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3.14(b): The bird is incorrectly detected, as shown in the probabil-
ity maps displaying the likelihood of individual part locations for a
subset of the possible poses (not visible to the user). The system
selects “Click on the beak” as the first question to the user. After
the user’s click, the other part location probabilities are updated and
exhibit a shift towards improved localization and pose estimation.
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highlighted in red. b) Using a standard dynamic programming algo-
rithm, information is propagated from the child nodes up to the root
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Figure 4.1: Interactive Labeling and Online Learning of Part Models: A
part model is trained in online fashion, where annotation becomes
increasingly automated as more images are labeled. The diagram
shows how the interactive labeling interface changes on a particular
test image as the size of the training set increases, with green lines
representing parts that were dragged by the user. . . . . . . . . . . 59
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Figure 7.2: Components of a Part Based Model: a) Each part in an imageX is
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image models, with some bounds on total annotation effort. Lastly, we investigate inter-

active feedback methods to researchers and annotators, with the objective of diagnosing

errors due to insufficient training data, a bad model or feature space, annotation error,

or insufficient computation time. We have combined these methods into a common
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Chapter 1

Introduction

Over the last two decades, the role of machine learning in computer vision has

steadily grown, such that (arguably) the majority of computer vision researchers have

come to believe in learning-based methods as the most promising way forward toward

solving many or most computer vision problems. Learning-based computer vision is

still a young field. In the years prior to me starting my PhD (e.g., the 1990s and early

2000s), there was a rapid influx of new types of machine learning algorithms and a lot

of excitement about the possibilities. During the time of my PhD, many have shared the

sentiment that learning algorithms–which are often applied as black boxes–didn’t work

as well as we expected and we didn’t know why. In the last few years, I believe there

has been a positive shift toward viewing learning algorithms as useful and promising;

however, they have limitations and need to be applied more realistically.

Terms such as in the wild, big data, crowdsourcing, and attributes were all major

buzz words (or fads in many people’s opinions) at the time of this dissertation. I have

dabbled in all such areas. These trends are all signs of computer vision (and machine

learning) transitioning into being more of an applied field; in the wild refers to transi-

tioning away from artificial datasets that are collected in controlled environments, big

data emphasizes the importance of moving to larger-sized datasets, crowdsourcing was

prioritized as a means of collecting those larger-sized datasets, and attributes is a vision-

specific applied area that has gained popularity due to the desire to scale computer vision

to a larger number of classes or tasks.

My dissertation focuses primarily on searching for answers to the following

1
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questions:

• How can we help transition machine-learning-based computer vision systems

from relying on artificial datsets to systems that work well enough to be deployed

in real applications?

• How can we scale learning-based computer vision systems to larger problems,

finding a feasible solution that considers human annotation time, computation

time, and appropriateness and complexity of statistical models?

• When a learned computer vision system performs poorly, how can we diagnose

what went wrong?

Toward solving these problems, we have focused primarily on interactive meth-

ods, an area that is often more neglected by theoretical approaches to the problem. A

more developed view of the interface between learning systems and human users, an-

notators, and researchers can help solve these problems because: 1) It will allow us to

become more in touch with what problems people want to computer vision to solve. 2)

It is likely that learning problems in computer vision will require training sets of sig-

nificantly larger scale, such that more thought has to be put into how to collect them.

3) Solving computer vision will in all likelihood require solving a collection of prob-

lems, such that we should be working on developing better methodologies to gradually

solve problems rather than expecting someone to invent a single algorithm that instan-

taneously solves everything.

1.1 Overview and Contributions

In Chapter 2 we describe Visipedia, a user-generated visual encyclopedia, which

is the main driving application behind my dissertation. We outline how each of the other

chapters of this dissertation contribute toward building this application.

In Chapter 3, we introduce two novel human-in-the-loop applications, one that is

applicable to multiclass clasification and another that is applicable to pose registration.

These have been applied toward producing practical web-based systems, one for bird
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species recognition (see Figure 3.1), and one for semantic annotation of images (see

Figure 2.1(b)).

In Chapters 4-6 we describe components of a structured learning and annota-

tion software package that we have implemented, which provides a number of features

including: computational tractability to large datasets, built-in support for active learn-

ing via interactive labeling, ability to add new training examples or relabel examples in

online fashion, and feedback mechanisms to diagnose different sources of test error.

In Chapter 4, we describe a simple form of active learning that consists of al-

ternating between online learning and semi-automated interactive annotation. The main

advantage of this method is that it takes into consideration not only annotation effort

but also computational tractability. It is applicable to models that are state-of-the-art

for object detection and pose registration [29, 88, 93]. By contrast, most existing active

learning methods are missing details to make them practical in applied settings, due to

significant increases in computational costs [74, 34] or limitation to simpler statistical

models [60, 61]. Thus most existing methods must rely on either 1) focusing on prob-

lems of limited scope, or 2) simulated active learning experiments due to inability to

provide realtime interactive learning. Our method is particularly relevant to detection

in computer vision, where people have avoided more complex alignment models due

to concerns over prohibitive annotation costs. We provide a theoretical argument to

suggest that when our style of interactive learning is applied, the most important factor

that determines annotation time is the number of training examples required to learn a

model with low test error. In this context, the cost of annotating more complex align-

ment models will be mostly absorbed by interactive labeling. In Chapter 8, we provide

an argument that suggests that more complex alignment models may have better scal-

ability properties than many of the most commonly used machine learning techniques

and features that are used in computer vision.

In Chapter 5, we discuss feedback mechanisms to help diagnose different sources

of test error due to insufficient training data, a bad model or feature space, annotation

error, or insufficient computation time. We also derive online updates to apply subse-

quent changes to fix them without recollecting an entirely new dataset or re-training

from scratch.
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In Chapter 6, we develop customized optimization algorithms that incorporate

a small amount of application-specific tweaking for common problems such as object

detection and deformable part model training. We show that these customized opti-

mization algorithms are faster than methods based on mapping problems into binary

classification and than commonly used structured learning packages.

In Chapter 7, we show how a number of different computer vision applica-

tions can be mapped into this learning and annotation package, including cost-sensitive

multiclass SVMs, sliding window object detection, deformable part models, pose mix-

ture models with occlusion reasoning, attribute-based classification, multiclass detection

with shared parts, localized attribute detection, behavior segmentation, object track-

ing, articulated tracking, and segmentation. Most of these methods are implemented

and included in a software toolbox that I am planning to release shortly (see http:

//vision.ucsd.edu/visipedia/code). The implementation is inclusive of methods that ob-

tain state-of-the-art performance on popular datasets for multiclass classification [53]

(on datasets such as Caltech-256 [31] and ImageNet [18]) and object detection [29] (on

datasets such as VOC Pascal [23]). It includes methods that have improved state-of-the-

art detection performance by using different types of annotation on applications such as

human body detection [88], faces [93], and birds [8]. It also includes a few novel meth-

ods in emerging problems, including a more sophisticated part/pose model with occlu-

sion reasoning (Section 7.2.3), improved localized attribute detection and sharing mod-

els for multiclass object detection (Section 7.2.3), and a more advanced time-localized

behavior and action detection method (Section 7.6).

1.2 Preliminaries

In this section, we outline some of the methods and problem definitions that are

re-occurring in many parts of this dissertation. We define these problems in the context

of how they are used in this dissertation and not in the most general sense.
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1.2.1 Structured Prediction

Let X be a data point (e.g.an image) and Y = y1...yO be a multidimensional

structured label. For example, for object detection, one could define Y = {x, y, w, h} as

the four coordinates of the bounding box of an object. For deformable part models, one

could define Y = y1...yP as a set of P part locations, each of which defines the bounding

box of a particular part. For image segmentation, one could define Y = y1...yN as a set

of class labels for each of N pixels in the image.

In this dissertation, we consider structured output functions that predict the label

with highest score according to a linear score function:

g(X; w) = arg max
Y
〈w,Ψ(X, Y )〉 (1.1)

where 〈w,Ψ(X, Y )〉 is a discriminative score measuring the goodness of a particular

label Y , Ψ(X, Y ) is a feature space extracted with respect to label Y (e.g., features

extracted from within a bounding box Y = {x, y, w, h}), and w is a vector of weights

that parameterize the model.

Eqn 1.1 can be interpreted as performing maximum likelihood inference on some

log-linear Markov random field with customizable structure

g(X; w) = arg max
Y

p(Y |X) (1.2)

p(Y |X) ∝ exp{〈w,Ψ(X, Y )〉} (1.3)

Although Eqn 1.1 uses a linear score function, one can obtain non-linear deci-

sion functions via the max function and definition of Y . For example, Y could encode

a mixture component variable that selects between different components of a mixture

model.

1.2.2 Structured Learning

Let ∆(Y, Yi) be a customizable loss function associated with predicting label

Y when the true label is Yi. For example, ∆(Y, Yi) can be a measure of the overlap

between predicted part locations and their ground truth locations. In this dissertation,

we consider the structured SVM learning objective, which minimizes a hinge-loss-like
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training error over a training set Dn = Z1...Zn of instance-label pairs Zi = (Xi, Yi):

Fn(w) = n

(
λ

2
‖w‖2 +

1

n

n∑
i=1

εi

)
(1.4)

s.t., ∀i,Y , 〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi) ≤ 〈w,Ψ(Xi, Yi)〉+ εi (1.5)

where λ is a regularization constant. The objective adds slack variables εi that place an

upper bound on ∆(Y, Yi) that is convex in w. An equivalent way of writing Eq 1.4 is

Fn(w) =
n∑
i=1

f(w;Zi) (1.6)

f(w;Zi) =
λ

2
‖w‖2 + `(w, Zi) (1.7)

`(w, Zi) = max
Y

(〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi))− 〈w,Ψ(Xi, Yi)〉 (1.8)

For binary classification, where Y = ±1, Ψ(X, Y ) = .5Y φ(X), and ∆(Y, Yi) = 1[Y 6=
Yi], it is easy to see that `(w, Zi) = max (0, 1− Y 〈w, φ(X)〉) is the familiar SVM

hinge loss.

While the structured SVM learning objecting is just one possible learning ob-

jective for structured data, it has a few desirable properties: 1) it is a superset of many

of the most popular and highest performing learning algorithms for object recognition,

object detection, and segmentation, 2) it is strongly convex and efficiently optimizable,

and 3) optimizing it can provide some PAC bounds on the expected loss for the loss

function ∆.

Note that `(w, Zi) is non-differentiable and is computed as a maximum over all

possible output labels Y , which is in general exponential in the dimensionality of the

output space O. Despite this, it is convex in w (since it is the maximum of a set of affine

functions), and as such Eqn 6.19 can be efficiently optimized using techniques such as

sub-gradient or cutting plane methods. Both such algorithms can be solved efficiently if

one can solve the following inference-like problem:

Ȳ = arg max
Y

(〈w,Ψ(X, Y )〉+ ∆(Y, Yi)) (1.9)

The sub-gradient of Eq 1.7∇f(wt−1;Zt) can easily be computed from Ȳ as

∇f(w;Zi) = λw +∇`(w;Zi) (1.10)

∇`(w;Zi) = Ψ(X, Ȳ )−Ψ(X, Y ) (1.11)



7

See Chapter 6 for a discussion of optimization methods, and Chapter 7 for a list of

example applications that are expressed in this notation.

1.2.3 Interactive Labeling

We define interactive prediction as a modified form of structured prediction,

where the predicted output is constrained to agree with a user-provided partial anno-

tation Ỹ to a subset of the variables in the structured output space. Let subscripts be

defined such that ỹi ∈ Ỹ refers to the same variable yi ∈ Y in a fully labeled output Y .

In our problem formulation, interactive prediction solves the optimization problem:

h(X, Ỹ ; w) = arg max
Y
〈w,Ψ(X, Y )〉 (1.12)

s.t. ∀ỹi∈Ỹ , ỹi = yi

We consider an interactive labeling session to be a semi-automated process for

annotating the label of a particular example X . It consists of a sequence of user interac-

tions Ỹt = (̃y)j(1), (̃y)j(2), ...̃(y)j(t), where the user labels the j(t)-th variable at timestep

t. The computer system interactively displays the highest scoring consistent solution

Y ∗t = h(X, Ỹt; w) at each timestep, and the user terminates the labeling session when

the loss of the predicted solution is zero ∆(Y, Y ∗t ) = 0. Thus some amount of automa-

tion occurs when the number of timesteps is smaller than the number of variables in the

structured output space t < O.

Details of implementing interactive labeling algorithms for a variety of different

applications such as deformable part models, segmentation, and tracking are provided

in Chapter 7 and Section 3.2.

1.2.4 Active Learning

Active learning is a form of supervised learning in which the learner interac-

tively queries training labels from annotators. In the context of this dissertation, we

assume that the objective is to come up with some labeling strategy for learning model

parameters w that obtain sufficiently low test error while minimizing the total expected

amount of human interaction. For structured problems, this labeling strategy could en-
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tail choosing which training instance (X, Y ) to query, or choosing which structured

variable yi ∈ Y to query.

In Chapter 4, we consider a practical (but unambitious) active learning strategy

that aims to be more tractable to higher dimensional label for structured output labels

Y . It consists of alternating between using interactive labeling to label a particular (ran-

domly chosen) instance (X, Y ) and online learning to update w. It could be combined

with more traditional querying strategies (see [60] for a good discussion of possible

methods) to choose which training instances to label.

1.2.5 Active Prediction

In interactive labeling, we assume that the user chooses which variable yj(t)
to label in each timestep t (by viewing a visualization of the current predicted labels

h(X, Ỹ ; w)). By contrast, in active prediction, the computer system chooses which

variable yj(t) to interactively query from the user at each timestep t, with the objective

of arriving at the true label Y as quickly as possible. It is similar to active learning in

that the goal is to minimize the total expected amount of human interaction; however,

the goal is to arrive at a label Y rather than to learn model parameters w. Typically, the

parameters of the model w remain fixed during user interaction for a particular example

X .

In Section 3.1 we explore an active prediction algorithm that is applicable to

multiclass object classification.

Acknowledgements
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Chapter 2

Visipedia

The driving application behind my dissertation is Visipedia, a joint project be-

tween Pietro Perona’s Vision Group at Caltech and Serge Belongie’s Vision Group at

UCSD. Visipedia, short for Visual Encyclopedia, is an augmented version of Wikipedia,

where pictures are first-class citizens alongside text. Goals of Visipedia include creation

of hyperlinked, interactive images embedded in Wikipedia articles, scalable representa-

tions of visual knowledge, largescale machine vision datasets, and visual search capa-

bilities. Toward achieving these goals, Visipedia advocates interaction and collaboration

between machine vision and human users.

The set of applications that we are hoping to support is described in Figure 2.1-

2.2. Two driving motivations behind Visipedia are: 1) An attempt to tap into expert

knowledge and citizen science to help solve largescale annotation problems (e.g., bird

enthusiasts will be increasingly incentivized and capable of annotating images pertain-

ing to birds), 2) To allow the set of problems that we want computer vision to solve to be

defined and grow organically, in the same way that the set of Wikipedia articles written

is based on user interest.

To keep the problem tractable for our research group, we have begun with a

proof-of-concept in one particular domain (birds, see Section 2.1).

9
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(a) Search By Image (b) Interactive Part Dia-

grams

(c) Visual Hyperlinks

Figure 2.1: Applications of Visipedia: a) A user takes a picture of a bird, which the
system recognizes the object and uses to bring up the corresponding Wikipedia article.
This is enabled by the recognition algorithms described in Section 7.3.3 and Section 3.1.
b) Interactive part diagrams can be embedded into Wikipedia pages. This is the output of
our part annotation tool described in Section 7.2.4, which can be created in an automated
or semi-automated fashion (Section 3.2). c) The user clicks on an unknown structure on
the beak of a pigeon, and the system helps to identify it as a cere. This is enabled by the
localization algorithms described in Section 7.2.3.
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(a) Browseable Visual Knowledge Representation

(b) Dynamic Image Galleries (c) Organization of Visual Concepts

Figure 2.2: Applications of Visipedia: a) Classes can be annotated with semantic at-
tributes, which can be used to render HTML using customizable templates, or to browse
and search through classes by attributes. This was created using existing mediawiki
software, and populated with our data from the Birds-200 datatset. b) Images that are
labeled with part and attribute annotations enable dynamic image galleries or image
search by attribute. c) Users represent visual concepts using exemplars or diagrams.
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Figure 2.3: Overview of the Architecture of Visipedia: An overview of the ap-
proach this dissertation takes toward building Visipedia. A visual language that both
humans and computers can understand is established; we use a certain definition of
parts (Section 7.2.3) and attributes (Section 7.3.3). Images can be annotated in terms
of this language either by humans using the annotation tools shown in Fig 2.6-2.8, in
automated fashion using learned computer vision algorithms (Section 7.2.3,7.3.3), or in
semi-automated fashion using some combination of the two (Chapter 3). The semanti-
cally annotated images can be used to provide a number of web-based features/services
that can be used to enrich Wikipedia/Visipedia articles (Fig 2.1-2.2). The semantically
annotated images can also be used to train machine learning algorithms that can be used
to improve the efficiency of automated prediction algorithms (Chapters 4-6). The vo-
cabulary of parts and attributes is defined by experts/Wikipedians using tools such as
those depicted in Fig 7.4 and Fig 2.2(a).
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2.1 The Birds-200 Dataset

In this dissertation, we do many experiments on CUB-Birds-200-2011 [86],

a dataset that we collected that contains over 10,000 images over 200 different bird

species. All images were annotated with bounding boxes, part locations, segmentations,

and attribute labels.

Bird species classification is a difficult problem that pushes the limits of the

visual abilities for both humans and computers. Birds as a data source have many

properties that highlight weaknesses of contemporary computer vision algorithms: 1)

success in object recognition has often been limited to datasets where intraclass vari-

ation is fairly small and interclass variation is very high (e.g.distinguishing faces from

airplanes on Caltech-4 [31]), and 2) whereas, computer recognition works very well

on highly textured, rigid objects such as book cover or movie poster recognition and

fairly well on mostly rigid objects like faces, computer vision algorithms struggle on

highly deformable objects. Birds is typically the lowest scoring category in the VOC

Pascal Detection (of 20 object categories), due to extreme variation in pose (e.g., flying

birds, swimming birds, and perched birds that are partially occluded by branches) and

large variations in shape and appearance for different bird species (e.g., consider pel-

icans vs. sparrows). At the same time, other pairs of bird species are nearly visually

indistinguishable, even for expert bird watchers (e.g., many sparrow species are visually

similar).

It is our hope that Birds-200 will facilitate research in subordinate categorization

by providing a comprehensive set of benchmarks and annotation types for one particular

domain (birds). We would like to cultivate a level of research depth that has thus far been

reserved for a few select categories such as pedestrians and faces. Focusing on birds

will help keep research more tractable from a logistical and computational perspective.

At the same time, we believe that many of the lessons learned (in terms of annotation

procedures, localization models, feature representations, and learning algorithms) will

generalize to other domains such as different types of animals, plants, or objects.
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2.1.1 Motivation For a Bird Dataset

Birds-200 has a number of unique properties that we believe are of interest to

the computer vision research community:

Subordinate category recognition: Methods that are popular on datasets such

as Caltech-101 [31] (e.g., lossy representations based on histogramming and bag-of-

words) are often less successful on subordinate categories, due to higher visual similarity

of categories. Research in subordinate categorization may help encourage development

of features or localization models that retain a greater level of discriminative power.

Multi-class object detection and part-based methods: Part-based methods

have recently experienced renewed interest and success [29]. Unfortunately, availability

of datasets with comprehensive part localization information is still fairly limited. Addi-

tionally, whereas datasets for image categorization often contain hundreds or thousands

of categories [31, 18], popular datasets for object detection rarely contain more than

20 or so categories [23] (mostly due to computational challenges). Methods that em-

ploy shared part models offer great promise toward scaling object detection to a larger

number of categories. Birds-200 contains a collection of 200 different bird species that

are annotated using the same basic set of parts, thus making it uniquely suited toward

research in shared part models.

Attribute-based methods: Attributes are a form of model sharing that has re-

cently become popular. Most existing datasets for attribute-based recognition (e.g., An-

imals With Attributes [40]) do not contain localization information. This is an obstacle

to research in attributed-based recognition, because visual attributes are often naturally

associated with a particular part or object (e.g.blue belly or cone-shaped beak).

Crowdsourcing and user studies: Annotations such as part locations and at-

tributes open the door for new research opportunities, but are also subject to a larger

degree of annotation error and user subjectivity as compared to object class labels. By

releasing annotations from multiple MTurk users per training image, we hope to en-

courage research in crowdsourcing techniques for combining annotations from multiple

users, and facilitate user studies evaluating the reliability and relative merit of different

types of annotation.
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2.1.2 Dataset Specification and Collection

Bird Species: The dataset contains 11,788 images of 200 bird species. Each

species is associated with a Wikipedia article and organized by scientific classification

(order, family, genus, species). The list of species names was obtained using an online

field guide1. Images were harvested using Flickr image search and then filtered by

showing each image to multiple users of Mechanical Turk [85]. Each image is annotated

with bounding box, part location, and attribute labels. See Fig 2.4 for example images

and Fig 2.9 for more detailed dataset statistics.

Bounding Boxes: Bounding boxes were obtained using the interface in Fig. 2.7.

Attributes: A vocabulary of 28 attribute groupings (see Fig 2.5(b)) and 312

binary attributes (e.g., the attribute group belly color contains 15 different color choices)

was selected based on an online tool for bird species identification2. All attributes are

visual in nature, with most pertaining to a color, pattern, or shape of a particular part.

Attribute annotations were obtained for each image using the interface in Fig. 2.8.

Part Locations: A total of 15 parts (see Fig 2.5(a)) were annotated by pixel

location and visibility in each image using the GUI shown in Fig 2.6(a). The “ground

truth“ part locations were obtained as the median over locations for 5 different Mechan-

ical Turk users per image.

Segmentations: Segmentations were added to the dataset by Ryan Farrell [27].

A figure-ground segmentation was obtained from 5 different Mechanical Turk users for

each image.

2.1.3 Benchmarks and Baseline Experiments

We introduce a set of benchmarks and baseline experiments for studying bird

species categorization, detection, and part localization:

1. Localized Species Categorization: Given the ground truth part locations, as-

sign each image to one of 200 bird classes. This benchmark is intended to facili-

tate studies of different localization models (e.g., to what extent does localization
1http://www.birdfieldguide.com
2http://www.whatbird.com
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information improve classification accuracy?), and also provide greater accessi-

bility to existing categorization algorithms. Using RGB color histograms and

histograms of vector-quantized SIFT descriptors with a linear SVM, we obtained

a classification accuracy of 17.3% (see Fig 2.10(d)).

2. Part Localization: Given the full, uncropped bird images, predict the location

and visibility of each bird part. We measured the distance between predicted

part locations and ground truth, normalized on a per-part basis by the standard

deviation over part click locations for multiple MTurk users. The maximum error

per part was bounded at 5 standard deviations. This was also the error associated

with misclassification of part visibility. Using HOG-based part-detectors and a

mixture of tree-structured pictorial structures, we obtained an average error of

1.47 standard deviations (by contrast, an average MTurk user should be off by 1

standard deviation). See Fig 2.11 for example part localization results and their

associated loss.

3. Species Categorization/Detection: Using only the full, uncropped bird images,

assign each image to one of 200 bird classes. For this benchmark, one can use

the method of his/her choice (e.g., image categorization, object detection, seg-

mentation, or part-based detection techniques); however, since the images are

uncropped, we anticipate that the problem cannot be solved with high accuracy

without obtaining some degree of localization. Detecting the most likely part

configuration using a universal bird detector (as for benchmark 2) and then apply-

ing a localized species classifier (as for benchmark 1), we obtained a classification

accuracy of 10.3% (see Fig 2.10(b)).
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Figure 2.4: CUB-200-2011 Example Images, showing a few example images from 20
different classes (the full dataset contains 200 classes)
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(a) Collected Parts

(b) Attribute Part Associations

Figure 2.5: Collected Parts and Attributes. (a) The 15 part location labels collected
for each image. (b) The 28 attribute-groupings that were collected for each image, and
the associated part for localized attribute detectors.

(a) Part GUI

Figure 2.6: MTurk GUI for collecting part location labels, deployed on 11,788 im-
ages for 15 different parts and 5 workers per image.
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Figure 2.7: MTurk GUI for collecting bounding box labels, deployed on 11,788
images.

Figure 2.8: MTurk GUI for collecting attribute labels, deployed on 11,788 images
for 28 different questions and 312 binary attributes.
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(a) Class Image Count (b) Image Sizes

(c) Cropped/Uncropped Image Size Ratio (d) Average Part Labeling Time

Figure 2.9: Dataset Statistics. (a) Distribution of the number of images per class (most
classes have 60 images). (b) Distribution of the size of each image in pixels (most
images are roughly 500X500). (c) Distribution of the ratio of the area of the bird’s
bounding box to the area of the entire image. (d) The average amount of time it took
MTurkers to label each part.
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(a) Predicted Locations, 5 Images/Class (b) Predicted Locations, 52 Images/Class

(c) Ground Truth Locations, 5 Images/Class (d) Ground Truth Locations, 52 Images/Class

Figure 2.10: Categorization Results for 200-way bird species classification. The top
2 images show confusion matrices when using a universal bird detector to detect the
most likely location of all parts and then evaluating a multiclass classifier. The bottom
2 images show confusion matrices when evaluating a multiclass classifier on the ground
truth part locations. The 2 images on the left show results with 5 training images per
class, and the images on the right show results with 52 training images per class.
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Figure 2.11: Example Part Detection Results, with good detection results on the left
and bad detection results on the right. A loss of 1.0 indicates that the predicted part
locations are about as good as the average MTurk labeler.



Chapter 3

Interactive Computer Vision

In this chapter, we introduce two novel application-specific human-in-the-loop

computer vision algorithms, where humans and computers collaborate interactively to

solve some computer vision problem. In this case, we acknowledge that the perfor-

mance of computer vision systems is still imperfect and use computer vision to attempt

to semi-automate some task, minimizing the amount of human time required to obtain

some useable result. We advocate human-in-the-loop methods as a means of coping

with the fact that most contemporary computer vision algorithms perform too poorly to

be useable in practice. By contrast, we believe that computer vision as a field has coped

with this problem by positioning itself as a more theoretical discipline and not as an

applied field, relying on datasets and benchmarks that are frequently criticized as being

artificial or toy problems. Deploying human-in-the-loop systems has a few practical

benefits: 1) consumers can benefit from computer vision systems today, 2) it helps pri-

oritize computer vision research toward solving real life problems, 3) it provides qual-

itative feedback to researchers about which components of their system are currently

deficient, such that they are incentivized to fix them, 4) it promotes greater transparency

in sharing the deficiencies of our algorithms with other researchers (whereas in our cur-

rent research culture, we are often guilty of hiding the major weaknesses from fellow

researchers).

23
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Figure 3.1: Screen Capture of an iPhone App for Bird Species Recognition: A user
takes a picture of a bird she wants to recognize, and it is uploaded to a server. The server
runs computer vision algorithms to localize the different parts of the bird and predict
the bird species (debug output of the algorithms is shown in the image on the right).
The computer system intelligently selects a series of questions to ask (click on the head,
what is the primary color of the bird?) that are designed to reduce its ambiguity about
the predicted bird species as quickly as possible

3.1 Visual Recognition With Humans in the Loop

In this section, we present an interactive, hybrid human-computer method for

object classification. The method applies to classes of objects that are recognizable

by people with appropriate expertise (e.g., animal species or airplane model), but not

(in general) by people without such expertise. It can be seen as a visual version of

the 20 questions game, where questions based on simple visual attributes are posed

interactively. The goal is to identify the true class while minimizing the number of

questions asked, using the visual content of the image. We introduce a general frame-

work for incorporating almost any off-the-shelf multi-class object recognition algorithm

into the visual 20 questions game, and provide methodologies to account for imperfect

user responses and unreliable computer vision algorithms. We evaluate our methods

on Birds-200, a difficult dataset of 200 tightly-related bird species, and on the Animals

With Attributes dataset. Our results demonstrate that incorporating user input drives up

recognition accuracy to levels that are good enough for practical applications, while at

the same time, computer vision reduces the amount of human interaction required.
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(A) Easy for Humans (B) Hard for Humans (C) Easy for Humans

Chair? Airplane? … Finch? Bunting?… Yellow Belly? Blue Belly? …Chair?  Airplane? … Finch?  Bunting?… Yellow Belly?  Blue Belly? …

Figure 3.2: Examples of classification problems that are easy or hard for humans.
While basic-level category recognition (left) and recognition of low-level visual at-
tributes (right) are easy for humans, most people struggle with finer-grained categories
(middle). By defining categories in terms of low-level visual properties, hard classifica-
tion problems can be turned into a sequence of easy ones.

3.1.1 Introduction

Multi-class object recognition has undergone rapid change and progress over

the last decade. These advances have largely focused on types of object categories

that are easy for humans to recognize, such as motorbikes, chairs, horses, bottles, etc.

Finer-grained categories, such as specific types of motorbikes, chairs, or horses are more

difficult for humans and have received comparatively little attention. One could argue

that object recognition as a field is simply not mature enough to tackle these types of

finer-grained categories. Performance on basic-level categories is still lower than what

people would consider acceptable for practical applications (state-of-the-art accuracy

on Caltech-256[31] is ≈ 45%, and ≈ 28% in the 2009 VOC detection challenge [24].

Moreover, the number of object categories in most object recognition datasets is still

fairly low, and increasing the number of categories further is usually detrimental to

performance [31].

On the other hand, recognition of finer-grained subordinate categories is an im-

portant problem to study – it can help people recognize types of objects they don’t

yet know how to identify. We believe a hybrid human-computer recognition method is

a practical intermediate solution toward applying contemporary computer vision algo-

rithms to these types of problems. Rather than trying to solve object recognition entirely,

we take on the objective of minimizing the amount of human labor required. As research

in object recognition progresses, tasks will become increasingly automated, until even-
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tually we will no longer need humans in the loop. This approach differs from some

of the prevailing ways in which people approach research in computer vision, where

researchers begin with simpler and less realistic datasets and progressively make them

more difficult and realistic as computer vision improves (e.g., Caltech-4→ Caltech-101

→Caltech-256). The advantage of the human-computer paradigm is that we can provide

usable services to people in the interim-period where computer vision is still unsolved.

This may help increase demand for computer vision, spur data collection, and provide

solutions for the types of problems people outside the field want solved.

In this work, our goal is to provide a simple framework that makes it as effortless

as possible for researchers to plug their existing algorithms into the human-computer

framework and use humans to drive up performance to levels that are good enough for

real-life applications. Implicit to our model is the assumption that lay-people gener-

ally cannot recognize finer-grained categories (e.g., Myrtle Warbler, Thruxton Jackaroo,

etc.) due to imperfect memory or limited experiences; however, they do have the fun-

damental visual capabilities to recognize the parts and attributes that collectively make

recognition possible (see Fig. 3.2). By contrast, computers lack many of the fundamen-

tal visual capabilities that humans have, but have perfect memory and are able to pool

knowledge collected from large groups of people. Users interact with our system by an-

swering simple yes/no or multiple choice questions about an image or object, as shown

in Fig. 3.3. Similar to the 20-questions game1, we observe that the number of questions

needed to classify an object from a database of C classes is usually O(logC) (when

user responses are accurate), and can be faster when computer vision is in the loop. Our

method of choosing the next question to ask uses an information gain criterion and can

deal with noisy (probabilistic) user responses. We show that it is easy to incorporate

any computer vision algorithm that can be made to produce a probabilistic output over

object classes.

Our experiments in this paper focus on bird species categorization, which we

take to be a representative example of recognition of tightly-related categories. The

bird dataset contains 200 bird species and over 6,000 images. We believe that similar

methodologies will apply to other object domains.

1See for example http://20q.net.
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Computer vision is helpful Computer vision is not helpfulComputer vision is helpful Computer vision is not helpful

The bird is a 
Black‐footed 
Albatross

Is the belly 
white? yes
Are the eyes 
white? yes
Th bi d i

Is the beak cone‐shaped? yes
Is the upper‐tail brown? yes
Is the breast solid colored? no
Is the breast striped? yes
I h h hi ?The bird is a 

Parakeet Auklet
Is the throat white? yes
The bird is a Henslow’s
Sparrow

Figure 3.3: Examples of the visual 20 questions game on the 200 class Bird dataset.
Human responses (shown in red) to questions posed by the computer (shown in blue)
are used to drive up recognition accuracy. In the left image, computer vision algorithms
can guess the bird species correctly without any user interaction. In the middle image,
computer vision reduces the number of questions to 2. In the right image, computer
vision provides little help.

The structure of the paper is as follows: In Section 3.1.2, we discuss related

work. In Section 3.1.3, we define the hybrid human-computer problem and basic algo-

rithm, which includes methodologies for modeling noisy user responses and incorporat-

ing computer vision into the framework. We describe our datasets and implementation

details in Section 3.1.5, and present empirical results in Section 3.1.6.

3.1.2 Related Work

Recognition of tightly related categories is still an open area in computer vision,

although there has been success in a few areas such as book covers and movie posters

(e.g., rigid, mostly flat objects [50]). The problem is challenging because the number of

object categories is larger, with low interclass variance, and variability in pose, lighting,

and background causes high intraclass variance. Ability to exploit domain knowledge

and cross-category patterns and similarities becomes increasingly important.

There exist a variety of datasets related to recognition of tightly-related cate-

gories, including Oxford Flowers 102 [49], UIUC Birds [41], and STONEFLY9 [46].

While these works represent progress, they still have shortcomings in scaling to large

numbers of categories, applying to other types of object domains, or achieving perfor-

mance levels that are good enough for real-world applications. Perhaps most similar in

spirit to our work is the Botanist’s Field Guide [3], a system for plant species recogni-

tion with hundreds of categories and tens of thousands of images. One key difference

is that their system is intended primarily for experts, and requires plant leaves to be
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Question 1: Question 2:
Computer Vision

Question 1:
Is the belly black?

A: NO

Question 2:
Is the bill hooked?

A: YES

Input Image ( )Input Image (     )

Figure 3.4: Visualization of the basic algorithm flow. The system poses questions to
the user, which along with computer vision, incrementally refine the probability distri-
bution over classes.

photographed in a controlled manner at training and test time, making segmentation and

pose normalization possible. In contrast, all of our training and testing images are ob-

tained from Flickr in unconstrained settings (see Fig. 3.5), and the system is intended to

be used by lay people.

There exists a multitude of different areas in computer science that interleave

vision, learning, or other processing with human input. Relevance feedback [92] is

a method for interactive image retrieval, in which users mark the relevance of image

search results, which are in turn used to create a refined search query. Active learn-

ing algorithms [68, 37, 34] interleave training a classifier with asking users to label

examples, where the objective is to minimize the total number of labeling tasks. Our

objectives are somewhat similar, except that we are querying information at runtime

rather than training time. Expert systems [48, 4] involve construction of a knowledge

base and inference rules that can help non-experts solve a problem. Our approach differs

due to the added ability to observe image pixels as an additional source of information.

Computationally, our method also has similarities to algorithms based on information

gain, entropy calculation, and decision trees [70, 56, 16].

Finally, a lot of progress has been made on trying to scale object recognition to

large numbers of categories. Such approaches include using class taxonomies [65, 32],

feature sharing [69], error correcting output codes (ECOC) [20], and attribute based

classification methods [40, 26, 39]. All of these methods could be easily plugged into

our framework to incorporate user interaction.
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3.1.3 Methods and Algorithm Description

Given an image x, our goal is to determine the true object class c ∈ {1...C}
by posing questions based on visual properties that are easy for the user to answer (see

Fig. 3.2). At each step, we aim to exploit the visual content of the image and the cur-

rent history of question responses to intelligently select the next question. The basic

algorithm flow is summarized in Fig. 3.4.

Let Q = {q1...qn} be a set of possible questions (e.g., IsRed?, HasStripes?,

etc.), and Ai be the set of possible answers to qi. The user’s answer is some random

variable ai ∈ Ai. We also allow users to qualify each response with a confidence value

ri ∈ V , (e.g., V = {Guessing, Probably, Definitely}). The user’s response is then a

pair of random variables ui = (ai, ri).

At each time step t, we select a question qj(t) to pose to the user, where j(t) ∈
1...n. Let j ∈ {1...n}T be an array of T indices to questions we will ask the user.

U t−1 = {uj(1)...uj(t−1)} is the set of responses obtained by time step t − 1. We use

maximum information gain as the criterion to select qj(t). Information gain is widely

used in decision trees (e.g. [56]) and can be computed from an estimate of p(c|x, U t−1).

We define I(c;ui|x, U t−1), the expected information gain of posing the additional

question qi, as follows:

I(c;ui|x, U t−1) = Eu
[
KL
(
p(c|x, ui ∪ U t−1) ‖ p(c|x, U t−1)

)]
(3.1)

=
∑

ui∈Ai×V

p(ui|x, U t−1)
(

H(c|x, ui ∪ U t−1)− H(c|x, U t−1)
)
(3.2)

where H(c|x, U t−1) is the entropy of p(c|x, U t−1)

H(c|x, U t−1) = −
C∑
c=1

p(c|x, U t−1) log p(c|x, U t−1) (3.3)

The general algorithm for interactive object recognition is shown in Algorithm 1. In the

next sections, we describe in greater detail methods for modeling user responses and

different methods for incorporating computer vision algorithms, which correspond to

different ways to estimate p(c|x, U t−1).
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Algorithm 1 Visual 20 Questions Game

1: U0 ← ∅
2: for t = 1 to 20 do

3: j(t) = maxk I(c;uk|x, U t−1)

4: Ask user question qj(t), and U t ← U t−1 ∪ uj(t).
5: end for

6: Return class c∗ = maxc p(c|x, U t)

Incorporating Computer Vision

When no computer vision is involved it is possible to pre-compute a decision

tree that defines which question to ask for every possible sequence of user responses.

With computer vision in the loop, however, the best questions depend dynamically on

the contents of the image.

In this section, we propose a simple framework for incorporating any multi-class

object recognition algorithm that produces a probabilistic output over classes. We can

compute p(c|x, U), where U is any arbitrary sequence of responses, as follows:

p(c|x, U) =
p(U |c, x)p(c|x)

Z
=
p(U |c)p(c|x)

Z
(3.4)

where Z =
∑

c p(U |c)p(c|x). Here, we make the assumption that p(U |c, x) = p(U |c);

effectively this assumes that the types of noise or randomness that we see in user re-

sponses is class-dependent and not image-dependent. We can still accommodate varia-

tion in responses due to user error, subjectivity, external factors, and intraclass variance;

however we throw away some image-related information (for example, we lose ability

to model a change in the distribution of user responses as a result of a computer-vision-

based estimate of object pose).

In terms of computation, we estimate p(c|x) using a classifier trained offline

(more details in Section 3.1.5). Upon receiving an image, we run the classifier once

at the beginning of the process, and incrementally update p(c|x, U) by gathering more

answers to questions from the user. One could imagine a system where a learning al-

gorithm is invoked several times during the process; as categories are weeded out by

answers, the system would use a more tuned classifier to update the estimate of p(c|x).
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Ivory Gull
Bank Swallow Indigo Bunting Whip−poor−will Chuck−will’s−widow

guessing probably definitely

back color
back pattern

belly color
belly pattern

bill shape
breast color

breast pattern
crown color

eye color
forehead color

head pattern
leg color

nape color
primary color

shape
size

tail pattern
throat color

under tail color
underparts color

upper tail color
upperparts color

wing color
wing pattern
wing shape

guessing probably definitely guessing probably definitely guessing probably definitely
 

 

guessing probably definitely
0

0.2

0.4

0.6

0.8

1

Figure 3.5: Examples of user responses for each of the 25 attributes. The distribu-
tion over {Guessing,Probably,Definitely} is color coded with blue denoting 0% and red
denoting 100% of the five answers per image attribute pair.

However, our preliminary experiments with such methods did not show an advantage2.

Note that when no computer vision is involved, we simply replace p(c|x) with a prior

p(c).

Modeling User Responses

Recall that for each question we may also ask a corresponding confidence value

from the user, which may be necessary when an attribute cannot be determined (for

example, when the associated part(s) are not visible). We assume that the questions are

answered independently given the category:

p(U t−1|c) =
t−1∏
i

p(ui|c) (3.5)

The same assumption allows us to express p(ui|x, U t−1) in Equation 3.2 as

p(ui|x, U t−1) =
C∑
c=1

p(ui|c)p(c|x, U t−1) (3.6)

It may also be possible to use a more sophisticated model in which we estimate a full

joint distribution for p(U t−1|c); in our preliminary experiments this approach did not

work well due to insufficient training data.
2See (http://www.vision.caltech.edu/visipedia/birds200.html) for more details.
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Q1: Click on the head 
(3.656 s) 

IMAGE CLASS: Sooty Albatross 

Ground Truth Part Locations 

Sooty Albatross? yes 

Bohemian Waxwing? no 

Forster’s Tern? no 

Q2: Click on the body 
(3.033 s) 

Body 

Head 

Beak 
Wing 

Tail Breast 

Predicted Part Locations 

Q3: Is the bill black? 
yes (4.274 s) 

Black-footed Albatross? no 

Figure 3.6: Extension to Part-Based Methods: Our system can query the user for
input in the form of binary attribute questions or part clicks. In this illustrative example,
the system provides an estimate for the pose and part locations of the object at each
stage. Given a user-clicked location of a part, the probability distributions for locations
of the other parts in each pose will adjust accordingly. The rightmost column depicts
the maximum likelihood estimate for part locations.

To compute p(ui|c) = p(ai, ri|c) = p(ai|ri, c)p(ri|c), we assume that p(ri|c) =

p(ri). Next, we compute each p(ai|ri, c) as the posterior of a multinomial distribution

with Dirichlet prior Dir
(
αrp(ai|ri)+αcp(ai|c)

)
, where αr and αc are constants, p(ai|ri)

is a global attribute prior, and p(ai|c) is estimated by pooling together certainty labels.

In practice, we use a larger prior term for Guessing than Definitely, αguess > αdef , which

effectively down weights the importance of any response with certainty level Guessing.

3.1.4 Extension to Part-Based Models

In this section, we add a few extensions to the above algorithms and models: 1)

we handle localized computer vision algorithms, introducing fast algorithms for multi-
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class classification and pose registration using shared part models, 2) handle different

heterogeneous types of user input, including part click locations and multiple choice

questions, 3) introduce algorithms for predicting the informativeness a part click ques-

tions.

Consider for example different types of human annotation tasks in the domain

of bird species recognition. For the task “Click on the beak,” the location a human user

clicks is a noisy representation of the ground truth location of the beak. It may not

in isolation solve any single recognition task; however, it provides information that is

useful to a machine vision algorithm for localizing other parts of the bird, measuring

attributes (e.g.cone-shaped), recognizing actions (e.g.eating or flying), and ultimately

recognizing the bird species. The answer to the question “Is the belly striped?” simi-

larly provides information towards recognizing a variety of bird species. Each type of

annotation takes a different amount of human time to complete and provides varying

amounts of information.

Problem Definition and Notation

Given an image x, our goal is to predict an object class from a set of C possible

classes (e.g.Myrtle Warbler, Blue Jay, Indigo Bunting) within a common basic-level cat-

egory (e.g.Birds). We assume that the C classes fall within a reasonably homogeneous

basic-level category such as birds that can be represented using a common vocabulary

of P parts (e.g.head, belly, wing), and A attributes (e.g.cone-shaped beak, white belly,

striped breast). We use a class-attribute model based on the direct-attribute model of

Lampert et al. [40], where each class c ∈ 1...C is represented using a unique, determin-

istic vector of attribute memberships ac = [ac1...a
c
A], aci ∈ 0, 1. We extend this model

to include part localized attributes, such that each attribute a ∈ 1...A can optionally be

associated with a part part(a) ∈ 1...P (e.g.the attributes white belly and striped belly

are both associated with the part belly). In this case, we express the set of all ground

truth part locations for a particular object as Θ = {θ1...θP}, where the location θp of a

particular part p is represented as an xp, yp image location, a scale sp, and an aspect vp
(e.g.side view left, side view right, frontal view, not visible, etc.):

θp = {xp, yp, sp, vp}. (3.7)
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Note that the special aspect not visible is used to handle parts that are occluded or self-

occluded.

We can optionally combine our computer vision algorithms with human input,

by intelligently querying user input at runtime. A human is capable of providing two

types of user input which indirectly provide information relevant for predicting the ob-

ject’s class: mouse click locations θ̃p and attribute question answers ãi. The random

variable θ̃p represents a user’s input of the part location θp, which may differ from user

to user due to both clicking inaccuracies and subjective differences in human percep-

tion (Figure 7.1). Similarly, ãi is a random variable defining a user’s perception of the

attribute value ai.

We assume a pool of A+P possible questions that can be posed to a human user

Q = {q1...qA, qA+1...qA+P}, where the first A questions query ãi and the remaining P

questions query θ̃p. Let Aj be the set of possible answers to question qj . At each time

step t, our algorithm considers the visual content of the image and the current history

of question responses to estimate a distribution over the location of each part, predict

the probability of each class, and intelligently select the next question to ask qj(t). A

user provides the response uj(t) to a question qj(t), which is the value of θ̃p or ãi for part

location or attribute questions, respectively. The set of all user responses up to timestep

t is denoted by the symbol U t = {uj(1)...uj(t)}. We assume that the user is consistent in

answering questions and therefore the same question is never asked twice.

Probabilistic Model

Our probabilistic model incorporating both computer vision and human user re-

sponses is summarized in Figure 3.7(b). Our goal is to estimate the probability of each

class given an arbitrary collection of user responses U t and observed image pixels x:

p(c|U t, x) =
p(ac, U t|x)∑
c p(a

c, U t|x)
, (3.8)

which follows from the assumption of unique, class-deterministic attribute memberships

ac [40]. We can incorporate localization information Θ into the model by integrating

over all possible assignments to part locations

p(ac, U t|x) =

∫
Θ

p(ac, U t,Θ|x)dΘ. (3.9)
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(a) Part Model (b) Part-Attribute Model

Figure 3.7: Probabilistic Model. 3.7(a): The spatial relationship between parts has a
hierarchical independence structure. 3.7(b): Our model employs attribute estimators,
where part variables θp are connected using the hierarchical model shown in 3.7(a).

We can write out each component of Eq 3.9 as

p(ac, U t,Θ|x) = p(ac|Θ, x)p(Θ|x)p(U t|ac,Θ, x) (3.10)

where p(ac|Θ, x) is the response of a set of attribute detectors evaluated at locations Θ,

p(Θ|x) is the response of a part-based detector, and p(U t|ac,Θ, x) models the way users

answer questions. We describe each of these probability distributions in Sections 3.1.4,

3.1.4, and 3.1.3 respectively and describe inference procedures for evaluating Eq 3.9

efficiently in Section 3.1.4.

Computer Vision Model

As described in Eq 3.10, we require two basic types of computer vision algo-

rithms: one that estimates attribute probabilities p(ac|Θ, x) on a particular set of pre-

dicted part locations Θ, and another that estimates part location probabilities p(Θ|x).

Attribute Detection

Using the independence assumptions depicted in Figure 3.7(b), we can write the

probability

p(ac|Θ, x) =
∏
aci∈ac

p(aci |θpart(ai), x). (3.11)
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Given a training set with labeled part locations θpart(ai), one can use standard com-

puter vision techniques to learn an estimator for each p(ai|θpart(ai), x). In practice, we

train a separate binary classifier for each attribute, extracting localized features from

the ground truth location θpart(ai). As in [40], we convert attribute classification scores

zi = fa(x; part(ai)) to probabilities by fitting a sigmoid function σ(γazi) and learn-

ing the sigmoid parameter γa using cross-validation. When vpart(ai) = not visible, we

assume the attribute detection score is zero.

Part Detection

We use a pictorial structure to model part relationships (see Figure 3.7(a)), where

parts are arranged in a tree-structured graph T = (V,E). A full description of the

model is contained in Section 7.2. We review the basic terminology here. We model

the detection score g(x; Θ) as a sum over unary and pairwise potentials log(p(Θ|x)) ∝
g(x; Θ) with

g(x; Θ) =
P∑
p=1

ψ(x; θp) +
∑

(p,q)∈E

λ(θp, θq) (3.12)

where each unary potential ψ(x; θp) is the response of a sliding window detector, and

each pairwise score λ(θp, θq) encodes a likelihood over the relative displacement be-

tween adjacent parts. We use the same learning algorithms and parametrization of each

term in Eq 3.12 as in [88]. Here, parts and aspects are semantically defined, multiple

aspects are handled using mixture models, and weight parameters for appearance and

spatial terms are learned jointly using a structured SVM [71]. After training, we con-

vert detection scores to probabilities p(Θ|x) ∝ exp (γg(x; Θ)), where γ is a scaling

parameter that is learned using cross-validation.

User Model

Readers interested in a computer-vision-only system with no human-in-the-loop

can skip to Section 3.1.4. We assume that the probability of a set of user responses U t

can be expressed in terms of user responses that pertain to part click locations U t
Θ ⊆ U t

and user responses that pertain to attribute questions U t
a ⊆ U t. We assume a user’s
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perception of the location of a part θ̃p depends only on the ground truth location of

that part θp, and a user’s perception of an attribute ãi depends only on the ground truth

attribute aci :

p(U t|ac,Θ, x) =

∏
p∈Ut

Θ

p(θ̃p|θp)

 ∏
ãi∈Ut

a

p(ãi|aci)

 . (3.13)

We describe our methods for estimating p(θ̃p|θp) and p(ãi|aci) in the next two sections.

Modeling User Click Responses

Our interface for collecting part locations is shown in Figure 7.1. We represent

a user click response as a triplet θ̃p = {x̃p, ỹp, ṽp}, where (x̃p, ỹp) is a point that the

user clicks with the mouse and ṽp ∈ {visible, not visible} is a binary variable indicating

presence/absence of the part.

Note that the user click response θ̃p models only part location and visibility,

whereas the true part location θp also includes scale and aspect. This is done in order to

keep the user interface as intuitive as possible. On the other hand, incorporating scale

and aspect in the true model is extremely important – the relative offsets and visibility

of parts in left side view and right side view will be dramatically different. We model a

distribution over user click responses as

p(θ̃p|θp) = p(x̃p, ỹp|xp, yp, sp)p(ṽp|vp) (3.14)

where the relative part click locations are Gaussian distributed(
x̃p − xp
sp

,
ỹp − yp
sp

)
∼ N (µ̃p, σ̃

2
p) (3.15)

and each p(ṽp|vp) is a separate binomial distribution for each possible value of vp. The

parameters of these distributions are estimated using a training set of pairs (θp, θ̃p). This

model of user click responses results in a simple, intuitive user interface and still al-

lows for a sophisticated and computationally efficient model of part localization (Section

3.1.4).

Attribute Question Responses

We use a model of attribute user responses similar to [10]. We estimate each

p(ãi|ai) as a binomial distribution, with parameters learned using a training set of user
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attribute responses collected from MTurk. As in [10], we allow users to qualify their re-

sponses with a certainty parameter guessing, probably, or definitely, and we incorporate

a Beta prior to improve robustness when training data is sparse.

Inference

We describe the inference procedure for estimating per-class probabilities

p(c|U t, x) (Eq 3.8), which involves evaluating
∫

Θ
p(ac, U t,Θ|x)dΘ. While this initially

seems very difficult, we note that all user responses ãip and θ̃p are observed values per-

taining only to a single part, and attributes ac are deterministic when conditioned on a

particular choice of class c. If we run inference separately for each class c, all compo-

nents of Eqs 3.11 and 3.13 can simply be mapped into the unary potential for a particular

part. Evaluating Eq 3.8 exactly is computationally similar to evaluating a separate pic-

torial structure inference problem for each class.

On the other hand, when C is large, running C inference problems can be inef-

ficient. In practice, we use a faster procedure which approximates the integral in Eq 3.9

as a sum over K strategically chosen sample points:∫
Θ

p(ac, U t,Θ|x)dΘ

≈
K∑
k=1

p(U t|ac,Θt
k, x)p(ac|Θt

k, x)p(Θt
k|x) (3.16)

= p(U t
a|ac)

K∑
k=1

p(ac|Θt
k, x)p(U t

Θ|Θt
k, x)p(Θt

k|x).

We select the sample set Θt
1...Θ

t
K as the set of all local maxima in the probability distri-

bution p(U t
Θ|Θ)p(Θ|x). The set of local maxima can be found using standard methods

for maximum likelihood inference on pictorial structures and then running non-maximal

suppression, where probabilities for each user click response p(θ̃p|θp) are first mapped

into a unary potential ψ(x; θp, θ̃p) (see Eq 3.12)

ψ(x; θp, θ̃p) = ψ(x; θp) + log p(θ̃p|θp). (3.17)

The inference step takes time linear in the number of parts and pixel locations3 and is
3Maximum likelihood inference involves a bottom-up traversal of T , doing a distance transform oper-

ation [29] for each part in the tree (takes time O(n) time in the number of pixels).



39

efficient enough to run in a fraction of a second with 13 parts, 11 aspects, and 4 scales.

Inference is re-run each time we obtain a new user click response θ̃p, resulting in a new

set of samples. Sampling assignments to part locations ensures that attribute detectors

only have to be evaluated on K candidate assignments to part locations; this opens the

door for more expensive categorization algorithms (such as kernelized methods) that do

not have to be run in a sliding window fashion.

Selecting the Next Question

In this section, we introduce a common framework for predicting the informa-

tiveness of different heterogeneous types of user input (including binary questions and

mouse click responses) that takes into account the expected level of human error, in-

formativeness in a multitask setting, expected annotation time, and spatial relationships

between different parts. Our method extends the expected information gain criterion

described in [10].

Let IGt(qj) be the expected information gain IG(c;uj|x, U t) from asking a new

question qj:

IGt(qj) =
∑
uj∈Aj

p(uj|x, U t)
(

H(U t, uj)− H(U t)
)

(3.18)

H(U t) = −
∑
c

p(c|x, U t) log p(c|x, U t) (3.19)

where H(U t) is shorthand for the conditional class entropy H(c|x, U t). Evaluating

Eq 3.18 involves considering every possible user-supplied answer uj ∈ Aj to that ques-

tion, and recomputing class probabilities p(c|x, U t, uj). For yes/no attribute questions

(querying a variable ãi), this is computationally efficient because the number of possi-

ble answers is only two, and attribute response probabilities p(U t
a|ac) are assumed to be

independent from ground truth part locations (see Eq 3.16).

Predicting Informativeness of Mouse Clicks In contrast, for part click questions the

number of possible answers to each question is equal to the number of pixel locations,

and computing class probabilities requires solving a new inference problem (Section

3.1.4) for each such location, which quickly becomes computationally intractible.
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We use a similar approximation to the random sampling method described in

Section 3.1.4. For a given part location question qj , we wish to compute the expected

entropy:

Eθ̃p [H(U t, θ̃p)] =
∑
θ̃p

p(θ̃p|x, U t) H(U t, θ̃p). (3.20)

This can be done by drawingK samples θ̃tp1...θ̃
t
pK from the distribution p(θ̃p|x, U t), then

computing expected entropy

Eθ̃p [H(U t, θ̃p)] ≈ (3.21)

−
K∑
k=1

p(θ̃p|x, U t)
∑
c

p(c|x, U t, θ̃tpk) log p(c|x, U t, θ̃tpk).

In this case, each sample θ̃tpk is extracted from a sample Θt
k (Section 3.1.4) and each

p(c|x, U t, θ̃tpk) is approximated as a weighted average over samples Θt
1...Θ

t
K . The full

question selection procedure is fast enough to run in a fraction of a second on a single

CPU core when using 13 click questions and 312 binary questions.

Selecting Questions By Time

The expected information gain criterion (Eq 3.18) attempts to minimize the total

number of questions asked. This is suboptimal as different types of questions tend

to take more time to answer than others (e.g., part click questions are usually faster

than attribute questions). We include a simple adaptation that attempts to minimize the

expected amount of human time spent. The information gain criterion IGt(qj) encodes

the expected number of bits of information gained by observing the random variable uj .

We assume that there is some unknown linear relationship between bits of information

and reduction in human time. The best question to ask is then the one with the largest

ratio of information gain relative to the expected time to answer it:

q∗j(t+1) = arg max
qj

IGt(qj)

E[time(uj)]
(3.22)

where E[time(uj)] is the expected amount of time required to answer a question qj .
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3.1.5 Datasets and Implementation Details

In this section we provide a brief overview of the datasets we used, methods

used to construct visual questions, computer vision algorithms we tested, and parameter

settings.

Birds-200 Dataset

Birds-200 is a dataset of 6033 images over 200 bird species, such as Myrtle

Warblers, Pomarine Jaegars, and Black-footed Albatrosses – classes that cannot usually

be identified by non-experts. In many cases, different bird species are nearly visually

identical (see Fig. 3.11).

We assembled a set of 25 visual questions (list shown in Fig. 3.5), which encom-

pass 288 binary attributes (e.g., the question HasBellyColor can take on 15 different

possible colors). The list of attributes was extracted from whatbird.com4, a bird field

guide website.

We collected “deterministic” class-attributes by parsing attributes from what-

bird.com. Additionally, we collected data of how non-expert users respond to attribute

questions via a Mechanical Turk interface. To minimize the effects of user subjectivity

and error, our interface provides prototypical images of each possible attribute response.

The reader is encouraged to look at the supplementary material for screenshots of the

question answering user-interface and example images of the dataset.

Fig. 3.5 shows a visualization of the types of user response results we get on the

Birds-200 dataset. It should be noted that the uncertainty of the user responses strongly

correlates with the parts that are visible in an image as well as overall difficulty of the

corresponding bird species.

When evaluating performance, test results are generated by randomly selecting

a response returned by an MTurk user for the appropriate test image.

4http://www.whatbird.com/
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Extended Birds-200 Dataset

For the part localized experiments, we extended the original CUB-200 dataset

[86] to form CUB-200-2011 [79], which includes roughly 11, 800 images, nearly double

the previous total. Each image is annotated with 312 binary attribute labels and 15

part labels. We obtained a list of attributes from a bird field guide website [81] and

selected the parts associated with those attributes for labeling. Five different MTurk

workers provided part labels for each image by clicking on the image to designate the

location or denoting part absence (Figure 7.1). One MTurk worker answered attribute

questions for each image, specifying response certainty with options guessing, probably,

and definitely. They were also given the option not visible if the associated part with the

attribute was not present. At test time, we simulated user responses in a similar manner

to [10], randomly selecting a stored response for each posed question. Instead of using

bounding box annotations to crop objects, we used full uncropped images, resulting in

a significantly more challenging dataset than CUB-200 [86].

Animals With Attributes

We also tested performance on the Animals With Attributes (AwA) [40], a dataset

of 50 animal classes and 85 binary attributes. We consider this dataset less relevant than

birds (because classes are recognizable by non-experts), and therefore do not focus as

much on this dataset.

Implementation Details and Parameter Settings

Non-Localized Model: For both datasets, our computer vision algorithms are based on

Andrea Vedaldi’s publicly available source code [72], which combines vector-quantized

geometric blur and color/gray SIFT features using spatial pyramids, multiple kernel

learning, and per-class 1-vs-all SVMs. We added features based on full image color

histograms and vector-quantized color histograms. For each classifier we used Platt

scaling [54] to learn parameters for p(c|x) on a validation set. We used 15 training

examples for each Birds-200 class and 30 training examples for each AwA class. Bird

training and testing images are roughly cropped.
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Additionally, we compare performance to a second computer vision algorithm

based on attribute classifiers, which we train using the same features/training code, with

positive and negative examples set using whatbird.com attribute labels. We combined

attribute classifiers into per-class probabilities p(c|x) using the method described in [40].

For estimating user response statistics on the Birds-200 dataset, we used αguess =

64, αprob = 16, αdef = 8, and αc = 8 (see Section 3.1.3).

Part-Localized Model: For attribute detectors, we used simple linear classifiers based

on histograms of vector-quantized SIFT and vector-quantized RGB features (each with

128 codewords) which were extracted from windows around the location of an associ-

ated part. We believe that significant improvements in classification performance could

be gained by exploring more sophisticated features or learning algorithms.

As in [29], the unary scores of our part detector are implemented using HOG

templates parametrized by a vector of linear appearance weights wvp for each part and

aspect. The pairwise scores are quadratic functions over the displacement between

(xp, yp) and (xq, yq), parametrized by a vector of spatial weights wvp,vq for each pose

and pair of adjacent parts. For computational efficiency, we assume that the pose and

scale parameters are defined on an object level, and thus inference simply involves run-

ning a separate sliding window detector for each scale and pose. The ground truth scale

of each object is computed based on the size of the object’s bounding box.

Because our object parts are labeled only with visibility, we clustered images

using k-means on the spatial x- and y- offsets of the part locations from their parent part

locations, normalized with respect to image dimensions; this approach handles relative

part locations in a manner most similar to how we model part relationships (Section

3.1.4). Examples of images grouped by their pose cluster are shown in Figure 7.5.

Semantic labels were assigned post hoc by visual inspection. The clustering, while

noisy, reveals some underlying pose information that can be discovered by part presence

and locations.
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3.1.6 Experiments

In this section, we provide experimental results and analysis of the hybrid-human

computer classification paradigm. Due to space limitations, our discussion focuses on

the Birds dataset. We include results (see Fig. 3.12) from which the user can verify that

trends are similar on Birds-200 and AwA, and we include additional results on AwA in

the supplementary material.

Measuring Performance

We use two main methodologies for measuring performance, which correspond

to two different possible user-interfaces:

• Method 1: We ask the user exactly T questions, predict the class with highest

probability, and measure the percent of the time that we are correct.

• Method 2: After asking each question, we present a small gallery of images of the

highest probability class, and allow the user to stop the system early. We measure

the average number of questions asked per test image.

For the second method, we assume that people are perfect verifiers, e.g., they will stop

the system if and only if they have been presented with the correct class. While this is

not always possible in reality, there is some trade-off between classification accuracy

and amount of human labor, and we believe that these two metrics collectively capture

the most important considerations.

Results

In this section, we present our results and discuss some interesting trends toward

understanding the visual 20 questions classification paradigm.

User Responses are Stochastic: In Fig. 3.8, we show the effects of different mod-

els of user responses without using any computer vision. When users are assumed to

respond deterministically in accordance with the attributes from whatbird.com, perfor-

mance rises quickly to 100% within 8 questions (roughly log2(200)). However, this
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Figure 3.8: Different Models of User Responses: Left: Classification performance on
Birds-200 (Method 1) without computer vision. Performance rises quickly (blue curve)
if users respond deterministically according to whatbird.com attributes. MTurk users
respond quite differently, resulting in low performance (green curve). A learned model
of MTurk responses is much more robust (red curve). Right: A test image where users
answer several questions incorrectly and our model still classifies the image correctly.

assumption is not realistic; when testing with responses from Mechanical Turk, per-

formance saturates at around 5%. Low performance caused by subjective answers are

unavoidable (e.g., perception of the color brown vs. the color buff), and the probability

of the correct class drops to zero after any inconsistent response. Although performance

is 10 times better than random chance, it renders the system useless. This demonstrates

a challenge for existing field guide websites. When our learned model of user responses

(see Section 3.1.3) is incorporated, performance jumps to 66% due to the ability to tol-

erate a reasonable degree of error in user responses (see Fig. 3.8 for an example). Nev-

ertheless, stochastic user responses increase the number of questions required to achieve

a given accuracy level, and some images can never be classified correctly, even when

asking all possible questions. In Section 3.1.6, we discuss the reasons why performance

saturates at lower than 100% performance.

Computer Vision Reduces Manual Labor: The main benefit of computer vision oc-

curs due to reduction in human labor (in terms of the number of questions a user has to

answer). In Fig. 3.9, we see that computer vision reduces the average number of yes/no

questions needed to identify the true bird species from 11.11 to 6.43 using responses

from MTurk users. Without computer vision, the distribution of question counts is bell-
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Figure 3.9: Performance on Birds-200 when using computer vision: Left Plot: com-
parison of classification accuracy (Method 1) with and without computer vision when
using MTurk user responses. Two different computer vision algorithms are shown, one
based on per-class 1-vs-all classifiers and another based on attribute classifiers. Right
plot: the number of questions needed to identify the true class (Method 2) drops from
11.11 to 6.43 on average when incorporating computer vision.

shaped and centered around 6 questions. When computer vision is incorporated, the

distribution peaks at 0 questions but is more heavy-tailed, which suggests that computer

vision algorithms are often good at recognizing the “easy” test examples (examples that

are sufficiently similar to the training data), but provide diminishing returns toward clas-

sifying the harder examples that are not sufficiently similar to training data. As a result,

computer vision is more effective at reducing the average amount of time than reducing

the time spent on the most difficult images.

User Responses Drive Up Performance: An alternative way of interpreting the results

is that user responses drive up the accuracy of computer vision algorithms. In Fig. 3.9,

we see that user responses improve overall performance from≈ 19% (using 0 questions)

to ≈ 66%.

Computer Vision Improves Overall Performance: Even when users answer all ques-

tions, performance saturates at a higher level when using computer vision (≈ 69% vs.

≈ 66%, see Fig. 3.9). The left image in Fig. 3.10 shows an example of an image classi-

fied correctly using computer vision, which is not classified correctly without computer

vision, even after asking 60 questions. In this example, some visually salient features

like the long neck are not captured in our list of visual attribute questions. The features

used by our vision algorithms also capture other cues (such as global texture statistics)

that are not well-represented in our list of attributes (which capture mostly color and
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Rose‐
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Q #1: Is the shape perching‐like? no (Def.) Grosbeak

Western Grebe
Rose‐breasted 
Grosbeak

Yellow‐headed 
Blackbird

Only CV

w/ vision:
Q #1: Is the throat white? yes (Def.) 
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Is the crown 
black? yes 
(Def.)
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breasted /

Q #1: Is the shape perching‐like? no (Def.) Grosbeak

Figure 3.10: Examples where computer vision and user responses work together:
Left: An image that is only classified correctly when computer vision is incorporated.
Additionally, the computer vision based method selects the question HasThroatColor-
White, a different and more relevant question than when vision is not used. In the right
image, the user response to HasCrownColorBlack helps correct computer vision when
its initial prediction is wrong.

part-localized patterns).

Different Questions Are Asked With and Without Computer Vision: In general, the

information gain criterion favors questions that 1) can be answered reliably, and 2) split

the set of possible classes roughly in half. Questions like HasShapePerchingLike,

which divide the classes fairly evenly, and HasUnderpartsColorYellow, which tends

to be answered reliably, are commonly chosen.

When computer vision is incorporated, the likelihood of classes change and dif-

ferent questions are selected. In the left image of Fig. 3.10, we see an example where a

different question is asked with and without computer vision, which allows the system

to find the correct class using one question.

Recognition is Not Always Successful: According the the Cornell Ornithology Web-

site5, the four keys to bird species recognition are 1) size and shape, 2) color and pattern,

3) behavior, and 4) habitat. Bird species classification is a difficult problem and is not al-

ways possible using a single image. One potential advantage of the visual 20 questions

paradigm is that other contextual sources of information such as behavior and habitat

can easily be incorporated as additional questions.

Fig. 3.11 illustrates some example failures. The most common failure conditions

5http://www.allaboutbirds.org/NetCommunity/page.aspx?pid=1053
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Least Auklet Sayornis Gray KingbirdParakeet Auklet

Q : Is the belly multi‐
colored? yes (Def.)

Figure 3.11: Images that are misclassified by our system: Left: The Parakeet Auklet
image is misclassified due to a cropped image, which causes an incorrect answer to the
belly pattern question (the Parakeet Auklet has a plain, white belly, see Fig. 3.3). Right:
The Sayornis and Gray Kingbird are commonly confused due to visual similarity.

occur due to 1) classes that are nearly visually identical, 2) images of poor viewpoint

or low resolution, such that some parts are not visible, 3) significant mistakes made by

MTurkers, or 4) inadequacies in the set of attributes we used.

1-vs-all Vs. Attribute-Based Classification: In general, 1-vs-all classifiers slightly

outperform attribute-based classifiers; however, they converge to similar performance

as the number of question increases, as shown in Fig. 3.9 and 3.12. The features we use

(kernelized and based on bag-of-words) may not be well suited to the types of attributes

we are using, which tend to be localized and associated with a particular part. One

potential advantage of attribute-based methods is computational scalability when the

number of classes increases; whereas 1-vs-all methods always require C classifiers, the

number of attribute classifiers can be varied in order to trade-off accuracy and computa-

tion time. The table below displays the average number of questions needed (Method 1)

on the Birds dataset using different number of attribute classifiers (which were selected

randomly):

200 (1-vs-all) 288 attr. 100 attr. 50 attr. 20 attr. 10 attr.
6.43 6.72 7.01 7.67 8.81 9.52

Question selection by time reduces human effort: By minimizing human effort with

the time criterion, we are trading off between the expected information gain from a

question response and the expected time to answer that question. Subsequently, we
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Figure 3.12: Performance on Animals With Attributes: Left Plot: Classification
performance (Method 1), simulating user responses using soft class-attributes (see [40]).
Right Plot: The required number of questions needed to identify the true class (Method
2) drops from 5.94 to 4.11 on average when incorporating computer vision.

are able to classify images in 36.6 seconds less on average using both binary and click

questions than if we only take into account expected information gain; however, the

margin in performance gain between using and not using click questions is reduced.

We note that the average time to answer a part click question is 3.01 ± 0.26

seconds, compared to 7.64± 5.38 seconds for an attribute question; in this respect, part

questions are more likely to be asked first.

Part localization improves performance: There is a disparity in classification accu-

racy between evaluating attribute classifiers on ground truth locations (17.3%) versus

predicted locations (10.3%); by using user responses to part click questions, we are able

to overcome initial erroneous part detections and guide the system to the correct class.

In Figure 3.13(a), we observe that by selecting the next question using our expected

information gain criterion, average classification time using both types of user input

versus only binary questions is reduced by 33.8 seconds on average. Compared to using

no computer vision, we note an average reduction in human effort of over 40% (68.2

seconds).

Using the time criterion for selecting questions, the average classification time

for a single image using both binary and click questions is 58.4 seconds. Asking bi-

nary questions only, the system takes an additional 20.4 seconds on average to correctly

classify an image (Figure 3.13(b)). Using computer vision algorithms, we are able to
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0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Elapsed Time (seconds)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Binary+Click Q’s (58.410 sec)
Binary Q’s Only (78.823 sec)
No Comp. Vision (110.909 sec)
Random Q’s (165.838 sec)
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Figure 3.13: Classification accuracy as a function of time when 3.13(a) maximizing
expected information gain; and 3.13(b) minimizing amount of human labor, measured
in time. Performance is measured as the average number of seconds to correctly classify
an image (described in Section 3.1.6).

consistently achieve higher average classification accuracy than using no computer vi-

sion at all, in the same period of time.

Qualitative Analysis of Part Click User Responses: Figure 3.14(a) presents an ex-

ample in which the bird’s pose is estimated incorrectly. After posing one question and

re-evaluating attribute detectors for updated part probability distributions, our model is

able to correctly predict the class.

In Figure 3.14(b), we visualize the question-asking sequence and how the prob-

ability distribution of part locations over the image changes with user clicks. We note

in Figure 3.14(c) that our pose clusters did not discover certain poses, especially frontal

views, and the system is unable to estimate the pose with high certainty.

As previously discussed, part click questions take on average less time to answer.

We observe that the system will tend to ask 2 or 3 part click questions near the beginning

and then continue with primarily binary questions (e.g.Figure 3.14(d)). At this point, the

remaining parts can often be inferred reliably through reasoning over the spatial model,

and thus binary questions become more advantageous.
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Initial pred. part locations 

Orange-Crowned Warbler? no 

Q1: Is the throat yellow?  
no (4.547 s) 

Great Crested Flycatcher? no 

Mourning Warbler? yes 

Q2: Click on the tail (2.043 s) 

Q3: Click on the head (2.452 s) 

Yellow Bellied Flycatcher? no 

Initial  pred. part locations 

Prothonotary Warbler? no 

Q1: Click on the 
belly (4.357 s) 

Yellow-headed Blackbird? yes 
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Figure 3.14: Four examples of the behavior of our system. 3.14(a): The system esti-
mates the bird pose incorrectly but is able to localize the head and upper body region
well, and the initial class prediction captures the color of the localized parts. The user’s
response to the first system-selected part click question helps correct computer vision.
3.14(b): The bird is incorrectly detected, as shown in the probability maps displaying
the likelihood of individual part locations for a subset of the possible poses (not visible
to the user). The system selects “Click on the beak” as the first question to the user.
After the user’s click, the other part location probabilities are updated and exhibit a shift
towards improved localization and pose estimation. 3.14(c): Certain infrequent poses
(e.g.frontal views) were not discovered by the initial off-line clustering (see Figure 7.5).
The initial probability distributions of part locations over the image demonstrate the un-
certainty in fitting the pose models. The system tends to fail on these unfamiliar poses.
3.14(d): The system will at times select both part click and binary questions to correctly
classify images.
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3.2 An Interactive Part Labeling Tool

In this section, we present an algorithm that computes and displays in realtime

the maximum likelihood location of a deformable part model as the user drags different

parts with the mouse, as visualized in Figure 3.15

3.2.1 Model and Notation

A full description of the model is contained in Section 7.2.3. We review the basic

terminology here. Given an image x, let Θ = θ1...θP encode the position of each of P

parts in the image. The location θp of a particular part p can be parameterized by an

image location (xp, yp), scale sp, orientation rp, and aspect vp: θp = {xp, yp, sp, rp, vp}.
We assume a part tree model T = (V,E) (see Figure 3.16(a)), such that the score

s(Θ;x) of a particular part configuration Θ can be expressed as a sum over unary terms

ψp(θp;x) for each part and pairwise terms λpq(θp, θq) for each edge in the tree:

s(Θ;x) =
∑
p∈V

ψp(θp;x) +
∑

(p,q)∈E

λpq(θp, θq) (3.23)

Here, ψp(θp;x) is a learned appearance score for part p (the response of a sliding window

detector for part p) and λpq(θp, θq) is a learned spatial score between pairs of parts.

The maximum likelihood solution Θ∗ = maxΘ s(Θ;x) can be found efficiently using

dynamic programming.

Our part detectors are based on sliding window HOG templates, and our spa-

tial model is implemented as a quadratic function on the relative displacement between

parts. The index vp encodes the view/aspect of a part and is implemented using a mixture

model, with different appearance templates and spatial parameters for each vp [88].

3.2.2 Incorporating User Input

Let Ut = {θ̃j(1)...θ̃j(t)} be a sequence of user input operations up to time step t.

In this notation, j(t) is the index of the part annotated by the user in time step t, and

θ̃j(t) is the user’s label of the part location θj(t). If the user re-annotates the same part, it

is assumed that the most recent annotation overrides all previous ones. The maximum
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head crown

back

Figure 3.15: Visualization of Interactive Part Labeling Tool: The system displays in
realtime the maximum likelihood location of all parts as the user drags different parts.
The machine predicted bird location is initially enitrely incorrect, but improves signifi-
cantly after the user drags the location of the head. All 15 parts are correct after the user
drags the head, crown, and back.

likelihood solution Θ∗t that is consistent with Ut can be obtained by maximizing a modi-

fied score function st(Θ;x, Ut) which maps each user response θ̃p into a unary potential

up(θp; θ̃p):

st(Θ;x, Ut) = s(Θ;x) +
∑
θ̃p∈Ut

up(θp; θ̃p) (3.24)

up(θp; θ̃p) =

−∞ if θp 6= θ̃p

0 otherwise
(3.25)

Simple extensions include allowing imperfect user responses up(θp; θ̃p) ∝ log p(θp|θ̃p),

and partial annotations to a given part (e.g. the user labels xp, yp but not sp, rp, vp).

3.2.3 Creating an Interactive User Interface

Dynamic programming is commonly used for maximum likelihood (ML) infer-

ence on pictorial structures with hierarchical structure. It computes cache tables which

are indexable by pixel location and are accessed during a backtracking stage to extract

the ML solution. In our case, interactively displaying the ML solution as the user drags

the mouse simply involves indexing into a different starting pixel location during the

backtracking stage, and therefore it is easily computable in realtime.

To make this work for our GUI, we require two changes to standard dynamic

programming algorithms: 1) we run dynamic programming in both directions up and

down the tree (this allows us to lookup the ML solution as the user drags any part

as opposed to just the root of the part tree), and 2) we must update our cache tables
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Algorithm 2 INTERACTIVEPARTLABELER
Input: An image x and model weights w

Output: Verified labels Θ∗t

1: Compute part detection responses Ψp

2: Precompute solution for any possible user response:

3: Bottom-up traversal, evaluating Eq 3.28-3.29

4: Top-down traversal, evaluating Eq 3.30-3.32

5: while User unsatisfied with Θ∗t = maxθr M
t
r [θr] do

6: As user drags j(t), interactively show M t
j(t)[θ̃j(t)]

7: On mouse release, finalize solution θ̃j(t):

8: Update unary score M t+1
j(t) (Eq 3.33)

9: Breadth first traversal from j(t), evaluate Eq 3.34-3.37

10: t← t+ 1

11: end while

over time as we obtain additional user input (such that we can display the ML solution

conditioned on all user annotations received so far). In the remainder of this section,

we describe algorithms for implementing these two things efficiently. Due to space

restrictions, discussion of the algorithm in this section is brief. We include more detailed

derivation and proof of correctness in the supplementary material. The entire algorithm

is summarized in Algorithm 2.

Let M t
q denote an array storing the maximum likelihood solutions for part q at

time step t after having received user annotations Ut. In our notation, M t
q [θq] stores the

score of the optimal solution conditioned on placing q at position θq:

M t
p[θ̃p] = maxΘ s

t(Θ;x, Ut)

s.t. θp = θ̃p
(3.26)

Our goal is to efficiently compute cache tables M t
q for all parts q. We use the notation

M t
qp, where p ∈ neighbor(q), to denote the table of sub-solutions over the subgraph

which includes part q but deletes all parts and edges connected to q though p. For

example, when p = parent(q), M t
qp stores the optimal solution over the sub-tree rooted

at q. Let N t
pq denote a similar concept which also factors in the spatial score between p
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Figure 3.16: Visualization of Model and Algorithms: a) Object part location variables
are assumed to have a hierarchical relationship. Dynamic programming is run in both
directions up and down the tree. b-d) Visualization of the main algorithms used for the
interactive interface. In each algorithm, part nodes are traversed in the order indicated
by the arrows. When processing each node, solutions over the sub-graphs highlighted in
blue are combined to form the solution highlighted in red. b) Using a standard dynamic
programming algorithm, information is propagated from the child nodes up to the root
using Eq 3.28-3.29, c) In a second top-down algorithm, information is passed from the
root back down to the children using Eq 3.30-3.32, d) When a user response updates the
variable θp, information is propagated using a breadth first traversal of the tree beginning
at p using Eq 3.34-3.37.

and q:

N t
pq[θ̃p] = max

θq

(
M t

qp[θq] + λpq(θp, θq)
)

(3.27)

In other words, N t
pq[θ̃p] allows one to lookup the optimal location of θq when

conditioned on a particular value θ̃p. Here, to avoid making the notation more complex,

we have written N t
pq as a score maxθq ; however, in practice we must also store the

location arg maxθq , such that we can retrieve the solution later on during backtracking.

As in [28], we use a distance transform operation (which we denote by the oper-

ator ⊗) to densely compute N t
pq in time linear in the number of pixel locations. Let Ψp

and Λpq be shorthand for unary and pairwise score maps, such that Ψp[θp] = ψp(x, θp)

and Λpq[θq] is the cost associated with part q being at an offset of θq from p. In our nota-

tion, the standard dynamic programming algorithm for inference on pictorial structures
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traverses the tree T bottom-up, using the recursive update step:

M0
qp = Ψq +

∑
r∈child(q)

N0
qr (3.28)

N0
pq = M0

qp ⊗ Λpq (3.29)

where Eq 3.28 is evaluated for all q ∈ child(p). We run dynamic programming as our

initial preprocessing step, then employ a second pass that processes each edge p, q in a

top-down traversal of the tree:

M0
pq = M0

p −N0
pq (3.30)

N0
qp = M0

pq ⊗ Λqp (3.31)

M0
q = M0

qp +N0
qp (3.32)

This top-down pass computes M0
pq, N

0
qp, and M0

q for all parent-child pairs p, q and relies

on M0
qp and N0

pq being pre-computed (these were computed during the initial dynamic

progamming step). As the user moves the mouse to drag a part j(t) to location θ̃j(t),

we can display in real-time the solution corresponding to M t
j(t)[θ̃j(t)]. When the user

releases the mouse to finalize a part location θ̃j(t), we encode the user response into an

updated unary potential uj(t) according to Eqn 3.25, which is used to update the ML

solution for that part:

M t+1
j(t) [θj(t)] = M t

j(t) + uj(t)(θj(t); θ̃j(t)) (3.33)

We then propagate this new information to other parts using a single pass, breadth-first

traversal of the graph T , originating from the node j(t). The update step is depicted in

Fig 3.16(d):

M t+1
qp = M t

qp, N t+1
pq = N t

pq (3.34)

M t+1
pq = M t+1

p −N t+1
pq (3.35)

N t+1
qp = M t+1

pq ⊗ Λqp (3.36)

M t+1
q = M t+1

qp +N t+1
qp (3.37)

where q is any neighbor of p. This update is efficient in practice and involves computing

one distance transform operation per edge in the part tree. Both the update step and

precomputation steps take linear time in the number of parts, scales, aspects, and pixel

locations.
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Chapter 4

Interactive Learning Algorithms

In this chapter, we propose a simple method for large scale learning and annota-

tion of structured models. The system interleaves interactive labeling (where the current

model is used to semi-automate the labeling of a new example) and online learning

(where a newly labeled example is used to update the current model parameters). This

is scalable to large datasets and complex image models and is shown to have good theo-

retical and practical properties in terms of train time, optimality guarantees, and bounds

on the amount of annotation effort per image. We demonstrate that the system can be

used to efficiently and robustly train part and pose detectors on the CUB Birds-200–a

challenging dataset of birds in unconstrained pose and environment.

4.1 Introduction

Over the last few years, there has been growing interest in structured learning

methods for problems such as part-based detection, scene understanding, and segmen-

tation. Part-based methods [29, 6, 22] have achieved state-of-the-art results on datasets

such as VOC detection and have demonstrated increasingly practical computational

properties. There is growing awareness in the field that more strongly localized models

are a necessary ingredient toward solving object detection, and, ultimately, scene under-

standing. This line of research has been held back by the size of available training sets

and by the fact that most datasets do not go beyond image-level and bounding-box-level

annotations. Unfortunately, more detailed annotation of things such as part locations

58
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Figure 4.1: Interactive Labeling and Online Learning of Part Models: A part model
is trained in online fashion, where annotation becomes increasingly automated as more
images are labeled. The diagram shows how the interactive labeling interface changes
on a particular test image as the size of the training set increases, with green lines rep-
resenting parts that were dragged by the user.

and object poses can be expensive or logistically complicated to obtain.

Weakly supervised methods, where the level of annotation is less detailed than

the underlying model, have shown great promise toward addressing this problem. Suc-

cessful algorithms or applications include multiple instance learning [21], latent parts

[29], latent structural SVMs [90], and expectation maximization on constellation mod-

els [84]. The solution found by these types of methods will usually be a local mini-

mum of some non-convex objective function. Parameter learning of MRF/CRFs with

latent/unobserved variables is in general an NP-hard problem. As a result, training can

be slow and pinpointing the source of classification error–whether it’s due to optimiza-

tion error, inappropriate model or feature space, or insufficient training data–is more of

an art than a science.

Strongly supervised methods, where the level of annotation is the same as the
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underlying model, are typically easier learning problems. A wide variety of strongly su-

pervised learning algorithms and applications, such as binary classification, learning of

sliding window detectors, parameter learning for CRFs, and structured prediction, can

be formulated as convex optimization problems with polynomial time solutions. These

algorithms have well understood theoretical properties with respect to computation time

and generalization guarantees. The theoretical differences between strongly and weakly

supervised algorithms means that the style and quality of annotation has a significant

effect on the computational properties of training and the quality of the models learnt.

Along this line of thought, Bourdev and Malik [6] have advocated ”hyper-supervised”

methods, arguing that researchers exaggerate the extent to which human annotation is

the bottleneck to solving computer vision. They introduced a poselet model which re-

quires more detailed labelings of parts and poses. The Lotus Hill dataset [89] of Zhu et

al. echoes this sentiment.

In this chapter, we ask the question is it possible to maintain the benefits of

strongly supervised methods–computational tractability, performance guarantees, and

scalability to more complex models–and the benefits of weakly supervised methods–

reduced human annotation time–at the same time? We argue that the answer is yes,

using a combination of online learning and interactive labeling, which is depicted in

Fig. 4.1. The basic idea is that a well functioning computer vision system should be

able to predict all image labels with no human interaction, whereas an imperfect com-

puter vision system (e.g., one trained on insufficient training data) is still capable of

accelerating the more mundane or obvious labeling tasks. Thus as we incrementally

train a vision system, we should be able to increasingly reduce the amount of annotation

per image.

General Framework: We propose the following framework for large scale training of

computer vision systems:

1. Model the relationships between different variables using some structured model,

such that runtime inference is computationally efficient

2. Ask a human to label a new image, using the current model to predict and display

the maximum likelihood values of all variables as the user adjusts incorrect labels.
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3. Update the learned model parameters using the newly labeled image

4. Repeat steps 2-3

We focus the discussion and experiments on annotation of deformable part models; how-

ever, the same basic methodologies should apply to a wide variety of other problems

such as tracking, segmentation, and scene understanding.

Online Structured Learning: We employ online algorithms which optimize a struc-

tured SVM objective function [71], a convex optimization problem that has been applied

to a wide variety of different problems in computer vision [5, 88, 52, 19, 64]. While the

SVMstruct solver is most commonly used, online optimization algorithms have been ob-

served to be faster in practice [19, 88]. This result is supported theoretically by results

relating to online learning algorithms for strongly convex loss functions [36, 33, 63, 57].

Theoretical Properties: Online algorithms have a few somewhat surprising theoretical

properties that are useful in practice when applied to structured learning. First, asymp-

totic bounds for training time do not directly depend on the number of training images

available. In practice this means that if one’s goal is to reach a solution within ε of the

minimal achievable training error, the amount of processing per training image shrinks

as the training set size increases.

Second, in the setting in which one keeps labeling new examples until one

achieves ε-level test error, increasing the structural complexity of the model (e.g., num-

ber of parts or alignment parameters) does not increase theoretical bounds on total an-

notation effort (if the feature space remains fixed and annotation effort is measured in

terms of total labels corrected–the product of the number of training images required

and correction operations per image).

Active Labeling: Interactive labeling–also called active labeling–has been applied to

interactive image segmentation or matting [58, 87, 43], semi-automated video annota-

tion [91, 77, 1], and active classification for class-attribute models [10, 47]. Active la-

beling interfaces use known relationships between variables in some structured model to

reduce annotation time: the labels of neighboring pixels are correlated for segmentation

methods, the position of an object in consecutive time frames are correlated for video an-
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notation methods, and class and attribute variables are correlated for active classification

methods. For our interface, the primary source of information for reducing annotation

time is the spatial relationships between different parts.

Active Learning: Our work also has some similarities to the work of Vijayanarasimhan

et al. [74, 75] relating to large scale annotation and active learning for structured objects.

In active learning, computers intelligently decide which images and labels they want

humans to annotate. In contrast, for interactive labeling methods, human annotators are

the intelligent entity and decide which labels they want to correct. Active learning is

a more ambitious learning problem with larger potential savings; however, in compar-

ison to standard strongly supervised methods, it has higher computational complexity

and fewer theoretical guarantees. In contrast, interactive labeling and online learning

maintain the computational properties and theoretical guarantees of strongly supervised

methods and may be applied to arbitrary structured prediction models.

4.2 Online Structured Learning

Our method jointly learns the appearance and spatial parameters of our de-

formable part model. We formulate the problem as a maximum margin structured learn-

ing problem (structured SVM [71]), which searches for the optimal vector of weights

w∗ that minimizes the error function Fn(w):

Fn(w) =
λ

2
‖w‖2 +

1

n

n∑
i=1

`i(w) (4.1)

`i(w) = max
y

(w · Φ(xi, y)−w · Φ(xi, yi) + ∆(yi, y)) (4.2)

where {(x1, y1)...(xn, yn)} is a training set of images and ground truth labels (for part

detection, y = Θ). Φ(x, y) is a vector of features extracted with respect to a particular

prediction of part labels y (e.g., it concatenates HOG features extracted from around

each part location and squared distances between adjacent parts). This criterion attempts

to learn a set of weight parameters w, such that the score extracted at the ground truth

part locations w ·Φ(xi, yi) is greater than the score of any other choice of part locations

w · Φ(xi, y) by at least ∆(yi, y), a customizable loss function encoding the penalty of
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Algorithm 3 ONLINEINTERACTIVEPARTLEARNER

1: Initialize w0 ← 0, s← 0

2: for i = 1 to n do

3: Obtain new example xi:

yi ← INTERACTIVEPARTLABELER(ws, xi)

4: Update weights using Eq 4.5 or 4.7

5: s← s+ 1

6: Optional: w/ spare CPU cycles, repeat lines 4-5

7: end for

predicting part locations y when the true locations are yi.

The structured hinge loss `i(w) is convex in w, because it is the maximum of a

set of affine functions. The gradient (or technically a sub-gradient) of `i can be computed

by solving a problem similar to an inference problem:

ȳi = max
y

(w · Φ(xi, y) + ∆(yi, y)) (4.3)

∇`i = Φ(xi, ȳi)− Φ(xi, yi) (4.4)

Learning with strongly convex loss functions (this includes arbitrary convex loss

function with L2 regularization added such as Eq 4.1) has recently been extensively

studied in online learning literature [36, 33, 63, 57]. [33, 36] show that for learning

problems with λ-strongly convex loss functions (e.g., the form of Eq 4.1), an online

stochastic gradient descent (SGD) which streams in an example (xs, ys) and takes an

update step

ws = ws−1 −
1

λs
(λws−1 +∇`s) (4.5)

achieves at most logarithmic regret

S∑
s=1

fs(ws)−min
w

S∑
s=1

fs(w) ≤ R2 (logS + 1)

2λ
(4.6)

where fs(w) = λ
2
‖w‖2 + `s(w) and R is a bound on the magnitude of the gradient of

fs(w). The regret is measured as the total loss incurred as one streams in new unseen

training examples as compared to the minimum achievable loss over the entire training
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set. It implies that even when using a simple optimization algorithm which takes only

one gradient step per training example, average test error goes with O( logn
n

)–a faster

statistical convergence rate than those implied by standard VC bounds for binary classi-

fication (if the loss one cares about some is some strongly convex loss function instead

of 0/1 binary classification loss, bounds on generalization error go with Õ( 1
n
) instead of

O( 1√
n
).

For structured SVMs (as well as for linear SVMs), R is related to a bound on

the L2 norm of the image of Φ(x, y) and is typically proportional to the dimensionality

of the feature space. Regret bounds hold regardless of the order examples are processed

and for any algorithm that improves the dual objective to Eq 4.1 by at least as much

as SGD [36]. A variant of SGD is used by Pegasos [63], a popular online learning

algorithm for linear SVMs. A slightly better update

ws =
s− 1

s
ws−1 −min

(
1

λs
,
`s(ws−1)

‖∇`s‖2

)
∇`s (4.7)

solves for the step size which maximally improves the dual objective in closed form and

is similar to an online version of the update used by LIBLINEAR [25], a fast optimizer

for linear SVMs.

By choosing S such that regret bounds in Eq 4.6 are less than ε, one can show that

if one iterates for S = Õ(R
2

λε
) iterations and processes each training example an equal

number of times, then the converged solution is guaranteed to be within ε of the minimal

achievable training error. Similarly, if one attains n = Õ( R
2

δλε
) training examples, then

with probability at least 1−δ, the expected error on a random test example will be within

ε of the minimum achievable model error f(w∗).

One important implication is that training time does not depend directly on the

number of training examples. In practice this means that that the number of iterations

of gradient descent one must run per training example shrinks as the training set size in-

creases. Secondly, structured SVMs have the same empirical and statistical convergence

properties as linear SVMs; the only difference is that for structured SVMs the time to

compute the gradient (Eq 4.4) grows with inference time.

Combining Interactive Labeling: Incorporating interactive labeling is simple: every

time we obtain a new training example, we use our our current model parameters ws
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Figure 4.2: Typical Results on Birds-200, with blue dots denoting parts predicted by a
deformable part model trained on a 1000 image training set, and red dots denoting parts
that were corrected by a simulated user (as described in Section 4.3)

to accelerate the labeling process (see Algorithm 3). We use a loss function ∆(yi, y)

equal to the number of misclassified labels (e.g.number of incorrect parts in a given

image). We assume a predicted part location is correct if its x, y location is within some

sufficiently small radius from the ground truth location.

One motivation for using structured SVMs is that the structured hinge loss `i(w)

is always at least as big as the custom loss function ∆(yi, y) [71], as is the regularized

error fi(w). Thus the total loss incurred during online learning
∑S

s=1 fs(ws) (which is

bounded by regret bounds in Eq 4.6) is an upper bound on the total number of incorrect

labels throughout the course of training. As a consequence, obtaining n = Õ( R
2

δλε
)

training examples ensures not only that (with high probability) average test error will be

no more than f(w∗)+ ε but also that the average number of labels corrected per training

example will be no more than f(w∗) + ε. Intuitively, it becomes harder and harder

to drive down generalization error as one adds more and more training examples, such

that the majority of training examples are labeled with a similar level of error as that at

final convergence. These results suggest that increasing the structural complexity of the

model (e.g.adding more parts or mixture components) while fixing the dimensionality

of the feature space Φ(x, y) does not necessarily increase the total amount of annotation

effort during training.

Labeling Bias and Time Considerations: We emphasize though that these results are

measured in terms of the total number of labels corrected during training and not directly

in terms of human annotation time. We still assume that the user must verify correctness
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of machine-predicted labels. Clearly in practice this will result in additional annotation

time. Secondly, bounds on the number of corrected labels are less useful if f(w∗) is high

(e.g., the chosen feature space saturates and is not capable of getting good performance).

A second concern relates to the effect of interactive labeling on biasing user

labels. For example, using an interactive part labeling tool will result in slightly different

labeled pixel locations for some parts. It is our assumption that an annotator will submit

a final label which he/she believes to be acceptable. Continuous variables such as part

locations have some range of acceptability and are prone to fluctuation from annotator

to annotator. Interactive labeling biases annotated locations within this range. We intend

to study effects of labeling bias and annotation time in future work.

Diagnosing Sources of Error: Combining online learning and active labeling has a

few nice practical properties which facilitate debugging when training is unsuccessful.

Methodologies for diagnosing problems due to insufficient training data, insufficient

computation time, bad model or feature space, and annotation error are described in the

supplementary material.

4.3 Experiments

To demonstrate the practicality and effectiveness of our interactive labeling and

learning system, we test performance on two different datasets using two different user

interfaces: CUB-200-2011 [79], which allows users to simply click and drag the location

of a particular part, and a dataset of synthetic birds, which also allows users to alter the

scale, orientation, and aspect of each part. Results on the synthetic dataset are included

in the supplementary material.

CUB-200-2011 [79] is an extended version of the Caltech-UCSD Birds 200

dataset [86] and contains 11,788 images of birds of 200 species. The dataset contains

uncropped images of birds in the wild, including birds that are flying, perched, swim-

ming, truncated and occluded. Each image was annotated by 5 different Mechanical

Turk users by a simple x, y coordinate (e.g.users were asked to click on the center of

each part) and associated with a non-semantic aspect.

Although our interface is practical and realtime, it requires background process-
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ing to precompute lookup tables when the user releases the mouse. Thus the engineering

challenges associated with mass-deploying our system on MTurk were beyond the scope

of this paper. Since the dataset contains an exhaustive set of part click locations for each

training image, we constructed a simulated user interface as follows:

1. The computer vision system updates its prediction of the most likely part locations

2. The simulated user selects and drags the part with maximum distance to his/her

click response (normalized by a per part standard deviation)

3. If all part predictions are within 1.5 standard deviations from the user’s click re-

sponse, the session ends. Otherwise, steps 1-2 are repeated.

We processed training images in random order, ignoring bird species labels. The stan-

dard deviation of user click responses was computed separately for each part, using 5

different MTurk responses per image. Qualitatively, the simulated interface was fairly

true to life (see Figure 4.2).

Since we are interested in understanding how total annotation time changes as

we train our part detectors in an online fashion, we varied the training set size from 50 to

4000 images and used the remaining images as test data. The results of our experiments

are summarized in Figure 4.3. Each curve in Figure 4.3a shows part prediction accuracy

(measured as the number of parts within 1.5 standard deviations of a user click response)

as a function of the number of parts corrected by the interactive interface.

Additionally, we measure the average number of parts that needed to be labeled

until all part predictions were deemed acceptable. We see that of 13 possible parts, on

average the user needed to label 6.6 parts when using only 50 training examples. This

was reduced to 3.9 parts when the training set was increased to 4000 images. At this

point, the benefits of adding more training images were small, and errors were mostly

attributable to saturation of the model/feature space.

Figure 4.3b plots the same results, except that we measured performance as a

function of the duration (in terms of human time spent) of the interactive interface.

This was estimated using timing data for each part click response in the CUB-200-2011

dataset. The average duration of an interactive labeling session was 12.0 seconds when
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Figure 4.3: Results on Birds-200: (a) Average part prediction accuracy as a function of
the number of annotated parts per image. Each curve shows performance for a different
training set size, indicating annotation becomes progressively more automated as more
images are labeled. The legend shows the average number of parts that needed to be
labeled until all 13 were correct. An upward curving plot indicates interactive labeling
is effective. (b) Part prediction accuracy as a function of labeling time per image.

using the detectors trained on the set of 4000 images and 19.7 seconds when trained on

50 images.

Computational Properties: The bird model we used consisted of 13 different parts, 11

aspects, and 4 scales. Total preprocessing time (which includes computing HOG fea-

tures, evaluating sliding window detectors, and running dynamic programming) takes

less than 1 second on a single 2.4GHz CPU. As the user drags a part, the predicted part

locations are displayed as a simple lookup operation (which easily runs in realtime).

Each time the user releases the mouse to finalize a part location, lookup tables are up-

dated, which takes approximately .3 seconds. Total training time of the standalone on-

line structured learning algorithm was approximately 3 hours on the 4000 image dataset

on an 8-core computer when training, where training was stopped when it reached an

approximation factor of ε = .02 from the minimal achievable training error.
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4.4 Conclusion

We proposed a framework for large scale annotation and learning of structured

models that has excellent theoretical properties in terms of computation time and an-

notation effort. We introduced a novel interface for interactive labeling of deformable

part models that is capable of updating and displaying the maximum likelihood location

of each part in realtime as the user drags the mouse, and applied this model to our in-

teractive, online learning framework. In future work, we hope to deploy our system on

a larger scale and apply similar methodologies to other domains such as segmentation,

tracking, and scene understanding.
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Chapter 5

Methodologies For Diagnosing Errors

in Learned Computer Vision Systems

5.1 Introduction

Suppose we have trained an object detection system and discover that test perfor-

mance is lower than expected. How can we diagnose what went wrong? Is the problem

due to insufficient training data, a bad model or feature space, annotation error, or insuf-

ficient computation time? If we can pinpoint the main bottleneck, how can we enact a

change to fix it without recollecting an entirely new dataset or re-training from scratch?

These questions are fundamental problems in computer vision and machine learn-

ing that one will inevitably encounter when building a practical system. Although every

good researcher will develop her own methodologies for solving these problems, these

issues are seldom the focus of academic papers. In this paper, we introduce an inte-

grated framework for training, collecting data, diagnosing different sources of test error,

and correcting problems. It is designed to be computationally practical and scalable to

large datasets, theoretically sound, and general enough to be applied to a wide variety

of different learning problems, including multiclass classification, object detection, de-

formable part models, and attribute models. The general approach is summarized in the

caption of Fig 5.1.

Development of learning-based computer vision systems can be broken down

70
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Figure 5.1: Proposed framework for annotation, training, and diagnosing different
types of errors. Items in gray are executed by a computer, while items in pink are exe-
cuted by a human. Items drawn using diamonds indicate a test or diagnosis technique.
Tests to determine whether or not the model or feature space has saturated, sufficient
training examples have been labeled, or sufficient computation time has been spent are
automated by the computer system and can be communicated to the researcher/annotator
via dynamically generated plots or figures. A test to determine if an example has been
mislabeled is semi-automated by the computer system: it proposes examples that are
likely to be mislabeled, which in turn must be verified by a human annotator. All
ensuing changes such as newly labeled training examples, manually corrected labels,
and changes to the model or feature space are implemented using online updates to the
learned model without re-training the system.

into four major modules or disciplines–dataset collection, feature and model design,

statistical machine learning, and optimization algorithms. Individually, each of these

disciplines is fairly mature, with sophisticated algorithms and well developed theoretical

analysis; however, we believe that methodologies to correctly combine them together

into a cohesive system are still deficient and unsatisfactory. Each module has a number

of different choices or parameters, and these choices have complex dependencies on

other modules. For example, when collecting a dataset, one can choose what type of

annotation to collect (e.g., class labels, bounding boxes, part locations, segmentations)

and how many images to label. The type of annotation determines which types of image

models (e.g., sliding window, pictorial structures, etc.) are computationally tractible.
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The number of training examples that one should collect depends on the complexity of

the feature space (e.g., larger feature spaces requiring more training examples to avoid

over-fitting and smaller feature spaces requiring fewer examples but being incapable of

getting low training error). The type of image model impacts which types of features are

appropriate (e.g., a non-localized model necessitates translation invariant features like

bag-of-words, whereas a sliding window or part-based model can use spatially localized

features). Different types of optimization algorithms and learning objective functions

are tractible for large datasets vs. small datasets. As a result, there is a severe limitation

on how far we can go if we think about each module fully independently or treat other

modules as black boxes. The dependencies that choices in different modules have on one

another have significant effects on the asymptotic properties of both compute time and

the number of training examples required to attain a given accuracy on test data–they

are not mere details or simple parameter choices.

Moreover, we have a tendency to not prioritize research according to what is the

biggest bottleneck toward solving the problem as a whole. For example, data collection

can be laborious and is usually perceived as an unglamorous or a difficult area to publish

academic papers. As a result, most researchers will depend primarily on fixed datasets

that were collected by a different research group. Identifying a dataset as a bottleneck

is a slow and cumbersome process in our current research culture: we observe general

trends in dataset performance levels from paper deadline to paper deadline, which even-

tually taper off as researchers sweep over different possible choices of what features

and learning algorithms. For example, performance levels on Caltech-101 have not

increased very much in the last 5 years, and improvements on the VOC Detection Chal-

lenge have slowed down significantly in the last 3 years. As a result, people increasingly

suspect that obtaining larger datasets or different types of annotations will be necessary

if we truly want to solve computer vision problems. To be able to more quickly diag-

nose the bottleneck of learning-based computer vision systems, we argue that datasets

should evolve at a finer granularity, and that procedures for data collection should be

more integrated with procedures for choosing features and learning algorithms.

Our approach to this problem is limited to problems that can be formulated as

a structured SVM problem; however, it could also be applied to other problems that
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optimize a convex upper bound on some loss function. We show in Chapter 7 that this

formulation encompasses many of the most popular and highest performing methods for

multiclass classification [53, 42], object detection [29, 73], pose registration [88, 93],

attribute learning [40, 26], tracking, segmentation, and action recognition. In Chapter 6,

we demonstrate that training that this approach is computationally practical for large

datasets. In this chapter, we add a few additional components:

1. We augment the online structured SVM learning algorithm from Chapter 6 to ef-

ficiently compute statistics to diagnose errors due to insufficient training data, bad

model or feature space, or insufficient computation time, which can be interac-

tively communicated to researchers and annotators

2. We introduce a procedure for semi-automatically identifying mislabeled, ambigu-

ous, or difficult training examples, and introduce online update steps that allow

annotators to remove examples, correct labels, or re-weight examples without re-

training the system.

3. We introduce an algorithm for incrementally augmenting the feature space that

can be interpreted as a boosting algorithm applied to max-margin structured pre-

diction

5.2 Algorithm and Main Framework

5.2.1 Optimization Algorithm

Our framework is applicable to structured SVM learning; please refer to 1.2.1-

1.2.2 for a description of the applicable notation and problem definition. The basic goal

is to train a system to predict a structured output Y given a data example X (e.g., Y

could be an image segmentation, set of detected part locations, etc.).

In this chapter, we extend the optimization framework that is described in Chap-

ter 6 to add different types of interactive feedback to annotators and researchers and

online updates for changing the model or feature space or re-labeling examples. The

goal of the optimization algorithm minimize the structured SVM training error Fn(w) =
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∑n
i=1 f(w;Xi, Yi), where f(w;Xi, Yi) is a strongly convex loss function (see Eq 6.19)

that is an upper bound on a customizable loss function ∆(Y, Yi). The optimization al-

gorithm works by sequentially updating w with respect to a training example (Xi, Yi),

where (Xi, Yi) could be a newly labeled training example or one that has already been

processed before. The update is based on choosing dual parameters αi that maximize

(or approximately maximizes) the dual objective

max
α1...αn

Dn(α1...αn) = min
w

Fn(w) (5.1)

where Dn(α1...αn) can be written as (see [71])

Dn(α1...αn) = − 1

2λn

∑
i,Y

∑
j,Y ′

αYi α
Y ′

j 〈vYi ,vY
′

j 〉+
∑
i,Y

αYi ∆(Y, Yi) (5.2)

s.t., ∀i

(
∀Y , αYi ≥ 0,

∑
Y

αYi ≤ 1

)
(5.3)

Here, each vYi is a vector

vYi = Ψ(Xi, Y )−Ψ(Xi, Yi) (5.4)

that is weighted by a corresponding scalar αYi , with αY1
i , α

Y2
i , α

Y3
i encoding a weight on

every possible label Y for a training example i. For example, for sliding window based

detection, each vYi is a vector of features extracted at a candidate bounding box location

Y and is weighted by a dual parameter αYi . Note that vȲtt = ∇`(w, Zt). The relationship

between the dual parameters α and primal parameters wt is

wt = − 1

λt

t∑
i=1

ui, ui =
∑
Y

αYi vYi (5.5)

Pseudo code for the full algorithm is depicted in Algorithm 4.

5.2.2 Diagnostic Statistics

In this section, we show how the optimization algorithm presented in the pre-

vious section can be modified to allow efficiently computable empirical estimates of

the minimum achievable model error, training error, and test error, which can be used

to differentiate errors due to insufficient training data, bad model or feature space, or

insufficient computation time spent.
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Lower bound on minimum achievable training error:

We can compute a lower bound ET
model on the minimum achievable training er-

ror:

ET
model =

T∑
t=1

∆Dt (5.6)

≤ min
w

FT (w) (5.7)

The inequality follows from the weak duality theorem

DT (α1...αT ) ≤ min
w

FT (w) (5.8)

where DT (α1...αT ) =
∑T

t=1 ∆Dt. Thus if ET
model

T
is high, it implies that the model or

feature space has definitely saturated and it is incapable of getting a lower average error

per training example. Given a target test error level ε, we can signal the researcher to

make a change to the model or feature space if ET
model

T
≥ ε. For a dataset of size n,

ET
model

T
converges toward the minimum achievable training error as T increases: ET

model

T
+

O( log T
T

) = 1
n

minw Fn(w) (see Thm 5.2.1).

Optimization error:

We can compute an online estimate of the training error ET
train:

ET
train =

T∑
t=1

f(wt−1;Zt) (5.9)

which is the loss measured in each iteration of Algorithm 4. The quantity

ET
regret = ET

train − ET
model (5.10)

is an estimate of the error we have incurred because we haven’t spent enough com-

putation time1. ET
regret

T
converges toward zero as T increases: ET

regret

T
= O( log T

T
) (see

Thm 5.2.1). If ET
regret

T
≥ ε and each training example has been processed by Algorithm 4

an equal number of times, we can safely conclude that the amount of error due to insuf-

ficient computation time spent is less than ε and can safely sleep until annotators add a

new training example (thereby saving CPU cycles).
1it is actually an empirically measured upper bound on the online regret
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Online estimate of test error:

We can compute an online estimate of the test error En
test:

En
test =

n∑
i=1

f(wti−1;Zti) (5.11)

where ti = S1
i stores the iteration when example (Xi, Yi) was first processed by Algo-

rithm 4. In other words, En
test measures the loss on each example the first time it was

encountered and before it was used to update the model parameters. This is one practical

benefit of online learning algorithms (e.g., we can efficiently estimate test error without

necessitating expensive procedures like leave-one-out cross validation). If En
test ≤ ε, it

implies that we have reached our target test performance and can terminate training and

labeling new examples.

5.2.3 Theoretical Guarantees

We can use results from online learning theory to bound test error for customiz-

able loss functions ∆(g(Xt; w), Y ), giving us worst case bounds on the number of train-

ing examples and amount of computation time we will need to attain a given level of

test error. Since these bounds will usually be very pessimistic in practice, we also relate

these bounds to the empirically measured statistics introduced in the previous section

provide (which will be much tighter in practice).

Theorem 5.2.1 Let f(w;Z) be the structured SVM objective defined in Eqn 1.7. Let

L =
√
λ + 2R, where ‖Ψ(X, Y )‖ ≤ R is a bound on the image of Ψ. If Algorithm 4 is

run for T iterations:

1. Generalization Error: With T = n where training examples Z1...Zn are selected

independently at random, then

EZ [∆(g(X; wT ), Y )] ≤ EZ1...Zn

[
En
test

n

]
(5.12)

and with probability at least 1− δ

EZ [∆(g(X; wT ), Y )] ≤ min
w

EZ [f(w;Z)] +
L2(log(n) + 1)

2δλn
(5.13)
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2. Optimization error: Let w̄ = 1
T

∑T
t=1 wt−1. If Algorithm 4 is run for T = mn

iterations, passing over each example m ≥ 1 times. The average training error

can be bounded in relation to the minimum achievable training error:

1

n
Fn(w̄) ≤

(
1

n
min

w
Fn(w)

)
+
ET
regret

T
(5.14)

≤
(

1

n
min

w
Fn(w)

)
+
L2(log(mn) + 1)

2λmn
(5.15)

A proof is in Appendix 5.3. Similar results were first presented in [57]. One

implication is that if we take only a single pass through the training set (setting m = 1),

where train time equals test time, the optimization error (e.g., error because we haven’t

spent enough computation time) converges at the same asymptotic rate as the general-

ization error (e.g., error because we don’t have enough training examples). Thus when

computation time is a bottleneck, it is better to use as many training examples as possi-

ble (use a large value for n and a small value for m). A second implication is that the

convergence rates for structured SVMs are the same as for linear SVMs, with the same

constants involved [63], and therefore we don’t sacrifice theoretical guarantees by using

an application specific loss function ∆(g(Xt; w), Y ).

5.2.4 Non-Traditional Online Updates

In this section, we derive different types of online update steps, including re-

moving examples, correcting mislabeled examples, re-weighting difficult examples, and

altering the feature space. As a building block to these update steps, let j < t be some

iteration of Algorithm 4 with corresponding most violated label Ȳj and weight αȲjj . Sup-

pose we want to change αȲjj to some new value α
Ȳ ∗j
j . Then the subsequent change in Dt

(Eq 5.3) and wt (Eq 5.5) are:

∆Dαt = Dt(α1...αj−1, α
Ȳ ∗j
j , ..., αt)−Dt(α1...αj−1, α

Ȳj
j , ..., αt) (5.16)

= (α
Ȳ ∗j
j − α

Ȳj
j )
(
〈wt,v

Ȳj
j 〉+ ∆(Ȳj, Yj)

)
−

(
(α

Ȳ ∗j
j − α

Ȳj
j )v

Ȳj
j

)2

2λt
(5.17)

wt ← wt −
α
Ȳ ∗j
j − α

Ȳj
j

λt
v
Ȳj
j (5.18)
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This procedure is implemented in the function CHANGEALPHA(j, α
Ȳ ∗j
j ). Note that ∆Dαt

is maximized by setting α
Ȳ ∗j
j to:

α
Ȳ ∗j
j = min

1,max

0, α
Ȳj
j +

λt
(
〈wt,v

Ȳj
j 〉+ ∆(Ȳj, Yj)

)
‖vȲjj ‖2

 (5.19)

Correcting Mislabeled or Difficult Training Examples:

Since correcting mislabeled training examples fully automatically is unrealisti-

cally difficult, we propose a simple semi-automated procedure for identifying and cor-

recting mislabeled examples. Here, our algorithm maintains a list of training examples

that are sorted by their likelihood of being mislabeled. An annotator can browse this list

as a sorted gallery of images and choose to re-label examples that appear to be incor-

rect. We assume that if an example repeatedly has high training error it is more likely

to be mislabeled, inherently difficult, or ambiguous to label. We thus compute ei as the

average training error of Xi, Yi over the course of Algorithm 4

ei =
1

|Si|
∑
j∈Si

f(wj−1;Zj) (5.20)

and present the user with a gallery of images sorted by ei. The annotator can perform

two different kinds of operations: label correction, where a bad label Yi is replaced by a

good label Y ∗i , or loss correction, where the loss function for example i is changed from

∆(Y, Yi) to some custom value ∆∗(Y, Yi). The latter case is intended to handle examples

that are inherently difficult or ambiguous to label. In other words, if an example is

difficult to label even for a human, we can down play its contribution to our training

error.

Both corrections can be performed using an online update that does not necessi-

tate re-training. The update is implemented in RELABELEXAMPLE(i, Y ∗i ,∆
∗) of Algo-

rithm 5. The procedure begins by removing the old label by setting each αȲjj to 0. The

old label is replaced with the new one, whereupon we solve for the new optimal value

of αȲjj according to Eq 5.19.



79

Augmenting the Feature Space:

In Section 5.2.2, we introduced a test for detecting that the feature space has

saturated, such that achieving lower training error is impossible. At this point, the re-

searcher should choose to increase the complexity of the model or feature space. In

this section, we introduce an algorithm for intelligently selecting a new feature to add

from a pool of candidate features φ1(Z)...φF (Z). Suppose Algorithm 4 has been run for

t iterations, such that Fn(w) has been approximated by F̄ t
n(w), the loss over samples

Ȳ1...Ȳt:

F̄ t
n(w) =

tλ

2
‖w‖2 +

t∑
i=1

¯̀
i(w) (5.21)

¯̀
i(w) = max(0, 〈w,Ψ(Xi, Ȳi)−Ψ(Xi, Yi)〉+ ∆(Ȳi, Yi)) (5.22)

By Thm 5.2.1, F̄ t
n(w) becomes an arbitrarily good approximation as t increases:

1
n

minw Fn(w) = 1
t
F̄ t
n(w̄) +O( log t

t
). We can select a new feature to add φj(Z) using a

boosting algorithm that selects the next feature based on a weighted training set:

j = arg max
j

∣∣∣∣∣
t∑
i=1

βi(φj(Xi, Ȳi)− φj(Xi, Yi))

∣∣∣∣∣ (5.23)

where βi is a per example weight:

βi = 1[¯̀i(w) > 0] (5.24)

This weighting scheme can be derived using either the functional gradient descent or

coordinate descent view of boosting, where Eq 5.23 selects the feature j for which |dF̄T

dwj
|

is highest (the instantaneous change in F̄T is highest as wj goes to 0):

dF̄T
dwj

=
t∑
i=1

βi(φj(Xi, Ȳi)− φj(Xi, Yi)) (5.25)

Another possible weighting scheme is to directly use the current dual parameters as

per-example weights:

βi = αȲii (5.26)

which corresponds to choosing the feature that maximally reduces the dual objective

(Eq 5.3). This can be interpreted as choosing the feature that has potential to reduce the
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minimum achievable training error by the most, since

arg min
w,wj

F̄ t
n([w, wj]) ≥ F̄ t

n(wt) + ∆Djt (5.27)

where F̄ t
n([w, wj]) is the training error when appending the feature φj to Ψ, and ∆Djt is

the change in Eq 5.3 when augmenting the feature space by φj

∆Djt = − 1

2λt

(
t∑
i=1

αȲii (φj(Xi, Ȳi)− φj(Xi, Yi))

)2

(5.28)

5.3 Proof of Thm 5.2.1

Thm 5.2.1 can be derived from results from [36, 33, 63, 62], which have shown

that strongly convex loss functions have fast statistical convergence rates and very effi-

cient online optimization algorithms. These results can be applied to structured SVMs

(which is a strongly convex loss function). A similar result is in [57]. We reproduce the

results here to put things in terms of our notation and to prove validity of our empiri-

cally measured diagnostic statistics. First, we establish a few lemmas that will allow us

to apply the results of [36] to structured SVMs:

Lemma 5.3.1 The projection step in Line 6 of Algorithm 4 can only increase the dual

objective

Proof Line 6 of Algorithm 4 projects wt onto the L2 ball ‖wt‖2 ≤ 1
λ

. It checks if

‖wt‖ > 1√
λ

, and if so scales wt by

s← 1/
√
λ

‖wt‖
(5.29)
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where 0 < s < 1. The corresponding change in the dual objective is

∆Dprojt = Dt(sα)−Dt(α) (5.30)

=

[
−tλ

2
‖swt‖2 + s

∑
i,Y

αYi ∆(Y, Yi)

]
−Dt(α) (5.31)

=

[
−tλ

2
‖swt‖2 + s

(
tλ

2
‖wt‖2 +Dt(α)

)]
−Dt(α) (5.32)

=

[
−tλ

2

s2

λs2
+ s

(
tλ

2

1

λs2
+Dt(α)

)]
−Dt(α) (5.33)

= − t
2

+
t

2s
+ (s− 1)Dt(α) (5.34)

= (1− s)
(
t

2s
−Dt(α)

)
(5.35)

≥ 0 (5.36)

where the last line follows because 1− s > 0 and Dt(α) ≤ t
2s

:

Dt(α) = −tλ
2
‖wt‖2 +

∑
i,Y

αYi ∆(Y, Yi) (5.37)

= −tλ
2

1

λs2
+
∑
i,Y

αYi ∆(Y, Yi) (5.38)

= − t

2s2
+
∑
i,Y

αYi ∆(Y, Yi) (5.39)

≤ − t

2s2
+ t ≤ − t

2
+ t ≤ t

2s
(5.40)

where we have assumed ∆(Y, Yi) ≤ 1.

Lemma 5.3.2 The magnitude of the gradient of the structured SVM error∇f(wt−1;Zi)

in Algorithm 4 is bounded ‖∇f(wt−1;Zt)‖ ≤
√
λ + 2R, where ‖Ψ(X, Y )‖ ≤ R is a

bound on the image of Ψ.

Proof Since∇`(wt−1;Zt) = Ψ(Xt, Ȳt)−Ψ(Xt, Yt) and ‖Ψ(X, Y )‖ ≤ R for all X, Y ,

it must be the case that ‖∇`(wt−1;Zt)‖ ≤ 2R. Line 6 of Algorithm 4 ensures that

‖wt−1‖ ≤ 1√
λ

. Since∇f(wt−1;Zt) = λwt−1+∇`(wt−1;Zt), by the triangle inequality,

‖∇f(wt−1;Zt)‖ ≤
√
λ+ 2R.
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Lemma 5.3.3 Let g(X; w) = arg maxY 〈w,Ψ(X, Y )〉 be the label predicted by model

parameters w. The loss associated with this prediction is upper-bounded by the struc-

tured hinge loss: `(w;Z) ≥ ∆(g(X; w), Y )

Proof

max
Y ′

(〈w,Ψ(X, Y ′)〉+ ∆(Y ′, Y )) ≥ 〈w,Ψ(X, g(X; w))〉+ ∆(g(X; w), Y )

max
Y ′

(〈w,Ψ(X, Y ′)〉+ ∆(Y ′, Y )) ≥ 〈w,Ψ(X, Y )〉+ ∆(g(X; w), Y )

max
Y ′

(〈w,Ψ(X, Y ′)〉+ ∆(Y ′, Y ))− 〈w,Ψ(X, Y )〉 ≥ ∆(g(X; w), Y )

`(w;Z) ≥ ∆(g(X; w), Y )

Theorem 5.3.4 (Logarithmic Regret) Let f(w;Z) be the structured SVM objective

defined in Eqn 1.7. Let L =
√
λ + 2R, where ‖Ψ(X, Y )‖ ≤ R is a bound on the

image of Ψ. If Algorithm 4 is run for T iterations, The average loss accumulated during

online learning can be bounded in relation to the minimum achievable training error:

1

T

T∑
t=1

∆(g(Xt; w
t−1), Yt) ≤

1

T
min

w
FT (w) +

ET
regret

T
(5.41)

≤ 1

T
min

w
FT (w) +

L2 (log(T ) + 1)

2λT
(5.42)

Proof This proof below closely follows [36]. We begin with the definition of ET
regret

T

from Eq 5.10:

ET
regret

T
=

1

T

T∑
t=1

f(wt−1;Zt)−
1

T

T∑
t=1

∆Dt (5.43)

Rearranging terms and then applying the weak duality theorem:

1

T

T∑
t=1

f(wt−1;Zt) =
1

T

T∑
t=1

∆Dt +
ET
regret

T
(5.44)

=
1

T
DT +

ET
regret

T
(5.45)

≤ 1

T
min

w
FT (w) +

ET
regret

T
(5.46)

Applying Lemma 5.3.3, we can prove the first part of Thm 5.3.4:

1

T

T∑
t=1

∆(g(Xt; w
t−1), Yt) ≤

1

T
min

w
FT (w) +

ET
regret

T
(5.47)
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We now need only prove that ET
regret

T
≤ L2(log(T )+1)

2λT
. In the context of Algo-

rithm 4, ∆Dt satisfies

∆Dt ≥
λ(t− 1)

2t

∥∥wt−1
∥∥2

+ αȲtt
t− 1

t
〈wt−1,vȲtt 〉 −

(αȲtt )2

2λt
‖vȲtt ‖2 + αȲtt ∆(Ȳt, Yt)

The inequality follows by taking the definition of ∆Dt in Line 5 of Algorithm 1 and then

applying Lemma 5.3.1 (the projection step in Line 6 can only increase ∆Dt). Since, αȲtt
is chosen to maximize ∆Dt, the inequality still holds if we plugin a particular value

αȲtt = 1:

∆Dt ≥
λ(t− 1)

2t

∥∥wt−1
∥∥2

+
t− 1

t
〈wt−1,vȲtt 〉 −

1

2λt
‖vȲtt ‖2 + ∆(Ȳt, Yt)

=
λ

2

∥∥wt−1
∥∥2

+ 〈wt−1,vȲtt 〉+ ∆(Ȳt, Yt)−

1

2λt
‖vȲtt ‖2 − λ

2t

∥∥wt−1
∥∥2 − 1

t
〈wt−1,vȲtt 〉

= f(wt−1;Zt)−
1

2λt
‖vȲtt ‖2 − λ

2t

∥∥wt−1
∥∥2 − 1

t
〈wt−1,vȲtt 〉

= f(wt−1;Zt)−
1

2λt
‖vȲtt + λwt−1‖2

= f(wt−1;Zt)−
1

2λt
‖∇f(wt−1;Zt)‖2

Plugging this into Eq 5.43:

ET
regret

T
≤ 1

T

T∑
t=1

f(wt−1;Zt)−
1

T

T∑
t=1

(
f(wt−1;Zt)−

1

2λt
‖∇f(wt−1;Zt)‖2

)

=
1

T

T∑
t=1

1

2λt
‖∇f(wt−1;Zt)‖2

Applying Lemma 5.3.2, it follows that

ET
regret

T
≤ 1

T

T∑
t=1

1

2λt
L2

Using the fact that
∑T

t=1
1
t
≤ log(T ) + 1 completes the proof:

ET
regret

T
≤ L2(log(T ) + 1)

2λT

Thm 5.2.1.1 The proof can be directly taken from the proof of Theorems 2 and 3 in [63]
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Thm 5.2.1.2 Since f(w) is convex, by Jensen’s inequality

T∑
t=1

f(w̄;Zt) ≤
T∑
t=1

f(wt−1;Zt) (5.48)

Since Algorithm 1 iterates over each examplem times, 1
n
Fn(w̄;Zi) = 1

T

∑T
t=1 f(w̄;Zt).

Applying Thm 5.3.4 completes the proof:

1

n
Fn(w̄) ≤ 1

T

T∑
t=1

f(wt−1;Zt) (5.49)

≤
(

1

n
min

w
Fn(w)

)
+
ET
regret

T
(5.50)

≤
(

1

n
min

w
Fn(w)

)
+
L2(log(mn) + 1)

2λmn
(5.51)

5.4 Online Dual Update Step

In this section, we derive the update step in Algorithm 5, which corresponds to

solving for a step size αȲt
t on the sub-gradient∇`(wt−1;Zt) which maximally increases

the dual problem to the structured SVM error function.

In the context of Line 5 of Algorithm 4, we have already picked a training ex-

ample Zt and maximally violated label Ȳt and seek an assignment to the dual parameter

αȲtt that maximizes the dual objective:

∆Dt = Dt(α1...αt−1, α
Ȳt
t )−Dt−1(α1...αt−1)

=

[
−λt

2
‖wt‖2 +

∑
i=1...t,Y

αYi ∆(Y, Yi)

]
−[

−λ(t− 1)

2
‖wt−1‖2 +

∑
i=1...t−1,Y

αYi ∆(Y, Yi)

]

= −tλ
2
‖wt‖2 +

(t− 1)λ

2
‖wt−1‖2 + αȲtt ∆(Ȳt, Yt)

= −λt
2

∥∥∥∥∥t− 1

t
wt−1 − αȲtt

λt
vȲtt

∥∥∥∥∥
2

+
λ(t− 1)

2
‖wt−1‖2 + αȲtt ∆(Ȳt, Yt)

=
λ(t− 1)

2t

∥∥wt−1
∥∥2

+ αȲtt
t− 1

t
〈wt−1,vȲtt 〉 −

(αȲtt )2

2λt
‖vȲtt ‖2 + αȲtt ∆(Ȳt, Yt)
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This is maximized by setting αȲtt to:

αȲtt = min

(
1,max

(
0,
λ(t− 1) 〈wt−1,vȲtt 〉+ λt ∆(Ȳt, Yt)

‖vȲtt ‖2

))
(5.52)
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Algorithm 4 Online Structured Learning and Annotation
COMPUTER:

1: Initialize: n← 0, t← 1, w0 ← 0, E0
train ← 0, E0

test ← 0, Emodel ← 0

2: repeat

3: Choose example Zt = (Xi, Yi) processed the fewest times, i = arg minj∈1...n |Sj|
4: Suffer loss f(wt−1;Zt) = λ

2
‖wt−1‖2 + 〈wt−1,vȲtt 〉+ ∆(Ȳt, Yi), where

Ȳt ← arg maxY (〈wt−1,Ψ(Xi, Y )〉+ ∆(Y, Yi))

vȲtt ← Ψ(Xi, Ȳt)−Ψ(Xi, Yi)

5: Update weights using Algorithm 7 or Eq 6.12 w/ projective step (Eq 6.15).

6: Compute Diagnostics:

Et
train ← Et−1

train + f(wt−1;Zt)

If |Si| = 0, En
test ← En−1

test + f(wt−1;Zt)

Et
model ← Et−1

model + ∆Dt
If Et

model

t
> ε, model/feature space has saturated

If Et
train−Et

model

t
< ε

10
and ∀i,j, |Si| = |Sj|, optimiz. error is small (can sleep)

If En
test

n
≤ ε, test error is small (can stop labeling data and training)

7: Si ← Si ∪ t, t← t+ 1

8: until E
n
test

n
≤ ε

ANNOTATOR(S):

1: repeat

2: Label new example (Xn+1, Yn+1)

3: Sn+1 ← ∅, n← n+ 1

4: until E
n
test

n
≤ ε
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Algorithm 5 Online Updates

CHANGEALPHA(j, α
Ȳ ∗j
j )

1: d← α
Ȳ ∗j
j − α

Ȳj
j

2: ∆Dαt ← d
(
〈wt,v

Ȳj
j 〉+ ∆(Ȳj, Yj)

)
−(

dv
Ȳj
j

)2

2λt

3: wt ← wt − d
λt

v
Ȳj
j

4: Et
model ← Et

model + ∆Dαt
5: α

Ȳj
j ← α

Ȳ ∗j
j

REMOVEEXAMPLE(i)

1: for j ∈ Si do

2: CHANGEALPHA(j, 0)

3: wt ← t−1
t
wt

4: t← t− 1

5: end for

RELABELEXAMPLE(i, Y ∗i ,∆
∗)

1: For j ∈ Si: CHANGEALPHA(j, 0)

2: Yi ← Y ∗i

3: ∆(Y, Yi)← ∆∗

4: For j ∈ Si: OPTIMIZEALPHA(j)

OPTIMIZEALPHA(i)

1: CHANGEALPHA

(
i,min

(
1,max

(
0,

α
Ȳi
i +λt

(
〈wt,v

Ȳi
i 〉+∆(Ȳi,Yi)

)
‖vȲi

i ‖2

)))

AUGMENTFEATURESPACE()

1: For each i ∈ 1...t, compute example weights βi using Eq 5.24 or Eq 5.25

2: Choose best new feature: j ← arg maxj
∣∣∑t

i=1 βi(φj(Xi, Ȳi)− φj(Xi, Yi))
∣∣

3: For each i ∈ 1...t, append new feature: vȲii ← [vȲii , φj(Xi, Ȳi)− φj(Xi, Yi)]

4: Append weight vector:

wj ← − 1
λt

∑t
i=1 α

Ȳi
i

(
φj(Xi, Ȳi)− φj(Xi, Yi)

)
wt ← [wt, wj]

5: Et
model ← Et

model − λt
2
w2
j

6: For each i ∈ 1...t: OPTIMIZEALPHA(i)



Chapter 6

Faster Customized Optimization

Algorithms For Computer Vision

Learning Problems

In this chapter, we introduce customized optimization algorithms for common

learning problems in computer vision, including object detection, deformable part mod-

els, and cost sensitive multiclass classification. It is based on expanding sequential min-

imization optimization (SMO) and sub-gradient optimization techniques for structured

SVMs, while better incorporating application specific knowledge. It is computation-

ally scalable to very large datasets and complex structural representations. We show

that structured learning is at least as fast–and often much faster–than methods based

on binary classification for problems such as deformable part models, object detection,

and multiclass classification, while achieving accuracies that are at least as good. We

demonstrate fast train times on two challenging large-scale datasets for two very differ-

ent problems: ImageNet for multiclass classification and CUB-200-2011 for deformable

part model training. Our method is shown to be 10-50 times faster than SVMstruct for

cost-sensitive multiclass classification while being about as fast as the fastest 1-vs-all

methods for multiclass classification. For deformable part model training, it is shown

to be 100-1000 times faster than methods based on SVMstruct or mining hard nega-

tives and about 50 times faster than other largescale structured SVM solvers based on

stochastic gradient descent. It has been integrated into a common optimization package

88
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Figure 6.1: We introduce efficient optimization that make structured learning computa-
tionally tractable to very large datasets, significantly reducing train time for deformable
part models, object detection, and cost-sensitive multiclass learning

with the active labeling techniques described in Chapter 4 and the interactive feedback

mechanisms for diagnosing different sources of test error described in Chapter 5.

6.1 Introduction

Over the last twenty years, binary classification algorithms such as SVMs [13],

boosting [30], random forests [11] have become very refined and tested. It is common

practice to try to map computer vision problems into binary classification problems,

which can then be solved using black box optimization algorithms. For example, slid-

ing window object detection problems and deformable part models can be trained by

drawing random bounding box locations or part location assignments as negative exam-

ples and multiclass classification problems can be solved by combining multiple 1-vs-

rest binary classification problems. The prevalence of binary classification methods is

perhaps more a consequence of convenience than anything else. It doesn’t necessarily

have inherently superior theoretical properties to other problem formulations in terms

of computational properties or statistical convergence rates. Instead it helps preserve

a more modular research decomposition between machine learning, optimization, and

applied areas like computer vision.

Nevertheless, computer vision specific learning problems such as training object

detectors and deformable part models have become so common place that it is worth-

while to customize optimization algorithms to these specific applications. This is espe-

cially true because these types of problems are inherently very computationally intensive

and computation time is often the biggest bottleneck toward moving to larger training
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sets or more sophisticated representations. Mapping such problems into binary classi-

fication problems can increase training time by discarding structural properties of the

problem that are exploitable for faster optimization. For example, for multiclass clas-

sification, we know all output classes are mutually exclusive. For object detection, we

know all possible bounding box locations occur on a 2D grid. For part-based detection,

we know the spatial relationship between parts. The improved computational efficiency

comes from concentrating processing on output labels (e.g., bounding box locations)

that have greater training error. The potential performance gains for structured learning

become larger & larger as the problem becomes less and less like binary classification–

it is a small gain for multiclass classification, a sizable gain for object detection, and a

very significant gain for deformable part models.

At the same time, structured learning algorithms such as structured SVMs [71]

are often associated with being slow to train in practice. For example, when applied to

sliding window object detection, the algorithm used in SVMstruct [71] requires running

a sliding window detector on each training image every time the detection model is

updated. We argue that this slowness is a consequence of the particular optimization

algorithms used rather than a fundamental property.

In this chapter, we propose two changes that allow structured SVMs to be at

least as fast as their binary SVM counterparts for problems such as object detection,

deformable part models, and multiclass classification. First, we apply ideas from online

sub-gradient methods [63, 57] and sequential minimization algorithms [25, 38], which

have been shown to be faster than the cutting plane algorithm used in the SVMstruct

package. This improves train time significantly for medium to large-sized training sets.

Second, we allow problem-specific knowledge to be injected into the optimization al-

gorithm by incorporating a user-defined importance sampling function. Here, our op-

timization algorithm takes an update step with respect to a set of intelligently selected

output labels (e.g., a set of bounding boxes in a particular image that have high training

error with respect to the current detector). This helps alleviate the slowness of cutting

plane [71] and sub-gradient methods [57], which involve expensively firing the current

object detector only to update the current model with respect to a single bounding box.

We demonstrate our results on ImageNet and CUB-200-2011, two challenging,
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Binary	  SVM	  with	  
random	  sampling	  

SVM	  –	  Importance	  
Sampling	  

Structured	  
SVM	  

Figure 6.2: Three approaches for training a bird detector: Note that the example
image is purposefully chosen as it contains two distinct sets of negative patches; easy
from the background and hard from the ‘bird of paradise’ plant. (Left) Training a bi-
nary classifier requires a random sampling of negatives, which might be un-informative.
(Right) A traditional structured SVM finds, in each iteration, the hardest sample to up-
date the model, which is wasteful since multiple patches contain discriminative infor-
mation. (Middle) The proposed method, SVM - Importance Sampling, incorporates
domain knowledge in the importance sampling routine and inexpensively updates the
model with respect to a set of samples in each sequential iteration.

large scale datasets for multiclass classification and deformable part model training,

and demonstrate reductions in train time for deformable part model training and cost-

sensitive multiclass SVM learning by a a factor of ∼ 1000 for deformable part model,

and ∼ 20 for cost-sensitive multiclass classification.

6.2 Background and Related Work

Structured SVMs:

Structured SVMs [66, 71] provide a method of training a system to predict a

multidimensional structured output, such as a bounding box, set of part locations, or seg-

mentation. They minimize a convex upper bound on a customizable loss function. Struc-

tured SVMs are a superset of SVM-based learning algorithms, which includes many of

the most popular and highest performing algorithms for object detection [29, 15, 6],

and multiclass classification [42, 18]. They have been successfully applied to many

novel problems, including training object detectors using more appropriate loss func-

tions [5], training multiclass SVMs with customizable class confusion costs [12], train-
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ing deformable part models with multiple poses and occlusion reasoning [88, 8], training

class-attribute structural models [83], and human action segmentation [64].

Binary Classification vs. Structured Prediction:

Problems such as multiclass classification and sliding window object detection

are commonly solved by mapping problems into binary classification problems. While

this has been successful in practice, there are many arguments for preserving the struc-

tural representation, including the ability to optimize more appropriate loss functions

and greater generality and simplicity in constructing learning algorithms for new types

of problems. We also argue that structured learning models–if one chooses the appro-

priate optimization algorithms–will be at least as fast to train for a given test accuracy

and have at least as good generalization guarantees. It is not inherently easy to optimize

0/1 binary classification loss; this is why popular binary classification algorithms such

as boosting, logistic regression, and SVMs optimize a convex upper bound on the 0/1

binary classification loss. Computational speed is thus a consequence of convexity and

similar speeds are possible for other convex formulations.

The main theoretical problem with mapping structured problems into binary

ones is that the training time can scale exponentially with dimensionality of the struc-

tured output space. By contrast, the train time of structured SVMs is known to be

independent of the dimensionality of the structured output space when conditioned on

other parameters (e.g., regularization, prediction time, feature space magnitude) [57,

67, 71]. For example, object detection can be thought of as a structured prediction

problem, where the goal is to predict a bounding box in a 5-dimensional output space:

{x, y,width, height, present}. The space of negative windows per image is an exponen-

tial enumeration of this space (there might be ≈ 106 negative windows per image). As a

consequence, the error rate of a usable binary detector has to be less than ε = 10−6, and

it is appropriate for the number of negative training examples per image to grow accord-

ingly (since the number of training examples learning algorithms require usually scales

with 1
ε

or worse). This may be reasonable for relatively simple structured output prob-

lems like object detection, but it becomes detrimental for more complicated problems

like deformable part models. For example, for a part model with 8 parts, the number of
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possible part configurations per image is ≈ 106×8. Thus structured learning algorithms

have the potential to be significantly faster than their binary classification counterparts

when the structural representation is complex.

Mining Hard Negative Examples:

Mining hard negatives is a popular method that is used to help binary classifica-

tion algorithms get around this exponential scaling [15, 29]. In this method a learned

binary classifier is used to extract a new set of negative examples with highest training

error, which are added to the training set. The binary classifier is then re-trained after

which the process is repeated. This procedure is similar to the cutting plane algorithm

used by SVMstruct: re-training on hard negatives effectively alters the learning objec-

tive from a 0/1 loss toward something that resembles a structured SVM. We will show

that this procedure in general has much slower convergence properties than our algo-

rithm; nevertheless, the basic idea of using the current learned model to intelligently

sample output labels has a similar flavor to our importance sampling algorithm, and

thus a routine to mine hard negatives is usually sufficient to use directly in our optimiza-

tion algorithm. We differ in terms of the optimization criterion used and the decision of

when and how often to sample new output labels versus when to optimize over existing

labels. These differences give our method greater understandability, faster train times,

and higher performance at convergence.

Fast Solvers For Large Scale Linear SVMs:

Linear kernel SVMs have been shown to have dramatically better computational

properties than non-linear kernel SVMs for both training and testing. Whereas non-

linear kernel SVMs train in time that is at least quadratic in the number of training

examples, linear SVMs train in linear time [35, 25] or in time that does not even depend

on the size of the training set (at least in expectation) [63]. Maji et al. showed that many

non-linear kernels can be approximated by linear kernels [45, 44]. Among linear SVM

solvers, the sequential minimization method of LIBLINEAR [25] and the stochastic

gradient descent method of Pegasos [63] have been shown to be significantly faster than

the cutting plane algorithm of SVMperf [35]. The main savings comes from updating the
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model using more frequent online or sequential update steps as opposed to batch steps.

Solvers For Structured SVMs:

The basic optimization methods used by the above algorithms are general to

many convex optimization problems. [57, 59, 8] apply online sub-gradient methods to

structured SVMs, yielding a performance improvement over SVMstruct that is similar to

the difference between Pegasos and SVMperf . Kakade and Shalev-Shwartz provided a

template algorithm for developing fast optimization algorithms for novel strongly con-

vex optimization problems and a theoretical framework for studying their statistical con-

vergence properties [36]. Analysis of our algorithm is based on this template.

Multiclass SVMs:

Crammer and Singer introduced a multiclass SVM formulation [14] in which

weights for each class are learned jointly instead of using multiple 1-vs-all binary clas-

sifiers. Keerthi et al. [38] developed a specialized multiclass SVM solver and showed

that their algorithm is at least as fast as 1-vs-all methods, with a slight improvement in

performance at convergence. When applied to multiclass SVMs, our algorithm is very

similar. Beyond [38], our algorithm can be applied to cost-sensitive SVM learning.

6.3 Notation and Algorithm Summary

Structured Learning:

Let X be an input example and Y = y1...yO be a multidimensional structured

output defining its ground truth label. For example, for deformable part models, X is an

image and each yp ∈ Y defines the bounding box of a part in the image. A structured

prediction function predicts the label with highest score:

g(X; w) = arg max
Y
〈w,Ψ(X, Y )〉 (6.1)

where 〈w,Ψ(X, Y )〉 is a discriminative score measuring the goodness of a particular

label Y , Ψ(X, Y ) is a feature space extracted with respect to label Y (e.g., features ex-

tracted around part locations y1...yO), and w is a learned vector of weights. Let ∆(Y, Yi)
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be a customizable loss function associated with predicting label Y when the true label is

Yi. For example, ∆(Y, Yi) can be a measure of the overlap between predicted part loca-

tions and their ground truth locations. Structured SVM learning minimizes the training

error over a training set Dn = Z1...Zn of instance-label pairs Zi = (Xi, Yi):

Fn(w) = n

(
λ

2
‖w‖2 +

1

n

n∑
i=1

εi

)
(6.2)

s.t., ∀i,Y , 〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi) ≤ 〈w,Ψ(Xi, Yi)〉+ εi (6.3)

where λ is a regularization constant. The objective adds slack variables εi that place an

upper bound on ∆(Y, Yi) that is convex in w. An equivalent way of writing Eq 6.2 is

Fn(w) =
n∑
i=1

f(w;Zi) (6.4)

f(w;Zi) =
λ

2
‖w‖2 + `(w, Zi) (6.5)

`(w, Zi) = max
Y

(〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi))− 〈w,Ψ(Xi, Yi)〉 (6.6)

Dual Problem:

Eq 6.4 can be represented by its equivalent dual problem

max
α1...αn

Dn(α1...αn) = min
w

Fn(w) (6.7)

which we will show in the next section is useful for deriving optimization algorithms

and theoretical guarantees. Dn(α1...αn) can be written as (see [71])

Dn(α1...αn) = − 1

2λn

∑
i,Y

∑
j,Y ′

αYi α
Y ′

j 〈vYi ,vY
′

j 〉+
∑
i,Y

αYi ∆(Y, Yi) (6.8)

s.t., ∀i

(
∀Y , αYi ≥ 0,

∑
Y

αYi ≤ 1

)
(6.9)

Here, each vYi = Ψ(Xi, Y )−Ψ(Xi, Yi) is a vector that is weighted by a corresponding

scalar αYi , which encodes a weight on every possible label Y for a training example

i. For example, for sliding window based detection, each vYi is a vector of features

extracted at a candidate bounding box location Y and is weighted by a dual parameter

αYi . The relationship between the dual parameters α and primal parameters wt is

wt = − 1

λt

t∑
i=1

ui, ui =
∑
Y

αYi vYi (6.10)
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6.4 Optimization Algorithms

Cutting Plane Algorithm:

SVMstruct optimizes Eq 6.2 using a cutting plane algorithm. In each iteration,

the current model weights are used to solve for the value of Y for each example that

maximally violates the constraint in Eq 6.2:

Ȳi = arg max
Y

(〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi)) (6.11)

Solving Eq 6.11 resembles a prediction problem (Eq 6.1), and the set of problems that

are appropriate for structured SVMs is limited to problems and loss functions for which

Eq 6.11 is efficiently solvable. The maximum violated labels Ȳi are combined into a con-

straint that is added to an SVM optimization problem. The cutting plane algorithm thus

alternates between solving an SVM optimization problem and solving for maximum

violated constraints. It takes O(R
2T
λε
n) time to converge to within ε of the minimum

achievable training error [71], where T is the time to solve Eq 6.11, R is a bound on the

magnitude of the feature space ‖Ψ(X, Y )‖ ≤ R, and λ is the regularization constant.

Stochastic Gradient Descent:

[57, 8] optimize Eq 6.2 using a stochastic gradient descent (SGD) agorithm.

SGD iterates over each example sequentially, taking an update step:

wt ← wt−1 − 1

λt
∇f(wt−1;Zt) (6.12)

where∇f(wt−1;Zt) is the sub-gradient of Eq 6.5, and is computed as

∇f(wt−1;Zt) = λwt−1 +∇`(wt−1;Zt) (6.13)

∇`(wt−1;Zt) = Ψ(Xt, Ȳt)−Ψ(Xt, Yt) (6.14)

where Ȳt is computed as in Eq 6.11. Adding a projective step similar to the one used in

Pegasos [63]

wt ←
min

(
1/
√
λ, ‖wt‖

)
‖wt‖

wt (6.15)
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ensures that this algorithm takes Õ(R
2T
λε

) time to converge to within ε of the minimum

achievable training error, assuming one iterates over each training example an equal

number of times (see supplementary material).

In the dual formulation of the problem, Eq 6.12 is equivalent to adding a new

dual parameter ut = αȲtt vȲtt with αȲtt = 1 and vȲtt = ∇`(wt−1;Zt). Kakade and Shalev-

Shwartz [36] proved that for any strongly convex loss function, each iteration of SGD

will increase the dual objective Dt(α1...αt)−Dt−1(α1...αt−1) by a predictable amount,

and this amount is sufficient to prove the above convergence rates. They observe that

any algorithm that increases Dt by at least as much in each timestep will converge at

least as quickly.

Multi Sample Algorithm:

We introduce a sequential dual optimization algorithm that is based on this idea,

where our goal is to increase Dt by as much as possible using an inexpensive update.

Similar to SGD, we sequentially update the model wt using a single training example

Zt; however, we also employ an update that is more specialized for structured SVM

optimization. In contrast to cutting plane and SGD algorithms which use only a single

label Ȳt per image in each update step, we update using a set of intelligently selected

labels Ȳ 1
t , ..., Ȳ

K
t . For greatest efficiency, Ȳ 1

t , ..., Ȳ
K
t should typically be a sparse subset

of all possible values for Y (e.g., if one tried to update the model with respect to all

possible bounding boxes in the image, the update would be expensive). This subset of

samples can be intelligently selected using the current model parameters wt and some

application specific importance sampling routine. For correctness, Ȳt should be included

in this set of samples.

Our optimization algorithm learns a weight αȲ
k
t
t on each sample Ȳ k

t by solving

max
α
Ȳ 1
t

t ...α
Ȳ K
t

t

αt = Dt(α1...αt−1, α
Ȳ 1
t
t ...α

Ȳ K
t
t )−Dt−1(α1...αt−1) (6.16)

s.t., ∀i

(
∀Y , αYi ≥ 0,

∑
Y

αYi ≤ 1

)
(6.17)
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Algorithm 6
1: for t = 1 to T do

2: Receive an example Zt ← (Xi, Yi) where i = t mod n

3: Ȳ 1
t ...Ȳ

K
t ← IMPORTANCESAMPLE(Xt, Yt,w

t−1)

4: Solve for αȲ
1
t
t ...α

Ȳ K
t
t using Eq 6.23

5: Update wt using Eq 6.18

6: Bound wt using Eq 6.15

7: end for

and then updates wt according to:

wt ← t− 1

t
wt−1 − 1

λt

K∑
k=1

α
Ȳ k
t
t v

Ȳ k
t
t (6.18)

Details of the implementation of Eq 6.23 are included in Section 6.6. Pseudo-code for

the algorithm is provided in Algorithm 6.

6.5 Notation

Recall that maxαDt(α) = minw FT (w), where FT (w) is the structured SVM

training error and is defined as

FT (w) =
T∑
t=1

f(w;Zt), f(w;Zt) =
λ

2
‖w‖2 + `(w, Zt) (6.19)

`(w, Zt) = max
Y

(〈w,Ψ(Xt, Y )〉+ ∆(Y, Yt))− 〈w,Ψ(Xt, Yt)〉 (6.20)

and Dt(α) is the equivalent dual problem and is defined as

Dt(α) = −λt
2
‖wt‖2 +

∑
i,Y

αYi ∆(Y, Yi) (6.21)

wt = − 1

λt

t∑
i=1

ui, ui =
∑
Y

αYi vYi , vYi = Ψ(Xi, Y )−Ψ(Xi, Yi)(6.22)

6.6 Multi-Sample Update

In this section, derive an update step that occurs over a set of samples Ȳi =

Ȳ 1
i , Ȳ

2
i ...Ȳ

K
i . For convergence guarantees (see Theorem 5.2.1), we assume that this set
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includes the subgradient as the first sample: v
Ȳ 1
t
t = ∇`(wt−1;Zt). The update solves

the optimization problem (exactly or approximately):

αt = max
α
Ȳ 1
t

t ...α
Ȳ K
t

t

Dt(α1...αt−1, α
Ȳ 1
t
t ...α

Ȳ K
t
t )−Dt−1(α1...αt−1) (6.23)

s.t., ∀i

(
∀j, α

Ȳ j
i
i ≥ 0,

K∑
j=1

α
Ȳ j
i
i ≤ 1

)
(6.24)

Pseudo-code for the algorithm is shown in Algorithm 6. In this algorithm, each

sample Ȳ j
i is iterated over once. We define an iterative procedure, such that each αȲ

j
i
i is

updated in order j = 1...K. In each iteration, we solve (in closed form) for the optimal

value to set αȲ
j
t
t which maximizes ∆Dexpandt,j :

∆Dexpandt,j = Dt(α1...αt−1, α
Ȳ j
t
t )−Dt(α1...αt−1, 0)

=
−λt

2

∥∥∥∥∥wt − α
Ȳ j
t
t

λt
v
Ȳ j
t
t

∥∥∥∥∥
2

+
λt

2

∥∥wt
∥∥2

+ α
Ȳ j
t
t ∆(Ȳ j

t , Yt)

= α
Ȳ j
t
t

(
〈wt,j−1,v

Ȳ j
t
t 〉+ ∆(Ȳ j

t , Yt)
)
− (α

Ȳ j
t
t )2

2λt
‖vȲ

j
t
t ‖2

This is maximized (by setting the derivative equal to 0) by choosing

α
Ȳ j
t
t =

λt
(
〈wt,j−1,v

Ȳ j
t
t 〉+ ∆(Ȳ j

t , Yt)
)

‖vȲ
j
t
t ‖2

Unfortunately, due to the constraint
∑K

j=1 α
Ȳ j
i
i ≤ 1 in Eq 6.23, this update becomes

invalid once
∑K

j=1 α
Ȳ j
i
i = 1. We therefore consider an alternate “swap” move, which

works by setting αȲ
j
i
i while simultaneously scaling all parameters αȲ

1
i
i ...α

Ȳ j−1
i
i by s =

1 − α
Ȳ j
i
i . This swap move preserves the constraint

∑K
j=1 α

Ȳ j
i
i = 1. The subsequent

change in the dual objective is:
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∆Dswapt,j

= Dt(α1...αt−1, sα
Ȳ 1
t
t , ..., sα

Ȳ j−1
t
t , α

Ȳ j
t
t )−Dt(α1...αt−1, sα

Ȳ 1
t
t , ..., sα

Ȳ j−1
t
t , 0)

=
−λt

2

∥∥∥∥∥wt − (s− 1)uj−1
t + α

Ȳ j
t
t v

Ȳ j
t
t

λt

∥∥∥∥∥
2

+
λt

2

∥∥wt
∥∥2

+ (s− 1)Dj−1
t

+α
Ȳ j
t
t ∆(Ȳ j

t , Yt)

=
−λt

2

∥∥∥∥∥wt − −α
Ȳ j
t
t uj−1

t + α
Ȳ j
t
t v

Ȳ j
t
t

λt

∥∥∥∥∥
2

+
λt

2

∥∥wt
∥∥2 − αȲ

j
t
t Dj−1

t + α
Ȳ j
t
t ∆(Ȳ j

t , Yt)

= α
Ȳ j
t
t

[(
〈wt,v

Ȳ j
t
t 〉+ ∆(Ȳ j

t , Yt)
)
−
(
〈wt,uj−1

t 〉+Dj−1
t

)]
+

(
α
Ȳ j
t
t

)2

2λt

∥∥∥uj−1
t + v

Ȳ j
t
t

∥∥∥2

where Dj−1
t is shorthand for

Dj−1
t =

j−1∑
k=1

α
Ȳ k
t
t ∆(Ȳ k

t , Yt) (6.25)

and can be interpreted as a (weighted) average loss over all samples. The value of αȲ
j
t
t

which maximizes ∆Dswapt,j is:

α
Ȳ j
t
t =

λt
[(
〈wt,v

Ȳ j
t
t 〉+ ∆(Ȳ j

t , Yt)
)
−
(
〈wt,uj−1

t 〉+Dj−1
t

)]
∥∥∥uj−1

t + v
Ȳ j
t
t

∥∥∥2 (6.26)

We can compute αȲ
j
t
t in O(d) time, where d is the dimensionality of the feature

space Ψ, if we maintain updated values for wj
t , ujt , and Dj

t . The appropriate updates if

we were to scale αt by s and then set αȲ
j
t
t are:

ujt ← s uj−1
t + α

Ȳ j
t
t v

Ȳ j
t
t (6.27)

wt,j ← wt,j−1 − (s− 1)uj−1
t + α

Ȳ j
t
t v

Ȳ j
t
t

λt
(6.28)

Dj
t ← sDj−1

t + α
Ȳ j
t
t ∆(Ȳ j

t , Yt) (6.29)
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Algorithm 7 MULTISAMPLEUPDATE

Input: New example Xt, Yt, current weights wt−1

Output: New weights wt,K

1: Ȳ 1
t ...Ȳ

K
t ← IMPORTANCESAMPLE(Xt, Yt,w

t−1)

2: Initialize wt,0 ← t−1
t

wt−1, u0
t ← 0, D0

t ← 0, αt ← 0

3: for j = 1 to K do

4: if αt < 1 then

5: α
Ȳ j
t
t ← min

1− αt,max

0,
λt

(
〈wt,j−1,v

Ȳ
j
t

t 〉+∆(Ȳ j
t ,Yt)

)

‖v
Ȳ
j
t

t ‖2




6: s← 1

7: αt ← αt + α
Ȳ j
t
t

8: else

9: α
Ȳ j
t
t ← min

1,max

0,
λt

[(
〈wt,j−1,v

Ȳ
j
t

t 〉+∆(Ȳ j
t ,Yt)

)
−(〈wt,j−1,uj−1

t 〉+Dj−1
t )

]
∥∥∥∥∥uj−1

t +v
Ȳ
j
t

t

∥∥∥∥∥
2




10: s← 1− αȲ
j
t
t

11: end if

12: ujt ← s uj−1
t + α

Ȳj
t

t v
Ȳj

t
t

13: wt,j ← wt,j−1 − (s−1)uj−1
t +α

Ȳ
j
t

t v
Ȳ
j
t

t

λt

14: Dj
t ← sDj−1

t + α
Ȳ j
t
t ∆(Ȳ j

t , Yt)

15: end for

16: Optionally repeat steps 3-16 multiple times

6.7 Applications

In this section, we show how Algorithm 6 (described in Section 6.6) can be

applied to a variety of popular learning problems, including cost-sensitive multiclass

SVMs, sliding window object detection, and deformable part models. In particular, we

define an importance sampling routine for each method that can be used in conjunction

with Algorihtm 1.



102

6.7.1 Cost-Sensitive Multiclass SVMs

Given a training set of image-label pairs (X1, Y1), ..., (Xn, Yn) where Yi ∈ 1...C

is a class label, a cost-sensitive multiclass SVM solves the optimization problem:

FC
n (w) = n

(
λ

2
‖w‖2 +

1

n

n∑
i=1

εi

)
(6.30)

s.t., ∀i,c, 〈wc, φ(Xi)〉+ ∆C(c, Yi) ≤ 〈wYi , φ(Xi)〉+ εi (6.31)

where φ(X) is a feature vector of length d, each wc is a vector of weights for class c,

w = [w1, ...,wC ] concatenates the weights for all classes, and ∆C(c, Yi) is a confusion

cost associated with predicting class c when the true label is Yi. As in [71], this problem

is solvable using a structured SVM, where Ψ(X, Y ) concatenates features for each class:

ΨC(X, Y ) = [ψ1(X, Y )...ψC(X, Y )] (6.32)

ψc(X, Y ) =

φ(X) if Y = c

0 otherwise
(6.33)

For this problem, we choose a dense sample set that includes every possible class label

Ȳt ← {1, ..., C}. This is computationally efficient because the multi-sample update step

(Eq 6.23) takes O(dC) time, which is the same amount of time it takes to solve for Ȳi or

compute ∇`(w, Zt) (the main computations for cutting plane and SGD algorithms). A

similar algorithm was presented in [38].

6.7.2 Sliding Window Object Detection

A sliding window object detector can be trained using a structured SVM [5],

where Y = {x, y, scale} encodes a bounding box and ΨB(X, Y ) is a vector of features

extracted at Y . Let ∆B(Y, Yi) be an arbitrary loss function associated with predicting

bounding box Y when the true bounding box is Yi. The sliding window detctor can be

trained by optimizing the structured SVM objective (Eq 6.2). Let ∆B
i encode all values

of ∆B(Y, Yi) into an array, such that ∆B
i [Y ] = ∆B(Y, Yi). Similarly, let Mi be an array

of sliding window responses, such that Mi[Y ] = 〈w,Ψ(Xi, Y )〉, and let Li = Mi+∆B
i .

Note that

Ȳi = arg max
Y

(〈w,Ψ(Xi, Y )〉+ ∆(Y, Yi)) = arg max
Y ′

Li[Y
′] (6.34)
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We choose a sparse sample set of bounding boxes Ȳ 1
t ...Ȳ

K
t , that are the result of running

non-maximal suppression on the response map Li. The motivation behind this sampling

technique is to suppress overlapping bounding boxes that will tend to be redundant due

to similar feature values.

6.7.3 Deformable Part Model Based Detection

A Felzenszwalb-like deformable part model can be trained using a structured

SVM, where Y = y1, ..., yP encodes a set of part locations, each of which is represented

using a 4-tuple yp = {xp, yp, scalep, aspectp}, where aspectp defines a mixture com-

ponent index (e.g., it toggles between different appearance and spatial models for side

view, frontal view, etc.), and parts can have tree-structured dependencies with spring

costs connecting parent and child parts. Details of the mapping into structured SVMs

are presented in [88, 8]. These methods concatenate appearance features and spatial off-

sets for all part-aspect pairs into a structured feature space ΨP (X, Y ). The label Ȳi can

be efficiently solved for using standard dynamic programming algorithms for pictorial

structure inference. For our importance sampling routine, we choose a sparse sample set

of part location assignments Ȳ 1
t ...Ȳ

K
t , that are the result of running non-maximal sup-

pression on the response map of the root of the part tree after dynamic programming.

This sampling routine is described in [78].

6.8 Experiments

We demonstrate generality and computational speed on two challenging, large-

scale datasets: ImageNet for multiclass classification and CUB-200-2011 for pose reg-

istration and part-based detection.

6.8.1 Multiclass SVM

ImageNet is a large image data base introduced by Deng et al. in 2009 [18]. In

this paper we use the training set from the 1k category ImageNet subset published as

part of the Pascal Visual Object Challenge (VOC) 2010, and also a 200 category subset.
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We use the SIFT-based bag-of-words feature representation (with 1k visual words) given

as part of the Pascal VOC challenge, and consider the hierarchical loss, Ci,j , proposed

by Jia et al. [17], where Ci,j = 0, when i = j, and Ci,j = h(i, j), the height of the

lowest common ancestor otherwise. The proposed method, SVM-IS, is compared to the

Liblinear implementation of the Crammer and Singer multiclass formulation, Liblinear

1-vs-all, Pegasos 1-vs-all and SVM struct. While the structured SVM formulations al-

low for a direct minimization of the hierarchical loss, the other methods need to be made

cost sensitive using some heuristic; here we deploy the framework proposed by Jia et

al. [17]. They note that one can obtain posterior probability estimates by first learning

the parameters of a sigmoid function using a hold out set, and then using the learned

sigmoid function to transform the SVM decision function values to posterior probabili-

ties [55]. Once the posteriors are thus estimated, the unseen images are classified by the

optimal Bayes decision rule: f(x) = arg mini=1,...,K K
∑K

j=1 Ci,j p̂j(x), where p̂j(x) is

the probability that query image x belong to class j. Note that this heuristic is cumber-

some to implement, and requires additional train time to learn the sigmoid parameters

(this extra time is emphnot included in the figures). We run a three fold cross valida-

tion splitting the data; 60% train data, 20% test, and 10% each for sigma calibration

and validation sets. We use the validation set to find optimal value of the regularization

parameter, λ = {10−3 . . . 10−8} for each solver. For the structured SVM formulations

the sigma calibration set was included in the training directly. The results are shown in

fig. 6.3, and we note that the Structural SVMs converge at a lower cost and that SVM-IS

converges significantly faster than SVM struct.

6.8.2 Part-Based Detection

CUB-200-2011 [80] is a dataset of 11,788 images of birds from 200 different

bird species. Images are uncropped and in unconstrained poses in the wild, with a high

degree of variability in shape and appearance. 15 different parts are labelled in each

image by an x, y coordinate and a binary variable specifying whether or not each part

is visible. We measure performance as the number of correctly predicted part locations,

the same metric used in [8], where a predicted part location is considered to be correct if

we correctly predict its visibility and its x,y-location is within some radius of the ground
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Figure 6.3: Results on ImageNet Rand 200: ImageNet has a strong hierarchy as illus-
trated in fig. 6.3(a), which motivates the hierarchical loss function – clearly, the miss-
classification between the gorilla sub-species is less severe than that of horse - giraffe.
Figure 6.3(b) show that the structural SVM formulations better optimize this loss, even
after post processing as described in sec. 6.8.1 is performed on the non - structural
SVMs. Note also that the proposed method, SVM-IS, converges significantly faster
than SVM struct.

truth location (defined as within 1.5 standard deviations of where MTurker responses for

that part).

We use 12 different aspects (mixture components) for each of the 15 parts, and

also predict part visibility, which is modelled as a mixture component with no appear-

ance features. Each mixture component is represented by a 7X7 HOG template and

spring costs between neighboring parts. We allow the head and body to have different

poses/aspects (e.g.the head can be in left side-view while the body is in frontal view).

The dimensionality of the feature space is Ψ(Xi, Y ) 81,902. Since the model is very

complex, the feature space is high-dimensional, and the training set size is moderately

large (5,894 images were used for training and 5,894 for testing), the dataset is very

computationally challenging.

We compare to two variants of SVMstruct [71], an SGD solver that can be seen as

an extension of Pegasos to structured SVMs and is used in [8, 57], and a method based

on mining hard negatives, where on each round we augment a binary training set with

one hard negative per image. Results are shown in Fig 6.4. We can see that our solver

significantly outperforms other methods.
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Figure 6.4: Results on CUB-200-2011: (a) Typical part-detection results on CUB-200-
2011, with failure cases in the right column. Note that our detector works across extreme
variations in pose. (b) Our method SVM-IS converges significantly faster than all other
methods. Batch algorithms (SVMstruct and mining hard negatives) make little progress
in the allotted time (the entire plot shown represents only 25 passes through the training
set). Our method yields roughly 50 times speedup over the already fast SGD solver [8].
Timing results are on a single core 2.7GHz Intel Xeon CPU.

6.8.3 Analysis of Results

Batch vs. Online Algorithms:

Methods that employ updates in batches the size of the training set are slower by

an asymptotic factor that scales with training set size. This includes SVMstruct (shown

as a magenta curve in Fig 6.3 and Fig 6.4), which takes roughly 30 times longer to

converge in the ImageNet experiment and 100-1000 times longer in the CUB-200-2011

experiment. The method based on mining hard negatives also processes the dataset in

batch and is slow to make progress. We also experiment with a variant of SVMstruct

that is plotted as a black curve in Fig 6.4. This corresponds to a cutting plane algorithm

that extracts small batches (1% of the training set) that are added as constraints an SVM

optimization problem. The method initially progresses much more quickly than the

default SVMstruct algorithm, but eventually grinds to a halt as the set of constraints

becomes large and SVM optimization slows.
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Single sample vs. multi sample:

The multi-sample update reduces training time by a factor of approximately 50

compared to the already fast SGD solver in the CUB-200-2011 experiment. A similar

result is visible for the ImageNet SVM experiment, where the LIBLINEAR-multiclass

optimizer is slightly faster than the LIBLINEAR-1-vs-all optimizer.

6.9 Conclusion

We introduced a fast structured SVM solver that is shown to be significantly

faster than existing methods based on SVMstruct, mining hard negatives, or Stochastic

Gradient Descent. It reduces train time by a factor of 20-1000 for cost-sensitive mul-

ticlass learning and deformable part model training on Imagenet and CUB-200-2011.

In future work, we plan on running more extensive object detection experiments. We

would also like to apply our algorithm to larger datasets, stronger alignment models, and

other types of problems like tracking, segmentation, and attribute vocabulary learning.
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Chapter 7

Example Applications

In this chapter, I show how several different computer vision application prob-

lems can be plugged into the structured learning framework described in this paper. In

general, an application can be supported if there exists an efficient solver for the follow-

ing 3 related problems:

Prediction : Y ∗ = arg max
Y
〈w,Ψ(X, Y )〉 (7.1)

Max Violated Constraint : Ȳ = arg max
Y

(〈w,Ψ(X, Y )〉+ ∆(Y, Yi)) (7.2)

Interactive Prediction : Y ∗
Ỹ

= arg max
Y
〈w,Ψ(X, Y )〉 (7.3)

s.t. ∀ỹi∈Ỹ , ỹi = yi

where solving Eq 7.1 is used for structured prediction at test time, solving Eq 7.2 will

facilitate efficient structured learning, and Eq 7.3 will allow for interactive interfaces that

can reduce human annotation time during training or offer new applications. For many

or most applications, existence of an efficient prediction algorithm will imply existence

of an efficient algorithm for the other two, as we will see in the examples below. The

purpose of this section is to show how a variety of popular computer vision problems

can be mapped into a common problem formulation that is supported by our software

package (see http://vision.ucsd.edu/visipedia/code). As a consequence of being mapped

into this formulation, one obtains a number of practical benefits:

• Fast optimization algorithms that are scalable to large datasets and often faster

than the optimization packages that are most commonly used in computer vision
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(see Chapter 6).

• An active learning technique that employs interactive labeling and online learning

(see Chapter 4), while being computationally practical for complex image repre-

sentations and large datasets.

• Feedback mechanisms for diagnosing different sources of test error (e.g., insuf-

ficient number of training examples, a bad model or feature space, mislabeled

training examples, or insufficient computation time), and correcting the result in

online fashion without necessitating retraining (e.g., adding training examples,

changing the feature space, relabeling examples, or spending more computation

time)

7.1 Cost-Sensitive Multiclass SVMs:

Given a training set of image-label pairs (X1, Y1), ..., (Xn, Yn) where each Yi ∈
1...C is a class label, a cost-sensitive multiclass SVM solves the optimization problem:

FC
n (w) = n

(
λ

2
‖w‖2 +

1

n

n∑
i=1

εi

)
(7.4)

s.t., ∀i,c, 〈wc, φ(Xi)〉+ ∆C(c, Yi) ≤ 〈wYi , φ(Xi)〉+ εi (7.5)

where φ(X) is a feature vector of length d (e.g.SIFT, color histogram, bag-of-words

descriptor, fisher encoding, etc.), each wc is a weight vector of length d for class c,

w = [w1, ...,wC ] concatenates the weights for all classes, and ∆C(c, Yi) is a confusion

cost associated with predicting class c when the true label is Yi. For example, ∆C(c, Yi)

could encode a taxonomical loss (given a class taxonomy, ∆C(c, Yi) is the distance from

node c to node Yi on a class taxonomy tree). For a non-cost-sensitive multiclass SVM

∆C(c, Yi) = 1[c 6= Yi]. As in [71], this problem is solvable using a structured SVM,

where Ψ(X, Y ) concatenates features for each class:

ΨC(X, Y ) = [ψ1(X, Y )...ψC(X, Y )] (7.6)

ψc(X, Y ) =

φ(X) if Y = c

0 otherwise
(7.7)
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This is a cost-sensitive version of a Crammer-Singer multiclass SVM [14]. It is

slightly different than 1-vs-all SVM training, since parameters for each class are trained

jointly. Computation of Eq 7.1-7.2 involves computing 〈wc, φ(Xi)〉 for each class and

takes O(dC), where C is the number of classes and d is the number of non-zero fea-

tures. An interactive interface is not applicable since the structured output space is

one-dimensional.

7.2 Alignment Models

The use of stronger alignment models has become an increasingly popular and

important in computer vision for a few reasons

1. Alignment parameters are a desired output of many computer vision appli-

cations (e.g., the location of the object in the image, the pose of the object, the

relative positions of different parts of the object, etc.)

2. Better representation of statistical properties of objects: Statistical properties

of an object and its appearance in most feature spaces is often most naturally ex-

pressed as a function of the location of the object in the image. Excluding align-

ment from the model corresponds to making stronger conditional independence

assumptions (e.g., Figure 7.6a vs. Figure 7.6c), and it appears to be difficult or

impossible to invent a good feature space that is invariant to object deformation.

3. Saturation of research in object recognition methods that don’t model align-

ment: Research in object recognition that doesn’t model alignment (and instead

rely on features like bag of words) has not led to much quantitative improvement

in performance in the last 5 years, while still being far from achieving usable accu-

racy levels for most applications. By contrast, methods that incorporate stronger

alignment models are improving more quickly and work well enough to be used

in some applications [93, 88].
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7.2.1 Sliding Window Object Detection

A sliding window object detector can be trained using a structured SVM [5],

where Y = {x, y, s} encodes a bounding box of fixed aspect ratio that is centered

at (x, y) and has scale s. A feature space ΨB(X, Y ) is extracted with respect to this

bounding box (e.g., extract features like HOG or color histograms with respect to a

coordinate system centered at (x, y) and axis length defined by s).

Let ∆B(Y, Yi) be an arbitrary loss function associated with predicting bound-

ing box Y when the true bounding box is Yi. Let ∆B encode all such values into an

array, such that ∆B[Y ] = ∆B(Y, Yi). Similarly, let M be an array of sliding win-

dow responses, such that M[Y ] = 〈w,Ψ(X, Y )〉 (fast algorithms such as convolutional

methods exist to densely compute M for certain types of feature spaces). Note that the

most violated label Ȳ can be found efficiently by adding the loss into the sliding window

response

Ȳ = arg max
Y

(M + ∆B)[Y ], (7.8)

enabling efficient computation of∇f(w;Zi).

Loss Functions For Object Detection

Loss functions that we consider in this dissertation include the area of intersec-

tion over area of union criterion used in the VOC Pascal detection challenge:

∆B
voc(Y, Yi) = 1− AREA(Y

⋂
Yi)

AREA(Y
⋃
Yi)

(7.9)

and a loss that compares performance to human users:

∆B
mturk(Y, Yi) =

√
(Y − Yi)TΣ−1(Y − Yi) (7.10)

where Σ is a 3X3 covariance matrix obtained by polling bounding box labels from mul-

tiple mechanical turk users per image and comparing them to ground truth. We also

consider thresholded versions of the above loss functions, such that the loss is always 0

or 1.
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Figure 7.1: Part-Based Model: a) Spatial relationships between different parts is rep-
resented by a tree-structured graph (only a subset of this tree is shown for visualization
purposes). b) Annotated part locations in a particular image. c) A step-by-by GUI for
collecting part annotations where a user annotates only one part at a time via a simple
mouse click.

7.2.2 Deformable Part Models

Many or most objects (e.g., articulated objects like humans) deform with more

degrees of freedom than is modeled by a simple bounding box. Part-based methods

represent the location of an object as a set of part locations Y = {θ1, ..., θP}. Each

part location can be represented as a bounding box θp = {xp, yp, sp} (we consider other

possible representations in the next section).

Specialized algorithms exist for exact inference on a certain class of deformable

part models while handling a number of challenging factors (e.g., sliding window detec-

tors for each part, per-part occlusion reasoning, mixtures of different poses or views of

the object). We assume that parts can have spatial dependencies that are representable

by a tree-structured graph T = (V,E) (see Figure 7.1, where a part q can be connected

to its parent part p by a spring cost (an arbitrary quadratic or linear function of the

scale-normalized offset between parent and child):

λpq(θp, θq) = 〈wpq, ωpq(θp, θq)〉 (7.11)

ωpq(θp, θq) = [ẋpq, ẋ
2
pq, ẏpq, ẏ

2
pq] (7.12)

ẋpq =
xp + µxq − xq

sp
, ẏpq =

yp + µyq − yq
sp

(7.13)

where wpq is a learned vector of weights parameterizing the spring cost between parts p

and q. The parameters µxp are an optional ideal spatial offset between parent and child

(the offset could effectively be learned up to a constant by changing the learned weight
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on ẋpq). Let ϕp(θp;X) be a vector of appearance features extracted at part location θp,

and let wp be a learned vector of weights on these appearance features, such that the

appearance score for part p at each location bp is:

ψp(θp;X) = 〈wp, ϕp(θp;X)〉 (7.14)

Structured prediction on a deformable part model solves the following problem:

Y ∗ = arg max
θ1...θP

∑
p∈V

ψp(θp;X) +
∑

(p,q)∈E

λpq(θp, θq)

 (7.15)

By simple examination of equations 7.11-7.16, we see that this is equivalent to the struc-

tured prediction formulation

Y ∗ = arg max
Y
〈w,ΨP (X, Y )〉 (7.16)

if we define Ψ(X, Y ) as the concatenation of all appearance features ϕp(θp;X) for p ∈
V and spatial features λpq(θp, θq) for (p, q) ∈ E:

ΨP (X, Y ) = [ϕp, ϕ2, ..., ϕP , ωpar(1),1, ωpar(2),2, ..., ωpar(P−1),P−1] (7.17)

w = [w1,w2, ...,wP ,wpar(1),1,wpar(2),2, ...,wpar(P−1),P−1] (7.18)

if we assume part P is the root of the tree. For tree structured graphs, the optimal set of

part locations Y ∗ can be solved in O(PI) time using dynamic programming, where P

is the number of parts and I is the number of pixel locations times the number of scales

in the image, using the algorithm shown in Algorithm 8. This algorithm makes use of a

modified distance transform function of Felzenszwalb et al. [28], which densely solves

the following optimization problem

Oq[θp] = arg max
θq

(Mq[θq] + λpq(θp, θq)) (7.19)

Nq[θp] = max
θq

(Mq[θq] + λpq(θp, θq)) (7.20)

in time linear in the number of possible locations of θp (whereas a naive algorithm would

take quadratic time).
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Algorithm 8 DPMINFERENCE(X, p,w,∆,U)

1: r ← root(T )

2: OPTIMIZESUBTREE(X, r,w,∆,U), assume M1..MP , O1..OP , θ1...θP are global

3: θr ← arg max Mr[θr]

4: BACKTRACK(r, θr)

5: return θ1...θP

OPTIMIZESUBTREE(X, p,w,∆,U)

1: Compute detection responses Mp (Eq 7.14 at all pixel locations and scales)

2: If ∆ 6= ∅ (finding the most violated constraint): Mp ←Mp + ∆B
p

3: If U 6= ∅ (performing interactive labeling): Mp ←Mp + Up

4: for all q ∈ children(p) do

5: Mq ← OPTIMIZESUBTREE(X, q,w,∆,U)

6: Nq,Oq ← MODIFIEDDISTANCETRANSFORM(Mq,wpq) (Eq 7.19)

7: Mp ←Mp + Nq

8: end for

9: return Mp

BACKTRACK(p)

1: for all q ∈ children(p) do

2: θq ← Oq[θp]

3: BACKTRACK(q, θq)

4: end for

Loss Functions For Part Localization

We consider simple loss functions consisting of the sum loss over each part

∆P (Y ′, Yi) =
P∑
p=1

∆B
p (θ′p, θp) (7.21)

where ∆B
p is one of the loss functions defined in Section 7.2.1. As in Section 7.2.1, let

us assume that this loss function has been densely precomputed into an array ∆B
p [θp]. It
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is easy to see that the most violated label Ȳ can be found by solving

Ȳ = arg max
θ1...θP

∑
p∈V

(
ψp(θp;X) + ∆B

p [θp]
)

+
∑

(p,q)∈E

λpq(θp, θq)

 (7.22)

= arg max
Y

(
〈w,Ψ(X, Y )〉+ ∆P (Y, Yi)

)
(7.23)

which is solvable using Algorithm 8 if we simply add the part loss ∆B
p to the part

detection score Mp.

Interactive Part Prediction

Suppose the user has provided a partial annotation Ỹ to a subset of part locations.

Let θ̃i denote the user’s annotation to part i. We can see that the highest scoring user-

consistent set of part locations Y ∗
Ỹ

(Eq 7.3) can be expressed as:

Y ∗
Ỹ

= arg max
θ1...θP

∑
p∈V

(ψp(θp;X) + Up[θp]) +
∑

(p,q)∈E

λpq(θp, θq)

 (7.24)

Up[θp] =

−∞ if θ̃p is labeled and θp 6= θ̃p

0 otherwise
(7.25)

where U is a precomputed array that is −∞ at all locations that don’t agree with the

user’s label. This is solvable using Algorithm 8 if we simply add Up to the part detection

score Mp.

7.2.3 Pose Mixture Models and Occlusion Reasoning

The model described in the previous section breaks if different parts are occluded

or undergo significant changes in pose (consider for example looking at the side or back

of a person’s head, where a person’s eyes, mouth and nose could become non-visible).

This problem can be fixed by using a more complex representation of part location

θp = {xp, yp, sp, rp, vp}, where vp is a discrete pose or mixture component for part p.

We have also added an optional orientation rp of part p. The pose parameter vp could

correspond to values like side view left, side view right, frontal view, not visible, etc..

In this case we consider an augmented definition of our spatial cost between parent and
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Figure 7.2: Components of a Part Based Model: a) Each part in an image X is
represent by a location θp = {xp, yp, sp, rp, vp} (x-y location, scale, rotation, pose). b)
Appearance features (in this case HOG features) are extracted with respect to a part
location and stored into a vector ϕp(θp;X). c) A sliding window part detector computes
a detection score ψp(θp;X) for every possible value of θp. d) Spatial features λpq(θp, θq)
occur over every parent-child part, with a quadratic cost penalizing changes in location,
scale, and orientation. Each possible pair of poses for child and parent parts has a
different spring cost and different pose transition score

child parts, where the spatial score between parent and child parts p and q in poses vp
and vq can be written as:

λvp,vqpq (θp, θq) = 〈wvp,vq
pq , ωvp,vqpq (θp, θq)〉 (7.26)

ωvp,vqpq = [ẋpq, ẋ
2
pq, ẏpq, ẏ

2
pq, ṡpq, ṡ

2
pq, ṙpq, ṙ

2
pq, 1] (7.27)

This spatial score (as for Eq 7.11) is a function of the x, y displacements ẋpq, ẏpq between

p and q as well as the change in scale and orientation ṡpq = sp − sq and ṙpq = rp − rq.
Additionally, it adds a transition score (the weight applied to the element 1, the last

element of ωvp,vqpq ), which is a learned likelihood of observing the pose pair vp and vq. A

separate vector of weights w
vp,vq
pq is learned for all possible pose pairs vp and vq, and the

spatial score λpq(θp, θq) is set to the applicable value of λvp,vqpq :

λpq(θp, θq) = 〈wpq, ωpq(θp, θq)〉

ωpq(θp, θq) = [π1,1, π2,1, ..., πQp,1, π1,2, π2,2, ..., πQp,2, ..., π1,Qq , π2,Qq , ..., πQp,Qq ]

πi,j(θp, θq) =


[1] if vp = i and vq = j and vq = not visible

ω
vp,vq
pq else if vp = i and vq = j

0 otherwise

(7.28)

Here, a special pose vq = not visible is used to handle the case when q is occluded

or self-occluded. In this case, the values xq, yq, sq, rq have no meaning, and the spatial

score λvp,vqpq (θp, θq) is simply the learned likelihood weight that q is not visible given vp.
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Each visible pose j for a given part p is associated with a set of appearance fea-

tures ϕpj(θp;X) that parameterized by weights wpj . For a non-visible pose j, ϕpj(θp;X)

is an empty (zero dimensional) vector. The appearance score of part p with Q poses is

the appearance score of the appropriate pose vp:

ψp(θp;X) = 〈wp, ϕp(θp;X)〉 (7.29)

ϕp(θp;X) = [ϕp1(θp;X)...ϕpQ(θp;X)] (7.30)

wp = [wp1 ...wpQ ] (7.31)

ϕpj(θp;X) =


∅ if j is not visible

ϕ(θp;X) else if vp = j

0 otherwise

(7.32)

where ϕ(θp;X) is a vector of features extracted at location θp. The structured feature

space concatenates appearance features ϕp for all parts p and spatial features ωpq for all

parent-child parts p and q, as for Eq 7.17.

Structured prediction and learning works using the same deformable part model

inference algorithm that was defined in the previous section (Algorith 8). The only

change is the solver for Eq 7.20 maximizes over a larger number of parameters:

Nq[θp] = max
xp,yp,sp,rp,vp

(Mq[θq] + λpq(θp, θq)) (7.33)

Dense computation of Nq[θp] for all values of θp takes time quadritic in the number of

pose mixture components and linear in the number of pixel locations, scales, and orien-

tations using distance transforms [28] (Assume Mq[xq, yq, sq, rq, vq] has been computed

in a previous step. Loop through all allowable pose pairs vp and vq, then sequentially

run a distance transform operation for each dimension x, y, s, r. For orientation, the

boundaries of Nq[...rq...] must be padded by π radians to handle the looping nature of

orientation).

7.2.4 Annotation Interfaces For Part-Based Models

Incorporating pose mixture models is important for obtaining good practical per-

formance for part-based models; however, it introduces new challenges for collecting
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Figure 7.3: Hyper-Supervised Part Annotation Given a Predefined Bird Model: In
contrast to the GUI in Figure 7.1, the user can label the scale, orientation, and pose of
each part, in addition to the pixel location. Annotation occurs as a course-to-fine step-
by-step procedure. The model can be used to align birds that vary significantly in shape
and pose.

annotations since pose can be difficult or ambiguous to label. We consider a few possi-

ble solutions in this section.

A Tool For Collecting Detailed Part Annotations

A tool for collecting part and pose annotations in the style of Section 7.2.3 is

shown in Fig 7.3, and a corresponding expert tool for defining part models (e.g., decom-

posing an object into a set of parts and poses) is shown in Fig 7.4.

A Simpler Annotation Interface With Pose Clustering Methods

Obtaining pose annotations as described in the previous section can be expen-

sive. In this section, we instead assume that we have collected only an x, y location

and visible/non-visible tag ṽ ∈ {0, 1} for each part using one of the interfaces shown

in Figure 7.1b-c). The scale s and pose v of each part is left unlabeled and is inferred
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a) Add/Delete Parts b) Choose Existing Pose or Add New One

c) Add/Edit Visualization For a Pose 
d) Annotations Using Same Pose Can 

Translate/Scale/Rotate Visualization

Figure 7.4: GUI For Building Custom Part Models: A web-based GUI for defining
a custom part model for new categories. Models created with this tool can be used to
annotate images as in Figure 7.3 a) The user can add new parts using the tree control
on the right. b) When annotating a new image, the user can select a pose of a part from
a set of previously defined poses. If no previously defined pose matches the current
image, the user can creates a new pose. c) When creating a new pose (in this case a
frontal view of the breast), the user can draw a custom vector graphics visualization of
that pose. d) When annotating a different image, a user can select the same frontal view
pose of the breast, adjusting the location of 2 control points to rotate/scale/translate the
pose visualization.
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facing_right facing_left body_horizontal_right head_turned_left body_horizontal_left 

head_turned_right fly_swim_towards_right body_vertical_facing_left fly_swim_towards_left body_vertical_facing_right 

Figure 7.5: Pose Clusters For the Part Bird Body: Images in our dataset are clustered
by k-means on the spatial offsets of part locations from parent part locations. Semantic
labels of clusters were manually assigned by visual inspection. Left/right orientation is
in reference to the image.

using unsupervised methods.

Setting Orientation and Scale: In this case, we ignore orientation, setting r = 0, such

that handling rotation an object or part will have to be absorbed by the pose mixture

model. Additionally, we assume a single scale associated with the object, such that

all parts of the same object will be assigned the same scale. We choose s as being

proportional to the width of the bounding box of the object.

Clustering Pose Using Relative Part Offsets: For each non-leaf part p with Aq child

parts q1, q2, ..., qAq , we consider a feature space that appends the location offsets and

visibility flags of each child part:

fp = [ẋpq1 , ẏpq1 , γṽq1 , ẋpq2 , ẏpq2 , γṽq2 , ... ẋpqAq
, ẏpqAq

, γṽqAq
] (7.34)

where ẋpq1 and ẏpq1 are defined as for Eq 7.11, and γ is a parameter that trades off

the relative contribution of part visibility and spatial offset to the pose clustering cost.

Given a dataset of labeled part locations, a set of pose mixture components is learned by

k-means clustering on this feature space. Part p as well as all visible child parts q1...qAq

are assigned to the same cluster center.

Clustering Pose Using Segmentations: Here, we assume that training images have also

been annotated with a figure-ground segmentation defining which pixels are inside the

object. We extract a patch from this segmentation centered about each visible part lo-

cation (xp, yp). Patches across each training image are clustered independently for each
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leaf part p. Non-leaf parts are instead clustered using relative part offsets as described

in the previous section.

7.3 Model Sharing Methods

In this section we consider a few possible models for transfer learning and multi-

task learning using shared part and attribute models.

7.3.1 Joint Learning of Attribute Classifiers

Attributes are semantically interpretable mid-level features that are typically

shared among multiple tasks or multiclass detectors. For example, attributes such as

striped belly or blue tail could be shared among multiple bird species classifiers. There

are a few reasons why attribute-based methods have recently become popular in com-

puter vision:

1. Predicting the attributes themselves may be a desired output of computer

vision: Computer vision research over the past decade has focused primarily

on a handful of object classes like faces or airplanes (nouns in basic-level cat-

egories), while neglecting detecting attributes (typically adjectives), actions (typ-

ically verbs), and subordinate categories. There is some criticism that this partic-

ular choice of emphasis has biased computer vision research.

2. Transfer learning and multitask learning: Attributes serve as an intermediate

layer that is shared by multiple classes or tasks. Model sharing can reduce com-

putation time by sharing processing between different tasks. It can alse reduce the

number of training examples per class that are needed to obtain a given test er-

ror by reducing the total number of model parameters (since weights on different

image-level features are shared among classes).

3. New ways to communicate with humans: Attributes are another avenue for

obtaining supervised annotation from humans, for communicating for interactive

applications, and for machines to provide humans with additional feedback about

the inner workings or failures of computer vision algorithms.
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Figure 7.6: Graphical Models For Alignment and Model Sharing: a) Simple mul-
ticlass classification methods train independent classifiers for each of C classes, and
featurize an entire image without modeling object location. b) Attribute-based methods
employ a layer of M attribute detectors, which are functions of low-level image fea-
tures and shared among classes. c) Localized models employ class detectors that can be
complex functions of the object’s location in the image. d) Part-attribute methods can
employ both part and attribute detectors that are shared among classes.

The most widely used attribute-based model is the direct class attribute model

from Lampert et al. [40], visualized in Fig 7.6b. Here, a set of weights wa on low-level

image features φ(X) is learned for each attribute a ∈ 1...M independently

sa(X) = 〈wa, φ(X)〉 (7.35)

The set of attributes is shared among all classes via an expert-defined vector of attribute

memberships ac = ac1, ..., a
c
M , where −1 ≤ ac1 ≤ 1 for each class c ∈ 1...C, such that

the classification score of class c can be expressed as

hc(X) =
A∑
i=1

acisa(X) (7.36)

In this section, we describe a method that uses this same direct class attribute

prediction model, but learns the attribute weights for all attributes jointly while optimiz-

ing multiclass classification accuracy. The problem can be solved using the same loss

function as the cost-sensitive multiclass SVM

∀i,c, hc(Xi) + ∆C(c, Yi) ≤ hYi(Xi) + εi (7.37)

The only difference is that the goal is to learn attribute weight vectors w = [w1, ...,wA].

Examining equations 7.35-7.36, we see that

max
c∈1...C

hc(X) = max
Y ∈1...C

〈w,ΨA(X, Y )〉 (7.38)
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if we define a structured feature space ΨA(X, Y ) that simply replicates φ(X) for each

attribute i and weights it by its class-attribute membership aci :

ΨA(X, Y ) = [aY1 φ(X), ..., aYMφ(X)] (7.39)

7.3.2 Part Sharing Models

In part-sharing, a common set of part detectors is shared among multiple classes

(for example, if our goal is to detect multiple bird species, we can share part detectors

among bird species). This can be used to add localization information to extend either

the multiclass classification model from Section 7.1 (depicted by the graphical model in

Fig 7.6c).

In the former case, we can now think of the representation of an object label

Y = {c, θ1, ..., θP} as a class c and a set of P part locations, where θ = θ1...θP is as

defined in Section 7.2.3. We assume that each class c has a set of a vector of appearance

weights wc on part localized features ΨP (X, θ) (see Eq 7.17). All classes also share the

same set of part detectors via a vector of appearance weights wP on ΨP (X, θ), such that

the detection score for class c is

gc(X, Y ; w) = 〈wc,Ψ
P (X, θ)〉+ 〈wP ,ΨP (X, θ)〉 (7.40)

The predicted class and part locations with the highest score is:

Y ∗ = arg max
θ,c

gc(X, Y ; w) (7.41)

= arg max
Y
〈w,Ψ(X, Y )〉 (7.42)

w = [wP , w1,w2, ...,wC ] (7.43)

Ψ(X, Y ) = [ΨP (X, Y ), ΨP
1 (X, Y ),ΨP

2 (X, Y ), ...,ΨP
C(X, Y )] (7.44)

ΨP
i (X, Y ) =

ΨP (X, Y ) if i = c

0 otherwise
(7.45)

This can be computed simply by running a separate prediction problem (Algorithm 8)

for each class:

Y ∗ = arg max
c

DPMINFERENCE(X,wc + wP ) (7.46)
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Loss Functions For Part Sharing Models

We consider loss functions that are some weighted combination of multiclass

classification loss ∆C(c, Yi) (see Section 7.1) and part localization loss ∆P (θ, Yi):

∆(Y, Yi) = ∆C(c, Yi) + γP∆P (θ, Yi) (7.47)

where γP is a constant that is used to tradeoff how much we care about part localization

accuracy as compared to classification accuracy. The most violated label can also be

solved using Algorithm 8:

Ȳ = arg max
c

DPMINFERENCE(X,wc + wP ,∆C(c, Yi) + ∆P ) (7.48)

Interactive Labeling For Part Sharing Models

In interactive labeling, a user can specify a partial labeling Ỹ , which can contain

a partial labeling θ̃ to a subset of part locations, to the object class c̃, or to some subset

of the two. This is once again solvable using Algorithm 8:

Y ∗
Ỹ

= arg max
c

DPMINFERENCE(X,wc + wP , ∅,Uc) (7.49)

Uc
p[θp] =

−∞ if θ̃p is labeled and θp 6= θ̃p or c̃ is labeled and c 6= c̃

0 otherwise
(7.50)

7.3.3 Part-Attribute Sharing Models

We can also share both part and attribute detectors among different classes, ex-

tending the class-attribute model from Section 7.3.1 to include part localization infor-

mation (depicted by the graphical model in Fig 7.6d). This makes intuitive sense, since

many or most attributes tend to be associated with a part (e.g.striped belly, long tail,

etc.) or an object (e.g.red car, gull-shaped bird, etc.) as opposed to an image. Thus

whereas most research in attribute-based methods tend to predict image-level attributes

that extract features from the entire image (as in Section 7.3.1), a model that is capable

of associating attributes with their associated part locations is capable of both providing

a more realistic output and incorporating more relevant appearance features.
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In this case, we represent an object label Y = {c, a, θ} as a class c, a vector

of M attributes a = a1...aM , and a set of P part locations θ = θ1...θP (defined in

Section 7.2.3). A vocabulary of M attribute detectors and P part detectors is shared

among C classes. For simplicity, we assume each attribute a is associated by a part

p(a), such that the detection score for an attribute at location θ is

sa(X, θ) = 〈wa,Ψ
P (X, θ)〉 (7.51)

where ΨP (X, θ) is a vector of appearance features extracted at locations θ (see Sec-

tion 7.2.3). The set of attributes is shared among all classes via an expert-defined vector

of attribute memberships ac = ac1, ..., a
c
M , where −1 ≤ ac1 ≤ 1 for each class c ∈ 1...C,

such that the detection score of class c can be expressed as

hc(X, θ) = 〈wP ,ΨP (X, θ)〉+
A∑
i=1

acisa(X, θ) (7.52)

where 〈wP ,ΨP (X, θ)〉 is the part detection score at θ (see Section 7.2.3). The predicted

label Y ∗ is the class c and set of part locations θ that maximizes this score (note that

since class-attribute memberships are assumed to be deterministic, the corresponding

set of predicted attributes will be ac):

Y ∗ = arg max
c,θ

hc(X, θ) (7.53)

= arg max
Y
〈w,Ψ(X, Y )〉

w = [wP , wa1 ,wa2 , ...,waM ]

Ψ(X, Y ) = [ΨP (X, Y ), ac1ϕp(a1)(θp(a1);X), ..., acMϕp(aM )(θp(aM );X)]

This is solvable by running Algorithm 8 separately for each class c, where the part

detection weights wp for part p and class c

wp = wP
p +

∑
ai,p(ai)=p

aciwai (7.54)

Incorporation of loss functions and interactive labeling works the same way as described

in Section 7.3.2.
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7.3.4 Approximate Inference Algorithms and Extensions

The prediction algorithms described in Section 7.3.2-7.3.3 take O(CPI) time,

where C is the number of classes, P is the number of parts, and I is the number of pixel

locations per image. A faster, approximate inference technique that takes O(C + PI)

time is described in Section 3.1. Section 3.1 also contains various other extensions

including more sophisticated models of imperfect user interaction and active prediction

algorithms.

7.4 Tracking

In this section, we describe a method for simultaneous detection and tracking of

a particular type of object such as a face or a human body. Let X be a video sequence

consisting of B image frames, and Y = {y1, y2, ..., yB} denote the position of the object

in each frame, where yt = {xt, yt, st} is the bounding box of the object (as defined in

Section 7.2.1 in frame t.

Let ΨB
t (X, yt) be a vector of appearance features extracted from the bounding

box yt in frame t and let wa be a vector of appearance weights, such that the detection

score for an object in frame t is

ψ(yt;Xt) = 〈wt,Ψ
B
t (X, yt)〉 (7.55)

Let λ(yt−1, yt) be a temporal score measuring the relative likelihood of an object moving

from location yt−1 at frame t− 1 to location yt at frame t:

λ(yt−1, yt) = 〈wb, ω(yt−1, yt)〉 (7.56)

ω(yt−1, yt) = [ẋ, ẋ2, ẏ, ẏ2] (7.57)

ẋ =
xt−1 + µx − xt

st−1

, ẏ =
yt−1 + µy − yt

st−1

(7.58)

Note that Eq 7.56 has identical form to the spring cost we used for our deformable part

model (Eq 7.11). The highest scoring set of object locations across the entire video

sequence is:

Y ∗ = arg max
y1...yB

( ∑
t=1...B

ψ(yt;Xt) +
∑
t=2...B

λ(yt−1, yt)

)
(7.59)
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This can be solved using the same algorithm that we used for deformable part model

inference (Algorithm 8), if we define a tree T = (V,E), with one node for each time

frame 1...B and an edge between each consecutive time frame.

Optimizing Loss Functions For Tracking

We consider loss functions consisting of the sum loss over each time frame

∆T (Y ′, Yi) =
B∑
t=1

∆(y′t, yti) (7.60)

where ∆(y′t, yti) is the loss associated with placing an object at location y′t when the true

location is yti (one of the loss functions defined in Section 7.2.1). As in Section 7.2.1,

let us assume that this loss function has been densely precomputed into an array ∆t[yt].

The most violated label Ȳ can be found by solving

Ȳ = arg max
y1...yB

( ∑
t=1...B

(ψ(yt;Xt) + ∆t[yt]) +
∑
t=2...B

λ(yt−1, yt)

)
(7.61)

= arg max
Y

(〈w,Ψ(X, Y )〉+ ∆(Y, Yi)) (7.62)

which is solvable using Algorithm 8 if we simply add the loss ∆t to the frame detection

score Mt.

Interactive Prediction For Object Tracking:

Suppose the user has provided a partial annotation Ỹ to the location of the object

in a subset of the time frames. Let θ̃t denote the user’s annotation to frame t. We can

see that the highest scoring user-consistent tracking Y ∗
Ỹ

(Eq 7.3) can be expressed as:

Ȳ = arg max
y1...yB

( ∑
t=1...B

(ψ(yt;Xt) + Ut[yt]) +
∑
t=2...B

λ(yt−1, yt)

)
(7.63)

Ut[yt] =

−∞ if ỹp is labeled and yt 6= ỹt

0 otherwise
(7.64)

where Ut is a precomputed array that is −∞ at all locations that don’t agree with the

user’s label. This is solvable using Algorithm 8 if we simply add Ut to the frame detec-

tion score Mt.
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Articulated Tracking

We could also consider a more sophisticated tracker, where the goal is to track

the position of each of P parts of an object over B time frames. Here, we assume a

more complex representation of the the position of the object in each time frame yt =

{θt1..θtP}, where θtp = {xtp, ytp, stp, rtp, vtp} encodes the x,y location, scale, orientation, and

pose of part p in the t-th time frame (as defined in Section 7.2.3). The highest scoring

set of object part locations across the entire video sequence is obtained by summing the

deformable part model score (Eq 7.15) for each time frame:

Y ∗ = arg max
y1...yB

 B∑
t=1

∑
p∈V

ψp(θ
t
p;Xt) +

∑
(p,q)∈E

λpq(θ
t
p, θ

t
q)

+
B∑
t=2

λ(θt−1
r , θtr)

(7.65)

Here, the temporal score is assumed to be a function of the position of only the root

part r across time frames. Solving Eq 7.65 can be done using Algorithm 8, if we define

a tree T ′ = (V,E) that replicates our part tree (see Section 7.2.2) B times, adding an

edge between the root part over consecutive time frames: θt−1
r θtr. Optimization time

is linear (but multiplicative) in the number of parts, time frames, and pixel locations.

Incorporation of interactive prediction and optimization of different loss functions is

straightforward.

7.5 Segmentation

Let X be an image and Y = s1...sI be a figure-ground segmentation, such that

si ∈ {0, 1} indicates whether or not the i-th pixel is inside the foreground or not. Let

ϕi(X) be a vector of appearance features extracted from a patch that is centered around

the i-th pixel, and let wu be a learned vector of weights on these appearance features,

such that

Ωi(si;X) = 〈wu, siϕi(X)〉 (7.66)

is a unary score representing the relative likelihood that the i-th pixel is labeled as si.

Let i and j be neighboring pixels, with Γij(si, sj;X) be a pairwise score that penalizes

neighboring pixels i and j from having differing labels, e.g., a contrast-sensitive Potts
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model:

Γij(si, sj;X) = wbρij(si, sj;X) (7.67)

ρij(si, sj;X) = 1[si 6= sj] exp{−(Xi −Xj)
2} (7.68)

where wb is a learned weight on the relative importance of the pairwise score.

The total segmentation score sums together unary and pairwise potentials:

Y ∗ = arg max
s1...sI

I∑
i=1

Ωi(si;X) +
∑

i,j∈neighbors(i)

Γij(si, sj;X) (7.69)

= arg max
Y
〈w,ΨS(X, Y )〉 (7.70)

w = [wu, wb] (7.71)

ΨS(X, Y ) =

( I∑
i=1

siϕi(X)

)
,

 ∑
i,j∈neighbors(i)

ρij(si, sj;X)

 (7.72)

The optimal segmentation Y ∗ is efficiently solvable using a max-flow min-cut algo-

rithm [7].

Loss Functions For Segmentation

Let ∆S(Y ′, Y ) be the number of incorrect pixels in a predicted segmentation Y ′:

∆S(Y ′, Y ) =
I∑
t=1

1[s′i 6= si] (7.73)

The most violated label Ȳ can be found by solving

Ȳ = arg max
s′1...s

′
I

I∑
i=1

(Ωi(s
′
i;X) + 1[s′i 6= si]) +

∑
i,j∈neighbors(i)

Γij(s
′
i, s
′
j;X) (7.74)

which is solvable using the same min-cut max-flow algorithm.

Interactive Prediction For Segmentation:

Suppose the user has provided a partial annotation Ỹ , e.g.a series of brush strokes

defining subsets of pixels that are part of the foreground and background. Let s̃i denote
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the user’s annotation to the i-th pixel. We can see that the highest scoring user-consistent

segmentation Y ∗
Ỹ

(Eq 7.3) can be expressed as:

Ȳ = arg max
s1...sI

I∑
i=1

(Ωi(si;X) + Ui(si)) +
∑

i,j∈neighbors(i)

Γij(si, sj;X)(7.75)

Ui(si) =

−∞ if s̃i is labeled and si 6= s̃i

0 otherwise
(7.76)

which is solvable using the same min-cut max-flow algorithm.

7.6 Behavior and Action Recognition

In this section, we introduce an algorithm for representing, segmenting and clas-

sifying actions or behaviors (e.g., specify the exact time periods in a video sequence

when the mouse is grooming, running, sleeping, etc.) using more sophisticated tempo-

rally localized models. Let X be a video sequence, and Y be a segmentation of X into

actions. In our experiments, we assume an object tracker (e.g., the tracker described

in Section 7.4) has been run on the video sequence X , such that we have an estimated

location and orientation of an object and its parts in each time frame.

Our behavior detector analyzes the motion of these part positions over time and

uses them to predict behaviors. Let xt = {θt1..θtP} denote the tracked location of each

part in time frame t (see Section 7.4), which we refer to in this section as per frame

features. Our goal is to segment the video sequence into a sequence of predicted actions

Y = {y1, y2, ..., ym}, where yj = {(bj, ej, cj)} is the jth interval in the segmentation

of x, bj and ej mark the beginning and end of the interval and cj is the class label of

the activity that the boundary encloses. We refer to these labeled intervals as bouts of

actions, and we assume a full segmentation of the video sequence, such that b1 = 1,

bS = T , and bt = et−1.

In order to more appropriately represent statistical patterns of temporal motion

during an action, the algorithm relies on bout features, defined as ψ(X, b, e). These can

be arbitrary functions over the set of per-frame features x1...xt, localized with respect to

the beginning and end times of the action b and e. These bout features are multiplied by
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Figure 7.7: Overview of Behavior Detection in Flies: In this example, 50 flies are
tracked in a circular arena. Features are computed as statistics or transformations of
tracked trajectories in candidate time-localized behavior bouts. The system predicts a
segmentation of a tracked trajectory into the set of predicted behaviors with the highest
score.

a vector of learned model weights, computing a score measuring the likelihood that an

action occurs at a particular time in the video sequence. These are combined with tran-

sition scores that encode the likelihood of two consecutive actions. Collectively, these

define a score function measuring the likelihood of a segmentation of a video sequence

into actions. Inference solves for the segmentation of a video that maximizes this score

and is efficiently computable using dynamic programming. Training minimizes a con-

vex upperbound on a customizable loss function that measures how much a predicted

segmentation disagrees with the ground truth segmentation.

7.6.1 Behavior Bout features

A bout feature ψk(X, b, e) is a function of the raw input X and an interval [b, e].

It is an abstracted version of the feature space, where statistical patterns existing in X

may be more easily discovered or represented using knowledge of the beginning and end

of each bout. We define a variety of different types of basic feature expansion operations

that are used to synthesize bout-level features from frame-level features:
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Bout Statistic Features: For each per-frame feature, we take the minimum, maximum,

sum, mean and standard deviation of the feature over the frames spanned by [b, e].

Histogram Features: For each per-frame feature, we take the histogram of the feature

over the frames spanned by [b, e].

Temporal Region Features: We split the interval [b, e] into N smaller intervals. For

each of the smaller intervals [bn, en] we extract bout statistic features from the per-frame

features over the interval. This can be useful for capturing actions of complex structure,

where the per-frame feature statistics during part of the action differ from the per-frame

feature statistics during another part of the action. For example an action of drinking

water may consist of a person reaching for a cup, grabbing the cup, lifting it towards its

mouth, and so on, where each action has very different statistics for the velocity of the

person’s hand.

7.6.2 Scoring and Predicting Behaviors

We define a function f(X, Y ) which measures how well Y segments X into

actions. The score function is represented in terms of scores for individual bouts and

transition costs, summing over each bout in the segmentation:

f(X, Y ) =
∑

(bj ,ej ,cj)∈Y

〈wcj , ψ(x, bj, ej)〉 − λcj−1
(cj)− γcj(bj, ej) (7.77)

where wcj are the weights used to calculate the score for a bout of class cj , λcj−1
(cj)

is the cost of moving from action cj−1 to cj , and γcj(bj, ej) is the cost of spending

ej − bj frames in action cj , which is 0 if the duration is within that action’s standard

range (observed in training) and grows exponentially with its distance from the range.

The learning algorithm will jointly learn all of the weights vectors, the transition cost

matrix, and the duration cost vector.

Given weights w and the costs λ and γ (see Eq. 7.77), the optimal solution

to the score function maxY f(X, Y ) can be found using dynamic programming in time

O(T 2(C2 + D)), where T is the number of frames in X , C is the number of behavior

classes and D is the dimensionality of the bout-level feature space ψseg(X, Y ). The

algorithm is shown in Algorithm 9.
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Algorithm 9 BEHAVIORSEGMENTATIONINFERENCE(X,w)

1: Initialize: S[0][1...C]← 0, M[0][1...C]← ∅
2: for e = 1 to T do

3: for c ∈ C do

4: Compute the optimal score S[e][c] and its corresponding solution M[e][c] for

beginning a bout of class c at time e:

S[e][c]← max
0≤b<e,c′∈C

(
S[b][c′] + 〈wc′ , ~ψbout(x, b, e, c

′)〉 − λc′(c)− γc′(b, e)
)

5: end for

6: end for

7: Backtrack to extract optimal solution:

(bm, cm)← max
c
M [T ][c]

for i = m,m− 1, ...2, (bi−1, ci−1)←M [bi][ci] end for

8: return Y = {(b1, e1, c1), (b2, e2, c2), ..., (bm, em, cm)}

At each time frame e, the dynamic program searches for the bout ending at frame

e, which has the highest score when combined with the score of the sequence ending in

that bout’s start frame. It searches through all possible frames b < e as possible start

frames, and all possible behaviors c′.

An O(T log T ) approximate inference algorithm is also possible. Here, we con-

sider searching over just a subset of all possible bout durations in Line 4. This includes

all durations less than K time steps in length, and thereafter bout durations that are

geometrically increasing in size.

7.6.3 Loss Functions For Behavior Recognition

The loss function measures how well a predicted segmentation Y approximates a

ground truth segmentation Yi. It should be constructed such that when the loss function

is small, then the results from the inference are satisfactory. We use

∆(Y, Yi) =
∑

(b,e,c)∈Yi

`cfn
e− b

( ⋂
Y,ĉ 6=c

(b, e)

)
+

∑
(b̂,ê,ĉ)∈Y

`cfp

ê− b̂

( ⋂
Yi,c 6=ĉ

(b̂, ê)

)
(7.78)

where
⋂
Y,ĉ 6=c(b, e) is the number of frames in Y intersecting with (b, e) with different

action class ĉ 6= c, `cfn is the cost for missing a bout of class c, and behavior `ĉfp is the cost
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Figure 7.8: Feature Visualization: Three types of features are extracted from the bird
image on the left, localized around the depicted part locations. From left to right: 1)
7× 7 HOG templates, 2) color histograms, 3) bag-of-words encoded SIFT features.

for incorrectly detecting a bout of class ĉ. This loss function softly penalizes predictions

where the start or end of the bout is slightly incorrect. On the other hand, since the loss is

normalized by the bout duration, it effectively counts the number of incorrectly predicted

bouts. Unlike a per-frame loss, behaviors such as walking and standing still (which may

last for minutes at a time) are not deemed to be more important than behaviors like

lunging and wing extensions (which may last for a fraction of a second). Furthermore,

noisy segmentations that break a bout into many smaller bouts are heavily penalized by

the false positive cost. As a result, ∆(Y, Yi) heavily favors smooth segmentations that

can explain the observed data using a small number of bouts.

The function can be generalized to take into account an arbitarary class confu-

sion cost, such that mistaking action c1 for action c2 can be penalized more than mistak-

ing action c3 for action c2, if c3 and c2 are more similar than c1 and c2.

7.7 Features and Implementation Details

In Sections 7.1-7.5, referenced image features φ(X) and part-localized features

ψ(θ;X), which were left undefined. In this section, we define details for efficiently

computing localized features ψ(θ;X) for some fixed window size W ×H , with respect

to some location θ = {x, y, sp, r}. I have included the following features in my software

package (they are all efficiently computable in sliding window fashion and applicable to

classification, detection, part-based, segmentation, and tracking problems):

• HOG/SIFT: Histograms of Oriented Gradients (HOG) [15] capture gradients at
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different orientations in different spatial locations. SIFT corresponds to a spe-

cific set of parameter choices for HOG. Templates of HOG features are the most

popular descriptor for object detection [29, 15].

• LBP: Local Binary Patterns (LBP) [51] is a binary vector that is obtained by

comparing the relative intensity of pairs of pixels. It is the most popular descriptor

for face recognition [2] and is also popular for object detection [82].

• RGB/Lab Color: These are simply raw pixel values in some color space

Each of these features can be encoded using templates (Section 7.7.1), bag-of-words

(Section 7.7.2), or fisher vectors (Section 7.7.3).

7.7.1 Template Features

Template features are raw values of one of the above feature descriptors on a

sptial grid extracted from some window defined by θ. For example, for a template

of HOG features in a W × H window, ψ(θ;X) is a W × H × C descriptor, where

C is the number of orientation bins in the HOG descriptor. An RGB template is a

W ×H × 3 descriptor. In both cases, the sliding window detection score 〈w, ψ(θ;X)〉
for all possible window locations θ is efficiently computable in time that isO(n log n) in

the number of possible values of θ, but independent of the size of each template window.

This can be done by stacking the weight vector w into a W ×H template and applying

a convolution operator (this must be done separately for each image channel).

7.7.2 Bag-of-Words Features

Bag-of-words (applied to computer vision) is a descriptor that is popular for

datasets where training images are not spatially aligned. Using bag-of-words on SIFT

descriptors is popular for multiclass classification, whereas bag-of-words on RGB/Lab

color patches is one way of implementing color histograms. Such features encode statis-

tics on the relative frequency of different colors or textures, but discard information re-

lated to the global shape of an object. If bag-of-words is computed within a particular

window region ψp(θp;X) (e.g., in the window region around a predicted location of a



136

part p) instead of the entire image, it can be thought of as an encoding of the color/texture

of a particular part.

• Training: A codebook is trained by extracting image patches and computing one

of the above features descriptors (e.g., HOG, SIFT, LBP, RGB, Lab) for each

patch. K-means or hierarchical k-means is used to cluster the image patches into

k visual codewords.

• Testing:

– Feature encoding: To compute a k-dimensional bag-of-words feature vec-

tor ψ(θ;X), image patches are extracted on a regular grid within the window

defined by θ, and each patch is assigned to the visual codeword that is the

nearest neighbor in Euclidean space. The i-th entry of the induced feature

vector ψ(θ;X) is a count of the number of words assigned to the i-th code-

word. The induced feature vector is typically L2-normalized.

– Sliding window computation: Suppose we want to compute the sliding

window detection score 〈w, ψ(θ;X)〉 for all possible window locations θ,

where w is a k-vector of weights on codewords. This is efficiently com-

putable in time linear in the number of possible values of θ, but independent

of the size of each window (the number of image patches in each window

that are used to compute the bag-of-words descriptor) using the integral im-

age trick [76]. An integral image of the detection score is efficiently com-

putable using a single pass over the image. Suppose patch j is assigned to

the i-th codeword. The value of the integral image at location t is equal to

the value at location t−1 plus the weight for the i-th codeword wi. A similar

method can be used to compute an integral image of the squared Euclidean

magnitude for L2 normalization.

7.7.3 Fisher Vector Features

Fisher encoded features [53] can be thought of as a variant of bag-of-words that

induces a higher dimensional feature space. They tend to work well in practice. When
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used with simple linear classifiers, they typically outperform the best kernelized meth-

ods for many popular image classification datasets (e.g., Caltech-256 and ImageNet).

• Training: Similar to bag-of-words, a codebook is trained by extracting image

patches and computing one of the above features descriptors (e.g., HOG, SIFT,

LBP, RGB, Lab) for each patch. A GMM with a diagonal covariance matrix is

trained (in place of k-means), and is used to learn k mixture comonents. Let

pi, µi,Σi be the parameters of the i-th mixture component, where pi is a prior

probability, µi is a d-dimensional mean vector, and Σi is a d× d diagonal covari-

ance matrix.

• Testing:

– Feature encoding: The Fisher encoded feature vector ψ(θ;X) will be a

2kd-dimensional vector, where d is the dimension of the original feature

descriptor (e.g., SIFT). As with bag-of-words, image patches are extracted

on a Q = W × H grid within the window defined by θ; however, this time

each patch xt = xt1, xt2, ..., xtd is soft-assigned to each visual codeword,

where γi(xt) is the posterior probability that patch xt is assigned to the i-

th mixture component, according to the GMM distribution. The induced

feature vector concatenates the following feature vectors for each value of i:

Gµi =
1
√
pi

Q∑
t=1

γi(xt)x̄ti (7.79)

Gσi =
1√
2pi

Q∑
t=1

γi(xt)
(
x̄2
ti − 1

)
(7.80)

where x̄ti = Σ−.5i (xt − µi) is a d-dimensional vector. The induced vector is

normalized as described in [53].

– Sliding window computation: Sliding window computation takes time in-

dependent of the size of the window in similar fashion as for bag-of-words

(using integral images). This time, the value of the integral image at location

t is equal to the value at location t− 1 plus 〈w, [Gt,1...Gt,k]〉, where

Gt,i =
[

1√
pi
γi(xt)x̄ti,

1√
2pi
γi(xt) (x̄2

ti − 1)
]
.
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Chapter 8

Synthetic Distributions For Which

Popular Machine Learning Algorithms

Perform Poorly

In this section, we consider synthetically generated images that can be defined

by a small number of intrinsic parameters (e.g., the number of classes, the number of

attributes that classes differ by, and the number of degrees of freedom of geometric

deformation). We analyze the scalability of various machine learning techniques that are

commonly used in computer vision as a function of the number of intrinsic parameters.

Our goal is to come up with synthetic distributions that 1) are simple enough such that

we can analytically compute upper bounds on the expected performance of different

algorithms, and 2) are parameterized by a set of intrinsic parameters that are intuitively

understandable in terms of natural images, such that it is difficult to argue that natural

images don’t have similar properties.

We argue that many machine learning algorithms will have major scalability

problems if objects can deform geometrically (e.g., by moving in 3D or through artic-

ulation) and appearance information in multiple portions of the object is necessary for

discrimination. In the presence of deformable objects, we demonstrate that methods

based on linear classifiers will get poor performance even with an infinite amount of

training data, and methods based on nearest neighbor will require an amount of training

examples that is exponential in the number of degrees of freedom of articulation of the
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object. Additionally, we show that performance of methods based on bag-of-words or

spatial histogramming–the most popular type of feature that is designed to cope with

geometric deformation of objects–will experience a saturation in performance as the

number of classes increases. By contrast, on the synthetic distribution described in

this section, a method that explicitly models and annotates object deformation (Sec-

tion 7.3.2) produces a perfect classifier with just one training example per class. We

attempt to relate these results to performance trends in computer vision research.

8.1 Synthetic Distribution Definition

In our simplified object model, we assume that a set of C classes c1, c2...cC can

be represented using a shared vocabulary of k low-level visual attributes and P parts.

Each class c can be represented by a binary class-attribute vector ac of length M , where

M = Pk. For example, the k low-level visual attributes may correspond to things such

as colors, materials, or low-level shapes in some local region, whereas each of the M

class-level attributes correspond to the association of a low-level attribute with a specific

part (e.g., blue wing, striped belly).

The parametersC, k, and P are intrinsic parameters of our synthetic distribution.

The hamming distance h(ac1 , ac2) between two class attribute vectors is a measure of

the difference between classes c1 and c2 (e.g., interclass variation). The decomposition

of class-attributes into low-level visual attributes and parts is introduced in order to have

a parameter controlling the relative importance of spatial or shape information (the ratio

of P to k), which tends to break bag-of-words methods. Additionally, the parameter

P controls the number of degrees of freedom of geometric deformation of an object.

This is a form of intraclass variance that is known to be problematic to computer vision

algorithms.

For the next two sections, we assume images are randomly generated using the

following procedure:

1. Let A be the space of all 2M possible class-attribute vectors. For each class c =

1...C, select a class attribute vector ac uniformly at random without replacement.

2. For each class c, synthesize n training examples Xc1, Xc2, ..., Xcn as visualized in
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Figure 8.1: Synthetic Distribution For Which Linear Classifiers and Nearest Neigh-
bor Do Poorly: Images are generated using the procedure described in Section 8.1, with
C = 3 classes, n = 4 examples per class, P = 3 parts, and k = 2 attributes per part.
Each row shows 4 images from each of the 3 classes, and classes have class-attribute
vectors ac1 = 001001, ac2 = 010101, ac3 = 010011

Figure 8.1. For each such example X:

(a) For each part p, independently choose a part location θp = {ip, fp}, where

ip is a random integer between 0 and l = h/w, and bp is a Bernoulli random

variable with probability .5.

(b) Represent each low level visual attribute by a square of size w × w pixels

that is half white (pixels are 1) and half black (pixels are -1). If an attribute

api = 1 the square will be split vertically in half, whereas if api = −1 the

square will be split horizontally in half.

(c) Render a gray background (pixels are 0) of size Mw × h pixels, where h =

lw.

(d) Draw the square for the jth attribute of the pth part at xy-location

(w(pk + j), wip). If fp=true, then also rotate the squares by 180o.

This definition is a little complicated to explain, and in general any type of ob-

ject where different portions of the object deform separately will have similar problems.

However, the defined synthetic distribution has a few properties that make it easier to

analyze. Note that irrespective of the class or attribute, the expected value of image

intensities at all pixel locations is 0 due to equal probability of rotating parts. In Sec-

tions 8.2 and 8.3, we show that when using image pixels as features, linear classifiers

and nearest neighbor do poorly on this distribution. While we show this only for pixel
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features, similar results will hold for other types of features that preserve spatial infor-

mation like HOG, spatial pyramids, filter responses (not necessarily on this particular

distribution, but for some related distribution). In Section 8.4, we show that features

based on histogramming or bag-of-words will also have poor scaling properties. By

contrast, on this particular distribution, a part-based structured model (e.g., as described

in Section 7.2.3) is capable of getting perfect classification performance with n = 1

training example per class.

8.2 No Linear Classifier Is Better Than Random Chance

The rendering of image pixels for an example (X, c) is a deterministic func-

tion I(X, c,Θ) of the attribute parameters ac and the part location parameters Θ =

i1...iP , f1...fp, where I(X, c,Θ) is a vector of Mw×h pixels. Let us define the quantity

flip(Θ) = i1...iP , f̄1...f̄p, which is obtained by negating all parameters f1...fp, such that

each rendered square is rotated by 180o. Consequently, it follows that

I(X, c,Θ) = −I(X, c, flip(Θ)) (8.1)

We show that there does not exist a linear classifier operating on pixels as fea-

tures that does better than random chance. Let us consider two different classes c1 and

c2. Let w1, t1 each be a vector of weights and a threshold, such that c1 is predicted

over c2. If w1, I(X, c,Θ)〉 > t1. Let Θ be a set of part locations that renders an image

I(X1, c1,Θ) for which our classifier predicts the correct class c1. This implies that

〈w1, I(X1, c1,Θ)〉 > t (8.2)

By Eq 8.1, it must be the case that

〈w1,−I(X1, c1, flip(Θ))〉 > t (8.3)

〈w1, I(X1, c1, flip(Θ))〉 < −t (8.4)

Consequently, the image I(X1, c1, flip(Θ)) must be incorrectly classified. Since Θ and

flip(Θ) have equal probability mass, this implies that the expected classification accu-

racy of a 1-vs-1 classifier cannot be greater than .5.
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8.3 Nearest Neighbor Requires Exponential Data

Assume that we synthesize images using the process described in the previous

section. Intuitively, a nearest neighbor classifier will likely fail unless there exists a

training example with all parts in the same configuration as a test example, and thus will

require an exponentially large amount of training data in the number of parts.

For imagesX1 andX2 that are randomly generated from classes c1 and c2 respec-

tively, let dp(X1, X2) denote the Euclidean distance in the portion of the images where

the pth part could be located (the kw × h rectangle with upper left corner at x = wpk,

y = 0). Let h(ac1
p , a

c2
p ) be the hamming distance between class-attributes that pertain to

the pth part. Then

d(X1, X2) =
∑
p

dPp=1(X1, X2) (8.5)

dp(X1, X2) =


kw2 if i1 6= i2 (w/ probability 1− 1

l
)

h(ac1
p , a

c2
p )w2 if θ1 = θ2 (w/ probability 1

2l
)

(2k − h(ac1
p , a

c2
p ))w2 if i1 = i2 and f1 6= f2 (w/ probability 1

2l
)

(8.6)

Let us assume that for class c there exists another class c′ with no more than k

different attributes h(ac
p, a

c′
p ) ≤ k. Let X be a random test example of class c and part

locations Θ, and suppose a training set of n = (2l)P examples per class is generated with

random part locations, yielding a train set that includes (Xc1, c,Θc1)...(Xc1, c,Θcn) and

(Xc1, c,Θc1)...(Xc′1, c
′,Θc′n). Then the expected loss of a nearest neighbor classifier

E∆(X) is at least one half the probability that there exists a training example of class c′

that is at least as close as the nearest example of class c:

EΘ,Θc1...Θcn,Θc′1...Θc′n
∆(X) ≥ 1

2
p(min

i
d(X,Xci) ≥ min

j
d(X,Xc′j)) (8.7)

≥ 1

2
p(∃i,Θci 6= Θ)p(∃j,Θc′j = Θ) (8.8)

≥ 1

2

(
1− 1

(2l)P

)n(
1−

(
1− 1

(2l)P

)n)
(8.9)

≥ .1 (8.10)

where the last line holds because .316 ≤
(
1− 1

n

)n ≤ 1
e

for n ≥ 4. We thus expect

nearest neighbor algorithms to require an expontially large amount of training data in
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the number of degrees of freedom of object deformation. In this example, it also scales

badly with the parameter l–this can roughly be interpreted as the ratio between the num-

ber of pixels a part can spatially deform to the resolution of appearance information that

is needed to detect the part.

8.4 Bag-of-Words Scales Badly With Number of Classes

Bag-of-words based features are the most popular and successful type of feature

on object recognition datasets such as Caltech-256 [31], the VOC Classification Chal-

lenge [23], and ImageNet [18] (datasets that typically have only one object per image

and don’t provide annotation of object location). Empirically, people have observed that

these methods tend to work well when the number of possible classes is small (e.g.,

less than 20), but experience a steady drop off in performance as the number of classes

increases (see Fig 8.2). Furthermore, there is a general sentiment in the field that re-

search in such methods has become increasingly saturated, with very little quantitative

improvement in performance in the last 5 years. We explore the possibility that this per-

formance drop off and saturation is a consequence of an over-reliance on bag-of-words

or histogram features.

In computer vision, bag-of-words methods discard information about the rela-

tive ordering or geometric arrangement of different visual words. This can potentially

still work if there is a sufficiently large number of differences between classes, such

that classes are distinguishable even with the loss of spatial information. However, we

expect performance to decline as 1) the number of classes grows such that the number

of attributes in which classes differ by decreases, 2) the relative importance of spatial

information becomes more important (in our model, this is related to the ratio of P to

k).

In this section, our analysis applies to any bag-of-words method, irrespective of

the method of synthesizing images from class attribute vectors. We compute an upper

bound on how well bag-of-words based systems can perform, even if we assume that re-

searchers could solve the following problems: 1) the selection of features and classifier

is perfect, 2) inifinite training data, 3) perfect codebook learning, such that the learned
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Figure 8.2: Object recognition methods scale poorly with the number of classes.
Is this partially a consequence of an over-reliance on bag-of-words? a) An upper
bound on the classification accuracy of bag-of-words methods for our synthetic dis-
tribution, with different parameter settings for the number of parts P and number of
attributes M = Pk (see Eq 8.23), predicts poor performance of methods based on bag-
of-words as the number of classes increases. b-d) Plots taken from [31, 18, 9] show
that multiclass classification accuracy for state-of-the-art methods scales badly with the
number of classes on Caltech-256, ImageNet, and Birds-200.

visual words correspond to the underlying k visual attributes of the generating distribu-

tion, and 4) perfect region of interest selection (segmentation), such that codewords are

sampled exactly from the object and not the background. All error in this upper bound

can be attributed to the loss of spatial information from the bag-of-words assumption.

In this case, for a data example x of class c, we assume that the idealized detected bag-

of-words feature space can be expressed as a vector of length k, such that the jth feature

φj(x) is the total number of occurrences of the jth attribute:

φj(x) =

p∑
p=1

1[acpj = 1] (8.11)
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where acpj = ±1 indicates whether or not part p in class c has the jth attribute. As

described in the previous section, we assume class attribute vectors are selected uni-

formly at random and each class occurs with equal prior probability. Let c1 and c2 be

two randomly selected classes. The probability that both classes will map to the same

bag-of-words feature vector is

p(φ(c1) = φ(c2)) =
∑
φ(c1)

p(φ(c1))p(φ(c1) = φ(c2)) (8.12)

p(φ(c1) = φ(c2)) =
∑
φ(c1)

p(φ(c1))2 (8.13)

where the second line occurs because classes are selected independently at random with

replacement. Since attributes are selected independently

p(φ(c1) = φ(c2)) =
∑
φ(c1)

(
k∏
j=1

p(φj(c1))

)2

(8.14)

=
k∏
j=1

P∑
φj(c1)=0

p(φj(c1))2 (8.15)

=

 P∑
φj(c1)=0

p(φj(c1))2

k

(8.16)

Since φj(c1) is a count of the number of parts with the jth attribute,

φj(c1) ∼ BINOMIAL(P, .5) and

p(φ(c1) = φ(c2)) =

 P∑
k=0

((
P
k

)
2P

)2
k

(8.17)

The sum of squares of binomial coefficients
∑P

k=0

(
P
k

)2
is known to equal the central

binomial coefficient1

P∑
k=0

(
P

k

)2

=

(
2P

P

)
=

2P (2P − 1)!!

P !
=

22PΓ(P + 1
2
)

√
πΓ(P + 1)

(8.18)

where Γ is the gamma function. It follows that

p(φ(c1) = φ(c2)) =

(
Γ(P + 1

2
)

√
πΓ(P + 1)

)k
(8.19)

1http://mathworld.wolfram.com/BinomialSums.html
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By contrast, the probability that two classes have the same class-attribute vectors (since

they are drawn without replacement) is

p(ac1 = ac2) =
1

2Pk
(8.20)

and the probability that two random classes with different class-attribute vectors collide

is

p(φ(c1) = φ(c2)|ac1 6= ac2) =

(
Γ(P + 1

2
)

√
πΓ(P + 1)

)k
− 1

2Pk
(8.21)

Thus given C randomly selected classes, the expected number of classes that

have the same bag-of-words feature representation as a particular class c1 is:

Ec1...cC
C∑
j=2

p(φ(c1) = φ(cj)) = (C − 1)

((
Γ(P + 1

2
)

√
πΓ(P + 1)

)k
− 1

2Pk

)
(8.22)

In the event of multiple examples that map to the same feature vector, we assume

ties are broken by random guessing. Thus we can establish an upper bound on the

expected classification accuracy of our bag-of-words based method as:

Abow(C,P, k) =
1

1 + (C − 1)

((
Γ(P+ 1

2
)√

πΓ(P+1)

)k
− 1

2Pk

) (8.23)

Thus this model predicts that the maximum classification accuracy is inversely propor-

tional to the total number of classes (although the maximum number of classes is 2Pk.

A more intuitively understandable version of Eq 8.23 is shown below:

Abow(C, 1, k) = 1 (8.24)

Abow(C, 2, k) =
1

1 + (C − 1)
((

3
8

)k − (1
4

)k) (8.25)

∀P≥3, Abow(C,P, k) ≤ 1

1 + (C − 1)
(

1
P

)k (8.26)

Thus it is easy to see that classification accuracy will become close to zero as C in-

creases toward 2Pk as long as P 6= 1. For a fixed value of C, increasing both P and

k improve the accuracy of bag-of-words (because they both increase the number of at-

tributes that classes differ by); however increasing k has a much more significant effect

than increasing P . We plot different values.
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Chapter 9

Conclusion

9.1 Summary of Contributions

In this dissertation, we explored three types of interactive methods in computer

vision: interactive computer vision applications, interactive learning methods, and inter-

active feedback mchanisms to researchers. The specific contributions of this dissertation

include:

• We introduced two different human-in-the-loop methods that enhance state-of-

the-art learned computer vision models into applications that are more usable in

the real world. The first builds off existing methods for multiclass recognition or

attribute-based recognition. It can be used to create practical systems for clas-

sifying objects that are recognizable by people with appropriate expertise (e.g.,

animal species or airplane model), but not (in general) by people without such

expertise. The second builds off existing methods for part-based localization and

pose registration, and has been used to create a tool for semantic annotation of

images.

• We proposed a simple form of active learning that consists of alternating between

online learning and semi-automated interactive annotation. This method makes it

realistic to scale computer vision problems to more complex image models, while

keeping annotation time and computational costs of learning tractable.
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• We introduced faster customized learning algorithms for object detection and de-

formable part model training.

• We introduced feedback mechanisms to help diagnose different sources of test

error due to insufficient training data, a bad model or feature space, annotation

error, or insufficient computation time.

• We introduced a structured learning and annotation software package that inte-

grates these 3 components (interactive labeling, online learning, and feedback

mechanisms)

• We introduced a method for behavior detection and segmentation that uses a more

appropriate time-localized model of behavior

9.2 Future Work

• Deployment of largescale real world recognition systems: We are currently col-

laborating with the Cornell Lab of Ornithology to create a web-based system for

bird species recognition. We are also planning on expanding methods to other

types of domains, such as insect species classification or car model recognition.

• Collecting large datasets with interactive learning: We are also collaborating to

collect a large dataset of richly annotated images of North American birds with

part and attribute annotations. In doing so, we are developing a generic set of

annotation tools that integrate with our interactive learning methods.

• Mechanisms supporting evolving definitions of classes, parts, and attributes: In

building Visipedia, we are constructing authoring tools for different types of se-

mantic representations of images. This is important not only as a mechanism to

allow users to define what problems we want computer vision to solve, but also as

a means for researchers to explore what representations are appropriate to achieve

better performance. In doing so, we would like to create an augmented set of

diagnosis techniques that integrate with part and attribute vocabulary authoring

tools and online learning techniques.
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