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Abstract The human herpesvirus 8 (HHV-8) is the
oncogenic virus associated with Kaposi’s sarcoma (KS)
and lymphoproliferative disorders, namely, primary effu-
sion lymphoma and multicentric Castleman’s disease. KS is
among the most common malignancies seen in HIV-
infected patients despite the decreased incidence of KS in
the era of highly active antiretroviral therapy. Advances in
molecular pathology reveal HHV-8 tumorigenesis is medi-
ated through molecular mimicry wherein viral-encoded
proteins can activate several cellular signaling cascades
while evading immune surveillance. This knowledge has
led to the evolution of multiple therapeutic strategies
against specific molecular targets. Many such therapeutic
modalities have shown activity, but none have proven to be
curative. Identifying possible prognostic factors is another
active area of research. This review summarizes the recent
developments in the fields of virus transmission, molecular
biology, and treatment of HHV-8-related neoplasms.
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Introduction

Viruses have been linked to several human cancers since
the latter half of the 20th century. This finding is especially
so in immunosuppressed individuals. One of the harbingers
of the HIV/AIDS epidemic in the 1980s was the sudden
surge in the incidence of Kaposi sarcoma (KS) among male
homosexuals [1]. Beral et al. [2] in 1990 proposed a
sexually transmitted infectious agent could be the etiology
of AIDS-related KS; however, it was not until 1994 that
Chang et al. [3] identified the virus from KS tissues in a
patient with AIDS and established its association with KS.
This new γ herpesvirus was named KS-associated herpes-
virus (KSHV)/human herpesvirus-8 (HHV-8). HHV-8 is
one of several oncogenic viruses. In addition to KS, HHV-
8 is associated with lymphoproliferative disorders including
multicentric Castleman’s disease (MCD), plasmablastic
lymphoma, primary effusion lymphoma (PEL), and the
solid variant of PEL [4–6]. A germinotropic lymphoproli-
ferative disorder seen in HIV-seronegative patients is also
linked to HHV-8 where the lesions are coinfected with
Epstein-Barr virus (EBV) [7]. Deviations from these classic
forms of HHV-8-associated malignancies have been
reported, such as a case of large B-cell lymphoma
coinfected with HHV-8 and EBV having histologic (although
not immunophenotypic) similarities to classic Hodgkin’s
lymphoma in an immunocompetent person and another case
of HHV-8-associated intravascular large B-cell lymphoma in
an HIV-positive patient [8].

HHV-8 Transmission

The definite route of transmission of HHV-8 is still debated.
Pica and Volpi [9•] reviewed the possible routes of HHV-
8 transmission, including horizontal, sexual, vertical, blood

M. Sunil :M. J. Lechowicz (*)
Department of Hematology/Medical Oncology,
Winship Cancer Institute, Emory University,
Room 2054, 1365C Clifton Road,
Atlanta, GA 30322, USA
e-mail: mlechow@emory.edu

M. Sunil
e-mail: msunil@emory.edu

E. Reid
Hematology/Oncology, Moores Cancer Center,
University of California, San Diego,
3855 Health Sciences, MC #0987 La Jolla, CA, USA
e-mail: egreid@ucsd.edu

Curr Infect Dis Rep (2010) 12:147–154
DOI 10.1007/s11908-010-0092-5



borne, and through organ transplantation. A large, population-
based, cross-sectional study evaluating the epidemiology of
HHV-8 in the general US adult population demonstrated that
HHV-8 transmission may be related to sexual activity in men,
especially in male homosexuals, whereas evidence was
lacking for heterosexual transmission in women [10•]. HHV-
8 infection was found to occur with increased prevalence
among patients with recently acquired HIV infection in Sao
Paulo, Brazil [11]. Both univariate and multivariate analysis
found positive correlation between HHV-8 transmission
during the first year of HIV infection and sexual practices:
in men who have sex with men (MSM) and in persons with
history of other sexually transmitted diseases.

In Africa, many have postulated the high seroprevalence
observed in adults implied HHV-8 infection was acquired
in childhood; however, recent data do not support this.
Butler et al. [12] found a low seroprevalence of HHV-
8 infection among children in South Africa, in contrast to
Uganda, where an age-dependent pattern was observed (rates
increased with age). This finding suggests the possibility of
different patterns of transmission of HHV-8 in Africa, the
continent with highest prevalence of HHV-8. A large
prospective study conducted in Zambia in a cohort of
children from birth to 48 months to estimate annual
incidence of HHV-8 concluded that transmission in children
is mainly horizontal, through maternal mastication of food.
This study also found the presence of HIV-1 infection
increases the risk for acquiring HHV-8 in areas highly
endemic for both viruses [13].

Further HHV-8 transmission studies in the HIV-
seronegative population demonstrate additional data in the
transmission, development, and persistence of HHV-8-
associated malignancy. Transmission of HHV8 has been
documented in the setting of organ transplantation [14, 15].
Postallograft medical immunosuppression is associated
with increased risk of KS, as well as other viral-associated
malignancies (EBV lymphoproliferative disease). In this
setting, reduction or withdrawal of immunosuppression can
result in regression of KS, even in the absence of other
specific therapy [15]. Similarly, immune reconstitution
through use of highly active antiretroviral therapy (HAART)
in persons with HIV can be associated with spontaneous
regression of KS.

Oncopathogenesis

The past two decades have seen significant advances
describing the molecular pathways involved in HHV-8-
induced malignancies. There appears to be an intricate
interplay between the host immune system and the virus,
which results in tumorigenesis with evasion of immune
surveillance. For a more comprehensive review of HHV-8-

induced oncogenesis, the reader is referred to Liang et al.
[16••] and Wen et al. [17••].

KSHV/HHV-8 displays a latent and a lytic phase. The
latent phase, which is the default phase of HHV-8, helps
with immune evasion and in establishing a persistent viral
infection. The major latent viral proteins include latency-
associated nuclear antigen (LANA1), viral cyclin (v-cyc),
and the viral Fas-associated death domain interleukin-1B
converting enzyme (FLICE) inhibitory protein (vFLIP).
Kaposin, viral interferon regulatory factors 3 (vIRF3), and
KSHV-encoded microRNA (miRNA) are among the other
latent viral proteins [16••]. Viral G-protein coupled receptor
(vGPCR) and viral interleukin-6 (vIL-6) are lytic-phase
proteins, although vIL-6 is also often found in latently
infected cells [16••, 18••].

Although KSHV is thought to involve infection of
endothelial/spindle cells in KS, it infects lymphocytes in
both PEL and MCD. KSHV latent gene products, including
LANA and v-FLIP, appear to dominate the malignant states
of KS and PEL; the virus is considered to be predominantly
in a latent state within both tumors. By contrast, in the
setting of MCD, high levels of KSHV lytic gene products—
including ORF5, ORF59, ORF65, and K8—are typically
found, particularly in the mantle zone region of the affected
lymph nodes [19].

Functions and Oncogenicity of HHV-8 Viral Products

LANA1

This latent viral protein is essential to maintain latency and
for cell proliferation. It may also have a role in immune
evasion through inhibition of antigen presentation [20].
Transforming growth factor-β (TGF-β) signaling pathway
is an important regulator of growth in several cell types and
also has a role in immune surveillance. KSHV LANA has
been shown to downregulate TGF-β type II receptor
(TβRII) in KSHV-infected PEL cells through DNA
methylation and deacetylation of proximal histones, block-
ing the TGF-β signaling pathway and thus contributing to
the neoplastic process [21]. LANA1 also inhibits the tumor
suppressors P53 and von Hippel-Lindau (VHL) through its
E3 ubiquitin ligase activity, which targets these suppressors
for proteasome degradation. The consequences of this
process include impaired apoptosis and increased hypoxia-
inducible factor-1α levels, which leads to activation of
genes involved in angiogenesis, cell proliferation, and
survival [22].

v-cyc

V-cyc is a homologue of cellular D-type cyclins; it activates
the DNA damage checkpoint, especially in early premalignant
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lesions, which would be expected to have protective effects
against malignant transformation and persistence. However,
the v-cyc may also lead to centrosomal abnormalities that
could contribute to malignant transformation through
genomic instability [23].

vFLIP

This latent viral protein has been associated with cell
survival, morphologic change, and inflammatory activation.
In addition, vFLIP appears to have a role in maintaining
viral latency. Ye et al. [24] recently showed that vFLIP
activation of the nuclear factor-κB (NF-κB) was associated
with suppression of the activator protein-1 (AP-1) pathway,
which in turn inhibited the reactivation transcriptional
activator (RTA) expression involved in KSHV lytic
replication. However, this inhibition of lytic replication by
NF-κB activation can be bypassed partly or overcome
during a full lytic infection, and NF-κB activation and lytic
gene expression are not mutually exclusive in all circum-
stances [24, 25]. Adding to the functional repertoire of
vFLIP is a role in maintaining host-pathogen equilibrium
together with IRF-1 through regulation of antigen presen-
tation, according to the model proposed by Lagos et al.
[26].

vGPCR

A lytic gene, vGPCR is the only KSHV gene identified
with transforming capacity. The vGPCR gene can drive
autocrine and paracrine Akt activation in infected endothelial
cells. Also, vGPCR unblocks a break on the mammalian
target of rapamycin (mTOR) signaling pathway, which
results in increased cell proliferation, cellular nutrient uptake,
and angiogenesis [27].

MicroRNA

These are noncoding RNAs about 22 nucleotides in length;
they function through interaction with messenger RNA,
causing its degradation or preventing translation [28].
KSHV/HHV-8 encodes 12 microRNAs (miRNAs) coordi-
nately expressed in the latency region. One of the viral
miRNAs encoded by KSHV, miR-K12-11, appears to be
homologous to cellular miR-155, and thus capable of using
its binding sites [29, 30]. Also, miR-155 has a high
expression in many human B-cell lymphomas, where it
plays a significant role in differentiation, B-cell maturation,
and regulation of the immune system, mediated via
cytokine production [31]. Thus, viral miR-K12-11 and the
oncogenic human miRNA, miR-155, potentially have the
same target genes; this could possibly contribute to
the pathogenesis of HHV-8-associated malignancies [29,

30]. Samols et al. [32] have revealed more cellular genes
that are targeted by HHV-8 miRNAs, including thrombo-
spondin 1 (THBS1), which is down regulated. THBS1 has
a significant role in several cellular processes, including
adhesion, migration, and angiogenesis [32].

LANA2

Another latent viral protein, LANA2 has a possible role in
developing resistance to the drug paclitaxel by binding to
the polymerized microtubules, decreasing their stability and
interfering with the binding of the drug to the tubules [33].

ORF-K1

The variations found in the highly variable glycoprotein, an
early lytic-cycle gene product encoded by the ORF-K1
gene, defined four major subtypes and 13 variants or clades
of HHV-8 [34]. These subtypes are variably distributed in
different geographic areas of the world [34]. Subtypes A
and C were seen mostly in the United States and Europe,
whereas subtype B was almost exclusive to Africa [34, 35].
In a recent study of Italian patients with classic KS, HHV-
8 subtype Awas shown to be associatedwith high blood levels
of the virus, and these patients developed a rapidly progressive
disease; thus, aggressive therapeutic strategies are required in
persons infected with this subtype of HHV-8 [35].

Brown et al. [36] showed preliminary evidence linking
host immunogenetic factors to control of HHV-8 infection.
These investigators showed a high HHV-8 lytic antibody
titer—a possible marker of lytic reactivation—was associated
with genetic variations in cytokines in HIV-negative patients
without KS.

HHV-8-Associated Malignancies

Clinical Features and Therapeutic Options

Kaposi Sarcoma

KS is an angioproliferative tumor and is among the most
common malignancies seen in the HIV-infected population.
The HIV/AIDS cancer match study by Engels et al. [37•]
showed a greatly increased incidence of KS in the HIV-
infected individuals compared with the general population
(standardized incidence ratio 1300), and although incidence
declined considerably in the HAART era, it still remains
elevated in relation to the HIV-negative population. KS
may involve the skin, lymph nodes, or viscera and is often
multifocal. Compared with asymptomatic HHV-8 carriers, a
significantly lower level of HHV-8-specific cytotoxic T
cells has been noted in both AIDS-related and classic KS
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[38]. The iatrogenic KS associated with organ transplanta-
tion often regresses with reversal of immunosuppression or
dose reduction of immunosuppressive agents. Similarly,
improvement in the immune system brought on by use of
HAART helps to alleviate HIV-related KS. There has been
a notable sixfold drop in the incidence rate of KS from the
pre-HAART era to the HAART era, supporting the
hypothesis that immune impairment is permissive of KS
[39]. A study showed that low CD4 counts and lack of
antiretroviral therapy (ART) were major risk factors in KS
development in the HHV-8-seropositive male homosexuals
with AIDS [40•]. These investigators also demonstrated
that HAART had a significant protective role not only with
respect to prevention of KS but also in lowering mortality
of patients with KS.

In the HAART era, there are increasing reports of KS
occurring in HIV-infected individuals with suppressed HIV
viral loads and apparent immune reconstitution. Maurer et
al. [41] reported on nine HIV-infected patients with
persistent cutaneous KS despite being on HAART, with
CD4 counts greater than 300 cells/mm3 and viral load less
than 300 copies/mL for nearly 2 years. Similar instances
have been observed in the past, as noted by Krown et al.
[42], which suggest the need to explore further the factors
involved in development and progression of KS and to
identify which patients respond to ART. A Swiss HIV
cohort study followed 144 HIV-infected patients with KS
from 1996 to 2004 with the aim of identifying adverse
prognostic factors; T1 stage of tumor, CD4 count below
200 cells/µL, and a positive HHV-8 DNA in the plasma
were associated with poorer outcomes [43]. In a retrospec-
tive cohort of 64 patients with KS who were treated with a
combination of chemotherapy and HAART, the median
time to initial response was as long as 9 months and the
estimated time to complete resolution was 33 months [44].
The cumulative resolution probability at 3 years was 51%.
Although both HAART and chemotherapy were indepen-
dently associated with initial clinical improvement, the
authors found only recent HAART use significantly
correlated with complete resolution of the disease. Howev-
er, they failed to find any impact of CD4 counts and tumor
stage on either improvement or resolution of lesions,
although a low HIV viral load was a predictor of response
to therapy. Furthermore, the type of HAART regimen used
did not impact response significantly. The association of
HHV-8 viral load with development of new lesions or
with disease progression was again demonstrated in two
recent studies [45, 46]. Stebbing et al. [47] conducted a
prospective cohort study to develop an easily quantifiable
prognostic index for patients with AIDS-related KS. Four
prognostic factors were identified: age, KS occurring at or
after AIDS onset, presence of comorbidities, and CD4 cell
count.

Treatment options for KS include surgical removal,
radiation therapy, and chemotherapy. Several standard
chemotherapeutic agents have activity alone and in combi-
nation against KS: anthracyclines—most notably liposomal
preparations, microtubule inhibitors, and vinca alkaloids.
Recent advances in understanding the molecular pathogenesis
of KS has lead to novel strategies targeting HHV-8.

Rapamycin (sirolimus), an mTOR inhibitor, has been
shown to improve the levels of HHV-8-specific cytotoxic T
cells when used in HHV-8-seropositive organ transplant
recipients [48–50]. Sirolimus has been recommended as an
immunosuppressive agent for organ transplant recipients in
light of its beneficial effects in causing regression of KS
and other posttransplant tumors without adversely impact-
ing the graft [51]. Matrix metalloproteinases (MMP), the
zinc-dependent endopeptidases, are overexpressed in KS
cells and are involved in tumor invasion and metastasis.
The AIDS Malignancy Consortium recently conducted a
phase 2 trial comparing two doses (50 mg and 100 mg) of
an MMP inhibitor known as COL-3 (CollaGenex Pharma-
ceuticals, Newtown, PA), a modified tetracycline, in AIDS-
related KS [52]. The overall response rate was 41% in the
lower dose group and there were no serious adverse events,
which raises the possibility of using this agent along with
others for future therapy of AIDS-related KS. Another
treatment approach is the induction of lytic viral proteins to
render the virus more susceptible to the immune system and
possibly enhance apoptosis or lysis of HHV-8-infected
tumor cells. A recently published pilot trial using valproic
acid was designed to determine the level of lytic expression
of HHV-8 within the KS lesions [53]. The study results
failed to show sufficiently high levels of lytic gene
expression in a 30-day period on valproic acid. This
therapeutic approach might still hold promise for the future,
and additional studies using agents expected to be more
potent inducers of lytic activation are underway.

Multicentric Castleman’s Disease

HHV-8-associated MCD, an aggressive disease, is encoun-
tered mostly in immunosuppressed individuals, including
HIV-infected patients. These patients are at risk of
developing a plasmablastic lymphoma, a type of large B-
cell lymphoma. For a comprehensive review of MCD in
HIV-infected patients, the reader is referred to Stebbing et
al. [54•]. In a histologic study of lymph nodes involved by
HIV-associated MCD, as much as 63% of the lymph nodes
tested positive for both MCD and KS, suggestive of
coexistence of the two pathologic processes [55]. A rare
instance of KSHV/HHV-8-associated hemophagocytic syn-
drome developing in an immunocompetent patient who also
had coexistent MCD and KS was reported recently [56].
Wyplosz et al. [57] reported an instance of skin rash
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secondary to reactivation of HHV-8 with subsequent
development of MCD as a continuous process. The authors
further hypothesized that infected plasmablasts in the blood
may be implicated in transport of the virus to the various
target tissues as well as in the development of other HHV-
8-associated conditions such as KS. Seliem et al. [58]
reported another unusual variant of MCD-associated plasma-
blastic lymphoproliferative disorder, which had overlapping
histologic features of plasmablastic microlymphoma and
germinotropic lymphoproliferative disorder in an HIV-
positive patient with HHV-8 and EBV coinfection.

Treatment for MCD has traditionally involved aggres-
sive chemotherapy, and lately monoclonal antibodies
against CD20 (rituximab) and IL-6 (atlizumab) have been
effective [18••]. A combination of rituximab with the
immunomodulator thalidomide has been reported to cause
regression of MCD in an HIV-infected patient [59]. A few
recent trials have shown the beneficial effect of rituximab
along with HAART in MCD with a prolonged resolution of
symptoms. In the single-group, phase 2 trial by Bower et al.
[60], the partial response was 67% and the 2-year overall
survival (OS) was 95%. In another prospective, open-label
trial by Gerard et al. [61••], sustained remission at 1 year
was achieved in 71%, and OS at 1 year was 92%.

Primary Effusion Lymphoma

PEL is a rare form of lymphoproliferative disorder seen
frequently in HIV-infected patients; it presents as a classic
and solid variant and generally has a very poor prognosis
[62]. Reports exist of PEL occasionally occurring in HIV-
negative patients, especially in the setting of other forms of
immunosuppression (eg, in organ transplant recipients and
in patients with chronic hepatitis B) [62–65]. Morpholog-
ically, it shares features of large-cell immunoblastic and
anaplastic large-cell lymphoma [62, 66]. PEL tumor cells
have a null phenotype, but are believed to be of B-cell
origin [62]. Occasionally, the tumor cells may express B-
cell or T-cell markers, which make detection of HHV-8 an
important confirmatory test [66]. The level of IL-6 in these
tumor cells is quite high, which aids in the diagnosis of
PEL and could be a potential target for therapy [18••]. De
Filippi et al. [67], in their report of three HIV-negative
patients with hepatitis C virus infection and PEL, showed
elevated levels of free λ light chains in the serum; levels
correlated with clinical response to treatment. This finding
can possibly be used to monitor response to therapy.

The rarity of PEL precludes any large, prospective trials
and optimal therapy is lacking. Apart from the traditional
chemotherapy, various regimens that have been tried
include the proteasome inhibitor, bortezomib, which inhib-
its the NF-κB pathway, antivirals including cidofovir and
ganciclovir, and the mTOR inhibitor rapamycin [18••].

Rapamycin decreases production of vascular endothelial
growth factor (VEGF) as well as VEGF-induced signaling,
thereby inhibiting accumulation of body fluids; this has
clinical relevance in PEL therapy, but at the same time
resistance to rapamycin developed quickly, limiting its
efficacy [68]. Despite beneficial effects of rapamycin use in
the HHV-8 malignancies in organ transplant patients, PEL
has been reported to develop in renal transplant recipients
who were on rapamycin, which might possibly suggest that
this drug may not be as effective in preventing PEL as it is
with KS [63]. Reports are mixed regarding the activity of
bortezomib in PEL [69]. There have been recent case
reports of long-term remission with HAART alone as
therapy for PEL, as well as remission seen with radiotherapy
in a patient with PEL who was refractory to chemotherapy
[70, 71].

Recently, a randomized, controlled trial showed efficacy
of the antiviral drug valganciclovir in decreasing HHV-
8 replication, which makes it useful as an adjunctive agent
in HHV-8-associated disease processes, especially those
with more lytic viral replication (eg, MCD) [72]. Another
reported potential therapeutic approach included use of
plant extracts, which were identified using a new
fluorescence-based assay [73]. Last but not least, Bryant
and Milliken [74] reported the successful treatment of PEL
in an HIV-infected patient in second remission with
allogeneic hemopoietic stem cell transplantation, who
remained in complete remission at 31 months posttransplant
only on HAART and with undetectable viral loads.

Conclusions

Our understanding of the pathophysiology and the molec-
ular processes involved in the development of the various
HHV-8-associated malignancies has increased dramatically
over the past decade. Although many new targets have been
identified at the molecular level for potential therapy of KS,
MCD, and PEL, therapeutic outcomes for these malignan-
cies remain far from satisfactory. Future research should
aim to improve our understanding of the role of host and
viral factors that influence tumorigenesis and prognosis in
the various HHV-8-related disease states, identifying the
most efficacious combination from among the different
therapeutic options through controlled trials. Alternative
modalities, including radiotherapy and stem cell transplanta-
tion, should be explored in aggressive HHV-8 malignancies.
Studies for effective prevention strategies, including vaccines,
could potentially add to our arsenal against HHV-8.
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