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EPIGRAPH

We believe that part of the answer lies in pricing energy on the basis of its full

costs to society. One reason we use energy so lavishly today is that the price of

energy does not include all of the social costs of producing it. The costs incurred

in protecting the environment and the health and safety of workers, for example,

are part of the real costs of producing energy-but they are not now all included in

the price of the product.

—Richard Nixon
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ABSTRACT OF THE DISSERTATION

Essays on Energy and Environmental Policy

by

Kevin Michael Novan

Doctor of Philosophy in Economics

University of California, San Diego, 2012

Professor Richard T. Carson, Chair

This dissertation examines topics at the intersection of environmental and

energy economics. The first two chapters explore how policies can induce more

efficient use of the energy sources available for generating electricity. The electric-

ity sector is a major source of a wide variety of harmful pollutants. To mitigate

the environmental impacts of electricity production, a variety of policies are being

implemented to increase the quantity of generation from clean, renewable energy

sources. The first chapter identifies the short-run reductions in emissions caused

by generation from a particular renewable technology; wind turbines. Using the

estimates of the pollution offset by the renewable production, I explore the effi-

ciency of the incentives created by the current set of renewable energy policies.

The second chapter examines the impact adding bulk electricity storage capacity
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will have on the full social costs of generating electricity. The third chapter ex-

plores the impact of various gasoline tax structures on both retail price volatility

and state revenue volatility.
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Chapter 1

Valuing the Wind: Renewable

Energy Policies and Air Pollution

Avoided

Abstract

This paper estimates the variation over time in the quantity of pollution

avoided by renewable electricity. Taking advantage of the natural experiment pre-

sented by changes in hourly wind speeds, I identify the amount of CO2, NOX ,

and SO2 reduced by electricity supplied from wind turbines in the Texas electric-

ity market. The results provide clear evidence that renewable generation in the

region offsets significant amounts of each of the pollutants examined. However,

because different conventional generators are on the margin at different levels of

demand, I find the amount of pollution avoided by a unit of renewable electricity

varies substantially with the quantity of electricity demanded. As a result, re-

newable generators in separate locations, producing electricity at varying points in

time, will provide very different reductions in pollution. By failing to account for

these differences in the emissions avoided, policies equally subsidizing each unit of

renewable electricity will not ensure efficient investment decisions are made.

1
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1.1 Introduction

The combustion of fossil fuels in the electricity sector is responsible for a

large share of a variety of harmful air pollutants. While the economic literature

generally finds emissions prices to be the most efficient mechanism for reducing

the level of pollution, policies designed to induce investment in renewable electric-

ity capacity are receiving far greater use.1 These policies are motivated by the

belief that increasing production from renewable sources, such as wind and solar

energy, has the potential to reduce emissions from generators reliant on fossil fu-

els. However, rather than subsidizing renewable generators based on the quantity

of pollution avoided, the current mechanisms regularly provide payments or tax

credits based on the quantity of renewable electricity generated. To determine if

these flat generation payments create efficient incentives, it is crucial to know how

much pollution is avoided by each unit of renewable electricity and how much the

pollution avoided varies amongst renewable generators.

In this paper, I estimate the short-run emission reductions caused by wind

turbines producing electricity at different points in time.2 The analysis focuses on

the Texas electricity market, which currently leads the nation in installed wind

generation capacity. I combine data on the hourly production from wind turbines

with the observed levels of CO2, NOX , and SO2 emitted by fossil fuel generators

in the region. Taking advantage of the natural experiment presented by changes

in hourly wind speeds allows me to directly identify the impact of renewable gen-

eration on the quantity of pollution emitted.

The estimates reveal renewable electricity causes significant reductions in

each of the pollutants examined. In addition, I demonstrate that the quantity

of pollution offset by a unit of renewable electricity varies substantially with the

1For examples comparing the efficiency of emissions prices and renewable subsidies, see Fischer
and Newell (2008) and Palmer and Burtraw (2005).

2Recent studies also examine the long-run impact increased renewable capacity may have
on the composition of generation technologies. For example, see Lamont (2008) and Bushnell
(2010). Starting from a clean slate with no existing capital, these studies find that the penetration
of renewable capacity alters the cost minimizing mixture of technologies. However, given that
renewable capacity is being added to markets with existing capital stocks that are typically
quite long lived, it is also important to understand the impact renewable generation has in the
short-run.
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level of electricity demanded. Renewable generation replaces production from the

marginal, non-renewable generating units. As the demand for electricity shifts, the

generators on the margin change. Given that the emission rates differ across non-

renewable generators, the quantity of pollution reduced by renewable electricity

will vary based on when the generation occurs. I find that depending on the level

of electricity demanded in Texas, a Megawatt-Hour (MWh) of wind generation will

offset anywhere between 0.54 to 0.93 tons of CO2, 0.88 to 1.92 pounds of NOX ,

and 0.97 to 4.30 pounds of SO2.

The temporal variation in the quantity of pollution avoided has important

policy implications. During specific hours of the day, different renewable technolo-

gies tend to produce different amounts of electricity. Moreover, the same renewable

technology installed in separate locations can produce electricity at different points

in time. The current policies used to induce investment in renewable capacity of-

ten provide payments or tax credits based on the quantity of renewable electricity

generated. Under these policies, two renewable generators that produce the same

amount of electricity, but at different times, will receive equal subsidies. However,

my results demonstrate that by generating at different times, the pollution reduced

by the renewable generators will generally not be equal. As a result, the current

policies will adversely favor certain technologies and locations over others.

The identification strategy I present in this paper contributes to the litera-

ture examining the environmental benefits of renewable electricity. Several strate-

gies for quantifying the impact of renewable generation on pollution have been

proposed (Broekhoff, 2007; Gil and Joos, 2007; Price, et al., 2003; Connors,et al.,

2004; Callaway and Fowlie, 2009). However, rather than identifying the causal im-

pact of renewable electricity on non-renewable generation, each method employs a

variety of simplifying assumptions to predict which generators reduce output, and

therefore emissions, in response to renewable supply. Cullen (2011) presents the

first econometric estimates of the actual substitution pattern between renewable

suppliers and non-renewable generators. Using short-run changes in the produc-

tion from wind turbines as a natural experiment, Cullen estimates the average

reduction in generation from each fossil fuel plant in the Texas market. Multiply-
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ing the generation avoided by the average emission rate of the respective plants,

Cullen produces estimates of the pollution reduced by the renewable electricity.

In contrast to the estimation strategy I present, Cullen’s method imposes two

assumptions which I find bias the estimates of the emission avoided.

The first assumption is that each fossil fuel plant has a constant marginal

emission rate. In reality, a single plant often operates multiple generating units,

each of which can have different average emission rates. In addition, the emis-

sion rate of a single generating unit varies over the range of its output, typically

becoming less emission intensive when producing closer to maximum capacity.3

Therefore, the marginal emission rate of a fossil fuel plant will vary based on

which generating unit is on the margin and what the level of production is from

the marginal unit.4 The second assumption is that the short-run level of output

from wind turbines is determined exogenously by wind energy (e.g. wind speed

and direction). While the maximum generation from wind turbines is controlled by

the available wind energy, the actual quantity of electricity produced is frequently

curtailed when the transmission limits of the electric grid are reached.5

The identification strategy I use in this paper allows me to estimate the

impact of renewable electricity on emissions without requiring these two untenable

assumptions. Using wind speeds as an instrument for the observed wind gener-

ation, I am able to relax the assumption that output from wind turbines varies

exogenously in the short-run. The use of actual emissions data allows me to relax

the assumption that the marginal emission rates of fossil fuel plants are constant.

My results demonstrate generation from wind turbines causes significant reduc-

tions in each of the pollutants. However, compared to Cullen’s 2011 estimates, I

find smaller average reductions; 16% less CO2, 3% less NOX , and 43% less SO2. I

3This fact has been noted in both the engineering and economic literatures. For an example,
see Bushnell and Wolfram (2005).

4The emission rates from fossil fuel generators can also increase significantly above their
averages when ramping generation up or down. A frequent argument against producing electricity
using volatile wind and solar energy is that fossil fuel generators will be forced to constantly ramp
output up and down, and therefore, operate less efficiently.

5Fink, et al. (2009) provide several case studies of wind curtailment across markets. The
authors state that between 2003 and 2009, the Texas system operator required the curtailment
of a portion of wind generation capacity over 45% of the days.
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show that assuming fossil fuel generators have a constant emission rate results in

significant over-estimation of the CO2 and SO2 reductions. While I find evidence

of endogeneity in the observed generation from wind turbines, ignoring this fact

results in only small downward biases in the estimates of the emissions avoided.

In addition to presenting estimates of the causal impact of renewable gen-

eration on pollution, I provide a second contribution by exploring the policy impli-

cations of the variation in the emissions avoided by renewable electricity. Callaway

and Fowlie (2009) as well as Metcalf (2009) highlight that the current renewable

policies can potentially provide equal subsidies to renewable generators that reduce

different amounts of pollution. However, given that prior studies have been unable

to identify the actual impact of renewable electricity on emissions, the extent to

which the effective payments per unit of pollution avoided vary amongst renewable

generators has not been determined.

In this study, I simulate the pollution reductions that could be realized by

installing additional renewable generators. I do this by combining the estimates

of the emissions offset at different points in time with predicted hourly wind and

solar generation at four locations in Texas. The results show that depending on

which renewable technology and location is chosen, the average pollution offset by

each additional MWh of renewable generation varies between 0.55 and 0.62 tons

of CO2, 1.02 and 1.16 pounds of NOX , and 1 and 1.43 pounds of SO2. Therefore,

by providing a flat subsidy per MWh, different renewable generators will receive

different payments per unit of pollution avoided. As a result, the current renewable

policies do not ensure that efficient renewable capacity investments are made.

The remainder of the paper proceeds as follows. Section 1.2 briefly describes

the key features of the electricity dispatch process. In addition, I present a simple

model of a competitive electricity market to highlight which factors determine the

quantity of pollution avoided by renewable electricity. Section 1.3 reviews the

existing methods for estimating the emissions avoided by renewable generation

and discusses the identification strategy in this study. Section 1.4 describes the

Texas electricity market and the data used in the empirical estimation. Section

1.5 presents estimates of the average reduction in emissions. Section 1.6 presents
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estimates of the emissions avoided at different levels of demand. Section 1.7 uses

the estimates of the emissions avoided to compare the external benefits of various

renewable capacity investments. Section 1.8 concludes.

1.2 Electricity Market Model

This section presents a simple model of a competitive wholesale electricity

market. The model provides intuition on how renewable electricity can reduce

pollution from the electric sector. In addition, I highlight how the impact on

emissions can vary in the short-run based on when the renewable generation occurs.

Before describing the model, I provide a brief overview of the electricity dispatch

process and discuss the current policies being used to support renewable electricity.

1.2.1 Background on Electricity Dispatch Process

To maintain the stability of an electric grid, the quantity of electricity sup-

plied must always equal the quantity of electricity demanded. Balancing the real

time supply and demand is a complex optimization problem in which a central

system operator attempts to minimize the cost of meeting the level of electricity

demanded. This cost minimization is subject to the production constraints of each

interconnected generating unit and the transmission limits of the grid. Procedures

to determine the level of production from each unit vary across markets. In reg-

ulated regions, a central planner directly schedules output from each unit while

in deregulated regions, like the Texas market examined in this study, supply and

demand are balanced through the operation of both centralized and decentralized

markets.

As a result of the cost minimization problem, plants with the lowest variable

costs regularly generate close to their maximum capacities at all hours. To meet

the remaining demand, generation is dispatched from additional plants with the

highest marginal cost generators supplying electricity at peak levels of demand.

When not off-line for maintenance or repairs, these dispatchable sources are capable

of supplying electricity at any time. In addition, the level of generation from each
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of these technologies can be increased or decreased at any time.6

While conventional, dispatchable sources account for the majority of gen-

eration, a small share of electricity is produced by intermittent renewable sources.

In the United States, electricity form wind turbines accounts for the vast majority

of intermittent generation.7 A major difference between intermittent renewable

generators and dispatchable generators is that once the fixed costs of building and

installing a wind turbine or solar panel have been spent, only the regular main-

tenance and repair costs must be paid. Unlike combustion generators, however,

there are no fuel costs and unlike hydroelectric plants, there are no opportunity

costs to using the resource.

A temporary increase in generation from intermittent renewable sources ef-

fectively shifts the short-run electricity supply curve outwards. While this shift

will reduce wholesale electricity prices, the quantity of electricity demanded will

remain unchanged due to the fact that the short-run electricity demand is essen-

tially perfectly inelastic.8 As a result, an increase in the supply from renewable

sources must result in a decrease in the quantity supplied by conventional gener-

ating sources. If any of the offset conventional generation comes from generating

units burning fossil fuels, the aggregate level of pollution may be reduced.

6The ability to increase or decrease output from a conventional generating unit is subject to
minimum/maximum operating levels, ramping constraints, and any minimum start-up or shut-
down times.

7In 2009, 70,761 gigawatts of electricity was produced by wind turbines in the United States.
The second largest source of intermittent renewable generation, solar, generated 808 gigawatts
of electricity. Generation statistics are from the Energy Information Administration.

8The majority of consumers face a fixed short-run retail price. Real-time pricing is occasionally
available to large industrial consumers, and in specific locations, residential consumers. In the
Texas electricity market, which is examined in this work, consumers do not have real-time pricing
options. A small number industrial consumers in the Texas market have real-time pricing options,
however, estimates of the real-time price elasticity of industrial demand in Texas is zero (Zarnikau
and Hallet, 2007). Therefore, the increase in supply from wind turbines will have no impact on
short-run demand.
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1.2.2 Renewable Energy Policies

Output from fossil fuel fired generators accounts for a substantial portion

of dispatchable electricity generation.9 As a result of the reliance on fossil fuels,

the electricity sector is the single largest source of a variety of harmful pollutants.

To reduce the level of pollution from the electric sector, the economic literature

finds mechanisms which place a price on emissions, either a tax or a cap-and-

trade system, to be the most efficient options (Palmer and Burtraw, 2005; Fis-

cher and Newell, 2008).10 Unlike other policies, emissions prices will equate the

marginal cost of abatement across each available channel for reducing emissions;

fuel-switching, end of pipe treatments, demand reduction, and increased use of

renewable energy sources.

In practice however, emissions pricing has seen limited use. Currently, only

a subset of the many pollutants created by fossil fuel fired generators are subject

to an emissions tax or cap. In addition, most of these emissions prices only apply

to emitters within certain regions.11 Even in regions where a cap is placed on the

total quantity of emissions, the market clearing price for the permits is often well

below estimates of the social marginal cost of the pollutants.12

Policies designed to induce investment in renewable electricity capacity, as

opposed to pricing emissions, are receiving substantial support. These policies

are motivated in large part by the potential emissions reductions renewable elec-

tricity can cause. At the Federal level, the United States government offers the

Renewable Electricity Production Tax Credit (PTC) which provides a tax credit

of $22 per MWh produced by qualified renewable generators.13 In addition to the

9In the United States, between 2001-2010, the annual share of electricity from fossil fuels was
between 69% and 72% each year.

10In the presence of knowledge spillovers, previous work does highlight that a combination of
emissions prices and small subsidies for renewable energy R&D and deployment may result in
even lower cost emission reductions (Fischer and Newell, 2008; Jaffe, Newell, and Stavins, 2005).

11Some examples include the Regional Greenhouse Gas Initiative (RGGI), which provides
a cap on CO2 emissions from the electric sector in 10 northeastern states. Additionally, the
Environmental Protection Agency has implemented a NOX cap and trade program across much
of the eastern United States.

12For example, in the tenth auction held in the RGGI market on December 3, 2010, the market
clearing price for a permit was $1.86 per ton of CO2, well below most estimates of the actual
marginal external damage.

13The forms of eligible generation currently include wind turbines, geothermal units, and
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Federal incentives, many states have adopted their own forms of support for re-

newable electricity. The most common state level policy is the Renewable Portfolio

Standard (RPS). A RPS mandates a minimum share of electricity that must be

purchased from a specified set of renewable sources.14 For each MWh generated,

renewable producers typically receive a renewable energy credit (REC) which can

then be sold to the electricity providers who must fulfill their renewable electricity

obligations.

The combination of these policies results in fairly substantial levels of sup-

port for renewable electricity producers. On top of the $22 PTC, the REC’s in

the Texas market are worth around $10 per MWh during the period studied in

this paper, January 1, 2007-December 31, 2009. For comparison, the wholesale

price of electricity in the region typically fluctuates between $30-$80 per MWh.

The impact of these policies is nowhere more evident than in the recent growth in

wind generation capacity.15 Between 2001-2010, the average annual growth rate of

wind generation in the United States was 33.5%.16 With the recent extension of

the PTC and the increasing numbers of RPS policies, total installed wind capacity

is expected to continue to increase.17

With both the PTC and the RPS’s, the level of support for a renewable

producer is based on the quantity of electricity generated.18 If each MWh of re-

newable electricity offsets the same amount of pollution, then these flat generation

payments will provide each renewable generator the same payment per unit of

closed-loop biomass generators. The tax credits can be claimed up to 10 years after the re-
newable generator is installed. The Federal government also offers an Investment Tax Credit
(ITC) which is worth up to 30% of the fixed costs. The ITC is currently a much smaller program
than the PTC. During 2011, the total tax expenditures on the PTC are expected to exceed $1.5
billion while the expenditures on the ITC are expected to be below $200 million. For information
on tax expenditures, see Section 17 of, “Fiscal Year 2012 Analytical Perspectives, Budget of the
U.S. Government.”

14Currently, 29 states, plus the District of Columbia and Puerto Rico, have binding renewable
targets.

15The 2008 IEA report Deploying Renewables: Principles for Effective Policies, finds that the
combination of the PTC and the state level RPS policies have contributed to the significant
growth in wind capacity.

16Generation statistics from the U.S. Energy Information Administration.
17See Energy Information Administration (2010).
18This is also the case with Feed-in-Tariffs (FIT). While FIT’s have received more limited use

in the United States, they are widely used internationally.
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pollution avoided. However, if the quantity of emissions offset by a MWh of re-

newable electricity varies, the effective payment per unit of pollution avoided will

vary as well.19 To demonstrate how the emissions avoided per MWh of renewable

electricity can vary over time within a single market, the following section presents

a simple analytical model of a competitive wholesale electricity market.

1.2.3 Simple Dispatch Model

Consider a perfectly competitive wholesale electricity market with two broad

generation technologies: conventional generators which can be dispatched on com-

mand (coal, gas, nuclear, etc.) and intermittent renewable generators (wind, solar,

etc.). This analysis focuses on the short-run, t = 0, ..., T , which is defined as the

period of time over which the stock of conventional generators is fixed. In order to

capture the daily variation in demand and renewable generation potential, t can be

thought to represent individual hours. I examine the benefits that accrue during

periods t = 1, . . . , T from a marginal increase in renewable generation capacity

during the initial period, t = 0.

The aggregate generation at time t from conventional sources is given by

Gt. Conventional generating units are dispatched in increasing order of their pri-

vate generation costs.20 In addition to the private generation costs, conventional

generators can produce an external cost in the form of unpriced pollution. The

aggregate pollution emitted during period t is given by et = e(Gt), where e(·) is a

weakly increasing function with no restrictions placed on e′′(·). The conventional

generators on the margin for low levels of Gt can have higher or lower marginal

emission rates than the conventional generators on the margin at higher levels of

19Past work highlights, that due to the fact that the mix of conventional generation varies across
regions, the emissions reductions from renewable generation can vary across regional markets
(Connors,et al., 2004; Callaway and Fowlie, 2009). However, given that individual states have
adopted their own renewable policies, the actual subsidy per MWh of renewable electricity can
vary across regions as well.

20In addition to the contemporaneous generation costs, conventional units typically face dy-
namic costs (e.g. start up and shutdown costs) as well as dynamic operating constraints (ramp
rate constraints, minimum stable generation levels, etc.). Analytically examining the impact of
marginal changes in renewable generation, I abstract from these dynamic costs and constraints.
In the empirical analysis, the reduced form strategy used to identify the impact on aggregate
emissions does not impose any assumptions on the dynamic costs and constraints.
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Gt.

There are N potential sites where intermittent renewable generation can

be produced. Each individual site represents a specific generation technology at a

specific location. Therefore, a wind turbine and a solar panel at the same location

are two unique sites. Unlike conventional generation, intermittent generation is

not dispatchable. The level of production at site i, for i = 1, ..., N , randomly

varies between 0 and Ki ≥ 0, the level of installed capacity at site i. For each unit

of renewable capacity installed at site i, the share of potential generation that is

realized at time t is represented by the capacity factor, xi,t ∈ [0, 1].21 Therefore,

the level of intermittent renewable generation at site i at time t is given by Eq. (2.1)

below:

Ri,t = xi,t ·Ki. (1.1)

To produce electricity from renewable sources, there is an upfront fixed cost which

I assume includes the regular maintenance expenditures. However, the marginal

cost of the renewable generation is equal to zero and the renewable sources do not

create any emissions.22

Not all of the electricity generated reaches the final consumers. During

the transmission and distribution process, a portion of the generation is lost. I

assume the fraction of generation lost from a specific generator is constant and

determined by the location of the generator.23 The share of generation lost from

21In reality, the best locations at a specific site may be exhausted first. If this is the case,
the capacity factor may be decreasing in total installed capacity at a specific site. In addition,
past work has demonstrated that upwind turbines can negatively impact the efficiency of nearby,
downwind turbines (Kaffine and Worley, 2010). Both of these cases can be captured by specifying
xi,t as a function of Ki. However, the general results are unchanged by assuming ∂xi,t/∂Ki = 0.

22While intermittent generation does not produce emissions during generation, there are po-
tentially negative externalities that may arise. These externalities, such as the life-cycle emissions
from production and scrapping (Lenzen and Munksgaard, 2002) or the visual impact (Hoen, et
al., 2009), can be proportional to the installed capacity. Alternatively, the externalities may be
related directly to renewable generation. For example, spinning wind turbine blades can create
a noise externality and also have been found to result in bird and bat mortality (Boyles, et al.,
2011). This work abstracts from these potential externalities, however the model can be adapted
to deal with either. The external costs proportional to K can be represented as an additional
fixed cost and the externalities proportional to xi,t ·Ki can be represented as an external variable
cost.

23A complete representation of the factors that determine the quantity of generation lost is
beyond the scope of this study. For an overview of the electricity transmission and distribution
process, see Brown and Sedano (2004).
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intermittent site i is given by the constant li ∈ (0, 1) while the share of generation

lost from the marginal conventional generator is given by lg(Gt) ∈ (0, 1). The

loss rate from the marginal conventional generator is a function of Gt due to

the fact that the marginal generator will vary based on the level of conventional

generation. Therefore, the quantity of electricity supplied, generation less losses,

by intermittent sources (SRt) and conventional sources (SGt) are given by Eq. (2.2)

and Eq. (2.3) respectively:

SRt =
N∑
i=1

(1− li) · xi,t ·Ki (1.2)

SGt =

∫ Gt

0

(
1− lg(z)

)
dz. (1.3)

Demand for electricity at time t, Dt, is perfectly inelastic and varies exoge-

nously across periods. To rule out the case where the quantity demanded cannot be

met, demand is assumed to never exceed the maximum potential supply available

from conventional sources. Additionally, I assume the quantity of electricity de-

manded always exceeds the maximum potential supply from intermittent sources,

which avoids the case where excess renewable generation must be curtailed:

Dt >
N∑
i=1

(1− li) ·Ki ∀ t . (1.4)

To ensure the stability of the grid, the quantity of electricity demanded

must equal the quantity of electricity supplied at all times:

Dt =

∫ Gt

0

(
1− lg(z)

)
dz +

N∑
i=1

(1− li) · xi,t ·Ki. (1.5)

Combining the assumption in Eq. (2.4) with the fact that the marginal cost of inter-

mittent generation is zero, when electricity is available from an intermittent source,

it will be supplied to the grid. Given the marginal conventional loss function lg(·),
the set of constant loss rates {li}N1 , and the installed intermittent capacities {Ki}N1 ,

Eq. (2.5) implicitly defines the level of conventional generation in each period as
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a function of the exogenous quantity demanded and the exogenous intermittent

capacity factors.

1.2.4 Short-Run Emission Reductions

This section examines the impact an increase in renewable capacity will

have on emissions over the short-run, t = 1, . . . , T . A marginal increase in Ki

during the the initial period, t = 0, will weakly reduce the residual demand that

must be met by Gt during each subsequent period. As a result, the quantity of

pollution emitted in any single period will be reduced by
∣∣∂e(Gt)
∂Gt

· ∂Gt

∂Ki

∣∣, where Gt

is implicitly defined by Eq. (2.5). Solving for the reduction in emissions during

period t caused by a marginal increase in Ki yields the following expression:

Marginal Emissions Avoidedi,t = e′
(
Gt

)
· 1− li

1− lg(Gt)
· xi,t. (1.6)

The marginal emissions avoided is the product of two margins. The first is

e′(Gt), the emission rate of the marginal conventional generation at time t. The

second is the reduction in conventional generation at time t caused by the marginal

increase in Ki. The quantity of conventional generation avoided at time t is equal

to the product of the additional intermittent generation, xi,t, and the ratio of the

marginal loss rates, 1−li
1−lg(Gt)

. If the share of generation lost from renewable site i is

less than the loss rate from the marginal conventional generator, an additional unit

of intermittent generation at site i will offset more than one unit of conventional

generation. Alternatively, if the loss factor for site i is greater than the marginal

conventional loss factor, an additional unit of intermittent generation will offset

less than one unit of conventional generation.

The quantity of emissions avoided by an additional unit of intermittent

generation from site i can vary over time if either the marginal emission rate, e′(Gt),

or the offset conventional output, 1−li
1−lg(Gt)

, varies with the level of Gt. Additionally,

the quantity of emissions avoided by an additional unit of intermittent generation

at time t can vary across sites if li 6= lj for sites i and j.

For subsidies to fail at achieving the lowest cost emission reductions from



14

renewable electricity, the payment per unit of pollution avoided must vary across

potential renewable investments. In practice, the policies currently used to re-

ward renewable sources effectively provide a flat subsidy for each unit of electricity

generated. Therefore, if the average quantity of pollution avoided by a unit of

renewable generation varies across sites, the current policies can induce inefficient

investments. The average emissions avoided by each unit of renewable electricity

produced by a capacity addition at site i is given by the following expression:

Average Emissions Avoidedi =

∑T
t=1 e

′(Gt) · 1−li
1−lg,t(Gt)

· xi,t∑T
t=1 xi,t

, (1.7)

where Gt is defined by Equation Eq. (2.5).

If two conditions are satisfied, the average emissions avoided can vary across

sites. First, the marginal emissions avoided by a unit of renewable generation must

vary across time:

e′(Gt) ·
1− li

1− lg,t(Gt)
6= constant ∀ t. (1.8)

Second, the timing of renewable potential must vary across sites:

xi,t
xi,t′
6= xj,t
xj,t′

, (1.9)

for two sites i and j during periods t 6= t′. If both of these conditions hold, then

the uniform generation subsidies may induce inefficient siting decisions. In this

situation, larger emissions reductions for the same cost, or the same reduction for

a lower cost, could potentially be realized by allowing the subsidy payments to

vary with the emissions avoided.

1.3 Estimation Strategy

The remainder of this paper examines whether uniform renewable genera-

tion subsidies provide inefficient incentives for firms investing in a particular mar-

ket, the Texas electricity market. Texas currently leads the nation in installed wind

generation capacity. In addition, the market is very isolated from the surrounding
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regions. As a result, the set of generators that potentially serve as substitutes to

the wind turbines are easily identified. These characteristics make the Texas grid

an ideal market for this study.

Using information on the observed generation from wind turbines and the

aggregate emissions from fossil fuel fired generators, I identify the pollution avoided

at different points in time by intermittent renewable generation. Combining the

estimates of the emissions avoided with information on the potential wind and solar

generation from sites across Texas, I predict the quantity of pollution that would

be avoided by adding a renewable generator at any one of the sites. The results

demonstrate that the average emissions avoided by a unit of renewable generation

will vary among locations and technologies. As a result, uniform subsidies for

renewable generation do not ensure efficient siting of renewable capacity additions

in the Texas market.

This section introduces the identification strategy used to estimate the

emissions avoided by intermittent electricity generators. First, I provide a brief

overview of the existing estimation methods and the assumptions imposed by each

strategy. Next, I discuss the natural experiment I take advantage of to identify

the pollution avoided by renewable generation.

1.3.1 Existing Estimation Strategies

For a variety of reasons, there has been a surge of interest in developing

methods to estimate the emissions avoided by renewable electricity. The estimates

are needed to evaluate the efficiency of policies supporting renewable generation

(NAS, 2007). In many cap and trade programs, renewable generators are being

awarded valuable permits based on the estimated amount of emissions avoided

(EPA, 2004). Additionally, estimates of the emissions avoided are used in the

siting of renewable generators.

To estimate the impact of renewable electricity on pollution, one common

method is the use of system dispatch models. These models simulate the cost

minimizing level of production from each generating unit in a regional grid using

information on the generation costs (e.g. fuel costs, operating costs, start-up costs)
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and operating limitations (e.g. ramp rates, minimum and maximum generation

levels, and times) of each generating unit, as well as detailed information on the

transmission constraints of the regional grid. One of the main advantages of the

dispatch simulations is the ability to predict the impact of large scale changes in

renewable generation capacity. For example, the GE Energy (2008) study of the

Texas electricity market examines the impact tripling the installed wind generation

capacity will have on the interconnected conventional units.

The structural simulations, however, have several drawbacks. First, the

data required is often proprietary and very expensive. In addition, the results can

be quite sensitive to the simplifying assumptions imposed. For example, Denny

and O’Malley (2006) demonstrate the predicted quantity of pollution avoided by

generation from wind turbines depends heavily on how wind generation forecasts

are assumed to be incorporated in the dispatch decision.

Given the drawbacks of the simulation methods, there is significant interest

in providing more transparent, reduced form estimates of the emission reductions

that can be achieved by renewable generation. The most simplistic reduced form

strategy is the use of average emission rates. Estimates based on average emission

rates fall into two categories: 1) system average emission rates, or 2) technology av-

erage emission rates. The system average method estimates the emissions avoided

as the product of the aggregate level of renewable generation and the average emis-

sion intensity of electricity generation on the regional grid. To find the average

emission rate, the total emissions are divided by the aggregate generation. This

method assumes that an equal percentage of output from each conventional tech-

nology will be offset by the renewable generation. In reality, certain technologies

are more likely to be on the margin than others. For example, low marginal cost

nuclear generators are unlikely to serve as the marginal source of electricity.

Instead of using the system average emission rate, the technology average

emission rate method assumes the renewable generation offsets output from a spe-

cific technology. Examples of this approach are commonly seen in state level NOX

Set-Aside programs. States operating cap and trade markets for NOX emissions

often hold back a set number of emissions permits during the initial allocation.



17

These set aside permits are distributed to renewable electricity producers based

on the quantity of pollution avoided by the renewable output, and can in turn, be

sold to the highest bidder. To estimate the NOX avoided by renewable generation

for compliance with NOX Set-Aside programs, several states multiply the quan-

tity of renewable generation by 1.5 lbs NOX/MWh, the average NOX emission

intensity of coal fired generators.24 While the technology average emission rate

estimates acknowledge that not all generating technologies will be the marginal

source of electricity, they are still overly simplistic. First, the emission intensities

can vary significantly across generators using the same fuel source. Additionally,

the marginal technology and fuel can vary over time.

To accurately identify the impact of renewable generation on emissions, an

estimation strategy must identify the pollution created by the marginal genera-

tors that actually reduce output in response to the renewable generation. Several

reduced form strategies have been developed to estimate this “marginal emission

rate”. One method utilizes a Load Duration Curve (LDC) framework in order to

predict the marginal generating plant for a specific level of demand (Broekhoff,

2007; Gil and Joos, 2007; Price, et al., 2003). Electricity plants are arranged in

descending order based on their respective capacity factors, total generation over

some period of time divided by the total capacity. A given plant is assumed to

be on the margin if the quantity demanded just exceeds the cumulative capacity

of all plants with higher capacity factors. Plants with the highest capacity factors

will never be on the margin while plants with the lowest capacity factors will only

be operating and on the margin when the quantity demanded is large. For any

given level of demand, the marginal emission rate is estimated to be the average

emission intensity of the marginal plant. To predict the emissions avoided, the

quantity of renewable output is multiplied by the marginal emission rate at the

time the renewable generation is supplied.

Connors,et al. (2004) propose a different method for estimating the marginal

emission rate. The authors first determine the set of “load following” plants; the

24For example, see Connecticut’s and Missouri’s Clean Air Interstate Rule set-
aside program rules; (www.ct.gov/dep/lib/dep/air/permits/eeresaapp.pdf) and
(www.dnr.mo.gov/ENERGY/financial/docs/CAIR− appendix− E.pdf).
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generators that increase and decrease output in response to changes in load. To

identify the load following generators, the hourly changes in output from each gen-

erator are compared to the hourly change in the quantity demanded. If the output

and quantity demand changes have the same sign, the plant is assumed to be on

the margin. The weighted average of the emission intensities of the load following

generators is the predicted marginal emission rate.

In contrast to the LDC and load following methods, Callaway and Fowlie

(2009) propose a method for directly estimating the hourly marginal emission rate.

Using hourly fossil fuel generation and emissions data, the authors regress changes

in aggregate emissions on changes in aggregate generation.25 The rate at which

emissions change when generation changes is described as the “Marginal Operating

Emission Rate”. Using this method, the average marginal emission rate can be

estimated for different times during the day and for different seasons.

Similar to the LDC and the load following method, Callaway and Fowlie

must assume that an increase in renewable generation has the same impact on

conventional generation, and therefore aggregate emissions, as an equal decrease

in demand. In the case of intermittent renewable generation, this assumption may

not be valid. Output from wind turbines and solar panels is considerably more

volatile than aggregate demand. As a result, changes in renewable generation

are not forecasted as accurately as changes in demand. Given that conventional

generating technologies are often constrained in terms of how rapidly output levels

can be adjusted, the response from conventional units to an increase in renewable

generation may in fact differ from the response to an equal decrease in demand.

Relaxing the assumption that increases in renewable supply have the same

impact as decreases in demand, Cullen(2011) presents the first econometric esti-

mates of the actual substitution pattern between wind generation and conventional

generators. Using short-run changes in the aggregate generation from wind tur-

bines as a natural experiment, Cullen estimates the average reduction in generation

25The authors point out that load is correlated with hydroelectric output in the New England
and New York markets, the focus of their study. Given that the hydroelectric output is unlikely
to be the marginal fuel source, the authors regress emission changes on fossil fuel generation
changes.
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from each conventional plant in the Texas electricity market caused by a MWh of

wind generation. To predict the resulting average reduction in emissions, the indi-

vidual plant level average emission intensities are multiplied by the average output

avoided from each plant.

To estimate the average emissions avoided by wind generation, Cullen must

impose two strong assumptions. First, short-run changes in the output from wind

turbines are assumed to be caused entirely by exogenous factors (e.g. variation

in wind speed and direction). This would certainly be the case if generation from

wind turbines is always supplied when it is available. However, due to the fact that

the installed wind capacity exceeds the transmission capacity of the electric grid

in Texas, output from wind turbines is intentionally curtailed quite frequently.26

When and how much wind generation is curtailed is endogenously determined by

market supply and demand conditions. For example, if the short-run demand

for electricity in a region with wind turbines falls, exports of electricity out of

the region into the surrounding areas may have to increase. If the volume of the

electricity to be exported exceeds the transmission limits of the electric grid, then

generation from wind turbines may be reduced.27

The second assumption imposed in Cullen’s strategy is that each fossil fuel

plant has a constant emission rate. In reality, the marginal emission rate of a

fossil fuel plant will vary for a variety of reasons. First, a single plant can operate

26While data on how much, and when, wind generation is curtailed is not readily available,
Fink, et al. (2009) provide several case studies of wind curtailment across markets. The au-
thors note that during several months between 2003-2009, the Texas system operator required
curtailment of a portion of wind generation capacity over 45% of the days.

27In addition, the decision to curtail available wind generation can be driven by a wind farm
operator’s profit maximization motive. For example, wind turbines require regular maintenance
and repairs. Potentially, wind farm operators may have the flexibility to schedule the times
turbines will be off-line based on the expected forgone profits. Additionally, newer wind turbines
with the ability to rapidly come on-line or go off-line are allowed to participate in the balancing
energy market. If the current market price is below the marginal cost of generation, the owners
may choose to curtail generation. Recall the marginal cost of production from a wind turbine is
essentially zero. In addition, ERCOT turbines receive subsidies of $22/MWh through the PTC
as well as valuable renewable energy credits for compliance with the state’s renewable portfolio
standard. Therefore, the market price must be well below zero for the wind turbine operators to
find it optimal to curtail production. Over the three year sample studied, the market clearing
price in the Western Congestion Zone, the region with the overwhelming majority of installed
wind capacity, was negative 7.9% of the time. Market clearing prices below -$22/MWh in the
Western Zone were observed during 6.2% of the time.
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several generating units, each with a different average emission rate. In addition,

the emission intensity of a single generating unit varies over its range of generation.

Therefore, the emission intensity of each plant will differ based on which unit is

on the margin and what the level of generation is from the marginal unit. Finally,

fossil fuel fired generators can produce large spikes in emissions when they are

forced to alter their level of production in short time frames. Given that generation

from wind turbines can fluctuate rapidly, fossil fuel generators may be forced to

frequently increase and decrease production, and therefore, operate at a higher

average emission intensity. Within the engineering literature, simulation studies

commonly find that abstracting from the impact of wind generation intermittency

will lead to overestimation of the quantity of pollution avoided. In fact, previous

studies even find that the addition of wind generation can increase the short-run

level of emissions (Denny and O’Malley (2006); Katzenstein and Apt, 2009).

Following the strategy used in a previous version of this paper, Kaffine,

et al. (2010) directly estimate the impact of wind generation on the observed

emissions from fossil fuel generators. However, Kaffine, et al. continue to impose

the assumption that generation from wind turbines is exogenously determined in

the short-run. In addition, the authors explore the impact of wind generation on a

subset of the fossil fuel generating units supplying electricity to the Texas market,

not the full set of units that serve as substitutes to wind turbines in the region.

Therefore, the full impact on emissions is not estimated.

1.3.2 Identification Strategy

This work reexamines the impact of wind generation on emissions in the

Texas electricity market. The strategy I use to identify the reduction in emis-

sions caused by generation from wind turbines allows me to relax the previously

imposed assumptions. Extending the analysis of the previous studies, I estimate

not only the average emissions avoided, but also how the emissions avoided by a

unit of renewable generation varies over time. As the theoretical model in Sec-

tion 2 demonstrates, understanding how the emissions avoided changes over time

is crucial in determining whether the current policies induce efficient investment
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decisions.

I combine data on the hourly emissions from fossil fuel generating units in

the Texas market and the surrounding regions with data on the hourly generation

from wind turbines in the Texas market. Rather than first estimating the genera-

tion avoided and then indirectly predicting the emissions avoided through the use

of average emission rates, this combined dataset allows me to directly identify the

impact of wind generation on the actual emissions. Therefore, no restrictions are

placed on how the emission intensities of fossil fuel plants vary over the range of

output.

To ensure the full impact of wind generation on aggregate emissions is es-

timated, I identify how fossil fuel units in the Texas market, as well as in the

surrounding regions, respond to generation from Texas wind turbines. While lim-

ited trading occurs between the Texas market and the surrounding regions, the

inclusion of fossil generation outside of Texas turns out to be important due to the

fact that several generators, located inside and outside of Texas, are directly con-

nected to multiple markets. If these units transfer supply from the Texas market to

the surrounding markets in response to additional wind generation, then studying

the impact on the units in Texas will not identify the full impact on emissions.

Finally, in my analysis, I do not impose the assumption that the generation

from wind turbines is exogenously determined. To control for the potential endo-

geneity that arises due to curtailments, I use the wind speed in the region with

the majority of installed wind turbines as an instrument for the observed wind

generation. While the output from a set of wind turbines can be directly affected

by shifts in short-run market supply and demand, variation in the wind speeds

cannot be caused by changes in market supply and demand.

1.4 ERCOT Market and Data

This work utilizes data from several sources. The Electric Reliability Coun-

cil of Texas (ERCOT) provides data on the hourly net generation by fuel source as

well as the hourly load on the regional grid. Included with the ERCOT data is the
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combined hourly generation from wind turbines. From the Environmental Protec-

tion Agency (EPA), I gather data on the hourly gross electricity generation and

emissions of CO2, NOX , and SO2 from fossil fuel fired generating units located in

the ERCOT region as well as in the surrounding markets. From the National Cli-

matic Data Center (NCDC), I obtain data on the hourly average temperature and

wind speeds at several locations throughout Texas. Finally, from the Alternative

Energy Institute (AEI), I collect data from several wind speed monitors through-

out Texas. The data spans the three years from January 1, 2007-December 31,

2009. This section describes the ERCOT market and the individual datasets.

1.4.1 ERCOT Supply and Demand

Over 85% of electricity consumed in Texas is bought and sold through a

deregulated market.28 ERCOT is the independent system operator responsible for

managing the scheduling, transmission, and financial settlement in the market.

Over 90% of the electricity supplied to the ERCOT region is purchased through

bilateral contracts.29 Each day, qualified scheduling entities (QSE) representing

portfolios of generators and retail electricity providers submit schedules of the

generation and demand obligations for each hour of the upcoming day. ERCOT

reviews the schedules to ensure that the transmission and distribution constraints

will not be exceeded over any of the 40,000 miles of wires on the regional grid.

The remainder of electricity is purchased in a real-time balancing market.

In addition to submitting generation schedules, each QSE representing electricity

producers also submits a balancing supply curve for each 15 minute interval of

the upcoming day. The balancing supply curve defines the amount of increased or

decreased electricity the QSE will provide at different prices. ERCOT aggregates

the bids to produce a market-wide balancing supply curve for each interval of the

upcoming day. In real-time, ERCOT equates actual electricity supply and demand

28A small portion of the eastern border with Louisiana is part of the SERC Reliability Cor-
poration (SERC). Part of the northern panhandle is served by the Southwest Power Pool (SPP)
and the region immediately surrounding El Paso is part of the Western Electricity Coordinating
Council (WECC).

29In 2010, ERCOT transitioned to a Nodal market in which a large portion of the electricity
is bought and sold in a centralized day-ahead market rather than through bilateral contracts.
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by purchasing the required amount of up or down balancing energy at a single,

market clearing price. If congestion occurs on the grid, then a separate market

price is established for each of the four Congestion Zones: North, South, Houston,

and West Congestion Zones.

By the end of 2009, there was over 84,000 megawatts (MW) of generation

capacity in the ERCOT region. A summary of the average hourly net generation

from ERCOT plants, separated by fuel source, between 2007 and 2009 is shown

in Table 1.1.30 Production from natural gas, coal, and nuclear generators account

for 43.2%, 37.0%, and 13.4% respectively, of the total electricity. The next largest

source of generation comes from wind turbines. During this period, wind gener-

ation accounts for 4.7% of the total ERCOT output. The remaining generation

comes from hydroelectric plants and ‘other’ fuels.31

Table 1.1: 2007-2009 Hourly ERCOT Generation by Fuel (MWh)

Natural Gas Coal Nuclear Wind Hydroelectric Other

N 26,117 26,117 26,117 26,117 26,117 26,117
Mean 15,128 12,956 4,681 1,626 105 491

Std. Dev. 7,166 1,523 763 1,205 96 227
Min. 2,900 6,601 2,415 0 1 45
Max. 41,480 16,722 5,181 5,984 446 1,210
Share 43.2% 37.0% 13.4% 4.7% 0.3% 1.4%

"Other" production is from biomass, landfill gas, oil, diesel, and solar units.  Shares are equal to the
total supply from each fuel source during the sample period divided by the aggregate supply.

Between 2007 and 2009, the total installed wind generation capacity in the

ERCOT region grew from 2631 MW to 8908 MW.32 Almost all of this capacity is

30Net generation is a measure of the actual electricity supplied to the regional grid. It does
not include the electricity that is used during the generation process.

31ERCOT aggregates generation from the burning of biomass, landfill gases, petroleum, and
diesel, as well as production from solar units into ‘other’ generation. Combined, these units
account for only 1.4% of the total ERCOT generation during the sample. From ERCOT’s 2009
Annual Report on the Texas Renewable Energy Credit Trading Program, which can be found at
https://www.texasrenewables.com/reports.asp, generation from solar units accounted for only
0.1% of the ‘other’ generation.

32The Public Utility Commission of Texas provides data on the capacity and month new wind
farms come on-line (http://www.puc.state.tx.us/electric/maps/index.cfm).
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located in the Western Congestion Zone in the northwest portion of Texas. Fig-

ure 1.1 plots the average daily profile of wind generation during each quarter of the

year. Across all four quarters, average wind generation peaks in the early morning

hours and falls to the lowest point in the middle of the afternoon. Additionally,

the average wind generation is the highest between October and December and

the lowest during the summer months of July through September. Figure 1.1 also

plots the average daily adjusted load profile in the ERCOT region. The adjusted

load is equal to the quantity of electricity demanded by end-use consumers plus

the total electricity lost during the transmission and distribution process.33 The

average adjusted load follows the opposite daily and seasonal patterns displayed

by wind generation, peaking in the afternoon hours and during summer months.

The Texas region has several characteristics that make it an ideal market

for this study. First, there is a relatively large amount of wind capacity connected

to the ERCOT grid. As a result, there is substantial variability in the amount of

wind generation which makes it possible to clearly identify the impact of wind gen-

eration on the emissions from interconnected plants. Second, the region has very

little hydroelectric generation potential. This fact makes identifying the impact of

wind generation on emissions much less difficult. If electricity from wind turbines

replaces supply from pumped hydroelectric plants or hydroelectric dams, the re-

newable generation would effectively be stored as potential energy. As a result, the

avoided emissions would occur at a different point in time. Finally, the ERCOT

grid is quite isolated from the surrounding markets.34 Therefore, the primary set

of units that serve as substitutes for wind generation, and the main factors that

affect the consumers they are supplying, are easily identified.

33ERCOT charges retail suppliers for electricity losses. Therefore, the losses are added to the
electricity consumed for the purpose of settling financial obligations. During 2007, transmission
and distribution losses on the Texas grid were equal to 6.42% of the total generation. For statistics
on transmission and distribution losses, see the eGRID “State Import-Export, U.S. Generation
and Consumption Data Files”.

34The entire United States is separated into three interconnections: the Eastern Interconnec-
tion, the Western Interconnection, and the Texas Regional Entity which is overseen by ERCOT.
Within each interconnection, electricity is produced and transmitted at a synchronized frequency.
Electricity traded between interconnections must first be converted from alternating current to
direct current and flow through a limited number of DC transmission lines. The DC lines between
ERCOT and the surrounding regions have an aggregate limit of 1090 MW.
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1.4.2 EPA Emissions Data

For compliance with various regulations and emission trading programs,

the EPA collects and maintains data on the hourly emissions of CO2, NOX , and

SO2, as well as the gross electricity generation from every unit that burns fossil

fuels with a capacity greater than 25 MW.35 For the period between 2007-2009,

the EPA data provides information from 140 fossil fuel plants which operate over

400 units in Texas. Of these, 102 plants directly supply electricity to the ERCOT

grid. These plants account for almost all of the fossil fuel generation capacity in

the ERCOT region.36

While the Texas market is relatively isolated, electricity can still flow back

and forth between neighboring grids. Any excess generation from the ERCOT grid

can be exported across the DC ties connecting ERCOT to the Southwest Power

Pool to the north.37 In addition, three plants connected to the ERCOT grid can

also directly supply electricity to the Eastern Interconnection.38 To accurately

identify the emissions avoided by wind generation, the potential impact on sur-

rounding markets must also be considered.39 In addition to the units in Texas,

I obtain hourly data on the emissions and gross electricity generation from fossil

35See the EPA (2009) for a description of the Constant Emission Monitoring Systems. For coal
units, the emissions are directly measured. For gas units, the emissions can be directly measured
or calculated using the measured heat input and a measured correlation curve of the heat input
and emission rate for the unit. In rare cases, a natural gas fired unit would have positive levels of
generation during a given hour, but the CO2 emissions would be missing. In this case, I calculate
the average CO2/MMBtu for the specific unit and infer the emissions using the observed hourly
heat input.

36Only 10 plants from the ERCOT region, each with a capacity below 25 MW, are not included
in the EPA dataset.

37The Eagle Pass, Laredo, and Railroad DC ties connect the ERCOT grid to the Comision
Federal de Electricidad (CFE) grid serving northern Mexico. Although I do not have data on
the output and emissions from fossil fuel plants outside of the United States, the requirements
for trading between the ERCOT market and the CFE region are stricter than the requirements
for trading across the other DC ties. As a result, it is likely more difficult to adjust the level of
trading between ERCOT and the CFE in response to changes in wind generation.

38These three plants are the Kiamichi Energy Facility (Oklahoma), Tenaska Frontier, and
Tenaska Gateway plants. The electricity supplied to the surrounding markets by these three
plants does not flow through the DC ties controlled by ERCOT.

39In Cullen’s analysis, the author finds that imports and exports through the DC ties are
unaffected by wind generation. The author, however, only observes supply to the ERCOT grid
and flows across the DC ties. If wind generation added to the grid causes any of the three plants
connected to multiple markets to shift supply away from the ERCOT market and into one of the
surrounding grids, Cullen’s method will not identify the true substitution pattern.
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fuel fired units serving the Southwest Power Pool in Oklahoma. As a result, I am

able to identify the impact of wind generation on the production and emissions

from fossil fuel units inside and outside of the ERCOT region.

Table 1.2 presents summary statistics for the coal and natural gas generating

units in the EPA dataset. There are many more natural gas units than coal units,

however, the coal units tend to be much larger on average.40 The coal fired units

also have significantly larger average emission intensities than the natural gas fired

units. Even across units using the same fuel, there is substantial variation in the

average emission rates. These differences highlight why it is crucial to accurately

identify the set of units that reduce output in response to added wind generation.

Table 1.2: CEMS Unit Summary Statistics

Coal Natural Gas

Number of Units 47 397

Average Capacity (MWh) 579 197
(172) (145)

Average Heat Rate (MMBtu/MWh) 10.09 10.31
(0.62) (2.27)

Average CO2 Intensity (tons/MWh) 1.05 0.62
(0.09) (0.18)

Average NOx Intensity (lbs/MWh) 1.99 1.21
(0.96) (1.48)

Average SO2 Intensity (lbs/MWh) 5.86 0.03
(3.11) (0.20)

across the individual unit level means.  Standard deviations of the unit level
means are in parentheses.

Units by Fuel

Average Heat Rates and Emission Intensities are calculated by taking the average

Table 1.3 presents the average hourly generation and emissions from fossil

fuel units located within each of the four ERCOT Congestion Zones as well as in

40The unit level capacities were obtained from the EIA-860 Generator Database.
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Oklahoma. While the West Congestion Zone has the majority of wind capacity,

the region has the smallest share of fossil fuel generation. This is due to the fact

that the major population centers are not located in the western portion of Texas.

Table 1.3: CEMS Aggregate Summary Statistics

North South Houston West
Fuel Source (TX) (TX) (TX) (TX) Oklahoma Total

Natural Gas 10,423 2,657 5,105 663 3,576 22,425
(4,576) (1,213) (1,524) (481) (1,880) (9,204)

Coal 10,901 3,964 2,290 455 3,952 21,562
(1,247) (680) (392) (259) (651) (2,423)

Petroleum - - 119 - - 119
- - (66) - - (66)

Total 21,324 6,621 7,514 1,118 7,528 44,105
(5,242) (1,576) (1,703) (613) (2,221) (10,780)

North South Houston West
Pollutant (TX) (TX) (TX) (TX) Oklahoma Total

CO2 (tons) 17,781 5,780 4,896 911 6,050 35,424
(3,4505) (1,182) (1,007) (457) (1,348) (6,860)

NOx (lbs) 23,518 7,498 2,208 2,069 17,497 53,072
(4,335) (1,976) (1,040) (1,238) (3,983) (10,936)

SO2 (lbs) 71,904 23,952 12,706 881 22,585 132,029
(10,374) (4,539) (3,374) (534) (4,188) (16,690)

Note:  Hourly averages of aggregate generation and emissions calculated over 26,117 hourly observations
between 2007-2009.  Standard deviations listed in parentheses.

Average Hourly Generation (MWh)

Average Hourly Emissions

1.4.3 Wind Speed Instrument

To identify the impact of wind generation on emissions, I must account for

potential endogeneity in the observed generation from wind turbines that arises
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due to the frequent curtailments. Ideally, I would be able to instrument for the

aggregate hourly wind generation using the wind speeds at the face of each wind

turbine. While data is available from weather stations scattered throughout the

state, the wind speeds from these stations are not representative of the potential

wind generation for two reasons. First, the weather stations are located in or near

population centers while the wind farms are sited outside of population centers.

Second, the weather stations record the ground level wind speed while the wind

turbines are installed on towers that are typically 80 meters or taller to take ad-

vantage of the fact that wind speeds increase with height.41 If the relationship

between the ground level wind speeds and the wind speeds 80 meters above the

ground is constant, the height would not present a problem. However, the pattern

between upper and lower level wind speeds varies substantially (Schwartz and El-

liot, 2006). In some cases, ground level wind speeds can increase while the wind

speed at higher altitudes decreases.

I collect wind speed information available from the Alternative Energy Insti-

tute (AEI) of West-Texas A&M University. The AEI provides data on the average

hourly wind speed from wind monitoring towers at a variety of locations. Three of

the test towers are located in the region of Nolan County (Sweetwater, TX) and

the bordering Runnels County (Miles, TX and Olfen, TX). Observations from each

of the individual towers are not available for the entire sample. Instead, a single

time series of the average hourly wind speed at a height of 80 meters is created by

combining readings from each site.42

At the beginning of the sample in 2007, there is 2,631 MW of installed wind

generation capacity in the ERCOT region. Of this, 1,877 MW is in the 10 counties

surrounding the AEI test sites.43 At the end of the sample, 6,533 MW of the total

41During 2009, 2,067 MW of wind capacity was added to the ERCOT grid. Of this, 1,870 MW
came from turbines built on towers measuring 80 meters.

42For January 1, 2007-September 30, 2008, data is available from the Sweetwater site. From
October 1, 2008-March 31, 2009, hourly readings from Miles are used. From April 1, 2009-
December 31, 2009, data from the Olfen site are used. For each site, the average hourly wind
speed at a height of 80 meters is calculated by using the implied wind shears from two heights.
For a full description of the power law estimation method, refer to the Appendix.

43The ten counties include Borden, Howard, Martin, Mitchell, Nolan, Scurry, Shackleford,
Sterling, Taylor, and Tom Green.
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8,908 MW are installed in the surrounding region. Nolan County, the location of

the Sweetwater test site, led all other counties with 1,788 MW of installed capacity

by the end of the sample. Therefore, wind speeds at the test sites serve as a good

measure of the wind energy in the region containing the majority of the installed

wind capacity.

To control for potential endogeneity in the short-run level of wind gener-

ation, I instrument for hourly production from wind turbines using a measure of

the potential wind generation. Recall from the analytical model, the potential

hourly wind generation is determined by the product of two factors: the installed

wind generation capacity and the hourly capacity factor. The average hourly wind

speed at a height of 80 meters in northwest Texas serves as a good proxy for the

capacity factor. Due to the fact that the installed capacity in the region steadily

grows over the sample period, the impact of the wind speed on the potential level

of generation will not be constant. An increase in the AEI wind speed likely has

a larger impact on aggregate wind generation at the end of the sample, when the

number of wind turbines in the region is larger. To capture this fact, I interact the

the wind speed with the installed capacity in the 10 counties surrounding the test

sties.44

1.4.4 Weather Data

A major determinant of the demand for electricity is temperature (Engle,

et al., 1992; Li and Sailor, 1995; Yan, 1998). To control for potential correlation

between changes in the generation from wind turbines in ERCOT and tempera-

ture driven demand changes in Texas and Oklahoma, I gather temperature data

from the National Climatic Data Center. ERCOT divides the region served by

the deregulated market into eight weather zones.45 In addition, I treat the north-

ern Texas panhandle and the state of Oklahoma, which are both served by the

44The Public Utility Council of Texas maintains a database providing the year and month
of generating capacity additions; http://www.puc.state.tx.us/electric/maps/index.cfm. To at-
tribute the capacity additions to a date within the given months, I gather information from local
newspaper articles.

45The weather zones are as follows: Coast, East, Far West, North Central, North, South, South
Central, West.
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Figure 1.2: North Central Load vs. Temperature (Hour=6pm)

Southwest Power Pool, as two additional weather zones. For each weather zone, I

calculate the hourly temperature by averaging the temperature readings across the

two most populated metropolitan areas within each region.46 Figure 1.2 plots the

adjusted load in the the North-Central Weather Zone of ERCOT during the 6 p.m.

hour versus the hourly average temperature in the region. The plot demonstrates

the strong, nonlinear relationship between temperature and demand that must be

controlled for in the empirical analysis.

While temperature is the major weather related driver of electricity demand,

46The ten zones, and the two metropolitan areas used for each zone, are as follows: Coast
(Houston-Sugarland-Baytown, Beaumont-Port Arthur); East (College Station-Bryan, Tyler);
Far West (El Paso, Odessa); North Central (Dallas-Fort Worth-Arlington, Killeen-Temple-Fort
Hood); North (Wichita Falls, Sherman-Denison); South Central (San Antonio, Austin-Round
Rock); South (McAllen-Edinburg-Mission, Corpus Christi); West (Abilene, San Angelo); non-
ERCOT Panhandle (Lubbock, Amarillo); Oklahoma (Oklahoma City, Tulsa).
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there is evidence that wind itself can have small impacts on electricity demand.

For example, wind blowing across the exterior of buildings can have a cooling

effect (Hor, et al., 2005). If variation in the AEI wind speeds are correlated with

changes in both wind generation and electricity demand, then I must control for

this fact in the empirical estimation. This is unlikely to pose a problem in this

study for the same reasons that the weather station wind speeds do not serve as

good measures of the potential generation from wind turbines; the installed wind

capacity is located far from demand centers and the wind speed at the height of the

wind towers is not highly correlated with ground level wind speeds. Regardless,

to control for any potential correlation between AEI wind speeds and the ground

level wind speeds in the population centers, I gather ground level wind speed data

from the National Climatic Data Center. I divide the Texas counties with wind

turbines into 13 regions.47 For each region, I calculate the hourly ground level

wind speed (meters/second) by averaging across each wind speed station in the

region.

1.5 Average Emissions Avoided

This section presents estimates of the average impact each MWh of wind

generation has on the aggregate emissions CO2, NOX , and SO2. To find the aggre-

gate hourly emissions, I sum the hourly pollution across each electricity generating

unit in the EPA dataset. To estimate the quantity of pollution offset by wind gen-

eration, I identify how hourly production from wind turbines alters the concurrent

level of aggregate emissions.

47The counties included in the 13 wind speed regions are Kenedy, San Patricio, Pecos/Upton,
Ector, Hale/Lubbock, Jack, Cooke, Erath, Borden/Scurry, Howard/Martin, Mitchell/Nolan,
Shackleford/Taylor, and Sterling/Tom Green.
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1.5.1 Econometric Specification

The following general model is used to identify the average reduction in

aggregate emissions caused by each MWh of wind generation:

Eh,d = β ·Wh,d + φ · Zh,d + µh,d, (1.10)

where index h = [1, . . . , 24] represents the individual hours from each day, d =

[1, . . . , 1096], during the the three year sample and

Eh,d = aggregate hourly generation of CO2 (tons), NOX (lbs), or SO2 (lbs),

Wh,d = ERCOT wind generation (MWh) during hour h of day d, and

Zh,d = vector of controls.

The coefficient of interest, β, represents the average change in emissions caused by

a MWh of wind generation.

To identify the impact of wind generation, I must control for a variety of

factors that affect the level of emissions and are potentially correlated with wind

generation. First, in the ERCOT region, wind generation follows hourly and sea-

sonal patterns which are negatively correlated with the demand for electricity.

Ignoring this correlation and directly regressing the level of emissions on the level

of wind generation will result in biased estimates of the impact of wind generation;

the decrease in emissions caused by lower demand will be incorrectly attributed

to the increase in wind generation. Ideally, the demand for electricity could be in-

cluded in the vector of controls. However, only data on the adjusted ERCOT load

is available. The adjusted load is equal to the sum of the quantity of electricity

demanded and the transmission and distribution losses on the ERCOT grid. As

discussed, the short-run elasticity of demand in ERCOT is estimated to be essen-

tially zero. Therefore, changes in the supply from wind turbines will not directly

impact the quantity of electricity demanded. However, as the theoretical model

demonstrates, the aggregate losses on a grid can be impacted by generation from

wind turbines. In order to identify the net impact of wind generation on aggregate
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emissions, I cannot include the adjusted load in the vector of controls.

To control for correlation between hourly and seasonal patterns in electricity

demand and wind generation, I difference the observed levels of hourly emissions

and generation across days; ∆Eh,d = Eh,d − Eh,d−1 and ∆Wh,d = Wh,d −Wh,d−1.48

For example, I take the difference between the total emissions during the 4 a.m.

hour and the 4 a.m. hour during the preceding day. Differencing across 24 hours

removes the negatively correlated hourly fixed effects, which are effectively allowed

to vary across seasons, in the aggregate emissions and wind generation.49

In addition to the negative correlation between daily and seasonal patterns,

short-run fluctuations in weather variables may also cause a link between wind

generation and demand. For example, if changes in the wind speed at locations

with wind turbines are correlated with changes in temperature across the state, this

could result in a relationship between changes in wind generation and demand. To

account for this possibility, the vector of controls, Z, includes a non-linear function

of the changes in hourly average temperatures in the ten weather zones throughout

Texas and Oklahoma. Consistent with prior studies examining electricity demand,

the impact of temperature is allowed to be non-linear around a base temperature

set equal to 18 degrees Celsius (65 degrees Fahrenheit).50 For each region (i =

1, ..., 10), Heating Degree (H) and a Cooling Degree (C) variables are created:

Hi,h,d =

{
18− Ti,h,d if Ti,h,d ≤ 18

0 if Ti,h,d > 18

48A logical alternative is to difference the data across weeks (168 hours); subtracting the
aggregate emissions during hour h of day d − 7 from the aggregate emissions during hour h of
day d. As a robustness check, I estimated the model differencing across 168 hours and the results
are essentially unchanged. I choose to provide the results from the 24 hour difference approach
because the estimates are more precise. Even after controlling for weather related demand shifts,
the load during period t− 24, and not period t− 168, predicts more of the variation in the load
during period t.

49Both Cullen (2011) and Kaffine, et al. (2010) estimate the impact of wind generation in
levels, using hourly and monthly fixed effects to control for the daily and seasonal patterns.
Monthly fixed effects will control for the negative correlation in the monthly average emissions
and wind generation. However, from Figures 1a and 1b, it is apparent that the daily demand
and wind generation patterns do not simply shift across seasons. The shape of the entire profiles
change. To properly control for the variation in the daily profiles, the set of hourly fixed effects
must be allowed to flexibly vary across months and years.

50For study of heating and cooling degree impacts, see Valor, et al. (2001).
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Ci,h,d =

{
Ti,h,d − 18 if Ti,h,d ≥ 18

0 if Ti,h,d < 18,

where Ti,h,d is the average temperature, in degrees Celsius, during hour h on day

d in weather zone i. Hi,h,d increases as the temperature falls below 18 degrees,

capturing the increased use of electricity for heating purposes. Ci,h,d increases as

the temperature in region i increases above 18 degrees, capturing the increased

use of electricity for cooling.51 To control for differences in demand driven by

temperature changes, Z includes the differences in both the levels and the squares

of heating and cooling degrees between hour h of days d and d − 1 for each of

the nine weather regions. In addition, I allow the demand response to a change

in temperature to differ across hours of the day by interacting ∆Hi,h,d, ∆Ci,h,d,

∆H2
i,h,d, and ∆C2

i,h,d with a set of dummy variables, {b1, b2, b3, b4}, which separate

the observations into six hour periods (10 p.m.-3 a.m., 4 a.m.-9 a.m., 10 a.m.-3

p.m., 4 p.m.-9 p.m.).52

In addition to controlling for temperature driven demand changes, I also

account for potential wind speed driven demand changes. In the set of controls,

I include the change in the hourly average ground level wind speeds for each of

the 13 regions with wind turbines. Recall wind speeds have been found to have

a cooling impact. Therefore, higher wind speeds will reduce electricity demand

when temperatures are high and increase electricity demand when temperatures

are low. Therefore, I also include the change in the interaction between the ground

level wind speeds with the heating cooling degrees variables from the respective

weather zones.

A variety of unobserved factors can alter the level of emissions during each

hour of a day. For example, if a baseload coal plant is taken off-line for mainte-

nance, cleaner gas fired generation may replace the missing output. As a result,

51Using separate heating and cooling degree variables allows the demand response to be asym-
metric around the base temperature. Alternative base temperatures ranging between 15-21
degrees Celsius were examined and the results remained unchanged.

52Regressing the changes in adjusted loads in each weather zone on the corresponding ∆Hi,h,d,
∆Ci,h,d, ∆H2

i,h,d, and ∆C2
i,h,d for the region, I find R2 values of 0.28 (Coast), 0.10 (East), 0.35

(Far West), 0.38 (North Central), 0.37 (North), 0.40 (South Central), 0.36 (South), and 0.45
(West).
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the emissions will fall during each hour. If the timing of the coal plant being taken

off-line is correlated with the level of generation, the estimate of the impact of wind

generation can be biased. To control for the possibility that the unobserved fixed

effects are correlated with the included regressors, I estimate the model using fixed

effects for each day in the sample. Fixed effects estimation will also control for

any long run trends that may result in spurious correlation between the changes

in wind generation and the changes in conventional generation.

Finally, to control for potential endogeneity in the short-run level of wind

generation, I instrument for hourly production from wind turbines using a measure

of the potential wind generation. Recall from the analytical model, the potential

hourly wind generation is determined by the product of two factors: the installed

wind generation capacity and the hourly capacity factor. From the AEI test towers,

I have the average hourly wind speed during hour h of day d in the northwest region

of Texas, Sh,d. These wind speeds predict the potential capacity factors of the

northwest wind turbines. The installed wind generation capacity in the northwest

region, which steadily grows over the sample, is given by Kh,d. The product of the

two, Sh,d · Kh,d, serves as a good proxy for the potential hourly wind generation

from the northwest wind turbines. To account for potential endogeneity in the

changes in wind generation, (Wh,d−Wh,d−1), I use (Sh,d ·Kh,d− Sh,d−1 ·Kh,d−1) as

an instrument.53

The full specification is shown below:

∆Eh,d = β ·∆Wh,d +m(H,C,G) + αd + εh,d (1.11)

53Estimates are also made using ∆Sh,d, ∆Kh,d, and ∆Sh,d · Kh,d as instruments with the
results remaining unchanged. In this case, the coefficients on the change in wind speed and the
change in capacity are both insignificant in the first stage. The changes in the levels explain no
additional variation in ∆Wh,d above and beyond what is explained by the interaction.
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where

m(·) =
10∑
i=1

(
δ1,i,b∆Hi,h,d + δ2,i,b∆H

2
i,h,d + δ3,i,b∆Ci,h,d + δ4,i,b∆C

2
i,h,d

)

+
13∑
k=1

(
φ1,k∆Gk,h,d + φ2,k∆(Gk,h,d ·Hk,h,d) + φ3,k∆(Gk,h,d · Ck,h,d)

)
,

and

∆ = change between hour h of day d and d− 1,

∆Eh,d = Change in CO2 (tons), NOx (lbs), or SO2 (lbs),

∆Wh,d = Change in ERCOT wind generation (MWh),

∆Hi,h,d = Change in heating degrees in zone i (Celsius),

∆Ci,h,d = Change in cooling degrees in zone i (Celsius), and

∆Gk,h,d = Change in ground wind speed in region k (meters/second).

In the specification of m(·), the coefficients on (∆Hi,h,d,∆H
2
i,h,d,∆Ci,h,d,∆C

2
i,h,d)

are allowed to vary across the four 6-hour blocks of the day, (b1, b2, b3, b4). The

interaction terms, Gk,h,d ·Hk,h,d and Gk,h,d ·Ck,h,d, represent the ground level wind

speed in region k, one of the thirteen regions with installed wind turbines, multi-

plied by the hourly heating and cooling degrees in the respective region.

To identify the exogenous variation in aggregate wind generation, the fol-

lowing first stage equation is estimated:

∆Wh,d = γ ·∆(Sh,d ·Kd) + m̃(H,C,G) + α̃d + νh,d, (1.12)

where

m̃(·) =
10∑
i=1

(
δ̃1,i,b∆Hi,h,d + δ̃2,i,b∆H

2
i,h,d + δ̃3,i,b∆Ci,h,d + δ̃4,i,b∆C

2
i,h,d

)

+
13∑
k=1

(
φ̃1,k∆Gk,h,d + φ̃2,k∆(Gk,h,d ·Hk,h,d) + φ̃3,k∆(Gk,h,d · Ck,h,d)

)
,
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and

Sh,d = wind speed (meters/second) at AEI test site, and

Kd = installed wind generation capacity (MW) in AEI region.

To account for arbitrary serial correlation and heteroskedasticity, the errors εh,d

are clustered across each day, d, in the sample.54

1.5.2 Average Emissions Offset

Results from the first stage estimation of Eq. (2.16) are presented in Ta-

ble 1.4. The coefficient on the excluded instrument, the change in the AEI test

site wind speed interacted with the installed wind generation capacity, is positive

and statistically significant at the 1% level. The partial-R2 value for the single ex-

cluded instrument is 0.27 and the F-statistic testing the instrument significance is

785.116, which well exceeds the Stock-Yogo weak identification test critical values.

Therefore, I can conclude that the instrument is relevant and does not suffer from

weak instrument issues.

Fixed effect estimates of Eq. (2.15) are presented in Table 1.5.55 For each

of the three pollutants, two estimates of the average impact of wind generation

are shown. The first estimates are based on the assumption that changes in wind

generation are exogenous. The second estimates are found using Eq. (2.16) to

instrument for wind generation changes. Under the assumption that wind genera-

tion is exogenous, a MWh of production from wind turbines offsets an average of

0.630 tons of CO2, 1.015 lbs of NOX , and 1.615 lbs of SO2. Instrumenting for the

changes in wind generation, I find a MWh of wind generation on average offsets

0.658 tons of CO2, 1.023 lbs of NOX , and 1.816 lbs of SO2. For each pollutant,

54The error term is likely correlated across hours of a single day due to the unique institutional
features. At the close of the day ahead balancing market, the supply bids for each 15 minute
interval of the next day must be submitted. Therefore, the dispatch order for the next day is
determined largely in advance using a single information set. This introduces potential correlation
between the within day errors. This is a common assumption in studies of electricity markets.
For example, see Guthrie and Videbeck (2007).

55For each of the six models, I use a Hausman test to examine the random effects assumption.
In each case, I reject the null hypothesis that the daily fixed effects are random.
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Table 1.4: First Stage Regression Results

∆ Wind Generation (MWh)

∆ (Wind Speed · Capacity) 0.032**
(0.001)

N 20,886
Partial-R² 0.27

Kleibergen-Paap rk Wald F-stat 785
Stock-Yogo weak ID test critical Value 10% 16.4

Model includes changes in the level and square of heating and cooling degrees by weather
zone, changes in ground wind speeds, and the interaction between ground wind speed and
heating and cooling degree changes.  Estimates are made using daily fixed effects.  Errors
clustered by day.  Standard error presented in parentheses.  Partial-R2 value for excluded
instrument presented.  * significant at 5%,  ** significant at 1%.

the IV estimates are larger, but not statistically different from the estimates made

assuming exogeneity. Table 5 also presents the Chi-square statistics from Durbin-

Wu-Hausman tests of wind generation exogeneity. In each case, I fail to reject the

null hypothesis that changes in wind generation are exogenous.

For perfectly mixing pollutants such as CO2, it is not important where the

emission reductions occur. However, with local or regional pollutants, where the

pollution is emitted is an important determinant of the social cost. To identify

where the emissions reductions caused by wind generation take place, I re-estimate

Eq. (2.15) using the change in emissions by sub-region as the dependent variables.

ERCOT has split the service territory into four separate Congestion Zones; the

North, South, Houston, and West zones.56 I sum the hourly emissions from the

generating units located in each zone to find the aggregate regional emissions.

Oklahoma is treated as the fifth region.

Fixed effects estimates of Eq. (2.15) using the wind speed changes as an

instrument are presented in Table 1.6. The results show that wind generation

56I include non-ERCOT generating units in the northern pan-handle of Texas in the North
Congestion Zone.
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Table 1.5: Average Emissions Offset

Exogenous IV Exogenous IV Exogenous IV

∆ Wind Gen. -0.630** -0.658** -1.015** -1.023** -1.615** -1.816**
(0.025) (0.043) (0.055) (0.097) (0.165) (0.286)

N 20,886 20,886 20,886 20,886 20,886 20,886
R² 0.45 0.45 0.29 0.29 0.15 0.15

Chi-sq(1) - 0.63 - 0.01 - 0.76
P-value - 0.43 - 0.91 - 0.38

Models include changes in the level and square of heating and cooling degrees by weather zone, changes in ground wind
speeds, and the interaction between ground wind speed and heating and cooling degree changes.  Estimates are made using
daily fixed effects.  Errors are clustered by day.  Standard errors reported in parentheses.  Explained within day variation
given by R2.  Chi-square statistic and p-value from Durbin-Wu-Hausman test of endogeneity are reported.
* significant at 5%,  ** significant at 1%.

∆ CO2 (tons) ∆ NOx (lbs) ∆ SO2 (lbs) 

results in significant reductions in CO2, NOX , and SO2 within each region in

Texas. In addition, significant reductions in CO2 and NOX from Oklahoma based

generating units occur as well. SO2 emissions in Oklahoma are not significantly

impacted by ERCOT wind generation. This is explained by subsequent results

which demonstrate that coal fired units, the primary source of SO2 emissions,

within Oklahoma, do not alter production in response to ERCOT wind generation.

Table 1.6 also reports the Chi-squared test statistics and p-values from

Durbin-Wu-Hausman tests examining whether changes in wind generation are ex-

ogenous. The null hypothesis that wind generation changes are exogenous can be

rejected at the 5% level for the West Congestion Zone in two of the three models

and the South region in one of the three models. Re-estimating Eq. (2.15) for

the West Congestion Zone under the assumption that wind generation changes are

exogenous, I find on average, a MWh of wind generation offsets 0.063 tons of CO2,

0.216 lbs of NOX , and 0.079 lbs of SO2. The instrumental variable estimates of

the average reductions in West CO2, NOX , and SO2 are 0.072 tons, 0.245 lbs, and

0.096 lbs respectively. The estimates of the reductions are slightly larger in the IV

models, with the differences in the reductions of CO2 and SO2 significant at the
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Table 1.6: IV Average Emissions Offset by Zone

North South Houston West Oklahoma

∆ Wind Gen. -0.299** -0.135** -0.086** -0.072** -0.056**
(0.026) (0.010) (0.010) (0.005) (0.012)

N 20,886 20,886 20,886 20,886 20,886
R² 0.37 0.36 0.23 0.23 0.18

Chi-sq(1) 0.01 0.01 0.12 5.70 3.62
P-value 0.94 0.91 0.73 0.02 0.06

North South Houston West Oklahoma

∆ Wind Gen. -0.397** -0.143** -0.083** -0.245** -0.155**
(0.044) (0.027) (0.017) (0.023) (0.051)

N 20,886 20,886 20,886 20,886 20,886
R² 0.21 0.17 0.08 0.18 0.13

Chi-sq(1) 0.35 3.81 2.68 3.57 2.27
P-value 0.56 0.05 0.10 0.06 0.13

North South Houston West Oklahoma

∆ Wind Gen. -1.096** -0.473** -0.256** -0.096** 0.105
(0.238) (0.072) (0.060) (0.009) 0.057

N 20,886 20,886 20,886 20,886 20,886
R² 0.11 0.12 0.05 0.16 0.06

Chi-sq(1) 0.20 0.21 2.76 6.24 0.04
P-value 0.66 0.65 0.10 0.01 0.84

Models include changes in the level and square of heating and cooling degrees by weather zone, changes
in ground wind speeds, and the interaction between ground wind speed and heating and cooling degree
changes.  Estimates are made using daily fixed effects.  Errors clustered by day.  Standard errors reported
in parentheses.  Explained within day variation given by R2 values. Chi-square statistic and p-value from
Durbin-Wu-Hausman test of endogeneity are reported.  * significant at 5%,  ** significant at 1%.

∆ CO2 Emissions (tons)

∆ NOx Emissions (lbs)

∆ SO2 Emissions (lbs)
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5% level. These results suggest that imposing the assumption of wind generation

exogeneity will result in biased estimates of the average emission reductions across

regions. At the current levels of curtailment, the induced bias is not large. How-

ever, future applications of this identification strategy will likely need to address

the endogeneity of wind generation as the quantity, and frequency, of curtailments

increases on regional grids.

1.5.3 Average Generation Avoided

The results in the previous section identify the average reduction in emis-

sions from fossil fuel units in the EPA dataset. If fossil fuel fired units serving as

substitutes to ERCOT wind turbines are not included in the EPA dataset, then

the estimates of the emissions offset will be below the actual reductions.57 This

section tests if the full set of fossil fuel generating units that respond to wind gen-

eration are included in the dataset. Recall, the quantity of electricity generated

must always equal the quantity demanded plus total losses:

(Wind Gen.) + (Non-Wind Gen.) = (Quantity Demanded) + (Losses). (1.13)

Therefore, controlling for changes in the quantity demanded, an increase in wind

generation must result in an equal and opposite decrease in non-wind generation

plus any change in total losses:

∂(Non-Wind Gen.)

∂(Wind Gen.)
− ∂(Losses)

∂(Wind Gen.)
= −1. (1.14)

To test if the identity in Eq. (2.11) holds, I identify the average impact of a

MWh of wind generation on electricity generation from conventional sources and

on aggregate losses on the ERCOT grid. Data on the hourly aggregate generation

57There are two potential reasons fossil fuel units that adjust output in response to wind gen-
eration could be missing. First, the EPA does not require natural gas fired units with capacities
below 25 MW to report the hourly emissions. However, the units excluded from the EPA dataset
represent less than 1% of the generating capacity in the region. A second reason fossil fuel sub-
stitutes could be missing is that generators outside of Texas and Oklahoma adjust output in
response to ERCOT wind generation.
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(MWh) from coal and natural gas fired units is available from the EPA dataset

and hourly generation from nuclear, hydroelectric, and ‘other’ generation sources

is provided by ERCOT. In addition, ERCOT reports the hourly adjusted load

(MWh), which is the sum of the quantity of electricity demanded plus transmission

and distribution losses. To identify the average impact on non-wind generation,

I re-estimate Eq. (2.15) using the changes in generation from conventional fuel

sources and the change in adjusted load as the dependent variables. The full

specification is shown below:

∆Gj,h,d = βj ·∆Wh,d +mj(H,C,G) + αj,d + εj,h,d (1.15)

where

mj(·) =
10∑
i=1

(
δ1,j,i,b∆Hi,h,d + δ2,j,i,b∆H

2
i,h,d + δ3,j,i,b∆Ci,h,d + δ4,j,i,b∆C

2
i,h,d

)

+
13∑
k=1

(
φ1,j,k∆Gk,h,d + φ2,j,k∆(Gk,h,d ·Hk,h,d) + φ3,j,k∆(Gk,h,d · Ck,h,d)

)
,

and

∆ = change between hour h of day d and d− 1,

∆Gj,h,d = change in generation from fuel source j (MWh),

∆Wh,d = change in ERCOT wind generation (MWh),

∆Hi,h,d = change in heating degrees in zone i (Celsius),

∆Ci,h,d = change in cooling degrees in zone i (Celsius), and

∆Gk,h,d = change in ground wind speed in region k (meters/second).

Fixed effects estimates of Eq. (1.15) are made for j = (Natural Gas, Coal, Nu-

clear, Hydro, ‘Other’, Adjusted Load).58 To allow for arbitrary heteroskedasticity

58To test whether unobserved daily fixed effects are correlated with the included regressors,
I use a Hausman test comparing the fixed effects estimates of Eq. (1.15) to the random effects
estimates. The null hypothesis that the FE coefficients are equivalent to the RE coefficients is
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and serial correlation, I again cluster the errors at the daily level. Estimating

Eq. (1.15) using the change in the adjusted load as the dependent variable results

in a predicted value of βLoad. Due to the fact that the short-run demand is per-

fectly inelastic, βLoad represents the average impact of wind generation on the total

losses on the ERCOT grid.

Table 1.7 reports the estimates of Eq. (1.15). For each conventional fuel,

as well as adjusted load, two models are estimated. The first assumes changes in

wind generation are exogenous. The second controls for curtailments by instru-

menting for ∆Wh,d using the first stage specified by Eq. (2.16). Assuming that

wind generation is exogenous in the short-run, I find that a MWh of wind genera-

tion offsets an average of 0.686 MWh of natural gas generation and 0.282 MWh of

coal generation. Estimates from the IV model find that on average, 0.685 MWh of

natural gas generation and 0.308 MWh of coal generation is offset by each MWh of

wind generation.59 In both the exogenous and IV models, small, but statistically

significant reductions in output from hydroelectric units and ‘other’ sources occur

in response to an additional MWh of wind generation. No significant reduction

in nuclear generation occurs. Finally, both the exogenous and IV models estimate

that wind generation has a positive, but statistically insignificant, impact on the

total ERCOT adjusted load. Table 1.7 also reports the Chi-square statistics and

p-values from Durbin-Wu-Hausman tests examining whether short-run changes in

wind generation are exogenous. The null hypothesis that ∆Wh,d is exogenous is

rejected in only the ‘other’ generation model.

To test whether Eq. (2.11) holds, I sum the average generation avoided by

fuel source and subtract the average increase in adjusted load from the IV models,

βIVGas + βIVCoal + βIVNuclear + βIVHydro + βIVOther − βIVLoad = −1.03.

rejected at the 1% confidence level for four of the models (coal generation, gas generation, ‘other’
generation, and adjusted load).

59In addition, an average of 0.002 MWh of generation from the petroleum fired plant in the
Houston region is reduced for each 1 MWh of wind generation. This result is significant at the 1%
level. However, the ERCOT measure of ‘other’ generation includes the non-coal and non-natural
gas fossil fuel generation. Therefore, to avoid double counting of the offset petroleum generation, I
exclude the petroleum fired plant from the generation by fuel source regressions. When estimating
the total fossil generation avoided and the total emissions avoided, the petroleum fired plant, and
its resulting emissions, are included in the dataset.
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Table 1.7: Average Generation Avoided by Fuel

Exogenous IV Exogenous IV Exogenous IV

∆ Wind Gen. -0.686** -0.685** -0.282** -0.308** -0.002 -0.001
(0.035) (0.057) (0.018) (0.030) (0.002) (0.003)

N 20,886 20,886 20,886 20,886 20,886 20,886
R² 0.38 0.38 0.26 0.26 0.04 0.04

Chi-sq(1) - 0.01 - 1.02 - 0.16
P-value - 0.97 - 0.31 - 0.69

Exogenous IV Exogenous IV Exogenous IV

∆ Wind Gen. -0.002** -0.002* -0.010** -0.015** 0.004 0.021
(0.0005) (0.001) (0.002) (0.003) (0.029) (0.049)

N 20,886 20,886 20,886 20,886 20,886 20,886
R² 0.06 0.06 0.12 0.12 0.39 0.39

Chi-sq(1) - 0.01 - 5.07 - 0.20
P-value - 0.91 - 0.02 - 0.65

Models include changes in the level and square of heating and cooling degrees by weather zone, changes in ground wind
speeds, and the interaction between ground wind speed and heating and cooling degree changes.  Estimates are made using
daily fixed effects.  Errors are clustered by day.  Standard errors reported in parentheses.  Explained within day variation
given by R2.  Chi-square statistic and p-value from Durbin-Wu-Hausman test of endogeneity are reported.
* significant at 5%,  ** significant at 1%.

∆ Hydro (MWh) ∆ Other (MWh) ∆ Load (MWh) 

∆ Gas (MWh) ∆ Coal (MWh) ∆ Nuclear (MWh) 
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From the models imposing the assumption of wind generation exogeneity, the sum

of the average generation levels avoided plus the increase in adjusted load is equal

to -0.99. Both values are statistically indistinguishable from -1. These results

provide strong evidence that the full set of generating units that adjust output

in response to changes in wind generation are included in the sample. Therefore,

identifying the impact of wind generation on the emissions from the included fossil

fuel units will capture the full impact of ERCOT wind generation on aggregate

emissions.

In addition to examining the substitution pattern across different technolo-

gies, I estimate the spatial substitution pattern between wind generation and fossil

fuel fired generation. Using the change in natural gas and coal fired generation by

region as the dependent variables, I re-estimate Eq. (1.15) using the instrumental

variable approach with the first-stage specified by Eq. (2.16). Results from the

fixed effects estimates are presented in Table 1.8. The North Congestion Zone,

which accounts for the largest share of ERCOT generation, experiences the largest

reductions in fossil generation. Significant reductions in natural gas fired genera-

tion occur in each region. In addition, significant reductions in coal fired generation

occur within each Congestion Zone in Texas. Consistent with the earlier findings

that SO2 emissions in Oklahoma are unaffected, the generation from Oklahoma

coal fired units are not significantly impacted.

Repeating the Durbin-Wu-Hausman test on the disaggregated fossil gener-

ation data, I reject the null hypothesis that wind generation is exogenous for the

West coal generation model. The IV estimate of the average reduction in coal gen-

eration is significantly larger than the estimate made assuming wind generation

is exogenous. This result supports the earlier finding that the estimates of the

aggregate emissions avoided by wind generation suffer from a small downward bias

due to the assumption of wind generation exogeneity.

1.5.4 Comparing Estimation Strategies

The estimation results identify the average emissions offset per MWh of

wind generation. Over the three year sample examined, Table 1.1 shows the average
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Table 1.8: IV Average Fossil Generation Avoided by Zone

North South Houston West Oklahoma

∆ Wind Gen. -0.314** -0.099** -0.124** -0.039** -0.109**
(0.029) (0.011) (0.014) (0.005) (0.018)

N 20,886 20,886 20,886 20,886 20,886
R² 0.36 0.26 0.22 0.15 0.20

Chi-sq(1) 0.17 0.90 0.30 0.08 3.27
P-value 0.68 0.34 0.59 0.78 0.07

North South Houston West Oklahoma

∆ Wind Gen. -0.120** -0.092** -0.044** -0.048** -0.005
(0.019) (0.009) (0.007) (0.004) (0.008)

N 20,886 20,886 20,886 20,886 20,886
R² 0.18 0.23 0.10 0.17 0.08

Chi-sq(1) 0.13 1.82 0.68 9.40 0.78
P-value 0.72 0.18 0.41 0.00 0.38

Models include changes in the level and square of heating and cooling degrees by weather
zone, changes in ground wind speeds, and the interaction between ground wind speed and
heating and cooling degree changes.  Estimates are made using daily fixed effects.  Errors
clustered by day.  Standard errors are reported in parentheses.  Explained within day variation
given by R2 values.  Chi-square statistic and p-value from Durbin-Wu-Hausman test of
endogeneity are reported.  * significant at 5%,  ** significant at 1%.

∆ Gas Generation (MWh)

∆ Coal Generation (MWh)
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hourly generation from ERCOT wind turbines was 1,626 MWh (4.7% of total

ERCOT generation). Therefore, the IV estimates of the average emissions avoided

per MWh from Table 1.5 imply that over the sample period, ERCOT wind turbines

reduce an average of 1,070 tons of CO2, 1,663 pounds of NOX , and 2,953 pounds

of SO2 per hour. Comparing these values to the aggregate hourly emissions from

Table 1.3, I can conclude that between 2007-2009, ERCOT wind turbines offset

the equivalent of 3.51% of ERCOT CO2 emissions, 4.45% of NOX emissions, and

2.63% of SO2 emissions.

The estimates of the actual emission reductions can be compared to predic-

tions from alternative estimation methods. For example, assuming the emissions

reduced per MWh of wind generation is equal to the average ERCOT emission

intensity, I would conclude that the equivalent of 4.7% of the total ERCOT CO2,

NOX , and SO2 emissions were reduced. The average emission intensity estimates

will overestimate the emissions avoided due to the fact that coal generation ac-

counts for 37% of the total ERCOT generation but only 31% of the generation

avoided by wind turbines. This highlights the importance of identifying the tech-

nologies and fuel sources that serve as substitutes for renewable generators.60

Comparing the estimates of the average impact of wind generation on aggre-

gate emissions (Table 1.5) and emissions by zone (Table 1.6), there is evidence that

imposing the assumption of wind generation exogeneity results in a slight down-

ward effect on the predicted pollution avoided. To examine the impact of assuming

each fossil fuel plant has a constant emission rate, I re-estimate Eq. (1.15) using

the change in generation from each individual plant in the EPA dataset as the new

dependent variables. The resulting IV estimates of β represent the average change

in generation from each plant caused by a MWh of wind generation.61 Results for

60An alternative strategy would be to multiply the quantity of coal and natural gas fired
generation avoided by the average emission intensity of each coal and gas fired units. Combining
the IV estimates of the average reduction in coal and natural gas fired generation per MWh of
wind (Table 1.7) with the average emission intensities of coal and gas fired units (Table 1.2), I
would predict an average reduction of 0.75 tons of CO2, 1.48 pounds of NOX , and 1.83 pounds
of SO2 per MWh of wind generation. These values are 14%, 45%, and 1% larger than the actual
IV estimates (Table 1.5).

61Not every plant is in the EPA sample over the entire time period. Therefore, the estimates β̂
represent the average change in generation during the subset of hours the plant is in the dataset.
To estimate the average generation offset at each plant by a MWh of wind generation over the
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the top 20 plants with the largest average reductions in output are presented in

Table 1.13 in the Appendix. Recall, on average, a MWh of wind generation offsets

0.99 MWh of generation from fossil fuel plants. Of this reduced output, on average

0.54 MWh of generation is reduced from the top 20 substitutes.

For each plant, I calculate the average CO2, NOX , and SO2 rates by aggre-

gating the total plant level pollution during the sample period and dividing by the

total plant level generation. Multiplying the average generation avoided over that

time from each plant by the plant’s average emission rates results in estimates of

the average reduction in pollution from each plant. Aggregating across each plant,

I predict that each MWh of wind generation offsets an average of 0.72 tons of CO2,

0.95 lbs of NOX , and 1.96 lbs of SO2. These predicted reductions in CO2 and SO2

are 10% and 8% larger than the respective IV estimates from Table 1.5. In con-

trast, assuming the plants have a constant emission rate results in predictions 7%

below the IV estimates of the average NOX reduction.

To summarize the results of the various estimates of the average emissions

offset by wind generation, Table 1.9 lists the IV estimates of the aggregate emissions

avoided per MWh. In addition, the estimates made assuming wind generation

varies exogenously, as well as assuming each plant has a constant emission rate,

are shown. Finally, I include the range of the estimates presented by Cullen (2011).

Comparing the preferred IV estimates to the lower range of Cullen’s estimates, I

find Cullen’s predictions of the average CO2, NOX , and SO2 reductions are 20%,

3%, and 74% larger than my estimates. The larger CO2 and SO2 estimates appear

to be, in part, explained by imposing the assumption that fossil fuel plants have a

constant average emission rate.

1.6 Variation in Emissions Avoided

The previous results identify the average reduction in pollution caused by

each MWh of wind generation. In this section, I estimate how the quantity of

pollution avoided varies over time.

full sample, the estimates β̂ must be multiplied by the fraction of the total hours each individual
plant is in the EPA dataset.
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Table 1.9: Comparing Estimates of Average Emissions Offset

Estimation Strategy CO2 tons NOx lbs SO2 lbs

IV Approach -0.66 -1.02 -1.81

Exogenous Generation -0.63 -1.02 -1.62

Constant Emission Rates -0.72 -0.95 -1.96

Cullen (2011) (-0.79 , -0.85) (-1.05 , -1.16) (-3.15 , -3.29)

"IV Approach" and "Exogenous Generation" estimates from Table 5.  "Constant Emission Rates"
estimates from Table A2.  Low and high range of average emissions avoided from Table 6 and
Table A5 in Cullen (2011).

Average Emissions Avoided per MWh

1.6.1 Econometric Specification

To identify whether the emissions avoided varies over time, one option is to

simply allow the estimates of the emissions offset by a MWh of wind generation

to vary across the 24 hours of day. Recall however, from the simple model, the

quantity of emissions avoided by a marginal increase in intermittent generation

will vary with the marginal dispatchable generator. Therefore, the impact of a

MWh of wind generation during hour h on a day with high demand may differ

from the impact during hour h on a day with low demand.

To capture this fact, ideally the impact of wind generation on emissions can

be modeled as a function of the unobserved quantity of electricity demanded, D∗h,d:

Eh,d = β̃0 ·Wh,d + f̃(D∗h,d) ·Wh,d + γ̃ · f̃(D∗h,d) + θ̃ · Zh,d + ε̃h,d. (1.16)

In the above equation, Eh,d and Wh,d are the aggregate hourly emissions and wind

generation while Zh,d is a vector of controls. Taking the partial derivative of

Eq. (1.16) with respect to Wh,d yields the following expression for the impact of
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wind generation on emissions:

∂Eh,d
∂Wh,d

= β̃0 + f̃(D∗h,d).

However, the actual demand is not observed by itself. Instead, I observe the

adjusted ERCOT load, Lh,d, which is equal to the sum of the quantity demanded

plus the unobserved losses, l∗h,d. Recall from the analytical model, the aggregate

losses can be affected by the level of wind generation. Using the adjusted load to

proxy for the unobserved demand, Eq. (1.16) can be written as:

Eh,d = β0 ·Wh,d + f
(
D∗h,d + l∗h,d

)
·Wh,d + γ · f

(
D∗h,d + l∗h,d

)
+ θ · Zh,d + εh,d. (1.17)

Taking the partial derivative of Eq. (1.16) with respect to Wh,d, again yields

the following expression:

∂Eh,d
∂Wh,d

= β0 + f(D∗h,d + l∗h,d).

The above partial derivative represents the impact of a change in wind generation

on emissions, holding other variables constant. If wind generation affects the level

of losses, then the partial derivative does not equal the net impact of a change in

wind generation on emissions. Instead, the full impact on emissions is represented

by the total derivative:

dEh,d
dWh,d

= β0 + f
(
D∗h,d + l∗h,d

)
+
(
Wh,d + γ

)
· f ′
(
D∗h,d + l∗h,d

)
·
∂l∗h,d
∂Wh,d

.

Therefore, if f ′(·) 6= 0 and if
∂l∗h,d
∂Wh,d

6= 0, then
∂Eh,d

∂Wh,d
6= β0 + f(·).

To ensure that the net impact of wind generation on emissions is identified,

I first estimate fitted values for the ERCOT load using the hourly load from the

prior week. I regress the adjusted load during hour h of day d on the load during

hour h of day d − 7. The model used to estimate the fitted load values is shown

below:

Lh,d = α0 + α1 · Lh,d−7 + µh,d. (1.18)
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The lagged load explains 76% of the variation in the hourly load over the sample

period. Figure 1.3 provides the distributions of the actual and the fitted load

values.
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Figure 1.3: Distribution of Actual and Fitted Load

Using the fitted values of the adjusted load, L̂h,d, I can estimate the following

general model:

Eh,d = β0 ·Wh,d + f
(
L̂h,d

)
·Wh,d + γ · f

(
L̂h,d

)
+ θ · Zh,d + εh,d. (1.19)

Given that
∂L̂h,d

∂Wh,d
= 0, the net impact of a change in wind generation, conditional

on the fitted level of load, is given by the following expression:

dEh,d
dWh,d

= β0 + f(L̂h,d).
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Recall, wind generation displays strong hourly and seasonal patterns which

are negatively correlated with the regular pattern of demand in the region. While

the fitted loads control for potential correlation with the hourly and seasonal pat-

terns of ERCOT demand, the measure of aggregate emissions includes generation

from units that serve demand outside of ERCOT as well. To account for arbitrary

seasonal and hourly patterns in demand, I again difference the data across the

same hour h of consecutive days, d and d− 1.

To control for potential correlation between changes in wind generation

and weather driven demand changes, I include changes in the level and squares

of the heating and cooling degrees in the ten weather zones. In addition, the

changes in ground level wind speeds in the thirteen regions with wind turbines,

and their interactions with heating and cooling degrees, are used as controls. The

full specification is shown below:

∆Eh,d = β0 ·∆Wh,d+∆
(
f(L̂h,d)·Wh,d

)
+γ ·∆f(L̂h,d)+m(H,C,G)+αd+ε̃h,d (1.20)

where

m(·) =
10∑
i=1

(
δ1,i,b∆Hi,h,d + δ2,i,b∆H

2
i,h,d + δ3,i,b∆Ci,h,d + δ4,i,b∆C

2
i,h,d

)

+
13∑
k=1

(
φ1,k∆Gk,h,d + φ2,k∆(Gk,h,d ·Hk,h,d) + φ3,k∆(Gk,h,d · Ck,h,d)

)
,

and

∆Eh,d = change in CO2 (tons), NOX (lbs), or SO2 (lbs),

∆Wh,d = change in ERCOT wind generation (MWh),

f(L̂h,d) = f(·) evaluated at fitted ERCOT adjusted load,

∆Hi,h,d = change in heating degrees in zone i, and

∆Ci,h,d = change in cooling degrees in zone i.
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Eq. (1.20) is estimated using fixed effects and the errors are clustered at the daily

level.

In the full specification, β0 + f(L̂h,d) represents the marginal impact of

wind generation on the aggregate emissions, conditional on the level of the fitted

ERCOT load. I model f(·) as a cubic polynomial of the fitted load. Therefore,

the net impact of a change in wind generation on aggregate emissions is equal to

the following expression:

∂Eh,d
∂Wh,d

= β0 + β1 · L̂h,d + β2 · L̂2
h,d + β3 · L̂3

h,d. (1.21)

In this specification, there are now four potentially endogenous regressors: ∆W ,

∆
(
W · L̂

)
, ∆
(
W · L̂2

)
, and ∆

(
W · L̂3

)
. To control for potential endogeneity in

these regressors, I use the following set of excluded instruments: ∆
(
Sh,d · Kd

)
,

∆
(
Sh,d ·Kd · L̂h,d

)
, ∆
(
Sh,d ·Kd · L̂2

h,d

)
, ∆
(
Sh,d ·Kd · L̂3

h,d

)
.

1.6.2 Emissions Offset at Different Loads

IV estimates of Eq. (1.20) are made for each of the three pollutants. In the

first-stage, ∆W , ∆
(
W · L̂

)
, ∆
(
W · L̂2

)
, and ∆

(
W · L̂3

)
are regressed on remaining

explanatory variables in Eq. (1.20) and the four excluded instruments. The Shea

Partial-R2 values are 0.30, 0.36, 0.43, and 0.30 respectively. The resulting param-

eter estimates of β̂0, β̂1, β̂2, and β̂3 define the quantity of emissions avoided by a

MWh of wind generation as a function of the fitted ERCOT load.

Figure 1.4 presents the estimates of Eq. (1.21), the emissions offset as a

function of the fitted load, as well as the corresponding 95% confidence intervals.

The results are shown for values of fitted loads between 24,000 MWh and 51,000

MWh, approximately the 5th and 95th percentiles. The results reveal significant

variation in the quantity of emissions avoided per MWh of wind generation. Esti-

mates of the pollution offset per MWh of wind generation range between 0.54 to

0.93 tons of CO2, 0.88 to 1.92 pounds of NOX , and 0.97 to 4.30 pounds of SO2.

For both CO2 and SO2, the quantity of emissions avoided by an additional

unit of wind generation are estimated to be significantly larger during hours with
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the lowest loads. For each of the pollutants, a MWh of wind generation reduces

the lowest levels of emissions during hours when the fitted load is between 30,000

and 40,000 MWh. The quantity of NOX reduced by a MWh of wind generation

reaches its maximum levels during hours with the highest levels of load.
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Figure 1.4: Emissions Avoided Across Load

1.6.3 Generation Offset at Different Loads

Recall from the simple model presented in Section 1.2, variation in the

emissions avoided per MWh can stem from two sources. First, the quantity of

conventional generation avoided per MWh of renewable output can vary as de-

mand shifts. Second, the emission intensity of the offset generation can vary as

the marginal generators changes. To identify what is driving the variation in the

emissions avoided at different levels of load, I examine how the level and composi-
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tion of conventional generation offset by wind generation varies with the ERCOT

load.

To identify the total conventional generation avoided by each MWh of wind

generation, I estimate the specification defined in Eq. (1.20) using the combined

change in the aggregate generation from coal, natural gas, nuclear, hydroelectric,

and ‘other’ generators as the dependent variable. Figure 1.5 presents the estimates

of the aggregate generation avoided per MWh at different levels of fitted load.

The point estimates of the conventional generation offset per MWh varies slightly

around 1 MWh, however the values are not significantly different than 1 MWh for

any level of fitted loads.62 These results demonstrate that the primary driver of

the variation in the emissions avoided stems from changes in the composition of

generation avoided.

To identify how the substitution pattern between wind generation and con-

ventional generation varies, I re-estimate the specification defined in Eq. (1.20)

using the change in the aggregate generation by each individual fuel source as the

dependent variables. In addition to exploring how the shares of coal and natural

gas fired units on the margin varies, I also explore how the type of natural gas

units on the margin varies. There are two broad types of natural gas generators:

efficient combined-cycle units and less efficient open-cycle units. To divide the set

of natural gas units in my sample, I separate the units into two categories based

on the observed generation efficiencies. The efficient units are the ’Low Heat-Rate’

units and the less efficient generators are the ’High Heat-Rate’ units. The method

I use for dividing the units is described in Appendix B.

Figure 1.6 presents the share of avoided generation by fuel source. At the

lowest levels of fitted load, coal fired generators, which have the lowest private

marginal costs, serve as the main substitute for wind generation. As the level of

fitted load increases, the share of coal generation avoided by each MWh of wind

generation falls and the share of output avoided from gas fired units, which have

higher private marginal costs, rises. Given that the CO2 and SO2 intensity of coal

62Given that the generation from the coal and natural gas units is measured as gross generation,
and not net generation, the total output offset will exceed the actual offset supply. Therefore,
values of generation offset slightly above 1 MWh per MWh of wind generation are to be expected.
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fired units are significantly larger than the emission intensities of gas fired units,

this is consistent with the findings that the CO2 and SO2 avoided by an additional

unit of wind generation fall as load increases.
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Figure 1.5: Total Generation Avoided

As the load increases, the composition of natural gas generation avoided

changes as well. As the level of load increases, the share of higher polluting, high

heat-rate gas units increases while the share of cleaner, low heat rate gas generation

avoided begins to fall. These results are consistent with the finding that the largest

reductions in NOX occur when wind generation is supplied at high levels of load.
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1.7 Potential Renewable Generation Investments

The empirical analysis in this paper demonstrates that the emissions avoided

by a MWh of renewable generation supplied to the ERCOT market varies sub-

stantially with the demand for electricity. By itself, this variation does not imply

generation subsidies create inefficient incentives for siting renewable generators.

In order for the mechanisms to fail at coordinating efficient investment decisions,

there must also be temporal variation in the renewable generation potential across

sites and technologies. In this section, I demonstrate that there is in fact sub-

stantial variation in the renewable energy profiles across potential sites and across

technologies. Using the estimates from the empirical analysis, I explore how much

resulting variation there may be in the pollution avoided per MWh of of generation

from potential renewable investments.

1.7.1 Renewable Generation Potential

To examine how renewable generation potential varies across sites, I esti-

mate the hourly generation that would have been realized by installing a hypo-

thetical wind turbine in three locations.63 The sites are located in Sweetwater (in

west Texas), Washburn (northern Texas panhandle) and Corpus Cristi (on Padre

Island in the Gulf). A description of how the estimates of the hourly generation

are produced is provided in the Appendix. In addition, to compare the poten-

tial generation across renewable technologies, I collect data on the hourly solar

generation from a photovoltaic panel in Tulia, TX (northern Texas Panhandle).64

For the Sweetwater, Washburn, and Corpus Cristi test sites, the predicted

63Each of the sites chosen are located within one of the designated Competitive Renewable
Energy Zones (CREZ). To ensure that the necessary transmission capacity exists for Texas to
meet the renewable generation goals, the Public Utility Commission of Texas established several
CREZ’s throughout the state. The CREZ’s are located in regions with substantial renewable
energy potential. The majority of the CREZ’s are located in the northwest region of the state,
where nearly all of the current wind generation capacity is installed. In addition, several locations
along the Gulf Coast of Texas were established as CREZ’s.

64Texas Tech University maintains the West Texas Mesonet, a set of weather stations through-
out northern Texas that collect a variety of weather readings. The equipment at each site is
powered by a solar photovoltaic panel. Data on the hourly realized generation from the solar
panel is collected.
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average hourly capacity factor that could be realized by installing a wind turbine at

each site are 38.3%, 40.3%, and 38.4% respectively.65 The solar panel in Tulia has

an average hourly capacity factor of 14.0%. Figure 1.7 plots the average capacity

factor by hour for each of the three AEI wind test sites as well as the Tulia solar

panel. The two wind sites in northwest Texas, the Sweetwater and Washburn sites,

have similar capacity factor profiles, both peaking in the late evening and early

morning. The capacity factors from the Corpus Cristi wind site have a different

daily pattern, peaking in the early afternoon when the coastal winds are higher.

The solar panel in Tulia produces at its peak capacity factor between noon and

2pm and falls to zero during the nighttime.
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Figure 1.7: Average Capacity Factor by Hour

65These values likely overstate the potential capacity factors due to the fact that the variability
in the direction of the wind is not considered. For a turbine to realize the predicted capacity
factors, the turbine must at all times be perpendicular to the wind. If the wind direction is
volatile, then the turbine cannot constantly be orthogonal to the direction of the wind.
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1.7.2 Average Emissions Avoided

The predicted capacity factors demonstrate substantial variation in the tim-

ing of potential generation across CREZ’s as well as across technologies. In this

section, I explore the impact this variation has on the average emissions avoided

by each potential MWh of electricity produced from each site. I define AEAi to be

the average emissions avoided by each MWh of renewable generation that would

be produced at site i. Additionally, I define MEAh,d to be the marginal emissions

avoided by a MWh of renewable generation from site i during hour h of day d. To

estimate the average emissions avoided, I assume the marginal emissions avoided

are specified by Eq. (1.21), MEAi,h,d = β̂0 + β̂1 · L̂h,d + β̂2 · L̂2
h,d + β̂3 · L̂3

h,d. I must

assume that the impact of renewable generation on losses does not vary across sites

or across technologies.66 For each of the four test sites, I calculate the average CO2,

NOX , and SO2 avoided using the following equation:

AEAi =

∑
d

∑
h

(
MEAh,d · xi,h,d

)
∑

d

∑
h xi,h,d

, (1.22)

where xi,h,d is the hourly capacity factor at site i during hour h of day d. I calculate

the average emissions that could have been avoided between January 1, 2007 and

September 30, 2008.67

Table 1.10 presents the average emissions avoided by each potential MWh of

renewable generation across the sites. A wind turbine installed at the Sweetwater

site or the Washburn site would provide nearly identical emission reductions for

each MWh produced.68 A wind turbine at Corpus Cristi offsets less CO2 and SO2

per MWh compared to the other two wind sites. Compared to a wind turbine

66Without renewable generation data disaggregated by region and technology, this assumption
cannot be tested.

67September 30, 2008 is the last date in the sample for the Sweetwater site. To produce
comparable estimates of AEAi,t, with similar load distributions, I focus on the period when both
Washburn and Sweetwater wind speeds are available.

68The average emissions avoided per MWh from the simulated northwest wind turbines differs
slightly from the estimates of the actual average emissions avoided per MWh, despite the fact
that the simulated wind turbines are located in the region where the majority of wind capacity
is installed. The differences are due to the fact that the simulation spans a subset of the three
years used to estimate the actual average emissions avoided.
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in Sweetwater, the region with the largest current installed wind capacity, a solar

panel in Tulia would avoid 11% less CO2, 14% more NOX , and 31% less SO2 per

MWh produced.

Table 1.10: Average Emissions Avoided by Site

Site CO2 (tons) NOx (lbs) SO2 (lbs)

Wind - Northwest (Sweetwater, TX ): 0.62 1.02 1.43

Wind - Northwest (Washburn, TX ): 0.61 1.05 1.42

Wind - Gulf Coast (Corpus Cristi, TX ): 0.57 1.04 1.29

Solar - Northwest (Tulia, TX ): 0.55 1.16 1.00

Average Emissions Avoided per MWh

The variation in the average emissions avoided per MWh can be explained

by the correlation between the capacity factors and the ERCOT load. The capacity

factors from the two wind sites in northwest Texas (Sweetwater and Washburn)

have a correlation with load of -0.15 and -0.09 respectively. Therefore, these wind

turbines tend to produce electricity more heavily when the demand on the grid is

lower and the marginal CO2 and SO2 rates tend to be larger. The capacity factor

for the Corpus Cristi wind turbine would have a correlation with load of -0.01, and

therefore, would produce electricity more heavily during periods with larger loads

than the northwest wind turbines. Finally, the solar panel has a correlation with

ERCOT load of 0.37. Compared to the northwest wind turbines, the solar panel

would offset generation when the marginal producers have higher NOX rates but

lower CO2 and SO2 rates.

1.7.3 Average Avoided External Costs

The previous results demonstrate that the average quantity of pollution

offset by each MWh of renewable generation varies across the sample sites. To
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translate the offset emissions into avoided costs, estimates of the external cost of

the actual pollution reduced are needed.

In the Texas region, CO2 is the only pollutant of the three studied that is

not subject to an emission cap. Therefore, offset emissions of CO2 represent real

reductions in aggregate pollution. In contrast to CO2 emissions, SO2 emissions

are capped nationwide under the Clean Air Act. In addition, NOX emissions

from large electricity generators in Texas are subject to regional emission caps.69

Therefore, rather than representing real reductions in pollution, offset NOX and

SO2 emissions can free up pollution permits to be used at a later point in time or

in a different location. While shifting when and where the NOX and SO2 emission

occur can alter the costs of the pollution emitted, placing a value on the cost

savings provided is beyond the scope of this study.70

To evaluate the benefits of CO2 reductions, I use cost estimates from the

Interagency Working Group (2010) report. The report provides lower ($5/ton),

middle ($21/ton), and upper ($35/ton) estimates of the external cost of CO2 using

discount rates of 5%, 3.5%, and 2%, respectively. Additionally, under the as-

sumption of larger than expected external damages, a high estimate of $65/ton is

presented. These are the range of values used in government cost-benefit analysis

of environmental policies. I estimate the average external benefit provided by a

MWh of renewable generation from each site by multiplying the cost of a ton of

CO2 by the average reduction in CO2 per MWh.

Table 1.11 provides the average external benefit per MWh of renewable

generation at the low, middle, upper, and high values of CO2 cost estimates. Recall,

the current Federal PTC provides a tax credit worth $22/MWh to wind turbine

owners. Using the lower and middle cost estimates, the PTC cannot be justified

solely on the basis of CO2 cost savings. However, assuming CO2 has an external

cost of $35/ton, the external benefits provided by wind generation from Northwest

69Additionally, local caps on NOX emissions within Non-attainment regions of Texas, such as
the Houston-Galveston-Brazoria area, are in place.

70The cost of non-perfectly mixing pollutants such as NOX and SO2 can vary across seasons
with the prevailing wind patterns. In addition, the interaction of NOX with other environmental
factors such as sunlight and temperature, which vary with time of day and season, alter the
external costs of the pollution.
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Texas wind turbines ($21.70/MWh and $21.35/MWh) are almost equal to the tax

expenditures of the PTC. In contrast, at an assumed cost of $35/ton of CO2, the

external benefits provided by Gulf Coast wind turbines and northwest solar panels

are $1.75 and $2.45 less than the benefit provided by the northwest turbines.

Table 1.11: Average External Benefit by Site

Lower Middle Upper High Cost
Site ($5/ton) ($21/ton) ($35/ton) ($65/ton)

Wind - Northwest (Sweetwater, TX ): $3.10 $13.02 $21.70 $40.30

Wind - Northwest (Washburn, TX ): $3.05 $12.81 $21.35 $39.65

Wind - Gulf Coast (Corpus Cristi, TX ): $2.85 $11.97 $19.95 $37.05

Solar - Northwest (Tulia, TX ): $2.75 $11.55 $19.25 $35.75

Avoided CO2 Cost ($/MWh)

While the gaps between the external benefit per MWh across renewable

investments are not large, the resulting impact on the aggregate benefits are in

fact substantial once the size and lifespans of modern wind and solar farms are

considered. Recall the predicted capacity factors from the wind turbines in North-

west Texas and the Gulf Coast were roughly 38%. Therefore, a single MW of

wind capacity installed in either location will produce around 3,329 MWh during

a single year. Assuming 200 MW of wind generation capacity are installed, a 200

MW wind farm in either location will produce 665,760 MWh per year. Assuming

the external cost of CO2 is $35/ton, a 200 MW wind farm in Northwest Texas

will provide a $1.63 million/year larger external benefit than a similar Gulf Coast

wind farm. Aggregating over the expected lifespan of modern wind farms, upwards

of 15 years, the differences in the external benefits provided by various renewable

investments becomes substantial.
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1.8 Conclusion

This paper makes two key contributions to the literature examining the

environmental benefits of renewable electricity. First, using an identification strat-

egy that allows me to relax the assumptions required in previous studies, I directly

estimate the emissions avoided by wind turbines in the Texas electricity market.

The estimates reveal generation from wind turbines in the region offsets significant

amounts of pollution. Second, I use the estimates of the emissions avoided to show

the current policies being used to subsidize renewable generation create inefficient

incentives.

Between January 1, 2007 and December 31, 2009, wind turbines accounted

for 4.7% of the total generation in the Texas electricity market. During this time

period, I estimate the production from wind turbines offset 3.5% of the CO2 emis-

sions, 4.5% of the NOX emissions, and 2.6% of the SO2 emissions. These values

highlight the importance of identifying the actual set of generators which serve as

substitutes to renewable output. While Texas coal fired units supply 37% of the to-

tal electricity, they only account for 31% of the generation offset by wind turbines.

On the other hand, lower polluting natural gas fired units, which provide 43% of

the Texas generation, account for 68% of the output offset by wind turbines. In

this case, assuming the pollution offset by a unit of renewable electricity is equal

to the average emission rate in the market will lead to substantial overestimation

of the emissions avoided.

In addition to identifying the average pollution offset per MWh, I estimate

the emissions reduced by renewable electricity supplied at different points in time.

Given that the conventional units on the margin will change as demand shifts,

the impact of renewable electricity will vary based on the quantity of electricity

demanded. Estimating the impact of wind generation supplied at different levels

of load on the Texas market, I find the average pollution offset by a MWh of

renewable electricity fluctuates between 0.54 to 0.93 tons of CO2, 0.88 to 1.92

pounds of NOX , and 0.97 to 4.30 pounds of SO2.

These temporal variations in the pollution avoided by renewable electricity

have significant policy implications. Current efforts to reduce emissions from the
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electric sector focus largely on increasing generation from renewable sources. The

policies in place regularly provide payments or tax credits to renewable producers

based on the quantity of electricity generated. However, the results in this paper

demonstrate that renewable generators producing electricity at different points in

time will reduce different amounts of pollution per MWh. Therefore, the current

policies will adversely favor certain renewable technologies or locations over others.

As a result, the mechanisms do not ensure efficient investment decisions will be

made.

This work provides several directions for future research. The results sug-

gest potential efficiency gains can be realized by allowing renewable subsidies to

vary with the quantity of pollution avoided. In future work, a more comprehensive

dataset of renewable potential across space and time will allow for a thorough ex-

amination of the impact of alternative renewable policies on investment decisions.

In addition, the analysis can be extended to consider the interactions between

renewable subsidies and emission prices. In many cases, both policy tools are

being employed in unison to achieve pollution reductions. The inclusion of emis-

sion prices alters the dispatch order of conventional generating units. As a result,

the marginal units or technology at a specific time can change. This will effec-

tively alter the private and external benefits of renewable generation. Exploring

these interactions, future work can examine the extent to which emission prices

and renewable subsidies serve as complements or substitutes in achieving pollu-

tion reductions. Finally, this paper focuses on the short-run impact of renewable

investments. As the share of intermittent renewable capacity continues to grow,

future work can begin to explore the impact of renewables on the retirement of

existing conventional capacity and the investment in new conventional capacity.

1.9 Appendix

1.9.1 Average Impact on Daily Emissions

The estimates of the average impact of wind generation on emissions pre-

sented in this paper are made by identifying the impact wind generation on the
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concurrent emissions. The results demonstrate that, all else equal, if the level of

wind generation increases from hour h of day d − 1 to hour h of day d, the level

of emissions will be significantly lower during hour h of day d. However, if the

increase in wind generation alters the level of emissions in between the two hours

being compared, the estimates of the impact of wind generation on emissions will

not identify the net impact. For example, if wind generation decreases during hour

h− 1, fossil fuel generating units may be required to ramp up output. Forcing the

fossil fuel generators to increase output may cause a spike in the emission rates

of the generating units during hour h− 1. By comparing the change in emissions

across hour h of day d and d− 1, I will not be identifying the impact on emissions

from the spike during hour h− 1 of day d.

To test whether the estimation strategy identifies the full impact of wind

generation on emissions, I estimate the average impact of the daily level of wind

generation, Wd =
∑h=24

h=1 Wh,d, on the daily level of aggregate emissions, Ed =∑h=24
h=1 Eh,d. The full specification is shown below:

∆Ed = β0 + β1 ·∆Wd + θ ·∆Ld + εd (1.23)

where

∆ = change between day d and d− 1,

∆Ed = daily change in CO2 (tons), NOX (lbs), or SO2 (lbs),

∆Wd = daily change in ERCOT wind generation (MWh), and

∆Ld = daily change in ERCOT adjsuted load (MWh).

In this specification, β1 represents the average change in the daily emissions caused

by a change in the level of wind generation, controling for changes in the quantity

demand and losses. The load is included as an explanatory variable to control for

weather driven changes in demand that may be correlated with wind generation.71

As a result, β1 represents the partial impact of wind generation on emissions. The

71Due to the fact that the sample size has been divided by 24, the original set of weather
controls becomes quite large relative to the numbe of observations.
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results from Section 5 demonstrate that wind generation may have a small upward

impact on aggregate losses. If this is the case, the estimates of β1 will be slightly

larger than the average net impact of wind generation on emissions.

To control for potential endogeneity in wind generation that arises due to

curtailments, I use the following first stage to instrument for changes in wind

generation:

∆Wd = α0 +
h=24∑
h=1

αh ·∆
(
Kd · Sh,d

)
+ γ ·∆Ld + µd (1.24)

where

∆Sh,d = hourly average AEI wind speed (meter/sec), and

∆Kd = installed northwest wind capacity (MW).

Estimates of Eq. (1.23) are presented in Table 1.12. In the first stage, the

Shea Partial-R2 for the 24 excluded instruments is 0.66. Testing the overidentifica-

tion restrictions, I cannot reject the null hypothesis that the instruments are valid

in any of the models. The results show that controlling for changes in load, an

additional MWh of wind generation will on average offset 0.73 tons of CO2, 1.15

pounds of NOx, and 1.97 pounds of SO2. Each of these estimates is slightly larger

than the point estimates presented in Table 5. Given that the results presented

in Table 1.12 represent the partial impact on emissions, not including the indirect

affect of losses, the slight increase is expected. However, each of the estimates of

β1 presented in Table 1.12 fall within the 95% confidence interval of the original

point estimates presented in Table 1.5.

These results suggest that the full impact of wind generation on aggregate

emissions largely occurs within the same hour. As the quantity of intermittent

capacity in the market continues to grow, dynamic impacts of wind generation on

conventional generation will likely arise. At the current levels, however, there is

no evidence of a dynamic impact of wind generation on emissions.
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Table 1.12: Average Impact on Daily Emissions

∆ CO2 (tons) ∆ NOx (lbs) ∆ SO2 (lbs) 

∆ Wind Gen. -0.729** -1.154** -1.974**
(0.030) (0.104) (0.345)

∆ Load 0.755** 1.132** 0.861**
(0.009) (0.032) (0.091)

N 1,038 1,038 1,038
R² 0.89 0.65 0.14

First Stage:

Shea Partial-R2 0.66 0.66 0.66
Hansen J-Statistic 12.05 19.81 16.25

P-Value 0.97 0.65 0.84

Models regress the change in daily aggregate emissions on the change in aggregate
wind generation.  First stage includes the change in daily wind generation on the 24
hourly changes in wind speed interacted with the installed capacity in the northwest
region.  Errors are clustered at the weekly level with the standard errors reported in
parentheses.  * significant at 5%,  ** significant at 1%.
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1.9.2 Natural Gas Units by Heat-Rate

In addition to exploring how the share of coal and natural gas generation off-

set varies, I explore the substitution pattern between wind generation and different

types of natural gas units. There are two broad types of natural gas generating

units; combined cycle units and open cycle gas turbines. Combined cycle units

have lower heat rates (MMBtu/MWh) and emission intensities than open cycle

turbines. As a result, output avoided from the more efficient combined cycle units,

compared to open cycle turbines, will result in a smaller emissions reductions.

I divide the gas units in the CEMS sample into two groups; low heat rate

units and high heat rate units. To identify the heat rate at which to divide the

units, I examine the distribution of hourly heat rates of the ERCOT gas units.

During 2009, there were 1,249,249 hourly observations across the 376 units in which

a positive level of generation occurred. For each of these hourly observations, I

calculate the heat rate by dividing the hourly heat input by the hourly generation

for each unit.

Figure 1.8 provides the frequency distribution of the hourly heat rates di-

vided into 100 equally sized bins. The distribution has a clear local minimum at a

heat rate of 9 MMBtu/MWh. Natural gas units with average heat rates below 9

MMBtu/MWh have average emissions intensities for CO2, NOx, and SO2 of 0.51

tons/MWh, 0.32 lbs/MWh, and 0.005 lbs/MWh, while units with average heat

rates above 9 MMBtu/MWH had corresponding average emission intensities of

0.64 tons/MWh, 1.58 lbs/MWh, and 0.04 lbs/MWh. Therefore, I define low heat

rate gas units as being those with average heat rates below 9 MMBtu and high

heat rate gas units as units with average heat rates greater than 9 MMBtu.72

1.9.3 Renewable Generation Potential

The AEI provides data on the average hourly wind speed from wind mon-

itoring towers at several locations. I examine the potential wind generation from

three sites that are representative of three different CREZ’s: 1) Sweetwater (in

72To calculate the average heat rate, I divide the total heat input by the total generation across
all hours in the sample for each unit.
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west Texas), 2) Washburn (northern Texas panhandle), and 3) Corpus Cristi (on

Padre Island in the Gulf). In the analysis, I study the hypothetical performance

of a wind turbine 80 meters off the ground.73 The test sites at Sweetwater and

Washburn report the average hourly wind speed at heights of 75 meters and 100

meters. The Corpus Cristi test site reports average hourly speeds at heights of

25 meters and 40 meters. To estimate the hourly potential wind generation from

each site, I must first predict the hourly wind speed at a height of 80 meters.74 A

commonly used method for predicting wind speeds at different heights involves the

use of the Power Law. The Power Law states that Sx, the wind speed at a height

of x, is related to Sy, the speed at a height of y, based on the following formula:

Sx =
(
x/y
)α · Sy, (1.25)

where α represents the wind shear factor. Wind shear factors vary across locations.

Additionally, the shear factors display regular diurnal patterns which vary across

seasons.

To predict the wind speed at 80 meters for each site, I first calculate the

hourly shear factor implied by the pair of average hourly speed readings:

αi,t =
ln(Speedhi,t/Speed

l
i,t)

ln(hi/li)
, (1.26)

where Speedhi,t and Speedli,t are the average hourly speeds at the tall height, hi,

and the low height, li, for site i during hour t. To account for the regular daily

and seasonal patterns in site specific shear factors, I calculate αi,h,m, the average

across all shear factors at site i during hour h and month m. Using the estimates

of the hourly shear factors and the Power Law specified by Eq. (1.25), I predict

the hourly wind speeds at a height of 80 meters. Across all hourly observations,

the average speed at the Sweetwater, Washburn, and Corpus Cristi test sites are

7.93 m/s, 8.13 m/s, and 7.83 m/s, respectively.

The actual energy passing through the region swept by the blades of a

73During 2009, 2067 MW of wind capacity was added to the ERCOT grid. Of this, 1870 MW
came from turbines built on towers measuring 80 meters.

74Wind speeds tend to increase with the distance above ground level.
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turbine increases non-linearly with the wind speed.75 How much of the available

energy is converted to useable electricity depends on the efficiency of the specific

turbine. To convert the hourly wind speeds at 80 meters to an hourly turbine

capacity factor, I use NREL test performance results from a 1.65 MW Vestas V66

turbine.76 The turbine begins to produce electricity at speeds greater than 4 m/s

and cuts out at speeds beyond 20 m/s. The capacity factor increases non-linearly

between 4 m/s and 20 m/s. I use a fifth degree polynomial, fitted to the observed

performance at different wind speeds, to model the capacity factor as a function

of the speed.

1.9.4 Plant Level Generation Avoided

To identify the average plant-level generation offset by wind turbines, I

estimate the following specification:

∆Gj,h,d = βj ·∆Wh,d +mj(H,C,G) + αj,d + εj,h,d (1.27)

where

mj(·) =
10∑
i=1

(
δ1,j,i,b∆Hi,h,d + δ2,j,i,b∆H

2
i,h,d + δ3,j,i,b∆Ci,h,d + δ4,j,i,b∆C

2
i,h,d

)

+
13∑
k=1

(
φ1,j,k∆Gk,h,d + φ2,j,k∆(Gk,h,d ·Hk,h,d) + φ3,j,k∆(Gk,h,d · Ck,h,d)

)
,

75In addition, the wind energy passing through the area swept by the blades increases linearly
with the density of the air. In this examination, I assume the density of the air is constant.

76For the test performance results, see Smith, et al. (2001), Power Performance Testing
Progress in the DOE/EPRI Turbine Verification Program.
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and

∆ = change between hour h of day d and d− 1,

∆Gj,h,d = change in generation from plant j (MWh),

∆Wh,d = change in ERCOT wind generation (MWh),

∆Hi,h,d = change in heating degrees in zone i (Celsius),

∆Ci,h,d = change in cooling degrees in zone i (Celsius), and

∆Gk,h,d = change in ground wind speed in region k (meters/second).

Fixed effects estimates of Eq. (1.27) are made for plants j = 1, . . . , 153. To allow

for arbitrary heteroskedasticity and serial correlation, I cluster the errors at the

daily level. To control for curtailments in wind generation, I instrument for the

change in wind generation using the first stage specified by Eq. (2.16).

The coefficient of interest, βj, represents the average change in generation

at plant j caused by a MWh of wind generation during the period the plant is

in the dataset. Not every fossil fuel plant is in the EPA dataset over the full

sample period. To account for this, I weight the estimates of βj by the fraction of

the sample observations are available for plant j. Table 1.13 reports the weighted

estimates of βj for the 20 plants with the largest average reductions in output. The

results highlight that significant reductions in output occur across technologies and

within each region. Multiplying the estimates of the average generation avoided

by the plant-level average emission rates, I produce predictions of the average

reduction in pollution from each of the plants.
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Chapter 2

The Economics of Bulk Electricity

Storage with Intermittent

Renewables

Abstract

Efforts to reduce emissions from the electricity sector are driving a shift

towards greater use of intermittent, renewable sources such as wind and solar

energy. Motivated largely by the belief that electricity storage technologies are

a vital complement to these intermittent renewables, states have begun imple-

menting requirements that will dramatically increase the amount of bulk storage

capacity (e.g. batteries, compressed air energy storage, pumped hydroelectric stor-

age). This paper analytically and empirically demonstrates that, in contrast to the

environmental objectives of expanding renewable generation, adding bulk storage

capacity will generally increase the short-run level of emissions. Only after renew-

able capacity becomes large enough that the renewable sources are frequently on

the margin does the introduction of bulk storage reduce the level of emissions. In

addition, contrary to the view that bulk storage and renewables are necessarily

complements, increased storage is shown to make solar less attractive and typical

wind sites more attractive. As a result, in regions with substantial solar potential,

and minimal wind generation potential, bulk storage expansions may in fact reduce

76
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the optimal renewable capacity.

2.1 Introduction

Maintaining the stability of an electric grid requires continuously equating

the quantity of electricity supplied with the quantity of electricity demanded. Ac-

complishing this task is complicated because the short-run demand for electricity

is essentially perfectly inelastic and constantly shifting over time. To meet the level

of electricity demanded, suppliers have typically depended on fossil fuels. How-

ever, concerns over the environmental impacts of fossil fuel combustion are driving

a shift towards greater use of renewable energy sources (e.g. wind, solar), which,

unlike fossil fuels, are often available only intermittently. To overcome the grid

stability issues posed by the intermittency of renewable generation, many policy-

makers and industry participants are advocating for sizable increases in electricity

storage capacity. To determine if storage additions are justified, it is important

to understand the impact of electricity storage on the total costs of the electric

sector.

This paper explores the social benefits provided by a specific use of elec-

tricity storage; arbitraging electricity across time. Contrary to the environmental

objectives of expanding renewable generation, we demonstrate that electricity ar-

bitrage will generally increase the aggregate level of pollution and, in some cases,

reduce the social value of renewable capacity. In a simple, two-period model of a

competitive electricity market, short-run renewable output is shown to be unaf-

fected by electricity arbitrage in regions with low to moderate levels of renewable

capacity.1 Instead, arbitrage will increase the production from the conventional

generators on the margin during the low demand (off-peak) periods and decrease

generation from the marginal conventional units during the high demand (peak)

periods. If the emission rates of the off-peak marginal generators are not less than

the peak period marginal emission rates, aggregate pollution will increase as the

quantity of electricity arbitraged grows.2

1This result formalizes the argument put forth by Swift-Hook (2010).
2How far the off-peak marginal emission rate must be below the peak marginal emission rate
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In addition, we use the simple model to explore how increased arbitrage al-

ters the benefits provided by expanding renewable capacity. By replacing a portion

of peak period electricity generation with increased off-peak production, electricity

arbitrage will push off-peak wholesale prices up and peak prices down. Across re-

gional electricity markets, off-peak periods typically occur during the late night or

early morning, while the peak demand occurs during the daytime or early evening.

Therefore, output from renewable generators which produce most heavily overnight

(e.g. onshore wind turbines) will typically become more valuable with increased

arbitrage. Conversely, the value of electricity from renewable sources that pro-

duce mainly during the daytime (e.g. solar) will fall with increased arbitrage. In

contrast to the general belief that storage and renewables are necessarily comple-

ments, these results imply that in regions with substantial solar potential and little

off-peak wind potential, increased bulk storage capacity may in fact decrease the

optimal amount of renewable capacity.

To examine the magnitude of the potential impact of arbitrage on emissions,

we simulate the effect a marginal increase in arbitrage will have on electricity

production in the Texas electricity market. The Texas region serves as an ideal

market for this study because the regional grid is very isolated. Therefore, we

can easily identify the conventional generators which will be impacted by storage.

Building on the estimation strategy proposed by Callaway and Fowlie (2009), we

present reduced form estimates of the marginal emission rates during the daily off-

peak, and peak, demand periods. The results reveal the marginal CO2 and SO2

rates are consistently higher during the off-peak hours, when arbitrage will increase

electricity generation. In contrast, the marginal NOX rates are frequently higher

during the peak hours, when arbitrage will decrease electricity generation.3 As a

result, at the current levels of renewable capacity in the Texas market, arbitraging

in order to not increase pollution is determined by the loss rate of the specific storage unit.
3The results are similar to a study by Holland and Mansur (2007) which explores the impact

of real time pricing (RTP) on the aggregate level of pollution in the electric sector. The authors
present reduced form estimates of how reductions in the variance of electricity demand alters the
level of emissions. Unlike RTP, arbitrage will increase and decrease generation in specific periods
of the day. In addition, the magnitudes of the increases and decreases in generation caused by
arbitrage are linked by the loss rates of the storage units being used, not the demand elasticities,
as would be the case with RTP.
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electricity between off-peak and peak hours will increase the daily emissions of CO2

and SO2 while the aggregate NOX emissions will decrease during most months.

This paper builds on previous studies, in both the engineering and eco-

nomics literature, exploring the benefits of electricity storage. Several engineer-

oriented studies consider the external impact of storage on pollution. For example,

Tuohy and O’Malley (2009) use a system dispatch model to simulate the impact

of large scale storage on the Irish power grid. The authors demonstrate that car-

bon emissions can increase with the addition of storage, however, the conditions

under which emissions increase or decrease are not explored. Denholm and Kul-

cinski (2004) examine the life-cycle emissions from alternative types of storage

units. However, when considering the impact of storage on the emissions from in-

terconnected generating units, Denholm and Kulcinski only focus on the pollution

created during the generation of the stored electricity. The authors do not consider

the emissions avoided from the marginal generation that is offset when the stored

electricity is supplied.

In contrast to the engineering studies, little attention has been paid to

electricity storage in the economic literature. Previous work focuses exclusively

on examining the private benefits of storage (Graves, et al., 1999; Walawalker, et

al., 2007; Sioshansi, et al., 2009; Denholm and Sioshansi, 2009). Using historical

wholesale electricity prices, these studies estimate the profit that can be earned

by storing electricity when the price is low and supplying the stored energy when

the price is high. However, given that emissions from the electricity sector are

not efficiently priced, the observed wholesale prices do not reflect the full social

marginal cost of electricity generation. As a result, the social benefits provided by

arbitrage may in fact differ from the private benefits being estimated.

Extending these previous studies, this paper explores the full social value

of electricity arbitrage by specifically examining the impact of electricity arbitrage

on pollution. We demonstrate that, in the absence of efficient emissions prices,

the social benefits of electricity arbitrage will generally differ from the private

benefits previously identified. The empirical estimates of the potential impact of

arbitrage on emissions in the Texas electricity market reveal that the marginal
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social benefits are substantially lower than the marginal private benefits. These

findings highlight that, given the current levels of renewable capacity, increases in

bulk storage capacity will not necessarily augment the social benefits provided by

renewable electricity expansions.

The remainder of the paper proceeds as follows. Section 2.2 briefly reviews

the various storage technologies and discusses the potential for growth in bulk elec-

tricity storage capacity. Section 2.3 presents a two-period model of a competitive

electricity market to demonstrate how electricity arbitrage can affect aggregate

pollution levels as well as the value of renewable capacity. Section 2.4 describes

the regional electricity market studied in the empirical application. Section 2.5

presents the estimates of the marginal emission rates during the off-peak and peak

periods. Section 2.6 uses the empirical results to simulate the impact of marginal

increases in electricity arbitrage on aggregate pollution. Section 2.7 concludes.

2.2 Electricity Storage Technologies

This section provides a brief overview of the different types of electricity

storage systems and the functions they can serve when embedded within an elec-

tricity market. We then discuss the potential for growth in bulk electricity storage,

the primary technology used for arbitraging electricity.

2.2.1 Categorization of Storage Technologies

Electricity is typically stored in three broad ways: as potential energy,

kinetic energy, or chemical energy.4 An example of a technology that stores elec-

tricity as potential energy is pumped hydroelectric storage (PHS). Electricity from

a grid can be used to pump water from a low reservoir to a higher reservoir. At

a later point in time, the water can be released back downhill through a turbine,

4Additionally, electricity can be stored as thermal energy. For example, some cooling systems
will absorb electricity from the grid to create ice. The ice can then be used for cooling at a later
point in time. Another example is using solar energy to heat a material that holds the heat for
extended periods of time. For reviews of current storage technologies available, see Denholm, et
al. (2010) and EPRI (2010).



81

generating electricity. Another technology that stores electricity in the form of

potential energy is compressed air energy storage (CAES). CAES units use elec-

tricity from a grid to compress air, typically in underground caverns, which can

then be released at a later point in time and used to co-power a turbine. Different

from potential energy, electricity can be stored in the form of kinetic energy. For

example, electricity from a grid can be used to rotate a flywheel that continues to

spin with very little friction. When electricity is needed, the spinning flywheel can

be used to generate electricity. Finally, electricity can be converted to chemical

energy and stored in batteries.5

Regardless of whether a storage unit stores electricity as potential, kinetic,

or chemical energy, the storage technologies can be coarsely divided along two

dimensions. The first is the power the storage unit can provide. Power is measured

in terms of Watts (e.g. Kilowatts, Megawatts). PHS and CAES generally have the

largest power ratings, often up to 100 Megawatts or more.6 Batteries, flywheels,

and capacitors generally have lower power capacities, typically no more than a few

Megawatts.

The second dimension is the duration the storage unit can supply electricity

at the rated power. Many capacitors and flywheels are only capable of supplying

short bursts of stored energy, on the order of seconds to minutes. Batteries can

supply electricity anywhere from minutes up to multiple hours. Depending on

the size of the reservoir or cavern, PHS and CAES units are capable of supplying

electricity for hours at a time.

Where a storage unit lies along the power and duration dimensions plays a

large role in determining the specific services the storage device can provide. Units

capable of supplying small amounts of power (i.e. less than one Megawatt) for short

periods of time (i.e. seconds to minutes) are well suited for providing ancillary

services, such as voltage or frequency regulation. However, these storage units are

not capable of providing electricity for a duration long enough to participate in

5A wide range of battery technologies are available. However, the majority are not yet at the
point of being cost-competitive with the other storage technologies.

6For comparison, average sized natural gas fired generating plants have capacities in the range
of 300 Megawatts.
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wholesale electricity markets. Therefore, they are not well suited for electricity

arbitrage.

On the other hand, storage units capable of supplying large amounts of

power (i.e. multiple Megawatts or more) for long periods of time (i.e. an hour

or longer) are capable of arbitraging electricity across time. These storage tech-

nologies are referred to as bulk storage units. This paper focuses on the social

benefits provided by arbitraging electricity in wholesale markets using bulk stor-

age technologies. Our goal is not to estimate the full social value of bulk storage

units, which could potentially provide a number of services to an electricity mar-

ket. Rather, our objective is to carefully examine the relationship between the

private and social benefits of arbitrage, one of the primary uses of bulk electricity

storage.7

2.2.2 Potential Growth in Bulk Electricity Storage

Currently, PHS and CAES are the most cost competitive forms of electricity

storage. With 127,000 Megawatts of capacity worldwide, PHS systems account

for almost all of the grid connected storage capacity, followed by CAES units.

However, storage capacity is currently very small relative to the total generation in

electricity markets. For example, in the United States, only 2.5% of the electricity

consumed is supplied by storage units.8

Despite the small levels of existing bulk storage capacity, increasing support

for both renewable electricity and electricity storage are making it increasingly

important to understand the social value provided by both technologies. Currently,

29 states have adopted binding Renewable Portfolio Standards (RPS) which set

targets for renewable electricity shares as high as 40%. In addition, a variety of

federal subsidies and tax credits are available to renewable producers.9 Combined,

7EPRI (2010) compares the private returns to a variety of services that can be provided by
electricity storage. Our analysis focuses on arbitrage, which is one of the primary sources of
revenue for bulk storage units. In addition, Sioshansi and Denholm (2010) highlight that unlike
the private returns to arbitrage, the private value of participating in ancillary service markets
declines rapidly as storage capacity increases.

8For information on storage capacity, see EPRI (2003).
9For information on federal subsidies and state RPS policies, see www.dsireusa.org.
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these policies are expected to significantly increase the share of electricity produced

from intermittent renewable sources.10

Increases in electricity storage capacity are seen as a vital way to augment

the benefits provided by the expansion of renewable generation. As a result, efforts

to induce investment in storage are gaining momentum as well. For example, Cal-

ifornia recently passed Assembly Bill 2514, the “Energy Storage Portfolio”, which

will require utilities in the state to procure a minimum level of storage capac-

ity.11 In addition, five states directly include electricity storage units in the list of

qualified technologies which can be used to satisfy the RPS targets.12 Combined

with sizable federal subsidies, these energy storage policies have electricity storage

capacity poised for significant growth.

Where future electricity bulk storage units are located will have a large

impact on the value they provide.13 Graves, et al. (1999), Walawalker, et al.

(2007), and Sioshansi, et al. (2009) highlight that the private returns to arbitrage

will vary across markets based on regional variation in the differences between

off-peak and peak prices. In addition, if transmission constraints exist within a

regional market, where the storage unit is embedded will affect which services the

storage unit can provide. For example, several studies explore the cost effectiveness

of combining bulk storage units with intermittent generators located in regions with

transmission constraints (Cavallo, 1995; DeCarolis and Keith, 2006; Greenblatt, et

al., 2007). These studies find that the storage units will reduce the investments

in transmission capacity that are required to transport renewable generation to

demand centers.

The remainder of this paper examines the value of bulk storage in the case

10The Energy Information Administration’s “Annual Energy Outlook 2010” predicts renewable
generation will account for 45-65% of the increase in total U.S. generation between 2008 and 2035.

11Similar policies have received support at the federal level as well. For examples, see the
proposed STORAGE Act of 2009 as well as the STORAGE 2010 Act.

12These states include California, Hawaii, Montana, Ohio, and Utah. For a complete list of
the technologies that can be used to satisfy the RPS targets, see www.dsireusa.org/.

13While batteries can be installed in any location, both PHS and CAES units require specific
geological characteristics. PHS requires access to water and elevation differences. While many
of the ideal locations have PHS systems already in place, there is still room for growth in PHS
capacity. For example, a PHS unit is being installed by San Diego Gas & Electric in Southern
California. The storage unit will provide 40 MW for up to 10 hours. In addition, Succar and
Williams (2008) find that 75% of the U.S. has ground formations suitable for CAES units.
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where transmission constraints do not exist. Denholm and Sioshansi (2009) point

out that there is a tradeoff between installing bulk storage units near demand cen-

ters versus locating them near transmission constrained renewable sources. While

siting the storage with intermittent renewables will reduce the amount of curtailed

output, the private arbitrage value of storage units is maximized by siting them

near demand centers where transmission constraints will not limit access to whole-

sale markets. In order to determine where bulk storage units provide the greatest

social value, it is crucial to first understand what the value of electricity arbitrage

is. The remainder of this paper focuses on exploring the social and private returns

of using electricity storage units specifically for electricity arbitrage.

2.3 Two-Period Model

In this section, we present a simple two-period model of a competitive,

wholesale electricity market. The model highlights which factors determine the

magnitudes of the marginal private benefits and marginal social benefits of elec-

tricity arbitrage. We demonstrate that, in the presence of unpriced emissions,

there is generally a gap between the private and social benefits of arbitrage. Ad-

ditionally, we use the model to demonstrate the conditions under which arbitrage

will increase or decrease the returns to renewable capacity investments.

2.3.1 Competitive Electricity Market

Consider a competitive wholesale electricity market in which electricity is

supplied in two distinct periods. Period one is the “off-peak” period and period two

is the “peak” period. Demand in each period is perfectly inelastic and the off-peak

demand, Do, is strictly less than the peak demand, Dp. Electricity is generated

using two broad technologies: conventional generators, which can be dispatched

on command (e.g. coal, natural gas, nuclear, hydroelectric), and intermittent

renewable generators (e.g. wind, solar).

The aggregate generation from conventional sources during period t =

{Off-peak, Peak} is given by Gt. The private costs of producing Gt is given by
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the cost function c(Gt), which is assumed to be strictly increasing and convex.

These assumptions imply that the conventional generators are dispatched in order

of increasing marginal private costs.

In addition to the private generation costs, conventional generators produce

a negative externality; unpriced pollution. The aggregate level of pollution emitted

by conventional generators in a single period is given by e(Gt), which is assumed

to be weakly increasing, however, no restrictions are placed on the second deriva-

tive of the pollution function.14 Therefore, the emission rates of the conventional

generating units on the margin at low levels of Gt can be greater than, or less than,

the emission rates of the units on the margin at higher levels of Gt. The marginal

external cost of pollution is assumed to be constant and equal to τ .15

The aggregate level of generation from renewable sources, during period t,

is given by Rt. Unlike production from conventional sources, renewable generation

cannot be dispatched on command. The output in period t is equal to the product

of the installed renewable capacity, K, and the capacity factor, xt, which can vary

between 0 and 1. Initially, we explore the impact of storage in markets where

the level of renewable penetration is not large enough to force renewable output

to be curtailed. Therefore, we begin with the assumption that demand exceeds

the maximum renewable generation in each period, Dt > K. Without loss of

generality, we additionally assume that Dp−K ·xp > Do−K ·xo. This ensures the

profit maximizing storage owners will optimally purchase electricity during the off-

peak period and supply electricity during the peak period.16 To produce electricity

from intermittent renewables, only a fixed cost, which includes the regular required

14The level of emissions is not strictly increasing in Gt due to the fact that non-polluting
dispatchable sources (e.g. nuclear, hydroelectric) can potentially be the marginal source of elec-
tricity.

15While a variety of pollutants are emitted during the combustion of fossil fuels, this model
uses a single aggregate measure of pollution. To the extent that the marginal damage varies
across pollutants, and varies based on where the pollutants are emitted, the measure e can be
thought of as the weighted sum of the various pollutants, where the weights are determined by
marginal external damage of each pollutant. For a pollutant with a higher marginal social cost,
each unit of pollution emitted will contribute a larger amount to the overall level of e. In the
discussion section following the empirical application, we consider the impact of allowing the
marginal external damage of pollution to vary across periods (τo 6= τp).

16If we instead assume, Dp −K · xp < Do −K · xo, then we can simply reverse the order of
period’s one and two and the conclusions will remain unchanged.
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maintenance expenditures, must be paid. The marginal generation cost is zero and

no emissions are created from the renewable generation.

In addition to the conventional and intermittent renewable generators, we

introduce a third technology; an electricity storage sector. Storage owners can

arbitrage electricity across periods by demanding electricity during the initial off-

peak period and supplying the stored electricity during the peak period. The

quantity of electricity stored off-peak is given by So. During the process of charging

and discharging, a portion, α ∈ [0, 1], of the electricity is lost. The remaining

electricity supplied during the peak period is equal to (1− α) · So.
To maintain the stability of the electric grid, the quantity of electricity de-

manded must exactly equal the quantity of electricity supplied during each period.

Therefore, the following two conditions must hold:

Do + So = Go +K · xo (2.1)

Dp = Gp +K · xp + (1− α) · So. (2.2)

Given the installed renewable capacity, K, and the storage loss rate, α, Eq. (2.1)

and Eq. (2.2) define the level of conventional generation in each period as a func-

tion of the exogenous demands, exogenous capacity factors, and the quantity of

electricity stored during the off-peak period.

2.3.2 Marginal Social Benefits of Arbitrage

To determine the social benefit of electricity arbitrage, we examine the im-

pact a marginal increase in storage has on the total cost of generating electricity.

Over the two periods, the social cost of supplying electricity is given by the fol-

lowing expression:

TC = c(Go) + c(Gp) + τ ·
[
e(Go) + e(Gp)

]
, (2.3)

where Go and Gp are defined by Eq. (2.1) and Eq. (2.2), respectively.

The social benefit of a marginal increase in storage is equal to the reduction
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in total costs; MSB(So) = −∂TC/∂So. Taking the derivative of Eq. (2.3), with

respect to So, yields the following expression for the marginal social benefit of

storing off-peak electricity:

MSB(So) = (1− α) · c′(Gp)− c′(Go) + τ ·
[
(1− α) · e′(Gp)− e′(Go)

]
, (2.4)

where Go and Gp are defined by Eq. (2.1) and Eq. (2.2).

Under the assumption that the market is perfectly competitive, the market

clearing price in each period will equal the private marginal cost of supplying

electricity: Po = c′(Go) and Pp = c′(Gp). Substituting the prices into Eq. (2.4),

the marginal social benefit of storage can be expressed as the sum of the marginal

private benefit and the marginal external benefit:

MSB(So) = (1− α) · Pp − Po︸ ︷︷ ︸
Marginal Private Benefit

+ τ ·
[
(1− α) · e′(Gp)− e′(Go)

]︸ ︷︷ ︸
Marginal External Benefit

. (2.5)

The first term in Eq. (2.5) is the marginal private benefit from storing an additional

unit of off-peak electricity. If (1 − α) · Pp > Po, storage owners will earn positive

marginal profits.

The second term in Eq. (2.5) represents the external benefit from a marginal

increase in storage. This term is equal to the product of the marginal external cost

of pollution, τ , and the decrease in pollution from a marginal increase in So. If
e′(Go)
e′(Gp)

> (1−α), then the aggregate emissions will increase with additional storage.

In this case, the marginal social benefit of arbitrage will be less than the marginal

private benefit.

2.3.3 Impact on the Value of Renewable Electricity

In addition to identifying the direct social value of arbitraging electricity

across periods, we use the simple model to examine the impact of arbitrage on the

value of intermittent renewable capacity. In the short-run, the social benefit of a

marginal increase in renewable capacity is equal to the avoided costs, MSB(K) =

−∂TC/∂K, where the total costs are given by Eq. (2.3). Taking the derivative of
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the total cost with respect to K yields the following expression for the marginal

social benefit of renewable capacity:

MSB(K) = c′(Gp) · xp + c′(Go) · xo + τ ·
[
e′(Gp) · xp + e′(Go) · xo

]
(2.6)

where Go and Gp are defined by Eq. (2.1) and Eq. (2.2). The marginal social

benefit of renewable capacity can again be split into the marginal private and

marginal external benefits. The marginal private benefit is equal to the prices

weighted by the additional generation in each period; MPB = Pp · xp + Po · xo.
The marginal external benefit is equal to the cost of the avoided pollution; MEB =

τ ·
[
e′(Gp) · xp + e′(Go) · xo

]
.

To determine how electricity arbitrage affects the value of renewable ca-

pacity, we examine the impact a marginal increase in off-peak storage has on the

marginal social benefit of renewable capacity. Taking the derivative of Eq. (2.6)

with respect to So results in the following expression:

∂MSB(K)

∂So
=

∂MPB(K)/∂So︷ ︸︸ ︷
c′′(Go) · xo − (1− α) · c′′(Gp) · xp +

+ τ ·
[
e′′(Go) · xo − (1− α) · e′′(Gp) · xp

]︸ ︷︷ ︸
∂MEB(K)/∂So

(2.7)

where Go and Gp are defined by Eq. (2.1) and Eq. (2.2).

Eq. (2.7) highlights that an increase in arbitrage can increase or decrease the

private benefit of renewable capacity. A marginal increase in electricity arbitrage

will increase the off-peak price by ∂Po

∂So
= c′′(Go) and decrease the peak price by

∂Pp

∂So
= (1− α) · c′′(Gp). If the following inequality is satisfied,

xo
xp

>
(1− α) · c′′(Gp)

c′′(Go)
, (2.8)

then a marginal increase in arbitrage will increase the private returns to renew-

able capacity. Therefore, the private returns to a renewable generator that has

larger capacity factors during the off-peak period are more likely to increase. Al-

ternatively, the ratio of xo
xp

will be closer to zero for a renewable technology that
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produces electricity more heavily during the peak, daytime hours as opposed to

the off-peak hours (e.g. solar). As a result, the inequality in Eq. (2.8) is less likely

to be satisfied. Therefore, by decreasing the peak electricity prices, arbitrage will

reduce the value of renewables that produce more heavily during the peak period.

In addition, Eq. (2.7) demonstrates that arbitrage has an ambiguous impact

on the external benefits provided by renewable electricity. Storing electricity off-

peak, and supplying the stored energy during the peak period, will alter which

generating units are on the margin in each period. If e′′(Go) < 0, then storing

electricity during the off-peak period will move a cleaner conventional generating

unit onto the margin. As a result, renewable electricity supplied during the off-

peak period will avoid less pollution than it would without storage. Similarly, if

e′′(Gp) > 0, supplying additional stored electricity during the peak period will

again move a cleaner producer onto the margin.

The results from this simple model highlight several key points. First, in

situations where the full social cost of emissions are not internalized in the market

prices, the marginal social benefit of electricity arbitrage will generally differ from

the marginal private benefits. Whether the social benefits are larger or smaller than

the private benefits depends heavily on the off-peak and peak marginal emission

rates: e′(Go) and e′(Gp). Additionally, the results demonstrate that electricity

arbitrage can increase or decrease the private and external benefits of renewable

capacity additions. The impact on the private returns to renewables depends on

the pattern of renewable generation (xo
xp

) and the price elasticity at the off-peak

and peak levels of conventional generation. Similarly, the impact on the external

returns to renewable capacity depends on the pattern of renewable production and

the shape of the marginal emission rate profile.

2.4 Application to Texas Electricity Market

The two-period model provides the intuition for how the social benefits

of electricity arbitrage can differ from the private benefits. To determine the

magnitude of the difference between the private and social benefits, it is crucial
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to know the marginal emission rate when bulk storage units demand electricity,

e′(Go), and the marginal emission rate when storage units supply electricity, e′(Gp).

The remainder of this paper explores the potential impact of electricity arbitrage

in a specific market; the Texas electricity market.

The objective of the study is not to model the optimal demand and supply

decisions for a bulk storage unit. Graves, et al. (1999) and Sioshansi, et al.

(2009) both model the operations of a profit maximizing storage unit. These

previous studies highlight that the profit maximizing charge and discharge behavior

is very stable across days. Electricity is consistently stored during the minimum

price, off-peak period of the day. The stored energy is then discharged during

the maximum price, peak period of each day. While the timing of charging and

discharging is affected slightly by factors such as weekdays versus weekends, the

results demonstrate that the patterns are quite steady.

Instead of modeling a dynamically optimized storage unit, we instead pre-

dict the impact of a bulk storage unit that stores electricity during the off-peak

period each day and supplies the electricity during the peak period of each day. To

estimate the effect on pollution, we first need to know when the off-peak and peak

periods occur. Second, we need estimates of the marginal emission rates during

the off-peak and peak periods.

The Texas region serves as an ideal market for this analysis because the

regional electric grid is very isolated. As a result, the conventional generating units

which would be impacted by a storage sector, and the pollution those units emit,

are easily identified. Using the intuition from the two-period model, combined with

reduced form estimates of the marginal emission rates, we compare the potential

marginal social benefits and marginal private benefits of electricity arbitrage in

the Texas market. This section briefly describes the generation and emissions data

used to estimate the marginal emission rates. In addition, we discuss the demand

and price data used to determine when the off-peak and peak periods occur.
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2.4.1 Generation and Emissions Data

The majority of the state of Texas is served by a deregulated electricity

market.17 The Electric Reliability Council of Texas (ERCOT) is the independent

system operator charged with maintaining the stability of the regional transmission

grid. To estimate the marginal emission rates, we use data on the hourly electric-

ity generation and emissions in the EROCT region between January 1, 2007 and

December 31, 2009. Table 2.1 presents the mean and standard deviation of the

hourly ERCOT generation, separated by fuel source, over the three year period.

Natural gas and coal fired generators account for 80% of the total electricity gener-

ated while nuclear plants produce 13% of the electricity. Intermittent output from

wind turbines accounts for 5% of the total generation. Hydroelectric units and

‘Other’ sources, which include biomass, landfill gas, other fossil fuels, and solar,

provide the remaining generation.

Table 2.1: 2007-2009 Hourly Net Generation by Fuel (MWh)

Natural Gas Coal Nuclear Wind Hydroelectric Other

N 26,117 26,117 26,117 26,117 26,117 26,117
Mean 15,128 12,956 4,681 1,626 105 491

Std. Dev. 7,166 1,523 763 1,205 96 227
Share 43.2% 37.0% 13.4% 4.7% 0.3% 1.4%

"Other" production is from biomass, landfill gas, oil, diesel, and solar units.  Shares are equal to the
total supply from each fuel source during the sample period divided by the aggregate supply.

A unique feature of the Texas market is that the region serves as its own

“Interconnection”. The electric transmission grid in the United States is split

into three separate Interconnections: the Eastern Interconnection, the Western

Interconnection, and the Texas Regional Entity. Within each Interconnection,

electricity is transmitted at a synchronized frequency. To trade electricity between

Interconnections, however, electricity must be converted from alternating current

to direct current (DC) and transmitted across a limited number of DC transmission

17Over 85% of the electricity consumed in Texas is supplied by the deregulated market.
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lines.18 To simulate the impact of arbitrage in the ERCOT region, we assume

storage will not alter the flow of electricity across the DC connections.

The Environmental Protection Agency (EPA) collects data on the hourly

emissions of CO2, NOX , and SO2 from 276 fossil fuel fired generating units that

directly supply electricity to the ERCOT market.19 Only 10 small natural gas

fired units in the region, each with a capacity below 25 MW, are not included in

the EPA dataset. Therefore, the observed emissions effectively represent the total

hourly pollution from the ERCOT market. Table 2.2 presents summary statistics

for the coal and natural gas units in the EPA dataset.20 In addition to separating

the units by fuel, we further divide the natural gas fired units into ‘low’ and ‘high’

heat-rate subgroups.21 This division is motivated by the fact that there are two

broad natural gas generating technologies: cleaner combined-cycle units, which

have lower heat-rates, and dirtier open-cycle units, which have higher heat-rates.

We classify natural gas units with average heat-rates below 9 MMBtu/MWh as

low heat-rate units and the rest as high heat-rate units.

The coal units on average have the largest capacities while the high heat-rate

gas units tend to be the smallest.22 Comparing the average heat-rates, the efficient

gas fired units have lower average heat-rates than the coal units. However, the

private cost of fuel required to generate a MWh of electricity is typically smaller for

coal units because coal is the cheaper fuel.23 Table 2.2 also highlights the variation

in the emission rates across generators using different fuels and technologies. Coal

fired units have the highest CO2 and SO2 rates. Low heat-rate natural gas units

18During the period studied in this analysis, the maximum amount of electricity that could be
traded between ERCOT and the surrounding Interconnections totaled 1,090 MW.

19This includes each fossil fuel unit in the ERCOT service region plus the Kiamichi Energy
Facility in Oklahoma which is connected to the Texas grid.

20One petroleum unit in the ERCOT market is included in the EPA dataset. The emissions
from this unit are included in the measure of the aggregate hourly emissions used in the empirical
analysis.

21Heat-rate is a measure of generation efficiency. It is equal to the fuel input (in MMBtu’s)
divided by the level of generation (MWh’s). Higher heat-rates imply less efficient generation.

22Unit level capacities are from the EIA-860 Generator Database.
23The average monthly price of coal delivered to Texas utilities is $1.82/MMBtu over the

sample period. The average monthly price of natural gas delivered to Texas utilities during the
same time period is $6.42. Information on the fuel prices is available from the Energy Information
Adminstration.
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Table 2.2: Fossil Fuel Unit Summary Statistics

Coal Natural Gas Natural Gas
(Heat-Rate<9) (Heat-Rate>9)

Number of Units 27 80 168

Average Capacity (MWh) 677 320 154
(173) (153) (185)

Average Heat Rate (MMBtu/MWh) 10.00 7.38 11.46
(0.66) (1.10) (2.06)

Average CO2 Rate (tons/MWh) 1.06 0.44 0.69
(0.07) (0.07) (0.22)

Average NOx Rate (lbs/MWh) 1.44 0.31 1.67
(0.63) (0.55) (1.72)

Average SO2 Rate (lbs/MWh) 6.51 0.00 0.01
(3.67) (0.00) (0.05)

Average Heat Rates and Emission Intensities are calculated by taking the average across the individual
unit level means.  Standard deviations of the unit level means are in parentheses.
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have the lowest emission intensities and high heat-rate natural gas units have the

highest NOX emission rates.

2.4.2 Demand and Market Prices

Recall, in the two-period model, conventional generation is dispatched to

meet the residual demand not served by intermittent renewable producers. The

wholesale price of electricity is determined by the marginal cost of the conventional

generator on the margin at any given time. Therefore, within a single day, the

minimum price, off-peak period, and the maximum price, peak period, will occur

when the residual demand is at its lowest and highest points, respectively.

To determine when the off-peak and peak hours occur in the Texas market,

we use two different sources of information: hourly residual demand in the region

and hourly average wholesale electricity prices. The residual demand is equal to

the hourly quantity of electricity demanded (load) less the hourly generation from

wind turbines. Figure 2.1 plots the average load and wind generation by hour.

The figure demonstrates that the load tends to fall to its lowest levels during the

early morning hours and rises to its peak during the early evening. In addition, the

figure plots the average residual load by hour. Given that intermittent renewable

generation represents a small share of generation, the residual load follows the

same pattern as the load.

While the majority of electricity generated in the Texas market is purchased

through bilateral contracts, a centralized balancing market is operated to balance

the quantity of electricity supplied with the quantity demanded. Each day, Qual-

ified Scheduling Entities (QSE), representing portfolios of electricity generators,

submit balancing supply curves for each fifteen minute interval of the following

day.24 These balancing supply curves list the increase or decrease in generation

each QSE will provide at different prices. To equate supply and demand, ERCOT

purchases the necessary amount of up or down balancing energy at a single market

clearing price.25 Figure 2.1 plots the average market clearing price by hour over

24These balancing supply bids can be adjusted up to one hour before real-time.
25If transmission limits between regions are binding, then four separate prices are set in each

of the four ERCOT congestion zones (North, South, Houston, and West).
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the three year sample.26 Following the pattern displayed by the residual load, the

minimum average price occurs during the 4 a.m. hour while the maximum average

price occurs between 4 p.m. and 5 p.m.
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Figure 2.1: Average Hourly Wind Generation, Load, and Market Price

2.5 Marginal Emission Rates

To predict the impact of arbitraging electricity between the off-peak and

peak periods, we estimate the marginal emission rate in the Texas market at dif-

ferent points in time. We use a strategy similar to Callaway and Fowlie (2009) to

first estimate the average marginal emission rate for each individual hour over the

full three year sample. To examine why the marginal emission rates vary across

hours, we next explore the composition of the generators on the margin during

different hours of the day. Finally, to allow for seasonal variation in the marginal

emission rates, we present estimates of the hourly marginal emission rates across

each individual month.

26If the market clearing price varies across congestion zones, a simple average of the four prices
is taken.
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2.5.1 Average Hourly Marginal Emission Rates

The general specification we estimate is shown below:

∆Eh,d = βh ·∆Gh,d + εh,d (2.9)

where subscript h = 1, . . . , 24 represents the individual hours of each day d =

1, . . . , 1095. Eh,d is the aggregate hourly emissions of CO2 (tons), NOX (lbs),

or SO2 (lbs). Gh,d represents the hourly aggregate generation (MWh) from dis-

patchable sources. To calculate Gh,d, we sum the hourly net generation from coal,

natural gas, nuclear, hydroelectric, and ‘other’ sources in the ERCOT market. In

Eq. (2.9), ∆ represents the difference across 168 hours. Therefore, we are taking

the differences between hour h of day d and hour h of day d−7, the the same hour

and day of the preceding week. The coefficient βh represents the average change in

emissions caused by a change in dispatchable generation during hour h. Allowing

βh to vary across hours allows for the estimation of the average hourly marginal

emission rate.

Estimates of Eq. (2.9), using the change in CO2, NOX , and SO2 as the

dependent variables, are estimated simultaneously. To control for arbitrary serial

correlation and heteroskedasticity, the errors are clustered at the daily level. Ta-

ble 2.3 reports the estimates of βh for h = 1, . . . , 24 and for each pollutant where

each of the point estimates is positive and significant at the 1% level. An addi-

tional MWh of dispatchable generation during any hour will, on average, increase

the hourly level of each of the three pollutants. The results also reveal that a

marginal increase in generation will, on average, increase the aggregate emissions

by different amounts during different hours. Figure 2.2 plot the hourly estimates

of β̂h, along with the corresponding 95% confidence intervals, for each of the three

pollutants. Average marginal CO2 and SO2 rates peak between 3 a.m. and 4 a.m.

and fall to their lowest average levels between 6 p.m. and 7 p.m. In contrast, the

average marginal NOX rates peak at 5 p.m. and fall to their lowest average levels

around 11 a.m. and midnight.
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Table 2.3: Average Hourly Marginal Emission Rates

Hour β Std. Err. β Std. Err. β Std. Err.

1 0.62* (0.006) 0.63* (0.01) 1.44* (0.09)
2 0.63* (0.007) 0.63* (0.02) 1.67* (0.10)
3 0.65* (0.008) 0.66* (0.02) 2.07* (0.13)
4 0.65* (0.007) 0.68* (0.02) 2.00* (0.10)
5 0.64* (0.007) 0.68* (0.02) 1.91* (0.10)
6 0.62* (0.007) 0.68* (0.02) 1.68* (0.10)
7 0.60* (0.006) 0.73* (0.02) 1.52* (0.09)
8 0.58* (0.006) 0.74* (0.02) 1.19* (0.09)
9 0.57* (0.006) 0.66* (0.02) 0.96* (0.09)
10 0.57* (0.006) 0.62* (0.02) 0.80* (0.09)
11 0.56* (0.006) 0.59* (0.02) 0.69* (0.09)
12 0.56* (0.006) 0.63* (0.02) 0.64* (0.09)
13 0.56* (0.005) 0.69* (0.02) 0.57* (0.08)
14 0.57* (0.005) 0.82* (0.02) 0.50* (0.07)
15 0.57* (0.005) 0.94* (0.03) 0.44* (0.07)
16 0.57* (0.004) 1.04* (0.03) 0.44* (0.07)
17 0.57* (0.004) 1.06* (0.03) 0.41* (0.07)
18 0.56* (0.004) 1.04* (0.03) 0.35* (0.06)
19 0.56* (0.004) 0.94* (0.03) 0.30* (0.07)
20 0.56* (0.004) 0.81* (0.02) 0.34* (0.07)
21 0.56* (0.005) 0.74* (0.02) 0.36* (0.07)
22 0.56* (0.005) 0.66* (0.02) 0.50* (0.08)
23 0.56* (0.006) 0.62* (0.02) 0.62* (0.09)
24 0.59* (0.006) 0.59* (0.02) 0.99* (0.09)

N
R2

Models estimated simultaneously.  Clustered standard errors in parentheses.
* = Significant at 1% level.

25,920 25,920 25,920
0.91 0.65 0.14

∆CO2 tons / MWh ∆NOX lbs. / MWh ∆SO2 lbs. / MWh
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2.5.2 Marginal Generation by Fuel Source

To examine what is driving the variation in the marginal emission rates, we

estimate the following specification:

∆Gj,h,d = βj,h ·∆Gh,d + εj,h,d (2.10)

where Gj,h,d is the aggregate hourly generation from fuel source j = {Low Heat-

Rate Gas, High Heat-Rate Gas, Coal, Nuclear, Hydroelectric, ‘Other’}. Given

that ∆Gh,d equals the aggregate hourly change in generation from natural gas,

coal, nuclear, hydroelectric, and ‘other’ generating units, the following identity

will necessarily be true:

βlow,h + βhigh,h + βcoal,h + βnuclear,h + βhydro,h + βother,h = 1. (2.11)

The coefficients of interest, βj,h, represents fuel source j’s average share of the

marginal dispatchable generation during hour h.

Figure 2.3 plots the average hourly marginal generation by fuel source. The

results demonstrate the composition of the marginal dispatchable generation varies

substantially across hours. On average, coal fired generation accounts for almost

one third of the marginal dispatchable output at 3 a.m. The average share of coal

generation on the margin steadily falls to its lowest point between 5 p.m. and 6

p.m. Given that coal generation has the highest CO2 and SO2 intensities, these

results explain why the average marginal CO2 and SO2 rates peak in the early

morning and fall to their lowest points in the afternoon.

Figure 2.3 also demonstrates that on average, high heat-rate natural gas

generation accounts for the largest share of the marginal output during 5 p.m. to 6

p.m. Recall from Table 2.2, these high heat-rate gas units tend to have the highest

NOX emission intensities. This explains why, on average, the marginal NOX rate

peaks in the early evening hours.



100

2.5.3 Marginal Emission Rates by Month

The previous estimates represent the average marginal emission rates, for

each hour, over the course of the entire sample. However, the marginal emission

rate for a specific hour will likely change over the course of a year. Figure 2.4 shows

the average daily minimum and maximum residual loads, separated by month, on

the Texas grid. The plot reveals large variations in the minimum and maximum

daily residual loads across seasons. The maximum average residual load during the

spring and fall months (March, April, October, November) is very similar to the

minimum average residual load during the summer months (June, July, August).

Therefore, the set of units on the margin during the off-peak hours will be different

across months.27

In addition, when the off-peak and peak hours occur also varies across the

course of a year. For each day in the three year sample, we identify which hour had

the lowest residual load and which hour had the highest residual load. Figure 2.5

displays the frequency distributions of the minimum load hours and the maximum

load hours for each month. During May through November, the minimum load

hours are concentrated during the early morning hours (3 a.m. to 5 a.m.) and the

maximum load hours are concentrated during the late afternoon (5 p.m. to 7 p.m.).

During December through April, the distribution of the minimum and maximum

load hours are more dispersed. In several of the months, the distribution of the

minimum and maximum hourly loads are often bimodal. This is due to the fact

that the daily load profiles reach local maximums during the mid-morning and

during the afternoons.

Combined, Figure 2.4 and Figure 2.5 demonstrate that the residual demand

during the off-peak and peak hours, as well as the timing of the off-peak and

the peak hours, will change across months. To accurately estimate the impact

of arbitrage on aggregate emissions, separate estimates of the off-peak and peak

27On top of the variation in the residual load, the quantity of base-load nuclear output varies
systematically across months. During the low demand spring and fall months, the nuclear units
are often taken off-line for maintenance and re-fueling. Therefore, at the same level of residual
demand, more fossil fuel generation will be dispatched during the spring and fall to replace the
missing nuclear output.
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marginal emission rates are needed for different months. To predict these values,

we re-estimate Eq. (2.9), allowing the coefficients to vary across both hours and

months. The specification is shown here:

∆Eh,d = βh,m ·∆Gh,d + εh,d. (2.12)

The errors are again clustered across each individual day. The coefficient of inter-

est, βh,m, represents the average change in emissions from an additional MWh of

dispatchable generation during hour h of month m.

Figure 2.6 displays the point estimates of average hourly marginal CO2

rates, β̂h,m, for each month. The plots demonstrate there is substantial variation

in the marginal emission rates across the hours of a single day, as well as across

the same hour in different months. During most of the months, the average hourly

marginal CO2 rate peaks in the early morning hours and falls to its lowest levels

in the afternoon hours. This is most pronounced during March, April, May, June,

and October. During May for example, the average hourly marginal CO2 rate

peaks at a value of 0.79 tons of CO2 per MWh at 4 a.m. and falls to around 0.54

tons of CO2 per MWh during the late afternoon.

Figure 2.7 displays the average hourly marginal emission rates across each

month for NOX . In contrast to the marginal CO2 rates, the average marginal NOX

rates tend to peak during the afternoon. This stems from the fact that the highest

private cost generators, the high-heat rate natural gas units, represent the largest

share of the marginal generation during the peak demand hours of the afternoon.

Given that these less efficient natural gas units have the highest NOX emission

intensities, the marginal NOX rates peak during the afternoon. This fact is most

pronounced during the high demand summer months of May through September.

Figure 2.8 plots the average hourly marginal SO2 rates for each month.

Similar to the marginal CO2 rates, the marginal SO2 rates tend to peak during

the early morning hours and reach their lowest points during the afternoon. Re-

call from Table 2.2, coal fired units are responsible for essentially all of the SO2

emitted by the electric sector. Therefore, the variation in the marginal SO2 rates

is determined almost entirely by the variation in the share of coal generation on
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the margin.

2.6 Simulation

This section simulates the impact of a hypothetical electricity storage unit

on the short-run emissions of CO2, NOX , and SO2. Rather than modeling the

dynamically optimized charging and discharging decisions of a profit maximizing

storage owner, we assume the storage unit demands electricity from the grid during

the off-peak period and supplies the electricity in the subsequent peak period. We

examine the impact of a storage unit which charges at a rate of 1 MW and a

storage capacity of 1 MWh.28 Therefore, the storage unit will charge fully during

a single hour. To explore the effect of different storage efficiencies, we allow the

loss rate to vary.

2.6.1 Off-peak and Peak Marginal Emission Rates

The estimates of βh,m from Eq. (2.12) represent the average marginal emis-

sion rate during hour h of month m. To calculate the the average off-peak and

peak marginal emission rates, we weight the values of β̂h,m by the fraction of the

time the off-peak period, or the peak period, occurs during hour h of month m.

For example, assume the daily peak hour occurred at 5 p.m. (h = 17) half the

time and 6 p.m. (h = 18) the other half during month m. Our measure of the the

average peak marginal emission rate would be equal to ê′p,m = β̂17,m+β̂18,m
2

.

To determine the distribution of the daily off-peak and peak hours, we use

two different strategies. The first method uses the frequency distribution of the

hours with the minimum and maximum daily residual loads. These distributions

are displayed in Figure 2.5. For month m, f
h,m

represents the frequency the

minimum daily residual load occurs during hour h, for h = 1, . . . , 24. Similarly,

f̄h,m represents the frequency the maximum daily residual load occurs at hour h

during month m. The second method uses the frequency distribution of the hours

28Future work will extend the analysis to consider a storage unit with a charge rate less than 1
MW and a storage capacity of 1 MWh. Therefore, the storage unit will demand electricity over
multiple off-peak hours.
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with the minimum and maximum daily market clearing prices, instead of residual

loads. Both distributions are very similar, and as a result, produce very similar

estimates of the monthly average off-peak and peak marginal emission rates.

To predict the off-peak and peak marginal emission rates for month m, we

calculate the weighted average of the 24 hourly estimates of βh,m. The weights

used to calculate the average off-peak marginal emission rate for month m are the

hourly values for f
h,m

. The weights used to calculate the average peak marginal

emission rate for month m are the hourly values for f̄h,m. For each month, the off-

peak and the peak marginal emission rates, ê′o,m and ê′p,m, respectively, are given

by the following expressions:

ê′o,m =
24∑
h=1

f
h,m
· β̂h,m (2.13)

ê′p,m =
24∑
h=1

f̄h,m · β̂h,m. (2.14)

Figure 2.9 plots the average off-peak and peak marginal emission rates for each

of the three pollutants. The solid lines represent the estimates made using the

frequency distributions of the minimum and maximum residual load hours. The

dashed lines represent the estimates made using the frequency distributions of the

minimum and maximum price hours.

With the exception of the peak demand summer months of July and August,

the marginal off-peak CO2 rates are greater than the marginal peak CO2 rates.

During the spring and fall months (April, May, June, October, and November),

the off-peak marginal CO2 rates are larger than the peak marginal CO2 rates by

0.14-0.24 tons per MWh. These results are largely driven by the fact that coal

generation accounts for a larger share of the off-peak marginal generation. During

the peak demand summer months, the share of coal generation on the margin

off-peak falls and the share of inefficient, high heat-rate gas units on the margin

during the peak periods rise. As a result, the peak marginal CO2 rate exceeds the

off-peak marginal CO2 rate during these months.

In contrast to CO2, the marginal NOX rates are consistently higher during
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the peak hours. This is most pronounced between May and August when the peak

demand tends to be quite large. Again, during these summer months, inefficient

gas units, with high NOX emission rates, account for a large share of the marginal

peak generation.

Finally, the off-peak marginal SO2 rate exceeds the peak marginal SO2 rate

in each month. Recall from Table 2.2, the combustion of coal is responsible for

essentially all of the SO2 emitted. Therefore, the off-peak and peak marginal SO2

rates are primarily driven by the share of coal generation on the margin during

the respective periods. Coal fired units, which have low marginal generation costs,

typically operate at full capacity during the peak hours. As a result, the marginal

peak SO2 rate during the summer months is essentially zero.

2.6.2 Impact of Arbitrage on Emissions

This section uses the estimates of the average monthly off-peak and peak

marginal emission rates to simulate the impact a marginal increase in arbitrage

would have on aggregate pollution. We do not simulate the optimal charge and

discharge pattern of a storage unit. Instead, we model a storage unit that stores

a MWh of electricity during each off-peak period and supplies the stored energy

during the subsequent peak period.

Recall from the analytical model, a marginal increase in arbitrage will result

in the following change in emissions:

∂em
∂so

= e′o,m − (1− α) · e′p,m, (2.15)

where em is the daily aggregate emissions, during month m, and α is the loss rate

of the hypothetical storage unit. Using the average monthly off-peak and peak

marginal emission rates presented in the previous section, we predict the value

of ∂em
∂so

for a hypothetical storage device with loss rates of α = {0.3, 0.2, 0.1, 0}.
PHS and CAES units in operation have loss factors typically between 0.2 and 0.3.

Therefore, the hypothetical storage units modeled represent the current technology,

as well as the impact of potentially more efficient, future storage technologies.
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Table 2.4 presents the estimates of the impact arbitraging a MWh of off-

peak electricity will have on the daily level of CO2, NOX , and SO2 emitted. Con-

sistent with the results presented in Figure 2.9, arbitraging electricity will generally

increase the daily emissions of CO2. The only exception is during July and August

when the peak marginal CO2 rate exceeds the off-peak marginal emission rate.

Even during these months, a storage unit will need to have a loss rate near α = 0

in order to achieve any emission reductions. With loss rates of 0.3 or 0.2, stor-

ing off-peak electricity, and re-supplying the energy during the daily peak hour,

will increase the daily CO2 by an average of 0.26 or 0.20 tons per MWh stored,

respectively.

Similar to the predicted impact on CO2, arbitraging electricity will uni-

formly increase the daily emissions of SO2. In most cases, increasing the efficiency

of the hypothetical storage unit does not substantially alter the estimated impact

on SO2. This is due to the fact that the peak marginal SO2 rates tend to be quite

small. Therefore, even if none of the energy is lost during the storage process,

the quantity of SO2 being offset during the peak period is trivial compared to the

increase in off-peak SO2 emissions.29

In contrast to CO2 and SO2, the results in Table 2.4 demonstrate that, on

average, NOX emissions will fall when electricity is arbitraged across periods. The

predicted reductions in NOX are the largest during the summer months when the

peak marginal NOX rates are the greatest. As opposed to the predicted impact on

SO2, increasing the efficiency of the storage unit has large impacts on the quantity

of NOX avoided. This is due to the fact that the peak marginal NOX rates become

quite large over the high demand months.

2.6.3 External and Private Benefits of Arbitrage

The two-period model in Section 2.3 demonstrates that the marginal private

benefit and the marginal social benefit of electricity arbitrage can differ if the

wholesale prices do not accurately reflect the social cost of pollution. This section

29Although the point estimate is not statistically different than zero, during August, the esti-
mate of the peak marginal SO2 rate is slightly negative. As a result, increasing the efficiency of
the storage unit results in a slight increase in the predicted level of SO2 emissions.
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examines the extent to which the marginal private and marginal social benefits of

electricity arbitrage differ in the Texas electricity market. Combining the estimates

of the average impact on emissions with information on the average off-peak and

peak wholesale electricity prices, we demonstrate that the marginal private benefits

of arbitrage exceed the marginal social benefits by a sizable amount.

The results in Table 2.4 demonstrate electricity arbitrage will affect the

short-run level of pollution emitted by fossil fuel generators. In the Texas market,

the daily aggregate emissions of CO2 and SO2 will increase with arbitrage while

the quantity of NOX will generally decrease. Within the region, CO2 emissions

are not subject to any form of regulation. Therefore, the social cost of CO2 is not

reflected in the wholesale electricity prices. In addition, short-run increases in the

emissions of CO2 represent real increases in the level of pollution.

In contrast to CO2, the emissions of SO2 and NOX are subject to national

and regional caps.30 For each pound of SO2 and NOX emitted, fossil fuel gen-

erators incur a private cost equal to the market price of the pollution permits.

As a result, the social cost of SO2 and NOX are at least partly reflected in the

wholesale electricity prices. In addition, if the SO2 and NOX caps are binding,

short-run changes in SO2 or NOX emissions will not represent long-run changes in

the aggregate level of pollution. Instead, changes in the short-run level of SO2 and

NOX will result in more, or less, permits that can be used to pollute at a different

time or in a different location.

Despite the fact that the aggregate level of SO2 and NOX emissions will

not change over the long-run with increased arbitrage, the social cost of these

emissions can change. Unlike CO2, both SO2 and NOX are not perfectly mixing

pollutants. Where and when the emissions occur can alter the the social costs. For

example, arbitrage may reduce the level of NOX from natural gas units located

near population centers. If the freed up NOX permits are used by fossil fuel units

located farther from demand centers, the social cost of the pollution may in fact

be reduced. Additionally, if the pollution occurs during the off-peak, nighttime

30SO2 emissions are capped nationally under the Clean Air Act. Additionally, regional and
local caps on NOX emissions across states and within Non-attainment regions of Texas, such as
the Houston-Galveston-Brazoria area, are in place.
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hours instead of the peak daytime hours, the costs incurred by the non-perfectly

mixing pollutants may differ.

Future work on this topic will explore the implications of arbitrage on the

social costs of both regulated and unregulated non-perfectly mixing pollutants. In

this study, we focus instead on the impact of arbitrage on the external costs of CO2

emissions. To determine the external costs from changes in the quantity of CO2

emitted, we use values for the social cost of carbon from the Interagency Working

Group (2010) report. The report provides lower ($5/ton), middle ($21/ton), and

upper ($35/ton) estimates of the external cost of CO2 using discount rates of

5%, 3.5%, and 2%, respectively. A high cost estimate of $65/ton of CO2 is also

provided, representing the case where the external damages are assumed to be at

the upper end of the distribution.

Table 2.5 presents the estimates of the average external benefit, by month,

of arbitraging one MWh of off-peak electricity for different levels of α. Given that

arbitrage will generally increase the daily emissions of CO2, the external benefits

are consistently negative. As the storage unit become more efficient, the average

external costs uniformly approach zero. For higher estimates of the social cost of

CO2, the external costs of arbitrage are larger.

Recall from the two-period model, the private returns to arbitrage are given

by the following expression:

∂πm
∂so

= (1− α) · Pp,m − Po,m (2.16)

where Pp,m and Po,m are the peak and off-peak wholesale electricity prices during

month m. Table 2.5 provides predictions of the marginal profit a storage owner

will earn by arbitraging one MWh of electricity between off-peak and peak hours

each day. Given that we do not simulate the optimal charge and discharge de-

cisions of a profit maximizing storage owner, these values can be thought of as

representing reasonable lower bounds on the private returns to arbitrage. The re-

sults demonstrate that depending on the efficiency of the storage unit, the owner

will earn between $20.70 and $42.24 per MWh of off-peak electricity stored. The

largest monthly profits occur during the peak demand summer months when the
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peak wholesale prices on average exceed $100/MWh.

The marginal social benefit of storage is equal to the sum of the marginal

external benefit and the marginal private benefit. For α = {0.3, 0.2, 0.1}, and

for each value of the social cost of CO2, the marginal social benefit of storing a

MWh of off-peak electricity falls below the marginal private benefit. Even with a

perfectly efficient storage unit (α = 0), the marginal private benefit exceeds the

marginal social benefit of arbitrage during ten of the twelve months. In the case

where α = 0.3, and the marginal social cost of CO2 is $65/ton, the external cost

of arbitraging one MWh of off-peak electricity is larger than the average private

benefit during eight of the twelve months. While electricity arbitrage will earn

positive profits for the storage owner during these months, the social benefit is

actually below zero.

2.7 Conclusion

States have begun implementing policies which will spur dramatic increases

in electricity storage capacity. These storage additions are seen as a vital comple-

ment to the growing share of intermittent, renewable generation. Despite the

widely held belief that bulk electricity storage will augment the benefits provided

by expanding renewable capacity, this paper demonstrates that electricity arbi-

trage, a major role of bulk storage, can in fact lead to greater levels of pollution

and, in some cases, lower optimal levels of renewable capacity.

Given the small penetrations of renewable capacity currently in place, low

marginal cost renewables are generally not the marginal sources of electricity. As

a result, arbitraging electricity across time will not alter the short-run level of re-

newable generation. Instead, arbitrage will lead to increased off-peak conventional

generation and decreased peak conventional generation. If the emission rates of the

units on the margin during the peak periods are not sufficiently below the emis-

sion rates of the units on the margin during the off-peak periods, then arbitraging

electricity will increase the aggregate daily level of pollution.

In addition to altering the level of pollution from conventional sources, elec-
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tricity arbitrage will also affect the value of renewable capacity investments. Arbi-

traging electricity will increase the demand for off-peak electricity and increase the

supply of electricity during peak demand periods. As a result, the off-peak prices

will increase while the peak prices will decrease. Renewable technologies which

produce more heavily during the off-peak periods, such as on-shore wind turbines,

will benefit from arbitrage. However, the returns to renewable sources which pro-

duce more heavily during the peak demand periods, such as solar, decrease with

greater amounts of arbitrage. Depending on the type of renewable energy available

in a specific region, greater levels of arbitrage can increase or decrease the optimal

amount of renewable capacity.

The empirical estimates of the external impact of arbitrage focus on the

social cost of CO2. Future work will explore how electricity arbitrage affects the

costs of non-perfectly mixing pollutants such as NOX . This will include an exami-

nation of how arbitrage not only affects the temporal distribution of emissions, but

also the spatial distribution of pollution. In addition, extensions of this analysis

can examine the dynamic interactions between electricity storage capacity and re-

newable generation. We demonstrate that storage will alter the value of renewable

investments. The opposite is true as well; some renewable sources will increase

the value of bulk storage (e.g. on-shore wind), while other renewable sources will

decrease the value of storage (e.g. solar).

Chapter 2, which has been co-authored with Richard Carson, is currently

being prepared for submission for publication. The dissertation author was the

primary investigator and author of this material.
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Figure 2.6: Average Hourly Marginal CO2 Rate
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Figure 2.7: Average Hourly Marginal NOX Rate
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Chapter 3

Gasoline Taxes and Revenue

Volatility: An Application to

California

Abstract

This paper examines how different combinations of gasoline excise and sales

taxes impact the volatility of state tax revenues. Unlike many commodities which

have sales taxes levied on them, gasoline has a unique combination of two key

features. First, prices are very volatile. Second, demand for gasoline is extremely

inelastic. As a result, there is substantial variation in the total expenditures on

gasoline over time. Tying state revenue to these variable fuel expenditures, as is

the case with a sales tax, results in a volatile stream of revenue which imposes real

costs on agents in an economy. On July 1, 2010, California enacted Assembly Bill

6, the ”Gas Tax Swap”, which increased the excise tax and decreased the sales

tax on fuel purchases. While the initial motivation behind the revenue neutral

tax swap was to provide the state with greater flexibility within its budget, we

point out that this temporary change has had an overlooked benefit; it reduces

tax revenue volatility. Simulating the monthly fuel prices and tax revenues under

alternative tax policies, we quantify the potential reductions in revenue volatility.

The results reveal that greater benefits can be achieved by going beyond the tax

119
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swap and eliminating the gasoline sales tax entirely.

3.1 Introduction

An extensive literature examines the optimal long-run level of fuel taxation,

however, very little attention has been paid to the type of tax mechanism that

should be used to achieve this target.1 In practice, many US states levy both per

unit (excise) taxes as well as ad valorem (sales) taxes on the purchases of gasoline

and diesel. This analysis compares the performance of different combinations of

excise and sales taxes. We demonstrate that the structure of fuel taxes affects the

volatility of both retail fuel prices and resulting tax revenues. The analysis focuses

on California, where the fiscal environment makes the costs of volatility in both

series clear, although our conclusions hold more generally for any government with

borrowing constraints.

The combination of two features of the market for gasoline and diesel makes

fuel unlike other commodities which have sales taxes levied on them. First, prices

for the fuels are very volatile. Second, demand for gasoline and diesel is extremely

inelastic. As a result, there is substantial variation in the total expenditures on

gasoline and diesel over time. Tying state revenue to these variable fuel expendi-

tures, as is the case with a sales tax, results in a volatile stream of revenue which

imposes real costs on agents in an economy. In contrast, a fixed per unit tax on

gasoline results in less volatile prices and generates government revenues that are

decoupled from volatile gas prices.

On July 1, 2010, California enacted Assembly Bill x8-6, the “Gas Tax

Swap”. This tax change increased the state excise tax on gasoline purchases from

18 to 35.3 cents per gallon and decreased the state sales tax on gasoline from

8.25% to 2.25%.2 The initial motivation behind the policy change was to provide

the state with greater flexibility within its budget, by reducing the amount of

1For an examination of the optimal long-run tax level, see for example Parry and Small (2005),
Harrington et al. (2007), and Lin and Prince (2009).

2The Gas Tax Swap will achieve revenue neutrality if gas prices average $2.79 per gallon over
the life of the program. The Tax Swap was reenacted for the period from July 1, 2011 through
June 30, 2012 with an excise tax rate of 35.7 cents per gallon.
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revenues earmarked for transportation spending, while remaining revenue neutral

in the long run.3 We point out that this policy change has had two potentially

overlooked benefits; it reduces retail fuel price volatility as well as tax revenue

volatility in the state of California. The objective of this paper is twofold. First,

we quantify the reductions in both retail price volatility and state fuel revenue

volatility stemming from the Gas Tax Swap. Second, we estimate the additional

reductions in volatility that can be achieved by going beyond the tax swap and

eliminating the sales tax on fuel expenditures entirely.

The remainder of this paper proceeds as follows. Section 2 discusses the

sources of retail gasoline price volatility and the resulting impact on total gasoline

expenditures. Section 3 describes the structure of California’s gasoline tax policy.

Specific attention is paid to the revenue generated by fuel taxes and the resulting

impact on revenue volatility. Section 4 explains the methodology we use to simulate

the alternative gasoline tax policies and Section 5 presents the results. Section 6

concludes by discussing further considerations.

3.2 Fuel Prices and Consumer Gasoline Expen-

ditures

Gasoline and diesel price volatility stems from multiple sources. Shifts in

supply and demand at the state and local level account for a portion of the vari-

ation in these prices. For example, seasonal shifts in driving patterns and stricter

environmental regulations tend to increase prices during the summer (Chouinard,

2004). Further research uncovers price cycles driven my monopolistic competition

at the local level (Noel, 2009). However, the majority of retail gasoline and diesel

price volatility stems from fluctuations in the price of their primary input, crude

oil. A simple regression of the monthly average gasoline price on the monthly av-

erage oil price over the last 15 years reveals that 95% of the variation in gasoline

3Proposition 42, passed March 5, 2002 by a 69-31% margin, requires sales taxes collected on
motor fuel to be spent exclusively on transportation projects. Although one goal of the swap
was budget flexibility, voters approved two ballot initiatives during the November 2010 election
which reestablished the link between fuel revenues and transportation spending.
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prices is explained by changes in the spot oil price.4

Oil prices are both notoriously volatile and prone to large and persistent

swings. The price of crude oil, which is determined on a world market, is essentially

unaffected by changes in fuel demand within a single state.5 As a result, unlike

regular, expected cycles in regional gasoline supply and demand, fluctuations in

world oil prices are much less forecastable.6

While fuel prices are prone to large and persistent fluctuations, fuel demand

is not. An individual consumer’s demand for gasoline is largely driven by major

life decisions: choice of vehicle, location of residence, and location of employment.

As a result, consumers are often unable to respond significantly to price swings in

the short and medium-run. Hughes et al. (2008) estimate the short-run elasticity

of demand using monthly, aggregate US data and find values ranging between -

0.034 to -0.077. Following their estimation, in an appendix we present separate

estimates of the monthly price elasticities of demand for both gasoline and diesel in

California. The point estimates from our sample period, 2001-2010, are elasticities

of -0.056 for gasoline and -0.034 for diesel.

Combining consumer’s very inelastic demand for fuel with volatile fuel

prices results in large swings in the share of household expenditures allocated

to fuel purchases.7 These large swings in total fuel expenditures can have two

negative impacts.

First, when fuel prices abruptly change, consumers are faced with random

shocks to their purchasing power. These unpredictable shocks impose real costs

on households, with larger shocks imposing larger costs. Ideally, consumers could

hedge this financial risk however, no simple options exist. Past work highlights

that fuel taxes can be used to mitigate retail price volatility. For example, LeClair

4The Energy Information Administration provides data on the average retail gasoline price
at the state level as well as the daily spot price for oil delivered to Cushings, TX. The general
finding that oil prices drive gasoline prices has been shown to hold more broadly by many authors
(for example, see Chouinard and Perloff, 2007).

5California accounts for about 1% of world oil consumption. Marginal changes within Cali-
fornia alone would have a trivial impact on world oil markets.

6Hamilton (2008) highlights that historically, oil price changes have been both permanent and
difficult to predict.

7During 2008, expenditures on gasoline and diesel accounted for 5.4% of total consumer spend-
ing in the US. Expenditure information is available from the 2008 Consumer Expenditure Survey.
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(2006) proposes a variable excise tax on gasoline which moves inversely with the

actual retail price.

In contrast, a fuel tax policy that includes a sales tax results in a per gallon

tax that increases with prices. The positive correlation between per gallon prices

and per gallon taxes amplifies volatility in retail gasoline prices, making consumers

worse off.8

The second potential negative impact of fuel expenditure volatility is its

effect on government revenues. A government can tax the quantity of a good

consumed–by imposing an excise tax–or the expenditure on consumption of the

good–by imposing a sales tax. When consumption of a good is unresponsive to

price, as it is in the case of gasoline and diesel, an excise tax will completely insulate

tax revenues from price fluctuations. Under the same conditions, a sales tax will

pass price variation through to government revenues. Previous research has paid

very little attention to the impact of fuel tax structure on the volatility of resulting

revenues.9 In the proceeding section, we examine the structure of California fuel

taxes before and after the Gas Tax Swap. Specific attention is paid to the revenue

resulting from these taxes as well as the costs of volatility in these revenue streams.

3.3 Fuel Taxes and Revenue Volatility

During 2009, the combination of all federal and state taxes accounted for

17.55% of the average US retail price of gasoline paid at the pump.10 Every

gallon of gasoline is subject to an 18.4 cent federal excise tax–a flat fee per gallon

purchased.11 In addition, all states in the US charge an excise tax on gasoline, with

values ranging from 2 to 35.7 cents per gallon (Tax Foundation, 2011). Seven states

8There many reasons why increased volatility has increased costs for households. A few of
the more prominent examples include risk aversion, liquidity constraints, borrowing costs.

9Borenstein (2009) suggests a variable gasoline surcharge for California explicitly taking into
consideration the effect of fuel price declines on state revenue. However, the surcharge, which
functions as a price floor, represents an overall increase in the tax rate rather than a revenue
neutral change in the tax structure.

10See Energy Information Administration’s Gasoline Components History.
11The federal excise tax on diesel fuel is 24.4 cents per gallon. Other taxes apply to crude oil,

and are presumably at least partially passed through to make up some portion of the price at
the pump.
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also impose some form of sales tax on gasoline–ranging from 2% to 9.25%–with

taxes paid by consumers varying across local jurisdictions as well.

California is one of the states that applies a sales tax in addition to an

excise tax on gasoline and diesel. The recently imposed Gas Tax Swap increased

the state excise tax on gasoline purchases from 18 to 35.3, and finally 35.7, cents

per gallon and decreased the state sales tax on gasoline expenditures from 8.25%

to 2.25%. As originally enacted, the policy represented a temporary change, with

the new rates in place through the end of the 2012 fiscal year.

During the 2009-2010 fiscal year, the last fiscal year before the Gas Tax

Swap, the total state revenue for California was 112.1 billion dollars. The two

largest sources of revenue were the personal income tax (40.4% of total revenue)

and the retail sales tax (29.7% of total revenue). Combined, revenue from gasoline

and diesel taxation accounted for 6.5% of total state revenue. Though not as large

as the share of revenues derived from other sources, such as income, sales or capital

gains taxes, fuel taxes are nonetheless a sizable share of state revenues.

Of the 7.3 billion dollars of Fiscal Year 2009 revenue linked to fuel taxes,

44% came from sales taxes and 56% came from excise taxes. Over time how-

ever, these two revenue streams behave very differently. The bottom panel of

Figure (3.1) plots the monthly revenue from fuel excise taxes, on both gasoline

and diesel purchases, as well as the monthly sales tax revenue from fuel expendi-

tures between January, 2005 and June, 2010. The excise tax revenues, which are

linked to fuel consumption, are very smooth. In contrast, the sales tax revenues,

which are linked to fuel expenditures, are not. Comparing the monthly sales tax

revenue to the monthly average gasoline price demonstrates how these swings in

revenue generated by taxing fuel expenditures are driven by the fluctuations in the

retail price.

Over this time period, California raised revenue from a combination of two

taxes on fuel, and it is clear from Figure (3.1) that relying more heavily on an

excise tax would have produced a much more stable revenue stream than the

hybrid approach. For a government with low borrowing costs and no borrowing

constraints, there will be no real benefits from increased revenue stability in the
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short-run. The short-run volatility of federal tax revenues in the US has no direct

effect on the provision of government services. So long as federal borrowing costs

are low, and the long-run debt to GDP ratio remains reasonable, policies can be

altered in a way that changes public good provision along a smoother path.

However, at the state level, the existence of budget rules can make short-

term revenue volatility affect more than just balance sheets.12 Under these con-

straints both revenue shortfalls and windfalls can be problematic. Budget rules

can force a state experiencing a temporary shortfall to abruptly cut spending or

raise taxes in current, as well as future, years.

It is less intuitive, and not widely noted, that revenue windfalls can be

problematic for governments as well. The California example is rather transparent,

because the State’s constitution requires that gains in general fund revenues are

accompanied by permanent increases in spending across certain state programs.

For example, in California, the State constitution requires that public education

funding grow at the same rate as either personal income per capita or general fund

revenues (whichever is higher).13 Therefore, a short-run windfall leads directly to

long-run increases in legislatively mandated spending obligations. However if the

revenue is truly a short-run windfall, then sufficient funds to meet the required

level of future spending will not exist.

While California’s unique legal structure makes the cost of revenue windfalls

transparent, the point that short-term revenue gains can result in increased long-

term liabilities holds much more generally. The majority of elected officials do not

require a constitutional restriction to compel windfalls to be spent (or rebated as

tax cuts), the need to be reelected is generally sufficiently compelling to ensure

governments do not maintain a large budget surplus.14 The implicit threat of the

ballot box can cause revenue volatility to impose costs by putting politicians in

12With the exception of Vermont, all US states have some form of balanced budget requirement.
Poterba (1995) provides an overview of issues created by state budgeting rules.

13In practice a 2/3 majority of the legislature can prevent the increase, but supermajorities
are rare in California’s budgeting process, and the formula binds in almost all years.

14Many states, and some cities, recognize this problem explicitly and maintain ’rainy-day
funds’, to allow governments to operate in surplus more often. In practice these funds are quite
small and only allow governments to engage in less-severe austerity in the first budget year of a
recession.
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politically uncomfortable positions.

Additionally, revenue volatility can be costly because identifying the dif-

ference between a short or medium-term windfall and a permanent shift in the

economy frequently outstrips the technical abilities of not just elected officials,

but professional economic forecasters. For example, at the federal level, the US

currently has a large structural deficit. Current federal tax rates were chosen in

the late 1990’s and early 2000’s, when economic forecasts suggested they would

generate significantly more revenue than they have. In spite of a decade of revenue

shortfalls and a significant weakening of federal balances, the political difficulties

of altering federal income and outlays have prevented adjustments to either side

of the ledger.

At the federal level, the gasoline excise tax has remained steady at 18.4

cents per gallon with no sales tax since 1993. Although the value of the revenue

it generates has fallen over time–because the tax is not indexed to inflation–the

federal excise tax has generated a steady stream of revenue, with all fluctuations

coming from changes in gasoline consumption. Most states have followed suit,

with a large fraction imposing only excise taxes on gasoline. These states have

generated a reliable stream of revenue from taxing gasoline. Several states, such

as California, have gone further and imposed an additional sales tax on gasoline,

creating another revenue stream that is a more volatile and comes at a cost of more

volatile retail prices. In the next section, we quantify the reduction in revenue and

price volatility that California can achieve by substituting increased excise taxes

for sales taxes levied on gasoline and diesel.

3.4 Policy Evaluation

In this section, we compare California’s observed monthly fuel prices and

fuel tax revenues to the counterfactual prices and revenues that would have oc-

curred under alternative, fuel tax policies. The baseline tax policy is the mix of

sales and excise taxes in place prior to the Gasoline Tax Swap. The first alterna-

tive policy is the 2010 Gasoline Tax Swap which lowered the fuel sales tax rate
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and increased the gasoline excise tax. The second policy we simulate goes one

step further, entirely eliminating the sales tax levied on fuel expenditures and only

using a flat excise tax.

We compare the effects of the two alternative policies to the baseline policy

over fiscal years 2007-2009 (July, 2007-June, 2010). One of the major difficulties

in comparing the effects of gas tax structures over a given time frame is that

the timing of a tax reform significantly affects the aggregate revenue raised by a

policy. Though long-run studies of gasoline prices suggest they follow a unit root,

there is a clear upward trend over the last decade, which has significant effects on

the aggregate revenue generated by each policy. One result of eliminating sales

taxes on fuel is that a government may be left with less revenue if prices increase.

Conversely, if prices decrease, the resulting revenue will be larger under the policy

not taxing expenditures.

Because our focus is on the volatility of tax revenues, we normalize all

policies to generate approximately the same average revenue across the simulated

period. To accomplish this, we first calculate the actual average tax rate per

gallon of fuel purchased between July, 2007 and June, 2010. We use data on the

monthly tax receipts provided by the state of California’s Franchise Tax Board as

well as data on the monthly average fuel prices and consumption from the Energy

Information Administration. Over this period, an average state revenue of 42 cents

per gallon was generated by the baseline California tax policy.

In order to determine alternative policies that would both be approximately

revenue neutral relative to the observed baseline, we abstract from any changes in

the fuel consumption that would result from changes to the tax rates. This enables

us to choose an excise rate for the simulated Gasoline Tax Swap policy that, when

combined with a state sales tax of 2.25% on gasoline expenditures, would achieve

an average tax of 42 cents per gallon over the same time period. This results in an

excise tax rate in the Swap policy that is slightly smaller than the enacted policy.

Finally, for the excise tax only policy, we simply peg the excise rate equal to 42

cents per gallon and set the sales tax on fuel expenditures equal to zero.

For each time period, the simulation consists of four steps. First we establish
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the baseline monthly gasoline and diesel prices, exclusive of taxes. Similar to

Borenstein and LeClair, we assume the full amount of a state tax on gasoline is

passed through to consumers. In a rigorous evaluation of state gas tax incidence,

Chouinard and Perloff (2004, 2007) find empirical support for this prediction.

Maintaining this assumption, we construct a monthly series of gasoline prices that

would have prevailed in California by deflating retail prices appropriately. The

structure of California’s fuel taxes over the time period examined implies:

Pretail = (Puntaxed + τUS excise + τCA excise) · (1 + τCA sales)

where τUS excise = 0.184, τCA excise = 0.18 and τCA sales varies over the sample. All

parameters except Puntaxed are observable and we assume that local changes in fuel

consumption do not affect world oil markets, making the changes in consumption

implied by alternative fuel tax structures minimal enough to alleviate the need to

model secondary price effects. As long as this assumption holds, simple algebra

allows us to deflate retail prices to simulate a series of untaxed gasoline and diesel

prices.

Puntaxed =
Pretail

(1 + τCA sales)
− τUS excise − τCA excise

Second, we use this price series to simulate the monthly average retail gaso-

line and diesel prices in California using any tax mechanism we wish to consider

over our sample period. Third, we use the simulated counterfactual prices and our

estimates of the short-run elasticity of demand for gasoline and diesel, discussed in

the appendix, to determine the monthly consumption of gasoline and diesel that

would have prevailed under the simulated alternative tax polices. Combining the

simulated retail gasoline and diesel prices with the simulated fuel consumption,

we can finally back out estimates of the fuel tax revenue each policy would have

generated in each month.
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3.5 Results

The simulation, which covers July 2007-July 2010, clearly demonstrates

the effects of each policy on gasoline price and tax revenue volatility. The effects

on retail prices are minimal, but noticeable, at the extremes of observed prices.

Gasoline prices from all three series fell within a range of $ 0.03 75% of the time,

and within a range of $0.06 89% of the time. Even in the most extreme cases, the

total price differential between any of the series never exceeded 5% of the price

of gasoline, with the peak statewide average gasoline price of July 2008 dropping

from $4.48 in the base case to $4.38 under the swap and $4.28 under the fixed tax.

Over the simulated period, the policy would have cost the consumer the most in

December of 2008, when gas prices fell to their trough of $1.823 under business as

usual, but would have been $1.898 under the swap and $1.900 under a fixed excise

tax.

the total tax revenue per gallon falling from the range of $0.32 to $0.52 per

gallon in the base case, to between $0.39 and $0.48 per gallon in the swap case,

and remaining fixed at $0.42 per gallon under the pure excise tax.

The single most salient effect of the simulated policies is the clear reduction

in revenue volatility directly attributable to the structure of the fuel tax. The top

panel of Figure 3.2 compares the average monthly tax rate per gallon of gasoline

under the three policies. The effective tax per gallon of gasoline under the observed

baseline policy fluctuates between 32 cents per gallon and 52 cents per gallon. In

contrast, the monthly tax rate of the Swap policy ranges between 39 cents per

gallon and 48 cents per gallon while the Excise policy generates a constant 42

cents per gallon.

As a result, both the Swap and Excise tax polices result in much smoother

tax revenue collection across the time periods we examine. While some volatility

remains, it is largely the result of volatility in consumption. Perhaps the clearest

illustration of the extent to which moving away from ad valorem taxes reduces

revenue volatility comes from the bottom panel of Figure 3.2, which displays the

aggregate monthly revenue collected from fuel consumption.

The actual fiscal year fuel tax revenue under the baseline policy is given in
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Table 3.1. During fiscal years 2007, 2008, and 2009, the baseline policy generated

$6.36 billion, $6.79 billion, and $5.98 billion, respectively. In contrast, the sim-

ulated Swap and Excise policies generate fiscal year revenues with less variation,

ranging from $6.23-$6.75 billion and $6.26-$6.66 billion, respectively.

Table 3.1: Comparison of Fuel Tax Revenue by Fiscal Year

Baseline Swap Excise

July 2007 - June 2008 6.36 6.66 6.66
July 2008 - June 2009 6.79 6.75 6.53
July 2009 - June 2010 5.98 6.23 6.26

Total 19.13 19.64 19.45

Note:  Fiscal year revenues in billions of 2010 dollars.

3.6 Conclusion

The results of our simulations are clear. When the government raises rev-

enue by taxing a good that is inelastically demanded and has a volatile price, ad

valorem taxes translate this price volatility into revenue volatility. Governments

which can borrow at little cost have little incentive to pay attention to this volatil-

ity, but governments with high borrowing costs–either due to high interest rates on

public debt or legislative constraints–can provide public services more consistently

by structuring taxes to reduce revenue volatility. On this count, California’s 2010

gas tax swap is a considerable improvement relative to the policy it replaced. The

implications are that California’s government will have a more reliable stream of

revenue, and California’s consumers will face marginally more stable prices for a

good with very inelastic demand.

In comparing the performance of alternative tax structures, there are several

long-run issues that deserve consideration. First, our this analysis does not model

changes in consumer behavior which affect the long-run demand for gasoline. If

consumers are risk averse over fuel consumption, the present lack of insurance
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mechanisms for oil price risk would imply that the best way for consumers to ensure

against oil price swings is through vehicle choice (or potentially home choice). If

this is true, and the current automotive fleet reflects both consumer preferences

over vehicle attributes and over oil price risks, then this policy could lead to a

decline in the fuel efficiency of an equilibrium vehicle fleet, and possibly less energy

efficiency in other durable goods as well.

An additional factor that must be considered is the impact of the tax policy

on the long-run tax, real tax rate. One potential benefit of an ad valorem fuel tax

relative to a fixed excise tax is that, in the presence of long-run growth in price

levels, the real tax rate will continually decrease with a constant per unit tax.

However, levying a sales tax on fuel expenditures is not the only way to avoid

long-run decreases in the real tax rate. A simple alternative would be to peg

a per unit excise tax to an alternative price index which is not prone to large,

unpredictable swings; for example, the Consumer Price Index.

The gas tax swap of 2010 is not a permanent policy change, and is up

for renewal soon. While our analysis suggests possible benefits to moving to a

excise tax, there should be no question that reverting to the old fuel tax would be

less desirable than maintaining the gas tax swap. Recent court rulings have also

suggested the state’s greenhouse gas initiative, AB32, may need to consider further

options before implementing a carbon cap and trade program. Should carbon taxes

on vehicle fuels be considered as a part of a new program, our research suggests

significant benefits to structuring any increase in the tax paid on gasoline as an

excise tax. Indeed, with a larger excise tax, the state would have a significantly

larger revenue stream with little volatility.

Chapter 3, which has been co-authored with Michael Madowitz, is currently

being prepared for submission for publication. The dissertation author was the

primary investigator and author of this material.
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3.7 Appendix: Fuel Demand Elasticity

To simulate the impact of the variable tax policy on gasoline and diesel

consumption, estimates of the short-run (monthly) price elasticity of demand are

made for California. While a vast number of estimates of the elasticity of demand

have been presented in previous studies, for a variety of reasons it is important to

identify the recent response of California consumers to fuel price changes. First,

Hughes et al. (2006) find evidence that demand has become more inelastic in re-

cent decades. Second, very few estimates of the regional or state level elasticity of

demand have been produced. Given that the proposed policy is being simulated

for California, it is important to identify the aggregate response of California con-

sumers to price changes. Third and finally, the simulation requires estimates of

the elasticity of demand for both gasoline and diesel at a monthly frequency. Lin

and Prince (2009) provide estimates of the annual elasticity of demand for gasoline

in California. However, these estimates may overestimate the monthly response of

consumers to price changes.

The Federal Highway Administration provides data on the monthly con-

sumption of gasoline and diesel in California. Monthly average gasoline and diesel

prices in California are collected from the Energy Information Administration. The

Bureau of Economic Analysis provide quarterly income per capita for the state of

California. Finally, the Employment Development Department of California pro-

vides information on the monthly state employment rate. The data spans January

2001 - March 2010.

Estimate of the elasticity of demand are made for both gasoline and diesel.

The full specification estimated is shown below:

ln(Ct) = αm + β1 · ln(Pt) + β2 · ln(Yt) + β3 · ln(Et) + εt, (3.1)

where Ct is the monthly consumption of gasoline or diesel (gallons), Pt is the

monthly average price per gallon (2010 $’s), Yt is the quarterly income per capita

(2010 $’s), and Et is the monthly employment rate in California. The fixed effect,

αm, is allowed to vary by month to capture the seasonal trends in consumption.
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The parameter β1 represents the elasticity of monthly gasoline or diesel consump-

tion with respect to the monthly average retail price.

The estimation results are presented in Table 3.2. The central elasticity

estimates, used in the counterfactual simulations, are 0.056 for gasoline and 0.033

for diesel. The estimate of the elasticity of demand for gasoline is in the middle of

the range of values identified by Hughes et al.[36].

Table 3.2: Monthly Price Elasticity of Demand

ln(Gas Consumption)

ln(Retail Price) -0.056 -0.034
(0.020)** (0.034)

ln(Income Per Capita) -0.182 0.896
(0.105) (0.275)**

ln(Employment Rate) 1.388 1.893
(0.092)** (0.282)**

Constant 5.238 -5.294
(0.849)** (2.230)*

Monthly FE Yes Yes
N 111 111
R2 0.85 0.75

Robust standard errors given in parentheses.  * significant at 5%.  ** significant at 1%. Consumption and Income
are per capita.  Retail Price and Income are in 2010 dollars.

Dependent Variable

ln(Diesel Consumption)
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