1 and β2.

The criterion function l|(ρ = ρ0) is proposed in (5.7) because we obtain the most accurate

fitted observations when the numerical value of l|(ρ = ρ0) is maximum, or equivalently the

numerical value of (−l|ρ = ρ0) is minimum.

We calculate for u = 1, . . . , N ,

u1 = arg min
u

∆u|(ρ = ρ0),
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u2 = arg max
u

lu|(ρ = ρ0). (5.10)

to obtain two possible sets of values β̂1u and β̂2u of β1 and β2 for ρ = ρ0.

We define a set ω with 99 ρ values as ω = (ρ|ρ = 0.1, 0.11, . . . , 0.99). For each value p in ω

, p = 1, . . . , 99, we obtain β1 and β2 using the above methods. We denote them by β1p and

β2p .

We now use the same criterion functions to obtain the initial values of β1, β2 and ρ simul-

taneously. The criterion functions are calculated using p1 and p2. The criterion functions

are

∆p =| L(1)
p −R(1) | + | L(2)

p −R(2) | + | L(3)
p −R(3) |, (5.11)

lp =
N∑
i=1

yi(β1 + β2di)− ni log (1 + exp(β1 + β2di)), (5.12)

where

L(1)
p =

N∑
i=1

ŷi, L(2)
p =

N∑
i=1

diŷi,

L(3)
p =

N∑
i=1

β̂2zi
xi + ρzi

ŷi, (5.13)

R(1) =
N∑
i=1

yi, R(2) =
N∑
i=1

diyi,

R(3) =
N∑
i=1

β̂2zi
xi + ρzi

yi, (5.14)

and di = log(xi + ρzi).

The criterion function ∆ is proposed in (5.11) for finding the accurate final solution of MLEE

in (5.1). We obtain the most accurate final solution of MLEE when the numerical value of

∆ is equal to zero. So the smaller numerical value to ∆ means the better accuracy on the

final solutions of MLEE in (5.1).

The criterion function l is proposed in (5.12) because we obtain the most accurate fitted

observations when the numerical value of l is maximum, or equivalently the numerical value

of (−l) is minimum.
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Two possible sets of initial values k1 and k2 of β1, β2, and ρ are

k1 = arg min
p

∆p,

k2 = arg max
p
lp = arg min

p
(−lp). (5.15)

One set of initial value from k1 using ∆ criterion function and other set of initial value from

k2 using l criterion function. We illustrate our method with the data set (Giltinan, 1998) in

the following section.

5.4 An observed mortality data

We present a data set that would help us to illustrate our proposed methodology for the

joint action of two drugs. The data are collected from an experiment to investigate the joint

activity of two insecticides (Giltinan et al. 1988). Two insecticides are denoted here by A

and B. The mixtures are chosen in the ratios 0 : 100, 25 : 75, 50 : 50, 75 : 25 and 100 : 0.

30 insects were tested at each of 4 dose levels of each mixture, by direct application of one

microlitre of the treatment to the body of each insect. The insects were exposed for 96 hours

to these insecticides and the morality count were recorded after that. The number of dead

insects and total number of insects exposed are presented in Table 5.1.

5.4.1 Results

We have N = 20 groups of mixtures of doses. Therefore, we have S =
(
20
2

)
= 190 groups of

pairs for each ρ = ρ0. We have 99 observations in the set of ω, i.e., we have 99 numerical

values of β1p and β2p . For presentation purpose, we present the numerical values of β1p,

β2p and the value of ρ. Also, we present some of the selective numerical values of ρ and

β1p and β2p. In Table 5.2, we present the numerical values of ρ, u , β1p and β2p with the

corresponding value of ∆. In Table 5.3, we present the numerical values of ρ, u , β1p and β2p
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Table 5.1: Mortality in response to mixtures of insecticides

Mixture Amount of A Amount of B Number of Number of
(ppm) (ppm) dead insects insects tested

B 0 30.00 26 30
B 0 15.00 19 30
B 0 7.50 7 30
B 0 3.75 5 30

A25: B75 6.50 19.50 23 30
A25: B75 3.25 9.75 11 30
A25: B75 1.625 4.875 3 30
A25: B75 0.813 2.438 0 30
A50: B50 13.00 13.00 15 30
A50: B50 6.50 6.50 5 30
A50: B50 3.25 3.25 4 29
A50: B50 1.625 1.625 0 29
A75: B25 19.50 6.50 20 30
A75: B25 9.75 3.25 13 30
A75: B25 4.875 1.625 6 29
A75: B25 2.438 0.813 0 30

A 30.00 0 23 30
A 15.00 0 21 30
A 7.50 0 13 30
A 3.75 0 5 30

with the value of l

From Table 5.2, we observe that ∆ is minimum when ρ is 0.98. The corresponding β1

and β2 estimates are β1 = −4.7044625372 and β2 = 1.73293283002 which are obtained by

using the above method. The estimates of β1 and β2 are the estimates of u1 = 172 which

is 14th and 17th dose from the data. So the initial values of (β1, β2, ρ) = (−4.7044625372

,1.73293283002, 0.98).

Similarly, we see from Table 5.3 that l is maximum when ρ = 0.93 . The corresponding

estimates of β1 and β2 are β1 = −4.61719869164 and β2 = 1.70727602868. So our initial

values of (β1, β2, ρ) = (−4.61719869164, 1.70727602868, 0.93). Table 5.4 presents the two

sets of initial values labeled as I1 and I2 of β1, β2 and ρ as well as the numerical values of ∆
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Table 5.2: The numerical values of ρ, β1 , β2 and ∆

ρ u β1 β2 ∆
0.1 174 -0.268263986595 0 91.116525947
0.2 134 -1.00631643473 0.366296759999 71.8120148098
0.3 69 -1.69270493697 0.706952610549 53.2306419025
0.4 47 -2.22535152068 0.94279616612 47.1937536401
0.5 47 -2.56993584004 1.04433188900 28.6250652997
0.6 187 -3.38858080885 1.34604504296 25.6971953265
0.7 54 -3.25873973264 1.24781126008 23.1474089789
0.8 169 -3.22396245321 1.22149983525 15.6626777853
0.9 177 -4.35247883799 1.62944465815 6.79584718731
0.91 177 -4.36162241965 1.63213300012 10.2225169961
0.92 172 -4.59992465773 1.70219721908 11.0330405567
0.93 172 -4.61719869164 1.70727602868 8.47603052529
0.94 172 -4.63453182132 1.71237221327 7.29878528712
0.95 172 -4.65192440681 1.71748587870 6.81552712194
0.96 172 -4.66937681071 1.72261713159 5.96347791733
0.97 172 -4.68688939823 1.72776607932 5.09776049247
0.98 172 -4.7044625372 1.73293283002 4.72019349302
0.99 172 -4.72209659812 1.73811749264 7.26913573479

and l . The initial values labeled by I1 and I2 represent the groups k1 and k2 respectively,

defined in (5.15).

The initial values labeled I1 are better over the initial value I2 because the ∆ value in I1 is

smaller than the ∆ value in I2. On the other hand, the initial value labeled I2 are better

over the I1 in Table 5.4 because the l value in I2 is bigger than the l value in I1. Hence

the initial values labeled I1 are better over the other initial values in Table 5.4 for achieving

more accurate final solutions of Maximum likelihood estimating equations (MLEE) in Table

5.4 and the initial values labeled I2 are better over the other initial values in Table 5.4 for

achieving more accurate fitted observations.
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Table 5.3: The numerical values of ρ, β1 , β2 and l

ρ u β1 β2 l
0.1 92 -1.69008202863 0.793562135751 -110.893171583
0.2 186 -2.38716638482 1.05161507855 -91.0439796538
0.3 98 -3.15264441912 1.43152320639 -79.1192136321
0.4 99 -3.78635344322 1.64698763942 -70.0706016248
0.5 99 -3.42643868486 1.37468715285 -64.1569041528
0.6 94 -4.53089427336 1.80428235847 -59.7941247807
0.7 177 -4.17096662348 1.57607750707 -57.8833730451
0.8 177 -4.26140600504 1.60266796079 -56.1906618275
0.9 172 -4.56555244979 1.69209130517 -55.555965864
0.91 172 -4.5827093621 1.69713567936 -55.5385110583
0.92 172 -4.59992465773 1.70219721908 -55.5297096254
0.93 172 -4.61719869164 1.70727602868 -55.5294115007
0.94 172 -4.63453182132 1.71237221327 -55.5374726852
0.95 172 -4.65192440681 1.71748587870 -55.5537549815
0.96 172 -4.66937681071 1.72261713159 -55.5781257442
0.97 172 -4.68688939823 1.72776607932 -55.6104576434
0.98 172 -4.7044625372 1.73293283002 -55.6506284407
0.99 172 -4.72209659812 1.73811749264 -55.698520777

5.5 Final Solutions

We want to investigate the effect of the initial values and the criterion functions for deter-

mining the initial values to the final solutions of MLEE for the mixture of drugs. For this

purpose, we present two methods for obtaining the final solutions of the parameters.

5.6 Methods

5.6.1 Method 1 (M1)

Method 1 uses ∆ as the criterion function for performing the search algorithm to achieve

the final answer of MLEE using the our proposed initial values, I1 and I2. We use MATLAB

to perform the search algorithm. We start with the initial values labeled either I1 or I2.

Then use the optimset function in MATLAB with ∆ criterion function in TolFun option
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Table 5.4: The initial values of ρ, β1 , β2 with the values of ∆ and l

Label Group Initial β1 Initial β2 ρ ∆ l
I1 k1 -4.7044625372 1.73293283002 0.98 4.7201934 -55.65063
I2 k2 -4.61719869164 1.70727602868 0.93 8.4760305 -55.52941

and the parameters β1 , β2 and ρ in TolX option, the chosen initial values in fminsearch

function to perform the iterative process with the stopping rule requiring that the iteration

stops when two consecutive ∆ values as well as two consecutive values of each β1, β2 and

ρ simultaneously become less than or equal to a specific small value. We have chosen this

value to be 10−6 in our calculations. If

|β1v − β1v−1| ≤ 10−6, |β2v − β2v−1| ≤ 10−6,

|ρv − ρv−1| ≤ 10−6 and |∆v −∆v−1| ≤ 10−6, (5.16)

are simultaneously true then we shall get the final estimate of MLEE. In (5.16), ∆v and ∆v−1

are the values of criterion function ∆ at the v and (v − 1) stages of iteration respectively.

Similarly, β1v and β1v−1 are the values of β1 at v and (v− 1) stages of iteration respectively ,

β2v and β2v−1 are the values of β2 at v and (v− 1) stages of iteration respectively and ρv and

ρv−1 are the values of ρ at v and (v − 1) stages of iteration respectively. Table 5.5 presents

the final solutions of β1 , β2 and ρ obtained from M1 with the initial values I1 and I2.

The numerical values of the final solutions of β1, β2 and ρ are identical up to at least two

Table 5.5: The final solutions of ρ, β1 , β2 with the values of ∆ and l

Method Initial value Final β1 Final β2 ρ ∆ l
M1 I1 -4.634889 1.735221 0.8961529 2.13143 x 10−4 -55.5308840
M1 I2 -4.636015 1.735486 0.8966553 4.039207 x 10−2 -55.5308840

decimal places. However, the initial value I1 is giving the more accurate solutions of the

parameters since the value of criterion function ∆ is smaller compared to the ∆ value for
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the initial values I2. On the other hand, the numerical value of another criterion function l

is identical up to six decimal places.

5.6.2 Method 2 (M2)

Method 2 uses l as the criterion function for performing the search algorithm to achieve the

final answer of MLEE using the initial values I1 and I2.We start with the initial values either

I1 or I2. Then we use the optimset function in MATLAB with the l criterion function in

TolFun option and the parameters β1, β2 and ρ in TolX option, the chosen initial values in

fminsearch function to perform the iterative process with the stopping rule requiring that

the iteration stops when two consecutive l values as well as two consecutive values of each

of β1 , β2 and ρ simultaneously become less than or equal to a specified small value as in

Method 1. In the computation of l at the stages of iteration, it is unnecessary to keep the

terms
(
ni

yi

)
because they do not depend on β1, β2 and ρ. We therefore exclude this term from

l in (2.21) and perform the iteration. The new term is now denoted by l∗. If

|β1v − β1v−1| ≤ 10−6, |β2v − β2v−1| ≤ 10−6,

|ρv − ρv−1| ≤ 10−6 and |l∗v − l∗v−1| ≤ 10−6, (5.17)

are simultaneously true then we will get the final estimate of MLEE. In (5.17), l∗v and l∗v−1

are the values of criterion function l∗ at the v and (v − 1) stages of iteration respectively.

Table 5.6 presents the final solutions of β1, β2 and ρ obtained from M2 with the initial values

I1 and I2. Table 5.6 also presents the numerical values of ∆ and l∗ for M2 using two sets of

initial values of the parameters.

The numerical values of β1, β2 and ρ are identical up to five decimal points for both of the

initial values I1 and I2. The numerical value of criterion function l are also identical up to

six decimal places.
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Table 5.6: The final solutions of ρ, β1 , β2 with the values of ∆ and l

Method Initial value Final β1 Final β2 ρ ∆ l
M2 I1 -4.634892 1.735221 0.8961562 1.287059 x 10−5 -55.5308840
M2 I2 -4.634892 1.735221 0.8961564 7.663848 x 10−5 -55.5308840

5.6.3 Conclusion

We observe that the β1, β2 and ρ values are identical up to at least two decimal places

obtained from both of the methods. If we compare the ∆ values then M2 is providing more

accurate estimates than M1, since the ∆ value is smallest in M2 for the initial value I1.

However, if we compare the l values, we get the same values of l from any method or from

any initial values. We cannot compare these methods in terms of the criterion function l.

Both of the methods are performing equally well.

5.7 Goodness of fit test

In this section, we discuss the goodness of fit. After fitting the logistic regression model, we

want to evaluate the goodness of fit of this model. The null and alternative hypotheses are

H0 : The logistic regression model is a good fit to the data.

Ha : The logistic regression model is not a good fit to the data.

The numerical values of standard Deviance Statistics and Chi-Square statistics are

D = 2
N∑
i=1

[
yi log (

yi
ŷi

) + (ni − yi) log(
ni − yi
ni − ŷi

)

]
= 19.711,

χ2 =
N∑
i=1

(yi − ŷi)2

ŷi
= 26.146,

where ŷi is defined in (3.10). The test statistics follow χ2 distribution with df = (20-3) = 17.

The p-value for Deviance test is 0.289277 and the p-value for Chi-Square test is 0.071841.

We do not reject the null hypothesis for both of cases since our p-values are greater than
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α = 0.05. We conclude that there is significance evidence the logistic regression in (2.13) is

a good fit to the data.

5.8 One interesting phenomenon of our data set

We plot in Figure 5.1 the log-likelihood function l in (5.12) against the values of the parameter

ρ in ω = {ρ|ρ = 0.01, . . . , 0.99} for the fixed values of β1 = −4.634892 and β2 = 1.735221.

The plot indicates that the log-likelihood is a monotonically increasing function of ρ up to

ρ = 0.90 and then it is a decreasing function in ρ for the values ρ > 0.90. We also present

this plot in Figure 5.2 in a small region around ρ = 0.90, ω = ρ|0.80, 0.81, . . . , 0.99. This

plot demonstrates the symmetric nature of l in the defined region. The log-likelihood value
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Figure 5.1: Plot of log likelihood function with ρ

at ρ = 0.88 is -55.47736 whereas the log-likelihood value at ρ = 0.90 is -55.45889, which are
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Figure 5.2: Plot of log likelihood function with ρ in ω

very close.
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5.9 A simulated mortality data

We present a simulated mortality data to illustrate our methods. We generate a data from

(2.2) and (2.3) so that β1 = −4 , β2 = 1.5 and ρ = 0.70 , and (ni, xi, zi) i = 1, . . . , 20 are

same as Table 5.1. The response variable yi ’s are given in Table 5.7. We have N = 20

Table 5.7: Mortality in response to mixtures of insecticides (Simulated data)

Mixture Amount of A Amount of B Number of Number of
(ppm) (ppm) dead insects insects tested

B 0 30.00 16 30
B 0 15.00 10 30
B 0 7.50 5 30
B 0 3.75 3 30

A25: B75 6.50 19.50 13 30
A25: B75 3.25 9.75 8 30
A25: B75 1.625 4.875 5 30
A25: B75 0.813 2.438 2 30
A50: B50 13.00 13.00 18 30
A50: B50 6.50 6.50 13 30
A50: B50 3.25 3.25 10 29
A50: B50 1.625 1.625 1 29
A75: B25 19.50 6.50 20 30
A75: B25 9.75 3.25 12 30
A75: B25 4.875 1.625 5 29
A75: B25 2.438 0.813 0 30

A 30.00 0 22 30
A 15.00 0 10 30
A 7.50 0 12 30
A 3.75 0 3 30

groups of mixture of doses. Therefore, we have S =
(
20
2

)
= 190 groups of pair observations

for each ρ = ρ0. We have p = 1, . . . , 99 ρ’s and corresponding estimates of β1p and β2p

obtained by our proposed method. Table 5.8 presents the numerical values of some ρ with

the corresponding estimates of β1, β2 and the criterion function ∆. Table 5.9 presents the

numerical values of ρ with the corresponding estimates of β1 , β2 and the criterion function

l values.
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We observe that the criterion function ∆ is minimum at ρ = 0.60 out of these 99 observations

Table 5.8: The numerical values of ρ, β1 , β2 and ∆

ρ u β1 β2 ∆
0.1 153 -1.048300 0.3190400 45.95888
0.2 39 -1.890277 0.6926332 36.4165
0.3 38 -2.297104 0.8479969 23.02925
0.4 121 -3.391471 1.294565 27.58201
0.5 64 -2.821980 0.9938708 15.44174
0.6 6 -3.529693 1.267389 2.457157
0.7 35 -4.136608 1.467278 6.109941
0.8 43 -4.262108 1.480483 11.06764
0.9 119 -4.220017 1.435919 12.34224
0.95 113 -4.299177 1.455293 14.86023
0.99 113 -4.352344 1.462553 15.11327

Table 5.9: The numerical values of ρ, β1 , β2 and l

ρ u β1 β2 l
0.1 86 -2.254475 0.8624965 -62.99082
0.2 72 -2.53385 0.9674525 -52.85814
0.3 121 -3.173921 1.230602 -47.81689
0.4 121 -3.391471 1.294565 -44.7891
0.5 118 -3.55851 1.296793 -43.41708
0.6 118 -3.760905 1.364228 -42.93855
0.7 101 -3.812716 1.362648 -43.22282
0.8 101 -3.995411 1.395891 -43.88622
0.9 135 -4.022176 1.380703 -44.82772
0.95 135 -3.997371 1.361935 -45.3875
0.99 135 -3.978445 1.347616 -45.87734

from Table 5.8. In our proposed method 1 we define the initial value of (β1, β2, ρ) = (-

3.760905, 1.364228, 0.60). Let us call this initial values as I1. We use this initial values in

our proposed method and obtain the final estimates of these parameters. The results are

presented in Table 5.10 Similarly, we see that the other criterion function l is maximum

at ρ = 0.60 in ω. So our second set of initial values are, (β1, β2, ρ) = (-3.760905, 1.364228,
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Table 5.10: The final solutions of ρ, β1 , β2 with the values of ∆ and l

Method Initial value Final β1 Final β2 ρ ∆ l
M1 I1 -3.683533 1.325378 0.60850857 4.6733504 x 10−3 -42.89265
M1 I2 -3.683533 1.325378 0.60850857 4.6733504 x 10−3 -42.89265

0.60). We call them as I2. We use the initial values I1 and I2 in Method 2 to obtain the

final solution. Table 5.11 presents the final estimates of β1, β2 and ρ.

From Table 5.10 and Table 5.11, we observe that the final estimated ρ = 0.60850857 using

Table 5.11: The final solutions of ρ, β1 , β2 with the values of ∆ and l

Method Initial value Final β1 Final β2 ρ ∆ l
M1 I1 -3.682873 1.325152 0.608408508 1.02153747 x 10−5 -42.89264
M1 I2 -3.682873 1.325152 0.608408508 1.02153747 x 10−5 -42.89264

Method 1 and ρ = 0.608408508 using Method 2. Both of the methods are performing

favorably well for simulated data.

58



Chapter 6

Other methods using the standard
softwares

6.1 Summary

In this chapter, we present performance comparisons between our proposed methods (M1,M2)

with five other methods using the standard software SAS and R (M3 −M7). We present

the the parameter estimates obtained from all these seven methods. The numerical values

of β1, β2 and ρ from our methods are almost same as the numerical values the parameters

obtained from the other methods using SAS and R and they are identical up to at least

two decimal places. This closeness of the estimated parameter values from our methods

compared to other methods make our proposed methods very special.

6.2 Method 3 using R software (M3)

We present four additional methods of estimation of β1, β2 and ρ from the estimating equa-

tions in (2.19) using the R software. There is no in built program for estimating such

parameters using the R software. We propose two methods using the criterion functions ∆

and l defined in (5.11) and (5.12).

This method starts with a fixed value ρ0 of ρ and finds estimate of β1 and β2 using GLM

procedure in the R. For each of 99 known values of ρ in ω = {0.1, 0.11, . . . , 0.99}, we es-

59



timate the 99 pairs of β̂1 and β̂2 values. We then calculate the corresponding estimated

log-likelihood function l given in (2.19). We choose the ρ that maximizes the log-likelihood

function l. We choose the starting values for ρ and β1 , β2 in the search algorithm as the

chosen value of ρ and the corresponding values of β̂1 and β̂2.

We assume that l is maximum at ρ = ρ1 for a ρ1 in ω. We start our search algorithm for

finding the global maximum value of log-likelihood in a region ω1 = (ρ1− h1 , ρ1 + h1). Our

program calculates the value of l in this region and also find which ρ is giving the maximum

value of l in that region. We assume

ρ2 = arg max
ρ
l. (6.1)

We begin the search again in the region ω2 = (ρ2 − h2, ρ2 + h2) and continue this until we

find the estimate of ρ by maximizing l. We find this estimate of ρ correct to five decimal

places. We have taken h1 = 0.1 and

hi = h
1
i
1 , (6.2)

i = 2, .., k where k is the number of searches needed to get the desired estimate of ρ.

6.2.1 Results

We present some of the steps using Method 3 for the data in Table 5.1. For chosen value of

ρ with the corresponding values of β̂1 , β̂2 and the estimated l in Table 6.1. We also present

the steps for the search algorithm Table 6.2 - Table 6.5. We observe that l is maximum

at ρ = 0.90 with corresponding β1 = −4.638748 and β2 = 1.735325. We start our search

with ρ1 = 0.90. The region for first search is (0.8, 0.99). We see that l is maximum again

at ρ = 0.90 from Table 6.4. The region for second search is (0.85, 0.95). We find that log-

likelihood is maximum at ρ = 0.90. For third search our region is given as (0.875, 0.925).

We again observe that the l is still maximum at ρ = 0.90 in Table 6.4, so we continue our

search. The l is maximum at ρ = 0.89375 from Table 6.5. Since we mentioned that we stop
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Table 6.1: The numerical values of β1, β2, ρ with values of l

ρ β1 β2 l
0.1 -1.639916 0.711427 -110.053469
0.2 -2.383855 1.054164 -91.040056
0.3 -2.989408 1.296764 -77.999668
0.4 -3.473802 1.467098 -69.028115
0.5 -3.851436 1.582525 -63.019352
0.6 -4.140398 1.657334 -59.173602
0.7 -4.358400 1.702651 -56.899941
0.8 -4.520502 1.726678 -55.766216
0.9 -4.638748 1.735325 -55.458243
0.91 -4.648543 1.735519 -55.463462
0.92 -4.658003 1.735606 -55.474413
0.93 -4.667137 1.735590 -55.490911
0.94 -4.675951 1.735473 -55.512778
0.95 -4.684455 1.735259 -55.539842
0.96 -4.692654 1.734952 -55.571935
0.97 -4.700556 1.734553 -55.608895
0.98 -4.708169 1.734067 -55.650564

the search when we have a five decimal value of ρ, so we stop after the fourth search and

our estimated ρ = 0.89375.

The final estimates of β1, β2 and ρ with the corresponding ∆ and l values is presented in

Table 6.6.
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Table 6.2: The numerical values of β1, β2, ρ with values of l for the first search

ρ β1 β2 l
0.80 -4.520502 1.726678 -55.766216
0.85 -4.584463 1.732626 -55.524985
0.90 -4.638748 1.735325 -55.458243
0.95 -4.684455 1.735259 -55.539842
0.99 -4.715499 1.733496 -55.69679

Table 6.3: The numerical values of β1, β2, ρ with values of l for the second search

ρ β1 β2 l
0.85 -4.584463 1.732626 -55.524985
0.875 -4.612743 1.734350 -55.471534
0.90 -4.638748 1.735325 -55.458243
0.925 -4.662611 1.735611 -55.48198
0.95 -4.684455 1.735259 -55.539842

Table 6.4: The numerical values of β1, β2, ρ with values of l for the third search

ρ β1 β2 l
0.875 -4.612743 1.734350 -55.471534
0.8875 -4.626022 1.734928 -55.46007
0.90 -4.638748 1.735325 -55.458243

0.9125 -4.650939 1.735551 -55.46567
0.925 -4.662611 1.735611 -55.48198

Table 6.5: The numerical values of β1, β2, ρ with values of l for the fourth search

ρ β1 β2 l
0.8875 -4.626021 1.734927 -55.460070
0.89375 -4.632453 1.735148 -55.457977

0.90 -4.638748 1.735325 -55.458243
0.90625 -4.64491 1.735459 -55.46082
0.9125 -4.650939 1.735551 -55.46567
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Table 6.6: Final solution of β1, β2, ρ with ∆ and l from Method 1 Using R

Final β1 Final β2 Final ρ ∆ l
-4.632453 1.735148 0.89375 1.454624 x 10−1 -55.45798
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6.3 Method 4 using R software (M4)

We present a method similar to M3 using the R software and the criterion function ∆

defined in (5.11). This method starts with a fixed value of ρ say ρ0 and finds estimate of

β1 and β2 using GLM procedure in the R software. For each of 99 known values of ρ in

ω = {0.1, 0.11, . . . , 0.99}, we estimate the 99 pairs of β̂1 and β̂2 values. We then calculate

the corresponding estimated ∆. We choose the ρ that minimizes the ∆, we choose the

starting values for ρ and β1 , β2 in the search algorithm as the chosen value of ρ and the

corresponding values of β̂1 and β̂2.

We assume that ∆ is minimum at ρ = ρ1 for a ρ1 in ω. We start our search to find the global

minimum value of ∆ in a region involving ω1 = (ρ1 − h1, ρ1 + h2). Our program calculates

the value of ∆ in the this region and finds out for which ρ is giving minimum value of ∆ in

that region. We assume

ρ2 = arg min ∆. (6.3)

We begin the search again in the region ω2 = (ρ2 − h2; ρ2 + h2) and continue this until we

find the estimate of ρ by minimizing ∆. We find this estimate of ρ correct to five decimal

places. We have taken h1 = 0.1 and

hi = h
1
i
1 , (6.4)

where i = 2, . . . k and k is the number of searches needed to get the desired estimate of ρ.

6.3.1 Results

We present some of the steps using Method 4 for the data in Table 5.1. For the chosen value

of ρ with the corresponding values of β̂1, β̂2 and the estimated ∆ in Table 6.7. We also present

the steps for the search algorithm Table 6.8 - Table 6.11. We observe from Table 6.7 that ∆

is minimum at ρ = 0.90 with corresponding β̂1 = −4.638748 and β̂2 = 1.735325. We start

our search in (0.8, 0.99) region. From Table 6.8, we see that ∆ is smallest again at ρ = 0.90.

The new search region is (0.85, 0.95). The next search region is (0.875, 0.925) from Table
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Table 6.7: The numerical values of β1, β2, ρ with ∆ values

ρ β1 β2 ∆
0.1 -1.639916 0.711427 232.537107
0.2 -2.383855 1.054164 155.778318
0.3 -2.989408 1.296764 107.861899638
0.4 -3.473802 1.467098 73.363843
0.5 -3.851436 1.582525 48.132462
0.6 -4.140398 1.657334 29.759394
0.7 -4.358400 1.702651 16.427245
0.8 -4.520502 1.726678 6.765492
0.9 -4.638748 1.735325 0.229006
0.91 -4.648543 1.735519 0.811568
0.92 -4.658003 1.735606 1.375444
0.93 -4.667137 1.735590 1.921208
0.94 -4.675951 1.735473 2.449417
0.95 -4.684455 1.735259 2.960608
0.96 -4.692654 1.734952 3.455301
0.97 -4.700556 1.734553 3.933999
0.98 -4.708169 1.734067 4.397190

6.9. We observe from Table 6.11, our desired value of ρ = 0.89375 since the ∆ is smallest

in the defined region. We obtain the final estimate of ρ = 0.89375 with β̂1 = −4.632453 and

β̂2 = 1.735148 by minimizing ∆. The final estimates are given in Table 6.12
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Table 6.8: The numerical values of β1, β2, ρ with ∆ values for the first search

ρ β1 β2 ∆
0.80 -4.520502 1.726678 6.765492
0.85 -4.584463 1.732626 2.985595
0.90 -4.638748 1.735325 0.229006
0.95 -4.684455 1.735260 2.960609
0.99 -4.715499 1.733496 4.845344

Table 6.9: The numerical values of β1, β2, ρ with ∆ values for the second search

ρ β1 β2 ∆
0.85 -4.584463 1.732626 2.985595
0.875 -4.612743 1.734350 1.313096
0.90 -4.638748 1.735325 0.229006
0.925 -4.662611 1.735611 1.650555
0.95 -4.684455 1.735260 2.960609

Table 6.10: The numerical values of β1, β2, ρ with ∆ values for the third search

ρ β1 β2 ∆
0.875 -4.612743 1.734350 1.313096
0.8875 -4.626021 1.734927 0.526380
0.90 -4.638748 1.735325 0.229006

0.9125 -4.650939 1.735551 0.954266
0.925 -4.662611 1.735611 1.650555

Table 6.11: The numerical values of β1, β2, ρ with ∆ values for fourth search

ρ β1 β2 ∆
0.8875 -4.626021 1.734927 0.526380
0.89375 -4.632453 1.735148 0.144847

0.90 -4.638748 1.735325 0.229006
0.90625 -4.64491 1.735459 0.5953285
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Table 6.12: Final solution of β1, β2, ρ with ∆ and l from Method 2 Using R

Final β1 Final β2 Final ρ ∆ l
-4.632453 1.735148 0.89375 1.454624 x 10−1 -55.45798
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6.4 Methods 5 using SAS software (M5)

In this method, we use SAS software to estimate the unknown parameters defined in (2.13).

There are several Procedures (Proc’ s) are available in SAS to estimate β1, β2 and ρ for

the joint action of two drugs such as, Proc NLIN, Proc NLMIXED etc. We have used Proc

NLMIXED for estimating the maximum likelihood estimates of (β1, β2, ρ) defined in (2.19).

6.4.1 Method

The NLMIXED procedure generally fits nonlinear mixed models, that is, models in which

both fixed and random effects enter nonlinearly. This is a very powerful procedure in SAS

to estimate the parameters for nonlinear models. Proc NLMIXED enables us to analyze

data that are normal, binomial, or Poisson. This finds the maximum likelihood estimates

by maximizing the log-likelihood function of the given model. A variety of optimization

techniques are available to carry out the maximization. We can choose a particular optimizer

with the TECH=name option in the PROC NLMIXED statement.

The factors that go into choosing a particular optimization technique for a particular

Table 6.13: The optimization techniques in Proc NLMIXED

Algorithm Tech=
trust region Method TRUREG

Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG

quasi-Newton methods (DBFGS, DDFP, BFGS, DFP) QUANEW
double-dogleg method (DBFGS, DDFP) DBLDOG

conjugate gradient methods (PB, FR, PR, CD) CONGRA
Nelder-Mead simplex method NMSIMP

problem are complex and may involve trial and error. We have used NRRIDG optimization

technique to estimate the maximum likelihood estimates in (5.4).
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In NLMIXED procedure we have to define the initial values of the parameter in PARMS

statement. A common choice of initial values for the parameters (β1, β2) are (0, 0). However,

there is no common choices of initial values of ρ exist in literature. For the comparison

purpose, we have chosen the initial values of (β1, β2, ρ) = (0, 0, 0.1). We call these initial

values as I3. Table 6.14 presents β̂1, β̂2, ρ̂ , ∆, l values for I3 initial value.

Table 6.14: Final solution of β1, β2, ρ with ∆ and l

Initial value Final β1 Final β2 Final ρ ∆ l
I3 -4.634892 1.735221 0.896156 7.956599 x 10−4 -55.45780

6.5 Methods using our proposed initial values in SAS

software

In this section, we discuss about more methods using Proc NLMIXED in SAS. We use the

initial values of the parameters obtained by our proposed method in Chapter 5. In Chapter

5 as the initial values in Proc NLMIXED. We proposed two sets of initial values, one set

of initial values we obtained from the criterion function ∆ and another set of initial values

obtained from the another criterion function l in Chapter 5.

6.5.1 Method 6 with the initial values obtained from ∆ criterion
function (M6)

In the PARMS option in Proc NLMIXED syntax we have defined, β1 = −4.7044625372 ,

β2 = 1.73293283002 and ρ = 0.98 as the initial values for the execution of Proc NLMIXED.

The results are presented in Table 6.15.

From Table 6.15, we can see that the final estimates of (β1, β2, ρ) are identical up to 3

decimal places compared to our proposed method in Chapter 5. We can conclude that

the initial values obtained by our method is working favorably compared to any standard

methods for solving non linear equations.
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Table 6.15: Final solution of β1, β2, ρ with ∆ and l

Final β1 Final β2 Final ρ ∆ l
-4.6348929169 1.7352218697 0.8961564624 1.9615072 x 10−8 -55.45780

6.5.2 Method 7 with the initial values from l criterion function
(M7)

We use the initial values of β1, β2 and ρ obtained from our proposed method in Chapter 5 by

minimizing the criterion function l which is defined as I2 in Chapter 5. In the PARMS option

in Proc NLMIXED syntax we have defined, β1 = −4.61719869164 , β2 = 1.70727602868 and

ρ = 0.93 as the initial values for the execution of Proc NLMIXED. The results are presented

in Table 6.16. We observe from Table 6.16 that the final estimates of (β1, β2, ρ) are identical

Table 6.16: Final solution of β1, β2, ρ with ∆ and l

Final β1 Final β2 Final ρ ∆ l
-4.6348929169 1.7352218697 0.8961564624 1.9615072 x 10−8 -55.45780

up to 3 decimal places compared to our proposed method in Chapter 5. We can conclude that

the initial values obtained by our method is working favorably compared to any standard

methods for solving non linear equations.

6.6 Performance comparisons of M1 −M7

We compare our proposed methods M1,M2, defined in Chapter 5 with the methods M3, M4,

M5, M6 and M7 , defined in Chapter 6. For comparison purpose, we need to define same

stopping rule for all the methods.
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6.6.1 Stopping rule for Methods M5,M6, andM7

For Method M5,M6 and M7 we have used Proc NLMIXED in SAS for estimating the pa-

rameters. In Proc NLMIXED, we have chosen ABSFCONV as stopping rule option which

is

|lv − lv−1| < ε1, (6.5)

where lv and lv−1 are the values of l in (2.5) at the v and (v−1) stages of iteration, respectively.

The ε1 is specified as 10−6.

6.6.2 Stopping rule for Method M3 and M4

Method M3 and M4 use the same stopping rule which depends on the deviance statistics

defined in (4.2). The stopping rule is

|Dv −Dv−1|
|Dv|+ 0.1

< ε2, (6.6)

where Dv and Dv−1 are the values of D in (2.19) at the v and (v − 1) stages of iteration,

respectively. The ε2 is also specified as 10−6 at the beginning.

6.6.3 Stopping rule for Method M1 and M2

In our proposed Methods (M1 and M2) from Chapter 5 we have used fminsearch option

in MATLAB to estimate the parameters. The stopping rule in fminsearch depends on TolX

and TolFun in Optimset option. The TolX value represents the common values of ε3 , ε4 and

ε5 in the conditions for stopping rules

|β1v − β1v−1| < ε3, |β2v − β2v−1| < ε4,

|ρv − ρv−1| < ε5, (6.7)

where (β1v , β2v , ρv) and (β1v−1 , β2v−1 , ρv−1) are the values of (β1, β2, ρ) at the v and (v − 1)

stages of iterations, respectively. The ε3, ε4 and ε5 are equal and their common value is
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specified as 10−6. Table 6.17 presents the parameter estimates of β1, β2 and ρ with the

corresponding value of the criterion functions ∆ and l obtained from all of these different

methods.

Table 6.17: Comparison of the parameter estimates of different methods

Method Final β1 Final β2 Final ρ ∆ l
M1 -4.634892 1.735221 0.8961562 1.287059 x 10−5 -55.5308840
M2 -4.634892 1.735221 0.8961564 7.663848 x 10−5 -55.5308840
M3 -4.632453 1.735148 0.89375 1.454624 x 10−1 -55.45798
M4 -4.632453 1.735148 0.89375 1.454624 x 10−1 -55.45798
M5 -4.634892 1.735221 0.896156 7.956599 x 10−4 -55.45780
M6 -4.634892 1.735221 0.896156 7.956599 x 10−4 -55.45780
M7 -4.634892 1.735221 0.896156 7.956599 x 10−4 -55.45780

6.6.4 Conclusion

We observe from Table 6.17 that the numerical values of the final solutions of β1, β2 and

ρ obtained from our methods (M1 and M2) are identical up to at least two decimal places

obtained from other methods (M3, M4 , M5 , M6 and M7) using SAS and R. So our methods

are performing favorably compared with all standard methods. If we compare the value of

the criterion function ∆, our methods are performing better than the rest of the methods.

Similarly, we compare the values of other criterion function l, the other methods are per-

forming slightly better than our proposed methods. So we can conclude that our methods

are providing more accurate solutions of the parameters β1, β2 and ρ while the other methods

using SAS and R are proving better fitted values of the response compared to our methods.
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Chapter 7

Conclusions

In this dissertation, we propose new methods of estimation for estimating the unknown

parameters in the logistic regression models which are used to assess the dose-response

relationship between two drugs or for a single drug. Our methods find the initial values of

the parameters of the logistic regression model in a very systematic way. In our proposed

methods of finding the initial values of parameters, we make use of the pairs of observations.

Our methods are based on two different criterion functions. The first criterion function ∆

which is used for obtaining the most accurate final solutions of MLEE and the second criterion

function l or equivalently (-l) is used for obtaining the most accurate fitted observations. We

use our initial values and the corresponding criterion functions to obtain the final solutions

of the parameters in the models. We also estimated the relative potency and ED50 for

our data. Our methods are computer intensive like the popular bootstrap and jackknife

methods in statistics (Efron and Tibshirani, 1993). We compare our proposed methods with

the standard and popular methods of estimation. The performances of our methods are

almost the same as the performances of the standard methods. The parameter estimate

values are almost identical for all these methods. This closeness of the numerical values

of the estimates obtained from our methods compared to the estimates obtained from the

standard methods make our proposed methods very special.
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