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Abstract

In this paper, we propose a novel set of techniques that al-
lows multicore programmers and architects alike to rapidly
estimate the availability of parallelism in their target pro-
grams. We present p-ray, which, given an application and
the input, shows the nested relationship and availability of
parallelism across different regions in complex programs,
using a parallelism chart, or p-chart. P-ray also prioritizes
the regions, suggesting the ordering that the programmer
should attack them in, based on the estimated overall pro-
gram speedup and the number of lines of code. P-ray can
also estimate the kind of parallelism (TLP, DLP or ILP) that
is found in each region, which allows the user to determine
the available techniques are likely to work.

In this paper, we show three case studies, including
SpecInt’s gzip, and Mat2C'’s capacitor, and Nasa7’s Vpenta,
and follow up with results which compare actual paral-
lelization results of a benchmark suite against the results
predicted by p-ray.

1 Introduction

The recent emergence of multicore and manycore proces-
sors as the new vector for improvements in microprocessor
performance has created a mandate to move traditionally se-
rial programs to multicore processing substrates. No longer
can we just wait for higher frequencies. These substrates
range from 4 to 64 cores on general purpose platforms such
as Intel Core2Duo, Sun Niagara [7], and Tilera TILE64 [3];
and to even greater numbers of cores on more restrictive
computing models such as Nvidia GPUs [12].

Unlike in the past, where high processor counts were
the domain of super-computers and scientific and parallel
computing experts; multicore and manycore processors are
now mainstream, and the need exists to reduce the bar for
parallelization to these new platform. At the same time,
traditional single-threaded applications present new chal-

lenges in terms of complexity for discovering and exploit-
ing parallelism. Both of these challenges argue for the cre-
ation of new tools to push both the frontiers of facilitat-
ing less-experienced programmers, and for extending our
techniques to consider applications that are larger and more
complicated.

In this paper, we introduce p-ray, a tool which allows
programs to rapidly diagnose the structure of parallelism
within complex applications. In general, programmers
would like to ascertain three things:

1. Which regions of the single-threaded code are the best
candidates for parallelization?

2. What are the potential benefits of parallelizing those
regions?

3. Which parallel techniques should be applied to paral-
lelize a given region?

p-ray facilitates all three goals by analyzing the intrinsic
parallelism of an application at multiple levels of granular-
ity, and by displaying the structure of this parallelism in a
graphical representation. Given the p-ray output, called a
parallelism chart or p-chart, the programmer can easily de-
termine which regions of the program are likely to be most
fruitful to parallelize, and what the expected benefits are. In
order to further assist them, p-ray generates a parallelization
effort chart or PEC to help the user prioritize which regions
to parallelize first. Finally, p-ray generates a PT Scan of
the program which estimates the kind of parallelism in the
candidate regions.

The rest of the paper procedes as follows. Section 2
shows a high-level overview of p-ray. Section 3 shows
three case studies, analysing SpecInt’s gzip, nasa7, and
the Mat2C benchmark capacitor. Section 5 and Section 6
describes p-ray’s architecture in more depth. Section 7
presents related work and then we conclude.



2 How P-ray is Used

The goal of p-ray is to provide architects and parallel pro-
grammers with a tool that enables them to effectively assess
the parallelism of a program. For the architect, p-ray allows
them to better understand the structure of parallelism in the
programs that they are trying to tune their architecture or
compiler for. For the programmer, p-ray provides a suite of
tools that help to identify and exploit the parallelism avail-
able in a program.

After running the tool through the p-ray profiler, the
user’s first interaction with p-ray will be through the in-
spection of a p-chart for the program that needs to be par-
allelized. Figure 1 shows the p-chart for the capacitor pro-
gram from the Mat2C [6] benchmark suite. p-charts are
intended to give the user an intuitive feel for the struc-
ture of parallelism in the program. The x-axis of a p-chart
tracks the total execution time of the program. The p-chart
breaks the execution time into regions that correspond to
the function and loops in the program. In the example p-
chart, the main function (region F) encompasses the entire
program while the seidel() function (region J) occurs twice
during execution (starting around 20%) and takes up ap-
proximately 35% of the execution time for each instance.
Each instance of a region has a parallelism score, which
is charted on the y-axis. This parallelism— which we will
describe in a later section—is roughly approximate to the
speedup possible on a machine with infinite hardware re-
sources. The main region, F, has an estimated parallelism
of approximately 32, meaning that in the best case scenario,
a 32X speedup could be obtained through parallelization.

The structure of the regions are hierarchical because
functions can be called from other functions/loops and
loops are nested within functions. From Figure 1, we can
see that regions H, K, and L occur during the execution of
region J. Thus, these regions are children of region J in the
graph representation of the program. As we will later see,
it is this nesting relationship that can be used, in part, to de-
termine the type of parallelism in region J: either thread-,
data-, or instruction-level parallelism (TLP, DLP or ILP).

With experience, a p-ray technician may be able to in-
spect a p-chart and quickly identify the best regions to par-
allelize and also the type of parallelism that may be present.
However, for p-chart novices as well as for more difficult
programs, such easy identification may not be possible. For
that reason, we provide a parallelization effort chart (hence-
forth, PEC) to guide in the selection of regions to paral-
lelize. The PEC provides a road map for parallelization
based on the amount of parallelism and also the lines of
code in the regions. Lines of code is factored in to give a
crude approximation of difficulty in parallelizing a region.
The PEC is a step function, where each each step indicates
the region to parallelize and both the relative (compared to
previous parallelization efforts) as well as overall speedup
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Figure 1: p-chart for capacitor. The X-axis shows the pas-
sage of time as the program executes serially. The Y axis
shows that estimated average parallelism in a given region
(loop or procedure) of the program. The letter identifies the
region; details for the regions are shown in Table 1 (“PT-
Scan for Capacitor”). A “” indicates a region with the same
name as the one ahead of it.
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Figure 2: PEC for capacitor. A PEC provides recommen-
dations for which regions to parallelize and the expected
speedup from parallelizing them.

assuming that the regions in previous steps have all been
parallelized.

Figure 2 gives the PEC for the capacitor program. In it,
the first step corresponds to region D, whose instances in
the p-chart take up nearly 80% of the total execution time
(starting around 20% execution time). Based on the PEC,
the user is told that a relative speedup of 1.7X is possible if
region D—containing only 31 lines of code—is parallelized.
The next step on the PEC shows that region I is the region
to parallelize next, achieving a maximum relative speedup
of 1.3X over the case of only parallelizing region D. A de-
tailed description of the PEC algorithm and how it makes
recommendations will be described in a later section.

While the PEC gives the user a region to parallelize, it
does not provide any insight into how that region should be
parallelized. Based on the three types of parallelism (TLP,
DLP, and ILP) the architect will need to provide different
architectural/compiler features while the programmer will
need to perform different parallelization tasks. For this rea-
son, p-ray provides the parallelism type scanner (PT scan-
ner). After the PEC selects a region to parallelize, a PT
scan is performed on the region. The PT scan will indicate
whether the parallelism in the region is from TLP, DLP, or
ILP. While the programmer can not do much for ILP regions
(aside from running on a superscalar processor), she is in di-
rect control of parallelizing both TLP and DLP regions. For
TLP, she may divide the child regions of the selected region
into separate threads. For DLP, the data parallel operations

Label | Function | Line Range | DLP/TLP/ILP
D capacitor 178-209 TLP
| mtimes ALL DLP
H move ALL DLP
K seidel 124-178 ILP
L seidel 230-256 ILP
A ones ALL DLP
B Zeros ALL DLP
C capacitor 123-153 DLP
J seidel ALL DLP
G gauss ALL no-TLP
E capacitor ALL mixed-TLP
F main ALL DLP

Table 1: PT Scan for Capacitor

may be extracted using SIMD processor extension or run
on a vector machine. Table 1 gives the type of parallelism
that the PT scanner reports for each of the PEC recommen-
dations. It identifies D has have thread-level parallelism.
Regions J and G, which produce the sub-regions of D, cor-
respond to the main seidel() and gauss() functions of the
benchmark. This correlates well with the PT scan output as
regions J and G could be made into their own threads to pro-
vide parallelization of region D. Again, we delay detailed
description of the PT scan algorithm until a later section.

After a selected region has been parallelized (if not ILP),
the PEC can be consulted once again for the next recom-
mended region to parallelize. The enterprising manager
may find the IV next best regions to parallelize and give
them to separate programmers to work on in parallel.

So far we have given an overview of the diagnostic pro-
cedure and the tools available to the architect and the pro-
grammer to help with parallelizing a given program. In the
next section we present two case studies (Vpenta and gzip)
in order to clarify the utility of or p-ray diagnostic proce-
dure.

3 Initial Case Studies

In this section we present case studies of two benchmarks:
Vpenta and gzip. In these case studies, we will discuss the
p-ray diagnostic procedure in detail and explain its results.
These two benchmarks provide an interesting juxtaposition
with Vpenta proving to be highly parallel while gzip re-
mains notoriously serial in nature.

3.1 Vpenta

In this section, we will walk through the diagnosis for
Vpenta, a nasa7 kernel that simultaneously inverts three
pentadiagonal matrices. The program can be divided into
three phases : initialization phase (region F), construction
of pentadiagonal matrices(region O) and computation of in-
verse.
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Figure 3: p-chart for Vpenta
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Figure 3 shows the p-chart for Vpenta benchmark. The
working set size was set to 4x1024. The total execution
time of the program is represented on x-axis and y-axis de-
notes parallelism. As we sweep across time in the p-chart,
we see that region E occupies close to 20% of the execution
time. A closer look at the chart would show tiny regions
(region F) enclosed by E. The amount of parallelism across
each tiny region is same, close to 512, suggesting these re-
gions are DLP. Further, the combined parallelism of E is
more than the individual child region. This suggests E, the
initialization phase, is a DLP region. This is in tandem with
the code, where this phase fills 13 different matrices with
Zeros.

Phase 2 involves construction of the matrices, as depicted
by region O. The prototype of the code body is:
for i=1:4

for j=1:512

a = (ixj+1l)*constant;
A[j,i] = a-round(a);
repeated for 8 arrays ....

Looking at the p-chart, we see that region O has very
high parallelism (close to 16384) and the amount of work
spans close to 20%. Similar to region E, O has 4 child re-
gions (region P) enclosed within whose parallelism is close
to 6000. The overall parallelism of region O is as much as
twice that of its children, making it a DLP case. This obser-
vation from p-chart can be verified. The prototype shows
that the outer loop is executed 4 times, with each iteration
performing heavy parallel computations in the Do-All loop.

The crux of the program lies in the inverse computation
phase. This spans regions Q, S, T, U, V, K and M account-
ing for approximately 60% of the execution time. As we
see, Q encloses four instances of region R and has high par-
allelism, making it a DLP loop. Region S has high paral-
lelism despite little work ( 5%), which would mean S has
a small critical path and high parallelism, making it DLP
as well. This trend is observed in all the other regions - T,
U, V, KM and L. From the p-chart, these regions appear to
have considerable DLP component.

Despite having so many DLP regions, the overall par-
allelism of the program (370), represented by regions G
and N, is lower than that of any of its children. This rules
out DLP or perfect TLP scenario for phase 3 of the pro-
gram. Consuming as much as 65% cycle count, the low
parallelism can be attributed to its long critical path that
passes through all the regions, marking a long dependency
chain. This makes phase 3 partial-TLP, i.e., only limited
TLP can be found, involving partial parallelism between
sub-regions, based on data dependences.

Combining this analysis from p-chart with PEC recom-
mendation chart, see Figure 4, will guide us in the selec-
tion of appropriate regions to parallelize. Intuitively, the
best regions to parallelize would be loops with small de-
pendency chain and heavy work. Tranformations such as



loop interchange, unrolling could be good candidates to im-
prove parallelism. Regions with do-across computations are
limited by the length of their critical path and thus they re-
quire more effort for parallelization. From the discussion
of p-chart, improving 40% of do-all computations in initial-
ization (region F) and construction (region O) phase could
improve the overall parallelism.

Label | Function | Line Range | DLP/TLP/ILP
G drv_vpenta ALL partial-TLP
F Zeros 57-66 DLP
O vpenta 498-577 DLP
L vpenta 1059-1133 DLP
R vpenta 600-622 DLP
J susbref 65-79 DLP
N vpenta ALL partial-TLP
U vpenta 862-925 DLP
v vpenta 938-994 DLP
T vpenta 676-721 DLP
M vpenta 1074-1129 DLP
K vpenta 1006-1046 DLP
S vpenta 639-663 DLP
P vpenta 511-573 DLP
A ones ALL DLP
D Zeros ALL DLP
H susbref ALL DLP
B ones 44-70 DLP
C ones 57-66 DLP
E Zeros 44-70 DLP
1 subsref 65-79 DLP
Q vepnta 587-626 DLP

Table 2: PT Scan for Vpenta

Figure 4 gives the PEC for Vpenta program. The first step
corresponds to region F, whose instances in the p-chart take
up nearly 20% of the total time. PEC suggests that improv-
ing 11 lines of code in F gives nearly 1.2 speed-up. As we
move ahead, PEC suggests region O (construction phase),
region L and region R as the next candidates, amounting to
1.2x, 1.1x and 1.1x incremental speed-up. From the p-chart
we can see that all these regions are Do-all candidates with
short critical path. These recommendations by PEC con-
firm our theory of parallelizing heavy work, do-all regions
ahead of do-across. Once we have exhausted the do-all re-
gions, PEC suggests we move ahead with the partial-TLP
cases - region U,V;TM,K and S.

To evaluate the performance and efficiency of PEC and
p-chart, we will compare the predicted results with actual
ones. Table 2 and 4 summarizes the results of Vpenta
benchmark. The benchmark performance was analyzed on
our manycore simulator and the speed-up numbers were
normalized to single core execution. As per PEC’s recom-
mendation, region Q, O and D (do-all) were parallelized
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Figure 5: p-chart for gzip

using transformations such as unrolling, loop interchange,
induction variable replacement, resulting in speed-ups as
high as 66x. For the remaining regions that were part of the
partial-TLP block, transformations such as reduction oper-
ator optimization, privatization, scalarization were applied
to improve performance. The overall performance of the
program achieved a speed of 58.20x on 32 core machine.

3.2 gzip

For our next case study, we will look at the gzip program
from the Spec2000 benchmark suite. gzip is a program
that performs compression and decompression based on the
LZ77 algorithm. Figure 5 gives the p-chart for gzip while
Figure 6 shows the PEC. In comparison with Vpenta, whose
overall parallelism is close to 256, gzip’s main region, F, has
a parallelism of only 6. In the Spec2000 version of gzip,
compression/decompression (regions G, J, and C) happens
at 5 levels in sequence, with the result being checked (re-
gions H, J, and E) after each level.

Intuition would tell us that to parallelize this benchmark,
we would want to perform the various levels in parallel. Re-
ferring to the p-chart in Figure 5, we can see that F is rec-
ommended first, for a potential speedup of 3X. Consulting
the PT scan results in Table 3 indicates that the region con-
tains only ILP. The critical path through region F is nearly
equal to the sum of the critical paths of all the sub-regions,
which is a direct indication that they are all serially depen-
dent upon one another (i.e. there is no-TLP). While slightly
disappointing, this confirms the conventional wisdom about
the serial nature of the unmodified gzip algorithm.

According to the PEC, the only other profitable region
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Label Function Line Range | DLP/TLP/ILP
B fill_window 545-547 TLP
F inflate 930-935 TLP
H spec-main 297-344 TLP
L util-xmalloc ALL DLP
C deflate fast ALL DLP
G spec_putc ALL ILP
I spec_initbufs ALL ILP
D deflate_fast 653-653 ILP
E inflate_block ALL DLP

Table 3: PT Scan for gzip

for parallelization is D. Once again we consult Table 3 for
the type of parallelism available in region D. Sadly, once
again the region is found to contain only ILP and is thus
not a good candidate for parallelization. While D does have
some modicum of DLP through calls to sub-regions (pruned
out in the p-chart), they amount of work spent in these sub-
regions pales in comparison to the total amount of work in
D.

The overall conclusion of parallelization efforts of gzip is
therefore grim according to both conventional wisdom and
the p-ray tool.

4 Experimental Results

4.1 Evaluation of p-ray

So far we have discussed the p-ray tool and its utilities in
great detail with case studies. In this section we will eval-

uate the effectiveness of p-ray by comparing the predicted
results with experimental results obtained through real sim-
ulations. For this purpose, we obtained p-charts and PEC
graphs for a few interesting benchmarks(see Table 4). At
the same time, we used these benchmarks, and the results
to tune our parallelizing compiler for generation of code for
a tiled multi-core simulator.

Based on the recommendation of the PEC and the con-
tour of the p-chart, we were able to target the regions with
parallelism, and implement or augment transformations in
the compiler in order to extract the PEC-promised speed up.
We applied transformations such as privatization, scalariza-
tion, loop interchange, and loop invariant code motion in
order to allow the compiler to realize the parallelism indi-
cated by p-ray.

Our compiler identifies regions that exhibit DLP and
ILP and exploits parallelism using a combination of un-
rolling and space-time scheduling over a scalar operand net-
work [15]. We were not able to parallelize all of the regions
indicated by the tool because our current infrastructure is
not capable of exploiting thread level parallelism. Also, our
tool chain currently does not associate any cost for library
function calls, in particular sin and cos. Thus finediff and
crnich benchmarks show varied cycle count for initializa-
tion regions, which involve sin() calls.

Vpenta We will start our analysis with Vpenta. As dis-
cussed in the case study, Vpenta has a heavy presence of
DLP across its individual regions and the enclosing body
exhibits partial TLP due to dependence across each child
region. For child regions, that are suggested as primary can-
didates for parallelization effort focus, our simulator gave
speed up as high as 90x on 32 core. The high amount of
work (see Table 4) in each child region and predicted par-
allelism contribute towards the speed up. The overall speed
up is a fraction of many of the children regions because of
the long dependency chain that runs through them. This
phenomena is well captured in the speed up trend across re-
gions. Also notice that the initialization phase of Vpenta,
that consists of more than ten different array fills, does not
show considerable speed up. Intuitively, we would identify
the fills as TLP. But since our compiler does not support
TLP, we do not get good speed-up numbers in that region.

Capacitor Capacitor is a benchmark with high DLP and
ILP content. Region D, which has calls to seidel and gauss,
encloses two instances of region J. The p-chart identifies
this as TLP and suggests there be a speed up of 2.0x on re-
gion D. Intuitively, we can claissfy this behavior as pipe-
lined parallelism case. But from table it is evident that
region D only manages 1x speedup. Scheduling the two
threads could extract good parallelism across the entire sei-
del function, but we are limited by our compiler’s restriction
on TLP. Similarly,for Region J enclosing K and L that com-
prise the seidel function of the benchmark, the predicted



Benchmark | Region | Lines Work Speedup
Predicted Actual | Predicted Actual | Cores Used | Parallelism
Vpenta N 1,794,124 1,945,675 370 58.20x 32 | partial-TLP
Q 39 143,529 139,656 12000 66.41x 32 DLP
U 63 179,412 193,617 4100 98.33x 32 DLP
A% 52 161,471 152,929 3900 86.35x 32 DLP
T 45 134,559 132,705 4000 85.12x 32 DLP
M 153 215,294 195,962 8192 73.28x 32 DLP
K 40 89,706 78,926 7000 82.30x 32 DLP
D 40 435,971 479,232 2500 20.00x 32 DLP
O 79 269,118 294,912 16384 40.30x 32 DLP
S 24 71,764 67,681 3000 65.08x 32 DLP
Capacitor F 115,502 97,867 35 1.73x 32 | partial-TLP
1 20 23,100 28,478 1000 10.77x 32 DLP
C 30 3,465 2,469 370 0.45x 32 DLP
G 55 6,930 6,492 16 4.52x 32 | partial-TLP
D 55 6,930 6,492 16 4.52x 32 TLP
J 160 75,076 64,666 12 2.68x 32 | partial-TLP
Crnich P 880,171 1,119,035 10 2.54x 32 | partial-TLP
N 20 44,008 59,125 900 84.95x 32 DLP
HB 32 158,430 258,159 2.5 1.51x 32 ILP
JB 20 183,835 189,939 3 2.14x 32 ILP
E 40 44,008 36864 2048 20.00x 32 DLP
U 44 17,603 18,432 1500 20.00x 32 DLP
\%% 44 17,603 18,432 1500 20.00x 32 DLP
Y 44 17,603 18,432 1500 20.00x 32 DLP
L 22 44,008 18,432 1500 20.00x 32 DLP
H 22 44,008 244,671 1024 23.68x 32 DLP
Finediff C 435,620 2,350,407 6144 | 106.16x 32 | partial-TLP
E 26 239,591 301,724 5000 | 101.01x 32 DLP
A 40 67,634 92,160 4096 20.00x 32 DLP
D 67 143,754 1,954,286 8192 | 116.50x 32 DLP
Nbodyld C 2,122,719 | 2,828,3317 2000 43.77x 32 | partial-TLP
E 133 | 1,804,371 2,396,000 1600 44.26x 32 DLP
(A-D) 40 43,054 55,296 4096 20.00x 32 DLP
(D-E) 116 297,180 370,756 2000 44.94x 32 DLP

Table 4: Comparison of predicted and actual results.

speed up of region J is almost twice that of region K, making
it a TLP scenario. Though our compiler extracts as much as
10x parallelism on initialization regions of capacitor, it is
severely limited by the TLP-only nature of seidel and gauss
(region G). This reflects in the speed up numbers of J and
G, that cap at merely 2.6x and 4.4x despite the fact that
they have large working set and enough work since only

ILP can be extracted from them. This fact is reflected in the
PEC chart, which suggest we start with DLP loops to ex-
tract parallelism and then try to venture into the do-across
realm.

Crnich Crnich finds Crank-Nicholson solution to one-
dimensional heat equation. This benchmark is a classic
case of regions with TLP and DLP. The initialization phase



which involves array fill, matrix multiply and negate oper-
ations on different arrays would be considered a TLP sce-
nario. Each of these regions (U,W,L) are DLP, if looked
individually, but they can be scheduled in parallel. But the
actual speed up numbers do not match these justify this. If
TLP was handled in the compiler, we could have achieved
PEC promised speed up on these regions. For the DLP re-
gions, the compiler achieves speed up as high as 85x.

Nbodyld Nbodyld exhibits pipe-lined parallelism in its
region E. This region comprises of three loops and the it-
eration count for each loop remains the same and the data
computed in the the first loop is used by the second, so on.
Ideally we could visualize this as a TLP case and schedule
the threads in pipe-lined fashion. This fast is reflected in the
p-chart which computes the parallelism on region D greater
than region E. Other than these regions, Nbody1d handles
DLP regions effectively.

Finediff Finediff comprises two loops, one the initializa-
tion loop and the other being the actual computation. The
initialization loop has heavy sin() operation computations,
region E. Region E is a work intensive DLP loop that has
high parallelism. The compute loop is a do-across loop with
heavy work, region E. The heavy work accounting from this
loop justifies high parallelism despite the long critical path.
The overall parallelism of the program, region C, is a typi-
cal partial-TLP case. Exploiting pipe-lined parallelism and
TLP is the compiler can give us promising results for the
speed up numbers. The PEC recommendations provide use-
ful insights into improving parallelism across the program.

The analysis we have made for each benchmark provides
a useful insight into parallelism and the efficiency of p-chart
and PEC with respect to analyzing programs and suggesting
the effort curve.

5 Algorithms for Creating P-charts

The first interaction that a programmer will have with p-ray
is through a p-chart. These p-charts are visual representa-
tions of the parallelism of a program during different stages
of execution. As all subsequent tools utilize the information
presented in the p-chart, it forms the core of p-ray. In this
section we will talk about the design and implementation of
p-charts.

5.1 Region-based Profiling

p-charts track the parallelism through regions of a pro-
gram as execution proceeds. While previous work has cal-
culated the critical path and work through a whole pro-
gram [8, 13, 16, 10, 9], they do not convey the fluctuating
nature of parallelism between and across program regions.
As we will see, while some parts of the program are highly
serial in nature, others can be highly parallel. Looking only
at the average parallelism across a whole program, it is dif-
ficult to differentiate the highly parallel from the serial re-

gions of the program.

P-ray implements an LLVM-based [11]-based source-to-
source instrumentation pass that instruments the program-
mer’s code to record critical path and work information as
it executes. This information is processed as the program
executes in order to prevent the need for large log-files.

We define a region as any single-entry piece of code. It
may have any number of exit points. Under this definition,
many different structures of a program may be considered a
region. These range all the way from whole functions down
to loops, basic blocks, or even individual instructions.

For p-ray we consider only two types of regions: loops
and functions. We consider loops because they are a nat-
ural source of parallelism, as evidenced by the fact that
data-level parallelism is often referred to as loop-level par-
allelism. We include functions because they form natu-
ral divisions of the program and often encompass a single
task to be performed. In other words, they are prime can-
didates for task-based parallelism (i.e. thread-level paral-
lelism). We exclude individual instructions as region can-
didates because they offer almost no opportunity for par-
allelism. While considering basic blocks as regions would
provide us information about instruction-level parallelism,
we do not track them because they offer only limited oppor-
tunities for parallelism and the overhead for tracking them
would be excessive. To reiterate, when we use the term re-
gion in this paper, we use it to mean either a function or a
loop.

As we previously mentioned, regions form a natural hi-
erarchy. To visualize this, we imagine the regions to form
a graph with nodes being regions and an edge from region
A to region B indicating that region B is contained directly
within region A. If a loop region is contained within an-
other region, it means the code for the loop is found in that
region. On the other hand, if a function is contained within
another region, it indicates that this function is called from
the containing function. The region graph can be thought
of as a call graph where loops are also callable (albeit, only
from one place).

‘We should take the time now to reinforce the concept that
the region graph is a static construct. It does not take into
account the actual execution of the program. As we will see
in the following sections, a dynamic region tree is formed
that can be used for pruning out uninteresting information
and also for diagnosing possible TLP regions.

5.2 Region-tree Pruning

During execution of a large program, many regions are en-
countered. Some of these regions may be trivially small
or otherwise uninteresting. Because a p-chart is intended
to aid a programmer in visualizing the parallelism across
the whole execution of a program, it is important only to
include those regions that are interesting and helpful. To
accomplish this, we create a region-tree based on the exe-



cution of the program and then prune that tree in order to
show only those regions which are useful.

The region-tree is based on the dynamic execution pat-
tern of the program. There is one node for each dynamic
execution of a region (e.g. function call for a function re-
gion) and the children of each node follows the same con-
taining semantics as with the region graph. The leaf nodes
of the tree are loops or functions that do not contain any
other loops/function calls within them while the root of the
tree is the main() function of the program.

For large programs, there are too many regions to visual-
ize and many of them are not worth exploring. In this sec-
tion, we will discuss how we prune the region tree down.
We find that we can trim down the number of regions to
display so the information is easily digestible using the fol-
lowing two rules:

1. Eliminate any dynamic region whose parent has paral-
lelism of nearly 1 (i.e. is serial)

2. Eliminate any dynamic region individual work makes
up an insignificant portion of the total work of the pro-
gram

The first rule keeps the top most regions that are practi-
cally serial using its current algorithm and eliminates any
of its sub-regions to show that these regions would be hard
to parallelize in their current state. The sub-regions which
are quite serial as well are not displayed because they would
be providing redundant information. The second rule elimi-
nates all the regions that would not greatly speedup the pro-
gram if they were parallelized. By using these rules, only
the important regions remain.

5.3 Calculating Parallelism
In order to calculate the parallelism in a region, we need

two pieces of information:

1. The total amount of work performed in the region.

2. The minimum possible time to execute the region (i.e.
the critical path of the region).

Using this information we are left with the following sim-
ple equation for parallelism, p:

work
P=— ey
criticalpathlength

This equation tells us that in order to perform the total
amount of work in the region, we would need to execute,
on average, p work cycles for every cycle. In other words,
we could achieve p-way parallelism in the best case. If the
amount of work is similar to the critical path length then
there is not much parallelism to be exploited. In this case, p
will approach 1. If, on the other hand, we have a loop with

n iterations that can all be performed in parallel, then p will
be approximately 7.

In order to measure the work and critical path, we use
a custom instrumenting infrastructure to annotate C source
code. We use the LLVM infrastructure [11] to perform this
instrumentation. This instrumented source code is compiled
and executed and the output data parsed to gather the data
required as input to all the p-ray tools. The use of this dy-
namic, run-time analysis allows us to discover information
that would be difficult or impossible at compile time, and al-
lows us to capture actual memory dependencies in the pro-
gram, as opposed to rely on a conservative pointer analysis.
Although this opens the possibility of overly optimistic es-
timations of parallelism, it provides information that a con-
servative analysis would not be able to.

As we will see in the following subsections—describing
how work and the critical path are calculated—dynamic
profiling is key to disambiguating pointer aliasing and al-
lowing us to find the true critical path through a program.

5.3.1 Work

‘We define the work of a region as the total number of useful
cycles needed to execute that region of the program. While
many architectural factors (e.g. register spilling because of
a limited number of registers) will impact the total number
of cycles to execute, we are interested only in those that
make progress toward completing the program. The work
done can be calculated by tracking the number of dynamic
instances of each type of instruction (e.g. integer add, float-
ing point divide, etc.). For each of these types of instruc-
tions, we define the number of cycles that it takes to execute
this instruction. The number of cycles required for a given
type of instruction is normalized to the time taken for an
integer addition. Simple instructions, such as integer sub-
traction and comparison, should take a single cycle while
complex instructions such as floating point divide may take
many cycles.

Note that the cycles per instruction is defined under the
assumption that all operands are available and there is no
contention for hardware needed to execute the instruction.
The total amount of work in a region is roughly equivalent
to running this part of the program on a single-issue, in-
order processor. The total work therefore provides a base-
line for a completely non-parallel implementation of the
program. As we will discuss in a later section, all types of
parallelism—ranging from instruction-, to data-, to thread-
level—will result in a speedup over this baseline.

5.3.2 Critical Path Algorithm

As we alluded to earlier, the critical path through a region is
the minimum amount of time (in cycles) needed to execute
that region. In order to calculate this path, we need to define
the time when each executed instruction is available to be
used.



In order for an instruction to be executed, it must have all
of its inputs available. The input that is available at the latest
time is the critical input and will define the time (t4vait,crit)
at which the instruction may begin executing. Note that
there may be multiple critical inputs for any instruction. As
we discussed in the previous subsection, each type of oper-
ation has an associated execution time (¢;,,5;). The time at
which the instruction is available (£4,4i;) is therefore gov-
erned by the following equation:

@)

For assignments of the form A = B, there is no opera-
tion being performed, t;,s: can be view as being 0. The
availability time of the left hand side (A) is equal to the
availability of the right hand side (B). Function calls that
return a value (e.g. A = func()) are handled similarly to as-
signments. Before the function is called, the variable where
the return will be stored is noted and right before the func-
tion returns, an assignment between the return value and
the noted value is made. If an instruction uses a constant
(e.g. A =B + 1) then only the time of B is considered when
calculating 44441

In order to avoid problems with pointer aliasing, we keep
a mapping from address to the time it is available. When we
perform an operation (e.g. A = B + C), we update the map-
ping of the address where the operation (e.g. A) is stored.
Similarly, when looking up critical input time, we use the
address of the inputs (e.g. B and C). In this way, if another
variable, D, is aliased to A, then executing A will update the
address associated with both so using D later (e.g. E=D +
F) will find the correct availability time for D.

As we are executing and updating time mappings, we
check for the maximum availability time that we encounter.
It is this time that will define the minimum amount of time
required to execute the region and therefore this is the crit-
ical path length. By starting at the operation and tracing
back through the critical inputs, we can find the critical path
through the region.

tavail = tavail,crit + tinst

Control Dependencies
example:

Consider the following code

b + 1;
0;

a =
c =

if(x > 10)
c=a+1;

else

If we consider only the data dependencies (as is the case
for tqvair above), then we may miss the fact that the avail-
ablility of c is also determined by the outcome of x > 10. In
order to account for this, we define a minimum time, ¢,,,5,,,
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that a ?4444 can have in a control dependent region. This
tmin 1S set to the availability of the branch condition. In the
above example, the branch condition is the calculation of x
> 10 so t,,in for the then and else branches is set to that
availability time. We therefore need to update our ¢,y
equation as such:

3)

With this updated equation, we are now able to handle
both control and data dependencies in the code.

tavail = max(tavail,crit + tinsh tmzn)

Loop Induction Variables Loops are one of the most
fertile areas to look for parallelism. Consider, for example,
the following loop:

for(i =
ali]

0; 1 < N; ++1i)
b[i] + c[i]

Assume that arrays a, b, and ¢ do not alias to one an-
other then it is easy to see that all iterations of this loop
can execute in parallel. We would thus expect the critical
path length of this region to be 1 (the time for an integer
addition). However, when this loop is executed, the induc-
tion variable, i, is updated with every iteration. Because i
at each iteration depends on the value of i in the previous
iteration, a data dependency would be noted and the critical
path length would N. Luckily, LLVM is able to identify
loop induction variables and we can force our profiler to
ignore this false dependency on i.

Region-based Critical Path In order to isolate the crit-
ical path of a region, we first have to ensure that all the in-
puts to the region are assumed to be available at the same
time. In order to achieve this, whenever we enter a new re-
gion, we create a new address to time map. If an instruction
looks up the address for operand and finds that it is missing
from the address to time map, it is assume that the input is
available at time 0. In this way, all instructions that depend
on instructions outside of the region are guaranteed to be
able to start at the same time.

6 P-Ray Diagnostic Tools

At the heart of p-ray is a set of tools, which a programmer
can utilize to quickly diagnose the location and type of par-
allelism in a single-threaded program. Having already seen
how p-charts are created, we will now move on to the other
tools that p-ray offers. Using these tools, a programmer is
able to iteratively select promising regions for parallelism
(with a PEC) and identify the type of parallelism in those
regions (using the PT scanner).

6.1 Parallelization Effort Charts (PECs)

The PEC for a program is generated based on the potential
benefit of parallelizing a region of code vs. the number of
lines of code in that region. We have omitted the pseudo-



code for this algorithm but will now describe it at a high-
level.

We start off with an empty list of regions that we are go-
ing to parallelize and try adding each region to that set and
see what marginal benefit we would get. After trying all the
regions, we pick the one that provided the best speed up per
line of code and pernamently add it to the end list of regions
that we are going to parallelize. Next, we repeat with the re-
maining regions until we run out of regions to parallelize or
we are only left with serial regions. The resulting list is the
order in which we would like to parallelize all the regions.

To find the marginal benefit of adding a particular re-
gion, we begin by recursing down to all of the leaves of the
region-tree and calculate their new execution times first. If
they are in the set of static regions that we are going to par-
allelize, their new execution time is their critical path time
(i.e. the theoretical parallelization time). Otherwise, their
new execution time is still their serial execution time.

After we calculate all the leaf region execution times, we
can continue calculating up the region tree. For non-leaf re-
gions, we gather all the new execution times for all the chil-
dren. If we are going to parallelize this region, then its new
execution time is the max of its children’s new execution
times and its critical path time. We consider the children’s
execution time in the max function because the fastest ex-
ecution time for this region would be the greatest of these
times for any child we have not parallelized yet. Any child
that we have already parallelized will be less than or equal
to this region’s critical path, so those ones will not affect the
result. In addition to this purpose, we need to include the
region’s critical path time in the max function so that we
capture any dependencies between the children and in the
work done just inside this region.

If we are not going to parallelize this region, then the
new execution time is the sum of the execution times of the
children plus the work done just in this region. Since the
work of a region includes all the work of its children, we
have to subtract out the children’s work from the current
region’s work to get the work just in this region.

6.2 Parallelism Type (PT) Scanner

Having used the PEC to select one (or more) regions to par-
allelize, we would like to quickly diagnose the type of paral-
lelism that is available in this region(s). To accomplish this,
we have developed the PT scan. Using data available from
the p-chart and corresponding region tree, the PT scanner
utilizes several heuristics to infer the type of parallelism
(data-, thread-, or instruction-level) in the region. In the fol-
lowing subsections, we will discuss the characterestics that
the varying types of parallelism will have that allows us to
easily identify them. Afterwards, we present the algorithm
for classifying a region’s parallelism.
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6.2.1 Identifying Data Level Parallelism (DLP)

The first type of parallelism which we will look at is that at
the data level. The hallmark of DLP is that the same instruc-
tions are performed on multiple data streams. In trying to
identify DLP, there are several cases to look for. The first,
and most obvious, is if the region has a high parallelism
score. In the event that a region has no children, we can say
that a parallelism higher than Ppy p is a DLP region. In this
no-child case, having a parallelism lower than Ppyp indi-
cates that only ILP is present in that region. In practice, as
ILP is usually highly constrained, the value for Pprp can
be as low as 8-16.

In the case that a region does have children, a high paral-
lelism score alone is not enough to determine if the region
has DLP. As we will see in the next subsection, a TLP re-
gion may also have a high parallelism score. If a region
has children and a high-DLP score then we can look at the
nature of the children to determine if the region has DLP.
As we mentioned earlier, DLP involves repeating the same
operation on different sets of data. With this is mind, if the
children meet the following criteria, we say the region is
DLP:

1. All children are dynamic instances of a single static
region

2. All children have the same amount of work and paral-
lelism (Pepira)

3. The parallelism of the parent Ppgrent 1S 1 * Pepirq,
where n is the number of children

The first two criteria ensure than each iteration of the loop
performs the same work while the last criterion ensures that
the children can be executed in parallel (i.e. this is not a
DO-ACROSS loop).

6.2.2 Identifying Thread Level Parallelism (TLP)

The next type of parallelism we will look at is TLP. While
multiple threads may operate on the same code, we focus
on the type of TLP that arises from doing work on differ-
ing regions of code. If we are interested in the former, we
note that there is significant overlap with between identical
threads and DLP. Any region we identify as having DLP
may easily be converted to TLP by having a gang of threads
execute the iterations of the loop in parallel. This is espe-
cially true for loops with longer bodies or for the nested
loop case described in the DLP section.

When we encounter that has multiple subregions as po-
tential threads, there are several scenarios that are possible.
In the best case, the work performed by the subregions is
independent of one another so that all subregions may be
executed in parallel. We will refer to this as the perfect-
TLP case. On the opposite end of the spectrum is when
each subregion depends on the previous subregion so that



they must be executed serially. This case will be referred to
as the no-TLP case. The final possibility is when the sub-
regions are partially dependent upon those before them; the
so-called partial-TLP case. We will now discuss how we
differentiate between these three scenarios.

In the perfect-TLP case, the critical path time of the en-
closing region will be dominated by the time of the longest
critical path length among the subregions. For the no-TLP
case, the critical path of the enclosing region will be the
sum of critical path lengths of the children. These two val-
ues provide the range for possible critical path lengths for
region under consideration for TLP. The actual critical path
length of a region will lie somewhere along this spectrum.
In order to determine the “fitness” for a region to be consid-
ered as TLP, we normalize the actual critical path length to
where it lies along this spectrum. The following equation
governs this fitness metric:

_ C1PrwaLP - CPactual
CPuo_rLP — CPperfect

We can set some minimum fitness value, fy,in, below
which there are too many dependencies among subregions
for the enclosing region to have TLP. If a region fails to
meet this minimum fitness, then it serial and contains only
ILP.

6.2.3 PT Scan Algorithm

The algorithm for the PT scanner—omitted for brevity—
follows the same process of elimation as we have seen in
the previous subsections on identifying the types of par-
allelism. If a region has no children, it is either DLP or
ILP, depending on the level of parallelism in the region. If
there are children, if they are from heterogeneous static re-
gions, then the TLP fitness metric is consulted to label the
region either as TLP (if above f,,,;,,) or ILP (if below). If the
subregions are homogenous then the region’s parallelism is
checked against that of the children to verify the status of
criteron 3 above. If this criterion fails, then the TLP fit-
ness metric is once again consulted to see if there is TLP or
whether ILP is the only type of parallelism available.

7 Related Work

Many of the earliest efforts on analyzing parallelism
in single-thread programs focused on evaluating whether
enough parallelism existed to justify parallel execution of
programs on machines. Kuck et al. [8]) used static analysis
to estimate the parallelism available in Fortran codes, in-
corporating the estimated effects of transformations such as
tree height reduction and forward substitution. Nicolau et
al. [13] used a dynamic, trace-based analysis, and included
efforts to estimate the impact of memory disambiguation.
More recent efforts such as Wall et al. [16] extended these
analyses to look at the impact of wide-issue superscalar pa-
rameters; such as window-size, ability to predict branches,
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and resolve memory dependences. Lam et al. [10] followed
on with more sophisticated versions of this style of anal-
ysis to establish the relative benefits of successively more
powerful control flow models.

There have also been more recent efforts to use critical-
path style analyses for analyzing and improving the perfor-
mance of parallel programs; focusing on the synchroniza-
tion and communication of pre-parallelized threads rather
than trying to discover innate properties of the program, or
trying to make suggestions to the programmer on how to op-
timize single-threaded code. Overeinder et al. [14] created
a critical path analysis tool to analyze the parallelism be-
tween communicating message-passing MPI-threads. Yang
et al. [17] created an analysis to examine communication
and scheduling related bottlenecks in distributed programs.

The Cilk system [5] partly inspired this work; it analyzes
the dynamic execution and synchronization of threads, em-
ploying critical path and work as metrics to assess the ef-
fect of creation and synchronization of threads on whole-
program execution of parallelized Cilk code.

Austin et al. [1] presented Paragraph, a tool that tracked
various dependences to find the available parallelism in an
application. However the tool did not take into account
memory aliasing, which is usually very hard to resolve auto-
matically. Moreover the tool presented parallelism against
the depth in the data dependence graph, hence making it
very tough for the user to pin point the code regions which
can or cannot be parallelized.

Eager et al. [4] presented an analytical model that at-
tempts to bound the inefficiency caused by uneven paral-
lelism in a program. Banerjee et al. [2] examined the anal-
ysis of parallelism in loops for the purpose of performing
loop transformations.

Perhaps the most related work is COMET [9]. It uses a
trace-based analysis, similar to Lam’s and Wall’s approach,
but using source to source transformations on Fortran to ex-
tract critical path information, for the purpose of aiding the
development of parallel processors. The approach created
graphs that assumed that every operation is scheduled as
early as its latest dependence. This effectively models the
execution of the program on an infinitely wide dataflow ma-
chine. The resulting graphs tend to have spikes early on
in the beginning, as instructions from many different unre-
lated parts of the program “fire” because they don’t have
input dependences. This smearing of instructions, and lack
of information about which instructions come from which
part of the program, makes it difficult for the programmer
to use the program for advice on how to parallelize a pro-
gram, although it does attest to the existence of parallelism,
in some form. Our approach attacks this problem by run-
ning many many such critical path analyses across all of the
program’s nested regions; and by correlating and analyzing
the resulting data.
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Conclusion

In this paper we have presented p-ray, a suite of tools whose
goal is to allow quick diagnosis of the parallelism of a pro-
gram. p-ray is useful for both architects, who wish to gain
a better understanding of the types of parallelism they will
be optimizing for, and programmers, who wish to improve
the performance of single-threaded programs on multi-core
processors.
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