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Abstract of the Thesis

Generating Human Images and Ground Truth

using Computer Graphics

by

Weichao Qiu

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Alan Loddon Yuille, Chair

How to provide high quality data for computer vision is a challenge. Re-

searchers spent a lot of effort creating image datasets with more images and more

detailed annotation. Computer graphics (CG) is a way of creating synthetic im-

ages, during the image synthesis many types of information of the CG scene can

be exported as ground truth annotation. In this paper, we develop a pipeline

to synthesize realistic human images and automatically generate detailed anno-

tation at the same time. We use 2D annotation to control the pose of the CG

human model, which enables our images to contain more poses than motion cap-

ture based method. The synthetic images are used to train and evaluate human

pose estimation algorithm to show its usefulness.
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CHAPTER 1

Introduction

Computer vision benefits a lot from the development of datasets by using them

to train and benchmark algorithms. Thus, researchers are energetic at creating

better image datasets. Datasets are becoming larger and include more detailed

annotation. But creating a large dataset with detailed annotation is expensive.

Computer graphics provides an alternative approach to solve this problem. Using

synthetic images to build datasets has many benefits and can be a good com-

plement to traditional approach. In this paper we built a pipeline to synthesize

human images with detailed annotation. In addition to using motion capture

data, we propose a novel way to use 2D joint annotation to control the human

pose in synthetic images. This technique enables us to create many variable poses.

Researchers have spent a lot of effort creating better datasets [6, 7, 8]. The

number of images is growing bigger. Making dataset larger can cover more cases

in the real world, which is helpful to avoid dataset bias [9] and overfitting. More

images also enable us to train models with a higher capacity [10]. Datasets are

also becoming more detailed [11, 12, 13, 14, 15, 16, 17]. At the beginning, objects

in images were only annotated by bounding box. But now, people are more

interested in finding the boundary of an object and its semantic parts. Richer

annotation allows algorithms to extract more information from an image and do

fine grain tasks. Building an algorithm to fully understand an image and pass the

Visual Turing Test [18] is the Holy Grail for computer vision researchers.

Many techniques and tools were developed to make annotation easier and
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faster. Crowd-sourcing services such as Amazon Turk make annotation much

cheaper. But annotating a lot of images in detail is still hard and expensive. By

contrast, computer graphics is good at creating large and detailed datasets. After

defining the 3D scene, rendering a new image charges no extra cost. Many types

of annotation such as depth and boundary can be exported from the 3D scene

directly. Information not contained in the 3D scene can be manually annotated.

In short, after annotating the 3D scene, many images and their annotation can

be synthesized at almost no cost.

Besides being larger and more detailed, computer graphics based methods

have some advantages that traditional approach can not compete with. First,

computer graphics can generate hard to annotate information of a scene, such as

depth, edge and optical flow. Fig 1.1 shows two types of annotations that are hard

for human labelers to label, but easy to obtain using computer graphics. Second,

every variable of a scene, such as material, lighting and camera viewpoint, can

be controlled. This enables us to generate images with different configurations to

perform diagnosis of a model [19, 20]. Third, instead of providing a fixed set of

images, computer graphics based datasets can provide data according to the needs

of an algorithm. This enables us to start training the algorithm from simple and

clean images and then move to harder cases by adding occlusion and motion blur.

This also enables the learning algorithm to interact with the synthesize system,

which is similar to how we human learn. We human can explore the world by

freely moving our head to find interesting or hard examples for learning.

2



(a) (b)

Figure 1.1: Two type of information that are difficult to annotate (a) Line seg-

ments in an image, from an unpublished work (b) Optical flow in a temporal

sequence, from [1]

Training computer vision systems in a virtual world is not a new idea and can

date back to the beginning of this field, e.g., Blocks World [21]. But the computer

graphics based approach was not popular for a long time for various reasons. It

was hard to render realistic images, expensive to create a virtual environment and

slow to render large number of images. The recent advances of the CG industry

make synthetic images much better. In particular, fast GPUs make it possible to

use physically realistic rendering at a large scale. More high quality models, open

source movies and games make it easier to generate synthetic images.

Recently, the authors of [22, 23] used computer graphics models from 3D ware-

house to synthesize images for training state-of-the-art object detector. They

mainly focused on rendering rigid objects. In this work, we study how to create

synthetic human images with detailed annotations. Annotating images with dif-

ferent types of information can enable us to train a complex model to work on

multiple tasks. Different types of information in a system can be shared. For
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example, after estimating the joint location of a human, it is easier to estimate

the semantic part segmentation [24]. We also develop a novel method to control

CG human model with 2D joint annotation. In Fig. 1.2, we give an example of a

synthetic image and its corresponding annotation, including depth, joint location

and semantic parts. The pose of the human model is obtained from the annotation

of a real image.

Figure 1.2: Generated ground truth during image synthesis. From left to right

are real image, synthetic image, depth, joint location, semantic part annotation.

The pose of the human model is obtained from the annotation of the real image.

This paper is organized as follow. In Chapter 2, we describe the design of

our image synthesis pipeline. We mainly focus on how to use 2D joint location

to control the CG human model, which can provide more poses than motion

capture based method. In Chapter 3, we report the performance of two pose

estimation algorithms trained on our synthetic dataset. And discuss the transfer

issue between real and synthetic datasets.
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CHAPTER 2

Synthesize Human Images

The goal of computer graphics is synthesizing realistic images. The Movie, Game

and VR industries spend lots of money to improve CG techniques and have made

huge progress. Today CG can produce very realistic synthetic images sometimes

hard to distinguish from photographs. Fig. 2.1 shows a few examples of CG

generated images. If synthetic images can be realistic enough, why not use them

as an alternative or complimentary approach for creating image datasets. In this

chapter, we focus on creating synthetic human images with detailed annotation.

We first briefly survey previous work using synthetic images in computer vision.

Then, the CG human model is described in Sec.2.2. We introduce a novel way

to control CG human models using 2D body joint annotations in Sec.2.3 and

how to automatically get annotation in Sec.2.4. Finally, the synthesis pipeline is

concluded in Sec.2.5.
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(a) (b) (c)

Figure 2.1: Realistic synthetic images. (a) The virtual scene (top) and its cor-

responding real photograph (bottom) in the game GTA5, (b) An indoor scene

created by a virtual artist using Blender, (c) Digital human avatar

2.1 Related Work

Using synthetic images to train an intelligent system dates back to the early days

of artificial intelligence. Researchers tried to teach a machine system in a simple

virtual world, such as Blocks World [21]. But at that time, the simulated virtual

world was too simple. Even if the algorithm can perform well in the toy world, it

is not practical in the real world.

Synthetic images are getting much better today. Many researchers tried to

utilize the rich information that computer graphics can provide. In [1], an open

source CG movie was used to create a large optical flow dataset. In [22, 23],

synthetic images are used to train object detectors and determine object pose.

In [25], depth information of an object is exported to train a depth estimation

system. In [26], the autonomous driving system is purely trained with images

from a video game.

Non-rigid objects such as human are more challenging to synthesize. It is

harder to make sure the deformed object still looks valid. In [27], the author syn-
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thesized a large number of images and for an input image, the algorithm retrieves

the most similar image and its pose from the dataset. In [28], the authors use

synthetic depth images to train pose estimation system.

Researchers have already spent a lot of effort creating human images datasets.

Our synthesis pipeline can provide more images and detailed annotation. Syn-

thetic images can be a compliment for existing human image dataset. We show

a comparison between our pipeline and some existing datasets in Table. 2.1. It is

worth noticing that in the Human3.6M dataset[29], data capture is performed in a

studio, subjects need to wear sensors and special equipment is needed to capture

data.

Name Type of images No. of images Ground truth

LSP[3] sports 2000 joint location (2D)

MPII[30] diverse 40522 joint location (2D)

Fashionista[31] fashion 685 joint location (2D),

semantic part

Human3.6M[29] indoor 3.6M joint location (2D/3D),

semantic part, depth

Ours synthetic unlimited joint location (2D/3D),

semantic part, depth

Table 2.1: Comparison of human image dataset

2.2 Computer Graphics Human Model

Designing a realistic human model from scratch is not easy. A static body mesh

can be designed by a virtual artist from scratch or reconstructed from depth

scanning. But how to make a static body mesh deformable is more challenging.

One of the challenges is how to make the model still looks realistic under different
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poses. Another is how to make the motion of clothes and hair realistic and follow

physical rules. Creating realistic digital humans is still an active research area

for computer graphics researchers. The Movie and Game industries have spent a

lot of money building better human models and the most advanced models are

proprietary.

There are a few options for creating CG human. The first is to use models

created by 3D modeling software. Many models have been created and uploaded

by amateurs and artists. These models can be downloaded from user forums or

marketplaces, such as 3D Warehouse, or TurboSquid. The quality of these models

varies a lot. The simple models only contains mesh data without any texture.

More advanced models contain skin texture photographed from real humans. The

price ranges from free to a few thousand dollars. Those high quality models can

be used for movie production.

The second is to use models generated by specific software designed to produce

human models. This type of software can produce human models with various

body parameters, such as weight, height, torso shape. The exported human mod-

els are fully rigged. Rigging means defining the skeleton and how the mesh is

controlled by each bone. These models can be easily animated by generic com-

puter graphics softwares such as Blender, Maya, or by game engines. Popular

softwares include MakeHuman, Daz3D, SMPL[32]. A visual comparison of syn-

thetic images using different models is shown in Figure 2.2. Among these options,

Daz3D is the most realistic and also provide different types of wearables, such as

clothes, pants. SMPL is a research project and can simulate realistic soft tissue

motion, but it does not contain clothes and hair.

In this project we chose MakeHuman to provide human models. Since the

MakeHuman project can create human bodies with various shape parameters and

high quality fully rigged model. Another advantage of MakeHuman project is that

it is open source and written with Python, so that we can modify its source code
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and integrate it with our rendering pipeline which is based on Blender.

Figure 2.2: Typical images from different sources, from left to right, 3D Ware-

house, TurboSquid, MakeHuman, Daz 3D, SCAPE

2.3 Control Pose of the Human Model

Synthetic data is less popular than real data for computer vision. One of the

reasons is that synthetic data contains less variability than real. In particular,

in terms of synthetic human images, the real data is richer in terms of pose,

environment and appearance.

The human body is a highly flexible non-rigid object, shown in Figure 2.3 (b).

This flexibility of the human body in a challenge for pose estimation. Seeing

human images with different poses is helpful for the learning of a pose estimation

algorithm, so it is important to making sure that the dataset contains various

poses.

In our rendering pipeline, we have two approaches to control the pose of the

human model.

Pose from Motion Capture Data The common practice to control the pose

of CG human model is using motion capture data. Motion capture defines the

rotation parameters for each bone of the body. It is widely used in movie and
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game to make the virtual character behave the same as an actor.

Motion capture data is generated by asking human subjects to wear motion

capture sensors and perform certain tasks indoor, such as walking and running.

The number of available action categories is limited [2, 29]. It is hard to cover

as many poses as a traditional image dataset [3]. Many human poses are hard

for actors to do, such as Parkour and Gymnastics. In [33], gymnasts are asked to

perform some extreme poses to explore the limit of each body joint, but it is still

not rich enough to capture poses in the daily life.

(a) (b)

Figure 2.3: (a) Motion capture data is recorded indoor and subjects are asked

to do a limited number of tasks, image from [2] (b) In the real world, humans

perform a large range of poses by interacting with the environment, image from

[3]

Motion capture data is widely used. Most computer graphics software provides

built-in support for animating rigged models with motion capture data. We use

the MakeHuman plugin in Blender to read motion capture data.

Estimate 3D Pose from 2D Annotation We already have many good human

image datasets with joint location annotated, such as [3, 30]. If we can make our

CG human model perform the same pose as those images, then we can have
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numerous human poses. Moreover, we can generate new 2D poses by changing

the camera viewpoint. To achieve this goal, we designed a method to use 2D

annotations to control the pose of our 3D human model.

The pose of a human is defined by his joint location. The 2D joint location

x ∈ R2 is the projection from the 3D joint location X ∈ R3. Using an orthographic

camera model x = sRX+ t, where R is a projection matrix, s and t are the scale

and translation parameters of the camera.

But the 2D annotations are not sufficient to recover the underlying 3D joint

location, because this is an underdetermined problem. Extra prior knowledge

about human poses can help us solve this problem. A few methods were developed

to solve this problem [33, 34].

Here we use the method in [33] to recover the 3D pose. The 3D pose is modeled

with a sparse representation X = Bw+µ. Here B is an over-complete basis, w is

a vector of coefficient, µ is the mean pose. The 3D pose is recovered by minimizing

an energy function. The energy function is defined as follow:

E(w, s,R) = Cr + Cp + βCl (2.1)

In Eq. 2.1, Cr(w, s,R) = ||x−sR(Bw+µ)||22, this term ensures the projection

of the estimated 3D joint location X is consistent with the 2D observation x.

Cl =
∑N

i=1

∣∣∣||δ(X̂i)||22 − l2i
∣∣∣, li is the normalized length for bone i in a training

set. This term ensures the bone length of the recovered pose δ(X̂) is consistent

with the training data.

Cp use a function learnt from the training set to determine whether the esti-

mated pose is valid. The bones of human body can not rotate arbitrary. Cp is 0 if

all the bones of X are valid, and inf if one of them is in an invalid configuration.

After solving R,B,w, the 3D joint location can be recovered using X = Bw + µ.

More details about this method can be found in [33].
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Inverse Kinematics (IK) to Control Human Body The number of bones

in our human model is more than the amount of data we have. From the 2D joint

locations we can recover the 3D joint location, but the number of parameters is

still not enough. There are more bones in our human model than the recovered

bone configurations, see Fig. 2.4. The human model contains more bones in the

spine and shoulder.

(a) (b)

Figure 2.4: (a) The bone structure of a MakeHuman model (b) the 3D joint

information recovered from 2D annotation. The human model contains more

bones in the shoulder and spine

This is a typical problem in robotics and graphics. Given the location of a

target, we want to solve for the configuration of the whole robotic arm to reach

the target. The solution is not unique, but with a sensible prior, we can get a

good solution. We use the inverse kinematics (IK) solver in Blender to solve the

IK constraints.

The motion capture dataset only contains indoor motion performed by a few

human subjects. The ability of using existing 2D joint annotation hugely enriches

the poses in our synthetic dataset. By changing the camera viewpoint and making

small perturbations, we can have more poses than the 2D annotations can provide.

Fig. 2.5 shows the original real image, a synthetic image with a similar pose and

12



new poses by changing the camera viewpoint.

Figure 2.5: The corresponding real image and synthetic images based on the

estimated 3D pose, under different camera viewpoints

2.4 Automatic Ground Truth Generation

In this project, we want to synthesize realistic human images, while also generating

the corresponding annotations automatically at the same time. More complex

visual tasks require more detailed annotation for training and evaluation. But it

is expensive to annotate all the detail in the scene. With the help of computer

graphics, we can get very rich annotation of the scene for almost free.

The body joint annotation is exported as the endpoint location of a bone in

the human model, shown in Fig. 2.4 (a). The bone location is in 3D, which is

useful for 3D human pose estimation. It can be projected to the camera space to

get the 2D joint location corresponding to the synthetic image.

Semantic part annotation is useful for fine-grain tasks [24, 35]. Labelers are

required to annotate the regions of semantic body part, such as head, arm and

torso. The time required for each image is the same. This will be a large number

if we trying to create a large dataset. Also the annotation quality for each image

is inconsistent. Instead we label the computer graphics human model, then this

13



labeled model can be used to generate a nearly infinite number of images without

the need of labeling it again. This is a huge gain for creating large scale dataset.

The semantic part of the body is not defined in the CG human model. To annotate

the semantic parts, we assign color to each mesh. This can done by using the paint

brush provided by Blender. In our pipeline, we use the part definition and color

scheme defined in [35].

Depth ground truth can be generated by exporting the z-buffer of the scene.

The boundaries of human can be computed from the depth. Line segment and

occlusion information can also be generated automatically by modifying the ren-

dering engine, but are beyond the discussion of this paper. The generated ground

truth is shown in Fig. 1.2.

2.5 Image Synthesis Pipeline

Synthetic images which only contain humans are not very interesting. The bound-

aries are too sharp and the human foreground can be easily computed. So we

randomly pick a background image and use alpha blending to combine the fore-

ground and background. Synthesizing human in more realistic virtual scenes is a

future work. The scene is lit with 16 point lights surrounding the human. The

intensity of each light is randomly sampled from a Gaussian distribution. The

colors of skin, hair and clothes are randomly sampled from a set of colors. We

use Blender’s internal rendering engine to render images. The source code will be

publicly available1.

The pipeline of the synthesis is as follow. First, the human mesh model is

generated using MakeHuman. Then, the semantic body part is annotated in

Blender. Next, 2D joint annotation or motion capture data is used to control the

pose of the human model. Images are rendered with different rendering modes to

1www.bitbucket.org/qiuwch/tenon
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produce different types of annotation. The background is added by alpha blending

to the synthetic image. The synthesize pipeline can be seen in Fig. 2.6.

Figure 2.6: Illustration of the image synthesis pipeline
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CHAPTER 3

2D Human Pose Estimation

In this section, we use our synthetic images to train pose estimation algorithms.

We take popular pose estimation algorithms and train them with our synthetic

data to see whether they can work on real images. This chapter is organized

as follows: First, the pose estimation algorithms are briefly overviewed. Then a

comparison between training using synthetic images and real images is shown. We

also discuss issues, such as transfer between real and synthetic datasets. We then

give some diagnostic result.

3.1 Model Review

The pose of a human is defined by the joint location li = (x, y). 2D pose estimation

tries to estimate the joint location li from an image I. The first model we use is [5].

It uses a deformable part model, where each part is represented by a mixture of

HOG feature templates. Parts are connected in a tree structure and the model is

trained by a structure SVM. During inference, it first computes the unary response

for each part, then use dynamic programming to combine the score of each part

together to find the optimal solution. The energy function for the model is below:

S(I, l, t) = S(t) +
∑
i∈V

wti
i φ(I, li) +

∑
i,j∈E

w
titj
ij ψ(li − lj) (3.1)

S(t) =
∑
i∈V

btii +
∑
ij∈E

b
titj
ij (3.2)
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In Eq. 3.1, t is the type for each joint. The first term S(t) computes the

compatibility when assigning type ti for joint i. φ(I, li) is the HOG feature vector

extracted at location li. The second term wti
i φ(I, li) computes the unary score.

ψ(li− lj) = [dx, dx2, dy, dy2]. ψ(li− lj) measures the distance between joint i and

j. The third term w
titj
ij ψ(li − lj) computes the penalty for the displacement of

joints.

During training, wti
i , w

titj
ij and btii , b

titj
ij are learnt using a structure SVM solver

described in [36]. During inference, the S(I, l, t) in Eq. 3.1 is maximized over l

and t with dynamic programming.

The second method we tried is [4]. In this method, the HOG feature is replaced

by convolutional neural network [10], which can produce more accurate part lo-

calization. The author also proposed a novel IDPR (image dependent pairwise

relations) term to measure the consistency between each part of the model.

The details for these two models can be found in [5, 4].

3.2 Experiment Setup

In the experiment, the performance is measured by PCKh. PCK (Probability of

Correct Keypoint) is initially defined in [5]. In PCK, a prediction is considered

correct if it falls within a threshold α · max (h,w). Here h and w are the height

and width of the human bounding box, α is a parameter to control the percentage

of the size. In PCKh, the threshold is changed to 50% of the head segment length.

This change makes PCKh more robust to the articulation of the human body than

PCK.

The real image dataset we used is the Leeds Sport Dataset (LSP) [3]. The

synthetic images are generated using the pose estimated from the ground truth

annotation of LSP dataset. For each image in the LSP dataset, we generate one

image with a similar pose. That is 2000 synthetic images, 1000 images for training
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and 1000 for testing. We call this synthetic dataset the L23 dataset.

We show a few examples of the L23 dataset and their corresponding real images

in Fig. 3.1.

Figure 3.1: Visual comparison between the real LSP and the synthetic L23 dataset

3.3 Transfer Between Dataset

We split the L23 dataset into a training set and a test set following the split of the

LSP dataset. The methods in [4, 5] are used to test whether the model trained

on the synthetic data can also work on the real test set.

We first describe the result by using the method in [5]. We use this method to

train two models with different training sets, the real and the synthetic training

set. These two models are tested on real test set. Table. 3.1 shows the performance

of the two models on the LSP test set. From the results we observe that the model

trained on synthetic images performs worse than the one trained on real images.

But it is worth noticing that the synthetic data is generated almost for free.
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More images can be synthesized by changing lighting, body shape, textures and

camera viewpoint. The synthetic images can be considered as a compliment for

real images. Also our synthetic L23 dataset contains richer annotation than the

LSP dataset making it suitable for many visual tasks.

Training data Head Shou Elbo Wris Hip Knee Ankle Mean

L23 40.3 38.6 30.6 42.9 37.6 43.7 53.5 41.0

LSP 57.2 60.4 46.2 65.5 62.2 65.8 80.0 62.3

Table 3.1: Test performance on the real LSP dataset, The two models are based

on [5] and trained on synthetic images and real images respectively

We also tested the two models on the synthetic test set. The result is shown

in Table. 3.2. It is not surprising to see that the model trained on the synthetic

training set can work better on the synthetic test set. But the margin between

these two models is smaller than shown in Table. 3.1, which might indicate that

the appearance in the real images is more varied, so that the trained model is

easier to generalize.

Training data Head Shou Elbo Wris Hip Knee Ankle Mean

L23 50.7 50.9 41.0 56.3 51.5 61.2 74.6 55.2

LSP 44.0 42.0 33.4 42.8 44.2 54.2 66.6 47.4

Table 3.2: Test performance on the synthetic L23 dataset, The two models are

based on [5] and trained on synthetic images and real images respectively

We also trained the method [4] with our synthetic data. We observed the

model trained on synthetic images can barely work at all on the real data, but the

model trained on real data can work well on synthetic data. We conjecture this is

because the CNN model has a much higher learning capacity compared with the

method based on HOG feature. HOG feature relies on edge cues, which are fairly
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similar between real and synthetic images. The higher capacity of CNN makes the

algorithm easier to overfit to some specific features that are unique to synthetic

data but not present in the real images. We did some diagnostic experiments to

show the overfit issue.

3.4 Diagnostic Result for Appearance Transfer

In [4], the authors first use a CNN to produce a unary score and IDPR score

for each body part. The unary score is then combined in a tree structure using

dynamic programming. Since the poses between the real and synthetic data are

similar, we conjecture the problem is the unary scores produced by the CNN

model. So we separate the CNN module from the algorithm in [4] and plot the

train and test loss when training on synthetic and real images.

In Fig 3.2, we can clearly observe that the CNN trained on synthetic data

overfit. The train and test loss on synthetic images keeps going down, but the

test loss on the real images go up. But training on real data can still generalize

to synthetic data.

This poses a challenge to design a better learning algorithm or better training

strategy to be able to transfer between dataset, such as the method proposed in

[37, 38]. Or make the synthetic dataset richer in appearance to overcome this

issue. This remains as a challenge and we will address it in a future work.
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(a) (b)

Figure 3.2: The loss for training unary CNN in [4]. (a) Train on synthetic data

(b) Train on real data
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CHAPTER 4

Conclusion

In this paper, we built a pipeline to synthesize human images using computer

graphics. Besides using motion capture data, we use the 2D annotation of im-

ages to control the pose of our CG model. This enables us to create a dataset

with richer poses. Our pipeline also enables us to automatically export ground

truth during image synthesis. Pose estimation algorithms were trained with the

synthetic images to show the usefulness of the data.

Limitations Although the image synthesis technique has many benefits for cre-

ating dataset, it still has many limitations. Creating a realistic scene is time

consuming. How to do physically real simulation is challenging.

For human synthesis, it is hard to simulate the hair and clothes. Realistic soft

tissue simulation is still an active research topic in computer graphics [32]. The

types of clothes are not as varied as those we observe in real images.

In our synthesis pipeline, the 3D pose estimated from 2D is not perfect. Some-

times it will produce unreasonable poses. The human model we use is not the

most realistic and can be improved.

Future Work The synthetic quality of the images can be improved by using

better computer graphics model. More realistic scene can be created by pasting

the human model into a well designed scene [1], or pasting the human model into

an image with estimated lighting and 3D structure [39].
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It is also worthwhile to develop better model that can generalize well from

synthetic images to real images.
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