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United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not nccessarily state or
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Direct Integration of the Classical Equations of Motion

for Classically Forbidden Collision_Processes*

Thomas F. George und William H. Miller'

Department of Chemistry and inorganic Materials
Research Division, Lawrence Berkeley Laboratory,
University of California, Berkeley, California



There ﬁas been much interest and progress recently in
semiclassical formulations of moiecular scattering that permit
one to use numerically computed classical trajectories to
construct.classical-limit approximations to quantum mechanical
S—matrix elements for transitions between individualvquantum
states.l’2 |

One of the situations in ﬁhich this."élassical S-matrix"
theory seems 1ike1y to be most useful is that of weak, or
"classically forbidden" trahsitidné. In preVious work!®
classically forbidden processes have been described by numerical
analytic continuation of the appropriate classical trajectory -
functions, and here we report'success.in direct numerical
integration of the classical equatiOns of'mdtion through classicaily
inaccessible regions of coordinate and moﬁentum épace. This way
of describing classically forbidden processes is more general
and pqtentially much more powerful than that of numerical- analytic
vcontinuatioh; e.g., reacfive tunneling and ﬁon-adiabaticvelectronic
transitiohs can be treated by.direct integration of the equations
of motidn, but not by numericél analytic-ééntinuation. .(Whenvthe
two approaches can both be applied then, of course, they give
| preciseiy the same results sincé they are different ways of
analytically continuing the Same expressions.) |

The physical system investigated initially is the linear
non-reactive A + BC collision'(vibrational excitation) as studied
quantum mechanically by Secrest and Johnsoﬁ(s» The sémiclassical
formuiatién of the problem 1is precisely as.before, aﬁd the recader.

should consult rcference 1b for these details. - [n constructing
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the 0-1 vibrational transition probability, for example, the

~primary task is to find the classical trajectory (or trajectories)

for which the vibrational quantum number (more precisely, the
action variable of the vibrational degree of freedom) is 0

initially and 1 finally. To do this one considers the classical

,trajectory function nz(ql,nl), the final vibrational quantum

number thatie determined by the classical trajectory with initial
values ni and»q1 for:the &ibfétional quantum number and its
conJugate ‘angle var1ab1e.4 The 0+1 tfansition; therefore, is
Lon«tructed from those trajectorles that satisfy the equation
n, (ql,O) | | | |

The 0»1 transition is classically forbidden if there are no
real valueS'Of aq for which nz(ql,O) = 1; there-will,‘however,
be complex"rpots of this equation. An earlier att‘empflC was made
at findingethese complex roots by allowing a4 tohtake‘on complex
values and integratihg\the equafions of motion in the usual
manner (wffh-appropriate_COMPLEX statements iﬂserted'inbthe
computer routines). This was not successful, hewever, for'the
f011&wing reason: with ql.complex,'nZ(ql,O) is inrgenefal
complex (until the‘ﬂright" value‘oqu1 is found),.and trajectbries
for which hz'is complex are divergen . This‘is easy to see by
noflhg that the,solution for q(t) in the final asymptotic regioﬁ 
is q(t) = e'(nz)t + constant, where'e(n).is the‘vibratiohal.
cigenvalue,function.e If n, is complex, thevimaginary pért of
q thus inereeses with t,'so that the physical vibrational

. 1/2 ' ’ PR
coordinate r = (2n+1) /. cos q becomes infinite.



The situation, thereforé, is that the tréjectory'is well-
behaved if:q1 is the ﬁarticular complex value for which nz(ql,O)
1, but it diverges if.q1 is only slightly different from this
value. The way out of this unsxablc.state of affairs_is.simple
(in réttospect): one begins the trajectory at both ends with'
the initial values n, =0 andvql,’and final values n, = 1 and q,,
and integrates both branches toward the interaction region; the
initial and final angle variables q1 and q, are adjusted iterative-
ly so that all the coordinates and momenta are equal at some
intermediaté point (see below); ‘Since ;he two quantum numbers
are real in their respective asymptotic regions, the trajectorieé
are perfectly weil¥behaved.

For such trajectories all the coordinafes'and momenta, and
the time a1$o,'must be aiiowed to be complex. This causes no
inconsistencieé, however, since the scattering boundary conditions
require only'that-n(t) and R(t) be real in the initial and final
asymptotic régions; as a consequence of energy conservation, P(t)
is aléo real asymptotically, but the angle vériable q ié com-
pletely unrestricted'.5 Likéwise, the path in the complex tiﬁe
plane along which the trajectory is integrated need not be the
real time axis, but is restricted only in that Re(tz-tl) > 4o
Im(tz-tl) ¥-finitef |

More specifically, the initial branch of the trajectory is
~assigned initial conditions (for the-041 transition, for examplej
ﬁl = 6, ;> Rl =bléfge; P, = j/fﬁTETETHITT, and the final branéh

= +/TITEE R,
6

has final values n, = 1, d,, R2 = 1arg¢, P2

_The initial branch of the trajectory is integrated® forward in
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time to that (complex) time at which P = 0, and the final branch
is similarly ihtegrated backward in time to the (complex) time at

which P = O.> The quantltles An and Aq are the d1fference> of

n and q on the two branches at thls 1ntermed1ate point; considering

.them as functlons of a, and qz, one must ‘thus solve the two

simultaneous equations An(qz;ql) =0, Aq(qZ’ql) = 0. With theee
particoiar.vélues of‘q3 andqu'it isvcleer that.the two branches
have the same Values'of n;vq; and P’at”this intermediate point,
and by energy conservatlon it follows that they must also have
the same value of R, i.e., all the coordinates and momenta match
et:this intermediate point, so that the two branches form one

1. From the

complete trajectory for which'ni = 0 and n,

classical action along this trejectory and the-Jacobiah associated

w1th it, it is then a 51mple matter to construct the 0+1 tran51t10n

probablllty.lc
Appllcatlon of this procedure has glven extremely encouraglng

results, all of the c1a351ca11y forbldden transitions. reported

in reference 1c, and others‘not accessible by the method descrlbed ‘

there, are calculable by this procedure (and, of course, give

the same numerlcal values) In other applications, such as

reactlve tunnellng, the matchlng cr1terla in the 1ntermed1ate
‘region w111_have-to be-re-deslgned, but should otherw1se proceed

~in a‘similar manner. The important feature that has been learned

is the unstable character'of "clessically'forbidden trajectories“

and that 1t can be c1rcumvented by 1ntegrat1ng inward from both

.ends of the traJectory.' More.detalls will be reported subsequently.

/



References

*Thisiresearch has been supported by the U.S. A omic Energy
Commission.

TA1fred P;_Sloan Fellow.

W.H. Miller, (a) J. Chem. Phys. 53, 1949 (1970); (b) ibid.

53, 3578 (1970); (c) Chem. Phys. Lett. 7, 431 (1970);
(d) J. Chem. Phys. 54, 5386 (1971); (e) C.C. Rankin and

W.H. Miller, ibid. 55, 3150 (1971).

(a) R.A. Marcus, J. Chem. Phys. 54, 3965 (1971); (b) J.N.L.

A

- Connor and R.A.‘Marcus, ibid. 55, 5636 (1971); (c) R.A. Marcus,

ibid. 56, 311 (1972).

D. Secrest and B.R. Johnson, J. Chem. Phys. 45, 4556 (1966).

Initial values for the'translational coordinate and momentum

R and P are R1 = large, P1 = -{Zu[E-e(nl)]}l/z.

A vibrational quantum state is characterized semiclassical%y

by a specific (infeger) value bf the action variable n, so
that the Uncertainty Principle impiies that the conjugaté
angle variable q is completely unspecified and thus may be
complex. The fact that the physical vibrational coordinate
and momentum r and p may be cbmplex is irrelevant, for they

are not the observables»(n is).

-Since the time increments At for the numerical integration

are allowed to be complex, and therefore unequal in various
parts of the trajectory, we have devised a numerical integrater
that is analogous to a fifth-order Adams-Moulton routine but

for which the timec increments may be different at each step.
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Since tHe routine automatically picks an optimal step-size
at eachAstcp, we have found incidentally that this "vufiuble
step-sizc Adams-Moulton" integrater is more efficient for
ordinary classiéal trajectories than the éonvehtional Adams-

Moulton integrater.
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