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There has been much interest and progress recently in 

semiclassical formulations of molecular scattering that permit 

one to use numerically computed classical trajectories to 

construct classical-limit approximations to quantum mechanical 

S-matrix elements for transitions between individual quantum 

states. I ,2 

One .of the situations in which this "classical S-matrix" 

theory seems likely to be most useful is that of weak, or 

"classically forbidden" transitions. In previous work lc 

classically forbidden processes have bee~ described by numerical 

analytic continuation of the appropriate classical trajectory 

functions, and here we report success in direct numerical 

integration of the classical equations of motion through classically 

inaccessible regions of coordinate and momentum space. This way 

of describing classically forbidden processes is more ,general 

and potentially much more powerful than that of numerical analytic 

continuation; e.g., reactive tunneling and non-adiabatic electronic 

transitions can be treated by direct integration of the equations 

of motion, bu-t not by numerical analytic continuation. (When the 

two approaches can both be applied then, of course, they gi ve 

precisely the same results since they are different ways of 

analytically continuing the same expressions.) 

The physical system investigated initially is the linear 

non-reactive A + Be collision (vibrational excitation) as studied 

quantum mechanically by Secrest and Johnson. 3 The semiclassical 

formulation of the problem is precisely as before, and the reader· 

should consult reference lb for these details. In constructing 
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the 0+1 vibrational transition probability, for example, the 

primary task is to find the classical trajectory (or trajectories) 

for which the vibrational quantum number (more precisely, the 

action variable of the vibrational degree of freedom) is ° 
initially and 1 finally. To do ~his one considers the classical 

trajectory function n
2 

(ql,n
1
), the final vibrational quantum" 

number that is determined by the classical trajectory wi th ini"tial 

values n l and ql for the vibrational quantum number and its 

conjugate angle variable. 4 The 0+1 transition, therefore, is 

constructed from those trajectories that satisfy the equation 

n 2 (ql ,0) = l. 

The 0+1 transition is classically forbidden if there are no 

real values of ql for which n 2 (ql'0) = 1; there will, however, 

be complex roots of this equation. An earlier attempt lC was made 

at finding these complex roots by allowing ql to take on complex 

values and integrating the equations of motion in the usual 

manner (wi"thappropriate COMPLEX statements inserted in the 

compu"ter routines). This was not successfUl, however, for the 
i 

following reason: with ql complex, n 2 (ql'0) is in general 

complex (until the "right" value of ql is found), and trajectories 

for which n 2 is complex are divergent. This is easy to see by 

noting that the "solution for q(t) in the final asymptotic region 

is q(t) = E'(n 2)t + constant, where E(n) is the vibrational 

ei genval ue" function. If n 2 is complex, the imaginary part of 

q thus increases with t, so that the physical vibrational 

coordinate r = (2n+l)1/2 cos q becomes infinite. 
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The situation, therefore, is that the trajectory is well-

behaved if ql is the particular complex value for which nZ(ql'O) = 

1, but it diverges if ql is only slightly different from this 

value. The way out of this uns.table state of affairs is simple 

(in retrospect): one begins the trajectory at both ends wi th' 

the initial values n l = ° and ql' and final values n Z = ] and qz' 

and integrates both branches toward the interaction region; the 

initial and final angle variables ql and qz are adjusted iterative

ly so that all the coordinates and momenta are equal at some 

intermediate point (see below). Since the two 'quantum numbers 

are real in their respective asymptotic regions, the trajectories 

are perfectly well-behaved. 

For such trajectories all the coordinates and momenta, and 

the time also, must be aliowed to be complex. This causes no 

inconsistencies, however, since the scattering boundary conditions 

require only that net) and R(t) be real in the initial and final 

asymptotic regions; as a consequence of energy conservation, P (t) 

is also real asymptotically, but the angle variable q is com-

1 1 . d 5 pete y unrestrlcte • Likewise, the path in the complex time 

plane along which the trajectory is integrated need not be the 

real time axis, but is restricted only in that Re(tZ-t l ) ~ +00, 

Im(tz-t I ) = finite. 

More specifically, the initial branch of the trajectory is 

assigned initial conditions (for the O~l transition, for example) 

n l = 0, ql' Rl = large, PI = -/2~[E-£(nI)]' and the final branch 

has final values n Z = 1, qz' RZ = large, Pz = +{2~[E-£(nZ)]. 

The initial branch of the trajectory is integrated6 forward in 

J 
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time to that (complex) time at which P = 0, and the final branch 

is similarly integrated backward in time to the (complex) time at 

which P = O. The quantities An and 6q are the differences of 

nand q on the two branches at this intermediate point; considering 

them as functions of ql and q2' one must thus solve the two 

simultaneous equations 6n(q2,Ql) = 0, 6q(qZ,ql) = O. With these 
., 

particular values of ql and qz it is clear that the two branches 

have the.same values of n, q, and P at this intermediate point, 

and by energy conservation it follows that they must also have 

the same value of R; i.e., all the coordinates and momenta match 

at this intermediate point, so that the two branches form one 

comp Ie te t raje ctory fo r whi ch n l = 0 and n2 = 1. From the 

classical action along this trajectory and the Jacobian associated 

with it, it is then a simple matter to construct the 0-+1 transition 

probability.Ic 

Application· of this procedure has given extremely encouraging 

results; all of the classically forbidden transitions reported 

in reference lc, and others not accessible by the method described 

there, are calculable by this procedure (and, of course, give 

the same numerical. values). In other applications, such as 
. -

reactive tunneling, the matching criteria in the intermediate 

region will have to be re-designed, but should otherwise proceed 

in a similar manner. The important feature that has been learned 

is the unstable character of "classically forbidden trajectories" 

and that it can be circumvented by integrating inward from both 

ends of the trajectory. More details will be reported subsequently. 
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5. A vibrational quantum state is characterized semiclassically 
. I 

by a specific (integer) value of the action variable n, so 

that the Uncertainty Principle implies that the conjugate 

angle variable q is completely unspecified and thus may be 

complex. The fact that the physical vibrational coordinate 

and momentum, rand p may be complex is irrelevant, for they 

are not the observables (n is). 

6. Since the time increments 6t for the numerical integration 

are allowed to be complex, and therefore unequal in various 

parts of the trajectory, we have devised a numerical integrater 

that is analogous to a fifth-order Adams-Moulton routine but 

for which the time increments may be different at each step. 
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Since the routine automatically picks an optimal step-size 

ate ach step, we have found inci den tally that this "vari ab Ie 

step-size Adams-Moulton" integrater is more efficient for 

ordinary classical trajectories than the conventional Adams-

Moulton integrater. 
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