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Abstract

Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore 

unknown genomic associations with brain phenotypes, several international genetic imaging 

consortia have been organized in recent years to pool data across sites. The challenges and 

achievements of these consortia are considered here with the goal of leveraging these resources to 

study addiction.

The authors of this review have joined together to form an Addiction working group within the 

framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. 

Collectively, the Addiction working group possesses neuroimaging and genomic data obtained 

from over 10,000 subjects. The deadline for contributing data to the first round of analyses 

occurred at the beginning of May 2015. The studies performed on this data should significantly 

impact our understanding of the genetic and neurobiological basis of addiction.

Keywords

Addiction; Genetic imaging; ENIGMA; Neuroimaging

Introduction

The emergence of numerous large-scale international genetic imaging consortia in recent 

years is the product of several rapidly evolving factors. The maturing field of neuroimaging 

has made significant progress toward adopting a widely accepted set of best practices which 

have been incorporated into several competing software distributions (e.g., SPM, AFNI, 

FreeSurfer, FSL) that are free to download and relatively easy to install. Adaptation of 

imaging software to the developing needs of the neuroimaging community and greater 

automation have been accompanied by tremendous efforts to annotate the software and to 

educate a large cadre of scientists who are now able to apply these methods to studies with 

increasingly large sample sizes. Evidence of these efforts can readily be found on the busy 

message boards of any of the major neuroimaging platforms. Furthermore, with the 

development of standard anatomical templates and coordinate-based reference systems, 

researchers worldwide can now relate their findings to previous results in a consistent way. 

In combination, these factors have facilitated the formation of several large-scale 

collaborations to overcome the limitation of small sample sizes in typical genetic imaging 

studies.
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The high dimensionality of genetic imaging datasets poses a difficult set of challenges. 

Human DNA consists of approximately 3 billion nucleotide base pairs. Variation in the 

population at any individual base is called a single-nucleotide polymorphism (SNP) and may 

contribute to the differential expression of phenotypic traits. Genomic studies have become a 

medical research priority because the identification of the genetic variation associated with a 

disease helps to clarify its molecular basis which, in turn, should lead to improved diagnostic 

categorization and more effective treatments (Sullivan et al., 2012). One way to proceed in 

identifying such associations is to investigate the relationship of traits of interest with 

candidate SNPs that are suggested on the basis of previous research (e.g., to examine the 

association of smoking behavior with SNPs related to the expression of nicotinic receptor 

subtypes). However, such a targeted approach is unlikely to expose the full range of SNPs 

involved in complex traits, such as addiction. To discover unknown trait-SNP associations, 

an unbiased search across the whole genome, known as a genome-wide association study 

(GWAS), is necessary. This latter strategy commonly involves testing hundreds of thousands 

to millions of SNPs and requires a strict multiple comparisons correction threshold, 

conventionally p ≤ 5 × 10−8, to avoid reporting spurious results. Furthermore, findings must 

be replicated in at least one independent cohort before they are considered credible or at 

least generalizable. To meet these stringent thresholds, sharing data across multiple sites has 

become necessary.

There are now many successful examples of genetic imaging consortia, including ADNI 

(Alzheimer's disease), IMAGEN (mental health and risk-taking behavior in teenagers), 

EPIGEN (epilepsy), the Saguenay Youth Study (development), fBIRN (schizophrenia), and 

CHARGE (heart and aging). These groups have pioneered the use of multisite data sharing 

protocols and have demonstrated that analyses using shared data produce meaningful 

findings. The purpose of this review is to discuss how these resources can be leveraged to 

study addiction.

2 Genetic Basis of Addiction

It is clear that addiction has a genetic component (Maes et al., 2004; Prescott and Kendler, 

1999; Tsuang et al., 1998) although the specific set of genes involved remains obscure. 

Several GWAS of alcohol addiction have been published (Bierut et al., 2010; Edenberg et 

al., 2010; Heath et al., 2011; Treutlein et al., 2009) which have confirmed the risk of 

alcoholism associated with of a number of SNPs, such as the ADH and ALDH2 genes, 

previously identified through the candidate gene approach. These studies have also identified 

some additional but as yet unreplicated variants that may contribute to alcohol dependence 

(Rietschel and Treutlein, 2013). However, results have largely differed from one GWAS to 

another with later studies providing only modest evidence of replication of previous 

findings. A similar situation exists with regard to cannabis in that published GWAS have not 

reproduced previous findings (Agrawal et al., 2011; Han et al., 2012; Hopfer et al., 2007). 

The genetic basis of nicotine dependence has been more closely examined than other 

substance addictions although again only a handful of results have been replicated across 

studies (Berrettini et al., 2008; Drgon et al., 2009; Gelernter et al., 2015; Thorgeirsson et al., 

2008; Uhl et al., 2008b; Wang et al., 2012a; Zuo et al., 2013). Only a few published GWAS 
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have examined the genetic basis of other drug use (e.g., Uhl et al., 2008a). In summary, most 

of the genetic variation underlying addiction remains to be explained.

2.1 Brain Endophenotypes

The failure to identify a greater proportion of risk genes is disappointing given the high 

heritability of addiction. Recent estimates of the heritability of dependence on different 

addictive substances include: 56% for alcohol, 72% for cocaine, 40% for other stimulants, 

48% for cannabis, and 51% for sedatives (Bienvenu et al., 2011). The intermediate 

“endophenotypes” approach may be a more sensitive way to determine how genes influence 

addiction vulnerability (Glahn et al., 2007, 2014). An intermediate endophenotype is a 

quantifiable biomarker (e.g., regional brain volume or activity) that is genetically correlated 

with disease liability and observed to a greater degree in affected individuals and their 

relatives than in unaffected nonrelatives. Since these biomarkers are arguably more proximal 

to the molecular expression of DNA than the related complex trait, it may be possible to 

generate simpler models of single aspects of the disorder to effectively bridge the gap in 

understanding between genotype and phenotype. In addition, the statistical power to detect 

genetic associations may be greater than using diagnostic categories because intermediate 

endophenotypes represent a continuous scale on which individuals can be ranked.

At least three lines of evidence suggest that genetic neuroimaging may produce useful 

intermediate endophenotypes of addiction. First, 20 years of neuroimaging data amply 

demonstrate that brain structure and function interact with the use of addictive substances. 

For example, brain structure differences compared to healthy controls have been observed in 

cocaine-dependent individuals (Alia-Klein et al., 2011; Barros-Loscertales et al., 2011; 

Connolly et al., 2013; Hanlon et al., 2011; Ide et al., 2014; Mackey and Paulus, 2013; 

Matochik et al., 2003), cigarette smokers (Brener et al., 1995; Kuhn et al., 2010; Sutherland 

et al., 2013; Zhang et al., 2011), alcoholics (Cardenas et al., 2007; Jernigan et al., 1991; 

Rando et al., 2011), cannabis users (Batalla et al., 2013; Lorenzetti et al., 2014; Schacht et 

al., 2012; Yucel et al., 2008), and opiate users (Lyoo et al., 2006; Upadhyay et al., 2010; 

Wang et al., 2012b). These effects are widespread and likely reflect a mixture of preexisting 

differences that either confer vulnerability to addiction or are the cumulative effects of 

chronic exposure.

A second line of evidence suggesting that neuroimaging will generate useful intermediate 

phenotypes are twin- and SNP-based heritability studies which indicate a high heritability 

for structural brain measures, such as total amount of gray and white matter, overall brain 

volume, and addiction-relevant subcortical regions. Heritability estimates for brain measures 

(h2) are as high as 0.89 (Kremen et al., 2010) or even 0.96 (van Soelen et al., 2012) and 

subcortical regions appear to be moderately to highly heritable. One recent study reported 

high heritability estimates for the thalamus (0.80) and caudate nucleus (0.88) compared to a 

lower heritability for the left nucleus accumbens (0.44) (den Braber et al., 2013).

Third, biomarkers of addiction which are present to a greater degree in affected individuals 

and their relatives compared to unaffected nonrelatives have been reported. For example, a 

recent neuroimaging study acquired anatomical MRI and diffusion tensor image (DTI) scans 

in 50 biological sibling pairs and a group of non-related control subjects (Ersche et al., 

Mackey et al. Page 4

Prog Brain Res. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2012). One sibling in each pair was dependent on cocaine or amphetamine. Fractional 

anisotropy in the DTI scans, an index of axonal integrity, was lower in dependent subjects 

and their nondependent siblings compared to the control subjects. Also, voxel-based 

morphometry indicated that gray matter volume in both dependent subjects and their siblings 

was lower in left posterior Sylvian fissure including parts of the postcentral gyrus, insula, 

and superior temporal gyrus and higher in the left putamen and left amygdala. The discovery 

of biomarkers that are quantifiably different in drug-dependent individuals and their siblings 

compared to nonrelated controls underscores the potential for neuroimaging to detect 

intermediate brain endophenotypes that will be useful in genomic research.

2.2 Challenges

The search for robust genetic and brain structural correlates of drug use and dependence 

faces a number of substantial challenges. The inability to find extensive significant genome-

wide associations might be attributable to the large degree of heterogeneity due to polydrug 

use and the high incidence of mental health comorbidities among drug users. It will be 

necessary to disambiguate several sources of genetic variation. Epidemiological studies 

indicate that there will be genetic variation associated with a general vulnerability to 

addiction and to a lesser extent drug-specific associations as well as gene–environment 

interactions (Tsuang et al., 1998). Furthermore, lifetime drug use can be decomposed into a 

number of qualitatively different stages (e.g., initial experimentation, occasional use, 

transition to abuse and dependence, risk of relapse) that current research indicates will 

exhibit different sets of genetic associations (Belin and Deroche-Gamonet, 2012; Everitt and 

Robbins, 2013; Montigny et al., 2013). GWAS and candidate gene analyses also have their 

own unique shortcomings. While GWAS searches the whole genome for unknown 

associations, it will miss variants with small effect sizes that would pass the less stringent 

probability threshold of the candidate gene approach (Gizer and Ehlers, 2015). With the 

candidate gene approach, however, there is no way to verify whether published candidate 

gene studies are systematically biased toward reporting successes. To correct for this latter 

problem, it has even been suggested that candidate gene associations should be held to the 

same significance criterion as GWAS (Flint and Munafo, 2013). The solution will likely 

require a combination of the two search strategies to iteratively approximate the genetic 

polymorphisms involved in addiction using both intermediate endophenotypes and well-

defined behavioral traits.

3 Enhancing Neuroimaging Genetics Through Meta-Analysis

In 2009, researchers from large-scale neuroimaging and genetics consortia, including 

IMAGEN, EPIGEN, SYS, FBIRN, and ADNI, formed the Enhancing Neuroimaging 

Genetics through Meta-Analysis (ENIGMA) project to work through the challenges of 

bringing together data from multiple samples and sites worldwide in a single meta-analytic 

framework (http://enigma.ini.usc.edu/) (Thompson et al., 2014). The first published 

ENIGMA meta-analysis reported that the mean bilateral volume of the hippocampus was 

significantly associated with the intergenetic variant rs7294919 (Stein et al., 2012). This 

proof-of-principle study established the feasibility of combining imaging and genomic data 

collected across multiple sites to investigate statistically significant effects of single-letter 

Mackey et al. Page 5

Prog Brain Res. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://enigma.ini.usc.edu/


genomic differences in brain data. In addition, a follow-up study discovered eight genetic 

loci in which common variants were associated with the volumes of several subcortical 

structures, including the putamen, caudate, and hippocampus (Hibar et al., 2015). The SNPs 

associated with subcortical brain volumes were supported across 50 cohorts worldwide, 

suggesting the power to identify genetic effects that account for as little as 1% of the 

variance in regional brain volumes. Functional characterization of these genetic loci, in 

outbred mice, was consistent with possible effects on cell number and links to degenerative 

disease risk (Ashbrook et al., 2014). The protocol developed by the ENIGMA network to 

harmonize the data from multiple sites has been made freely available to collaborators and a 

support structure based in Dr. Paul Thompson's Imaging Genetics Center at the University of 

Southern California has been created to facilitate the application of the protocol to other 

projects.

The ENIGMA protocol contains several innovations to deal with special issues arising from 

multisite analyses, notably imputation of genomic data to a common reference panel and a 

pathway to harmonize neuroimaging data with standardized quality control procedures. For 

the initial ENIGMA study, all data were imputed to the HapMap3 reference panel because 

SNP data at the various sites were genotyped on different gene chips. The imputation 

protocol adds substantial power to the overall meta-analysis by creating a genomic dataset 

that is comparable across sites and by employing state-of-the-art approaches to account for 

hidden structure (e.g., ancestry) and relevant quality control variables. More recently, the 

ENIGMA imputation protocol implemented in MaCH (http://csg.sph.umich.edu/abecasis/

MaCH/) has been updated to use the 1000 Genomes reference, a more in-depth analysis of 

the genome. To control for population stratification, multidimensional scaling (MDS) is 

applied to the genotyped data and the first four components are included as nuisance 

covariates in subsequent GWAS analyses (Hibar et al., 2015; Stein et al., 2012).

To process the neuroimaging data efficiently, one of two highly automated neuroimaging 

software packages (FSL's FIRST and FreeSurfer) was used for the initial ENIGMA 

publications although in future studies, including those undertaken by the Addiction working 

group, only FreeSurfer (Fischl et al., 2002) will be employed (Fig. 1). The use of these 

standard software programs ensures the comparability of neuroimaging results across sites. 

Despite the automation of FreeSurfer, considerable time is still required to test for statistical 

outliers, inspect distributions of brain structure volumes, genomic inflation factors, and other 

statistical summaries at each site.

Rather than using an analysis strategy where all phenotypic and genotypic data are sent to 

one central site for processing, as for example in the Psychiatric Genomics Consortium 

(http://www.med.unc.edu/pgc), ENIGMA employs a meta-analytic strategy in which GWAS 

are computed locally using agreed upon covariates. The advantages of this approach include 

the active involvement in the analysis of the researchers who collect and curate the data, and 

the ability to draw upon local computer infrastructure at each site to ease demand on central 

data processing. Site-level GWAS are performed with Mach2qtl, a statistical genetics 

algorithm developed by Goncalo Abecasis and colleagues (Li et al., 2010). Multiple linear 

regression is performed on each SNP using trait as the dependent variable and allelic dosage 

(i.e., 0, 1, or 2 alleles) as the independent variable of interest. Sites control for a set of basic 
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nuisance factors, namely the first four MDS components, age, sex, age × sex interaction 

effects, and nonlinear effects of age, including age2 and age2 × sex, by adding them as 

covariates in the regression model. Site-specific covariates may also be added (e.g., if data 

are acquired on two different scanners). Following quality control, the regression coefficient, 

standard error, and p-value for each SNP are forwarded to the coordinating site which 

conducts a unifying metaanalysis that weights the SNP coefficients by their standard error. 

This approach circumvents barriers associated with data sharing across sites and countries 

and allows sites to maintain responsibility for the integrity of their data. The meta-analysis is 

performed with an inverse standard error-weighted meta-analysis protocol implemented in 

METAL (Willer et al., 2010). Genomic control of p-values undertaken at the site level is 

repeated on the output of the meta-analysis to provide an additional control for population 

stratification or cryptic relatedness not accounted for by the MDS components (Devlin and 

Roeder, 1999). Additionally, associations are verified in replication samples that have been 

acquired independently of the discovery dataset.

3.1 Disease Working Groups

From the time that the pilot project by Stein et al. was published in April 2012, several 

ENIGMA working groups have been formed to focus more closely on applying the 

ENIGMA meta-analysis protocols to case–control differences in various brain-related 

diseases. With such large studies comes the ability to perform high power association studies 

to identify biomarkers for monitoring disease state and targets for drug therapies. ENIGMA 

working groups have been formed to study ADHD, schizophrenia, OCD, HIV, PTSD, major 

depressive disorder, and bipolar disorder (Jahanshad et al., 2013; Schmaal et al., 2015; van 

Erp et al., 2015).

4 Enigma Addiction Working Group

The authors of this review have joined together to leverage the structure of the ENIGMA 

project to study addiction. The international membership represents research laboratories 

from four continents and nine different time zones (Fig. 2). An initial site survey has 

identified datasets, including both case/control and cohort studies, that collectively contain 

neuroimaging and genomic data on over 10,000 subjects. Table 1 provides a summary of the 

Addiction working group datasets.

The strengths of the working group are currently found in several large developmental 

cohorts as well as case/control studies of dependent users of alcohol, nicotine, stimulants 

(cocaine and methamphetamine), and cannabis.

Each site has committed to completing the site-level analyses through local personnel. 

ENIGMA provides detailed image analysis protocols that will be adopted at all sites (http://

enigma.ini.usc.edu/protocols/imaging-protocols/). The fact that many sites already employ 

these protocols or very similar processing pipelines will minimize the time required for data 

preprocessing. Data analysis support will be provided by a postdoctoral associate (S.M.) at 

the University of Vermont and will also be available from the engineers and analysts in Dr. 

Thompson's ENIGMA support team. Easy-to-use instructions on how to preprocess the 

neuroimaging and genomic data and check for data quality have also been prepared.
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A multisite genetic neuroimaging meta-analysis will only be successful if careful attention is 

paid to the assessment of behavioral variables. The experience of the ENIGMA research 

consortium shows that the pooling of neuroimaging data requires the evaluation, and where 

possible standardization, of site effects on phenotypic characterizations and brain measures. 

The chosen phenotypes and brain measures must offer optimal sensitivity to disease effects, 

clinically relevant modulators of disease, and treatment effects. While each site possesses 

extensive phenotyping on its research participants, there are important differences across 

sites in the instruments and questionnaires used. The Addiction working group will develop 

common measures of quantity and frequency of use derived from the different instruments 

and assessments obtained at each site. Standardized addiction scores will be generated 

across the varying developmental and clinical profiles. This approach has been effective in 

harmonizing measures of alcohol consumption for the purpose of large genetics studies, 

such as the Gene–Environment Association Studies (GENEVA) consortium. For example, 

the GENEVA consortium was able to convert disparate alcohol measures into useful 

categories representing onset and safe compared with unsafe consumption (Holman and 

English, 1995; Holman et al., 1996). There are many methodological problems associated 

with measurement heterogeneity for alcohol consumption in the context of genomic studies. 

These include questions with regard to how abstention should be interpreted, the episodic 

nature of alcohol consumption, the coding of current drug use state at the time of scanning, 

the quantity and frequency of substance use across reference periods, differences in cultural 

norms, the standardization of drinking units, as well as recall and other respondent biases 

(see review, Agrawal et al., 2012). As recommended by Agrawal et al., the Addiction 

working group will use the guidelines and where possible attempt to align the addiction-

related phenotypes with the NIH PhenX toolkit measures for alcohol and drug consumption 

(e.g., lifetime use, age at first use, and symptoms of dependence).

4.1 Initial Project

The first analysis will examine the structural correlates of four simple drug use categories, 

no lifetime use, occasional use, abuse, and dependence. Data related to four substances, i.e., 

alcohol, nicotine, stimulants (cocaine and methamphetamine), and cannabis, will be used to 

identify the neural substrates of core addiction processes as well as substance-specific 

factors. Performing GWAS on the identified brain regions will significantly reduce the 

dimensionality of the brain imaging data. This first analysis will establish relationships 

between the sites and bring to light any major difficulties that need to be addressed. Analysis 

will begin after the first data freeze which will occur at the beginning of May 2015. Likely, 

the most important early challenge for the group will be the development of an assessment 

instrument that harmonizes the different drug use measures at the various sites.

5 Summary and Future Directions

Several international consortia have been organized in recent years to improve the statistical 

power of genetic imaging association analyses by pooling data from multiple sites. The 

authors of this review have formed an Addiction working group within the framework of the 

ENIGMA project to leverage the acquired knowledge about data sharing across multiple 

sites to study the genetic and neurobiological mechanisms underlying addiction. The 
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ENIGMA Addiction working group will attempt to identify brain endophenotypes starting 

with a volumetric investigation of the core neural substrates of addiction. The identification 

of core brain regions using structural MRI will reduce the number of dimensions in 

subsequent genomic analyses of problematic substance use. The Addiction working group 

will adopt the meta-analytic methods used successfully by the ENIGMA project. However, a 

mega-analysis approach, i.e., analysis of all pooled raw data at one location, may offer 

opportunities to conduct in-depth examinations of the neurobiology of drug use that are not 

possible in a meta-analysis. While practical concerns about sharing data were part of the 

motivation for the meta-analysis approach used by ENIGMA, more sensitive analyses may 

be possible by going beyond the pooling of effect sizes and the sharing of summary statistics 

(e.g., volume measurements of specific cortical and subcortical structures) to the sharing of 

complete, fully anonymized datasets, where available. We believe that the obstacles to this 

level of data sharing are surmountable. Depending on how the consortium grows (i.e., the 

addition of new members and of new datasets from current members), the Addiction 

working may in also decide to include multi-modal assessments of brain function including 

task-related and resting-state fMRI, DTI, and EEG (e.g., Jahanshad et al., 2015; Kochunov 

et al., 2015). At the present time, the working group is focused on resolving problems 

related to multisite data pooling with a manageable number of 18 sites.

Recent advances in the statistical analysis of genomic data present several promising new 

ways to investigate the combined datasets. We will explore the application of genome-wide 

complex trait analyses (Yang et al., 2011) to assess the heritability and genetic correlations 

among brain regions and phenotypic measures associated with alcohol and drug use. This 

method produces estimates of the variance explained by all SNPs over the whole genome for 

a complex trait and is suitable for large samples of nonrelated subjects. The working group 

will also investigate emerging statistical methods to detect significant associations in high 

dimensional data, such as the parallel independent components analysis with a reference 

mask (Liu et al., 2012), meta-analysis of voxel-based data (Jahanshad et al., 2015), and 

novel applications of correspondence analysis (Cioli et al., 2014).

5.1 Addiction Medicine

There are multiple ways in which the progress of the working group could impact the 

practice of addiction medicine. Since there is strong evidence that addiction has a genetic 

component (Maes et al., 2004; Prescott and Kendler, 1999; Tsuang et al., 1998), a GWAS 

with sufficient power, such as the one envisaged by the working group, will likely detect 

novel genetic associations with behavioral features of addiction or with intermediate brain 

phenotypes. Not only will these novel associations drive future research aimed at 

understanding the neural processes involved in problematic substance use and potentially 

provide novel targets for pharmacological intervention, but they could also lead to the 

development of predictive genetic and neuroimaging biomarkers. Addiction medicine would 

benefit enormously from a set of predictive tools that could be used to estimate risk at 

various stages of the disorder, e.g., risk of transition from healthy to problematic patterns of 

use or risk of relapse after treatment (Paulus, 2015). Current research also points toward a 

heterogeneity of causes (Tsuang et al., 1998). If addictive behavior can be attributed to many 

small effects in a range of brain systems, it is possible that combined neuroimaging and 
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genetic testing could identify differential vulnerabilities which could be used to customize 

treatment to address the specific challenges of the individual patient.
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Figure 1. 
Illustration of a structural MRI brain scan processed with FreeSurfer. Left, example of 

automated parcellation of the cortex. Right, local cortical thickness projected onto inflated 

surface of the brain.
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Figure 2. 
World map of the current membership of the ENIGMA Addiction working group.
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Table 1
Summary of ENIGMA Addiction Working Group Datasets as of February 2015

Substance Pattern of Use Cases Female Cases Cases and Controls

Alcohol Occasional 150 75 150

Dependent 1695 560 2124

Abstinent 61 24 177

Nicotine Occasional 0 0 0

Current 1132 385 1797

Abstinent 10 0 10

Cannabis Occasional 91 30 213

Dependent 238 33 348

Abstinent 17 7 34

Stimulants Occasional 175 69 228

Dependent 906 182 1408

Abstinent 68 9 108

Gambling Occasional 0 0 0

Dependent 59 0 187

Abstinent 0 0 0

Heroin Occasional 0 0 0

Dependent 0 0 0

Abstinent 38 15 70

Cohort – – 6445

Totals 4640 1389 13,299

Prog Brain Res. Author manuscript; available in PMC 2017 January 01.




