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ABSTRACT OF THE DISSERTATION

Constrained Marine Resource Management

by

Jason Hastings Murray

Doctor of Philosophy in Economics

University of California, San Diego, 2007

Professor Richard T. Carson, Chair

The main theme of this dissertation is a challenge to the traditional paradigm

of optimal control for the management of renewable resources. That is not to say that

optimization should not be the goal but rather, previous modeling and policy have pre-

sumed that managers have greater control and knowledge of marine systems than is the

case. All models make simplifying (and false) assumptions but assuming control and

knowledge in marine systems is not benign. In a dynamic control problem, one must

actually control the variable of interest and know or learn the system’s parameters. I

discuss reasons why managers may not control harvests and cannot know system pa-

rameters and consider possible remedies to the historically sub-optimal management of

marine resources.

Marine resources are observed imperfectly and are often held as common

property. In this dissertation I explore the feasibility ofmanagement plans when natural-

capital stock dynamics are unobservable and when politicalstructures constrain the im-

plementation of optimal management. Resource managers arefaced with conflicting

user groups and limited information. In three chapters I study constrained management.

In my first chapter, “Jobs or Resources?” I consider the political economy implications

xi



of technological change under various management scenarios. I show that typical man-

agement targets will require the retirement of inputs as technology progresses. This is

particularly problematic for fisheries in which labor is involved in management deci-

sions. This can lead to false inference about the health of the stock.

For the second chapter, “Natural Resource Collapse: Technological Change

and Biased Estimation”, I show that unexpected fisheries collapse may be linked to

unobserved technological change. Unexpected collapse of natural resources is of great

concern to policy makers. The literature and popular press have attributed collapse to the

lack of well-defined property rights and policies that pay inadequate attention to random

environmental variability. Both the literature and policymakers have overlooked how

unobserved technological change can obscure the depletionof natural capital stocks.

The paper shows that even if property rights are well-definedand random fluctuations

are small, modest increases in technical efficiency concealthe depletion of stocks. Using

the most general model of surplus production in a single-species fishery I show analyt-

ically that proportional growth of the fish stock is overestimated when even one period

of technological change is ignored. Through simulations, Ifind that standard statistical

tests overestimate the productivity of the fish stock. I showthat collapse is inevitable if

technology increases without bound and that the path to collapse is not observed until

stocks are low and declining rapidly.

In the third chapter, “Marine protected areas as a risk management tool” I con-

sider a potential fix to the inference problems highlighted in the second chapter and in

other work such as Carson and Murray (2005). When parameter uncertainty is signif-

icant, I show that even in an otherwise deterministic world,expected payoffs can be

increased by using simple spatial closures. Though optimalfleet size and reserve size

combinations exist, a spatial closure can increase expected payoff even if the fleet-size

xii



is chosen to be too large or too small. The benefit of closures is not limited to hedge

against stock collapse but is of value even when stock size islarge and steady-state

catches are relatively high.
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I

Lose Jobs or Resources?

Abstract

Technical progress has long been identified as a factor influencing a fishery

but its management implications have not been seriously considered in the literature.

This paper considers the implications of disembodied Hicks-neutral technical progress

in a static Gordon-Schaeffer fishery model. Implications for ITQ fisheries and other

management regimes are considered. While the paper considers fish as the resource,

the results are directly applicable to any renewable resource exhibiting compensatory

growth.

1
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I.A Introduction

There are many results in the Economic theory literature on fisheries manage-

ment that have focused on the determination of the optimal TAC (total allowable catch).

Causes of randomness have been considered for the biological growth process, stock

assessments and fishing quota enforcement. See, for example, Roughgarden and Smith

(1996) and Sethi et al. (2005). Randomness in output price has also been considered

by Grafton (1993) and Anderson (1982). One potentially crucial source of randomness

has been largely overlooked; technical progress. Even a fully rationalized fishery today

could, in the face of technical progress, lead to inefficiently high inputs in the future.

This is particularly relevant if we expect that inputs to thefishery are not very mo-

bile. Hanneson (2000) shows even in an ITQ fishery with no problems of enforcement,

higher than optimal levels of investment can be expected when labor is compensated

with a share of vessel rents. In a fishery where total catch limits are difficult to en-

force technological change could lead to an over-fishing problem. In a fishery with

perfect harvest control, technological change can lead to asub-optimal allocation of re-

sources. The management implications of this potential include the removal of inputs

now (through market based or command/control methods) and discouragement of in-

vestment now in order to compensate for future increases in productive capacity due to

technical progress.

This paper considers a simple, static Gordon-Schaeffer model of a fishery.

While technical progress is not explicitly considered as random, the comparative statics

are relevant for deterministic known or realized increasesin technical progress or as

yet unrealized stochastic ones. Under the assumption that fishing effort is a constant

returns to scale aggregator function of labor and capital, it can readily be shown that

in either an optimally managed fishery or an open access fishery, the effect of technical
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progress on factor demands is ambiguous. The more interesting result is found when the

fishery is managed by a given total catch and corresponding level for the resource stock

(maximum sustainable yield is a convenient example to consider though the results are

similar for any sustainable harvest level.) In this case conditional factor demands can be

shown to have negative unit elasticity with respect to a Hicks neutral technical progress

parameter. In this simple model, a manager who knows the average rate of technical

progress can calculate how exactly how much the inputs should decrease for any given

level of harvest. If harvesters manage themselves to minimize costs subject to the given

output constraint, then this merely tells the manager the portion of inputs she can expect

to see leaving the system. If input decisions are made sub-optimally or if the managers

output control is imperfect, this result provides the manager with a target quantity of

each input to purchase or remove from the system.

I.A.1 Technical Progress and Inputs in previous literature

There is a great wealth of economic literature measuring andidentifying sources

of technical progress. These goals, while worthy, are somewhat beyond the scope of

this present investigation. Technical Progress of the typeto be considered in this pa-

per (disembodied Hicks-neutral) and its potential effectson input demands have been

considered theoretically and empirically for both micro and macro applications. For

example, Sinclair (1981) considers a very general neoclassical macro model and finds

that the effects of technical progress on aggregate employment depend on the reactions

of wages, and various elasticities such as that of substitution between labor and cap-

ital. Sinclair (1981) also considers some empirical evidence from the U.S. economy

and finds that effects of technical progress on number of jobsis still ambiguous and

depends on assumptions about the wage rate’s flexibility. Empirical micro-level studies
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have investigated various types of industries, even as far back as 1930, Baker (1930)

investigates the effects of technical progress on job loss in New York printing presses in

the 1913-1928 period and finds “less man displacement from technical change than had

been anticipated.”

In the micro theory of a fishery, very little work has been donein terms of tech-

nical progress. In fact a search of the fisheries economics literature will find no strictly

theoretical results but rather many empirical exercises concerned principally with mea-

surement of some proxy for technical change. Two such examples are Kirkley et al.

(2004) investigating the Sete trawl fishery in southern France (’85-’99) and Squires

(1992) investigating the Pacific coast trawl fishery (’81-’89). Both papers find that total

productivity increased on average by approximately 1% per annum over the total period

studied.

I.A.2 Why consider technical progress in a fishery?

It is well known that the standard economic optimum of a fishery can be

achieved with individual transferable quotas (ITQ’s). An ITQ system is a simple in-

strument which can solve the inherent ”tragedy of the commons” that characterizes an

open access fishery. By establishing a total allowable catch(TAC) for the entire fishery

and subdividing this total catch into individual tradeableinitial allocations across the

individuals involved in the fishery, an ITQ system allows forefficient harvesting of the

resource subject to the total catch allowance. That is, since the quotas are tradeable, less

efficient vessels will sell their permits to efficient ones and so the TAC will be harvested

at minimum cost. The problem of the manager, so the standard story goes, becomes

to choose the appropriate TAC. There are real-world successstories for ITQ’s. New

Zealand has adopted an ITQ system dubbed the QMS or quota management system.
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”New Zealand fishing was on the brink of collapse and now it is not. Fish stocks were

finished and now they are being sustained.” Online (2000)

It is also well known that fishermen are frequently resistantto ITQ’s. Their

resistance is not surprising. While ITQ’s can lead to a maximization of the aggregate

sustainable rents, there are many losers if a fishery’s current harvest levels are suffi-

ciently high that an ITQ (which reduces aggregate harvest) will drive fishers and or

vessels out of the fishery. For a discussion of the results of New Zealand’s conver-

sion to an ITQ system directed at the concerns of fishers see Online (2000). The New

Zealand fisheries have done well under this new system. Catches and stocks are up

and the industry is profitable. There are predictable distributional effects from the ITQ

system and these are exemplified by the quote below. It is not surprising that many

fishers in current fisheries are reluctant to accept ITQ management schemes given these

experiences;

To begin with, it is the fishing companies and not New Zealand fishermen,
which have benefited since 1986. The fishing companies were already run-
ning their own fleets of fishing boats, and so they immediatelynetted a
major share of quota. In the 1980’s individual fishermen weremore likely
to be landing fish to a company than selling the catch on any market. This
arrangement had put the companies in a dominant position over the fisher-
men before anyone had even dreamed of QMS. The fishing companies and
fish dealers did then, and still do, represent sole the marketfor New Zealand
fish. In general, an independent fisherman negotiates a pricewith a com-
pany even before going to sea and then fishes at a stable landing price for up
to a year. As the major owners of quota and most of the fleet, shore based
fishing companies control almost the entire New Zealand fish catching sec-
tor....

Once fishermen had sold their quotas, the only assets they hadleft were
boats. As they had no direct access to quota, the boat became virtually re-
dundant. With fishing effort so reduced, there was over-capacity in the fleet.
Therefore, even the boats were rendered worthless. An entire generation of
owner-operators was pushed out of the industry and the majority of their
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boats were either decommissioned or dumped.

The potential for losses to input suppliers have been recognized in the liter-

ature by Samuelson (1974) and Karpoff (1989). The latter suggests heterogeneity in

fishing captains as the driving force. Alternatively Boyce (2004) finds that the man-

ager’s concern with surplus to input suppliers is the main contributor to adoption of

suboptimal management tools rather than ITQ’s. As the results of this paper demon-

strate, in the presence of technical progress even a fishery managed perfectly for some

sustainable catch level (or the implied biomass level) will, under some assumptions to

be discussed below, experience a percentage decrease in thedemand for inputs com-

parable to the percentage increase in productivity. This result while not surprising, is

important to remember for several reasons. In an otherwise well-managed ITQ fishery,

we can interpret the decrease in demand for inputs as a cost ofcontinued rational man-

agement. It may be important to recognize the need to compensate the losers in such

a situation in order to make ITQ’s more acceptable to the fishing industry. In fisheries

where ITQ’s are not an option in the near term, then these results have implications for

vessel buy-back programs which seek to reduce capacity or for fisheries with limited

entry programs as the principal management tool.

I.B Static Gordon-Schaeffer Model

The model used in this section is based on the work of Gordon Gordon (1954)

Schaefer (1957) and Scott Scott (1955) often referred to as the Gordon-Schaeffer model.

The model is that of a static single species fishery with parametric output price,P . Har-

vesting occurs as a deterministic function of total inputs and no distinction is made

between vessels or individual harvesters. The treatment below closely follows the sum-

mary by Munro in Munro (1982) though some of the notation has been changed to avoid
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redundancy. The principal addition to the above mentioned treatments is the specifica-

tion of the function that converts individual inputs into ”fishing effort” discussed below.

Define the biological growth rate of the fish biomass,x;

·
x = ρx(1 −

x

B
) (I.1)

Parameterρ is sometimes called the natural or intrinsic growth rate andB is

the carrying capacity (the maximal biomass level in the absence of harvesting mortal-

ity.)

Fishing mortality or harvest,y (measured in the same units as
·
x, biomass/time)

is given by:

y = qEx (I.2)

The coefficientq is frequently called a catchability coefficient and is assumed

constant for now. Fishing effort,E is an aggregator function of various individual

inputs. In general we will say that effort,E is a function ofn different capital inputs

and labor. That is:

E = E(K0, K1, ..., Kn) = E(K) = AF (K) (I.3)

Input K0 will be labor in the section 3 and as a matter of expositional conve-

nience may be referred to asL. The ParameterA is a Hicks-neutral technical progress

parameter. The effects (comparative statics) of this parameter on conditional factor de-

mands is our main concern in this paper. We do not consider different forms of technical

progress for two reasons; firstly, for the Cobb-Douglass function considered in section



8

3 both Harrod and Solow technological change reduce to Hicks-neutral technological

change. Secondly, for most empirical examinations of technical progress, (see Kirkley

et al. (2004) and Squires (1992)) the authors consider percentage increases in produc-

tivity, a concept naturally modelled by Hicks-neutral technical progress. In section 4

and for the introduction of the model here we generalize to multiple capital inputs and

require only thatE(L, K1, ..., Kn) be constant returns to scale, quasiconcave.

As is assumed in Hanneson (1983) and implicitly in most theoretical formu-

lations we presume that the production technology is such that the effort aggregator is

weakly separable from the fish stock. This allows us to write equation I.3 independent

from thex. Squires (1992) extends the weak separability condition tomulti-product

fisheries as it is useful for empirical investigations and isrequired to prevent the cross-

ing of isoquants when switching between target species. As noted in Hanneson (1983)

one implication of this assumption is that no technology canbecome more useful as

the stock declines. Because of this, the current model may not be appropriate for fish-

finding devices.

Let ri be the rental rate on inputKi (in section 3 we callr0 = w). Then the

single producer’s effort constrained cost minimization problem (for some effort level̂E)

is given by:

min
{Ki}n

i=0

n∑

i=0

riKi subject to; E(K) = Etarg (I.4)

As is well known, the constant returns to scale property gives us that the op-

timal value function from the above minimization problem (i.e. the total cost function)

is linearly increasing in effort,̂E. As in the standard Gordon-Schaeffer model imple-

mented by the authors mentioned above, we will now restrict ourselves to consider only

sustainable harvests, i.e. wheny =
·
x. This means that we restrict fishers to steady
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states in the biomass where harvest exactly equals growth each period and will not con-

sider the approach paths to these steady states. This allowsus to specify each point on

the effort expansion path as an implied level for the biomassx. To see this, set equation

I.1 equal to equation I.2 and solve for effort to obtain:

E(K) =
ρ

q

(
1 −

x

B

)
(I.5)

Equation I.5 implies that the total cost curve for sustainable harvest is a de-

creasing affine function of the biomass achieving zero atx = B. If we now multiply

equation I.1 byP , the market price of output (taken parametrically) we obtain the total

revenue curve for sustainable harvest.

This completes the general model to be used through the rest of the paper.

The next section considers the two input Cobb-Douglass specification for effort while

section 4 considers a more general formulation. For both sections we will consider cost

and input demands as functions of some biomass level. If the reader is confused by

the biomass targets as output constraints, recall that sustainability. provides a 1 to 1 and

onto correspondence between biomass and effort, the more natural output constraint.

I.C Cobb-Douglass effort with two inputs

In this section the effort production function will be a constant returns to scale

Cobb-Douglass function of two inputs; labor and capital. With a specific functional

form in hand we can examine the effects ofA, our Hicks-neutral technical progress

parameter on the factor demands under various conditions. The aggregator function is

given as follows:
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E(L, K) = ALαK1−α (I.6)

Therefore we can perform the effort constrained cost minimization problem to

obtain the total cost of effort function:

TC(E, A, θ) = wK∗(E, A, θ) + rL∗(E, A, θ) (I.7)

=
E

A
(wγ−α + rγ1−α)

where γ =
r

w

α

(1 − α)
(I.8)

and θ = (w, r, ρ, q) (I.9)

When we restrict to sustainable harvest, (setting I.1 equalto I.2) effort choices

uniquely imply biomass choices so we can cast I.7 in terms of the implied biomass level;

TC(x, A, θ) = wK∗(x, A, θ) + rL∗(x, A, θ) (I.10)

=
ρ

qA

(
1 −

x

B

)
(wγ−α + rγ1−α)

This then gives us Figure I.1 taught in many undergraduate classes on renew-

able resource economics. In Figure I.1 there are three points on the biomass curve of

interest. The first,x∗, is the biomass level that maximizes sustainable rents (thedif-

ference between the sustainable revenue curve and cost of harvest curve.) To the left

of x∗ is xMSY the biomass level that corresponds to the peak of the sustainable revenue

curve and consequently the peak of the sustainable harvest curve (as it is the same as

the biomass growth curve.) This maximum has long been identified by biologists as the
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maximum sustainable yield or MSY. This point is of particular interest for management

and, as will be discussed below, has been the focus of management by legislation in

the United States for many decades. The third point of interest isxEQ, the open access

equilibrium value for the biomass is the point at which totalcost of sustainable harvest

equals sustainable revenue. This last point is what we mightexpect to prevail in an

unregulated fishery with many producers (or vessels) and no barriers to entry.

Equation I.10 implies the following sustained biomass constrained input de-

mand equations:

L∗(x, A, θ) =
ρ

qA

(
1 −

x

B

)
γ−α (I.11)

K∗(x, A, θ) =
ρ

qA

(
1 −

x

B

)
γ1−α (I.12)

Equation I.10 is the version of the total cost curve shown in Figure I.1 specific

to this Cobb-Douglass representation. Using I.11 and I.12 we can obtain formulae for

the three focal values for the biomass (highlighted in Figure I.1) and the implications

for input demand functions.

I.C.1 Input demands under optimality.

Optimality., here means that we are maximizing sustainablerents. In order

to consider the management implications of technical progress we must first determine

how technical progress affects input demands conditional on the optimal biomass level

x∗. Under optimality., the effects of technical progress on input demands are summa-

rized by the following proposition.

Proposition 1. Optimal input demands are decreasing in technological changes that

are sufficiently small.L∗(x∗, A, θ)
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Figure I.1: Sustainable Revenues and Costs in Biomass

and

K∗(x∗, A, θ) are increasing inA if and only if

A ≥ (wγ−α+rγ1−α)
ρqPB

Proof. First, note that the optimal biomass level will solve;

max
x

Pρx(1 −
x

B
) − TC(x, w, r, A, ρ, q) (I.13)

the solution function to this maximization problem is;

x∗ =
B

2
+

(wγ−α + rγ1−α)

2qAP
(I.14)

substituting this expression into our formula for conditional labor and capital

demands we obtain;

L∗(x∗, A, θ) =
1

A
(
ργ−α

2q
) −

1

A2

(
(wγ−α + rγ1−α)γ−α

2q2PB

)
(I.15)

K∗(x∗, A, θ) =
1

A
(
ργ1−α

2q
) −

1

A2

(
(wγ−α + rγ1−α)γ1−α

2q2PB

)
(I.16)



13

Both of the above functions are globally convex inA. Respectively they

achieve unique minimum values at;

AL
min =

(
(wγ−α + rγ1−α)

ρqPB

)
(I.17)

AK
min =

(
(wγ−α + rγ1−α)

ρqPB

)
(I.18)

and the result follows.

The above proposition gives conditions on the parameters ofthe model that

describe the effects of technical progress on the input demand functions when the pro-

duction is chosen so as to maximize sustainable rents. For such an optimally managed

fishery, the effects of technical progress on labor and capital demands are uncertain.

The intuition behind this result is easy to understand. Consider figure I.1 and increase

A. This tilts the total cost of sustainable harvest down (by equation I.10) which in turn

leads to a decrease in the value ofx∗ and an increase in the corresponding optimal level

of effort. So while we now need less inputs for each level of effort, the optimal amount

of effort has increased. Without knowledge of the parameters of the model, we cannot

determine which effect will dominate.

I.C.2 Conditional input demands under open access

Under open access all resource rents are driven to zero. The following propo-

sition shows that the open access equilibrium point behavesmuch in the same way as

does the optimal harvest point where input demands and technology are concerned.

Proposition 2. L∗(xEQ, A, θ)

and

K∗(xEQ, A, θ) are increasing inA if and only if

A ≥ (wγ−α+rγ1−α)
ρqPB
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Proof. First, note that the open access biomass level will solve;

PρxEQ(1 −
xEQ

B
) = TC(xEQ, w, r, A, ρ, q) (I.19)

the solution to this equation is;

xEQ =
(wγ−α + rγ1−α)

qAP
(I.20)

substituting this expression into our formula for conditional labor and capital

demands we obtain;

L∗(xEQ, A, θ) =
1

A
(
ργ−α

q
) −

1

A2

(
(wγ−α + rγ1−α)γ−α

q2PB

)
(I.21)

K∗(xEQ, A, θ) =
1

A
(
ργ1−α

q
) −

1

A2

(
(wγ−α + rγ1−α)γ1−α

q2PB

)
(I.22)

These two functions are globally convex in A and achieve minimum values

respectively at;

AL
min =

(
(wγ−α + rγ1−α)

ρqPB

)
(I.23)

AK
min =

(
(wγ−α + rγ1−α)

ρqPB

)
(I.24)

and the result follows.

Proposition 2 gives a similar result to that of proposition 1. In fact the critical

values for A are identical. The intuition is exactly the same. As we increaseA, each

level of steady state biomass (the biomass which corresponds to some particular harvest

level) requires less effort. At the same time, total costs decrease so that the open access

biomass value decreases and consequently the required effort increases. Which effect

dominates is again an empirical question insofar as we wouldneed to fit this model to

data and compare the relative values of the models parameters. This is likely to be a

very difficult exercise as to fit this model we would need data on harvest, effort, and
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biomass. These are not typically available together for a single fishery. But hope is not

lost, as the next section discusses, these past two conditions are unlikely to prevail and

we have more concrete results for maximum sustainable yieldfisheries.

I.C.3 Input demands under a Maximum Sustainable Yield policy

Most fishery management has historically targetedxMSY by law. For exam-

ple, the Magnusson Steven’s act 94-265 (1996) section 301. National Standards for

Fishery 16 U.S.C 1851 states that among other national standards, any fishery man-

agement plan must satisfy that “management measures shall prevent overfishing while

achieving, on a continuing basis, the optimal yield from each fishery for the United

States fishing industry.” While this regulation may seem oddto an economist as it leads

to economic over-fishing, if our job is to be descriptive we should consider what may

happen as well as what should happen. For this reason the proposition below may be

more relevant to real management questions as well as more satisfying in the mono-

tonicity of its conclusion.

Proposition 3. If sustainable harvest is suboptimally constrained to maximum sustain-

able yield, then the cost minimizing labor and capital demands have a elasticity of neg-

ative unity with respect to a Hicks-neutral technical progress parameter,A.

Proof. First, note that;

xMSY = arg max ρx(1 −
x

B
) =

B

2
(I.25)
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Therefore;

L∗(xMSY , A, θ) =
1

A
(
ργ−α

2q
) (I.26)

K∗(xMSY , A, θ) =
1

A
(
ργ1−α

2q
) (I.27)

and since the elasticity of any function of this form inA is minus one the result

follows.

So it is clear that with such a Cobb-Douglass production function in the styl-

ized Gordon-Schaeffer fishery, the cost minimizing input demands are related to tech-

nical progress with a constant elasticity when outputs are constrained to maximum sus-

tainable yield. The next section will considers how robust are these findings.

I.D General CRTS effort function with n inputs

In this section we consider a more general production function and more gen-

eral biomass targets. The intuitive reason that a target ofxMSY leads to concrete pre-

dictions about input demand elasticities whilex∗ andxEQ do not is that the latter two

depend on the cost structure and therefore the technology. ThexMSY target depends

only on the biological growth function. The following proposition summarizes the

general finding that the minus unity elasticity result is in fact quite general. Any tar-

get biomass level (serving as the constraint on output as does thexMSY target in 3.3)

which is independent of the technology will yield a minus unity elasticity for each input

demand under fairly general conditions on the aggregator function.

Proposition 4 (General CRTS proposition). For any constant returns to scale, quasi-

concave effort aggregator functionE(K) as in I.3, the elasticity of each sustainable

biomass constrained input demand function has elasticity w.r.t. A of minus unity if and
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only if the biomass constraint is independent ofA or if the input’s demand is indepen-

dent of the biomass target value.

i.e. for some biomass levelxtarg;

(
∂K∗

i (xtarg, A, θ)/∂A

K∗
i (xtarg, A, θ)/A

)
= −1 ⇐⇒

∂xtarg

∂A
= 0 or

∂K∗
i (xtarg, 1)

∂xtarg
= 0 (I.28)

Proof. ConsiderÊ(K) = ÂF (K) andE1(K) = F (K) for some arbitraryÂ. Let

K∗(xtarg, A) (with all other parameter arguments suppressed for convenience) be the

vector of solution functions to the cost minimization problem I.4 whereEtarg = ρ

q
(1 −

xtarg

B
) as implied by sustainability.

Claim:

K∗(xtarg, 1)

Â
= K∗(xtarg, Â) (I.29)

Proof of Claim: since

Ê

(
K∗(xtarg, 1)

Â

)
= ÂE1

(
K∗(xtarg, 1)

Â

)
= E1(K

∗(xtarg, 1)) = Etarg (I.30)

we know thatK
∗(xtarg,1)bA will produceEtarg under aggregator̂E(.). It remains

to check thatK
∗(xtarg,1)bA is the cheapest way to produceEtarg under aggregator̂E(.).

Since we know that the first order necessary (and sufficient byquasiconcavity)

condition for the optimality. ofK∗(xtarg, 1) is;

r ≥ λ∇E(K∗(xtarg, 1)) (I.31)

And sinceE(.) is homogeneous of degree one, each of its partials are homo-

geneous of degree zero. SoK∗(xtarg,1)bA must satisfy I.31 also.�
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With the above claim satisfied, and noting thatÂ was arbitrary we have that

each biomass constrained input demandK∗
i (xtarg, A) is of the form; K∗

i
(xtarg,1)

A
We can

now calculate the elasticity of each input demand function with respect toA;

(
∂K∗

i (xtarg, A)/∂A

K∗
i (xtarg, A)/A

)
=

K∗

i
(xtarg,1)

A2 + 1
A

∂K∗

i
(xtarg,1)

∂xtarg

∂xtarg

∂A

K∗
i (xtarg, 1)/A2

= −1 +
A

K∗
i (xtarg, 1)

∂K∗
i (xtarg, 1)

∂xtarg

∂xtarg

∂A
(I.32)

= −1 + εKi,xtargεxtarg,A

Equation I.32 proves the result

Equation I.32 in the proof of the above proposition is suggestive of much more

than the result of the proposition itself. As the proposition states the minus unit elasticity

result holds only if one of either the elasticity ofK∗
i (xtarg, 1) with respect to the target

biomass is zero or if the elasticity of the target biomass with respect to technology are

zero. Let us consider either of these conditions separately. The biomass elasticity of

the demand for an individual inputi is unlikely to be zero except in the trivial case of a

corner solution where inputi is not used or in the case of a rather contrived production

function where the marginal product of inputi is zero over some finite range. Recall

equation I.11 as an example from the Cobb-Douglass aggregator function in section 3;

L∗(x, 1, θ) = ρ

q

(
1 − x

B

)
γ−α. The implied biomass target elasticity is then;

∂L∗(x, 1, θ)/∂x

L∗(x, 1, θ)/x
=

ρ

q

γ−α

B

ρ

q

(
1 − x

B

)
γ−α/x

=
−x

B − x
(I.33)

The above expression is clearly zero only when the target biomass is zero, a

rather trivial case. This elasticity with respect to the biomass constraint is determined by
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the fundamentals of the biology and economics of the system.The technology elasticity

of the target biomass level is not and the manager is free to choose a target biomass as a

function ofA to yield any elasticity she chooses. This suggests a possible management

strategy. If a manager wishes to achieve some particular elasticity for an individual

input’s demand function and is free to choose a particular biomass target, then given

knowledge of the elasticity of that input’s demand with respect to the biomass constraint,

she can choose a biomass target that yields the desired inputdemand elasticity.

As an example consider the labor demand in the Cobb-Douglasscase again.

Suppose we have a fishery manager who wishes to ensure that labor demand will be un-

changed as technology increases and her only choice is the biomass target. As equation

I.33 indicates her desired value for the elasticity of the biomass target with respect to A

is then;B−x
−x

. This condition yields a first order non-homogeneous differential equation

with the following solution forxtarg as a function ofA;

xtarg(A) = B + kA (I.34)

In the above equationk is any constant. We certainly require thatk < 0

asxtarg would otherwise not be feasible. Unfortunately, if one expectsA to continue

increasing without bound then for any fixedk this rule forxtarg will eventually lead to

depletion of the resource. It is not a surprising but is certainly a significant fact that

continued increases in technical ability impose either eventual reduction of inputs or

eventual depletion of the resource.
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I.E Discussion

In this section we discuss the possible implications of the above results in

various different types of fisheries. It is worth noting thatalthough the current paper

does not explicitly model the innovation process to the technical progress parameter,

the comparative statics are relevant for whatever sort of process we expect to govern

increases in productivity. We should expect that from the vantage of a manager, in-

novations to technical progress should at least appear random. This would complicate

the analysis but not overly. If managers are risk averse particularly with regards to

the potential of stock collapse, we would expect that they would for example wish to

remove more inputs than would be indicated by expected values of technical increases.

The reader should bear in mind that what follows treats innovations to the parameterA

as point values yet the flavor of the analysis should not change drastically were we to

complicate it by including complete probability distributions on the innovations. The

process by which innovations to A occur should indeed be modelled but not in this static

framework. Future work considering the dynamics of the fishery will require specific

assumptions on the process of technical change as well as specification of the managers

risk preferences.

I.E.1 An ITQ fishery currently at the target biomass

The ”best case scenario” for current fishery management can arguably be high-

lighted in the current New Zealand ITQ fisheries modulo the distributional effects men-

tioned in the introduction. A stylized ITQ fishery cast in thecontext of the model of

this paper would consist of a perfectly enforced total allowable catch and an implied

xtarg value for the biomass. Supposing that such a fishery has achieved a steady state

characterized by the chosen harvest (TAC) level and the biomass target. If the manager
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expects technical progress in harvesting to occur in the future at say, ratez% per annum

and if the manager is prepared to accept the assumptions of proposition 4 then she can

expect to seez
1+z

% of inputs displaced from the fishery each year. As mentioned in the

introduction, these inputs are frequently non-mobile and displacement results in sub-

stantial loss to the owners. There are at least two possible justifications for the manager

to consider compensation for those displaced from the fishery. Fairness considerations

may be relevant as the rationalization of the fishery createsa net gain to those still in-

volved in the fishery and a perpetual benefit to the larger economy as the resource is

now generating larger sustainable rents. A more compellingreason to be concerned

with losses to displaced fishers is that losers can generate political support and attempt

to block the managers’ quota decisions. To the extent that compensation of the losers in

this scenario is a concern for the manager (for either of the aforementioned reasons) this

compensation can be viewed as a cost of continued rational management of the fishery.

These future costs can be estimated using a simple percentage of the total factor use in

the current fishery.

I.E.2 A limited entry fishery

Most of the worlds fisheries have yet to convert to an ITQ system. To the

extent that we believe eventual conversion to be inevitablegiven the potential gains, we

may be tempted to say simply that these fisheries will be better off when they switch to

ITQ’s and restrict the discussion to the possibility of hastening the eventual conversion.

However, in the near term, it behooves us to make ”second best” recommendations

subject to sub-optimality constraints such as imperfect management tools. One such

imperfect management tool is limited entry. A common first step in attempting to con-

trol recognized over-fishing is limiting the number of licences in the fishery to current
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participants and attempting to decrease these numbers as time goes by (examples in-

clude Norway see Rettig (1986) and the New England Groundfishfishery). If direct

reduction of capacity through either legal mandates or market methods such as vessel

retirement programs or so called ”buy-backs” are principalmanagement tools then the

results of this paper are salient indeed. In such a case, we can consider a fishery which

controls capacity and has reached a steady state in which capacity is at the desired level.

The manager should then be aware that further reductions in capacity will be required in

the future dependent upon the expected rate of technical progress. The funds necessary

for a ”buy-back” program can then be estimated using proposition 4.

I.E.3 Open Access

There remain many unregulated open access fisheries in the world. The U.S.

Pacific Albacore longlining fleet is one example as is the Chesapeake Bay Blue Crab.

The lesson for these fisheries is slightly beyond the scope ofthis papers results but the

intuition is relatively simple. Section 3 shows that it is uncertain how technical progress

will affect labor and capital demands under open access since the point of exhaustion of

sustainable rents moves to the left on the biomass axis. Thisimplies more effort is used

but less inputs are needed for each level of effort. If we allow ourselves to somewhat

informally consider non-sustainable conditions, we can construct a cautionary tale to

fishers who might believe that their unregulated fishery is well set for perpetuity of

current harvests. Suppose that a fishery has been harvestingat fairly constant levels for

several years. Suppose further that the inputs to the fisheryhave been fairly constant

over the same period. It may be tempting to suggest that this fishery is harvesting at

sustainable levels. But consider the possibility that technical progress has continually

occurred during this time interval. In this case, it seems plausible that asA increases we
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increase effort without increasing inputs but this effort increase is paid little attention as

the instant that effort increases stocks will begin to decrease. As the stock decreases,

if A continues to increase at a more or less comparable rate, looking at equation I.2 we

can see that biomass and technological changes might trade off in such a way as to keep

harvest values fairly constant as we unwittingly draw down the resource stock.

More formally; revoking the sustainability. condition andsubstituting I.2 into

the labor and capital demands implied by I.7 to get;

L∗(y, x, A, θ) =
y

qx

γ−α

A
(I.35)

K∗(y, x, A, θ) =
y

qx

γ1−α

A
(I.36)

Clearly from the above equations, there exists a path for A such that for what-

ever valuex takes at each instant, both labor and capital demands are unchanged even

though harvest, y is constant. For the above story to occur weneed only have the path

of A through time be ”close” to that which keeps labor and capital demands constant.

The likelihood of such ”closeness” is beyond the scope of this discussion.

A similar story to that above was employed by Hanneson (1983)to explain the

sudden near collapse of Atlanto-Scandian herring and Southwest pilchard stocks. Han-

neson’s argument focuses on the parameterq, the catchability or availability coefficient

in I.2. While the two parametersq andA are empirically indistinguishable the causal

interpretation of his argument is quite different. In Hanneson’s story as fish stocks are

drawn down, the stock ”maintains its density by occupying a smaller and smaller area”

so that the catch per unit effort remains high. Both stories lead to sudden collapse of

the stock after apparent sustainable catch rates. It may be somewhat more general to

consider the increase in technical ability as the driving factor rather than a particular
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behavior of the fish. The technical progress story could produce similar results even in

a fishery where the species became more sparse and difficult tofind as the abundance

decreased.

I.F Conclusions

The results of this paper provide a first look at the relationship between fish-

ery management and technological progress. The general result is that, with constant

returns to scale production, technology affects input demands with a constant elasticity

of minus unity except when biomass targets depend on costs (and consequently technol-

ogy.) Future work should consider non-neutral varieties oftechnical progress such as

changes in the marginal rates of technical substitution between inputs.

The manager’s problem in this paper is one of enforcing a target biomass. This

is a bit of a departure from previous literature. Frequently, the manager is treated as the

social planner in dynamic fisheries models. While the socialplanner’s problem must be

solved for these models, it is perhaps unrealistic to interpret the fishery manager as the

social planner. Fishery managers are real individuals withcomplicated mandates from

government who must work with the tools they are given and be wary of the demands

and desires of various lobby groups such as fishers and environmentalist. Future work

should take the target biomass as exogenous to the manager and she will minimize a

distance function between actual biomass levels and this target. The managers choice

set must include a range of different available instruments. As an example, one political

constraint to the manager can be the maintenance of some level of surplus to input

suppliers who may block one or more of the manager’s instruments if the constraint is

violated.

As mentioned, future work will need to specify the dynamics of the system.
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Optimal control theory has been used for decades to investigate various economic con-

cepts pertaining to fishery management (see Clark (1976) andClark and Munro (1975).)

Preliminary inspections have found results for the simplest optimal control problems

similar to proposition 1. This is not surprising as optimal control maximizes present

discounted value of future rents which must depend on the cost structure. Another pos-

sibility is over-lapping generation models as applied in macroeconomic models which

can make separate the roles of manager and social planner. Sources of randomness in

biological growth should be considered as well as the randomprocess driving technical

progress. Should technical progress be disembodied? It is likely that changes in tech-

nology are driven by investment which may be highly correlated with fish stocks. When

stocks are declining, we should expect more investment in fish catching technologies.

This feature may reinforce many results in the current paper, particularly the cautionary

tale for open access.



II

Natural Resource Collapse:

Technological Change and Biased

Estimation

Abstract

Unexpected collapse of natural resources is of great concern to policy mak-

ers. The literature and popular press have attributed collapse to the lack of well-defined

property rights and policies which pay inadequate attention to random environmental

variability. Both the literature and policy makers have ignored how unobserved techno-

logical change can obscure the depletion of natural capitalstocks. The paper considers

the example of the fishery. In a simple but general model of a single species fishery,

technological change can readily generate unexpected collapse after a long period of

apparent stability. The paper shows that even if property rights are well-defined and

random fluctuations are small, modest changes in technologyconceal the depletion of

stocks. When technological change is ignored, biological productivity of the fish stock is

26
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overestimated and as a result sustainable catches are overestimated and collapse results.
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II.A Introduction

Collapse of natural resources is a costly phenomenon. It hasbeen shown in

the literature that under certain conditions on uncertainty and discount rates, it may

indeed be optimal to fully deplete a natural capital stock (see for example Clark (1976)

and more recently Amundsen and Bjørndal (1999).) The current research is concerned

with unexpected collapse. Unexpected collapse can cause serious political economy

problems when non-malleable human and physical capital is rendered valueless by the

shutdown of an industry.

In this paper, I show that the manager of a renewable natural resource needs

to be aware of technological change. If the manager ignores technological change, she

overestimates the productivity of her natural capital stock. Analytically, I show that an

increase in the state of technology over one period leads to an overestimation of the

proportional rate of growth for that period. Through simulations I find that standard

statistical tests overestimate policy variables. I show that collapse is inevitable if tech-

nology increases without bound. In simulations, the path tocollapse is not observed

until stocks are low and declining rapidly.

As natural resources go, fisheries have proven to be particularly difficult to

manage. Fisheries collapse has received much attention in recent years, particularly

after the costly closures of cod and other groundfish fisheries in Newfoundland and the

Georges Bank. With a few exceptions, economists have been uncharacteristically silent

on this topic.

Biologists have tried to identify the causes of collapse andsuggest remedies.

Notably, Ludwig et al. (1993), Roughgarden and Smith (1996)and Walters and Maguire

(1996) point to the importance of uncertainty, and the lack of political will to enforce

appropriate input or output limits. To be sure, uncertaintyis an important consideration
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for marine resource management. What has been missing is a thorough discussion of

the lack of observability. Even if random variability is notgreat in magnitude, the fact

that neither stocks nor technology are observed means that the production function is

not identified. This fact combined with technological progress can lead to unexpected

collapse.

Technological change is discussed widely in the resource economics literature

but seldom in the context of resource management and conservation. Often it is invoked

to rescue consumption streams from the pressures of population growth and resource

depletion. I show that unobserved technological change canbe quite problematic for

a renewable resource manager who does not observe the resource stock. Even in the

case of a single-owner, inference about stock growth and therefore appropriate harvest

is confounded with technological change. In the case of sub-optimal management, the

predicted outcome is sudden collapse following a period of apparent stability. The ex-

ample considered is that of the fishery but the cautionary tale applies whenever a natural

capital stock is observed imperfectly and when the production function unknown and

dynamic.

Technological change has received surprisingly little attention in the fisheries

economics literature, largely limited to empirical measurements of changes in total fac-

tor productivity (for example, Squires (1992), Squires (1994) Jin et al. (2002), Kirkley

et al. (2004)). Squires (1992) showed that if one ignores stock effects one tends to

under-estimate technological improvements. The conversehere is shown, that ignor-

ing changes in technology leads to over-estimation of surplus-production, current stock

size, and appropriate catches. Ignoring technological change in input-managed systems

leads to collapse. A fishery manager must invest in either fishery independent signals of

changes in resource stock or accept costly precaution in setting catch limits.
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The next section reviews the relevant economic and fishery literature. Section

II.C introduces the modeling framework. The results are organized by assumptions

about management. Section II.D shows that even when property rights are assigned and

perfectly enforced, the productivity of the fishery is overestimated. Many of the worlds

fisheries are either un-managed or managed via a suite of input controls; the dynamics

of collapse in these fisheries are described in section II.E.Section II.F concludes.

II.B Relevant Literature

Fishery collapse is not a rare phenomenon. In addition to thewell known

collapses of Northern Cod, Peruvian Anchoveta, Virgina Oyster and California Sardine,

Mullon et al. (2005) have identified collpases in nearly one quarter of the world’s fish

stocks. Using FAO data the authors find that 366 fisheries havecollapsed. Collapse is

defined as four consecutive periods of catch below 10% of the 50 year high.

The limited economic literature considering fishery collapse has considered

exogenous sources of uncertainty and finds optimal rules to respond to these forces.

(c.f. Amundsen and Bjørndal (1999) and Johnston and Sutinen(1996).) In some cases

it is found to be optimal to allow the stock to collapse. Generally, collapse is considered

to be the result of critical depensation, regime shifts, or allee effects. In another paper,

Ruitenbeek (1996) studied the Newfoundland cod collapse and concluded that quota

management, removal of subsidies, and greater attention toecological uncertainty might

have helped avoid costly collapse.

The biology literature is more concerned with this last topic; the goal is to ex-

plain collapse and offer lessons for management so that future collapse may be avoided.

Ludwig et al. (1993) describe a ‘ratchet’ process by which uncertain variability is treated

inappropriately. In years where the stock is subject to positive shocks, we invest but this
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physical capital stock is fully utilized in years of negative shocks. A political result of

this line of thinking has been the somewhat arbitrary notionof precaution. The precau-

tionary principle or some similar concept is generally found in management plans in

most OECD countries.

A notable contribution to the theory of fishery collapse is Roughgarden and

Smith (1996). The authors use a logistic growth function to criticize the standard eco-

nomic paradigm of fishery management. The proposition is that fisheries collapse be-

cause management attempts to balance the underlying fish stock at an unstable equi-

librium (less than one half of the carrying capacity). The dynamic optimum of Clark

(1976) involves so called bang-bang control of harvests; harvest nothing when the stock

is below the target stock and harvest at the maximum rate whenever the stock is above

the target. Random variability makes the stability of the target equilibrium relevant and

the authors claim stock crash is unavoidable. This is because mangers do not (or cannot)

in practice cut harvests to zero when the stock is believed tobe below the target.

The solution offered by Roughgarden and Smith (1996) is to purchase ‘natural

insurance.’ By this the authors mean the manager should forgo revenue by maintaining

a stock greater than the economically optimal target. They suggest a target stock of

three-quarters of the carrying capacity,K for the logistic model. An equilibrium to the

right of the maximum of the logistic growth curve is a stable equilibrium and therefore

risk of stock collapse is minimized.

Economists recognized fishery uncertainty some time ago, beginning with

Reed (1979). Reed assumes that randomness enters the growthfunction as a multiplica-

tive i.i.d. random variable and derives a constant-escapement rule to maximize expected

discounted rents.

The first reply from economists to Roughgarden and Smith (1996) is Sethi
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et al. (2005). These authors use Reed’s model and explicitlymodel two other sources

of uncertainty cited by Roughgarden and Smith (1996), stockmeasurement error and

quota enforcement uncertainty. Through simulations the authors find that while constant

escapement is no longer optimal, a dynamic escapement rule can be derived to avoid

stock collapse and extract higher discounted resource rents than would be gained by

using the3/4K rule of Roughgarden and Smith (1996).

Reed (1979), Roughgarden and Smith (1996), and Sethi et al. (2005) all as-

sume that growth functions are known. Optimal or recommended policies are defined

using key parameters such as carrying capacity. The currentresearch considers the more

realistic situation in which these parameters are not knownand shows that fishery col-

lapse is no surprise.

A final line of literature to mention is the empirical literature which establishes

technological change in fisheries. The measurement of changes in total factor productiv-

ity is the primary focus of fisheries economics literature relating to technological change

(see Squires (1992), Squires (1994) Jin et al. (2002) Kirkley et al. (2004), Squires et al.

(2005)). These articles use economic indexes to estimate changes in total factor pro-

ductivity various fishery independent measures of changes in biomass. These articles

are relevant to the current research as a verification that technological change does oc-

cur in fisheries and rather small annual percentage increases tend to be found. As seen

below, ignoring this dynamic parameter causes a particularkind of faulty inference and

increases the likelihood of collapse.

II.C Model

The model here is a single fish species, governed by dynamics similar to Reed

(1979) and Sethi et al. (2005).
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Bt+1 = Bt + εtG(Bt) − Ct (II.1)

The natural capital stock, fish biomass, at timet is given byBt. The function

G(·) represents natural growth. WhenG(·) has a maximum it will be referred to as max-

imum sustainable yield,MSY , and the corresponding biomass level,BMSY . Growth

equation II.1 differs from those in Reed (1979) and Sethi et al. (2005) in that growth

occurs here over periodt biomass rather than escapement. The harvest or catchCt is

given by the standard Schaefer production function;

Ct = qtEtBt (II.2)

The variableEt is fishing effort, an aggregator function of physical capital

and labor inputs to the fishery. For this investigation I ignore potential problems associ-

ated with measurement and even existence of such an aggregator function (see Squires

(1987).) The potentially dynamic parameter,qt, is referred to as catchability or fishing

power and represents technological and environmental effects as well as non-linearities

and even errors in the measurement ofEt. Note that by stating nothing about the de-

terminants and dynamics ofqt equation II.2 is not restrictive and permits any general

specification of harvest function for there always exists aqt such that II.2 holds. This

form is convenient as it is consistent with most standard empirical specifications and it

allows the simple specification of technical change below.

When making statements about technological change it is convenient to spec-

ify the following;

qt = q0

t∏

i=1

(1 + ai) (II.3)
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Note, as with the production function specification, this isnot restrictive until

statements aboutai are made. When this specification is invoked, assume thatai are

weakly positive, implying that technological change is sufficient to insure that efficiency

of harvest does not decrease over time. This still allows that other unobserved dynamics

affect catchability but assumes that the dominant trend is an increase in catchability.

The general model is complete but for computer simulations further specifi-

cations are required. Sections II.D and II.E contain computer simulations which use

specific forms of equation II.1 and equation II.2. Technology is modeled by constant

percentage Hicks neutral improvements in efficiency each period. This amounts to con-

stantai’s for a given simulation.

The growth functionG(·) is specified as the logistic in spite of criticisms of

this Schaefer model as in Maunder (2003). It is certainly thecase that this simple func-

tional form may be inappropriate for many fishery data. This is not a concern here.

For computer generated data we are free to choose the specification and since the final

result is that inference is limited even when our model is correctly specified, it is not

troublesome that the simplest model is used. Adding more parameters is not going to

provide better inference here. The familiar logistic specification follows in two forms.

The first has multiplicative noise as in equation II.1. The second has additive noise and

is used only for the simulations and regressions in section II.D in order to provide more

well-behaved estimators:

Bt+1 = Bt + εtrBt(1 −
Bt

K
) − Ct (II.4)

Bt+1 = Bt + rBt(1 −
Bt

K
) − Ct + ωt (II.5)

Note also that for this specification, the peak of the growth curve is given by:
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MSY =
rK

4
(II.6)

II.D Single Owner

This section shows that even in an optimally managed fishery,ignoring unob-

served technological change can lead to overestimation of growth.

There is much work on the optimal harvest of stocks subject torandom dis-

turbances. IfBt is observed andG(·) is known then we are in the framework of Reed

(1979); optimal catch can be calculated and, provided that collapse is not optimal, the

risk of unexpected collapse is zero. The optimal constant escapement policy insures

that the natural capital stock never drops below a certain level, chosen to maximize dis-

counted rents. If stock is observed imperfectly but growth functions and parameters are

still known then we are in the framework of Sethi et al. (2005)and though the con-

stant escapement of Reed (1979) is no longer optimal, more complicated rules allow

for the quasi-maximization of discounted rents. But these rules require knowledge of

parameters such as carrying capacity,K.

The reality is that stocks are not observed, growth and production functions are

not known and therefore a manager in a fully rational fishery faces a statistical challenge;

determine appropriate catch limits. It is often the case that catch limits must be estimated

solely based on catch and effort data. In this section I show first analytically and then

through simulations that ignoring technological progressin estimation leads to faulty

inference of a specific kind, growth is over-estimated; catch limits are overestimated.

The following establishes the general result that ignoringtechnological change period-

by-period implies overestimation of last period’s naturalgrowth or surplus production.
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Proposition 5. Given catch and effort data for periodst andt+1 and known technology

for period t an estimate of periodt proportional surplus production,εt(
G(Bt)

Bt

) which

does not account for technological change between periods has strictly positive bias.

The proof is in the appendix. This intuitive result shows that as long as tech-

nical efficiency increases over one period and is ignored themanager attributes a greater

proportion of the catch per unit effort to the natural growththan is warranted. The

econometrician does not observe decreases in the natural capital stock.

The period-by-period result of proposition 5 demonstratesthe most general

inference problem with unobserved technological change. Even if the manager knows

today’s technology she overestimates the productivity of the resource if she ignores just

one period of technical change. Technological increases disguise the decrease in the

natural capital stock. This fact is explored further in simulations below.

In order to relate this result more realistically to stock assessments made in a

rationally managed fishery, we must consider statistical techniques which make use of

some finite sample of data. It is necessary to pass to specific functional forms and par-

allel stock assessment techniques. If we specifyG(·) to be the logistic growth function,

then we can derive the standard catch-effort regression taught in introductory resource

economics courses. As noted by Hilborn and Walters (1992) these equilibrium methods

frequently lead to over-estimation of surplus production in small samples and will there-

fore not be discussed further. One of the simplest dynamic catch-effort relationships was

derived by Walters and Hilborne (1976) for the Schaefer model;

Ut+1

Ut

− 1 = r −
r

qk
(Ut) − qEt + ωt (II.7)

Here, the observable variable,Ut, catch-per-unit-effort is defined;Ut = Ct

Et

.

Using this definition and equation II.4 one obtains equationII.7. It is straightforward to
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show that the classical regression assumptions are violated whenq is dynamic.

Proposition 6. Under positive technological change the residuals from a regression of

the form in equation II.7 have strictly positive mean.

Proposition 6 (the proof is in the appendix), shows that ignoring technical

change of the form in equation II.3 over the sample period implies the residuals of

the regression are positive, implying that at least the intercept,r, is biased. And this

occurs even if the growth and harvest functions are correctly specified. At first glance,

proposition 6 suggests that we overestimate the intrinsic growth rate,r, and that we have

a result of the same flavor as proposition 5.

Furthermore, the final statistic(s) of interest are nonlinear function(s) of the

regression coefficients. If the manager is like most real managers, the statistic of interest

is maximum sustainable yield or a multiple thereof. ThoughMSY is rarely the harvest

target, the target is often a multiple ofMSY and assessments often attempt to determine

if MSY has been exceeded. The following definition ofMSY applies to the logistic

model and the regression II.7.

Definition 1. The estimate obtained for MSY from the regression II.7 is:

M̂SY =
r̂2q̂

4(̂ r
qk

)
(II.8)

This nonlinear function of several estimates is not necessarily unbiased even

if each individual coefficient is. There are several sourcesof bias, (for example, the con-

vex function of(̂ r
qk

) introduces an upward bias by Jensen’s inequality but potential co-

variance between estimators may counteract this and the unbiasedness of all estimators

further confounds this). To explore the net implications ofthese estimation problems,

computer simulations are useful.
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Using the logistic model with a unit carrying capacity, a computer simulated

50 periods of a fishery 10,000 times for each pair ofr anda values. The intrinsic growth

rate,r, ranged from .1 to .5. The increase in efficiency multiplier,a, varied from 0 to

.03. Growth noise was additive andi.i.d. drawn from a normal distribution having mean

zero and variance .0001. Effort values were randomly generated with a mean ofr/2, the

effort required to harvestMSY when the stock is atBMSY . The multiplicative noise

factor perturbing this effort target had mean one and variance .03. All trials began with

initial stock valueBMSY .

For r values between .1 and .3 and technological increases of0% to about 3%

per period, the results are clearly an increasing positive bias in estimates ofMSY . The

results are less clear for very smallr values or those larger than .3. When technological

change becomes too fast (more than about two percent per year) results are also difficult

to interpret (the results for the full range are displayed intabular form in the appendix.).

But for the range in figure II.1 below there is a clear increasein the overestimation of

MSY as a function of the magnitude of technological progress. Asa increases, moving

to the right and back of the figure, the percentage error in estimation of MSY rises.

Increases in the rate of technological change cause more andmore dramatic upward

bias in our estimate of sustainable yield. The range in figureII.1 contains most of

the annual percentage changes estimated in the literature and the range forr is quite

relevant as well. For example Hutchings (1999) foundr values for Newfoundland Cod

to be between .135 and .164.

In the best real-world fish-stock assessments, the potential for change in ‘fish-

ing power’ is not ignored. In their review of techniques for standardizing catch and

effort data Maunder et al. (2006) describe a ‘year effect’ which should summarize the

concerns raised in this section and other parameter dynamics. In order to calculate this
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Figure II.1: Estimation Error

year effect data beyond catch-and-effort data are required. Fishery independent data are

necessary to identify the system.

II.D.1 A Note on MEY

The reader may worry that the previous results apply toMSY which is not

necessarily the optimal harvest policy. While this author is not aware of many fish stock

assessments which actually attempt to estimate the economic optima of Gordon (1954)

or Clark (1976) this section shows that the results from the last section imply that over-

estimation is still a problem if economically optimal harvest targets are the statistics of

interest.

The seminal article by Gordon (1954) showed that with constant marginal

costs of effort, the static optimal harvest target is less thanMSY . GivenP , the mar-
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ket price of output andC, the marginal cost of fishing effort, the harvest target which

corresponds to the static maximum of Gordon (1954) is given as follows.

MEY = MSY −
rC2

K(2qP )2
(II.9)

Equation (II.9) is readily re-written in terms of the regression coefficients from

equation (II.7) and our estimate ofMSY from equation (II.8);

M̂EY = M̂SY −
̂

(
r

qK
)

C2

4p2q̂
(II.10)

From the previous section, we know thatMSY is over-estimated. In the sim-

ulations,(̂ r
qK

) is decreasing in magnitude with the rate of technological change. When-

ever there is technological change an estimate ofq is some average of theqt over the

period and so increasing in the rate of technological change. In particular this is true

in simulations. These facts taken together show thatMEY is also overestimated when

technological change is ignored.

II.E Dynamics of Collapse

This section looks at the actual dynamics of collapse and avoids recalculation

of quota estimates each period. Consider a suboptimal management regime which fixes

inputs based on a target catch and biomass level. While output (harvest) management

is often superior both in theory and in practice to input controls, many of the world’s

fisheries are still effort-managed or un-managed and so the implications of technical

change are salient.
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The policy is one of fixed effort based on a stock target. Even without techno-

logical progress this policy is clearly suboptimal as shownby proposition 7 below but

proposition 8 shows that it is not terribly bad for this model. First some notation.

Suppose management has a stock target ofB0.

Definition 2. Management’s effort target isE0 and satisfies:

E0 =
G(B0)

q0B0

(II.11)

If q does not change this is the effort required to harvest the expected growth

at target stockB0. For the specifications of the current model, this management strategy

amounts to taking a constant proportion of the stock provided that technology does not

change. Note that there is literature supporting this type of harvesting rule in the face

of some types of natural variability such as climate change (Walters and Parma (1996))

and cyclical variability (Carson et al. (2005)).

The analytical results in this section assume the general forms of equation II.1

and II.2 with the restriction thatG(·) be strictly positive and concave. Simulations use

the logistic form with multiplicative errors.

II.E.1 Effort management without Technological Progress

When management prescribes Effort each period asE0 the following proposi-

tions are satisfied (proofs in the appendix).

Proposition 7. If B0 ≤ BMSY , then

E(Bt|B0) ≤ B0∀t (II.12)

Proposition 8. WheneverBt ≤ B0, Bt is a submartingale;

E(Bt+1|Bt ≤ B0) ≥ Bt (II.13)
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These results establish that a constant effort policy for this model is not a

bad policy so long as technological change is not present. While constant effort does

not achieve an average stock size equal to the stock target the stock tends to increase

whenever the stock is below the target.

Simulations agree with these analytical results. Fisheries generated similarly

to section II.D do not crash when effort levels are fixed. A typical such simulation is

given below in figure II.2.
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Figure II.2: Fixed effort with constant technology

II.E.2 Dynamics with Technological Progress Under Effort Management

Proposition 9 below establishes that under the assumption that technology in-

creases weakly each period according to equation II.3, constant effort guarantees that a

stock tends toward zero. While the stock does not go extinct using this constant effort

harvest strategy, it eventually drops below any arbitrary level,δ;
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Proposition 9. When technology increases without bound, given anyδ > 0 there exists

a time,τ , for which the unconditional expectation ofBτ is less thanδ.

Stocks shrink to arbitrarily low levels. Simulations agreewith this result and

provide more information. A typical simulation is shown below in figure II.3 and it is

notable that the catch levels do not begin to decline until the 60th period when the stock

level is less than half of its target. This graph was generated by a typical simulation

described in the previous section but run for 100 periods. Observable variables, catch

and effort, are not changing much but the capital stock is drawn down as technology

changes.
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Figure II.3: Technology Driven Collapse

Generating 10000 of these simulations for each r and a pair allows estimation

of the expected time to collapse. I define collapse loosely following Mullon et al. (2005)
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as the first period when expected catch is less than 10% ofMSY . In the appendix these

times to collapse are given in tabular form along with biomass levels and rates of change

at collapse. Biomass at collapse tends to decrease witha but does not vary much with

r. The magnitude of the rate of change of the biomass is increasing in botha andr.

II.F Conclusion

Technological progress is potentially problematic to managers of unobserved

natural capital stocks. In particular, the likelihood of unexpected collapse is higher when

productivity creep is present. The problem is one of inference. Statistical techniques

and simple observations are confounded by an unidentified system. As the stock is

drawn-down, the catch-per-unit-effort increases so that total catches increase or remain

constant.

There are many potential causes for unobserved collapse. Environmental vari-

ability, the tragedy of the commons and high discount rates are among the proximate

causes of collapse. Technological change is present in industries which depend upon

natural resources and this alone can lead to sudden collapse. It behooves mangers to

consider this possibility and invest in methods to detect and correct for faulty inference.

On the one hand, this paper presents a plausible explanationof natural re-

source collapse. On the other hand this paper is a call for fishery independent data and

for greater attention to technological change. It is commonto invest in expensive fish-

ery independent biological surveys. These efforts are costly but necessary to identify

the system. The economic literature generally ignores these estimation problems but

unobserved and therefore unidentified systems are fundamental features of fishery man-

agement. Where fishery independent signals of stock change are not feasible managers

should seek signals of technological change and attempt to incorporate these directly
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into management decisions.

A last resort is the arbitrary notion of precaution. This paper gives yet another

reason for precaution in setting harvest targets. Conservationists have long argued that

catch limits should be reduced because of uncertainty. Though I can say no more on the

quantity of precaution that is appropriate, I make explicitthe direction of bias in harvest

targets; harvest targets are biased up when technological change is ignored.
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Table II.1: Average Percentage Overestimation of MSY
Table 1: Average Percentage Overestimation of MSY

r
a 0.1 0.125 0.15 0.175 0.2 0.225 0.25
0 9.8% 6.4% 4.4% 3.2% 2.4% 1.9% 1.5%

0.0025 10.3% 6.3% 4.0% 2.7% 1.8% 1.2% 0.7%
0.005 15.3% 9.7% 6.2% 4.3% 3.0% 2.1% 1.4%

0.0075 20.4% 13.6% 9.9% 7.4% 5.6% 4.3% 3.4%
0.01 29.6% 18.7% 14.2% 11.1% 8.9% 7.2% 5.9%

0.0125 32.5% 23.6% 18.5% 14.8% 12.1% 10.1% 8.5%
0.015 37.1% 27.8% 21.9% 17.8% 14.8% 12.5% 10.7%

0.0175 40.9% 30.8% 24.5% 20.3% 17.6% 14.8% 12.5%
0.02 43.5% 32.8% 26.5% 23.9% 18.8% 17.7% 15.5%

0.0225 45.0% 34.3% 28.0% 27.8% 24.4% 45.0% 29.1%
0.025 102.3% 37.9% 37.2% 34.6% 67.4% 89.9% 63.0%

0.0275 46.6% 49.9% 50.6% 110.4% 80.5% 126.3% 146.5%
0.03 48.6% 50.3% 117.3% 97.9% 140.7% 206.0% 262.5%

II.G Appendix: Tables

II.G.1 Section II.D

II.G.2 Section II.E

II.H Appendix: Proofs

Proof of Proposition 5.Suppose the resource owner observesCt andEt and knows pe-

riod t technology,qt. DefineUt = Ct/Et = qtBt and assume thatqt+1 = qt and

substitute into equation II.1 to obtain;

Ut+1

Ut

− 1 = εt

G(Bt)

Bt

− qtEt (II.14)

Now sinceUt+1, Ut andEt are observed andqt is assumed known, our manager may

calculate the realized proportional surplus production for periodt, εt
G(Bt)

Bt

by rearrang-
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Table II.2: Time periods to collapse
Table 4: Time periods to collapse

r
a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0 300 300 300 300 300 300 300 300 300

0.005 260 217 198 187 179 174 170 166 164
0.01 161 131 117 109 103 99 96 94 92

0.015 123 99 87 81 76 73 70 68 67
0.02 102 81 72 66 62 59 57 55 54

0.025 88 70 62 57 53 50 48 47 45
0.03 78 62 55 50 47 44 43 41 40

0.035 70 56 49 45 42 40 38 37 36
0.04 64 52 45 41 39 36 35 34 32

0.045 60 48 42 38 36 34 32 31 30
0.05 56 45 39 36 33 31 30 29 28

Table II.3: Biomass at Collapse
Table 5: Biomass at collapse

r
a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0 0.499 0.498 0.498 0.497 0.496 0.496 0.495 0.494 0.493

0.005 0.013 0.016 0.018 0.019 0.021 0.021 0.021 0.022 0.021
0.01 0.010 0.013 0.015 0.016 0.018 0.019 0.019 0.018 0.019

0.015 0.008 0.011 0.014 0.014 0.016 0.016 0.017 0.018 0.016
0.02 0.006 0.010 0.011 0.013 0.014 0.015 0.015 0.016 0.014

0.025 0.005 0.008 0.010 0.011 0.013 0.015 0.015 0.014 0.017
0.03 0.005 0.008 0.008 0.011 0.011 0.014 0.011 0.014 0.013

0.035 0.005 0.007 0.009 0.010 0.011 0.011 0.013 0.012 0.012
0.04 0.004 0.005 0.008 0.010 0.008 0.013 0.011 0.010 0.015

0.045 0.003 0.005 0.007 0.009 0.008 0.009 0.012 0.011 0.012
0.05 0.003 0.004 0.007 0.007 0.010 0.011 0.010 0.010 0.011
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Table II.4: Rate of Change of Biomass at Collapse
Table 6: Rate of Change of Biomass at Collapse

r
a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.005 -0.044 -0.051 -0.056 -0.057 -0.063 -0.066 -0.066 -0.074
0.01 -0.078 -0.088 -0.096 -0.106 -0.105 -0.115 -0.117 -0.124

0.015 -0.114 -0.128 -0.133 -0.146 -0.158 -0.155 -0.167 -0.171
0.02 -0.150 -0.163 -0.179 -0.191 -0.201 -0.207 -0.211 -0.205

0.025 -0.190 -0.204 -0.225 -0.234 -0.248 -0.238 -0.251 -0.277
0.03 -0.229 -0.245 -0.262 -0.271 -0.293 -0.290 -0.320 -0.312

0.035 -0.266 -0.285 -0.300 -0.314 -0.324 -0.348 -0.360 -0.382
0.04 -0.307 -0.342 -0.342 -0.356 -0.397 -0.378 -0.411 -0.440

0.045 -0.374 -0.386 -0.400 -0.414 -0.451 -0.462 -0.450 -0.499
0.05 -0.426 -0.443 -0.441 -0.486 -0.474 -0.490 -0.523 -0.546

ing equation II.14. But this is based on the assumption that technology does not change.

In fact if technology evolves according to II.3 our estimateof t, εt
G(Bt)

Bt

is actually given

as follows;

[
Ut+1

Ut

− 1] + qtEt = [(1 + at+1)
Bt+1

Bt

− 1] + qtEt

= (1 + at+1)εt

G(Bt)

Bt

+ (1 −
Ct

Bt

)at+1 (II.15)

Now sinceCt

Bt

must be less than one (otherwise the stock would be extinct and

Ut+1 = 0 the final expression in II.15 is strictly greater than the true realized proportional

surplus production and this concludes the proof.

Proof of Proposition 6.If we assumed thatqt = q for all t then Walters and Hilborne

(1976) showed that if we defineUt = Ct/Et = qtBt we can rewrite II.4 as in II.7.
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If technological change evolves according to equation II.3. In this case, the

residuals from II.7 are actually given by;

ωt = [
Ut+1

Ut

− 1] − [r −
r

qtk
(Ut) − qEt]

= [
Bt+1

Bt

qt+1

qt

− 1] − [r −
r

k
(Bt) − qEt]

= [
Bt+1

Bt

(1 + at+1) − 1] − [
Bt+1

Bt

− 1]

=
Bt+1

Bt

(at+1) (II.16)

Proof of Proposition 7.Proceed by induction and first note that:

E(B1|B0) = B0 + G(B0) − G(B0) = B0

Now, show that if the proposition is true fort it must be fort + 1; by the Law

of Iterated Expectations:

E(Bt+1|B0) = E(E(Bt+1|Bt, ..., B0)|B0)

= E((1 − qE0)Bt + εtG(Bt)|B0)

≤ (1 − qE0)B0 + E(G(Bt)|B0) by assumption

≤ B0 − G(B0) + G(E(Bt|B0)) by Jensen’s inequality

≤ B0 − G(B0) + G(B0) by assumption and sinceX0 ≤ XMSY

= B0
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Proof of Proposition 8.AssumeBt < B0. ThenE(Bt+1|Bt) = Bt + G(Bt) − qE0Bt.

Now by concavity ofG(·) and the definition ofE0, G(Bt) > qE0Bt. ThereforeE(Bt+1|Bt) >

Bt.

Proof of Proposition 9.For anyδ let τ be such thatqτ > G(δ)
δE0

. Apply proposition 7 with

B0 replaced withδ and the result follows.



III

Marine protected areas as a risk

management tool

Abstract

There is considerable debate in the literature about the usefulness of Marine Protected

Areas as fishery management tools. While most economists have found that it is unlikely

that marine reserves will improve steady-state yields, some biologists have shown that

protected areas have the potential to reduce uncertainty. Most of the work on uncertainty

has focused on exogenous environmental variability; the probability of collapse can

be reduced with protected areas, but this comes at the cost oflower yields. Here I

consider single-owner management with spatial closures under growth and production-

function parameter uncertainty. There are many reasons to suspect that estimates of

fishery growth parameters are highly uncertain: intrinsic variability, lack of data, weak

identification, and technological change to name a few. If a single owner does not know

growth parameters very well then it is difficult to determineoptimal extraction paths.

Traditional optimal management utilizes a single control variable, catch. When growth

51
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and production parameters are uncertain I consider the expected benefits of utilizing a

second control variable: fraction of area harvested. I showthat even in a deterministic

dynamical system, if parameters are unknown, expected harvests can be improved with

protected areas.
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III.A Introduction

Marine protected areas, marine reserves or spatial closures (or perhaps space-

time closures) to exploitation are often heralded as the answer to the troubled history

of marine resource management. Uncertainty in the marine environment is one strong

justification for a simplified, spatial (or perhaps space-time) form of management. In the

following I will use reserves and protected areas interchangeably to mean some form of

closure to extraction.

Suppose we have the rosy scenario of a single-owner managed fishery. Ul-

timately, when growth-parameters of a fishery are unknown, the goal of the manager

making catch decisions is really a stochastic control problem under parameter uncer-

tainty, or an ‘adaptive control’ problem as in Bagchi (1993)and Walters (1986). In the

case of the fishery we have a control variable, catch, with an underlying stock variable

subject to random fluctuations. Maximizing expected discounted payoff is well under-

stood for such problems under some forms of uncertainty, forexample, Reed (1979)

or even Sethi et al. (2005) for multiple-uncertainty. In these cases the parameters of

the dynamical system are assumed known. In reality, the manager must estimate these

parameters using past decisions and outcomes. In turn the updated estimate each pe-

riod should inform the next period’s control decision. Thisleads us to the adaptive

control paradigm in Walters (1986). The text lays out the most thorough treatment of

what a renewable resource managers strategy should be. Thisstrategy involves seeking

some “optimum, or at least reasonable, balance between learning and short-term perfor-

mance.” But even Walters admits that real managers are more likely to “act so as to filter

out the informative variation in favor of more conservative, incremental policies.” This

is fairly intuitive; if management seeks to maintain catch or stock levels, we learn only

locally about the dynamical system.
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For reasons cited by Walters it may be quite difficult to implement the adap-

tive rule that maximizes the infinite horizon expected payoff. Additionally, there may

be confounding factors in marine fisheries which lead to a certain ‘irreducible uncer-

tainty’ (see Ludwig (1989)). For marine fisheries, we might imagine several reasons

that parameter uncertainty will not be reduced as more observations are collected: poor

observability and measurement in marine systems; under identification of growth func-

tions, Carson and Murray (2005); technological change can lead to overestimation of

natural growth, Murray (2006), unstable parameter due to natural fluctuations, Carson

et al. (2005) or due to increasing variability as a function of exploitation, Hsieh (2006).

Here, I explore the potential for a management strategy requiring far less in-

formation than an adaptive control policy: marine protected areas. Some authors such as

Lauck (1996), Lauck et al. (1998) and Murray et al. (1999) findthat MPA’s can reduce

or eliminate management uncertainty, Hastings and Botsford (1999) finds that in the

absence of uncertainty maximum sustainable yield can be achieved by spatial closure

and harvesting fully outside the closure. Neubert (2003) uses a spatially explicit Fisher

equation and finds that all optimal harvesting policies include at least one reserve. This

last result while very intriguing is in no small part driven by the assumption that fish

flow out of the fishery at the boundaries and cannot be recovered for harvest or repro-

duction. This implies that it is always optimal to harvest maximally near the boundaries

and so no spatially homogeneous harvest policy could be optimal.

Economists such as Sanchirico (2000) are skeptical of the hedging potential

for MPA’s. Also Hannesson (1998), Sanchirico and Wilen (2001) and Smith and Wilen

(2003) are skeptical of the ability of reserves to improve yields. With the exception

of Lauck (1996) and Lauck et al. (1998) none of these papers consider uncertainty.

A few articles do address ecological uncertainty and harvesting payoff. Grafton et al.
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(2005) show that expolited populations recover from environmental shocks faster when

marine reserves are in place and show that reserves can be economically optimal. Also,

Grafton and Kompass (2005) develop a procedure for designing marine protected areas

in response to environmental fluctuations. The crucial difference in this paper is that

uncertainty is not based on external ecological variability in time. The only uncertainty

is parameter uncertainty and I find that reserves can increase expected harvests when

marine systems are imperfectly understood even if they are dynamically deterministic.

Let me note that there are many justifications for marine protected areas aside

from fishery yields. Many environmental amenities and ecosystem services may require

large marine regions which are relatively less disturbed. These are not the topic of this

research. These benefits are certainly relevant to policy makers but the case is rather

easily made. For fishery yield benefits, there remain seriousdoubts and many open

questions as to the utility of protected areas. There is alsoa significant potential fishery

benefit, I will not explore. Walters (1986) notes that the only way to avoid serious biases

in parameter estimation for heavily exploited stocks is to “stop harvesting for a long

period.” Protected areas allow for long periods of ceased harvesting without a complete

shut-down of the industry. The current research is limited to finding improvements to

expected catches under some form of irreducible uncertainty.

The goal here is to model parameter uncertainty in a single-species extracted

resource. There is both stock and growth-parameter uncertainty. Ultimately I want to

determine if heuristic methods of management can improve ona strictly catch-decision

management strategy. The next section describes some previous models of protected

area management. Section III.C describes my model of a simple diffusion rate as a

function of the density differential at the imposed boundary. Section III.D describes

some initial steady-state results.
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III.B Fisheries Models

It is worth reviewing the models that some authors have used to describe the

potential gains from spatial management. While this is not exhaustive, the two papers

below are the most convincing theoretical papers I have found making a case for the

usefulness of protected areas. Interestingly, for all of the popularity of patchy ecosystem

models amongst conservation oriented ecologists, neitherof these models is spatially

explicit.

III.B.1 Lauck’s Model

Following Lauck (1996), use the following notation:

Xt : biomass at timet.

N : Natural growth multiplier.

Ht : Fraction harvested, a random variable.

ht : Target harvest fraction.

a : Fraction of the stock protected by marine reserve.

This yields the dynamics of the stock given by:

Xt+1 = XtN(a + (1 − a)(1 − H)) (III.1)

Given and initial value,X0, these dynamics can be written:

Xt = X0

t−1∏

i=1

Ni(a + ((1 − a)(1 − Hi))) (III.2)

Lauck claims that by choosingHi = 1 and making the reserve large enough,

i.e.,a = 1 − h, we reduce uncertainty to zero. What is missing here is the optimization
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of catch. Lauck is only looking at reducing variance. This isalso the case in Lauck

et al. (1998) a similar paper that uses simulations to show that reserves can reduce the

probability of stock crash.

III.B.2 Hasting’s Model

In Hastings and Botsford (1999), the authors construct another model of spawn-

ing populations protected in a reserve area to show an equivalence in yield for spatial

management and traditional management. The main contribution here is that an age-

structured model shows that a reserve can yield equivalent yields with a larger standing

stock. This is based simply on the fact that older individuals continue to reproduce.

Notation:

• m number of juvenile recruits per adult

• j age of sexual maturity

• a annual adult survivorship

• c fraction of area in reserve

• H fraction harvested

• nr
t density inside reserve

• cmnr
t number of juveniles generated by reserve

Note immediately that homogeneous mixing is assumed. First, the authors

calculate the MSY for traditional management (whenH is the choice variable):

Yh = maxH [f(mn) + an] (III.3)
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In the case of reserves,c is the choice variable (chosen to maximize the and MSY is

given by:

Yr = max[(1 − c)f(cmnr
t )] (III.4)

The authors show that both MSY’s are equivalent and that the optimal c is

given by:

c = (1 − H) − H [
an

f(mn)
] (III.5)

The density,n is the density at the optimal level of harvest. “Thus the op-

timal fraction of the coastline to put in reserves is always less than the fraction of

adults allowed to escape harvest under traditional management techniques ... This makes

sense because the adults in reserves can reproduce until they die, so if the population is

iteroparous, the fraction of the adult population set asidecan be lower than that under

traditional management.”

III.B.3 Economic Models

Most economic work has focused on reserves as the only management tool.

This means that the analysis focuses on an open-access steady-state. One advantage

these papers have over the biological papers mentioned above is the explicit modeling

of fishermen’s behavior and response to reserve creation.

Hannesson (1998) uses a non-spatially-explicit model but shows that a pro-

tected area is unlikely to improve catches in open-access equilibrium. More interesting

is the result in discrete time that the reserve will generateover-capacity in the fishing

fleet. The main insight gained by the spatially explicit models in Sanchirico and Wilen

(2001) and Smith and Wilen (2003) is that spatial behavior bythe harvesters is impor-

tant. Their models are also open-access in nature and focus solely on improving net
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yields in cases when spill-over is sufficient to compensate fishers for lost harvests from

reserve areas. This unsurprising result is that it is unlikely that reserves will increase

aggregate catches in an open-access fishery. Sanchirico andWilen (2001) do also find

some results which will be relevant to designing marine reserves; relative dispersal rates

in a patchy system are important in choosing which patches toclose.

The only economic work finding value for reserves as a hedgingstrategy is

Grafton et al. (2005) and Grafton and Kompass (2005). These articles model uncer-

tainty as ecological shocks and reserves manage this risk bykeeping a population more

resilient.

None of this literature considers parameter uncertainty. The next section be-

gins to model the use of protected areas as a supplemental management tool to the

single-owner harvest decision under parameter and stock uncertainty.

III.C Model

Notation:

• B ∼ biomass

• F ∼ Harvest

• E ∼ Fishing effort

• r ∼ intrinsic growth rate

• K ∼ carrying capacity

• z ∼ intrinsic migration rate
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• q ∼ catchability coefficient

• α ∼ fraction of area closed

In order to generalize the logistic growth function to spatially differential har-

vesting, we must specify the rate of diffusion from the higher density region. Specif-

ically, if we have an entire fishery (area normalized to 1) satisfying a simple logistic

equation so that the law of motion of the biomass,B is:

Ḃ = rB(1 −
B

K
) − F (III.6)

Fishing harvest,F is given by the standard Schaeffer production function:

F = qEB (III.7)

If we choose to harvest differentially in space, let’s first consider two regions. For the

region of sizeα we have:

Ḃα = Bα

[
r(1 −

Bα

αK
) + M(Bα, B1−α; α, K)

]
− Fα (III.8)

The equation of motion for the remaining region of size1 − α is then:

Ḃ1−α = B1−α

[
r(1 −

B1−α

(1 − α)K
) − M(Bα, B1−α; α, K)

]
− F1−α (III.9)

One good candidate for the per-capita migration rate is:

M(·) = m(α)

(
B1−α

(1 − α)K
−

Bα

αK

)
(III.10)

That is, the migration rate is some intrinsic rate,m(α), multiplied by the density dif-

ferential. At this point I insist only thatm(α) satisfy the boundary conditionsm(0) =
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m(1) = 0. This is the form used for the results in the following section. As an aside we

might also consider:

M(·) = n

(
1 −

Bα

B1−α

)
(III.11)

for some constantn.

III.D One-time effort choice

Choosing catches under parameter uncertainty is certainlythe most realistic

adaptive control problem but involves dynamics and learning. For tractability I focus on

the plausible approximation of a single owner making a one-time fleet-size decision and

look at the expected long run steady state. For both reservesand without reserves I will

look at expected steady-state catches (ignoring price and cost) and I will compute the

relevant payoff variables as functions of the effort (or fleet size) choice and reserve size

choice.

III.D.1 No reserve

Steady-state biomass as a function of effort choice:

BSS(E) = K −
qK

r
E (III.12)

Steady-state yield as a function of effort choice:

F SS(E) = qKE(1 −
q

r
E) (III.13)
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To round out this section we begin to consider uncertainty. Suppose we have

prior beliefs on the three parameters:q,r, andK. If we want to maximize the expected

steady-state yieldE(F SS(E)). The effort value maximizing this maximand is given by:

E∗ =
E(qK)

E(2q2K

r
)

(III.14)

Even in the unlikely event that these these three random variables are mutually

independent under our prior beliefs, we are left with the following:

E∗ =
E(q)

2E(q2)E(1
r
)

(III.15)

By Jensen’s inequality and the definition of variance it is easy to show that

in the above formulationE∗ ≤ E(r)
2E(q)

, the effort level that harvests the maximum sus-

tainable yield under our prior beliefs. One interpretationof this result is that parameter

uncertainty alone necessitates a certain level of precaution even under risk neutrality.

III.D.2 With reserves

With two regions and fishing effort restricted to a region of size (1 − α), de-

notedE1−α, the steady state density differential between the regionsis:
(

B1−α

(1 − α)K
−

Bα

αK

)
=

−qE1−α

r + 2m(α)
(III.16)

This equation III.16 shows that the steady-state fish density in the reserve is

higher than that in the fished region; this is not a surprisingresult but a comforting one.

The biomass levels in the two regions are:

BSS
α (E1−α) = αK −

qαK

r
E1−α

(
m(α)

r + 2m(α)

)
(III.17)
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BSS
1−α(E1−α) = (1 − α)K −

q(1 − α)K

r
E1−α

(
1 −

m(α)

r + 2m(α)

)
(III.18)

The steady-state harvest in this context is given by:

F SS
1−α(E1−α) = q(1 − α)KE1−α

(
1 −

q

r
E1−α

(
1 −

m(α)

r + 2m(α)

))
(III.19)

Also note that the sum of the two biomass values is given by:

BSS
Total = K −

qK

r
E1−α

(
(2α − 1)m(α)

r + 2m(α)
+ (1 − α)

)
(III.20)

Note that becausem(0) = 0 equation III.20 reduces to equation III.12 when

there is no reserve.

III.E Optimal Steady-State

If our manager wishes to maximize expected yield under priorbeliefs then the

optimization problem is given by:

max
α,E1−α

(1 − α)E

[
qKE1−α −

q2K

r
E2

1−α

(
1 −

m(α)

r + 2m(α)

)]
(III.21)

The first order conditions for this maximum are:

∂

∂E1−α

= 0 = E

[
qK − 2E1−α

(
q2K

r

(
1 −

m(α)

r + 2m(α)

))]
(III.22)

and
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∂

∂α
= 0 = (1−α)E

(
−q2K

r
E2

1−αΨ′
α

)
−E

(
qKE1−α −

q2K

r
E2

1−αΨα

)
(III.23)

where

Ψα = 1 −
m(α)

r + 2m(α)
(III.24)

and therefore

Ψ′
α = −

rm′(α)

(r + 2m(α))2
(III.25)

It is important to first note that the derivative of the expected value with respect

to α can be both positive and negative. Suggesting there may be anoptimal reserve and

fleet size. The exact analytical solutions to these first order conditions are not easily

solved so it is necessary to pass to numerical methods as in the next section.

III.F Numerical solutions

In order to numerically optimize equation III.21 I normalizeK = 1 and spec-

ify m(α) = zα(1 − α). Call z the intrinsic migration rate. I consider values forr and

q ranging from .01 to 2. The result is that reserves do indeed increase expected payoff.

For each parametrization, the optimal steady-state is achieved with a positive value for

α, that is reserves are optimal when fleet size and reserve sizeare the only management

tools. Not only does a reserve decrease the probability of a stock crash to zero but it also

increases the payoff in very low catch steady-states when too little or when too much

effort has been applied. In fact, even when distributions are such that the probability of

a stock crash is zero reserves still improve expected payoffs.
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III.1 displays a typical three dimensional graph of the expected payoff func-

tion III.21. This particular graph was generated with independent and identical discrete

uniform distributions onr andq (mean = .1050 and variance = .0035) and an intrinsic

migration rate of 1. In this case the optimal reserve size wasapproximately one-third

of the region. All other parameter distribution revealed qualitatively similar results with

unique optima but no clear patterns emerged. Changes in the variance appear to have

little effect on optimal reserve size except when variance is zero, optimal reserve size is

zero.
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Figure III.1: Expected steady-state harvest

Perhaps more interesting than the existence of a unique optimum is the ex-

post value of reserves given a particular fleet size. For anr andq both with mean of .1

the maximum likelihood choice for fleet size for harvesting maximum sustainable yield

is Emle = E(r)
2E(q)

= .5. Recall that equation III.15 is less than or equal to this effort

level. Implying that the best the manager can do without a reserve is to choose a fleet

size lower than this maximum likelihood fleet. Here, I can show (for these and other

parameterizations) that certain reserve sizes can improve, not just expected payoff but
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can actually dominate the choice without reserves except inthe case when fleets were

far too small. That is, ex-post payoff is higher for every realization of r andq whether

our maximum likelihood fleet size was too high or too low. For much larger reserves,

the result is that we still do better if our fleet size is too large but we significantly under-

perform if our fleet size was too small.

To see this, fix the fleet size at .5. Then compare different realized payoffs for

different reserve sizes for all pairs ofr andq realizations in the support. Here, I find

that with a small reserve of 10% we do better or equal to no reserve for almost every

realization pair{r, q}. The only exception is whenr > 2q so that our fleet choice was

far too small. But for a larger reserve (70%) our payoff is higher only in the region

where our fleet size was too large (r < 1
2
q). These results are represented graphically

in Figure III.2. There is an intriguing political economy implication of this result; when

fleet sizes are too large, yields can be uniformly improved byprotected areas. More

generally, protected areas that are ‘small enough’ can improve steady-state yields no

matter the size of the fleet. To the extent that protected areas provide numerous other

benefits they may be far more politically achievable than attempts to reduce fleet sizes,

such as the notoriously troublesome vessel buy-back programs.

III.G Conclusion

Reserves in this model do help improve expected payoffs whenparameters

are uncertain. The exact size of the optimal reserve is determined by the particular

parametrization. In particular the optimal size depends onthe prior probabilities and the

intrinsic rate of migration. This improvement is not a feature of any directional spatial

dynamics and disappears without uncertainty. Reserves canbe too large; in every trial,

expected payoffs are eventually decreasing inα. Small reserves, over the large center of
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Figure III.2: Ex-post steady-state harvest

the belief support, yield large benefits over no-reserve policies and large reserve policies.

Large reserves only dominate small ones in the extremes where fleets are far too large.

No-reserve policies are only marginally better when fleets are far too small.

The actual design of marine protected areas will involve models far more com-

plicated than the present investigation, taking into account idiosyncratic features of the

region and non-fishery values as well. This paper suggests that reserves of the right size

are not strictly a loss to fishing industry. To the extent thatmanagers and the public

wish to create reserves in nurseries or in regions serving other values such as existence

values, the fishing industry may benefit in the long run as well, provided the reserves are

not too large. This paper establishes the qualitative result that many ecologist’s intuition

is sound; marine protected areas can help manage the risk associated with our uncertain

knowledge of marine systems.
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