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Abstract

Three Essays in Dynamic Games

by

Asaf Plan

Doctor of Philosophy in Economics,

University of California, Berkeley

Professor Matthew Rabin, Chair

Chapter 1: This chapter considers a new class of dynamic, two-player games, where a
stage game is continuously repeated but each player can only move at random times that
she privately observes. A player’s move is an adjustment of her action in the stage game, for
example, a duopolist’s change of price. Each move is perfectly observed by both players, but
a foregone opportunity to move, like a choice to leave one’s price unchanged, would not be
directly observed by the other player. Some adjustments may be constrained in equilibrium
by moral hazard, no matter how patient the players are. For example, a duopolist would
not jump up to the monopoly price absent costly incentives. These incentives are provided
by strategies that condition on the random waiting times between moves; punishing a player
for moving slowly, lest she silently choose not to move. In contrast, if the players are patient
enough to maintain the status quo, perhaps the monopoly price, then doing so does not
require costly incentives. Deviation from the status quo would be perfectly observed, so
punishment need not occur on the equilibrium path. Similarly, moves like jointly optimal
price reductions do not require costly incentives. Again, the tempting deviation, to a larger
price reduction, would be perfectly observed.

This chapter provides a recursive framework for analyzing these games following Abreu,
Pearce, and Stacchetti (1990) and the continuous time adaptation of Sannikov (2007). For a
class of stage games with monotone public spillovers, like differentiated-product duopoly, I
prove that optimal equilibria have three features corresponding to the discussion above: be-
ginning at a “low” position, optimal, upward moves are impeded by moral hazard; beginning
at a “high” position, optimal, downward moves are unimpeded by moral hazard; beginning at
an intermediate position, optimally maintaining the status quo is similarly unimpeded. Cor-
responding cooperative dynamics are suggested in the older, non-game-theoretic literature
on tacit collusion.
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Chapter 2: This chapter shows that in finite-horizon games of a certain class, small
perturbations of the overall payoff function may yield large changes to unique equilibrium
payoffs in periods far from the last. Such perturbations may tie together cooperation across
periods in equilibrium, allowing substantial cooperation to accumulate in periods far from
the last.

Chapter 3: A dynamic choice problem faced by a time-inconsistent individual is typ-
ically modeled as a game played by a sequence of her temporal selves, solved by SPNE.
It is recognized that this approach yields troublesomely many solutions for infinite-horizon
problems, which is often attributed to the existence of implausible equilibria based on self-
reward and punishment. This chapter presents a refinement applicable within the special
class of strategically constant (SC) problems, which are those where all continuation prob-
lems are isomorphic. The refinement requires that each self’s strategy be invariant, here that
implies history-independence under the isomorphism. I argue that within the class of SC
problems, this refinement does little more than rule out self-reward and punishment. The
refinement substantially narrows down the set of equilibria in SC problems, but in some
cases allows plausible equilibria that are excluded by other refinement approaches. The SC
class is limited, but broader than it might seem at first.
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Chapter 1

Continuously Repeated Games with
Private Opportunities to Adjust1

1.1 Introduction
This paper considers a new class of dynamic, two-player games, where a stage game is
continuously repeated but each player can only move at random times that she privately
observes as they occur. As usual, imperfect observation yields issues of moral hazard, but
the monitoring structure here departs from those considered previously. Call a player’s
action within the stage game her position, which is a perfectly observed state variable of the
dynamic games considered here. Here, a player’s action is an adjustment or deliberate non-
adjustment of that position. The only action that is imperfectly observed is deliberate non-
adjustment, which the other player cannot directly distinguish from a lack of opportunity. If
non-adjustment is tempting relative to the equilibrium moves, then the constraints of moral
hazard are binding. This paper studies the resulting dynamics of the players’ positions in
optimal equilibria.

A central application is a model of duopoly where each firm at each time is uncertain
about the length of delay before its rival will be able to adjust its price. Recall, the existing
literature on repeated games with imperfect public monitoring provides models where each
firm is instead unsure about the prices that its rival has set. Both types of uncertainty
are suggested in the earlier, non-game-theoretic literature.2 Recall, if prices are imperfectly
observed, any price profile above the competitive level cannot be indefinitely maintained
in equilibrium.3 Even though the duopolists initially adhere to the proposed price, the
random signal will eventually suggest that one has deviated to a lower price. At this point,
punishment, in the form of lower pricing, is carried out. Otherwise, the firms would initially

1This paper has benefited from discussions with Matthew Rabin, Xin Guo, Kyna Fong, Robert Anderson
and Steve Tadelis, and seminar participants at UC Berkeley.

2Chamberlin (1929), in one of the first papers to discuss tacit collusion, suggests that a firm may be
unsure “not as to what his rival will do, but as to when he will do it" in response to a price cut. Also
see the mention of Salop (1986) below, and further discussion in section 1.6.
3This conclusion holds under the standard technical assumptions, including in particular that the support

of the signal’s probability distribution does not depend on the actual prices.
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have prefered to deviate to lower prices. The moral hazard in such models impairs the
collusive maintenance of supracompetitive price levels. We will see that uncertainty about the
rival’s adjustment opportunities instead impairs the collusive attainment, not maintenance,
of supracompetitive price levels.

Here, it is only intentional non-adjustment of one’s price that would be imperfectly
observed. Suppose the present price is optimal among those that can be maintained in
equilibria, for example, the monopoly price level, given enough patience. Each duopolist
might be tempted to adjust to some lower price when able, but this action would be perfectly
observed, so the incentive constraints of the moral hazard problem are not immediately
binding. Suppose instead the present price is too high, perhaps following a one-time drop
in the duopolists’ production cost or a similar shock. The optimal course of adjustments
is downward. Each firm might be tempted by an even larger downward adjustment, but
again this would be perfectly observed. Lastly suppose the duopolists begin at lower prices,
like the competitive price level. The optimal course of adjustments is upward, and here
non-adjustment may be tempting — I show that it will be at some point along the course.
At some point, the moral hazard constraints will bind, and the course of upward, collusive
price adjustments will be constrained relative to the case where adjustment opportunities
are publicly observed.

Such a strategic difficulty specifically regarding upward price adjustment is suggested
in the older, non-game-theoretic literature on tacit collusion. Salop (1986) writes that a
duopoly beginning at the competitive price may suffer “transitional difficulties of achieving
the co-operative outcome,” that is, the monopoly price. During the “transition period” where
one firm but not the other has raised its price, of course the leader’s profits are reduced and
the follower’s increased. Salop then writes, “the follower has every incentive to delay its
price increase. Fear of further delays may convince [the leader] that it should return to
the [competitive price] or should forgo the price increase to begin with.” Galbraith (1936)
suggests that collusive price increase is more difficult than decrease: “The problem of price
changes under oligopoly is probably even greater when a price increase is involved. Here
unanimity of action is essential and there is a positive premium to the individual who fails
to conform to the increase.”4 Sweezy (1939) presents a model of kinked demand curves, where
each firm expects its rivals to match price reductions but not price increases. That famous
model has widely been attacked for being without foundation. In the model here, I find,
perhaps in accordance with Sweezy’s intuition, that large, out-of-equilibrium price increases
would generally not be matched, while out-of-equilibrium price drops would generally be
matched and worse.5

As Salop further remarks, “It may appear that the ’transitional’ difficulties of achieving
the co-operative outcome are only a one-time problem. However this view overlooks the
dynamic elements of oligopoly interaction. As cost and demand parameters change over
time, the joint profit-maximizing point changes as well. Thus, oligopolists face repeated

4However, in the model I present, there is no strategic difficulty in decreasing prices toward the competitive
level.

5More precisely, in optimal equilibria, price increases greater than on the equilibrium path would not be
matched or at least not matched quickly enough to make them unilaterally worthwhile.
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transitional problems.” One may interpret the model here as applying to the limiting case
where there has just been such a shock to such external parameters, but no further change is
expected. A future paper might consider the more general case, which adds an external state
variable. The issue of moral hazard regarding non-adjustment remains, while the optimal
course of adjustments is more complex. Galbraith writes, “It is fair to suppose that the
day when a price increase is necessary is never far from mind when price decreases seem
desirable.” With private adjustment opportunities, a momentarilly beneficial price decrease
would exacerbate the moral hazard problem on that day “when a price increase is necessary.”
This might lead to the often noted pattern of asymmetric price adjustment.6

The issue of moral hazard surrounding adjustment is driven by uncertainty regarding
whether or not temporary non-adjustment by one’s rival is intentional. Section 1.2 formally
presents the model, where such uncertainty is parsimoniously captured by the assumption
that opportunities to adjust are random, following a Poisson process.7 The model yields
dynamic games with a non-standard imperfect public monitoring structure. Section 1.3
presents a recursive formulation of equilibria adapting Sannikov’s (2007) continuous-time
methods, which in turn build on the earlier work by Abreu, Pearce, and Stacchetti (1990) in
discrete time. The task of determining optimal equilibria then corresponds to a stochastic
optimal-control problem. However, given the Poisson noise structure, the problem does not
yield a general characterization of the set of achievable payoffs like Sannikov’s optimality
equation.8 Instead this paper seeks to describe qualitative features of optimal equilibria
with private adjustment opportunities. Section 1.4 presents the optimal control problem and
derives two preliminary results: First, in extremal equilibria, continuation payoffs generally
remain extremal. Second, when the moral hazard incentive constraints bind, continuation
payoffs drift along the achievable boundary between adjustments, against the player with
the greater incentive constraint. When these constraints do not bind, there are extremal
equilibria with no drift between adjustments; that is, adjustment levels do no condition

6One can imagine a simple collusive arrangement like the following. If your current price is more than
the current monopoly level, lower your price to that level, but not beyond, at the first opportunity. If the
current price is less than the current competitive level, raise your price to that level. This scheme has the
feature that no costly incentives are required; the firms are never called to adjust their prices in such a way
that non-adjustment would be tempting. (Perhaps the optimal scheme looks like this if the firms are very
impatient, or numerous, as incentives may then be very costly.) If costs are secularly increasing, then on the
equilibrium path of this scheme, the firms will often find themselves with prices near the competitive level.
Consequently, they will rarely be lowering their prices in response to cost reductions, while they will often
be raising their prices in response to cost increases.

7This may be the simplest assumption that yields such uncertainty. A more realistic model where each
player is uncertain particularly about the other player’s opportunities to move would raise issues of adverse
selection in addition to moral hazard. Further realism would be gained by endogenizing future opportunities,
or at least their rate. If opportunities are in fact endogenous, then perhaps the model here can be viewed as
a reduced form where the players have failed to communicate or coordinate their respective opportunities.
Uncertainty about temporary non-adjustment seems reasonable in some situations of tacit collusion. This is
discussed further in section 1.6.

8Sannikov’s optimality equation derives from the application of Ito’s formula in his continuous, diffusion
setting. The noise here is Poisson; there are jumps, like in discrete time. Additionally the games here are
dynamic rather than repeated.
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on adjustment times. To proceed further, section1.5 restricts attention to a class of stage
games with monotone public spillovers, like differentiated-product duopoly. In these stage
games, there is a ranking of “higher” and “lower” actions, and the set of Pareto optimal
positions is above the static Nash point. Within this class, I present three results on when
the moral hazard constraint binds in optimal equilibria, which correspond to the three courses
of duopoly price adjustment described above. Beginning at a low position, the moral hazard
incentive constraints eventually bind on the course of optimal, upward adjustments. In
contrast, beginning at a high position, these constraints never directly bind on the course
of optimal downward adjustments. Similarly, beginning at some intermediate position, it is
optimal to maintain that position perpetually, and again the incentive constraints do not
directly bind. Finally, section 1.6 discusses the assumptions that opportunities to adjust are
random and private, and argues that the model here may be interpreted as a reduced form of
one with informational and rationality constraints suggested in the literature. Such a more
general model would still lead to the issues of moral hazard regarding adjustments that are
analyzed in the simpler model here.

1.2 The game
Consider a two-player stage game. The player’s action spaces are Ai ⊂ R; let A = A1×A2.
(Superscripts will generally identify the players, rather than denoting exponents. The index
i ∈ {1, 2} will often denote the player in question, while j 6= i denotes the other player.)
The joint payoff function is g : A → R2. The game satisfies the standard restrictions,
from Mailath and Samuelson (2006): both A1 and A2 are either finite, or compact and
convex Euclidean subspaces. In the latter case, g is continuous and gi is quasiconcave in
ai. This paper considers a corresponding dynamic game with privately Poisson-distributed
adjustment opportunities, where this stage game is continuously repeated. At each moment
t ∈ [0,∞), each player i ∈ {1, 2} takes an action Ait ∈ Ai, which I interpret as an adjustment
target. Payoffs do not directly depend on this target, but on an associated position process,
Pt ∈ A, which evolves as follows:

dPt = (At − Pt) · dOt, (1.1)

where O1 and O2 are independent Poisson processes, each with intensity α. That is, P i

adjusts from its previous value to Ai at player i’s opportunity times, where dOi
t = 1. Flow

payoffs are g(Pt), because the position in the dynamic game corresponds to the action profile
in the stage game. Note, the waiting time to a player’s next adjustment opportunity is always
distributed exponentially with constant intensity α.9 Players do not directly observe each
other’s actions, Aj, or opportunities, dOj, but perfectly observe the joint position process,
P . While P i is constant, player j is uncertain whether player i has no opportunity (dOi

t = 0)
or chooses not to adjust (Ait = P i

t ).
9Higher intensity α means that opportunities come more frequently; the mean waiting time is 1/α. For

simplicity rather than realism, the intensity is independent of the position vector, previous waiting time and
the arrival of the other player’s opportunities. A somewhat generalized opportunity process might allow α
to vary with such circumstances, but the resulting problem would include additional state variables.
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I consider pure, public strategies. Such a strategy for player i is a stochastic process that
maps each public history Ht = {Ps}ts=0, t ∈ [0,∞) to an adjustment target Ait. Given a
strategy profile A and an initial position profile P0, the vector of discounted-average payoffs
up to time t is

Ut(P0, A) = r

ˆ t

0
e−rsg(Ps)ds, (1.2)

which is stochastic. U depends on the evolution of the position process, which depends on
the random opportunity process as well as the fixed strategy profile. At each time t, the
players will maximize their respective components of the (expected) continuation payoffs:

Wt(Pt, A) = Et

[
r

ˆ ∞
t

e−r(s−t)g(Ps)ds
]
. (1.3)

where P evolves as described in (1.1).
Let V = co{g(a) : a ∈ A}, the convex hull of feasible payoffs in the stage game (note it

is bounded). In the following sections we consider the mapping E : A → 2V , where E(p) is
the set of payoffs achievable in equilibrium beginning at position p.

As described above, this is a dynamic game with a non-standard, imperfect public mon-
itoring structure. It is equivalent to a game corresponding to the motivating story, where
players only act at their opportunity times. In this case, Ait is the component of player
i’s strategy describing the adjustment action that she would take at time t if she had an
opportunity (dOt = 1). (In the game above, the target Ait is itself player i’s action at time t,
though it has effect only if dOt = 1.) The game is dynamic rather than simply repeated, as
with asynchronous adjustments, the position, P , is a state variable. If adjustment opportu-
nities were instead publicly observable, this would be a particular asynchronously repeated
game in continuous time, termed Poisson Revisions by Lagunoff and Matsui (1997).

Here the stage game itself is continuously repeated, without any change in parameters
like the duopolists’ production costs. I am interested in the equilibrium dynamics of the
position profile given an exogenous starting value. One can view this starting value as being
the result of prior parameter values, in which case the analysis here corresponds to a situation
where there has just been a shock to these parameters but no further change is expected.
A more general analysis would incorporate these parameters as exogenously varying state
variables.

1.3 The evolution of PPE continuation payoffs
This section follows Sannikov (2007) in formulating the players’ continuation payoffs as
stochastic processes. Given this formulation, the problem of determining optimal equilibria
corresponds to a stochastic optimal control problem, which is pursued in the next section.
Here strategies are pure public strategies unless otherwise stated.

The following proposition and proof follow Sannikov (2007, Proposition 1).

5



Proposition 1.1 (Representation & Promise Keeping). A bounded stochastic process W i is
the continuation value W i(A) of player i under strategy profile A if and only if there exist
finitely-valued processes Jkit such that for all t ≥ 0,

dW i
t = r(W i

t − gi(Pt))dt+
∑
k=1,2

(Jkit (dP k
t + P k

t )dOk
t − αJkit (Akt )dt), (1.4)

where P is determined by 1.1, and Jkt (P k
t ) = 0.

The proposition states that continuation payoffs can be decomposed into a Poisson-
Martingale determined by realized adjustments plus a drift term that compensates for the
difference between expected discounted-average and current flow payoffs (“promise keeping”).
The “if” direction of the proof relies on the Poisson-margingale representation theorem, while
“only if” relies on martingale convergence.

Proof. The following process is a martingale:

V i
t (A) = r

ˆ t

0
e−rsgi(Ps)ds+ e−rtW i

t (A) = Et

[
r

ˆ ∞
0

e−rsgi(Ps)ds
∣∣∣∣A
]
.

By the Poisson-martingale representation theorem (see Hanson (2007, Theorem 12.11)), we
get a representation

V i
t (A) = V i

0 (A) +
ˆ t

0
e−rs

∑
k

Jkis (dÕk
s − αds),

where Jkt is finite and Õ represents the public portion of the Poisson opportunity process;
dÕk

s = 1Ak
s 6=Pk

s
dOk

s . Combining the previous two expressions and differentiating with respect
to t yields,

re−rtgi(Pt)dt− re−rtW i
t (A)dt+ e−rtdW i

t (A) = e−rt
∑
k

Jkit (dOk
t − αdt),

where Jkit = 0 if Akt = P k
t . Which yields the desired expression:

dW i
t (A) = r

(
W i
t (A)− gi(Pt)

)
dt+

∑
k

Jkit (dOk
t − αdt).

Regarding the converse,

V i
t = r

ˆ t

0
e−rsgi(Ps)ds+ e−rtW i

t

is a Martingale under the strategies A. Further Martingales V i
t and V i

t (A) converge as
e−rtW i

t and e−rtW i
t (A) converge to 0. Because V i

t = Et[V i
∞] = Et[V i

∞(A)] = V i
t (A), we have

W i
t = W i

t (A), as desired.
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At this point we depart somewhat from Sannikov’s line of argument, as the monitoring
structure here is qualitatively different.

The previous result does not require that A is an equilibrium. It is if and only if at
each point, for each player, the proposed action maximizes the jump in her payoff given an
adjustment opportunity; that is, Akt = arg maxã∈Ak Jkkt (ã). (The one-shot deviation principle
holds here by the usual argument.) In the game considered here, we distinguish between two
types of deviations. A player may choose to not adjust, Ãkt = P k

t , in which case Jkkt (Ãkt ) = 0,
because this deviation is not revealed in the public history. Secondly, a player may choose
to make an alternative adjustment, although such a deviation is instantly, publicly revealed.
Alternative adjustments may be disincentivized by then minmaxing the player, as in the
usual dynamic games of perfect information.

Lemma 1.2 (Equilibrium restrictions on J). Player i’s strategy Ai is optimal in response
to some Ãj if and only if there exists a process W satisfying the conditions of Proposition 1
subject to the following restrictions on J on the equilibrium path, for all t ≥ 0, and i = 1, 2,

J iit (Ait) ≥ 0 (IC)
W i
t + J iit (Ait) ≥ v(P j

t ) = max
ãi

min{w̃i : w̃ ∈ E(ãi, P j
t )}. (IR)

Proof. Take Ãj to coincide with Aj on the equilibrium path but to inflict the minmax
punishment v after any deviation.

The IC condition implies for each player that realizing her equilibrium adjustment is
better than non-adjustment. The IR conditions implies for each player that realizing her
equilibrium adjustment is better than any alternative adjustment followed by the worst
continuation equilibrium for her at the new position.

Combining the previous two results, we get a characterization of equilibrium payoffs.

Theorem 1.3 (Characterization of PPE). In any equilibrium A, the pair of continuation
values is a process in V that satisfies

dWt = r(Wt − g(Pt))dt+
∑
i=1,2

J it (dOk
t − αdt), (1.5)

where J is finite-valued and satisfies (IC) and (IR), and P is determined by 1.1.
Conversely, if W satisfies these conditions, it corresponds to some equilibrium having the

same outcome as A.

As the noise structure here is Poisson rather than Brownian, I am not able to give a
characterization of E like Sannikov’s optimality equation.10 Instead, in the next two sections,
I analyze how and when the IC constraint binds. First, two remarks.

10The optimality equation is an ordinary differential equation for the boundary of the set of achievable
payoffs in the class of imperfect-monitoring games that Sannikov considers. It is derived from Ito’s lemma,
exploiting the Brownian noise structure of those games. Kalesnik (2005) parallels Sannikov’s approach for
continuously repeated games of imperfect monitoring but with a Poisson noise structure; he is not able to
provide a crisp characterization of achievable payoffs like the optimality equation.
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Remark 1.4. At each position P , the set of equilibrium payoffs, E(P ), is contained in the
set of payoffs achieveable in equilibrium of the benchmark game with public adjustment
opportunities (which requires only IR not IC). In turn, this is contained in the set of feasible
payoffs (which requires neither IC nor IR), which is contained in the convex hull of the set
of stage-game payoffs.

Even when publicly observed, the fact that adjustment opportunities are asynchronous
affects the set of equilibrium payoffs. (See Yoon, 2001; Lagunoff and Matsui, 1997; Wen,
2002) I am interested in the additional effect of opportunities being private. We see already
that IC will only shrink the set of equilibrium payoffs. We will see that this shrinking is not
uniform; IC does not eliminate certain extremal payoffs. It is easy to see to that maintaining
the status quo satisfies IC:
Remark 1.5. Consider the outcome where the present position is perpetually maintained,
A = P . The IC constraint is trivially satisfied on this path, because J i = 0.11

Beginning at some positions, like the monopoly price given enough patience, maintaining
the status quo is optimal, and IC does not directly bind on this optimal outcome. Consider
the restriction on cooperation in standard supergames with fixed discounting. Some action
profiles are not achievable in equilibrium as the payoff from a single period of deviation is
too tempting. This can be cast as a restriction on maintaining cooperative positions. Sim-
ilarly consider the restriction on cooperation imposed by standard imperfect monitoring in
discretely or continuously repeated games. Some action profiles may no longer be achievable
in optimal equilibrium as the necessary incentives are too costly to be worthwhile. Further,
beginning at a cooperative position it will be necessary to leave it in equilibrium following
bad signals, in order to provide incentives. These too seem like restrictions on maintaining
cooperative positions. The restriction on cooperation due to IC is qualitatively different. IC
does not directly restrict the maintenance of a cooperative position, but may restrict the
achievement of such a position from a different starting position. The next section shows
that IC may limit the course of cooperative adjustment. Section 1.5 shows that this restric-
tion on adjustment is asymmetric in a class of games with a monotone positive externality;
beginning at a lower position, IC will restrict optimal upward adjustment, but beginning at
a higher position, downward adjustment is unrestricted.

1.4 PPE with extreme values
Given a starting position p ∈ A, consider the equilibrium continuation payoffs with the
largest weighted sum in the direction N ,

w(N ; p) = arg max
w∈E(p)

w ·N, |N | = 1. (1.6)

11However IC may bind out of equilibrium on the punishment path, thus increasing the minimum payoff
necessary to satisfy IR. I will generally consider cases where r/α is small enough that IR is satisfied, even
given the potentially reduced punishments satisfying IC. Punishment equivalent to Nash reversion should
satisfy IC, but is not so easy to define here with asynchronous adjustments; see Dutta (1995).
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This section characterizes the instantaneous values of the “controls,” ai, ŵi = w+ ji(ai) and
ẇ, given the maintained assumption that ∂E(p) is differentiable at this point w(N ; p). (Here
I drop the subscript t and take these lower case variables to denote time-t values of the
corresponding processes, for some generic t. I also normalize r + 2α = 1.) From Theorem
1.3 we have the following characterization of payoffs in terms of the instantaneous controls,
and equilibrium constraints on those controls:

Corollary 1.6. The extremal payoff in direction N satisfies the following Hamilton-Jacobi-
Bellman equation, 12

w(N ; p) = max
ai,ŵi,ẇ

rg(p) + α
∑
i

ŵi + ẇ,

where ŵi = w + ji and the following conditions are satisfied.

N · ẇ ≤ 0, (Fd)
ŵi ∈ E(ai, pj), (Fj)
ŵii ≥ wi, (ICi)
ŵii ≥ v(pj). (IRi)

Condition (Fj) states that the continuation payoffs after adjustment are themselves equi-
librium payoffs at the new position. Here, condition (Fd) implies that the drift between
adjustments does not take us out of the present set of equilibrium payoffs. We saw the IC
and IR constraints before, which imply that neither player prefers to hide an adjustment
opportunity or to make an out-of-equilibrium adjustment, respectively.

The results in this section are based on analysis of the Lagrangian corresponding to this
constrained maximization,

L(ai, ŵi, ẇ;N, p) =
(
rg(p) + α

∑
i

ŵi + ẇ

)
·N︸ ︷︷ ︸

H

−ρ (N · ẇ)︸ ︷︷ ︸
≤0 (Fd)

+
∑
i

(
λi
(
ŵii − rgi(p)− αŵji − ẇi

)
︸ ︷︷ ︸

≥0 (ICi)

(1.7)

+ µi
(
ŵii − v(pj)

)
︸ ︷︷ ︸

≥0 (IRi)

−νi
(
d(ŵi, E(ai, pj))

)
︸ ︷︷ ︸

≤0 (Fji)

)
, (1.8)

where d(w, E(p)) is defined as follows: if w /∈ E(p), it is the (positive) distance between the
point and the set, while if w ∈ E(p), it is minus the distance between w and the complement
of E(p), so negative. Notice that the constraints are linearly independent, so the assumptions
of the Karush-Kuhn-Tucker theorem are met, yielding the following conclusions about the
solution.

12That is, w = g(p) + E[dw]
r dt . Recall dw = dWt is described in Theorem 1.3.
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Stationarity: ∇L = 0 (over the controls: ai, ŵi, ẇ)
Primal Feasibility: All the constraints (Fd,IC,IR,Fj) are satisfied
Dual Feasibility: All the multipliers, λi, µi, νi, ρ are ≥ 0
Complementary Slackness: Each constraint holds with equality or the associated

multiplier is zero

Lemma 1.7 (Payoffs after adjustment are extremal). If N i 6= −1, the payoffs after adjust-
ment are on the new boundary: ŵi ∈ ∂E(ai, pj) , and they are on the envelope of boundaries
for all possible adjustments: ŵi ∈ ∂ (⋃ãi∈A E(ãi, pj)) .

Proof. Case N i > 0: Stationarity gives

0 = ∂L
∂ŵii

= αN i + λi + µi − νi ∂

∂ŵii
d(ŵi, E(ai, pj)).

Given that λ and µ are non-negative by dual feasibility, the final term on the right must
be positive, so νi > 0 and ∂

∂ŵiid(ŵi, E(ai, pj)) > 0. Complementary slackness for (Fj) then
requires that d(ŵi, E(ai, pj)) = 0. (This also shows that N̂ ii > 0.)

Case N j < 0: By a similar argument applied to ∂L/∂ŵij we have d(ŵi, E(ai, pj)) = 0
and νi > 0, ∂

∂ŵij d
j(ŵi, E(ai, pj)) < 0 (so also have N̂ ij < 0).

Case N i < 0 and N j > 0: Here λi = 0 = λj, ρ = 1. Again considering ∂L/∂ŵij , νi > 0,
d(ŵi, ...) = 0, ∂

∂ŵij d(...) > 0 (so also have N̂ ij > 0).
Case N i = 0, N j = 1: Here λi = 0 and λj = (1 − ρ). Again considering ∂L/∂ŵij ,

ρ = νidj(ŵi...) so d(ŵi, ...) = 0, ∂
∂ŵij d(...) > 0 (so also have N̂ ij > 0).

Given that (Fji) binds and ai appears only inside of (Fji), the solution for ai must be
such as to relax (Fji) as much as possible. That is, ŵi is on the envelope of boundaries.

As noted, these results don’t hold in the last, non-generic case, N i = −1, N j = 0 : Here
λj = 0 = νi, λi = ρ− 1.

Lemma 1.8 (Payoffs stay extremal between adjustments). Any drift is along the boundary:
ẇ ·N = 0 .

Proof. Must have ẇ · N ≤ 0 (primal feasibility). Suppose ẇ · N < 0 then ρ = 0 (comp.
slackness), so λi = N i (from ∂L/∂ẇi = 0), so νi = 0 (from ∂L/∂ŵij = 0), so µi = −(1+α)N i

(from ∂L/∂ŵii = 0), so must have that N i = 0, but similarly must have that N j = 0 —
contradiction.

The previous two results imply that, in equilibria with extreme payoffs, continuation
payoffs remain extreme; payoffs do not move into the interior of the achievable set.

Lemma 1.9 (Strategies condition on waiting times if and only if there is moral hazard). If
the IC constraints are slack, then there is no drift: ẇ = 0. If the IC constraints are binding,
there is drift unless the corresponding Lagrange multipliers satisfy λ · T = 0.
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Proof. Given ẇ · N = 0, we can rewrite the Lagrangian with (Fd) holding with equality;
separately, we can rewrite IC in terms of w:

L =
(
rg(p) + α

∑
i

ŵi
)
·N + f ′(w · T )

=ẇ︷ ︸︸ ︷(
w − rg(p)− α

∑
i

ŵi
)
·T︸ ︷︷ ︸

H

+
∑
i

(
λi
(
ŵii − wi

)
︸ ︷︷ ︸
≥0 (ICi)

+µi
(
ŵii − v(pj)

)
︸ ︷︷ ︸

≥0 (IRi)

−νi
(
d(ŵi, E(ai, pj))

)
︸ ︷︷ ︸

≤0 (Fji)

)

Now consider the “envelope condition”:

f ′(w · T ) = ∂L
∂w
· T = f ′(w · T ) + f ′′(w · T )ẇ · T − λ · T ⇒ f ′′(w · T )ẇ · T = λ · T

so λ = 0 implies ẇ · T = 0. Together with ẇ ·N = 0, this yields ẇ = 0, as desired.

This implies that targets drift between adjustments only when IC is binding. If oppor-
tunities are public, targets do not drift. That is to say, the course of adjustments does not
condition on the realized waiting times between adjustments. In the next section, I describe
when the IC constraints will bind, for a special class of stage games.

1.5 Moral hazard binds moving “up” but not “down”
The previous section presents general features of extremal equilibria for generic stage games.
This section presents more specific results for a class of stage games with monotone public
spillovers. This class includes differentiated-product price competition. For an introduction
to these results, first consider the following stage game.

Example (PD with a third option).

C c d
C 0,0 -2,3 -4,4
c 3,-2 1,1 -1,2
d 4,-4 2,-1 0,0

The bottom-right 2x2 portion is the standard prisoner’s dilemma. Here payoffs are additively
separable across the two players’ actions, gi(a) = 2aj−a2

i , j 6= i where the three actions have
the following numerical values, d = 0, c = 1, C = 2. Each player’s payoffs are monotone
increasing in the other’s action. However, the joint-payoff maximizing action profile is the
middle one, c, c. Unlike c, the incremental cost to one of playing C is greater than the benefit
to the other. The third option, C, involves too much self-sacrifice, it is “higher” than the
optimal profile.

Consider the corresponding dynamic game with Poisson-adjustment opportunities. Be-
ginning at any position, the symmetric-optimal outcome requires that each player takes her
first opportunity to adjust to c and then stays there. With public opportunities, beginning
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anywhere this outcome is achievable in equilibrium given that r/α is small enough. With
private opportunities, beginning at a position in the upper-left four squares, this outcome
is also achievable given the identical threshhold on r/α. Here the equilibrium adjustments
are downward, and each player independently wants to make them. The players would in-
dividually like to adjust further downward but can be dissuaded by trigger strategies that
threaten d, d following an out-of-equilibrium adjustment. These incentives are identical with
public and private opportunities, and they are costless as the threat is never carried out in
equilibrium. In contrast, consider the private-opportunities game beginning at one of the
five squares on the right and lower edges. Here the proposed outcome is not achievable in
equilibrium. Some player is called on to adjust upward to c from d, which she prefers not to
do absent some incentive. As her opportunities are private, incentives must take the form of
reward or punishment conditioning on how long it takes her to adjust. These incentives are
costly as the players are not able to efficiently transfer payoffs between themselves and the
reward/punishment must be carried out with some probability in equilibrium, as opportu-
nities are stochastic. With private opportunities, the players may be able to adjust upward
to c, c, but not both certainly and as quickly as feasible.

The results of this section follows this example. I consider a class of games with mono-
tone externalities, and some other regularity conditions natural in a differentiated Bertrand
duopoly setting. Each player’s flow playoffs are increasing in the other’s action. Here pri-
vate opportunities directly limit upward adjustments but not downward adjustments nor
non-adjustment. I believe that these are the first game-theoretic foundations for such a
restriction on cooperative dynamics.

I consider a symmetric stage game with compact and convex action space A1 = A2 ⊂ R
and continuous payoff function g : A → R2. I make the following assumptions about g.
(1) g is symmetric across the two players, (2) gi is increasing in aj, j 6= i, (3) g is twice
differentiable, (4) g is concave, (5) the actions are strategic complements, that is the cross
partial is non-negative. Consider the frontier of Pareto optimal action profiles, PO. The
N -optimal profile is, PO(N) = arg maxp∈PO g(p) ·N .

If the players are not patient enough to go higher, then maintaining the present position
is optimal, and the moral hazard constraints do not directly bind:

Proposition 1.10 (Maintaining the status quo). Suppose the players’ initial position is on
the Pareto frontier in direction N , PO(N). If IR is satisfied maintaining this point, then
so is IC, and so the N-optimal is achievable in equilibrium, where the players maintain this
position indefinitely.

Proof. Given the assumption that g ·N is quasi-concave, staying indefinitely at any point on
PO is not Pareto dominated by any other mixture over positions, feasible or otherwise. Thus
it is N -optimal to stay at the original position indefinitely, A = PO(N). Here IC is trivially
satisfied with equality, W i = W = g(PO(N)). (Note IC is saturated but not binding.) If IR
is not satisfied, it may be that IC impacts the minmax value.

If the players find themselves at a higher position, then the moral hazard constraints do
not bind on the optimal course of downward adjustments.
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Proposition 1.11 (Symmetric, downward adjustment). Suppose the initial position P is
strictly above the Pareto frontier and symmetric. If IR does not bind in maintaining PO(N s),
N s

1 = N s
2 , then the symmetric-optimal feasible outcome is achievable. On the equilibrium

path, each player’s adjustment target depends only on the other’s position. The players
adjust downward quickly in the sense that they do at least as well if they adjusted to the
eventual position as quickly as is feasible.

Proof. I will show: The adjustments are monotone downward. While each player may not
like the other’s downward adjustment, each is better off after every pair of adjustments,
beginning with their own, then they would be if they stopped adjusting.

Suppose player 2 is the first to adjust. Then player 1’s kth adjustment, pk1 satisfies the
FOC,

0 = d

dp1

(
g
(
p1, p

k
2

)
+ α

r + α
g
(
p1, p

k+1
2

))
·N,

by the envelope theorem; and similary for player 2. The adjustments are monotone down-
ward: Starting at the symmetric position above the Pareto frontier, p1

2 < p0
2. Then, as the

actions are strategic complements, p1
1 ≤ p1

2 < p0
1, and so on. Write pk1 = a(pk2)

I want to show that each player is always better off following at least one more equilibrium
adjustment. That is for player one,

0 ≤ g1(pn, pn+1)− g1(pn−2, pn−1) =
ˆ pn

pn−2

d

dp1
g1(p1, a(p1))dp1

So it suffices that

0 ≥ d

dp1
g1(p1, a(p1)) = ∂

∂p1
g1(p1, a(p1)) + ∂

∂p2
g1(p1, a(p1)) ∗ a′(p1)

The last two claims follow from the results of the previous section for IC slack.

If the players finds themselves at a lower position, then the moral hazard constraints
eventually must bind on the upward course of optimal adjustments:

Proposition 1.12 (Upward adjustment). If the initial position p is weakly above the competi-
tive level and strictly below the Pareto frontier, then no optimal feasible outcome is achievable.
Upward adjustments are eventually constrained by IC.

Proof. Fix a direction N to the Northeast, so |N | = 1, N1 ≥ 0 and N2 ≥ 0. WLOG,
suppose player 2 is the first to adjust on the N -optimal path. On this path, player one’s kth
adjustment solves the following,

max
p1

(
g
(
p1, p

k
2

)
+ α

r + α
g
(
p1, p

k+1
2

))
·N,

subject to IR1; similarly for player two. I want to show that some player prefers to forgo
some adjustment on this path. If there are only a finite number of adjustments, then this is
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true at least for the last, upward adjustment. Suppose instead there are a countable number
of adjustments.

The N -optimal path converges to PO(N), and as it does so, ∂g(p)
∂pi
→ kiT, where T ⊥ N

and ki is a constant. (For example, for N1 = N2 the continuing adjustments get closer and
closer to straight transfers between the two players.) However, as there is delay between
adjustments, each player requires that her transfer is returned multiplied by r+α

α
beginning

at the other player’s next adjustment. As ∂g(p)
∂p1
− k ∂g(p)

∂p2
→ 0 this is impossible.

1.6 Discussion and Conclusion
This paper relies on two main assumptions: First, opportunities to adjust are randomly
distributed according to a Poisson point process. Second, they are privately observed; each
player directly observes only her own opportunities. Lagunoff and Matsui (1997) consider
this first assumption, which they call “Poisson revisions.” They study the dynamic game that
arises specifically from a coordination stage game, for which they prove an anti-folk result.
Calvo (1983) applies this assumption in a setting of individual decision making: price-setting
by perfectly competitive firms. He studies the macroeconomic implications. For Lagunoff
and Matsui, the opportunities are publicly observed, while for Calvo, it does not matter
whether they are public or private. Hauser and Hopenhayn (2008) consider an assumption
similar to the second one here: two players have random, private opportunities to provide a
favor to the other. These are not opportunities to adjust one’s position within a stage game
and there is no intrinsic state variable in the game they consider, but similar issues arise as
here of moral hazard regarding the choice whether or not to take one’s opportunities.

While not novel, there is a way in which the first assumption, that one’s opportunities
to move are random, is unrealistic, for example in the setting of price adjustment. Before
turning to this issue, I want to discuss the standard models of price adjustment. In continuous
time models, firms may adjust their prices instantly and incessantly. One might protest on
both counts, but such models have analytical appeal and may serve as a fair approximation
when adjustment speed is not a strategic issue. For example, Scherer (1980) reports that
the big tobacco companies typically matched each other’s price changes within the day. In
other industries, price responses seem to take an economically significant amount of time,
for example, weeks for the makers of breakfast cereals. Even for airlines, which typically
respond within a few days, it seems that the leading firm may bear a significant cost during
the short period where it is priced above its rivals. The standard supergame model, where
the stage game is discretely repeated, implies that players cannot instantly adjust. However,
in the context of general price setting, the supergame model gets something wrong that
was right in the continuous time model: While firms cannot adjust at every time, it seems
that they ought to be able to adjust at any time. It is not clear what a period represents
in dynamic price setting. Consider instead a pair of habitual criminals who are repeatedly
arrested and must decide whether or not to confess. The prisoner’s dilemma stage game may
be literally repeated. Similarly in a market where firms are constrained to adjust prices only
on January 1 of each year, the Bertrand pricing stage game may be literally repeated — but
markets with such a definitive restriction on price adjustment are the exception. Instead,
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each “period” seems intended to capture a restriction on how quickly the players may adjust.
In this case, one might think that opportunities to adjust ought to be asynchronous, random
and privately observed, leading to the type of uncertainty about the rival’s temporary non-
adjustment that drives the model here.

The model here is approximately the simplest in which the issue of moral hazard re-
garding adjustment arises. One might view it as a reduced form of a more realistic model
where opportunities are endogenous subject to restrictions of bounded rationality and costly
information acquisition. I am not aware of satisfying and tractable models of these restric-
tions. Rotemberg (1987) suggests that there may be “somewhat random delay” between a
firm’s price adjustments due to costs of determining the optimal price coupled with some
random, private observation of associated information. Many authors have suggested that a
significant portion of “menu costs” are associated with such decision costs, rather than costs
of executing a decided price change. I imagine that a realistic model of such price setting
would result in a range of interesting behavior, including the moral hazard issue that arises
in the reduced model here.13 The existing model is still difficult to analyze in a strategic
setting like oligopoly.

As discussed in the introduction, the issue of moral hazard surrounding adjustments, and
the resulting strategic difficulty in attaining a collusive price from a lower price, seems to
have been informally suggested in the older literature on tacit collusion. This paper aims
to provide the first game theoretic foundation and formal analysis. Note the restrictions
on equilibrium collusion here are distinct from those in the standard supergame model and
models of imperfect monitoring of prices following Green and Porter (1984). I say that in
those models the restrictions are on “maintaining” a collusive price, while here the restriction
is on attaining it.

13Taken as a reduced form, this model can be interpreted as assuming that the firms have failed to collude
on the times at which they will adjust. This seems reasonable in some instances of tacit collusion.
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Chapter 2

Cooperation Over Finite Horizons in
Nearby Games1

2.1 Introduction
This paper shows that in finite-horizon games of a certain class, small perturbations of the
overall payoff function may yield large changes to unique equilibrium payoffs in periods far
from the last. Consider a standard pair of duopolists who interact over a finite number of
periods. With a unique stage game equilibrium, it is well known that they cannot achieve
any degree of collusion in their dynamic game. Given a terminal period, subgame perfection
implies an unraveling whereby the unique equilibrium of the stage game holds in each prior
period. Previewing the main result, I now describe a perturbed duopoly game where signifi-
cant collusion is achievable in periods far from the last. The second game is nearby the first,
in the sense that the two games are identical apart from their payoff functions, which differ
by no more than ε. That is, across the original game and the ε-nearby game, for any final
outcome, player and initial period, total continuation payoffs differ by not more than ε.

Consider a pair of duopolists, each of whom would suffer a tiny bit of disutility, −ε, if she
reneged on a pricing arrangement to which both had previously adhered. In this example,
perhaps the ε-perturbation of payoffs results from “guilt.” What pricing arrangement could
be sustained in equilibrium of the resulting finite-horizon game? Having adhered to their
arrangement so far, in the final period, these duopolists can achieve any pure strategy ε-
equilibrium of the original stage game. Recall, here a pure strategy ε-equilibrium is a pair
of prices each of which yields its player payoffs within ε of a best response to the other’s
price. These duopolists may achieve a tiny bit of collusion in the final period; I refer to
a stretch of ε. Suppose that the most favorable, symmetric, pure strategy ε-equilibrium
yields an increase in both duopolist’s stage payoffs of b(ε) relative to the unique, competitive
equilibrium. I call b(ε) the benefit of a stretch ε. In the second to last period, they could
achieve a bit more collusion, a stretch of ε + δb(ε). In this period, reneging would not only
yield a direct penalty of ε, but also would eliminate the tiny bit of collusion that otherwise

1This chapter has benefited from discussions with Matthew Rabin, Botond Koszegi, and Shachar Kariv,
and seminar participants at UC Berkeley.
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would be achieved in the final period, yielding an indirect penalty of δb(ε). In the second to
last period, they can achieve a greater stretch of ε + δ2b(ε) + δb(ε + δb(ε)), and so on. For
the duopoly stage game with continuous prices, the function b(·) is naturally concave. As a
result, in periods far from the end, these duopolists can achieve the same degree of collusion
as could be sustained by Nash-reversion trigger strategies in an infinitely repeated version
of the original game. For large enough δ, this includes the monopoly price.

Section 2 describes the class of games considered. The class features finite horizons and
unique equilibrium payoffs; we might say that no cooperation may be achieved in equilib-
rium.2 Further, the benefit function, corresponding to b(·) presented above, is assumed to
be concave. This excludes games with finite action spaces. For example, note the mecha-
nism above would not hold in the finitely-repeated prisoners’ dilemma, where a small stretch
yields no benefit in the stage game. Mailath, Postlewaite, and Samuelson (2005, hereafter
MPS) present a result opposite this paper: for games with finite strategy spaces, near enough
games have identical equilibria.

Section 3 presents the main result: For games in the class considered here, fixing ε and δ,
some ε-nearby games allow significant cooperation many periods away from the last. Section
4 restricts the main result to finitely repeated games, and formalizes the duopoly example
above. Section 5 restricts the main result to finite-horizon dynamic choice problems faced
by quasi-hyperbolic discounters. I show that a piggybank, which imposes only disutility ε to
break open, may significantly alter savings behavior by a β − δ discounter. Finally, section
6 concludes.

Before continuing, it is worth recalling the famous literature on dynamics games with
reputation, founded by Kreps and Wilson, and Fudenberg and Maskin. That literature
considers a different notion of “nearby” games. In those perturbed games, other players’
payoff functions are not publicly known, and there is a small chance that they differ from
the payoff functions of the original game. In a sense, the reputation literature considers
nearby games that are almost certainly the same, while this paper and MPS consider nearby
games that are certainly almost the same. In both this paper and in games with reputation,
large differences in equilibrium outcomes may accumulate moving away from a game’s final
period. However, the mechanism of these results and the predicted path of behavior is
distinct across these two notions of nearby.

2.2 The class of games considered, and nearby games
I consider a class of finite-horizon games satisfying the following the conditions, which I
state for a representative game. Begin with a finite horizon, multistage game with observed
actions, as described in Fudenberg and Tirole (1991, chapter 4). I assume that no cooperation
is possible, in the sense that equilibrium payoffs are unique, beginning in each subgame. This

2Consider instead stage games with multiple, Pareto-ranked equilibria. Benoit and Krishna (1985) provide
a folk theorem for corresponding finite-horizon games. Incentives can be provided even in the final period
by coordinating on one equilibrium or another. I assume unique equilibria in the original game to prevent
this type of cooperation.
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both simplifies the analysis and provides stark contrast with the cooperation achievable in
nearby games.

Before describing the condition that will allow significant cooperation in particular nearby
games, I must build up some structure for quantifying cooperation. Divide the game up into
N periods, each of which may comprise one or more stages. Let payoffs be discounted by a
common discount factor δ ∈ (0, 1] across periods (not stages). Temporarily restrict attention
to the truncated game corresponding to a single period, where payoffs are equal to those
of that single period plus the discounted continuation payoffs contingent on play within
that period. Recall that these continuation payoffs were assumed to be unique, as are the
total payoffs of this game. Consider the set of payoff profiles achievable in pure-strategy ε-
equilibria of the single-period, truncated game.3 Some of these ε-equilibrium payoff profiles
may yield an improvement for some players over the original payoffs. Let b(ε) be the value
of the greatest improvement that is simultaneously achievable for all players who have a
choice to make in one or more prior periods. (If there is no such maximum, let it be the
supremum.) Note this benefit function, b : [0,∞) → [0,∞), satisfies b(0) = 0 and must be
monotone increasing. I will further assume that b is bounded above; for which it suffices to
assume that each stage payoff function is bounded. If the period-specific benefit functions
differ, let b denote their point-wise minimum.

The central assumption sufficient to achieve cooperation in a nearby game is that the
benefit function, b, is concave. In section 4, regarding finitely-repeated games, it will be
possible to express this assumption as a restriction on the payoff function of the component
game, but I am not able to express it as a restriction on a primitive in this more general class
of games. Note that since b is monotone increasing, concavity implies continuity. Continuity
of b requires that the set of pure strategyε-equilibrium in the single-period game does not
collapse to a singleton for any value of ε > 0.4 As is noted by MPS, this precludes the case
of finite strategy spaces. It seems to me that in many games with continuous actions spaces
and payoff functions, concavity of b is natural.

The result of the next section states that for a long but finite horizon game in the class just
described, for any fixed ε > 0, there exists an ε-nearby game where significant cooperation
is achievable in periods far enough away from the last. Two games are ε-nearby or closer if
they are identical apart from their payoff functions, which differ by no more than ε.5 That
is, the supremum of the difference in payoffs between the two games, across all subgames,
players and outcomes (terminal histories), is not more than ε.

The results in this paper rely on nearby games of a particular form, like that for the
duopolists in the introduction: Begin with some game, G. Consider a second game, G′,

3Here players may stretch by up to ε within this period, but play perfect best responses in all future
periods.

4Except in the degenerate case where the value of b is uniformly zero.
5MPS focus on a related metric which considers the largest difference in payoffs across corresponding stage

games. They show that given a fixed number of periods, convergence in either metric implies convergence in
the other. This convergence implies one could use either metric. MPS state that they focus on stage-by-stage
metric as it is simpler. I choose the total-payoff metric as it allows me to provide results in the limit as the
number of periods goes to infinity while the discount rate is one.
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which is the same as G except for the payoff function. Fix a terminal history, z. Along this
terminal history, let the stage payoffs in both G and G′ coincide. Upon the first deviation
from z, let stage payoffs in G′ correspond to those in G minus ε. After one or more previous
deviations, again let the stage payoffs in G and G′ coincide. Clearly, for any fixed outcome,
total payoffs differ by not more than ε across the two games.

2.3 The main result
Recall from the previous section, the definition of the benefit function, b, and that of an
ε-nearby game. The main result:

Theorem 2.1. Consider a distant-but-finite-horizon multistage game with observed actions
and bounded payoffs, and which has unique equilibrium payoffs. Fix δ ∈ (0, 1] and ε > 0.
Suppose that the benefit function, b, is concave.

Then there exists an ε-nearby game where, for each period more than some fixed number
away from the last, equilibrium payoffs in that period are b(s∗) greater for prior players than
the equilibrium payoffs for that period in the original game, where s∗ = δ

1−δ b(s
∗).

These values, s∗ and b(s∗), are related to the extent of cooperation achievable by Nash-
reversion trigger strategies in an infinitely repeated version of the game. In each period
of those equilibria, players are willing to give up s∗ that could be attained by deviating
currently, in exchange for an increase of in equilibrium continuation payoffs of b(s∗) in each
future period, having total present value δ

1−δ b(s
∗).

The proof of the theorem presents a particular ε-nearby game where in the final period
a stretch s0 = ε is achievable, in the previous period a stretch of s1 = ε+ δb(s0), two periods
before the last, s2 = ε+δ2b(s0)+δb(s1), and so on, which is the relation 2.1 below. The main
result follows from the limit of this sequence, which is established in the following lemma.

Lemma 2.2. Suppose the function b : [0,∞)→ [0, b] is monotone increasing, bounded above,
concave, and b(0) = 0. Consider the sequence

sn+1 = (1− δ)ε+ δ (sn + b(sn)) , s0 = ε, (2.1)

where δ ∈ [0, 1) and ε ∈ [0,∞). The sequence converges, limn→∞ sn = s∞ < ∞, and the
limit satisfies the following equation,

s∞ = δ

1− δ b(s∞) + ε.

The proof establishes that the mapping from each element to the next must eventually
be a contraction mapping. The result then follows from the Banach fixed point theorem.

Proof of the lemma. As b is monotone increasing and concave, it must be continuous, thus
almost everywhere differentiable. Consider the mapping sn+1 = φ(sn), as defined in the
statement of the lemma.
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In what follows, let b′(s) denote the derivative from the left. As b is bounded above and
increasing, there exists some finite value s̄, above which b′(s̄) < (1− δ)/δ. Suppose s̄ > sn.
Then sn+1 − sn > (1− δ)ε, so sn+d(s̄−sn)/(1−δ)εe ≥ s̄. That is the sequence surpasses s̄ after a
finite number of iterations. As φ is a contraction mapping on [s̄,∞), the Banach fixed point
theorem implies that the sequence then converges to s∗ = φ(s∗), which is the limit stated
above.

Proof of the theorem. We consider an ε-nearby game of the following form. Along a proposed
equilibrium path payoffs are as in the original game. Upon the first deviation, the deviator’s
payoff for that stage is reduced by ε. After any previous deviation, payoffs are again as in
the original game. For the last period, the proposed play corresponds to the ε

2 -equilibrium
which yields all prior players a benefit of b( ε2). Having reached this period, this is clearly an
equilibrium, avoiding the penalty ε for deviation balances playing a strategy that is otherwise
within ε

2 of a best response. One period before, a deviation would incur the penalty ε, and
a loss of the benefit of cooperation in the next period, that is at least δb( ε2). So we may
choose the proposed play to yield prior benefit equal to b( ε2 + δb( ε2)). Proceeding in this way,
n periods before the last, a deviation incurs total losses at least equal to

sn = ε

2 +
n∑
i=1

δib(sn−i).

This corresponds to the sequence described in equation (2.1) of the lemma above, and thus
converges to the limit stated in the lemma.

Because b is continuous, the value s∗ is strictly smaller than s∞ of the lemma. Eventual
convergence to s∞ then implies that s∗ is reached a finite number of periods before the
last.

While such cooperation may be reached in the limit, in general it may require many
periods before the last. As ε shrinks, the number of periods required increases. However, for
small ε, convergence is at least initially fast, in the following sense. (If b is not differentiable
at zero, instead consider the derivative from the right.)

lim
ε→0

sn
sn−1

= δ(1 + b′(0)).

2.4 Finitely repeated games
This section restricts attention from the more general class of games considered in sections
2 and 3 to the subset of those games where a single stage game is finitely repeated.

Consider a finitely repeated game with I players where the action space of the stage
is A and the payoff function is g : A → RI . Suppose that the stage game has a unique
equilibrium, e, in pure strategies. Consider the set of pure strategyε-equilibria of the stage
game,

E(ε) =
{
a ∈ A : |gi(ai, a−i)− max

a′i∈Ai

gi(a′i, a−i)| ≤ ε, ∀i
}
.
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Consider the largest joint benefit of playing such an ε-equilibrium rather than e,

b(ε) ≡ sup
a∈E(ε)

(
min
i

(gi(a)− gi(e))
)
.

Suppose that this function b is concave,6 then the result of the previous section holds. Further
b(s∗) of that result corresponds here to the largest joint benefit that is attainable by playing
an action profile that can be achieved in equilibrium of the infinitely repeated game by means
of Nash-reversion trigger strategies.

Example 2.3 (Duopoly). Consider a symmetric duopoly, where pC is the unique competitive
price and pM is the joint profit-maximizing price. Let π(p) be a firm’s profit when both firms
charge price p. Here

b(ε) = π(p(ε))− π(pC),

where p(ε) is the highest price, not more than the monopoly price, that requires a stretch ε:

p(ε) = max{pM , p̃(ε)}, π(p̃(ε)) + ε = max
p1

g1(p1, p̃(ε)), p̃(ε) ≥ pC .

2.5 Finite-horizon dynamic choice with quasi-hyperbolic
discounting

This section restricts attention from the more general class of games considered in sections 2
and 3 to the subset corresponding to dynamic choice problems faced by a β − δ discounter.

I first consider a simple problem where the same intertemporal choice is repeated across
all periods. In this component problem, a choice a ∈ A yields present payoffs up(a) and
δ-discounted future payoffs uf (a), both in R. From the perspective of the present self, the
present choice yields total payoffs s(a) = up(a) + βuf (a), while from the perspective of
previous selves, it yields total payoffs discounted to the present period: l(a) = up(a) +uf (a).
Counting backward from the final period, zero, the total payoffs of the nth self are

πn(an,an−1, ...a0) = s(an) + β
n−1∑
m=0

δ(n−m)l(am).

Suppose the component problem has a unique outcome which maximizes utility of the present
self,

e = arg max
a∈A

s(a).

While e is the unique maximizer for the present self, consider the set of actions that offer
her payoffs within ε,

E(ε) = {a ∈ A : |s(a)− s(e)| ≤ ε} .
6A more direct, sufficient condition could be stated as a restriction on the derivatives of g.
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(For example, E(0) = {e}.) Assume that payoffs are continuous in a so that the following
maximum exists

b(ε) ≡ β

((
max
a∈E(ε)

l(a)
)
− l(e)

)
.

That difference is the improvement in previous selves’ payoffs from an ε stretch.
Suppose up and uf are differentiable, and ∂up

∂a
/
∂uf

∂a
is monotone. Then b is concave, so

the main result applies. Again, b(s∗) corresponds here to the largest long-run benefit that is
attainable by playing an action profile that can be achieved in equilibrium of the infinitely
repeated problem by means of Nash-reversion trigger strategies.

The dynamic choice problem described above is significantly limited in that it is separable
across periods, like a repeated game. Many dynamic choice problems involve a state variable,
like the level of wealth or addiction. The class of games described in sections 2 and 3 is broad
enough to include some such problems, of which I now turn to an example.

2.5.1 Piggybanks
Each morning Bobby gets an allowance of ā and each afternoon he has the opportunity to
spend it on candy. Many days from now, the county fair occurs, which presents an alternate
spending opportunity. The fair is great, better than candy, and Bobby would do best to
save up for it. However, he is a β − δ discounter, and is tempted by candy each afternoon.
(Morning and afternoon are different periods in terms of β-discounting.) For simplicity,
set δ = 1. Suppose that at the time of consumption, spending an amount a on candy
yields utility c(a), while spending an amount a at the fair would then yield linear utility fa.
Suppose that c′ > 0, c′(0) > f, c′(ā) < βf and c′′ < 0.

In this game, Bobby spends the amount as = c′−1(βf) < ā7 on candy every afternoon,
and whatever accumulated savings are left over he spends at the fair. At each point, Bobby
would prefer that his future selves instead spend a smaller amount on candy: al = c′−1(f) >
0. If Bobby had an impenetrable, time-delayed safe, he could achieve this by placing an
appropriate portion of his allowance into the safe every morning. Such use of this safe relies
on two features. First, Bobby can set it to open at a particular future time, like tomorrow
morning or the day of the fair. Second, it is impossible for him to open it before that set
time.

Instead of a time-delayed safe, consider a piggybank with the following features. To
retrieve the money placed inside it, the bank must be broken. Breaking open the bank
imposes some small, present disutility ε/(1 − β) > 0 — the cost of “sweeping it up.” Once
broken, the bank is of no further use; it cannot be repaired. It turns out that such a piggy
bank is enough for Bobby to achieve the long-run optimal level of saving in days far enough
before the fair.

Absent the piggybank, this game meets the conditions of Theorem 2.1. (Concavity of c
implies concavity of the benefit function.) Further, Bobby can replicate the ε-nearby game

7This assumption is necessary for the application of Theorem 2.1. However, even if as > ā, a piggybank
can yield significant improvement in Bobby’s saving, though the equilibrium path is more complicated. (In
some earlier periods, Bobby must save some money outside of the bank to be dissaved in the final periods.)
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described in the proof of that result by placing the appropriate savings in the bank each
morning: On the day of the fair, with sufficient money in the bank, Bobby breaks it open
and spends everything. Suppose on the final afternoon before the fair, Bobby finds himself
with plenty of money in the bank but a bit less than as outside of it. He could break it at
a cost ε/(1 − β), or wait for it to be broken tomorrow at a present cost βε/(1 − β) — the
difference between these two is ε. So Bobby is willing to forgo a bit of candy, relative to as,
in order to delay the small cost of breaking the bank. The morning before the fair, Bobby
can leave a bit a less than as outside of the bank, to be spent on candy that afternoon. Two
days before the fair, if Bobby were to break the bank, he would also suffer the cost of slightly
increased candy consumption the next afternoon. And so on. Many periods before the fair,
Bobby leaves only al outside of the bank each morning.

Piggybanks themselves are not a significant economic institution. However, similar de-
vices have been found to have large effects on individual’s savings behavior in field experi-
ments run in developing countries.8

2.6 Discussion and conclusion
An important question is, what is the origin of the ε perturbation? In some cases, like the
guilty feeling duopolists, it might represent a small amount of a particular non-standard
preference. In other cases, there may be an external principal who seeks to design a mecha-
nism that benefits the players of the original game, but who has access only to small direct
incentives. We see here that such a mechanism may still have large effects through its high-
order indirect incentives. A contract with only a penny at stake can have large effects on
the behavior of a sophisticate who faces a long, finite-horizon dynamic choice problem.9

A related question is, in precisely which nearby games can significant cooperation be
achieved. A complete answer to this question is elusive. In the construction used in the
proofs here, a penalty of ε is paid upon the first deviation. It is important to note that little
cooperation would be achievable if the proposed path were renegotiable and the ε penalty
remained after previous deviations. The force of the piggybank lies in the fact that though
easy to break, once broken it is not easily unbroken. If it were, then there would be little
commitment value in leaving the bank unbroken, as it could simply be repaired. However,
the bank could still have large effect if it were easier to break on each subsequent occasion,
imposing first a cost ε, then ε/2, then ε/4, and so on.

8Ashraf, Karlan, and Yin (2006) provide a locked box to save up money to deposit at the bank, with
significant results. They write that the box “can be thought of as a mental account with a small physical
barrier... The barrier, however, is largely psychological; the box is easy to break and hence is a weak physical
commitment at best.” More recently, Dupas and Robinson test locked versus unlocked savings boxes.

9As the mechanisms involved are very delicate, issues of robustness to non-contractable uncertainty would
need to be considered.
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Chapter 3

Weakly Forward-Looking Plans

3.1 Introduction
Following Peleg and Yaari (1973) and Goldman (1980), a dynamic choice problem faced
by a time-inconsistent individual is typically modeled as a game played by a sequence of
her temporal selves, solved by SPNE. Many authors have noted that this approach often
yields troublesomely many equilibria in infinite-horizon problems.1 Such multiplicity reduces
predictive value and, more importantly, many equilibria seem implausible. Infinite horizons
engender equilibria based on self-reward and punishment, which would seem not to survive
“renegotiation.” While many authors seem to share this intuition, it has eluded a satisfactory
formalization.2

This paper provides a limited definition of what it means for a strategy to involve self-
reward and punishment; I say that such strategies are not forward-looking (FL).3 Consider a
choice problem which is separable across the sequence of selves, like the following example.
In such a problem, it seems that a forward-looking strategy should not condition on the
history.

Example 3.1 (An additively separable problem). Every period, t = 1, 2, ..., Carl faces the
same choice set, A. His felicity in period t is f(at) + g(at−1), and he is a quasi-hyperbolic,
β− δ, discounter. Carl does best in the long-run to maximize f(a)+ δg(a), but his short-run
objective is f(a) + βδg(a). I will assume that both maximizers, al∗, as∗, are unique and in
the interior of A, and f and g are quasi-concave. In general there are a large number of
SPNE, often a continuum. This multiplicity may remain even if Carl is time consistent with

1Including Laibson (1994), Barro (1999), O’Donoghue and Rabin (2002), and Fudenberg (2006), who
consider applications of the quasi-hyperbolic (β − δ) discounting model.

2Several authors have pursued equilibrium refinements, including Laibson (1994) for a β − δ pie-eating
problem, Kocherlakota (1996) for time and history-independent problems with general time-inconsistent
preferences, and Asheim (1997) more generally. Definitions of renegotiation-proofness in repeated games,
like that of Farrell and Maskin (1989), exploit the fact that repeated games are history independent, a feature
that many dynamic choice problems do not share.

3The definition presented here might be more accurately termed weakly forward-looking, but lacking a
stronger definition, I omit the “weakly” for brevity.

24



β = 1 but we continue to view him as a series of individual player-selves.4 Many equilibria
arise around the type of dynamic incentives that underlie the folk theorems. Depending on
how patient Carl is, we can construct equilibria where he plays actions far from as∗ due to a
threat to move further away from al∗ in the future following deviation. If this threat involves
moving further from as∗, it may be supported by a further threat of the same sort, and so
on.

In this example, each subgame is independent of the history up to an additive shift,
g(at−1), of the present felicity level. Forward-lookingness requires that Carl’s future actions
are independent of his present action. In the unique FL equilibrium, Carl simply plays as∗
in every period.

This paper considers a broader notion of what it means for a continuation problem
to be separable from the previous history. Suppose that two histories up to time-t yield
subgames that are isomorphic in the sense of Harsanyi and Selten (1988). That is, the
two subgames do not differ beyond a relabeling of actions and affine transformations of
payoffs. More abstractly, the two histories leave the time-t self in the same strategic situation.
Forward-lookingness requires that self-t’s strategy coincides across the two histories, after
the relabeling. In Harsanyi and Selten’s terminology, this is the assumption of invariance
across subgames for each self. However, I do not assume invariance across selves. That is,
though two subgames beginning at different times may be isomorphic, FL does not require
that the two selves’ strategies coincide. There is an argument for such a broader application
of invariance, but it goes beyond a prohibition of self-reward and punishment.5

A more general definition of self-reward and punishment remains elusive. In general,
different time-t histories may yield subgames that are not isomorphic. In this case, the
proposed definition of forward-lookingness does not impose any requirement. However, it
turns out that a number of dynamic choice problems considered in the literature belong
to a special class where all non-terminal continuations are isomorphic. I call this class
strategically constant (SC). It includes a number of problems regarding consumption and
saving, timing, and irreversible habit formation; more than one might expect. Within this
class, the proposed, weak definition of forward-lookingness is helpful, as I discuss in a number
of examples.

In application, the most popular model of time-inconsistency is the quasi-hyperbolic,
β−δ, discounting model.6 Authors seeking to apply this model to particular infinite-horizon
choice problems have often restricted attention to those equilibria corresponding to the limit
of equilibria in increasingly long finite-horizon-truncations of their infinite-horizon problem.7
I call this standard but ad hoc refinement the truncation approach. Such equilibria, pro-
vided by backward induction from the receding horizon, are in a sense free from reward and

4See Laibson (1994). If β < 1, we can construct simple trigger-strategy equilibria playing as∗ after
deviation, and a lower level of a, nearer al∗, initially. If β = 1, then al∗ = as∗, and equilibrium punishments
must take a more complicated form like an cascade of ever worse punishments following deviations. This is
possible if f + g is unbounded below over A.

5See Kocherlakota (1996).
6This model was originally presented by Phelps and Pollack (1968) in an intergenerational context and

later popularized by Laibson (1997) as a model of individuals with present-biased time preferences.
7See all the papers cited in footnote 1, plus Gruber and Koszegi (2001).
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punishment: they depend only on the structure of the remaining problem. However, I show
that in some problems, truncation also leads to an unraveling of “self-coordination,” which
seems wrong in the underlying infinite-horizon problem. I also compare forward-lookingness
to several other refinements that have been previously considered.

3.2 Forward-looking plans in several examples
In earlier work, I explored the application of invariance both across temporal selves and across
histories for each self. Unlike forward-lookingness, such invariance yields strong uniqueness
results. However, in some examples, like the following, invariance seems too restrictive.

Example 3.2 (Simple timing). Todd can make a one-time investment yielding instantaneous
utility −c. He can do this in any period, but only a single period. After this investment,
the game ends but his felicity in each subsequent period is increased by b. Todd is a β − δ
discounter. (Here and elsewhere, I assume that the decision maker is sophisticated, i.e. he
correctly predicts his time inconsistency.) Suppose he prefers investing now rather than
never investing, β δ

1−δ b > c, but prefers investing tomorrow to doing it today, (1− δβ)c > δb.
Pure strategy equilibrium follow a unique cycle: invest today if one will not do so over the
next certain number of days, otherwise wait. There is also a unique, stationary equilibrium,
mixing at a constant rate over investing and not investing.

In this problem, all equilibria are FL. The broader application of invariance excludes the
cyclic equilibria, leaving only the constant-mixing equilibrium. The truncation approach as
applied by O’Donoghue and Rabin selects instead the cyclic equilibria. The cyclic equilibria
do not seem to involve any sort of reward and punishment; one might say they involve
asymmetric coordination. The mixing equilibrium has an unappealing property.

Separate from FL, a very weak refinement described by Caplin and Leahy (2006) requires
that if the time-t self has multiple best responses, she chooses one that is favored by the
immediately previous self. Caplin and Leahy describe this tie-breaking rule as part of a
recursive approach to consistent planning in finite-horizon problems.8 It seems reasonable
to insist that each self follows the previous plan if doing so continues to be optimal for that
self. This is a mark against invariance, in favor of the weaker FL requirement:
Remark 3.3. Invariance is incompatible with Caplin and Leahy’s recursive planning rule, as
in the previous example.

Recall that invariance uniquely selected the mixed-strategy equilibrium. However, the
prior self strictly prefers that the present invests.

In the introduction, I presented a simple strategically constant (SC) problem, where there
was no issue of relabeling actions, and the affine transformation of utility was simply additive.

8Recall Strotz’s (1955) suggestion that a sophisticated non-exponential discounter executes “the best
plan that he will follow.” This tie-breaking condition seems to be an immediate implication. It is useful
for example in a version of the example considered in the introduction where we do not assume unique
maximizers.
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Many SC problems are less obviously so. Here I present a problem of how to allocate fixed
wealth over an infinite horizon, given CRRA preferences. (Phelps and Pollak (1968) and
Laibson (1994) realize that this problem is SC.)

Example 3.4 (CRRA pie eating). Peg begins with wealth z0, and faces gross interest rate
R ≥ 0; she has no other income. She has CRRA utility, u = −cρ, ρ < 0. However, I will
write her action as the share of wealth consumed, a, rather than the absolute consumption,
c = az. Thus her felicity is u(a, z) = (az)ρ, a ∈ [0, 1]. Impose the standard parameter
restrictions, δRρ < 1. Peg is a β − δ discounter. Her wealth progresses as follows,

zt = R(1− at−1)zt−1 =
(
Rt

t−1∏
n=0

(1− an)
)
z0.

So we can write her payoffs as follows,

Ut = zρtU(at, ...), U(at, ...) = −aρt − (1− at)ρβ
∞∑

s=t+1
δs−t

(
asR

s−t
s−1∏
n=t+1

(1− an)
)ρ

Notice that under this labeling of actions, the history, captured by zt, enters as a multiplica-
tive transformation of utility.9 Up to this affine transformation of payoffs, each subgame is
identical. The problem is SC.

As Phelps and Pollack showed, there is a unique, constant rate of consumption that yields
an equilibrium in this problem. This constant-rate-of-consumption equilibrium is also the
result of the truncation approach, applied by Laibson. Forward-lookingness (FL) requires
that each self consumes at some rate independent of the previous history of consumption,
but does not require that rate to be constant across the selves. There are two types of FL
equilibria in this game. One is the same constant-rate equilibrium as above. The remaining
FL equilibria are in a class where the rate of consumption converges to zero.10 One might
view these later equilibria as unreasonable for reasons of Pareto-dominance.11

Asheim (1997)proposes a different refinement. He excludes an equilibrium if the present
self strictly prefers a second equilibrium and no future self strictly prefers to revert to the
continuation of the first equilibrium.

9Suppose if z reaches zero, the game terminates with utility −∞. This keeps the multiplier finite.
10Consider any fixed rates of consumption after time t. Laibson establishes that the equilibrium rates of

consumption satisfy the following relation,

at−1 = ψ(at) = at
[δRρ(at(β − 1) + 1)]1/(1−ρ) + at

.

(He establishes this in the finite-horizon case, but his argument requires only that future rates of consump-
tion are fixed independent of current consumption.) This relationship satisfies ψ(0) = 0, ψ′(0) > 1, ψ′(a) >
0, ψ′′(a) ≤ 0, ψ(1) < 1. Thus for whatever at, at−s converges back to the fixed point of ψ as s → ∞. For
a beginning above the fixed point, this convergence is uniform, so there can be no FL equilibrium where
the rate of consumption is higher than this fixed point. However, there are sequences of at satisfying this
relation which converge to zero going forward in time.

11In these equilibria, eventually each self is starving herself so that the next selves might eat a little more.
All remaining selves would prefer to the switch to the constant-rate equilibrium.
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Remark 3.5 (Comparison to Asheim (1997)). Asheim’s refinement, relating to Pareto com-
parison across equilibria, excludes all forward-looking equilibria in Laibson’s pie-eating prob-
lem.

In the pie-eating problem, there exist equilibria that condition on the history in a way
that resembles self-punishment, but where these punishments are delicate enough that all
continuations are prefered to the constant-rate equilibrium of Phelps and Pollack.12 Here
Asheim’s refinement eliminates FL equilibria in favor of those mentioned.

Forward-lookingness can be applied beyond SC problems, but may not have much bite.
FL does have bite in the following problem, which embeds an SC continuation problem
within a larger problem. Overall, each continuation problems here is isomorphic to one of
two classes: sober or addicted. Addiction is a potential continuation beginning at sobriety.
We can get an SC problem beginning at sobriety by pruning the addicted continuations,
replaced them with the FL-predicted values.

Example 3.6 (Binary, irreversible addiction). Every period Beatrice chooses whether or
not to hit, after which she would be forever addicted. Her action and addictive-state spaces
are binary,

A = {0, 1}, zt = max
s<t

as.

She begins unaddicted, z0 = 0. Suppose she prefers to hit in the one-shot game, u(1, z) >
u(0, z). In this case the truncation approach yields the unique equilibrium: always hit.
As addiction is irreversible and binary, this one-shot condition also implies that all selves
prefer that she hits once addicted. However, suppose she prefers a life of sobriety to hitting
eternally,

(
1 + β δ

1−δ

)
u(0, 0) > u(1, 0) + β δ

1−δu(1, 1). (In the language of O’Donoghue and
Rabin (2002), Beatrice is subject to a negative internality, while she may or may not be
subject to habit formation.) There are two forward-looking equilibria in this game: As
before, always hit is an equilibrium, but now the trigger-strategy, hit once addicted but
abstain while sober, also forms an equilibrium. The trigger strategy may be forward-looking
here because the problem beginning with z = 0 is not isomorphic to the problem beginning
with z = 1.

Perhaps the trigger-strategy equilibrium is the correct prediction here. Hitting once
addicted is not a punishment; all selves prefer that she hits once addicted. In any case, she
prefers a life of sobriety to hitting followed by any continuation path of hitting and/or not
hitting. Thus in the infinite-horizon problem there is simply a coordination issue among
the multiple selves, who uniformly prefer never hitting over any other outcome. It seems

12I construct a non forward-looking equilibrium that all selves strictly prefer after all histories. Note that
the constant rate (say b∗) equilibrium involves under-saving. Phelps and Pollak (1968) show that for small
enough always consuming at a rate b0 ∈ (b∗−ε, b∗) is Pareto superior. Laibson (1994) shows there is a grim
trigger equilibrium where such b0 is played with permanent reversion to b after any deviation. The best
responses are unique. U’s continuity implies the present self prefers sticking to b0 played perpetually over
deviation followed by some b1 ∈ (b0, b

∗) played perpetually. Beginning at bn pick an analogous bn+1 still
closer to b. Consider the strategy profile where st(ht) = bd, where d is the number of previous deviations.
This yields an equilibrium where after all histories consumption continues at some rate bn < b∗.
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that one’s infinite sequence of temporal selves ought to be able to coordinate in this way on
sobriety.

Remark 3.7 (Comparison to the truncation approach). (a) Truncation equilibria are forward-
looking, but the converse is often false. (b) In some cases, as in the previous example,
truncation seems to eliminate not only self-reward and punishment, but also coordination
between the temporal selves.

The previous example has two different continuation problems that are not mutually
isomorphic, one beginning sober and one addicted. Here FL allows trigger-strategy behavior
which seems reasonable, but in other problems with multiple classes of continuations, FL
may allow trigger-strategy behavior which seems to involve reward and punishment. FL
precludes reward and punishment within each class of continuations, but may allow reward
or punishment of behavior moving the decision maker from one class to another, as in the
following example.

Example 3.8 (An SC problem perturbed after deviation). Recall the additively separable
example in the introduction. There FL picked out a unique, constant-action equilibrium,
while non-FL, trigger-strategy equilibria often exist. Suppose that we perturb the prob-
lem slightly after deviating from some action ā, such that the continuation problems after
deviation are mutually isomorphic, and the continuation problems before deviation are mu-
tually isomorphic, these two classes of continuation are not mutually isomorphic. Now,
following deviation, FL picks out (nearly) the unique, constant-action equilibrium of the
original problem. If ā can be supported by the threat of such reversion, then FL allows such
trigger-strategy like behavior in this perturbed game.

The example shows that FL is not restrictive enough in non-SC problems.

3.3 Conclusion
Forward-lookingness is useful in the class of SC problems. However, even here, FL does not
yield strong uniqueness results like those achieved by the application of invariance across all
subgames, within and across selves. At least FL seems never to rule the “right” equilibrium
out. The class of SC problems itself is quite limited, though a bit broader than one might
at first guess.

The standard truncation approach excludes self-reward and punishment and is generally
applicable. However, where there are multiple equilibria that do not involve self-reward
and punishment, not pick the most plausible one. In the particular example studied above,
truncation seems too pessimistic, eliminating coordination due to the usual finite-horizon
unraveling, even though that coordination does not seem to reflect self reward and punish-
ment.

It seems that one should seek a refinement like “optimistic truncation.” Perhaps apply-
ing backward induction from a horizon where termination payoffs are not uniformly zero.
However, it is not known how to go about this.
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