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BAYESIAN NETWORKS
�

Judea Pearl

Cognitive Systems Laboratory

Computer Science Department

University of California, Los Angeles, CA 90024

judea@cs.ucla.edu

Bayesian networks were developed in the late 1970's to model distributed processing in

reading comprehension, where both semantical expectations and perceptual evidence must

be combined to form a coherent interpretation. The ability to coordinate bi-directional in-

ferences �lled a void in expert systems technology of the early 1980's, and Bayesian networks

have emerged as a general representation scheme for uncertain knowledge [Pearl, 1988; Shafer

and Pearl, 1990; Heckerman et al., 1995; Jensen, 1996; Castillo et al., 1997]. .

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent vari-

ables of interest (e.g., the temperature of a device, the gender of a patient, a feature of an

object, the occurrence of an event) and the links represent informational or causal depen-

dencies among the variables. The strength of a dependency is represented by conditional

probabilities that are attached to each cluster of parents-child nodes in the network.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal re-

lationships among the season of the year (X1), whether rain falls (X2) during the season,

whether the sprinkler is on (X3) during that season, whether the pavement would get wet

(X4), and whether the pavement would be slippery (X5). Here, the absence of a direct link

between X1 and X5, for example, captures our understanding that the inuence of seasonal

variations on the slipperiness of the pavement is mediated by other conditions (e.g., wetness).

As this example illustrates, a Bayesian network constitutes a model of the environment

rather than, as in many other knowledge representation schemes (e.g., rule-based systems

and neural networks), a model of the reasoning process. It simulates, in fact, the mechanisms

that operate in the environment, and thus facilitates diverse modes of reasoning, including

prediction, abduction and control.

Evidential reasoning. Prediction and abduction require an economical representation

of a joint distribution over the variables involved. Bayesian networks achieve such economy

by specifying, for each variable,Xi, the conditional probabilities P (xijpai) where pai are a set

of predecessors (of Xi) which render Xi independent of all its other predecessors. Variables

judged to be the direct causes of Xi satisfy this property, and these are depicted as the

parents of Xi in the graph. Given this speci�cation, the joint distribution is given by the
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Figure 1: A Bayesian network representing causal inuences among �ve variables.

product

P (x1; :::; xn) =
Y

i

P (xi j pai) (1)

from which all probabilistic queries (e.g., �nd the most likely explanation for the evidence)

can be answered coherently using probability calculus.

The �rst algorithms proposed for probabilistic calculations in Bayesian networks used

message-passing architecture and were limited to trees [Pearl, 1982; Kim and Pearl, 1983].

Each variable was assigned a simple processor, permitted to pass messages asynchronously

with its neighbors, until equilibrium is achieved. Techniques have since been developed to

extend this tree-propagation method to general networks. Among the most popular are

Lauritzen and Spiegelhalter's (1988) method of join-tree propagation, and the method of

loop-cut conditioning (see [Pearl, 1988, pp. 204{210] [Jensen, 1996]).

While inference in general networks is NP-hard, the complexity for each of the meth-

ods cited above can be estimated prior to actual processing. When the estimates exceed

reasonable bounds, an approximation method such as stochastic simulation [Pearl, 1987]

[Pearl, 1988, pp. 210{223] can be used instead. Learning techniques have also been de-

veloped for systematic updating of the conditional probabilities P (xijpai), as well as the

structure of the network, so as to match empirical data (see Spiegelhalter and Lauritzen

(1990) and [Cooper and Herskovits, 1990]).

Reasoning about actions. The most distinctive feature of Bayesian networks, stem-

ming largely from their causal organization, is their ability to represent and respond to

changing con�gurations. Any local recon�guration of the mechanisms in the environment

can be translated, with only minor modi�cation, into an isomorphic recon�guration of the

network topology. For example, to represent a disabled sprinkler, we simply delete from the

network all links incident to the node \Sprinkler". To represent the policy of turning the

sprinkler o� if it rains, we simply add a link between \Rain" and \Sprinkler" and revise

P (x3jx1; x2). This exibility is often cited as the ingredient that marks the division between

deliberative and reactive agents, and that enables the former to manage novel situations

instantaneously, without requiring retraining or adaptation.

Organizing one's knowledge around stable mechanism provides a basis for planning un-

der uncertainty [Pearl, 1996]. Once we know the identity of the mechanism altered by the

intervention and the nature of the alteration, the overall e�ect of an intervention can be

predicted by modifying the corresponding factors in Eq. (1) and using the modi�ed product
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to compute a new probability function. For example, to represent the action \turning the

sprinkler ON" in the network of Figure 1, we delete the link X1 ! X3 and �x the value of

X3 to ON. The resulting joint distribution on the remaining variables will be

P (x1; x2; x4; x5) = P (x1) P (x2jx1) P (x4jx2; X3 = ON) P (x5jx4) (2)

Note the di�erence between the action do(X3 = ON) and the observation X3 = ON. The

latter is encoded by ordinary Bayesian conditioning, while the former by conditioning a

mutilated graph, with the linkX1 ! X3 removed. This mirrors indeed the di�erence between

seeing and doing: after observing that the sprinkler is ON, we wish to infer that the season

is dry, that it probably did not rain, and so on; no such inferences should be drawn in

evaluating the e�ects the contemplated action \turning the sprinkler ON".

Causal Discovery. One of the most exciting prospects in recent years has been the

possibility of using Bayesian networks to discover causal structures in raw statistical data

[Pearl and Verma, 1991; Spirtes et al., 1993].

Although any inference from association to causation is bound to be less reliable than

inference based on controlled experiment, one can still guarantee an aspect of reliability

called \stability": any alternative structure compatible with the data must be less stable

than the one(s) inferred; namely, slight uctuations in conditions will render that structure

no longer compatible with the data. With this form of guarantee, the theory provides criteria

for identifying genuine and spurious causes, with or without temporal information, and yields

algorithms for recovering causal structures with hidden variables from empirical data.

Plain Beliefs. In mundane decision making, beliefs are revised not by adjusting nu-

merical probabilities but by tentatively accepting some sentences as \true for all practical

purposes". Such sentences, called plain beliefs, exhibit both logical and probabilistic char-

acter. As in classical logic, they are propositional and deductively closed; as in probability,

they are subject to retraction and to varying degrees of entrenchment. Bayesian networks

can be adopted to model the dynamics of plain beliefs by replacing ordinary probabilities

with non-standard probabilities, that is, probabilities that are in�nitesimally close to either

zero or one [Goldszmidt and Pearl, 1996].

Models of cognition. Although Bayesian networks can model a wide spectrum of

cognitive activity, their greatest strength is in causal reasoning, which, in turn, facilitates

reasoning about actions, explanations, counterfactuals, and preferences. Such capabilities

are not easily implemented in neural networks, whose strengths lie in quick adaptation of

simple motor-visual functions.

Some questions arise: Does an architecture resembling that of Bayesian networks exist

anywhere in the human brain? If not, how does the brain perform those cognitive functions in

which Bayesian networks excel? One plausible answer is that fragmented structures of causal

organizations are constantly being assembled on the y, as needed, from a stock of functional

building blocks. For example, the network of Figure 1 may be assembled from several neural

networks, one specializing in the experience surrounding seasons and rains, another in the

properties of wet pavements, and so forth. Such specialized networks are probably stored

permanently in some mental library, from which they are drawn and assembled into the

structure shown in Figure 1 only when a speci�c problem presents itself, for example, to

determine whether an operating sprinkler could explain why a certain person slipped and

broke a leg in the middle of a dry season.
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Thus, Bayesian networks are particularly useful in studying higher cognitive functions,

where the problem of organizing and supervising large assemblies of specialized neural net-

works becomes important.
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