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ABSTRACT OF THE DISSERTATION

Essays on Multivariate Modeling in Financial Econometrics
by
Emre Yoldas
Doctor of Philosophy, Graduate Program in Economics

University of California, Riverside, December 2008
Dr. Gloria Gonzéalez-Rivera, Chairperson

The main theme of this dissertation is multivariate modeling in financial econometrics.
The first chapter uses the fundamental properties of the multivariate distributions of
independent random variables to develop a new specification testing methodology for
dynamic models. The second chapter generalizes this methodology to tests of
distributional assumptions and dynamic specification in multivariate models. In the third
chapter we focus on testing and modeling asymmetries in the second moments of
multiple equity returns.

The methodological advances in nonlinear time series models with non-normal
density functions and in density forecasting have emphasized the need for developing
dynamic specification tests for the joint hypothesis of i.i.d.-ness and density functional
form. In Chapter I, we propose a new battery of tests that rely on the fundamental
properties of independent random variables with identical distributions and we introduce

a graphical device -the autocontour-that helps to visualize the modeling problems. Based
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on the theoretical probability coverage of the autocontours, we construct a battery of
asymptotic t-tests and chi-squared tests, which have standard convergence rates. The tests
are very powerful against violations of both hypotheses. They do not require either a
transformation of the original data or an assessment of goodness-of-fit a-la Kolmogorov
and explicitly account for parameter uncertainty. Monte Carlo simulations show that their
finite sample performance is very good even in relatively small samples. We illustrate the
usefulness of this methodology within the context of GARCH and ACD models using
returns and duration data from the US equity markets.

In Chapter II, we generalize the testing methodology developed in Chapter I to
time series models with multivariate GARCH disturbances. The tests are applied to the
vector of generalized errors that must be i.i.d. with a certain parametric multivariate
probability density function under the null hypothesis of correct specification. We
develop t-tests based on a single autocontour and also more powerful chi-squared tests
based on multiple autocontours. In the spirit of goodness-of-fit tests, we also propose an
additional test that focuses on the multivariate density functional form of the vector of
innovations. We perform Monte-Carlo simulations to investigate the size and power
properties of the test statistics in finite samples. We apply our tests to multivariate
GARCH models fitted to excess returns on portfolios sorted according to market
capitalization.

In Chapter III we test and model asymmetries in time-varying means, volatilities,
correlations, and betas of equity returns in a multivariate threshold framework. We

consider alternative specifications in which the threshold variable is based on market
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excess return, the Fama-French size and value factors, realized volatility of the market
portfolio, and variables reflecting economic fundamentals. We find strong threshold
effects with respect to market excess return, value premium, and term spread. Our results
indicate that the threshold model based on market excess return provides a flexible and
computationally inexpensive specification for modeling asymmetries, especially when
dimensionality is high. We find that small caps, value stocks, and the Durables industry
exhibit the strongest expected return asymmetries. Correlations of small caps, value
firms, and defensive industries with the market tend to be significantly larger during
market downturns. Correlation asymmetry usually translates into asymmetry in beta.
Regime dependent volatility is a common characteristic of all portfolio groups. We
evaluate performance of the proposed threshold models in an out-of-sample setup and
find that there can be substantial economic gains in incorporating asymmetries in

portfolio decisions.

X



TABLE OF CONTENTS

CHAPTER I: AUTOCONTOURS: DYNAMIC SPECIFICATION TESTING ........ 1
Lo Introduction . .. ..o oo 1
2. The Joint Test of Density and Independence ............................ 7

2.1 AUtOCONLOUT . . ... 7
2.1.1 Standard Normal Distribution . .. ............ .. .. ... ..... 8

2.1.2 Student-t Distribution . . . .......... ... i 9

2.1.3 Exponential Distribution . .. .......... ... .. ... ... 10

2.2 Test Statistics and Asymptotic Distributions . . ................. 10
3.Parameter Uncertainty . .. ...ttt 13
4. Monte-Carlo Simulations . ... 17
4.1 The Case of Observable Data ................ ... ...t 17
42Model Residuals . . ... 21

5 Empirical Applications . ............o i 24
STGARCHModelS . ... 24
S2ACDModels. ..o 27
6.Conclusion ........ ..o 28
References . ... 30
Appendix A: Proofs of Propositions 1-4 . .......... ... ... .. ... ...... 34

Appendix B: Appendix B: Covariance and Gradient Terms of Gaussian
Location-Scale Model. . .. ... ... 38

Tablesand Figures . ... 43



CHAPTER II: MULTIVARIATE AUTOCONTOURS FOR SPECIFICATION

TESTING IN MULTIVARIETE GARCHMODELS ............ ... .o .. 70
Lo Introduction . ... ..o 70
2. Testing Methodology ............. ... . i 74

2.1 Test StatiStiCS . . oottt et e e e 74

2.2 Multivariate Contours and Autocontours . ..................... 79
2.2.1 Multivariate Normal Distribution . .. .................... 79

2.2.2 Multivariate Student-t Distribution . .. ................... 80

3. Monte-Carlo Simulations . .............. oo i 82
3.1 Size SIMulations . .. ...oot 82

3.2 Power SImulations .. ...t 84

4 Empirical Applications . . ........ouuinnu e 86
5. CONCIUSION ..o vttt 89
References . ... 91
Tablesand Figures . ... 92

CHAPTER III: TESTING AND MODELING THRESHOLD ASYMMETRIES IN

MULTIVARIATE DISTRIBUTIONS OF U.S. EQUITY RETURNS .............. 103
Lo Introduction . . ...oo o 103

2. Methodology . . ... e 108

2.1 Why Threshold Models? ......... .. .. .. . o i 108

22 TheModel . . ... 109

2.3 Threshold Nonlinearity Test based on Arranged Regression . . . . ..... 110

xi



2.4 BSMAtION . . . o vttt e et e e e e e e 113

3. Empirical Results . ... 115
B Data. .. 115
3.2 Alternatives for the Threshold Variable . ......................... 116
3.3 Threshold Nonlinearity Tests . ..............ooiiiiiiiiiiaa.... 118
3.4 Model Specification. ............... ... i 120
3.5 EstimationResults . ............ ... 122
3.6 Assessment of Predictive Ability of the Proposed Models . .......... 129
4. CONCIUSION . o ettt e 132
ReferencCes . . . ..o ottt 135
Appendix A: Consistency of the CLS Estimators . ......................... 138
Appendix B: Subsampling Inference for the Threshold . .................... 139
Tablesand Figures . ... ... 142

xii



LIST OF TABLES

Table 1.1: Size of the £-Statistics .. ... e 43
Table 1.2: Size of the O-StatiStics .. ... e e 43
Table 1.3: Size of the J-Statistics . ... e 43
Table 1.4: Power of the J-Statistics . ... 44
Table 1.5: Size of the #-Statistics under Parameter Uncertainty (All Contours) ... .. 46
Table 1.6: Size of the #-Statistics under Parameter Uncertainty .................. 47
Table 1.7: Size of the Q-Statistics under Parameter Uncertainty ................. 47
Table 1.8: Size of the J-Statistics under Parameter Uncertainty .................. 47
Table 1.9: Power of the Q-Statistics under Parameter Uncertainty . .. ........... 48
Table 1.10: Power of the J-Statistics under Parameter Uncertainty . . ................. 50

Table 1.11: Size of the Tests applied to GARCH Residuals under Normal

Distribution . .. ... 52
Table 1.12: Q-Statistics for GARCH (1,1) under Normal Distribution . .......... 53
Table 1.13: Q-Statistics for GARCH (1,1) under Student-t Distribution . ......... 54
Table 1.14: Q-Statistics for ACD(3,2) under Exponential Distribution . . ........ 55
Table 2.1a: Table 2.1a: Size of the J ,l1 SSEAtISHICS o v e 92
Table 2.1b: Table 2.1a: Size of the J ,l, -statistics under Parameter Uncertainty . ... 92
Table 2.2a: Size of the J, -statistics (7 =13) ... .............cccooeio... 93
Table 2.2b: Size of the J , -statistics (n = 13) under Parameter Uncertainty . . . . . . 93
Table 2.3: Size of the #-statistics under Parameter Uncertainty . ................ 94

xiil



Table 2.4:

Table 2.5:

Table 2.6:

Table 2.7:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 3.7:

Table 3.8:

Table 3.9:

Power of the J! -statistics under Parameter Uncertainty . ............ 95

Power of the J. , -statistics (n = 13) under Parameter Uncertainty . . . . .. 95
Power of the t-statistics under Parameter Uncertainty .. .. ........... 96
Individual 7 and J,5-statistics for Estimated GARCH Models . . . . .. . . 97
Threshold Non-linearity Test Results under the Standard Delay Lag .. 142

Threshold Non-linearity Test Results under the Averaging Scheme . . . 144

Threshold Estimates and Subsampling Confidence Intervals . ... .... 146
Estimation Results for the Size Group MKT,d=1)............... 147
Estimation Results for the Book-to-Market Group (HML, t=12).... 148

Estimation Results for the Book-to-Market Group (MKT,d=1)..... 149
Estimation Results for the Industry Group (MKT,d=1)........... 150
Estimation Results for the Industry Group (SPREAD,d=8)........ 151
Out of Sample Portfolio Allocation Results . . .................... 152

X1V



LIST OF FIGURES

Figure 1.1: Sample Autocontours of Bivariate Distributions under

Independence . .. ... ... . i
Figure 1.2: Autocontours and Autocontourgrams of Standardized NYSE

Returns . . ... o
Figure 1.3: Size of the #-Statistics . . .. ... ... i
Figure 1.4: Power of the ¢-Statistics under AR(1)DGP ......................
Figure 1.5: Power of the #-Statistics under i.i.d. Student-t DGP .. ..............
Figure 1.6: Power of the ¢-Statistics under GARCH (1,1) DGP . ...............
Figure 1.7: Power of the ¢-Statistics under AR (1) DGP and Parameter

UNCertainty . . . . ..ottt e e
Figure 1.8: Power of the #-Statistics under i.i.d. Student-t DGP and Parameter

UNCEItainty . . . oottt ettt e e et e e e
Figure 1.9: Power of the ¢-Statistics under GARCH (1,1) DGP and

Parameter Uncertainty . ... ...t
Figure 1.10: ¢t and J-Statistics for GARCH (1,1) Model of NYSE Returns under

Normal Distribution . . .......... .
Figure 1.11: ¢ and J-Statistics for GARCH (1,1) Model of NYSE Returns under
Student-t Distribution . . .. ....... ... ... ..

Figure 1.12: Autocontours and Standardized NYSE Returns under Normal and

Student-t Distributions . . . . ... ..ot

XV



Figure 1.13: ¢ and J-Statistics for ACD (3,2) Model of Airgas Transaction Durations
under Exponential Distribution . . ........... ... ... .. ... .. ... 68
Figure 1.14: 90, 95, 99% Autocontours under Exponential Distribution and
Standardized Airgas Durations .. ............. ... .. .. .. ... ... 69
Figure 2.1: Contour and Autocontour Plots under Normal and Student-t
Distributions . ......... .. 98

Figure 2.2: Daily Excess Returns on Five Size Portfolios . ................... 100
Figure 2.3: J, f3 -statistics of BEKK Model under Multivariate Normal

Distribution . ......... .. ... 101
Figure 2.4: J, f3 -statistics of DCC Model under Multivariate Normal

Distribution . ........... ... 101
Figure 2.5: J, f3 -statistics of BEKK Model under Multivariate Student-t

Distribution . ......... .. ... 101
Figure 2.6: J, f3 -statistics of DCC Model under Multivariate Student-t

DIStribUtion . ... ... 102

XVi



CHAPTER 1

AUTOCONTOURS: DYNAMIC SPECIFICATION TESTING

1 Introduction

When we specify a time series model, our purpose is to capture the time dependence of
the variable of interest as parsimoniously as possible. If this task is accomplished, the
innovation of the model will be an independent random variable. In this chapter, we focus
on models in which all the dependence is contained in the first and second moments such

that for a process {y,} we write y, = 1,(0y1,3,_1) +0,(005,3,_1)¢, for t=12,... where

u,(.) is the conditional mean and 0,2(.) is the conditional variance, both functions of an
information set J,_;, 0, =(6],0(,)" is a parameter vector, and ¢, is an innovation that is
independent and identically distributed. The innovation, ¢ =(y, —ug,)/0,, will be
characterized by a parametric probability density function (p.d.f.), say D(0,1). Within
this context, it is easy to understand the importance of correctly specifying the
conditional mean and conditional variance of {y,}, as these two moments are the filters

that contain the dependence of the data. However, what is the importance of correctly
specifying the p.d.f. when robust estimation procedures are available? The correct
specification of the p.d.f. has important implications for estimation, testing, and
prediction, particularly in those instances in which the modeling of the conditional

variance is the object of interest. Given that in many cases a quasi-maximum likelihood



(QML) estimator is available, the implementation of a maximum likelihood (ML)
estimator, which requires the specification of the true density, must be desirable when the
efficiency losses are large. In Gonzalez-Rivera and Drost (1999), the efficiency losses of
QML versus ML estimators are calculated both analytically and numerically for a variety
of time series models. For some commonly used densities the losses are larger for the
variance estimators than for the mean estimators. For instance, when the true density is a
Student-t with 5 degrees of freedom, the efficiency loss for the variance parameters is
about 150% compared to 25% for the parameter estimators in the mean. For a chi-square
with 10 degrees of freedom, a similar comparison brings a loss of 167% versus 67%.
These results underscore the importance of testing not only for independence in the
innovation of the model but also for the correct density function.

There is an extensive literature on testing for density functional form. The
pioneering work of Kolmogorov (1933) and Smirnov (1939) (K-S) on goodness-of-fit
represents the basis of numerous parametric and non-parametric tests. The original work
of K-S assumes that the observations are i.i.d. Lillefors (1967) shows that when
parameter estimation is involved the asymptotic distribution of the K-S test depends on
the true c.d.f. and population parameters, and critical values need to be tabulated.
Andrews (1997) and Stinchcombe and White (1998) extend the K-S framework to test for
the conditional density implied by a regression model within the context of i.i.d.
observations. Nonparametric kernel based methods for testing conditional and
unconditional densities of i.i.d. random variables are also proposed in Fan (1994) and

Zheng (2000).



Within the context of the time series literature, testing for uncorrelatedness in the
innovations of a time series model is a primary diagnostic check for model specification.
During the 1970’s with the advent of the Box-Jenkins methodology, portmanteau
statistics as proposed by Box and Pierce (1970) and Ljung and Box (1978) were designed
to test for autocorrelation in the residuals of ARMA and ARMA-X specifications. Since
the prevalent distributional assumption in these studies was the normal density function,
checking for the absence of autocorrelation implied an i.i.d. innovation process. During
the 1980°s and 1990°s the econometric developments in nonlinear time series modeling
and in particular the introduction of ARCH models by Engle (1982) brought further
diagnostic checks to test for i.i.d-ness. The classical Box-Pierce-Ljung tests were not
sufficient to test for the adequacy of non-linear specifications. Tests on squared-residual
autocorrelations are found in McLeod and Li (1983), Li and Mak (1994), and, more
recently, in Chen (2007). A different set of diagnostic tests to check for independence can
be found in Brock et al. (1996), whose BDS test is based on the correlation dimension,
and in Hong and Lee (2003), who propose a statistic based on the generalized spectral
density. Additionally, time series modeling of the conditional variance underscored the
importance of specifying the correct density function, mainly when unconditional and
conditional normality has been almost universally rejected in the econometric analysis of
financial time series. Thus, nonlinear modeling in conjunction with non-normal densities
emphasizes the need for development of dynamic specification tests for the joint

hypothesis of i.i.d.-ness and density functional form.



With the revival of density forecasting towards the end of the 1990’s, testing for
density functional form has stirred a greater interest both in academia and among
practitioners. Most of the density forecast evaluation methods are based on Rosenblatt’s
probability integral transform. Diebold et al. (1998) show that if the proposed density

forecast, say f;(.), is correct, then the transformed random variables u, = F;(y, | 3,_1;6,)

will be i.i.d. uniformly distributed. The testing of i.i.d. uniformly distributed random

variables is carried out in an informal way by means of a histogram of {u,} and

autocorrelograms of different powers of it. Berkowitz (2001) proposes a further

transformation to normality of the process {u,}. If ®(.) is the normal cumulative

distribution function then z, = CI)_I(ut) must be an i.i.d. N(0,]) random variable. Since

Berkowitz’s test is a likelihood ratio test, it has power only against fixed alternatives.
Chen and Fan (2004) generalize Berkowitz’s approach by using copula functions. None

of the three aforementioned articles deals with parameter uncertainty since they treat {u, }

as the primitive process. Bai (2003) studies this type of tests further and proposes a

conditional Kolmogorov test to test for the properties of {u,}. He deals with parameter

uncertainty using a martingale transformation and obtains an asymptotically distribution
free test statistic. Corradi and Swanson (2006) note that Bai’s test does not have power
against violations of independence and they propose a Kolmogorov type test that, like the
non-parametric test by Hong (2001), is robust to dependence. Corradi and Swanson rely
on bootstrap techniques to deal with the effects of parameter uncertainty on the limiting

distribution of the statistic. An alternative route to the construction of robust tests against



dependence is to search for tests with power against violations of both dependence and
density functional form. In this line, Hong and Li (2005), again within the context of
density forecast, emphasize the importance of jointly checking for i.i.d.-ness and

uniformity of {u,}. They propose a non-parametric test statistic based on the squared
distance between the joint density of u, and u,_; under the null and its nonparametric

kernel based estimator. The asymptotic distribution of their test is a standard normal and

it is immune to parameter estimation due to the fact that parameter estimators converge at

the standard rate /7 while the nonparametric kernel estimators that form the test statistic
converge at slower rates. As in any nonparametric procedure, the choice of the optimal
bandwidth is an issue.

In a different vein Bontemps and Meddahi (2005, 2006) adopted the GMM
approach for testing distributional assumptions based on moment conditions for the
Pearson’s family of distributions. They describe moment conditions that are robust
against parameter uncertainty.

In this chapter we propose a battery of tests for the joint hypothesis of i.i.d.-ness
and density functional form that are very powerful against violations of both. The tests
have standard convergence rates and standard limiting distributions. They do not require
either a transformation of the original data or an assessment of goodness-of-fit a-la
Kolmogorov, and explicitly account for parameter uncertainty. The proposed tests focus
on fundamental properties of independent random variables with identical distributions.

Let the process under consideration be {g,} with density f(.). The random variables in

this process are independent if and only if their multivariate distribution is equal to the



product of their marginal distribution functions, in which case the null hypothesis simply
boils down 10 (6, 1&g, sty s, )= S (& ) (€ g, ) S (et )tk 3"y €N The
specification tests we propose are based on a new concept that we term autocontour.

Under the null, we horizontally slice the joint density at different levels and project the

resulting segments down to the hyperplane (&_y, .&_x, & ). The projection is the

autocontour containing a known percentage of the observations. Based on the sample
estimates of these percentages we construct a battery of z-statistics and chi-squared
statistics, which have standard asymptotic distributions. Our tests can be applied to
primitive series and to residuals series, in which case we need to address the parameter
uncertainty problem. While it is possible to obtain analytical results for special cases for
the effect of parameter uncertainty on the asymptotic distribution of the tests, we show
that a general bootstrap procedure to obtain their asymptotic variance delivers standard
asymptotic tests with the right size.

The structure of the chapter is as follows. In Section 2, we formalize the notion of
autocontour and present the general framework of our testing methodology by
introducing the resulting ¢ and chi-squared test statistics. We also illustrate the application
of our methodology to commonly used distributions: normal, Student-t, and exponential.
In Section 3 we explicitly deal with the parameter uncertainty problem by deriving the
asymptotic distributions of our test statistics and using a bootstrap procedure to make
them feasible. In Section 4, we provide extensive Monte Carlo evidence regarding the

size and power properties of the proposed tests. In Section 5, we show several empirical



applications within the context of GARCH and ACD modeling; and in Section 6 we

conclude.

2 The Joint Test of Density and Independence

The class of dynamic models that we are interested in are of the following form,
Ve = #(00153,1) + 0,002, 3, 1)e, 1=1,...T, (1)

where J,_; denotes the information set available at time #—1, x,(.) and o,(.) are fully

parameterized by 6, = (6),,0;,) and measurable with respect to J, |, and {¢,}_, is a
series of i.i.d. innovations having a particular density function, f(.). Usually, & is

assumed to have zero mean and unit variance, but for nonnegative data it naturally has a
nonzero mean. For the moment we assume that ¢, is observable, 1.e. 6, is known. Later
on we will relax this assumption to account for the effects of estimation on distribution of
our test statistics.

2.1 Autocontour

Under correct dynamic specification the null hypothesis in its most general form is stated
as,

H : ¢, 1s 1.1.d. with density f(.)
Hj : negationof H,,

Under this null hypothesis the multivariate density function for an m-dimensional vector

(&t 5---2€1-k,, ) 1S written as f(&,_y & p, 8k, ) = S (&g ) S (Erpy) - f &1y, ) - We

define the (a,m)-autocontour, ACR)', as the set of points in the hyperplane



(&—k,»----€1-k,,) that results from horizontally slicing the multivariate density function at

a certain value to guarantee that the resulting set contains a% of observations, that is,

u u,
ACRZ” = {B(gl—kl""’gl—km ) C SRm Illl J'l f(gl—kl )"'f(gt—km )dgt—kl“'dgt—km < a} 2)

. . m B B
where B is a set in R™, w, =u, (& g bk, > by =ly(& g on8og, ), and

m—1
{kj};f’zl e N. Let us focus on the bivariate case to show the construction of the

autocontour for some specific distributions commonly encountered in financial

econometrics: standard normal, Student-t, and exponential. In the bivariate case, the null
hypothesis reduces to H: f(g,6,_4) = f(e)f(e,_;) for k=1..,K and K is some

positive integer. The implied bivariate autocontour is given by

ACR, = {B(Etagt—k) c ®? lo Y1 (e)

J-uoJ'uk(Sz)f(gt)f(é‘t_k)dgtdgt_k < 0(} 3)

where B is a set on the plane (g, ¢,_;) and the limits of integration are such that the

contour shape of the hypothesized density is preserved.
2.1.1 Standard Normal Distribution

Suppose ¢, ~1.1.d. N(0,1), then the joint density of interest is given by
1 1., o
S (&8 4) = b eXp| — E(St +&t) 4)

For a fixed value of this density, say f, we have stz + gtz_ = a® where a=+/— 21InQ2xf) .

Thus, autocontours are circles with radius a. The value of a that describes the



autocountour with a% coverage can be computed by numerical integration using the

following equation,

[“ T2 ey, g)dede, = a 5)
—ad-g(e)) \Cr Bk JAEAE g

where g(g) = Ja? - 8,2 . Alternatively one can get the a values based on the c.d.f. of a

chi-squared random variable with two degrees of freedom due to the normality

assumption, e.g. for 90% autocontour a =+/4.61.
2.1.2 Student-t Distribution

Now let us consider the case where ¢, ~ 1.i.d. Student-t(v). In this case, the joint density

under the null is given by,

2\ o~ 2
f(et,gt_k):A(l+%J ? (1+‘9f;’fJ ? (6)

where A =[T'((v+1)/ 2)]2 / o[ [(v/ 2)]2 . The equation pertaining to autocontours of this
joint density is given by a =1+ (g2 +&2,)/v+ee’, /v* where a=(f/A) > we

rely on numerical integration to find the value of a that describes the autocountour with

a% coverage

+,/v(a—1) g(gt)
j _[ S (&,6_y )de,de,_j = a (7)
—yv(a-1)—g(e)

where g(g,) :\/(a—l—stz/v)/(l/v+8t2/v2).

' Note that the joint distribution given by the product of two marginal Student-t densities is not bivariate
Student-t as opposed to the case of normal distribution.

9



2.1.3 Exponential Distribution

Finally we consider the case where ¢, ~1.i.d. exp(f). The bivariate exponential density

under the null is given by,
1 1
S(e81) ZFGXP _E(Sz +E k) (8)

For some fixed value of this density, the equation for the autocontours is given by
a=¢,+¢,_; where a:—ﬁln(ﬁ2 f). Since we restrict our attention to the positive

quadrant we obtain contours that are isosceles triangles. For a given a, the following

equation can be iterated on a, until the desired probability is obtained.

_[ If(gtangk)dgtdngk =a 9)
0 0

In Figure 1.1, we show the graphical contours corresponding to three aforementioned

bivariate density functions.
2.2 Test Statistics and Asymptotic Distributions

For a given autocontour ACR,, ; , we define a binary variable as follows

o [Vif (ee) € ACR,
15 = t=k+1,..,T, (10)

0 if (¢/,¢,4) € ACR,

where k=1,...,K and i=1,...,C, i.e. K is the number of lags and C is the number of

autocontours. Hence, this Bernoulli random variable takes on value 1 if an observation

falls outside the autocontour and O otherwise. Since ACR, ; contains o;% of

observations, we expect to have (1—a;)% outside the autocontour. Let p; =1—a;. Under

10



the null we have E[I,k’i ]=p; and Var(ltk 7y = p;(1-p;). Furthermore, the indicator is a

linearly dependent process with a MA structure. Its autocovariance function is given by

PIF =115 =1) — p} if h=k

0 otherwise

yh = Cow(I}, 1%y = { (11)

Our first test statistic is a #-statistic based on this indicator series.

Proposition 1 Let p; =(T k)~ IZT k] ki Under the null hypothesis,

tr; =T —k(pf p,)»szak,)whereakl pil=p)+27;.

Proof. Please see Appendix A for the proofs of Propositions 1-4.

Note that since p; is given under the null, to make this test operational we need to

replace only the autocovariance, y}; , with its consistent estimate given by

2
i 1 T2k  ji +ki 1 T—k ki
i _ N Jd_ N
yk - T _ 2k Zt:] Il‘+k1t T _ k Zt:] I[ :
For a given autocontour i, we can examine the lag structure of l.i for k=1,....K

and collect those t-statistics in a graph, which we call autocontourgram. As an
illustration, consider the daily returns of NYSE index from June 1, 1995 to December 31,
2004. In Figure 1.2-a, we plot the standardized return and the bivariate normal
autocontours for k =1. Figure 1.2-b shows the autocontourgram that summarizes the

values of #; ; for k =1,...,25 based on three autocontours (a € {10, 50, 99%} ).

11



As expected, we clearly reject the null hypothesis. It can be seen from the
autocontourgram that the rejection in the largest autocontour o =99% is due to the larger
than expected theoretical number of observations outside of the autocontour, thus the tails
are thicker than those of a normal. On the contrary, the rejection in the central
autocontours a=10% and a=50% is due to the smaller than expected number of
observations outside of the autocontours, thus the central empirical autocontours are more
dense than the theoretical ones.

In the spirit of Box-Pierce-Ljung statistics, the information contained in the

individual #; ; statistics can be pooled either across K lags or across C contours. The

following two test statistics consider the joint distribution of asymptotically normal

random variables associated with different lags or with different contours.

Proposition 2 For a given autocontour i, consider all lags up to K. Let

qk,i:\/T—k([aik—pi), k=1,...,K and stack them in a vector q;=(q;>-»qx ;)"

d
Under the null we have q; — N(0,€;) where any element @, ,, in €, is given by

Cov(I}, I1"Y + Cov(IF 1) + Cov(I1, 150y + Cov(11 140, ) 1> k
Dj gl =

Pi(l_Pi)+2V/ic > I=k

d
It directly follows that OF =q'Q:'q, > 1% .
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Proposition 3 For a given lag &, consider multiple contours. Let
Zig = NT—k(pF = p)), i=1,...,C, and stack them in a vector z, = (2142 ) - Under

d
the null we have z; —N(0,Z;) where any element &, , in E, is given by

= min(p;, p;) = p;p; + Cov(I 1))+ Cov(I2  If7) Vi, j . Then, it directly

d
follows that J{ =z,E,'z, — y¢.

To make these test statistics operational we replace the covariance terms with their

corresponding sample counterparts. This has no impact on the asymptotic distributions.

3 Parameter Uncertainty

Even though the tests we propose can be applied to raw data, they will be most useful as
a diagnostic tool for model specification. Thus, in practice we will be analyzing residuals,
& (é), which depend on parameter estimates, instead of the true error ¢,(6,). Our tests

are subject to the uncertainty created by parameter estimation. The following discussion

will be centered around the f-statistics, l.is considered in Proposition 1, but the same

conclusions will apply to the QZ-K and J, kc tests given in Propositions 2 and 3 respectively.

To understand how parameter estimation affects the tests, let us consider the

. .2
following mean value expansion

? For notational parsimony we use T instead of (T — k) since they are asymptotically equivalent.
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3t n)- gt oo 2 | o

where 0" is between 0, and 6. Applying Slutsky’s Theorem yields

+o,(1). (13)
0=0,

VT - )= (3t 00 - )+ V(000 im 5| PO

T—x

We make the following assumptions to obtain the asymptotic distribution under

parameter uncertainty:
A d
Al. ﬁ(@ - 00)—> N(0,47'BA™") where A=E[-H(6,)], B=E[S#,)S(,)], and

H(0y)= T_IZ;Ht (6y) and S(6y) = T_I/ZZITZIS, (6y) are the Hessian matrix and the

score vector corresponding to QML estimation.

T >

~k
A2. Let D=1limE m
06

}. Assume D; <o for j=1,...,q where g is the

0=0,
dimensionality of the parameter space.
A3. Cov(I®5,(0,)) <o and Cov(IF s, ;(0,)) <.

Al is based on standard QMLE arguments. A2 guarantees boundedness of the
gradient vector. A3 is a weak assumption that is required to have a well defined
asymptotic variance. A2 and A3 can be analytically verified for commonly used models

(please see Proposition 5).
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. d
Proposition 4 Under A1-A3 we have JT (ﬁlk (@) - p; )—) N(O, r,f,l-) where

=0k + D47 BAYD +2ENT (5~ p)S@Y 4D

Proposition 5 For a Gaussian location-scale model, y, = uy +04¢,, ¢ ~11.d. N(0,]),
the gradient vector D is equal to D = (0, —a; 1~ (ai)/ag)' where f. isthep.d.f of z,,a
chi-squared random variable with 2 degrees of freedom; and the covariance term is

ENT (p; — pi)S(0y)' 1= (0, (E[I}e}1-p;)/203)".

Proof. See Appendix B.

This proposition says that the estimation of the parameters in the mean does not
affect the asymptotic distribution of the test (D, =0 ). In general it would be difficult to
obtain an empirical counterpart of the gradient vector D. In addition, for some models
the covariance terms given in A3 may be difficult to estimate, e.g. simulation based
methods reviewed in Gouriéroux and Monfort (1996). Therefore, we propose to estimate

the asymptotic variance T;i; using a bootstrap procedure. This is a commonly used

approach in the literature to overcome the difficulties associated with asymptotic variance
estimation in various contexts (see Efron (1979), Buchinsky (1995) and Ledoit et al.

(2003) among others). The bootstrap estimator of the variance in Proposition 4 is given

by

3 This result also holds for a model with Student-t innovations. We conjecture that with homoscedastic
innovations, the symmetry of the density function is a sufficient condition for the estimation of the mean
parameters not to have any effect in the asymptotic distribution of the test.
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2oL (a3 ma)| (14)
ki B_leI Di b Bb:1pz b ’

where B is the total number of bootstrap samples, 51) is the parameter estimator from the

b™ bootstrap sample.* We prefer a parametric bootstrap since the null hypothesis fully

specifies the parametric DGP.’ In particular, bootstrap samples are obtained from
Equation (1) by replacing 6, with 6 and generating ¢, from the specified parametric

distribution. Under suitable regularity conditions, this estimator should be consistent as
proven within the linear regression context for i.i.d observations (Liu and Singh, 1992)
and for dependent data (Goncalves and White, 2005).

Alternatively, one can bootstrap the full distribution of the test statistics. However,
our test statistics are not asymptotically pivotal under parameter uncertainty and this
implies that the bootstrap distribution does not necessarily provide a superior
approximation to the finite sample distributions of test statistics, see Horowitz (2001).
Monte Carlo results (to be presented in the following section) indicate that bootstrapping
the asymptotic covariance matrices and using standard asymptotic critical values delivers

remarkable results in terms of size and power of the tests.

* For the chi-squared statistics, the covariance matrix estimators are defined analogously.
> See Horowitz (2001) for a detailed discussion on the practical implementation of bootstrap techniques.
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4 Monte Carlo Simulations

In this section we investigate size and power properties of our test statistics in finite
samples by Monte Carlo (MC) simulations. We first present results for the case of

observable data followed by simulation evidence on model residuals.

4.1 The Case of Observable Data

For size simulations we consider the following three cases: (1) ¢, ~1.1.d.N(0,1), (i1) &, ~
1.1.d. Student-t(5), and (ii1) ¢, ~1.1.d. exp(l). The Gauss 7.0 random number generator is

used to generate pseudo random numbers from these three distributions. The number of
Monte Carlo replications is equal to 10,000. We consider 13 autocontours (C =13) with
coverage levels (%): 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, spanning the entire
density function. We start with a sample size of 250 and consider increments of 250 up to
2,000. The figures show results for all sample sizes whereas the tables report results for
sample sizes 250, 500, 1,000 and 2,000. In all cases the nominal size is 5%.°

In Figure 1.3 we show the simulated size results associated with hiri= 1,...,13 for

normal, Student-t and exponential distributions respectively. For all three cases, we
observe that that our #-statistics do not suffer from any systematic size distortions with the
exception of 1% and 99% autocontours when 7 =250. This result is not surprising
because for small samples there is not enough variation in the indicator series at the
extreme autocontours (1% or 99% coverage). In order to check the size robustness of the

t-statistics for different lags, we exclusively focus on the 50% autocontour (i=7) and

® We also have simulation results for 1% and 10% nominal size levels, which are in line with the results for
the 5% level. They are all available from the authors upon request.
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consider k=1,...,5. We report these results in Table 1.1. Overall the simulated size

values are around 5% indicating good size for all distributions.’

Simulated size values for the chi-squared statistic across lags for the 50%
autocontour, 1.€. Q7K , K=1,...,5, are reported in Table 1.2. In general, this test statistic

is oversized. The distortions in size are larger for small samples and especially for large
values of K. This result stems from the difficulty associated with the estimation of off-
diagonal terms of the covariance matrix given in Proposition 2. For large values of K the
number of terms to be estimated in the covariance matrix increases at a higher rate than
K. Therefore, one needs more data to achieve a reasonable size. We have run an
experiment with 5,000 observations and we have observed that even for K =5 there is
almost no distortion. From a practical point of view, one may want to choose a small
number of lags if the sample size is relatively small.

Simulated size values for the chi-squared statistic across autocontours for k=1

(J 113 and J 17 ) are reported in Table 1.3. Although this test has a better size than the Q-

statistic, it is still oversized in small samples, especially when we consider the full set of
13 contours. As we mentioned before, in the extreme contours (i.e., 1 and 99%) the
indicator series may not exhibit enough variation in small samples and it may affect the

finite sample performance of the J-statistic. We have dropped the first three (1, 5, 10%)

and the last three (90, 95, 99%) autocontours to simulate the empirical size of J 17 . There

is a significant improvement in the size for all three distributions and for all sample sizes.

” These results are robust across all the autocontours and also available from the authors upon request.
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The size is acceptable for the most reasonable sample sizes encountered in financial data
sets. From a practical point of view, one may not want to use autocontours too small or
too large when the sample size is small.

To analyze the power properties of our test statistics we consider three alternative

data generating processes:

(i) &, = pe, | +u, where u, ~iid. N(0,]—¢?),
(i) &, =u, /(v —2)/v where u, ~1i.id. Student-t(),
(iii) &, =/h,u, where u, ~iid. N(O,]) and h, =@+ ac’, + fh,_,
For all three cases the null hypothesis is ¢, ~1.1.d. N(0,]1). In case (i) we investigate

departures from the independence hypothesis by considering different values of

¢ €4{0.3,0.5,0.7,0.9} . In case (i1), we maintain the independence hypothesis and

investigate departures from the hypothesized density functional form by generating 1.i.d.
data from Student-t distribution for three different values of the shape parameter

v e{5,10,15} . Finally, in case (iii) we analyze departures from both dependence and
functional form by generating data from a GARCH (1,1) model with « € {0.05,0.1,0.15},
£ €{0.9,0.85,0.8} . We set w =1—-a—f to normalize the unconditional variance to one.

The results of power simulations for fj 1= I,...,13 are presented in Figures 1.4-

1.6. Figure 1.4 exhibits the results for case (i) for different degrees of dependence. For

high values of the autoregressive parameter, i.e. ¢ =0.7and 0.9, and for autocontours

8 The variance is normalized to unity to control for the effects of different moment structures of normal and
Student-t distributions on the simulation results.
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ranging from 5 to 50% coverage, the power of the #-statistics approaches 1 rather quickly.
There is a substantial drop in power for autocontours with 70-90% coverage even with a
high degree of dependence. There is not a general explanation for this phenomenon; we
understand it as a result due to the specific DGP and the density under the null. In the
following power simulations we also observe similar behavior of the power surfaces
around the same contours. From a practical point of view, one may want to focus on the
most informative autocontours, which are those covering the center and the tails of the

distribution, i.e. <50% or > 95%.

The results for case (ii) are reported in Figure 1.5. The range of autocontours that
yield the highest power is wider for this case ranging from 5 to 70%. The power surface
exhibits the lowest values at the 90% contour. In the 99% autocontour, the power is as
high as in the central autocontours for all sample sizes. This is expected because of the
leptokurtosis of the Student-t density. As anticipated, rejection rates decrease for larger
values of v, for which the null and the alternative become less distinguishable.

The results for case (iii) are presented in Figure 1.6. The data generated under this
DGP is uncorrelated but nonlinearly dependent, and there is excess kurtosis relative to the
normal distribution. Persistence is the same across three alternative parameterizations
(a+ £ =0.95), but kurtosis is increasing with a . The power of the test is the highest for
the largest levels of kurtosis indicating that the #-tests are stronger at detecting departures
from the correct density functional form than departures from the independence
hypothesis. When o =0.05, the excess kurtosis in the data is only 0.16, so deviations

from the null are mainly due to the dependence in higher moments.
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In Table 1.4 we report the power simulation results for J ,13, k=1,...,5 for the three

DGP’s mentioned above.” A common characteristic across all the three DGP’s is that, for
a given sample size, the power of the J-statistics is roughly the same as the maximum
power of the #-statistics. The pattern on rejection frequencies is the same as that of the
individual z-statistics. In case (i), the rejection is stronger when there is high dependence
even for small samples. We note that there is a decrease in power as k increases, which is
more evident when the autoregressive parameter is small. This is somehow expected
because the DGP is only an AR(1) process. In case (ii), the test is more powerful for
small degrees of freedom but we should mention that even for v =15 the power of the
test is still around 43% for 2000 observations. In case (iii), we have stronger rejections
rates when the data exhibits higher kurtosis.

4.2 Model Residuals

In this section, we analyze the size and power properties of our tests when they are
applied to the residuals generated by model estimation. For the size experiments we use
the same set of distributions as in section 4.1 and consider location-scale models with the
following specifications:

(i) v, = u+oe,, ¢, ~iid NO1), £=1.25 and 6 =2;

(i) y, = p+0e,\|(v—2)/v, & ~iid. Student—t(v), u=125, 6=2,and v=>5;

(iii) y, = fe,, ¢, ~i.id. exp(l), and B =125,

? Power simulations for Q-statistics are deferred to the next section on “model residuals”.
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For each case, we generate the data y, and proceed to estimate x4 and o. We retrieve the

residuals and apply the tests to the properly standardized residuals. Because of
computational considerations, we reduce the number of Monte Carlo replications to
1,000. The number of bootstrap replications is 500.

In Table 1.5 we report the results for Bl =1,...,13. There are not systematic

deviations from the nominal size either across autocontours or across distributions. These
results follow very closely those for observable data reported in Figure 1.3 and Table 1.1.

In Table 1.6, we report the size for 50% autocontour for lags 1 to 5 and we observe
that the size of the #-statistics is very robust to the choice of lags.

In Tables 1.7 and 1.8 we report the size results for the O-statistic and the J-statistic
respectively. We note that bootstrapping the variance helps tremendously to correct the
size of the Q-statistic, which consistently over-rejects in the case of observable data
reported in Table 1.2. For the J-statistic, when we consider all 13 autocontours, there is a
tendency for the test to over-reject but when we focus on the middle autocontours by
removing the first and the last three, the empirical size improves substantially,
approaching the nominal size even for small samples.

To investigate the power of our test statistics under parameter uncertainty, we
consider the same DGP’s as in section 4.1, and apply the tests to the standardized

residuals generated by the estimation of the following location-scale models:

(i) y, = u+o¢,, & = e, | +u, where u, ~iid. N(0,1-¢?),

(il) y, = u+oe,4/(v—2)/v where ¢, ~i.i.d. Student —(v),
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(i) y, =+ 0¢,, & = [hu, where u, ~iid.N(0]), h =w+acl, + ph,_,
In Figures 1.7, 1.8 and 1.9 we present the power surfaces for fhii=1,...,13 for

samples sizes ranging from 250 to 2000 observations and for the 13 autocontours. These
figures are similar to Figures 1.4, 1.5, and 1.6 for the case of observable data. The
common characteristic to these three figures is that bootstrapping the variance of the test
lifts the power surfaces up. In case (i) this increase in power is more evident for the
largest three autocontours (90, 95, 99%). We also observe higher power at lower
dependence levels in all autocontours with the exception of 80%. In this case the drop in
power is similar to that we observe in Figure 1.4. For case (ii), power increases for all
autocontours especially for larger values of the shape parameter. Finally, in case (iii) we
observe that using bootstrap standard errors boosts the power to around 40% in those
cases when the null and the alternative are almost undistinguishable."

In Table 1.9, we report the power of the O-statistics. In each case we present power
results for a different autocontour to offer a comprehensive analysis. In all three cases the
rejection rates are high and behave in the right direction. The power is close to 1 for
samples of size 1,000 and larger when there is high dependence, or a large departure from
normality, or strong ARCH effects. In case (i) when dependence is high we observe an
increase in rejection rates as K increases. This is expected given the sensitivity of the test
to linear dependence. On the other hand, we do not observe a similar pattern in the

GARCH (1,1) where the dependence comes through higher moments.

' We also investigated the power of the -statistics for different lags. The results are equally robust to
parameter uncertainty.
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In Table 1.10, we report the results for the J-statistic. Overall the power results
under parameter uncertainty are similar to those for observable data. However, when
detecting departures from normality, case (ii), bootstrapping increases the power of the
test considerably.

Finally, we apply our tests to the standardized residuals of a more complicated

model to assess the robustness of our results. We estimate a GARCH (1,1) model:
vi=le, &~iid NO]) and h =w+ay’, +ph_y, with =01, a=0.15 and
£ =0.8. In Table 1.11, we summarize the size results for all test statistics. We observe
that the results are very similar to those obtained when a location-scale model is

estimated. Thus, provided that estimators are JT consistent, the finite sample properties

of our test statistics are robust to alternative parameterizations.

5 Empirical Applications

To illustrate the application of the proposed autocontour tests, we provide two examples
dealing with financial data. The first entails the estimation of a GARCH (1,1) model for
stock returns with conditional normal and Student-t distributions. The second deals with

the estimation of an ACD model for duration data with a conditional exponential density.
5.1 GARCH Models

We consider the daily returns to the NYSE Composite Index from June 1, 1995 to
December 31, 2004, with a total of 2,411 observations. In Figure 1.2, we have already

provided the normal autocontours and the autocontourgram for the standardized data and
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concluded that departures from normality come not only from the tail behavior but also
from the central body of the distribution. We now proceed to estimate a GARCH (1,1)
with a constant mean specification

Vi :ﬂ"‘\/zgt

: (15)
hy =o+a(y,) —w)” + ph,

where y, denotes the continuously compounded return on the NYSE Index. We retrieve

the residuals and apply our tests to their standardized version. First, we consider the case

where ¢, ~1.1.d. N (O,l). In Figure 1.10, we present the results for the #-statistics up to 25

lags pertaining to the 10, 50, and 99% autocontours,'' and the J -statistics for all 13
autocontours up to 25 lags.

Even though the modeling of the dependence in the data clearly helps to bring down
the #-statistics reported in Figure 1.2, we still reject the i.i.d. normality hypothesis for the
innovations of GARCH (1,1) model. The rejection is stronger in the 10 and 50%
autocontours than in the tail area (99% autocontour). Thus, the empirical distribution has
more probability mass in the central autocontours than the hypothesized density. This
finding suggests that we should aim towards a different distributional assumption, which
is expected given the stylized facts of financial returns, see Bollerslev et al. (1994), and
Engle and Patton (2001) among others. Summarizing the information across all the 13
autocontours, the J-statistics overwhelmingly reject the null. In Table 1.12, we present

the results for the Q-statistics for all 13 autocontours and for K € {5, 10,15, 20, 25}.

From the 5% to 80% autocontours, the tests reject the null for all values of K. It is only in

"'We select these three contours to represent the behavior of both the center and the tail of the distribution.
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the 90% autocontour that the test fails to reject the null. However, this must be a
reflection of the lack of power that we have observed in the Monte Carlo simulation
results.

Next, we consider the same model with a conditional Student-t distribution. We

assume &, =/(v—2)/v u, where u, ~i.i.d. Student-t(v). Following Bai (2003) we rely on

the QMLE results of Lee and Hansen (1994) and set #, = &4/v/(v—2) where we obtain

¢, from a Gaussian QML estimator. We estimate the value of v by GMM using the fourth

moment condition, E[¢;' ] =3(v—2)/(v—4), as in Bontemps and Meddahi (2006)."> The

GMM estimate is 7.48, thus we set v=7 under the null. The results for v=28 are very
similar. In Figure 1.11, the #-statistics fail to reject the null at the 5% level except for the
50% autocontour at the first lag. The J-statistics also deliver the same message.

The Q-statistics, reported in Table 1.13, also fail to reject the null with the
exception of the 30% and 80% autocontours. However, the values of the O-statistics are
considerably much lower than those in Table 1.12. Overall, the Student-t is a remarkable
improvement although some of the autocontours indicate the need for further
investigation.

In Figure 1.12, we describe graphically how the autocontours can guide the
modeling of the NYSE returns. In Panel a, the standardized returns are superimposed on
the normal and Student-t(7) autocontours. The rejection of normality is very clear and is

mainly due to the many outliers spread all over the four quadrants. A similar picture with

"2 This moment condition is used since the first two moments are normalized to zero and one respectively.
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autocontours corresponding to the Student-t(7) helps on picking up some of the outliers
but yet there is a rejection of the joint hypothesis of the i.i.d.-ness and density function. In
Panel b, we proceed to model the dependence with a symmetric GARCH(1,1) but
maintain the Student-t(7) hypothesis. The symmetric GARCH model is successful
enough but yet there is a cluster of outliers in the south-west quadrant that alerts about the
possibility of asymmetries in the model. A GARCH(1,1) with a leverage term in the
variance will take care of this asymmetric behavior.

5.2 ACD Models

We estimate an Autoregressive Conditional Duration (ACD) model for the durations
(time intervals between transactions) of the Airgas common stock from March 1 to
December 31, 2001 with a total of 32,366 intra daily observations.”> Let Holpseenstise.
denote a sequence of transaction times. Durations are defined as x; = ¢; —¢;_; . Engle and
Russell’s model is specified as

X; =Yg

16)
p q (
Wi=0+ ), j=1%Ni-j )3 P Vi

where y; = E[x; | X;_,X;_5,....,x;] and ¢; is 1.1.d. with density f(.). Following Engle and
Russell (2004) we concentrate on the case where p =3, ¢ =2 and f(.) is the exponential
density with £ =1. The results of the t-tests and the J-statistics are presented in Figure

1.13. Both tests reject the null hypothesis of i.i.d exponential innovations very strongly at

all lags for all autocontours.

1> We are grateful to Jeff Russell for providing us with the data set.
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The QO-statistics, reported in Table 1.14, deliver extremely large values indicating
strong rejection of the null with the exception of the 70% autocontour. These results are
in line with those of Engle and Russell (1998) who also reject the exponential distribution
assumption using more conventional methods. In Figure 1.14 we offer a comparison of
the standardized durations (durations divided by the sample mean) and the ACD (3,2)
residuals. The dependence modeled by the ACD specification helps tremendously to
reduce the magnitude of the standardized durations, however this is not enough to make it

consistent with the hypothesized exponential distribution.

6 Conclusion

The methodological advances in two fronts of time series analysis -nonlinear models with
non-normal density functions, and density forecasting- have emphasized the need for
developing dynamic specification tests for the joint hypothesis of i.i.d.-ness and density
functional form. In this chapter we have proposed a new battery of tests that rely on the
fundamental properties of independent random variables with identical distributions and
we have introduced a graphical device -the autocontour- that helps to visualize the
modeling problems. On reviewing the most relevant tests in the literature, from the
pioneering work of Kolmogorov (1933) to the most recent insights, we believe that our
tests bring considerable advantages. Among these, our tests are very powerful against
violations of both hypotheses, i.i.d.-ness and density function. They have standard

convergence rates and standard limiting distributions. They do not require either a
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transformation of the original data or an assessment of goodness-of-fit a-/a Kolmogorov
and explicitly account for parameter uncertainty.

We have introduced our methodology within the context of pair-wise independence
but it can be extended to higher dimensions. On going further than the bivariate case we
will be losing the graphical representation of the autocontour, which is helpful for the
understanding of the modeling problem; however once the analytical functional form of
the autocontour is obtained, the indicator variable is trivial to construct and the #-tests and
chi-squared tests that we propose will follow naturally. Implementation of this

methodology in the context of multivariate densities is presented in Chapter II.
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Appendix A: Proofs of Propositions 1-4

Proof of Proposition 1:
The result directly follows from the Central Limit Theorem for covariance stationary

processes presented in Anderson (1971). [

Proof of Proposition 2:
Asymptotic Normality

Without loss of generality, let us consider the joint distribution of ¢;; and ¢;;. Let

X =Aqy; + 4q;; where 4 and 4, are arbitrary constants and assume k </. Then

x = NT =k(PF = p)+ In T =1(pL - o).

For simplicity we drop first (/ —k) observations on /. tk " Since all results are asymptotic
it is convenient to use the same scaling factor

= _ ,
N S U = p)+ A (I = py)}
=1

X =

. . _ T-1
Let ¢, =4I = p)+ 1y (I} = p;). then x=(T=1)""'>%" "', . The first two moments
of ¢, and its autocovariance function are given by

Ele =0,

Var(e,) = (i +73)p; (1= p;) + 22 )y Cov(I IF) < o0,
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Wys + A Cov(I Ty ifh=k
Byl + WdCov(IlF TF)Y i h=1
AdgCov(IH  T5 ) i h=]—k

0 otherwise

Cov(e;,e;_p) =

Therefore, Cov(e,,e,_,) <o, Vh. From the CLT for covariance stationary processes,

d
x—>N(0,62) where o2 =Var(e,)+2Cov(e;,e,_;)+2Cov(e, e, ;)+2Cov(e, e, ;1)
Thus, we have shown that any linear combination of ¢;; and ¢;; is asymptotically

normal establishing their joint asymptotic normality. ]
Asymptotic Covariance Matrix
Given that E[q; ;1= E[q;;]1=0, we have Cov(qy ;,q;;) = Elq ;9;,;] Where

T-1

E[qk,in,i]=(T—l)E{%Z(lt —pl)—Z( —pl}

t=1

E[IF = p)UIP = p)l+ > S EUS - p)U 5 = p)]

t=1 t=1 t'=t+l1

1 {T—l . . T-1-1 T-I
T-1-1 T-1 g i
+ E[(I, —Pi)(lt"l - Dp;)]

= Cov(],k’i,ltl’i)+ Cov(],k ’,Il ’k) + Cov([tl i _ll) + Cov(]tl’i,lt]‘_’§+k)

as T — o ]

35



Proof of Proposition 3:
Asymptotic Normality

Without loss of generality, let us consider the joint distribution of z;; and z; ;. Let

X =4z j + Az . Then we have

x=4NT =k (pf = p))+ I \T—k(ph - p))

LY ki k.j
\/T——kz{ll([t’ _pi)+’12(lt ’J_pj)}

t=1
: Y Lj _ . _ (7 _\-1/2N Tk
Defining ¢, =a(l;" — p;)+b(I;” — p;) yields x=(T-k) thl e; . The first two
moments of e, are given by
Ele,]1=0
Var(e)) =7 pi(1= p))+ 453p (1= p;)+ 24 Jo fmin(p;, p ;)= p;p; } <o,
since E[If’ilt]"j] = min(p;, p;). Furthermore,

2,10 2 i i ) ~
Cov(et,et_h)={'11yk + 0]+ A () +y ) <o if h=k

0 otherwise
where y,i’j = Cov(],i’k,ltj_’ﬁ) and y,{’i = Cov([lj’k,lflkk). In general, y,i’j # yig’i since they

are cross autocovariances. Thus, Cov(e,,e,_;) <o, Vh . It directly follows, from the CLT,

d
that x> N (O,ai ) where ai =Var(e,)+2Cov(e,,e,_; ). We have shown that any linear
combination of z; ; and z; ; is asymptotically normal establishing their joint asymptotic

normality. |
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Asymptotic Covariance Matrix

Given that E[z; ;] = E[z;;]=0 we have Cov(z; 4,z ;) = E[z; 4z ;] where

Elz, .z, ]1=(T—k)E LTz_‘f(ﬂ""— )LTz_k(ﬂ‘J— )
i,k“j.k T_k P t DPi T_k ~ t p]

1 [L=k y r T—k-1 T—k . iy
=T——k ZE[(It ! - pi), "/ _pj)]+ z ZE[(It ot _pi)(lt"] —pj)]

t=1 t=1 t'=t+1

—k— —
Z Z (ka—p,)(lk’—p,)]}

=min(p;. p;)— pip; + Cov(I , Io1)+ Cov(I 1) as T — oo .

Proof of Proposition 4:

From assumption Al we have,
. 4,1 &
JT(6-6,)=4 ﬁZst(GO)Jrop(l).
=1

Defining x = 4; JT ( [9!‘ Og)—pi)+41y JT (é —0y)'D, and suppressing the argument of

the score we obtain,
x = fzwz’” i)+ as5,47 Dy +0,(1).

i e -1/25T
Now, let e =A4(I" = p)+2AsA"'D, then x=T""°% ¢+0,(1). The first two
moments of e, are given by

E[e,]=0
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Var(e,) = 22 p,(1— p;) + 5D' A7 BA™D + 22,4, Cov(I* ,s)) 47D < 0
Furthermore,

By + WapCov(IF sl NA'D<w if h=k

0 otherwise

Cov(e,e,_p) = {
Note that finiteness of the variance and covariance expressions follows from A2-A3. As a

d
result applying the CLT, we have x— N(O0, ai) where ai =Var(e,)+2Cov(e,,e,_;). The

variables in the right hand side of (13) are both asymptotically normal due to Proposition
1 and Al. We showed that their linear combinations are also asymptotically normal,

which completes the proof. ]

Appendix B: Covariance and Gradient Terms of Gaussian

Location-Scale Model

The model is given by

Yy = Ho + 008, & ~1.1.d. N(0,1) (B.1)
Let 0y = (uo, 03 ). In this case the indicator series is constructed as follows

1 if z,(0y))—a; >0

) (B.2)
0 otherwise

IF(z,(0y)) = {

where z,(0)) = etz (6y) + etz_ «(0y) . From the mean value expansion in the text we need the

following:

Vi = lim ENT (5! (6,) ~ pNT (0-6,)] (B.3)
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T >

N
D=limE M
06

] (B.4)

Let us start with the first term given in (B.3). From the properties of the QML estimator
V, =lim E[ﬁ(ﬁf 0) - pi)%Zf_lA-lst<eo)}
— 4" hinE[ ST IO -p)Y 5.6, )}
= A'[Cov(1["(2,(6))),5,(6,)) + Cov(I} (2,(6,)),5,_, (G )]+ 0(1)
For the model under consideration, we have s, = (¢, /0y, (et2 —1)/205)’.14 Hence, we
need to obtain (i) E[I5e,], (ii) E[IFe, .1, (iii) E[I*e*] and (iv) E[I"e? ] to get the
covariance term.

: k,i 2 k,i 2 2 k,i 2
(): E[I"'e]=Plei_y > a)ElL e, | e g > a;]1+ P(ei_y < a)EL e, | & < a;]

g(ery) 0
—0+ P2y <a)E [ s ¢ [, e |ty <ai
g(&—x)
=0

where g(e,_;)=+a;, — etz_ « and the third line follows from the fact that ¢, has a
symmetric distribution with zero mean.
(11): E[I tk ! ¢,_;] =0, using analogous conditioning arguments as in (1).

ki 2 2 ki 2.2 2 ki 2, .2
(iii): E[1;"e; 1= Plei_y > @) E[I g7 | &g > a1+ Plei_y < @) E[L e | &g < a;]

_P(gt k>a)+P(8t r Sa)E I g(-i) Zf(s,)det+f

S <a ]

= P(e2 4 > a) + P(ely <a)E| 1= [ &2 f(e)de, | o < }
L g(e—x)

' We suppress the arguments of the score and the indicator to simplify notation.
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The last line follows from the properties of truncated distributions, i.e.

f(x] x? < a)=f(x)/ P(—\/Z <x<-va ). The resulting integral is obtained by numerical

methods.
(v): E[1%e2  ]=1- j jg( & 1S @) (@)de, yde,. using similar conditioning

arguments as in (iii). Numerically, this integral is identical to that in (iii).
Therefore, we conclude that
_ -1 k,i_ 2 21
Vi =24"(0, (E[L;"'¢; 1= p;)/ 207) (B.5)

Now let us concentrate on D. Let D = (D, D,)" then we have

Dy = (20y) Jim T EI0(z, ~ ) + &) (B.6)
Dy =(-1/ad) Jim 37 E3(z, - a)2] (B.7)

where d(x) is the Dirac delta function'®. To simplify D, and D,, we use the following

properties of the Dirac delta function:

o(x—a)=0 for x#a (B.8)

Ijowh(x)é(x — a)dx = h(a) (B.9)

5(x* —a2)=2i[5(x—a)+5(x+a)] (B.10)
a

1> See Phillips (1991) for a similar application of the Dirac delta function in econometrics. See Arfken
(2005) for further details on Dirac delta function.
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where a is a finite constant and 4 is any continuous function. Let us start with D;:

E[0(z, — a;)(e, +6_4)]= P(e > @) E[0(z, — @) (e, + &) | 64 > ;]

+ P(stz_k <a;)E[0(z; —a;) e + 1) ] etz_k <a]
= P(ei 5 <a)E[0(z, —a)) e, + &) | &4 < ;]
since the first term vanishes due to (B.8). Rearranging yields
E[6(z, —a; ) e, +&,4) | etz_k <a;]= E[é(st2 —c)e, +&,4)] etz_k <a;]

where c=a, — ¢/, . Using (B.10) we get

E[6(e] —c)e, +e_p) | ey < a;]= %E[ 0(e, —Ne)+0(e, +e)e, | 67 <
C
1
+ g7 Lot - o) +d(e, +e)le g 1&g < a;].
Using (B.9) directly yields

E[{0(e, —e) + (e, +e)je, |l <ai]= ﬁE[ﬁf(ﬁ) —Nef(ey|gly <

=0, and
E[10(e, —Je) +6(e, + e, ¢ 624 <ar]= ﬁE[{f(\/z) — f(Nery ety <]

exp(—O.Sai2 ) &k

= de,
Torts S T e

2
E[{0(6, )+ 58, + Ve, 4 625 < a]= ﬁg; 2:» Wa—a;, - Ja—a;)

=0
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This establishes that D; = 0. Finally, applying (B.9) to (B.7) yields D, =—a; fzf (a;)/ ag
where [, is the p.d.f. of z,, a chi-squared random variable with 2 degrees of freedom.

Thus, we conclude that
D=(0,-af, (a;)/ a3 (B.11)

[

The table below provides the size of z-statistics under parameter uncertainty for the
model given in (B.1) where the covariance and the gradient terms are obtained from (B.5)
and (B.11) respectively. These results are directly comparable to those presented in Table

5, Panel-a, which is based on bootstrapping the asymptotic variance.

T 4y hpy hy ha 4s hLe Hy hg ho fhyo hir hiz 43
250 22 53 56 52 50 46 53 65 70 62 56 91 164
500 44 53 6.7 52 54 44 51 66 62 63 60 78 176
1000 5.1 54 50 47 40 49 46 56 53 63 56 54 57
2000 49 44 52 45 50 42 46 54 54 55 53 51 52
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Tables and Figures

Table 1.1: Size of the ¢-Statistics

Table 1.2: Size of the O-Statistics

hy  tay  tzg iy lsy T o7 0 07 O
Panel a: Normal Panel a: Normal
532 543 528 529 537 250 8.19 12.08 15.40 17.31
498 477 486 501 4789 500 6.86 9.12 13.39 17.43
1000 498 484 472 501 5.08 1000 592 691 945 12.10
2000 521 510 564 490 5.10 2000 6.01 6.02 7.15 8.30
Panel b: Student-t Panel b: Student-t
505 511 496 493 4.89 250 8.10 11.15 14.38 16.32
483 461 451 508 479 500 6.58 891 13.60 18.16
1000 5.31 507 535 509 5.19 1000 6.23 693 945 1241
2000 5.18 5.08 504 514 5.26 2000 543 584 7.03 8.12
Panel c: Exponential Panel c: Exponential
250 542 528 555 553 5.30 250 7.93 11.31 15.27 18.45
500 507 475 5.17 491 5.02 500 596 8.01 11.29 15.26
1000 5.37 479 526 500 499 1000 5.63 6.11 7.68 9.88
2000 495 479 486 493 504 2000 5.08 554 6.28 7.06
Table 1.3: Size of the J-Statistics
T  Normal Student-t Exponential
Panel a: J113
250 9.34 9.17 10.38
500 6.59 6.78 7.16
1000 5.47 6.23 5.90
2000 5.35 6.14 5.27
Panel b: J17
250 6.40 6.73 7.43
500 5.58 5.90 6.14
1000 5.44 5.63 5.47
2000 5.53 5.21 5.38

Notes: Simulated size (%) of the test statistics under three DGPs: (i) ¢, ~1.1.d.N(0,1), (i) & ~ i.i.d.
Student-t(5), (iii) ¢, ~1ii.d.exp(l). Table 1.1 presents the size of the t-statistic based on the 50%
autocontour for £ =1,...,5. Table 1.2 presents the size of the Q-statistic based on the 50% autocontour for
K =2,..5. Table 1.3 presents the size of the J-statistic based on all contours (Panel a) and 7 contours,

excluding the first and the last three, (Panel b) for £ =1. Number of MC replications is 10,000 and nominal
size is 5% in all cases.
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Table 1.4: Power of the J-Statistics
Panel a: AR(1)

T J3 J3 J33 J3 J3
250 76.23 67.12 62.03 58.79 57.53
9=0.9 500 95.69 84.85 73.61 66.98 61.99
' 1000 99.96 97.74 90.89 82.30 73.66
2000 100.00 100.00 99.28 95.99 88.64
250 36.88 23.41 20.92 19.99 19.55
—07 500 5691 24.97 18.00 16.80 16.09
p=5 1000 88.90 36.46 19.22 15.72 15.49
2000 99.83 60.48 25.85 17.21 15.47
250 17.28 12.88 11.86 12.89 11.62
0=0.5 500 18.75 9.54 9.58 9.11 8.88
) 1000 31.64 8.79 7.93 7.93 8.00
2000 61.41 9.90 7.54 8.01 7.84
250 10.59 9.88 10.26 10.33 10.02
0=03 500 8.57 6.71 7.54 7.19 7.48
. 1000 8.13 6.62 6.30 6.62 6.67
2000 10.67 6.06 6.30 5.99 6.34
Panel b: i.1.d. Student-t
T JP? Jy JP3 Jy JB3
250  58.31 58.19 58.73 58.06 57.82
v=5 500 88.85 88.84 88.65 88.54 88.55
1000 99.76 99.78 99.78 99.85 99.77
2000 100.00 100.00 100.00 100.00 100.00
250 18.44 18.65 17.96 18.23 17.88
v =10 500 26.09 25.94 26.22 25.18 26.13
- 1000 48.73 48.58 49.26 48.79 48.70
2000 84.68 84.44 84.36 84.20 84.22
250 12.50 12.88 13.01 13.81 13.11
15 500 13.34 13.41 13.55 13.61 13.47
v:
1000 20.87 20.87 21.14 21.62 21.37
2000 43.29 43.61 43.29 43.10 42.22
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Table 1.4 (Continued)
Panel c: GARCH(1,1)

T J3 J3 J33 J3 J3
250 5874 58.00 5897 5866 57.93
a=0.15 500 7754 7686 76.67 75.64 75.60
B=0.8 1000 9554 9490 9476 9420  93.98
2000 99.96 9992 9991 99.84  99.80
250 38.14 3846 3835 3855 38.18
a=0.1 500 4717 4693 4635 46.14 45.69
£=085 1000 67.15 6687 6573 6522 6445
2000 90.61 90.83 89.63 88.76  88.37
250 2053 20.05 19.88 1998 2023
a=005 500 18.69 1890 1859 18.92  19.10
=09 1000 21.61 2097 21.10 2090 2033
2000 29.17 2921 2840 28.13  27.04

Notes: Simulated power (%) of the J-statistic for £ =1,...,5 under the following DGPs: (i) ¢, = ¢e,_1 +u,
where u; ~i.i.d. N(O, —q)z) (Panel a), (ii) &, =u,/(v—2)/v where u, ~i.i.d. Student-t(v) (Panel b), (iii)

g = \/Eu, where wu, ~ii.d. N(O,]), and A =+ aefﬁl + Bh,_, (Panel c)
& ~11.d.N(0,]) . The test statistic is based on all 13 autocontours. Number of MC replications is 10,000

and nominal size is 5%.
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Table 1.5: Size of the t-Statistics under Parameter Uncertainty (All Contours)

T Hy 4ty 4tz hHha 4ts He Ly hg Ho Lo f iz a3

Panel a: Normal
250 53 59 70 58 51 53 56 49 48 48 58 44 24
500 40 46 40 51 44 55 51 54 58 46 43 41 39
1000 47 57 68 55 48 49 44 53 57 57 46 45 6.0
2000 45 52 59 40 48 40 49 56 72 60 45 59 46
Panel b: Student-t
250 3.6 44 47 43 41 42 43 56 46 53 52 45 20
500 42 55 55 53 55 51 52 52 53 49 47 43 5.7
1000 39 38 39 44 37 36 41 38 43 35 34 36 58
2000 54 50 40 45 44 40 51 51 46 47 54 32 40
Panel c: Exponential
250 49 47 48 44 52 56 50 41 53 44 54 48 42
500 47 48 50 48 48 42 62 56 64 46 54 49 56
1000 40 54 48 51 51 56 54 53 47 64 43 41 5.0
2000 3.7 55 45 40 44 49 44 47 54 50 39 56 55

Notes: Simulated size (%) of #-statistics (k =1) applied to standardized residuals under three DGPs:
1)y, =1.25+2¢,,¢, ~11.d. N(O,]), (i) y, =1.254+2¢,4/3/5 ,¢,~ 1id. Student-t(5) (iii) y, =1.25¢,,
& ~1.1.d. exp(l) . Number of MC replications:1,000; bootstrap replications:500; nominal size 5%.
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Table 1.6: Size of the ¢-Statistics
under Parameter Uncertainty

Table 1.7: Size of the Q-Statistics
under Parameter Uncertainty

T hy Dy By lyg o sy T o: 0 0 O
Panel a: Normal Panel a: Normal
250 5.0 6.2 4.9 6.4 5.8 250 53 6.7 6.4 6.5
500 5.0 5.1 6.6 5.0 4.8 500 6.0 6.5 6.7 6.6
1000 4.7 54 5.5 5.1 4.7 1000 5.5 66 64 6.5
2000 5.0 4.6 4.8 5.3 4.6 2000 44 5.1 46 45
Panel b: Student-t Panel b: Student-t
250 4.5 4.6 4.1 4.6 4.6 250 44 43 44 5.1
500 5.3 5.0 5.5 49 4.3 500 6.1 69 7.1 6.5
1000 4.2 4.4 4.1 4.4 4.0 1000 5.0 6.5 6.3 6.0
2000 5.0 54 4.7 5.5 5.2 2000 5.5 56 54 65
Panel c: Exponential Panel c: Exponential
250 5.3 5.3 5.6 4.6 5.0 250 5.9 5.5 53 4.7
500 7.0 6.2 5.3 4.4 5.4 500 7.3 60 56 55
1000 5.8 4.5 5.0 4.7 5.6 1000 5.1 5.2 6.0 6.1
2000 4.5 4.5 5.5 5.3 6.0 2000 4.5 44 52 52

Table 1.8: Size of the J-Statistics under Parameter Uncertainty

T Normal Student-t Exponential

Panel a: J113

250 6.6 6.0 7.1

500 6.2 7.4 6.0

1000 6.6 6.1 6.9

2000 5.8 6.9 5.2
Panel b: J/

250 5.7 4.8 5.5

500 6.0 6.2 5.4

1000 5.4 5.4 5.7

2000 5.4 6.3 5.2

Notes: Simulated size (%) of the test statistics for three DGPs: (i) y, =1.25+2¢,, ¢ ~1i.i.d. N(0,1), (ii)

y; =1.2542¢,4/3/5, ¢, ~i.i.d. Student-t(5) (iii)) y, =1.25¢,, ¢, ~1i.i.d. exp(l) . Table 1.6 presents the size
of the #-statistic based on the 50% autocontour for £ =1,...,5. Table 1.7 presents the size of the O-statistic
based on the 50% autocontour for K =2,...,5. Table 1.8 presents the size of the J-statistic based on all

autocontours (Panel a) and 7 autocontours, excluding the first and the last three, (Panel b) for £ =1. All
test statistics are based on standardized residuals. Number of MC replications is 1,000, number of bootstrap
replications is 500, and nominal size is 5% in all cases.
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Table 1.9: Power of the O-Statistics under Parameter Uncertainty
Panel a: AR(1)

T 0 0 o} 0
250 83.9 87.5 91.8 93.5
9=0.9 500 99.5 99.7 100.0 100.0
1000 100.0 100.0 100.0 100.0
2000 100.0 100.0 100.0 100.0

250 40.1 42.6 45.9 48.0
500 70.7 74.7 79.7 80.7

»=07 1000 96.3 98.4 99.3 99.5
2000 999 100.0 100.0 100.0

250 11.9 12.6 11.9 11.6

~05 500 19.2 18.2 18.1 17.7
p="5 1000  40.0 41.7 42.3 43.9
2000 67.6 72.3 75.7 75.0

250 6.1 6.8 53 5.7

500 4.5 5.4 6.4 6.1

=03

1000 8.5 8.7 9.5 9.8

2000 14.0 13.6 11.9 13.3

Panel b: i.1.d. Student-t

T % o) oy o

250 73.8 71.0 69.2 67.3

v=5 500 94.8 93.5 92.9 92.3
1000 99.8 99.7 99.8 99.8
2000 100.0 100.0 100.0 100.0

250 27.2 25.5 23.5 21.7

10 500 48.5 42.9 39.8 37.5
V= 1000 71.2 66.7 64.9 62.2
2000 95.8 95.2 94.5 939

250 15.8 14.1 12.3 11.3

500 21.5 19.3 17.5 16.1

v=15

1000 38.7 36.0 34.8 334
2000  67.7 62.6 59.7 57.9
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Table 1.9 (Continued)
Panel c: GARCH(1,1)

T 0 0 0s 0
250 413 384 368 356
a=0.15 500 695 664  64.6 63

=09 1000 94.1 92.7 91.5 90.6
2000  99.9 99.8 99.8 99.7

250  19.7 18 15.8 15.8
a=0.1 500 402  36.1 35 32.4
=085 1000 672 633 607 585

2000 919  90.8 885 862

250 52 5.1 59 5.7
a=0.05 500 10.5 10.1 9.6 8.9
B=08 1000 16.7 14.4 14.2 13.1
2000  29.8 27.5 24.5 22.4

Notes: Simulated power (%) of the O-statistic for K =2,...,5 under the following DGPs:
1) vy, =125+2¢,, & =¢&,_ +u;, u, ~iid. N(O,l—(pz) (Panel a), (i) y, =1.25+2¢,(v=2)/v, & ~
i.id. Student-t(v) (Panel b), (i) y, =1.25+2¢,, &, =lhu,, u, ~iid.N(O,)), and h, = w+ae’ | + ph,

(Panel c). The null hypothesis is ¢, ~1i.i.d.N(0,1). All test statistics are based on standardized residuals.
Number of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%.

49



Table 1.10: Power of the J-Statistics under Parameter Uncertainty
Panel a: AR(1)

T J3 J3 J33 J3 J3

250  82.8 59.4 43.6 35.2 29.6

p=09 500 980 84.8 69.4 53.2 44.9

1000 100.0  99.0 90.6 78.8 65.7

2000 100.0 100.0  99.5 94.9 85.5

250  43.1 17.9 10.7 9.1 10.1

_o7 500 692 27.2 16.1 9.1 9.0

=57 1000 941 41.8 19.5 12.4 10.1

2000 99.8 66.5 25.1 13.0 8.2

250  17.1 8.4 8.3 7.0 7.1

0=05 500 27.8 9.2 7.2 7.7 73

1000  46.4 11.2 7.5 7.5 6.9

2000  75.0 12.8 8.6 4.4 6.3

250 8.9 5.9 7.4 7.1 7.0

)=03 500 9.0 6.6 7.8 7.4 7.4

71000 125 7.5 5.8 7.0 7.9

2000 17.4 6.5 5.7 6.8 6.1

Panel b: 1.1.d. Student-t

T JP? Jy JP3 Jy JB3

250 834 81.9 81.8 81.1 81.0

,—s 500 973 97.5 96.9 97.3 95.7

1000 100.0 999  100.0 100.0  100.0

2000 100.0 100.0 100.0  100.0  100.0

250 383 37.1 37.3 35.8 35.6

L_10 500 546 55.4 54.7 53.7 52.7

- 1000 79.2 78.7 76.0 77.5 75.8

2000 97.2 97.4 97.4 97.6 97.5

250  21.9 22.4 20.2 20.5 19.7

s 500 273 28.6 27.7 273 28.2
v:

1000 477 47.4 47.0 45.4 48.3

2000 69.3 69.1 69.7 69.0 68.9
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Table 1.10 (Continued)
Panel c: GARCH(1,1)

T JP3 JP3 Ji3 JP3 JB
250 468 452 459 417 404
a=015 500 728 708 709 703  68.1

=08 1000 94.1 93.4 93.4 92.5 92.2
2000 100.0 99.6 99.7 99.4 99.6

250 249 25.6 23.2 22.8 21.6
a=0.1 500 444 44.6 44.0 41.9 39.0
p=0.85 1000 71.1 67.7 69.7 64.4 64.9

2000 94.1 92.4 92.4 91.2 90.8

250 12.1 10.0 11.3 9.9 10.1
a=0.05 500 15.9 13.8 14.7 14.2 14.6
£=09 1000 20.7 21.2 19.3 19.5 18.7
2000  36.1 34.0 33.1 31.1 29.3

Notes: Simulated power (%) of the J-statistic for K =1,...,5 for the following DGPs: (i) y, =1.25+2¢,,
g =pe_ +u,, u ~1iid. N(0,1- goz) (Panel a), (ii) y, =1.25+2¢,4/(v=2)/v, &, ~ i.i.d. Student-t(v)
(Panel b), (iii) y, =1.25+2¢,, &, =[lu,, u, ~iid.N(O,l), and h, = w+as?, + Bh,_; (Panelc). The

null hypothesis is ¢, ~1.1.d. N(0,1) . All test statistics are based on standardized residuals. Number of MC
replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%.
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Table 1.11: Size of the Tests applied to GARCH Residuals under Normal Distribution

T 4Ly 4Ly 4y ha hLs he bty Hg Lo Lo ha1 Lo 43
500 46 39 45 53 58 53 60 65 65 47 41 40 42

1000 5.1 57 69 50 56 52 52 63 65 40 67 51 57
2000 43 46 63 44 44 42 46 48 69 64 32 49 49

T ha Ta By T44 Isy Q72 Q73 Q;‘ Q; J113
500 60 6.6 54 6.1 6.2 68 70 69 6.1 7.0
1000 5.6 56 57 46 49 55 6.5 6.8 6.3 5.9
2000 49 54 46 56 5.1 52 52 58 52 6.0

Notes: Simulated size (%) of ¢, O and J-statistics for the following DGP: yt:\/zet where

h, = 0.1+0.15yt2_1 +0.8%4,_;, and & ~1i.i.d.N(0,]). The null hypothesis is ¢, ~ii.d. N(0,]). All test

statistics are based on standardized residuals. Number of MC replications is 1,000, number of bootstrap
replications is 500, and nominal size is 5%.
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Table 1.12: O-Statistics for GARCH (1,1) under Normal Distribution
K=5 K=10 K=15 K=20 K=25
ok 4.96 8.55 1040  13.58  15.76
ok 2039  31.29 3242 4341  45.99
o¥ 31.51  40.82 4376 4539  47.13
ok 51.54  68.02 70.88  83.26  96.83
o¥ 4458 5835 6214 6433  79.00
ok 47.09 5078 5811 6027  68.73
oX 4195 5374 5676  58.54  59.64
ok 31.05 3225  33.60 3836  46.20
o¥ 18.66  20.84  27.83  32.24  34.19
ok 3210 37.84 4430 5078  58.86
ok 5.01 842 1386 1873  21.68
ob 10.58  19.11 2254 2639  37.38
o8 11,69 1612 1947 2454 2931

Notes: O-statistics for all 13 autocontours applied to the standardized residuals of the GARCH(1,1) model
for daily NYSE returns: y, = u +\/Ze, , hy=o+a(y,4 —,u)2 +ph,_;, and & ~11.d.N(0,]). The null
hypothesis is ¢, ~1.1.d.N(0,1). Covariance matrices are estimated by the parametric bootstrap procedure
described in the text with 500 replications. Bold numbers indicate significance at 5% level.
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Table 1.13: O-Statistics for GARCH (1,1) under Student-t Distribution
K=5 K=10 K=15 K=20 K=25

ok 3.61 4.34 6.23 8.81 11.65
ok 5.51 9.28 1134 1733 2114
o¥ 7.02 1325 1811 2070  22.58
ok 9.78 1679 2133 2344 32,13
o¥ 1734 2751 3167 3434 5142
ok 8.46 1211 20.14 2393 3565
o¥ 1438 1989 2601  30.09  35.00
ok 1047 1197  13.03 1751  22.57
ok 4.15 6.73 1066 1477  18.04
ok 1293 2941  37.82  43.68 5537
ok 5.44 7.16 1162 2033 30.50
ok 6.47 1618 1730 2201 3415
ok 1.71 5.86 8.89 1374 16.58

Notes: O-statistics for all 13 autocontours and five lag values (K € {5,10,15,20,25}) for the standardized
residuals of the following GARCH(1,1) model fitted to daily NYSE returns: y, = u++h(v—2)/ve,

where &, = w+a(y,_ —,u)2 + ph,, ¢, ~ iid. Student-t(v), and v=7. The null hypothesis is &, ~ i.i.d.

Student-t(7). Covariance matrices are estimated by the parametric bootstrap procedure described in the text
with 500 replications. Bold numbers indicate significance at 5% level.
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Table 1.14: O-Statistics for ACD(3,2) under Exponential Distribution

K=5 K=10 K=15 K=20 K=25
OF  15,707.94 18,063.22 18,257.23 19,077.22 19,613.71
0F  8,053.69 8,648.05 9,079.96 9,149.96 9,357.13
Oy 5387.60 5,721.03 5,840.05 598033 6,128.28
Of 282555 2,941.91 2,992.49 3,054.07 3,098.97
O 1,61936 1,646.27 1,697.05 1,73821 1,777.32
O  899.63 92226  943.10 95272  958.68
OF 38422  389.80  398.84 40046  402.91
O 10579 12092 12972 13198  134.26
o5 11.58 1611 2297 2570 3001
Ol 187.85  188.81 19141 19392  197.34
Of 67917 73994 74411 75821  762.26
Of  1,16699 1,223.89 123899 127175 1,287.17
O 190158 1,987.34 212362 2,132.91 2,196.79

Notes: O-statistics for all 13 autocontours and five lag values (K € {5,10,15,20,25}) for the standardized
residuals of the following ACD(3,2) model fitted to Airgas intra-day transaction data: x; =;e; where

W =0+ Zi-:lajxi—j +Z§=1 Bivi-j »e; ~1iid. exp(l). The null hypothesis is ¢; ~i.i.d. exp(l) . Covariance

matrices are estimated by the parametric bootstrap procedure described in the text with 500 replications.
Bold numbers indicate significance at 5% level.
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Figure 1.1 Sample Autocontours of Bivariate Distributions under Independence

Panel a: Standard Normal Panel b: Student-t (v =15)
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Figure 1.2
Panel a: 90, 95, 99% Autocontours under Normal Distribution and Standardized
NYSE Returns
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Figure 1.3: Size of the #-Statistics

Panel b: ¢, ~1.1.d. Student-t(5)

Panel a: ¢, ~1.1.d. N(0,1)

Contours

Contours

~1.1.d. exp(1)

Panel c: ¢,

Contours

1) under three

statistic for all 13 autocontours and the first lag (k

Notes: Simulated size of the t-

alternative DGPs: (i) ¢, ~1.1.d.N(0,]) (i1)) & ~ i.i.d. Student-t(5), (iii) &, ~1i.i.d.exp(l) . Number of MC

,000 and nominal size is 0.05.

replications is 10
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Figure 1.5: Power of the #-Statistics under i.i.d. Student-t DGP

v=10

Contours

Contours

1) under the

Notes: Simulated power of the #-statistic for all 13 autocontours and the first lag (k

—2)/v where u,~ i.i.d. Student-t(v). Number of MC replications is 10,000 and

following DGP: ¢, = u,+/(v

nominal size is 5%.
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Figure 1.6: Power of the ¢-Statistics under GARCH (1,1) DGP

Notes: Simulated power of the r-statistic for all 13 autocontours and the first lag (k=1) under the

following DGP: ¢, = \/Eut where u, ~1id.N(0,]) and A, = a)+aat2_1 + ph,_;. Number of MC
replications is 10,000 and nominal size is 5%.
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Figure 1.7: Power of the ¢-Statistics under AR (1) DGP and
Parameter Uncertainty

Contours

Notes: Simulated power of the #-statistic for all 13 autocontours and the first lag (k =1) under the

following DGP: y, =1.25+2¢, where ¢, = ge, | +u,, and u, ~i.i.d. N(0,l—¢?). The null hypothesis is

& ~11.d.N(0,]). All test statistics are based on standardized residuals. Number of MC replications is
1,000, number of bootstrap replications is 500, and nominal size is 5%.
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Figure 1.8: Power of the #-Statistics under i.i.d. Student-t DGP and
Parameter Uncertainty

Notes: Simulated power of the #-statistic for all 13 autocontours and the first lag (k =1) under the

following DGP: y, =1.25+2¢,4/(v—=2)/v where ¢, ~ 1iid. Student-t(v). The null hypothesis is

g ~11.d.N(0,1). All test statistics are based on standardized residuals. Number of MC replications is
1,000, number of bootstrap replications is 500, and nominal size is 5%.
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Figure 1.9: Power of the ¢-Statistics under GARCH (1,1) DGP and
Parameter Uncertainty

Notes: Simulated power of the #-statistic for all 13 autocontours and the first lag (k =1) under the
following DGP: y, =1.25+2¢ where ¢, = \/Zut, u, ~11.d.N(0,]), h, = w+a£t2_1 + ph,_;, and

w=1-a—-p. The null hypothesis is ¢, ~1.i.d.N(0,]). All test statistics are based on standardized

residuals. Number of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is
5%.
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Figure 1.10
Panel a: ¢-Statistics for GARCH (1,1) Model of NYSE Returns
under Normal Distribution
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Panel b: J-Statistics for GARCH (1,1) Model of NYSE Returns
under Normal Distribution
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Notes: t-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the normal
GARCH(1,1) model fitted to daily NYSE returns (Panel a). J-statistic based on all 13 autocontours up to 25
lags for the residuals of the normal GARCH(1,1) model (Panel b). CV denotes 5% critical value.
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Figure 1.11
Panel a: ¢-statistics for GARCH (1,1) Model of NYSE Returns
under Student-t Distribution
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Notes: #-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the Student-t
GARCH(1,1) model fitted to daily NYSE returns (Panel a). J-statistic based on all 13 autocontours up to 25
lags for the residuals of the Student-t GARCH(1,1) model (Panel b). CV denotes 5% critical value.
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Figure 1.12
Panel a: 90, 95, 99% Autocontours and Standardized NYSE Returns
under Normal distribution under Student-t(7) Distribution
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Figure 1.13
Panel a: ¢-Statistics for ACD (3,2) Model of Airgas Transaction Durations
under Exponential Distribution
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Panel b: J-Statistics for ACD (3,2) Model of Airgas Transaction Durations
under Exponential Distribution
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Notes: t-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the exponential
ACD(3,2) model fitted to Airgas intra-day transaction durations (Panel a). J-statistic based on all 13
autocontours up to 25 lags for the residuals of the exponential ACD(3,2) model (Panel b). CV denotes 5%
critical value.
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Figure 1.14: 90, 95, 99% Autocontours under Exponential Distribution and Standardized
Airgas Durations

Panel a: Standardized Durations

&

69

Panel b: Standardized ACD Residuals

25

20

15 20 25
€11



CHAPTER 11

MULTIVARIATE AUTOCONTOURS FOR SPECIFICATION TESTING

IN MULTIVARIATE GARCH MODELS

1 Introduction

Even though there is an extensive literature on specification tests for univariate time
series models, the development of new tests for multivariate models has been very slow.
As an example, in the ARCH literature we have numerous univariate specifications for
which we routinely scrutinize the standardized residuals for possible neglected
dependence and deviation from the assumed conditional density. However, for
multivariate GARCH models we rarely test for the assumed multivariate density and for
cross-dependence in the residuals. Given the inherent difficulty of estimating multivariate
GARCH models, the issue of dynamic misspecification at the system level -as important
as it may be- seems to be secondary. Though univariate specification tests can be
performed in each equation of the system, these tests are not independent from each
other, and an evaluation of the system will demand adjustments in the size of any joint
test that combines the results of the equation-by-equation univariate tests. Bauwens,
Laurent, and Rombouts (2006) survey the latest developments in multivariate GARCH
models and they also acknowledge the need for further research on multivariate

diagnostic tests. There are some portmanteau statistics for neglected multivariate
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conditional heteroskedasticity as in Ling and Li (1997), Tse and Tsui (1999), and
Duchesne and Lalancette (2003). Some of these tests have unknown asymptotic
distributions when applied to the generalized GARCH residuals. Tse (2002) proposes
another type of misspecification test that is based on regressions of the standardized
residuals on some explanatory variables. In that case, the usual OLS asymptotics do not
apply, but it is possible to construct some statistics that are asymptotically chi-squared
distributed under the null of no dynamic misspecification. None of these tests are
concerned with the specification of the multivariate density. However, the knowledge of
the density functional form is of paramount importance for density forecast evaluation,
which is needed to assess the overall adequacy of the model. Recently, Bai and Chen
(2008) adopted the empirical process based testing approach of Bai (2003), which is
developed in the univariate framework, to multivariate models. They use single-indexed
empirical processes to make computation feasible, but this causes loss of full consistency.
Kalliovirta (2007) also takes an empirical process based approach and proposes several
test statistics for checking dynamic misspecification and density functional form.

We propose a new battery of tests for dynamic specification and density functional
form in multivariate time series models. We focus on the most popular models for which
all the time dependence is confined to the first and second moments of the multivariate
process. Multivariate dynamics in moments further than the second are difficult to find in
the data and, to our knowledge, there are only a few attempts in the literature restricted to
upmost bivariate systems. Our approach is not based on empirical processes, so we do

not require probability integral transformations as opposed to the above mentioned
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studies testing for density specification. This makes dealing with parameter uncertainty
relatively less challenging on theoretical grounds. When parameter estimation is required,
we will adopt a quasi-maximum likelihood procedure as opposed to strict maximum
likelihood, which assumes the knowledge of the true multivariate density. If the true
density were known, it would be possible to construct tests for dynamic misspecification
based on the martingale difference property of the score under the null. However, if the
density function is unknown, a quasi-maximum likelihood estimator is the most desirable
to avoid the inconsistency of the estimator that we would have obtained under a
potentially false density function. The lack of consistency may also jeopardize the
asymptotic distribution of the tests. Our approach is less demanding than any score-type
testing in the sense that once quasi-maximum likelihood estimates are in place, we can
proceed to test different proposals on the functional form of the conditional multivariate
density function.

The proposed tests are based on the concept of “autocontour” introduced in Chapter
I for univariate processes. Our methodology is applicable to a wide range of models
including linear and non-linear VAR specifications with multivariate GARCH

disturbances. The variable of interest is the vector of generalized innovations
g =(&,€9---,€p) I a model y, =,ut(«901)+Ht1/2(902)8t, where y, is a kx1 vector
of variables with conditional mean vector x, and conditional covariance matrix H,.
Under the null hypothesis of correct dynamic specification the vector &, must be i.i.d.

with a certain parametric multivariate probability density function f(.). Thus, if we
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consider the joint distribution of two vectors ¢, and ¢,_;, then under the null we have
f(ere,.)=f(&,)f(e,_;). The basic idea of the proposed tests is to calculate the

percentage of observations contained within the probability autocontour planes
corresponding to the assumed multivariate density of the vector of independent

innovations, 1.e. f(g)f(g_;), and to statistically compare it to the population

percentage. We develop a battery of #-tests based on a single autocontour and also more
powerful chi-squared tests based on multiple autocontours, which have standard
asymptotic distributions. Without parameter uncertainty the test statistics are all
distribution free, but under parameter uncertainty there are nuisance parameters affecting
the asymptotic distributions. We show that a simple bootstrap procedure overcomes this
problem and yields the correct size even for moderate sample sizes. We also investigate
the power properties of the test statistics in finite samples.

Since the null is a joint hypothesis, the rejection of the null begs the question on
what is at fault. Thus, it is desirable to separate i.i.d-ness from density function. In the
spirit of goodness-of-fit tests, we also propose an additional test that focuses on the
multivariate density functional form of the vector of innovations. Following a similar
approach, we construct the probability contours corresponding to the hypothesized
multivariate density, f(g,), and compare the sample percentage of observations falling
within the contour to the population percentage. The goodness-of-fit tests are also
constructed as z-statistics and chi-squared statistics with standard distributions.

The organization of the chapter is as follows. In Section 2, we describe the battery

of tests and the construction of the multivariate contours and autocontours. In Section 3,
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we offer some Monte Carlo simulation to assess the size and power of the tests in finite
samples. In Section 4, we apply the tests to the generalized residuals of GARCH models
with hypothesized multivariate Normal and multivariate Student-t innovations fitted to

excess returns on five size portfolios. In Section 5, we conclude.

2 Testing Methodology

2.1 Test Statistics

Let y, =()y,,.-., V) and suppose that y, evolves according to the following process

v =1 0o+ Hy'? O)er  1=1..T, (1)
where 1,(.) and H tl/ 2(.) are both measurable with respect to time ¢#—1 sigma field,
3,1, H,(.) is positive definite, and {¢;} is an 1.i.d. vector process with zero mean and
identity covariance matrix. The conditional mean vector, x,(.), and the conditional
covariance matrix, FH,(.), are fully parameterized by the parameter vector
0y =(6)1,6,)", which for now we assume to be known, but later on we will relax this
assumption to account for parameter uncertainty.

If all the dependence is contained in the first and second conditional moments of
the process y,, then the null hypothesis of interest to test for model misspecification is
H :¢&, 1s 1.1.d. with density f(.).
The alternative hypothesis is the negation of the null. Though we wish to capture all the

dynamic dependence of y, through the modeling of the conditional mean and conditional
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covariance matrix, there may be another degree of dependence that is built in the
assumed multivariate density, f(.). In fact, once we move beyond the assumption of
multivariate normality, for instance when we assume a multivariate Student-t distribution,
the components of the vector ¢, are dependent among themselves and this information is
only contained within the functional form of the density. This is why, among other
reasons, it is of interest to incorporate the assumed density function in the null
hypothesis.

Let us consider the joint distribution of two kx1 vectors ¢ and ¢,_,
[=1,...,L <. Define a 2k x1 vector #, =(¢;,¢;_;)" and let w(.) denote the associated

density function. Under the null hypothesis of i.i.d. and correct probability density

function, we can write w(#,)= f(¢,)f(g,_;). Then, under the null, we define the a-
autocontour, C; ,, as the set of vectors (g;,¢;_;) that results from slicing the multivariate

density, y/(.), at a certain value to guarantee that the set contains a% of observations,

that is,
g g
Chac = {801 S S [ [ )y s, < . @
1 2k

where the limits of integration are determined by the density functional form so that the
shape of the probability contours is preserved under integration, e.g. when the assumed
density is normal, then the autocontours are 2k-spheres (a circle when k=1). We

construct an indicator process defined as

1if n,¢C
[t[,a :{ Ny Lo ' 3)

0 otherwise

75



The process {I tl “} forms the building block of the proposed test statistics. Let
P, =1—a . Since the indicator is a Bernoulli random variable, its mean and variance are
given by E[Itl’“]=p and Var(]tl’a)=pa(1—pa). Although {¢,} is an i.i.d. process,

o

{I[l’a} exhibits some linear dependence because Itl’“ and [ tl_al share common

information contained in ¢,_;. Hence, the autocovariance function of {/ tl “*1 is given by

(4)

Vh

o _|PU"=1,105 =1) = p; if h=1
0 otherwise

Proposition 1 Define p. =(T —l)_IZtT:_llltl’“. Under the null hypothesis,

/ [
Z‘l,oz = T_l(pa _pa)_>d N(O:O-l,a):Where Ulz,a :pa(l_pa)+2yl(x'

Proof: See the Appendences of Chapter I for all mathematical proofs.

Now let us consider a finite number of contours, (ai,...,a,), jointly. Let
pa=(pal,...,pan )" where Po, =10, and define ﬁii :(T—l)_lth:_llltl’“" for

i=1,...,n. We then collect all the [foi ’sina nx1 vector, ]3(11 =(P1s---sDp) -
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Proposition 2 Under the null hypothesis, v7 —/ ([)fx —Py) 4 N(0,E), where the

. - Lo lLa; .
elements of E are ¢ = mln(pai s Do, ) ~PgPa; t Cov(ltl’a’ ,IZ_OIL’) + Cov({, % ,Itl’_al’ ).

Then, it directly follows that J! = (T =1)(p., = p, ) E (DL - p,) =>4 x> ().

A complementary test to those described above can be constructed in the spirit of

goodness-of-fit. Suppose that we consider only the vector ¢, and we wish to test in the
direction of density functional form. We construct the probability contour sets C,

corresponding to the probability density function that is assumed under the null

hypothesis. The set is given by
g (g
C, = {S(S[) c ﬁ{k‘jhll...jhkk f(g,)dey, ... dey, < a}. Q)

Then, as before, we construct an indicator process as follows

(6)

* 10 otherwise

e {1 if & ¢C,

for which the mean and variance are E[/']=1-a and Var(I;') = a(l—a), respectively.
The main difference between the sets C; , and C, is that the latter does not explicitly

consider the time-independence assumed under the null and, therefore, the following tests
based on C, will be less powerful against independence. There is also a difference in the
properties of the indicator process. Now, the indicator is also an i.i.d. process, and the

analogous tests to those of Propositions 1 and 2 will have a simpler asymptotic

distribution.
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Let p, =1—a and define an estimator of p, as p, =T _lthzl I/ . Under the null

hypothesis the distribution of the analogue test statistic to that of Proposition 1 is

_ ﬁ(ﬁa _pa)

N(0,1). 7
pa(l_pa) 7 ( ) ()

If, as in Proposition 2, now we jointly consider a finite number of contours and define the

vectors  p, =(Pg,s->Pq,)  a0d P, =(Pg, s-»Dy, ), where p, =l-o0; and
. =TS 1% JT(p =) where the el f 2 simplif
Do, =T thllt . Then vT'(p, — p,) =4 N(0,Z) where the elements of = simplify

to & =min(p, , paj)— Pa,Pa, and, it follows that

Ty =T(Po = Pa)E" (Ba = Pa) =a 1 ().

Note that to make these tests operational we replace the covariance terms by their
sample counterparts. Furthermore, the asympotic normality results established above still
hold under parameter uncertainty as shown in Chapter I. However, one needs to deal with
nuisance parameters in the asymptotic covariance matrices to make the statistics
operational. We use a parametric bootstrap procedure in Chapter I, which imposes all
restrictions of the null hypothesis to estimate asymptotic covariance matrices under
parameter uncertainty. Specifically, after the model is estimated, bootstrap samples are
generated by using the estimated model as the data generating process where innovation
vectors are drawn from the hypothesized parametric distribution. The Monte-Carlo
simulations indicate that this approach provides satisfactory results. Hence, in this

chapter we take the same approach.
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2.2 Multivariate Contours and Autocontours
2.2.1 Multivariate Normal Distribution
In this case the density function is f(g,) = (271')_k/2 exp(—0.5¢/¢,) . Let fa denote the

value of the density such that the corresponding probability contour contains a% of the

observations. Then the equation describing this contour is
o2, 2 2
Qo = €18 =& TE T+ &),

where g, =—-2In( fa X (27r)k /2 ). Hence, the C, contour set is defined as follows

C, = {S(et) - iRkUil. . .J'_g;‘k (2m) /2 exp(=0.5¢)e, )dey, ...dey, < a} ,

where g, =./q, ., & =./9; —Z;_:llejz., for i=2,...,k,and 1<a. We need to determine

the mapping ¢, in order to construct the indicator process. Let x, =¢/e,, then
xt~)(2(k) and we have ¢, =inf{g:F\ (¢)=>a}, where F, is the cumulative

distribution function of a chi-squared random variable with k& degrees of freedom. As a

result, the indicator series is obtained as follows

t =

Ja 1if e >q,
0 otherwise

To construct the autocontour C; ,, we consider the joint distribution of ¢, and
g_;. Let n,=(e,e,_;), then the density of interest is given by

w(n,) = (27:)"‘ exp(—0.57,7,) . Hence, the autocontour equation is given by

ot 2 2
d, =mnm, =nj L YT
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where d, =-2In(y, ><(27r)k). Following the same arguments as above, the

corresponding indicator process is

© |0 otherwise

Jla {1 it nin, >d,

where d, =inf{d: F, (d)2a}, x, =nn,, and F, is the cumulative distribution function

of a chi-squared random variable with 2k degrees of freedom.
2.2.2 Multivariate Student-t Distribution

The multivariate density function is
fe)) =Gkl +ele, I(v—2)]F2

where G(k,v) = F[(v+k)/2]/{[7r(v—2)]0'5k I'(v/2)}. Then the equation for the a-
probability contour is

9a :1+8;8t /(V—2),

where g, =[ ]_‘a / G(k,v)](k+v)/ 2. As aresult, the C, contour set is defined as

C, = {S(e,) c SRkU'il...E;‘k G(k,v)(1+¢ee, [(v—2))dey, ...dey, < a} ,

where g, =+/(g; ~D(v=2), gi=\/(q/1—1)(v—2)—z;__118j2-t for i=2,....k, and A<a.

Now let x, =1+¢/¢,/(v—2), then x, =1+ (k/v)w, where w, has an F-distribution with
(k,v) degrees of freedom. Consequently, we have ¢, =inf{qg: F,, (vig-1D/k]=za}.

Then the indicator series is defined as
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© 10 otherwise

Ja {1 if 1+¢e,/(v-2)>q,

To construct the autocontour C; , , we consider the joint distribution of ¢, and ¢,_,
under the null hypothesis, which is
Werser) = Gl (L e, 10— 2N+ )y, Jv—2)) 412,
Then, the equation for the a-probability autocontour is given by
d, =1+ (ere; +&,_6,1)(v=2)+(g;8,)e;_18,_1) (v — 2)2 X

Let x, =1+(cle, +¢&,_ 16, ) /(v=2)+(ele,)elye, ) /(v—2)%, then we have
x, =1+ (k/v) x[(wy, +wy,)+(k/v)(wy,wy,)] where w;, and w,, are independent random
variables with an F-distribution with (k,v) degrees of freedom. Similar to the previous
case, we have d, =inf{d: Fy (d)=a}, but we do not have readily available results for
the quantiles of x, as before. A plausible solution is using Monte-Carlo simulation to
approximate the quantiles of interest as we already know that x, is a specific function of

two independent F-distributed random variables.

As an illustration, we provide sample contour and autocontour plots under normal
and Student-t (with v =5) distributions in Figure-2.1. Due to the graphical constraints
imposed by high dimensionality, we consider k=2 and k=1 for C, and C;,

respectively. Note that while C, and C; , are of identical shape under normality, since

the product of two independent normal densities yields a bivariate normal density, this is

not the case under the Student-t distribution.
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3 Monte-Carlo Simulations

We investigate the size and power properties of the proposed tests in finite samples by
Monte Carlo simulations for two cases: when the parameters of the model are known and
when they are unknown and need to be estimated.

3.1 Size Simulations

For the size experiments we consider two alternative distributions for the innovation

process: a multivariate Normal, ¢, ~1.1.d.N (0,1, ), and a multivariate Student-t with 5

degrees of freedom, &, ~1.1.d.t(0,I;,5). Under parameter uncertainty, we consider a

1/2

simple multivariate location-scale model: y, = u+H "¢, where we set u=0 and

H =1, . We consider both distributions under parameter uncertainty and apply the tests

to the estimated standardized residual vector, &, = HY? (y, — ft) , where we obtain H 12

by using the Cholesky decomposition'. The asymptotic variance of the tests is obtained
by the simple parametric bootstrap procedure outlined above (see Section 2.1). The
number of Monte Carlo replications is equal to 1,000, and the number of bootstrap
replications is set to 500. We consider 13 autocontours (# =13) with coverage levels (%):

1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, and 99, spanning the entire density function®.

! Alternative decompositions can be used to calculate the square-root matrix. We conjecture that the choice
of the decomposition technique is not critical for application of our tests.

* Our choice of the contour coverage levels is motivated by the need of covering the entire range of the
density, from the tails to the very center as we do not have a theoretical result indicating the optimal choice
of the number of contours to guide our practice. The flexibility of our approach permits considering
different types of coverage levels depending on the purpose of application, e.g. concentrating on tails for
risk models. Note also that the Monte-Carlo results presented below provide guidance as to how far one can
go in the tails and the center of the denisty without losing precision in finite samples. Additional Monte-
Carlo simulations, not reported here to save space, also indicate that the size and power results are robust to
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We start with a sample size of 250 and consider increments of 250 up to 2,000

observations. In all experiments, the nominal size is 5%.

In Tables 2.1a and 2.1b we present the simulated size results for the J ,11 -statistics.
We consider a system of 2 equations (k£ =2) and a system of 5 equations (k =5). For a
small sample of 250 observations, the .J! -statistics are oversized for both densities and

both systems. However, under parameter uncertainty, the bootstrap procedure seems to
correct to some extent the oversize behavior. For samples of 1000 and more observations,
the simulated size is within an acceptable range of values. There are no major differences
between the results for the small versus the large systems of equations indicating that the

dimensionality of the system is not an issue for the implementation of these tests.
In Tables 2.2a and 2.2b we show the simulated size for the J, -statistics, which

should be understood primarily as goodness-of-fit tests as they do not explicitly take into
account the independence of the innovations over time. The sizes reported in Table 2.1a
are very good, though those in Table 2.1b tend to be slightly larger than 5% mainly for
small samples. However, when we consider the tests with individual contours (see Table
2.3), the size distortion tends to disappear.

For the #-tests, which are based on individual contours, the simulated sizes are very
good. In Table 2.3, we report these results for the case of parameter uncertainty. The

major size distortions occur for small samples at the extreme contour #; (99% coverage),

the number of contours as long as the range considered is identical, i.e. a finer grid does not change the
results.
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but this is not very surprising since we do not expect enough variation in the indicator
series for small samples.

3.2 Power simulations

We investigate the power of the tests by generating data from a system with two
equations that follows three different stochastic processes. We maintain the null
hypothesis as y, =,Ll+H1/2<€‘t, where ¢, ~1.1.d. N(0,7;), and consider the following
DGP’s:

DGP 1: y, :/J+H1/281, where ¢, ~1.1.d.t(0,1,,5), ©#=0, and H =1, . In this case, we
maintain the independence hypothesis and analyze departures from the hypothesized

density function by generating i.i.d. observations from a multivariate Student-t

distribution with 5 degrees of freedom.
DGP 2: y, = Ay, | +H"?¢,, where ¢, ~i.i.d.N(0,1,), a;; =0.7, a;, =0.1, ay, = 0.03,
a,, =0.85,and H =1, . In this case, we maintain the same density function as that of the

null hypothesis and analyze departures from the independence assumption by considering

a linear VAR(1).
DGP 3: y,=H!'%, ¢ ~iid.N(0,I,), with H,=C+ Ay, v, A+G'H, |G and
parameter values 4=0.1""?x1,, G=0.85"2x1,,and C=V — A'VA—G'VG where V is

the unconditional covariance matrix with v;; =v,, =1 and v, =0.5. In this case, we

analyze departures from both independence and density functional form by generating

data from a system with multivariate conditional heteroscedasticity.
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In Table 2.4 we report the power of the J ,11 -statistic. The test is the most powerful

to detect departures from density functional form (DGP 1) as the rejection rates are
almost 100% even in small samples. For departures from independence, the test has
better power to detect dependence in the conditional mean (DGP 2) than in the
conditional variance (DGP 3). As expected, in the case of the VAR(1) model (DGP 2),
the power decreases as / becomes larger indicating first order linear dependence. The
power is also very good (69%) for small samples of 250 observations. In the case of the
GARCH model (DGP 3), the rejection rate reaches 60% for sample sizes of 500

observations and above.
As expected, in Table 2.5 we observe that the goodness-of-fit test, jn, has the

largest power for DGP 1 and it is not very powerful for DGP 2. It has reasonable power
against DGP 3 mainly for samples of 1000 observations and above.

We find a similar message in Table 2.6 when we analyze the power of the #-
statistics. The tests are the most powerful to detect DGP 1, the least powerful to detect
DGP 2, and acceptable power against DGP 3 for samples of 1000 observations and

above. There is a substantial drop in power for the #; test (90% contour) for the cases of

DGP 1 and DGP 3. This behavior is similar to that encountered in the univariate test
introduced in Chapter 1. This is a result due to the specific density under the null. In the
case of DGP 1, for some contour coverage levels the normal density and the Student-t are
very similar. Hence it is very difficult for any test to discriminate the null from the

alternative with respect to the coverage level of those contour planes. A similar argument
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applies to DGP 3 as well, since the GARCH structure in the conditional covariance

matrix is associated with a non-normal unconditional density.

4 Empirical Applications

In this section we apply the proposed testing methodology to the generalized residuals of
multivariate GARCH models fitted to U.S. stock return data. Our data set consists of
daily excess returns on five size portfolios, i.e. portfolios sorted with respect to market
capitalization in an increasing order.” The sample period runs from January 2, 1996 to
December 29, 2006, providing a total of 2770 observations. A plot of the data is provided
in Figure 2.2.

Since we are working with daily data we assume a constant conditional mean
vector. In terms of the multivariate GARCH specifications, we consider two popular
alternatives: the BEKK model of Engle and Kroner (1995) and the DCC model of Engle

(2002). Define u, = y, —u where u is the constant conditional mean vector. Then the
BEKK (1,1, K) specification for the conditional covariance matrix, H, = E[u,u; | 3,_;],
is given by

H, = C'C+zf:1A}utu;_lA ; +zf:1G;.H,_lG ;- (8)
In our applications we set K =1 and use the scalar version of the model due to

parsimony considerations where 4 =al,, A= pl;, and a and f are scalars. We also use

3 Data is obtained from Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french.
We are grateful to him for making this data publicly available.
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variance targeting to facilitate estimation, i.c. we set C'C=V — A'VA-G'VG where
V = Elu,u;], e.g. Ding and Engle (2001).
In the DCC specification, conditional variances and conditional correlations are

modeled separately. Specifically, consider the following decomposition of the conditional

covariance matrix: H, = D,R,D, where D, = diag{hlll/j,...,h}di,zt}, and each element of

D, is modeled as an individual GARCH process. In our applications, we consider the
standard GARCH (1,1) process:

2 .
hij, =w; +oui, + Bk, J=L...k.

Now define z, = D, 'u, , then R, = diag{Q,} ' O,diag{Q,}"" where

0, =(~a-p)0 +ouu;_y+ B0, , 9)
and Q = E[z,z, ,].

Under both BEKK and DCC specifications, we consider two alternative
distributional assumptions that are most commonly used in empirical applications
involving multivariate GARCH models: multivariate Normal and multivariate Student-t
distributions. Under multivariate normality, the sample log-likelihood function, up to a
constant, is given by

L (60)= —% > In[det(H,)] - %Z; ulH,u, . (10)

In the case of the DCC model, a two-step estimation procedure is applicable under
normality as one can write the total likelihood as the sum of two parts where the former

depends on the individual GARCH parameters and the latter on the correlation
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parameters. Under this estimation strategy, consistency is still guaranteed to hold. For
further details on two-step estimation in the DCC model, the interested reader is referred
to Engle (2002), and Engle and Sheppard (2001). Under the assumption of multivariate
Student-t distribution, we do not need to estimate the model with the corresponding
likelihood since the estimates obtained under normality are consistent due to quasi
maximum likelihood interpretation. Therefore, we obtain the standardized residual
vectors under normality and then simply test the Student-t assumption on these residuals.’
One remaining issue in the case of Student-t distribution is the choice of the degrees of
freedom. We follow Pesaran and Zaffaroni (2008) and obtain estimates of the degrees of
freedom parameters for all series separately and then consider an average of the
individual estimates for the distributional specification in the multivariate model.

The results are summarized in Figures 2.3 through 2.6 and Table 2.7. From the
figures we observe that under both GARCH specifications, the J ,11 -statistics are highly
statistically significant when multivariate normality is the maintained distributional
assumption. The J ,i -Statistics of the BEKK model are larger than those obtained under

the DCC specification. Furthermore, there is an obvious pattern in the behavior of the
statistics as a function of the lag order, especially under the BEKK specification. This
indicates that the rejection is partly due to remaining dependence in the model residuals.

When we switch to the multivariate Student-t distribution with 11 degrees of freedom,’

* Note that in the specification of the multivariate Student-t distribution (see Section 2), the covariance
matrix is already scaled to be an identity matrix, thus no re-scaling of residuals is necessary to implement
the test, e.g. Harvey, Ruiz and Santana (1992).

> This value is obtained by averaging individual degrees of freedom estimates obtained from individual
GARCH models under Student-t density.

88



the J,ll -statistics go down substantially under both multivariate GARCH specifications.
Hence, we can argue that the distributional assumption plays a greater role in the
rejection of both models under normality. The J ,l, -statistics are barely significant at 5%
level for only a few lag values under the DCC specification coupled with multivariate
Student-t distribution. However, under the BEKK specification, J ,l, -statistics are
significant at early lags, even at 1% level. Table 2.7 reports individual #-statistics and the

~

J, -statistics. Both types of test statistics indicate that normality is very strongly rejected

under both GARCH specifications. Similar to the case of J,l1 -statistics, the results

dramatically change when the distributional assumption is altered to multivariate Student-
t. The DCC model produces better results with respect to both types of test statistics, but
especially chi-squared test strongly supports the DCC specification compared to the
BEKK model. Combining the information from all test statistics we can conclude that
multivariate normality is a bad assumption to make regardless of the multivariate
GARCH specification. Furthermore, the DCC model with multivariate Student-t
distribution does a good job in terms of capturing dependence and producing a reasonable

fit with respect to density functional form.

5 Conclusion

Motivated by the relative scarcity of tests for dynamic specification and density
functional form in multivariate time series models, we proposed a new battery of tests

based on the concept of “autocontour” introduced Chapter I for univariate processes. We
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developed #-tests based on a single autocontour and also more powerful chi-squared tests
based on multiple autocontours, which have standard asymptotic distributions. We also
developed a second type of chi-squared test statistic, which is informative as a goodness-
of-fit test when combined with the first type of chi-squared test. Monte-Carlo simulations
indicate that the tests have good size and power against dynamic misspecification and
deviations from the hypothesized density. We applied our methodology to multivariate
GARCH models and showed that the DCC specification of Engle (2002) coupled with a
multivariate Student-t distribution provides a fine model for multivariate time

dependence in a relative large system of stock returns.
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Tables and Figures

Table 2.1a: Size of the J,l, -statistics

1 2 3 4 5
T J13 J13 J13 J13 J13

1 2 3 4 5
J13 J13 J13 J13 J13

Panel a: Normal (k=2)

Panel b: Student-t (k =2)

250 113 11.3 11.6 88 11.8 10.5 11.0 10.5 123 94
500 65 6.0 58 59 8.0 75 58 59 7.0 6.2
1000 6.8 5.0 62 53 49 72 52 51 54 6.0
2000 6.4 5.1 57 4.1 4.8 72 58 55 64 64

Panel a: Normal (k=5) Panel b: Student-t (kK =5)
250 12.7 11.8 11.5 14.0 129 10.4 11.7 123 10.3 11.6
500 92 84 69 7.6 83 73 66 73 79 8.1
1000 63 7.1 55 6.0 64 59 48 66 57 78
2000 53 5.6 53 34 6.5 69 48 57 55 54

Notes: Simulated size (%) of the J ,11 -statistics under multivariate standard normal distribution

(& ~1i.d.N(0,7,)) and multivariate student-t distribution (&, ~i.i.d.t(0,1;,5)). Number of MC
replications is 1,000 and nominal size is 5%.

Table 2.1b: Size of the J ,l, -statistics under Parameter Uncertainty

) > 3
T Jis Jiz Jis

| 2 3 4 5
Jis Jiz Iz Jiz I3

Panel a: Normal (k=2)

Panel b: Student-t (k =2)

250 81 6.1 73
500 7.5 59 58
1000 81 5.8 8.0
2000 5.7 54 7.7

68 64 78 65 6.0
75 6.7 83 8.0 8.1
85 69 88 83 76
62 76 76 64 7.0

Panel a: Normal (k =5)

Panel b: Student-t (kK =5)

250 105 93 7.7
500 7.7 6.9 6.3
1000 59 6.1 7.1
2000 8.0 8.0 7.4

Jis Jh
7.5 69
73 74
73 6.6
64 4.8
9.2 8.1
69 7.6
55 55
6.8 7.1

7.1 73 63 72 63
6.8 55 60 69 64
64 57 68 75 6.6
70 65 73 63 79

Notes: Simulated size (%) of the J ,1, -statistics when parameter estimation is involved. The model is

v, =u+H 12 g, and ¢, is either multivariate standard normal (&, ~1.i.d. N(0,,) ) or multivariate student-t

(&, ~1.1.d.t(0,1,,5)) distributed. Number of MC replications is 1,000, number of bootstrap replications is

500, and nominal size is 5%.

92



Table 2.2a: Size of the J , -statistics (n = 13)

Normal Student-t
T k=2 k=5 k=2 k=5
250 5.7 6.3 4.3 6.6
500 4.9 53 3.1 5.1
1000 5.7 5.7 5.6 53

2000 5.6 6.2 4.9 5.6

Notes: Simulated size (%) of the J, -statistics under multivariate standard normal distribution

(g ~1ii.d.N(0,7,)) and multivariate student-t distribution (&, ~i.i.d.t(0,1,,5)). Number of MC
replications is 1,000 and nominal size is 5%.

Table 2.2b: Size of the J , -statistics (n = 13) under Parameter Uncertainty

Normal Student-t
T k=2 k=5 k=2 k=5
250 6.9 9.1 7.3 6.8
500 7.0 6.1 6.8 6.7
1000 6.7 5.5 6.7 5.6
2000 6.4 7.4 6.8 5.7

Notes: Simulated size (%) of the J , -statistics when parameter estimation is involved. The model is

v, =u+H v 23, and ¢, is either multivariate standard normal (&, ~1.1.d. N(0,1;) ) or multivariate student-t
(& ~11.d.t(0,1,,5)) distributed. Number of MC replications is 1,000, number of bootstrap replications is
500, and nominal size is 5%.
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Table 2.3: Size of the ¢-statistics under Parameter Uncertainty

T t] t2 t3 t4 tS t(v t7 t8 t9 tl 0 tl 1 t] 2 tl 3
Panel a: Normal (k=2)
250 50 46 52 51 65 67 57 49 52 46 60 48 2.0
500 43 42 53 54 41 46 45 51 53 52 51 47 64
1000 4.7 42 52 58 54 55 52 57 57 46 59 76 3.7
2000 54 39 51 40 50 53 53 62 48 59 43 64 49
Panel b: Normal (k£ =5)
250 45 62 53 50 45 52 53 58 55 51 6.1 67 2.1
500 41 48 58 48 60 56 53 64 65 43 63 60 63
1000 3.8° 53 57 53 49 52 38 33 46 53 60 47 39
2000 45 53 50 50 46 41 54 60 46 55 55 44 6.5
Panel c: Student-t (k =2)
250 45 51 53 49 49 6.0 48 46 45 54 57 43 87
500 45 6.1 59 48 45 42 49 53 42 53 6.1 59 49
1000 43 59 64 58 57 55 66 64 59 58 55 60 63
2000 5.7 5.0 52 54 55 47 54 59 55 50 49 52 48
Panel d: Student-t (k =5)
250 45 55 48 46 58 60 7.6 6.7 70 66 58 41 84
500 46 54 64 49 49 66 58 7.1 77 65 54 50 509
1000 3.4 42 49 55 47 62 58 53 52 60 52 47 3.7
2000 5.1 56 53 52 52 50 53 44 53 6.1 50 5.1 38

Notes: Simulated size (%) of the f-statistics when parameter estimation is involved. The model is
yi=u+H v zgt and ¢, is either multivariate standard normal (¢, ~1.i.d.N(0,/;) ) or multivariate student-t
(&, ~1.1.d.t(0,1,,5)) distributed. Number of MC replications is 1,000, number of bootstrap replications is
500, and nominal size is 5%.
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Table 2.4: Power of the J ’11 -statistics under Parameter Uncertainty

ToJhy Jh o Jh o Jh i
Panel a: DGP 1
250 98.6 982 98.6 97.8 98.3
500 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0
2000 100.0 100.0 100.0 100.0 100.0
Panel b: DGP 2
250 689 402 26.6 19.3 16.5
500 93.6 60.0 38.1 279 204
1000 999 84.8 580 392 289
2000 100.0 994 83.7 59.8 40.6
Panel c: DGP 3
250 355 360 329 319 319
500 628 61.6 605 614 603
1000 90.5 88.8 88.1 86.9 86.7
2000 994 99.6 99.7 98.9 99.2

Table 2.5: Power of the J ,, -statistics (n = 13) under Parameter Uncertainty

T DGP1 DGP2 DGP3

250 99.1 12.4 19.7
500 100.0 12.1 44.5
1000 100.0 12.9 70.2
2000 100.0 14.2 94.7

Notes: Simulated power (%) of the J ,11 and J, , Statistics when parameter estimation is involved. Number

of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. See the text
for a detailed description of the alternative DGPs.
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Table 2.6: Power of the t-statistics under Parameter Uncertainty

T tl t2 t3 t4 tS t(v t7 t8 t9 tl 0 tl 1 tl 2 tl 3
Panel a: DGP 1
250 23.1 553 76.6 91.8 96.1 97.7 98.0 96.6 899 59.6 8.5 337 852
500 32.3 80.6 95.3 99.5 100.0 100.0 100.0 100.0 99.4 85.6 8.6 57.8 98.5
1000 49.7 97.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 98.9 14.0 78.7 100.0
2000 75.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 16.2 94.9 100.0
Panel b: DGP 2
250 33 47 84 112 11.1 124 134 11.0 73 6.7 9.7 11.6 3.5
500 36 56 7.6 115 128 115 11.8 11.0 89 7.0 72 109 13.1
1000 5.1 64 84 112 135 140 11.7 119 96 7.1 79 119 132
2000 44 6.7 92 108 13.3 153 146 11.6 95 87 87 123 14.0
Panel ¢: DGP 3
250 5.6 72 107 128 153 17.6 185 187 146 83 63 9.0 17.0
500 7.2 119 17.7 255 334 383 415 41.1 32.6 156 53 20.0 48.0
1000 8.1 20.5 314 46.3 58.6 643 68.7 67.1 59.1 32.1 8.6 348 70.4
2000 13.5 353 56.8 77.7 86.7 91.5 928 91.8 854 547 9.5 60.0 93.5

Notes: Simulated power (%) of the #-statistics when parameter estimation is involved. Number of MC
replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. See the text for a
detailed description of the alternative DGPs.

96



Table 2.7: Individual # and 71 3 -statistics for Estimated GARCH Models

BEKK DCC BEKK DCC
Normal Normal Student-t Student-t
4 -1.85 -2.17 2.78 2.30
ty -8.52 -10.18 -0.31 -0.38
3 -9.97 -12.26 1.00 -0.64
Iy -9.37 -11.22 0.84 -0.10
ts -10.34 -11.81 2.47 0.18
te -11.54 -10.95 1.13 0.95
ty -9.28 -10.03 0.09 0.50
13 -6.85 -7.19 0.25 0.59
ty -2.74 -5.70 0.92 -0.32
Ho 0.24 -1.52 0.66 -0.89
h 5.39 2.17 0.08 -3.51
) 8.23 5.58 1.00 -1.30
13 12.18 12.50 1.26 0.74
j13 351.47 388.54 30.07 24.35

97



Figure 2.1: Contour and Autocontour Plots under Normal and Student-t Distributions

Panel a: C,, under bivariate Normal and Student-t Distributions a € {0.5,0.7,0.9,0.99}
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Panel b: C la under bivariate Normal and Student-t Distributions o € {0.5,0.7,0.9,0.99}
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Figure 2.2: Daily Excess Returns on Five Size Portfolios (1/2/996-12/29/2006)
(From the smallest quintile portfolio to the largest quintile portfolio)
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Figure 2.3: J 11 3 -statistics of BEKK Model under Multivariate Normal Distribution
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Figure 2.5: J, 11 3 -statistics of BEKK Model under Multivariate Student-t Distribution
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Figure 2.6: Jll 3 -statistics of DCC Model under Multivariate Student-t Distribution
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CHAPTER 111
TESTING AND MODELING THRESHOLD ASYMMETRIES IN

MULTIVARIATE DISTRIBUTIONS OF U.S. EQUITY RETURNS

1 Introduction

Modeling multivariate distributions of asset returns has crucial applications in asset
pricing, portfolio allocation, and risk management. Extensive evidence in favor of various
forms of asymmetries in stock return distributions has been documented in different
contexts. It is well known that a broadly defined stock index has different expected return
and volatility characteristics in bull versus bear markets, e.g. Maheu and McCurdy
(2000). More recent empirical evidence shows that dependence between stocks also
exhibit similar asymmetries. Longin and Solnik (2001) document significant asymmetric
tail dependence between the U.S. stock market and international markets by using
extreme value theory. Ang and Chen (2002) compare correlation asymmetry in the data
with the pattern implied by a statistical model and find that U.S. equity portfolios have
higher correlations with the market when returns are negative, and especially large in
absolute value. Correlation asymmetries tend to be strong for small stocks, value stocks
and past loser stocks. Hong et al. (2007) propose a nonparametric kernel based method to
test for potential correlation and beta asymmetries in the data. According to their

findings, correlations of small stocks with the market portfolio exhibit significant
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asymmetries, but symmetric correlations cannot be rejected for book-to market and
momentum portfolios. They also find a strong association between correlation and beta
asymmetry.

The aforementioned asymmetries have important implications for financial
decisions, so a realistic multivariate model of stock returns should account for them. Ang
and Chen (2002) argue that a bivariate Markov-switching model performs well in terms
of matching the magnitudes of asymmetric correlations and also modeling mean and
volatility asymmetries." On the other hand, Hong et al. (2007) use a multivariate mixture
copula model to capture asymmetric dependence. Their in-sample analysis indicates that
investors can obtain substantial utility gains by incorporating asymmetric dependence in
their portfolio decisions. Patton (2004) adopts a copula approach to investigate the out-
of-sample importance of asymmetric dependence in equity returns for portfolio decisions,
using data on large and small cap stocks. He finds that modeling asymmetric dependence
can be beneficial for unconstrained investors.

In this chapter we use a multivariate threshold approach to test and model
asymmetries in expected returns, volatilities, correlations, and betas. The threshold
approach offers a unified framework in which one can test for general regime switching
dynamics with respect to observable state variables, construct a model that can
incorporate the nonlinearities, and statistically assess significance of specific types of
asymmetries in the data. We use monthly data on equity portfolios sorted on market

capitalization, ratio of book value to market value, and industry classification.

! Perez-Quiros and Timmermann (2000), Tu (2007) and Guidolin and Timmermann (2008) also adopt the
Markov-Switching approach to analyze various asymmetric features of equity return data.
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A natural starting point is to test for the presence of threshold effects, which also
guides us in terms of choosing the variable driving the regimes. We construct threshold
variables based on the three stock market factors of Fama and French (1993) (market
excess return, size premium, and value premium), monthly realized volatility of the
market portfolio, term spread, growth in industrial production, and changes in the
unemployment rate. We consider this comprehensive set of alternatives as we aim to
capture regime changes with respect to systematic risk factors driving stock returns,
which are also observable. Test results obtained in the arranged regression framework of
Tsay (1998) indicate strong threshold effects for all three portfolio groups. The most
evident rejections of linearity in favor of threshold models are obtained under the Fama-
French factors, term spread, and growth in industrial production.

For model specification we refine the alternatives implied by test results with
respect to Schwarz information criterion and also consider the behavior of the model sum
of squares as a function of the threshold. This leads us to settle on two regime threshold
models resembling the familiar bull versus bear taxonomy in the stock market. We find
that market excess return is the preferred threshold variable for the size portfolios while
value premium is selected for the book-to-market group. Both market excess return and
term spread are suitable threshold variables for the industry portfolios. To make results
comparable across the portfolio groups, we consider the model with market excess return
as the threshold variable for the book-to-market group as well. Estimation results show
that the model using market excess return provides a good fit for all three portfolio

groups and produces results in line with previous findings obtained in different settings.
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We find that small caps, value firms, and the Durables industry exhibit the strongest
expected return asymmetries. Volatility asymmetry is a common feature of all stock
portfolios. By focusing on the correlation with the market in each regime, we find that
defensive industries, small caps, and value firms display the biggest differences across
regimes. Correlations increase during downturns. Point estimates suggest relatively
stronger beta asymmetry for medium sized firms, value firms, and defensive industries.
In order to assess statistical significance of the above mentioned asymmetries, we use the
subsampling method of Politis et al. (1999). Asymmetries in expected returns are
significant for the majority of the portfolios with the exceptions of large caps and
defensive industries. Volatility asymmetries are significant for all portfolio groups. In
general, correlation asymmetries that are relatively big in magnitude also tend to be
statistically significant. A similar observation applies to betas, but we also find that betas
on average are subject to more uncertainty compared to correlations.

We evaluate out-of-sample predictive ability of the proposed threshold models
relative to a linear benchmark. We consider two economic loss functions for this purpose:
ex-post Sharpe ratio and realized utility of a quadratic utility investor over the forecast
horizon. Our results indicate that substantial economic gains can be obtained by modeling
asymmetries in the conditional distributions of returns in a threshold framework. With
respect to Sharpe ratio, the threshold models are superior to the linear benchmark for all
portfolio groups. These gains are also found to be statistically significant using the
stationary bootstrap method. In terms of certainty equivalent utility gains, the threshold

model outperforms the linear model by a substantial margin for the size portfolios, which
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is also statistically significant. For book-to-market and industry groups, the threshold
model performs better for highly risk averse investors but the differences are not
statistically significant at conventional levels.

To our knowledge this study is the first to adopt a threshold approach to investigate
various forms of asymmetries in multiple equity portfolios sorted on different
characteristics. We statistically determine the drivers of regime switching behavior from
a comprehensive set of variables and also provide insight on return-volatility dynamics.
We go beyond the tests of general regime-switching and test significance of specific
types of asymmetries across regimes, using subsampling methods. Our findings on
correlation asymmetries are mostly in line with that of Ang and Chen (2002). However,
we find asymmetries smaller in magnitude, which is possibly because they focus on
correlations calculated conditional on contemporaneous realizations of returns and give
more weight to tail behavior. In the vein of Hong et al. (2007), we also find a strong
association between correlation asymmetry and beta asymmetry, but contrary to their
results we do find significant asymmetries for book-to-market portfolios. Our results on
portfolio allocation reinforce findings of Patton (2004) in terms of the potential benefits
of modeling asymmetric dependence for unconstrained investors. However, we make use
of a larger number of equity portfolios and find bigger certainty equivalent gains, which
can be due to differences in model specification and choice of the loss function.

The rest of the chapter is organized as follows. Section 2 is devoted to
methodological issues. A brief discussion comparing the threshold approach with the

alternative modeling strategies is followed by a thorough presentation of the current
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methodology. In Section 3 we provide a detailed description of the data and present the
empirical results. Concluding remarks and directions for future research are provided in

Section 4.

2 Methodology

2.1 Why Threshold Models?

To our knowledge, no previous study used the threshold approach to model equity returns
in a multivariate framework. To motivate the threshold approach further, let us provide a
brief comparison with alternative modeling strategies. Threshold models feature regime
switching, which proved to be a successful modeling strategy for financial data. In this
regard, the closest alternative is the Markov-switching type of models, in which regimes
are driven by unobservable Markov-chains. Threshold models feature observable state
variables, which allow the researcher to relate certain asymmetric features of the data
with observable financial and economic factors. This makes interpretation of the results
easier and also simplifies estimation and inference greatly compared to Markov-
switching models.’

Another recently popular alternative is the Copula approach, which provides a very
flexible framework for modeling asymmetric dependence. An important issue in copula

based modeling is that multiple copula functions may provide similar fit to the data and

? Note also that it is standard practice to assume that the process driving the regimes is weakly exogenous
with respect to the variables of interest in Markov-switching models. On the other hand, endogenous
regime switching is straightforwardly incorporated in the threshold framework.
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cannot be statistically distinguished from each other, e.g. Patton (2006). Furthermore,
Copula functions are confined to the analysis of asymmetric dependence only.
High-dimensional data sets are relatively easily handled in the threshold framework
while numerical optimization becomes very problematic for both Markov-switching and
Copula based models as dimensionality increases. Hong et al (2007) and Tu (2007) deal
with this problem by using Bayesian inference techniques, which are very
computationally intensive, for copula and Markov-switching models respectively. A
multivariate threshold model can be estimated in a matter of seconds without resorting to

gradient-based numerical optimization or simulation methods.

2.2 The Model

The object of interest is a k-dimensional vector process, ¥, =(Vy,..., Vi) . The

multivariate threshold autoregressive model is given by

V=2 QXN <zg Syt (1)
where @ ; = (cj,Alj,...,A{))' , X, =(1, y;_l,...,y;_p)' , z, is the threshold variable, d is
the delay lag, {y j}jzo are the thresholds such that y, = -0 and y, =00, 1(.) is a standard
indicator function, and u, = 2;2191/'/ 28,1()} -1 <Z;_q <7;) where {g} is a vector

martingale difference sequence with zero mean and identity covariance matrix. Notice

that there are s different regimes in which y, follows a linear process, but the general

dynamics of y, over time is described by a nonlinear process.
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Obviously, when s =1 the threshold model boils down to a linear model, which is
much simpler to deal with in terms of estimation and inference. Thus, it is of practical
interest to test whether the threshold model is needed in the first place. A Wald or
likelihood ratio type testing approach for the existence of threshold effects is complicated
by the presence of unidentified nuisance parameters under the null. In particular, under

the null hypothesis of linearity, i.e. Hy:®; =---=®,, and Q; =---=Q_, the delay and

the thresholds parameters are not identified. Consequently, the test statistics have
nonstandard asymptotic distributions. Davies (1977) suggests using upper bounds for the
critical values to deal with the problem, but Hansen (1996) argues that this is not a valid
approach in the case of threshold models. He conducts Monte-Carlo simulations in the
univariate threshold framework and shows that Davies’ procedure behaves very
conservatively. Hansen suggests using a bootstrap procedure to approximate the
asymptotic distribution of the likelihood ratio test. Theoretical validity of his approach
relies on local-to-null parameterization, i.e. the alternative converges to the null as
sample size gets larger. Tsay (1998), on the other hand, proposes a different approach
that is much less demanding in terms of computational burden and operates under
standard asymptotic theory. These properties are especially important in our applications
since we analyze high dimensional data sets with reasonably large number of

observations. Hence, a detailed description of this approach is given below.
2.3 Threshold Nonlinearity Test based on Arranged Regression

Let us rewrite the model given in (1) under the null of linearity, i.e. when s =1:

v, =X, +u,, t=h+1,...,n, (2)
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where s = max(p,d) . If the null is true then the least squares estimates of the parameters
of the model in (2) will be consistent under mild regularity conditions. However, under
the alternative of threshold nonlinearity, least squares estimates based on (2) will be
inconsistent and residuals will not be white noise. Tsay (1998) notes that if one arranges
the ordering of the setup with respect to the threshold variable, the linear model is still
useful under the alternative. In a given sample, the threshold variable takes values in
Z ={zp1-gs-sZy—q}- Let z(;) and 1(i) denote the i™ smallest element of Z and its time
index respectively. Then the arranged regression with respect to increasing order of the
threshold variable is

Yiyrd = PXiyea Y tiiyra> 1=losn—h. 3)
Rearranging the model with respect to the threshold variable preserves the dynamics of
the data while transforming the threshold problem into a change-point problem in terms

of testing. Let ﬁ)m denote the least squares estimate of ® based on the first m

observations and consider predictive residuals and their standardized versions based on

equation (3)
Uymstyrd = Vimeyrd — PConXi(m1y+d »

Ut(m+1)+d

He(m+1)+d = 1/2°

L+ Xiomeny+dVmX comaya ]
. -1
where V,, = [Zl_zl)( 1(i)+d X 1(i)+ d} . Now, consider the following regression

ﬁt(l)+d = \P’Xz(l)+d T Wi h)+a> l=my+1,...,n—h, (4)
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where m, denotes the starting point of the recursive least squares estimation.” Then
testing for the threshold effect amounts to testing H,:¥ =0 against the alternative
Hy:¥ #0. To this end, Tsay proposes the following test statistic

C(d)=(n—h—my—kp —1)x {In[det(S,)] - In[det(S))]},

1 n—h ~ A~y 1 n—h ~ At
where S = m21:m0+177t(1)+d77z(1)+da S) = (nT—mo) I=my+1 Wi ()+dWe(l)+d >

and W, is the residual of the regression given in equation (4). Under mild regularity
conditions, C(d) has an asymptotically chi-squared distribution with k(kp +1) degrees

of freedom. Conditional heteroskedasticity can be easily accommodated in this

framework by modifying the way predictive residuals are standardized. Specifically,

U t(m+)+d

[5? + X[ mstyedVmX imatyra ]

jt(m+)+d = /2 °

m A2 m a2

~2 -1 * i
where 65 =(m—kp=1)" 2" @5 iyea> Vi =V [zi:ﬁ‘ Juiy+aX t(i)+dXt(i)+d}Vma and

V

» 15 defined above. We use this version of the test statistic in our applications since

time varying volatility is a renowned characteristic of stock returns, e.g. Andersen et al.

(forthcoming).

3 Choice of mj is critical since it determines the trade off between having good power on the one hand, and
a reliable starting regression on the other. Tsay (1998) suggests my~ 3n"? for stationary data and m,~ 5n'?
for nonstationary data. We consider mqo = [ cn'?| where ¢ e {4,5} and [.] is the ceiling function since
monthly returns are subject to a high degree of uncertainty and a large number of observations are crucial
for a reliable starting regression. The results are qualitatively similar for ¢ =4 and ¢ =5, so we report the
results with ¢ =5 as it yields more observations for starting the regression.
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2.4 Estimation

The estimation of the multivariate threshold model can be performed by conditional least
squares (CLS). Given the threshold and the delay, the model reduces to s linear
regressions for which the least squares estimation is straightforward. For ease of
exposition let us focus on the case where there are only two regimes, i.e. s=2. In this
case the model is given by
VY, =01 X, (z,_ g Sy)+OLX, (z,_y > ) +u,.
Let X, =((z,_y <y)X., 1(z,_y >p)X]) and @ =(®}, %), then the model can be
written as y, =©'X, +u,. Based on this compact form, the CLS estimates of the
intercepts and the autoregressive coefficients are defined as follows
-1
) =| Lo BT | | T R | (5)
Let 4, =y, —(:)’(yl,d))N( ,» then the total sum of squares is given by
SSR(y;,d) = tr(zg ﬁt&;), where tr(.) denotes the trace operator. The CLS estimates of

y; and d are obtained from

(5,,d) = argmin SSR(y,,d)
71,d

where d €[l,d] and y, € Ry, Ry =R, i.e. R, is a bounded subset of the real line. In

practice, we consider y, € Z , where Z is a trimmed version of the set Z, defined above.

Following the usual practice in the literature we trim 15% from the top and bottom of Z,
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e.g. Hansen (1996). The resultant least squares estimate of ©® is (:)()71,4:?) and the

covariance matrix estimates are defined analogously

A A 5 1 n—nh A Ay .
QﬂmdhmZﬁ Ldd;, j=12, (6)

where n; is the number of observations in regime j, I, =l(z,_;<y;), and

I,, =1(z,_; > y;) . The following theorem establishes asymptotic properties of the CLS

estimators.”

Tsay (1998) shows that under suitable regularity conditions the CLS estimators are
consistent and the threshold estimate converges at rate n while the other model
parameters are root-n consistent and asymptotically normal. This result provides a very
practical first-order asymptotic approximation to the sampling distribution of the CLS
estimates of the intercepts and autoregressive coefficients. One just needs to form
consistent estimates of the associated asymptotic covariance matrices to make this
approximation operational. However, the sampling error in the estimation of the
threshold parameter is completely ignored in this setup. This poses an important problem
in terms of inference since the point estimate of the threshold is likely to be different
from its true value in finite samples despite consistency at rate n. Furthermore, Chan
(1993) showed that the limiting distribution of the threshold estimate depends on several
nuisance parameters, which renders inference with conventional methods unfeasible.
Hansen (2000) uses local-to-null parameterization to reduce the rate of convergence,

which in turn allows obtaining a nuisance parameter-free distribution for the threshold

* We provide a list of the regularity conditions and summarize the asymptotic results in Appendix A.
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estimator. However, his assumptions are restrictive and the procedure does not readily
translate into confidence intervals for other model parameters without resorting to some
ad hoc rule. We deal with this problem by using the subsampling method of Politis et al.
(1999) to construct asymptotically valid confidence intervals and test statistics. Hence,
we account for the uncertainty in the threshold estimate when testing for the significance
of the differences in other parameters across regimes. Gonzalo and Wolf (2005) take the

same approach for the univariate self exciting threshold autoregressive models.’

3 Empirical Results

3.1 Data

We analyze a comprehensive data set consisting of equity portfolios classified with
respect to different characteristics. We consider stocks sorted on market capitalization
(size portfolios), ratio of book value to market value (book-to-market portfolios), and
industry classification (industry portfolios). This allows us to analyze portfolio groups
with different risk-return and dependence characteristics and also compare our results
with those of the recent literature. Other data used in the analysis are market excess
return, the size and value factors of Fama and French (1993), term spread (10-year T-
Note yield minus 3-month T-Bill yield), growth rate of the industrial production index,

and change in the unemployment rate.® All returns, except for size and value factors, are

> In Appendix B we describe subsampling inference for the threshold. Construction of asymptotic test
statistics for other model parameters is implemented in an analogous fashion, so we present the arguments
only for the threshold parameter to save space.

® Portfolio returns and the Fama-French factors are obtained from Kenneth French's online Data Library.
All remaining data are obtained from the FRED database provided by the Federal Reserve Bank of St.
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in excess of the one month T-Bill rate. We use monthly data and the sample runs from
July 1963 to December 2007 providing a total of 534 observations. We hold back the last

60 observations (from January 2003 to December 2007) for out-of-sample analysis.
3.2 Alternatives for the Threshold Variable

As we are interested in systematic regime shifts in stock returns we consider functions of
systematic stock market factors and variables reflecting economic fundamentals as
potential threshold variables. In particular, we consider the following variables: (i) excess
return on the value-weighted market portfolio (MKT); (ii) size premium from the Fama-
French factor model, which is the difference between the returns on a small cap portfolio
and a big cap portfolio (SMB); (iii) value premium from the Fama-French factor model,
which is the difference between the returns on high versus low book-to-market portfolios
(HML);" (iv) realized volatility of the market portfolio calculated from daily returns
(MKTRYV); (v) term spread implied by the Treasury yield curve, calculated as the
difference between the yields on 10-year T-Notes and 3-month T-Bills (SPREAD); (vi)
percentage change in the monthly industrial production index (IP); and (vii) change in the
monthly unemployment rate (UR).

Now let us briefly comment on relevance of these alternatives. Using market excess
return as the threshold variable can be motivated by the celebrated CAPM, which implies

that the cross section of expected stock returns is determined by the return on the market

Louis. We are grateful to Kenneth French and the Federal Reserve Bank of St. Louis for making these data
sets publicly available.

7 Fama and French (1993) control for the ratio of book value to market value when calculating the size
premium and vice versa. Hence, SMB and HML reflect the pure size and value effects respectively. See
Fama and French (1993) for further details regarding the construction of these factors.
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portfolio. Moreover, in the investment practice bull and bear markets are classified with
respect to a broadly defined stock market index. Inclusion of size and value premiums is
due to empirical success of the Fama and French (1993) factor model in explaining the
cross-section of stock returns. Moreover, Fama and French (1993) argue that size and
value premiums proxy for unobservable systematic risk factors reflecting economic
fundamentals since small versus big firms differ in terms of access to credit and a high
book-to-market ratio is associated with persistently low earnings on book equity. We
consider realized volatility of the market portfolio since different phases of the stock
market can potentially be identified with respect to a measure of variability that exploits

information from a higher frequency.® We define monthly realized volatility, RV,, as

follows

1/2

_ my; 2 my m;—1 _

RVI—[Zi_tlri’t-i-2m _lziil r,.,tr,.H,t] , t=1...,n, (7)
t

where m, and r;, denote the number of trading days and i™ daily return in month ¢,

respectively. The second term is used to account for first order autocorrelation in the

daily market return, e.g. Hansen and Lunde (2008).” The Treasury term spread proved to

¥ Under the assumptions that stock prices follow a special type of martingale and that there is no arbitrage,
realized volatility consistently estimates the change in quadratic variation process over a certain horizon,
which is the relevant measure of return variability [Andersen et al. (forthcoming)].

? Note that presence of long-memory in financial asset return volatility is a well established stylized fact,
e.g. Andersen et al. (2003). Hence, the realized volatility measure violates the mixing assumption required
for consistency of the CLS estimates in our threshold model. We deal with this problem by modeling
realized volatility as a fractionally integrated process, following Andersen et al. (2001, 2003, 2006). This
filters out the long memory component of the realized volatility. Specifically, we use

¢, =01~ L)? In(RV,), q € (0,0.5) where L is the lag operator and ¢ is the degree of fractional integration.
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be successful in predicting the cycles in the aggregate economy, e.g. Estrella and
Hardouvelis (1991). Finally, growth in the monthly industrial production index and

change in the unemployment rate are solid indicators of the performance of the economy.
3.3 Threshold Nonlinearity Tests

Testing for the presence of threshold effects is the first step in our empirical exercise.
While the test results indicate whether the threshold model is needed in the first place,
they also provide an objective criterion to choose from competing definitions of the
threshold variable. Intuitively, the test has the highest power when the threshold model is
correctly specified. That is, a smaller p-value can be taken as an indication of better
specification with respect to the threshold variable and the delay lag, e.g. Tsay (1989) and
Terdsvirta (1994). Each major portfolio group contains ten portfolio sorts and the market
portfolio. We include the market portfolio to explore the extent of the asymmetry in
portfolio betas and correlations of the portfolios with the market. For selection of VAR
order to implement the test, we consider Schwarz information criterion due to its
consistency. Under the null of linearity, Schwarz criterion indicates p =0 for all
portfolio groups. This is not surprising given weak autocorrelations in monthly returns
and difficulty of precisely estimating slope coefficients when dimensionality is high.
Note also that Ang and Bekaert (2002) and Tu (2007), among others, also adopt regime-

switching models with no autoregressive terms due to parsimony considerations.

Based on previous results in the literature we set ¢ = 0.42. We test the null that ¢ = 0.42 within the log-
periodogram regression framework of Geweke and Porter-Hudak (1983) and obtain a p-value of 0.13.
Moreover, the threshold non-linearity test results are not sensitive to the choice of the degree of fractional
integration. We get qualitatively identical results in the empirically relevant range of [0.35, 0.45], which are

available from the author upon request.
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Besides the standard delay lag, z,_,, we also consider first lag of average of the
threshold variable over the past z-months, i.e. Z,;, where Z, =(z, +---+z, ., )/7."”

Tables 3.1 and 3.2 report p-values of the threshold nonlinearity test statistics obtained
from the arranged regression under the standard delay lag and the averaging scheme
respectively. Table 3.1 indicates strong threshold effects shared by all portfolio groups
under the standard delay lag. The null of linearity is rejected for all groups at 5%
significance level under a variety of threshold variables and delay lag values. For the size
portfolios the strongest rejections occur under MKT and SMB with a delay lag equal to

one (d =1). HML, SPREAD and MKTRYV also produce rejections, but with much larger
p-values. For the book-to-market group, HML (d =8) and IP (d =2) yield the most

significant rejections with p-values of similar magnitude, both smaller than 0.01. On the

other hand, IP (d =5) produces the smallest p-value for the industry portfolios followed

by SMB, MKT, and SPREAD. When we switch to the first lag of the z-month average,
set of variables under which the null is rejected is identical that for the size group, except
for MKTRYV. In addition, the null is rejected under a broad range of z-values for MKT,
SMB, and SPREAD. The results for the book-to-market group show that IP and HML
still produce the smallest p-values, but MKT and SMB no longer yield rejections at 5%
level. For the industry portfolios, IP produces very strong rejections for all values of 7
followed by SMB (7 =3). In general, size portfolios exhibit the strongest threshold

asymmetries under both of the threshold schemes we consider.

12 See Hansen (1997) and Tsay (1998) for similar approaches.
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Interestingly, when market realized volatility is taken as the threshold variable, the
null of linearity is either not rejected at all or rejections are much weaker compared to
market excess return. According to our estimation results, discussed below, volatility
significantly changes across regimes for most of the equity portfolios when market excess
return is the variable driving regimes. This leads us to the conclusion that causality runs
from returns to volatilities in the current framework. To be precise, when we consider
returns and volatilities as distinct stochastic processes it is an innovation to the return
process that triggers the regime shift and leads to higher/lower volatilities. In relation to
the literature on the asymmetric relationship between volatility and stock returns, we can
argue that a leverage type of explanation is empirically more relevant in the current

context. i
3.4 Model Specification

The test results indicate strong threshold effects and point out to certain variables for each
portfolio group. Since the results are obtained from the arranged regression, they are not
informative about the number of regimes. To refine the competing alternatives further

and get insight on the number of regimes, we resort to Schwarz information criterion

calculated under threshold non-linearity, i.e. S[C(p,d,s):Z;ZI[n j ln(det(fz N+

In(n; )k (kp +1)] .12 Moreover, we consider plot of the SSR as a function of the threshold

in a two-regime model as an informal criterion to determine the number of regimes, i.e.

See Bollerslev et al. (2006) for a comprehensive list of references on the asymmetry between stock
returns and volatility. They also provide an empirical investigation of the issue using intra-daily data and
find that causality is from returns to volatility.

2 This form of the Schwarz information criterion obtains under the assumption of mixtures of normal
distributions, which proved to be very successful for financial data.
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two minima distant from each other suggest a three-regime specification while a single
global minimum is indicative of two-regimes. Finally, we check the sensitivity of the
threshold estimate to trimming percentage by considering 10% and 7.5% besides the
conventional 15% level, and abandon the specifications that are not robust.

For the size group, SMB and MKT with d =1 stand out under the standard delay
lag. We first consider SMB and observe that SSR as a function of the threshold suggests
a three regime specification.” SIC goes down from 1,747.02 to 1,605.66 when we move
from the two-regime specification to three regimes. However, the three-regime
specification is sensitive to the level of trimming percentage. Hence, we next consider
MKT with d =1. The SSR plot is not very clear as to the number of regimes, but when
we estimate the three-regime model we find that it is not robust to changes in the
trimming percentage. While MKT (for 7=2,3,4,5) and SMB (for 7 =2,3) yield strong
rejections under averaging as well, the SIC values are larger than 1,711.12, which is
obtained under MKT with d =1 and s=2. In addition SSR as a function of the
threshold behaves very erratic for these alternatives. Thus, our specification for the size
group is a two-regime model where first lag of MKT is the variable driving the regimes.
For the book-to-market group we choose average HML with 7 =12 as this yields the
smallest p-value and also the smallest SIC among specifications robust to trimming
percentage, with comparable p-values. Regarding the number of regimes we select s =2
as SIC drops only 259.81, from 5,847.59 to 5,588.08, in the three-regime model and SSR

plot also suggests s =2. With regards to the industry group, IP yields the smallest p-

13 Please note that we do not report the SSR graphs and all SIC values here to save space but they are all
available from the author upon request.
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value with d =5 followed by d =1, under the standard delay lag, but neither of these
specifications are robust to the choice of the trimming level. IP produces very small p-
values under averaging as well, but none of the specifications is robust to the trimming
level. The next candidate is SMB with d =1, but under this choice SSR behaves very
erratic as a function of the threshold and does not suggest a particular value for s. When it
comes to SMB with 7 =3, SSR plot points out to a three-regime model, but the threshold
estimates are sensitive to the trimming percentage. Therefore, we consider MKT with
d =1 and SPREAD with d=8. MKT yields a smaller p-value (0.002165 versus
0.006455) but SPREAD produces a smaller SIC (10188.4 versus 10303.4), so we
entertain both alternatives. In terms of the number of regimes, s =2 is preferred in both
cases based on the SSR plots and SIC values. As MKT with d =1 turns out to be the best
specification for the size group and is among the top two alternatives for the industry
group, we consider this specification for the book-to-market group as well. This also
facilitates comparisons across portfolio groups.

3.5 Estimation Results

Table 3.3 provides the threshold estimates and associated 95% subsampling confidence
intervals for all three portfolio groups. For the size group, where the threshold variable is
first lag of MKT, annualized point estimate of the threshold is -6.72%. The 95%
confidence interval suggests that the threshold separating regimes can be as low as -
9.94% or as high as -4.74%. Taking the uncertainty in the threshold estimate into
account, approximately 37% of the observations in the estimation sample fall into the low

return regime, 59% in the high return regime and 4% in the uncertain category, i.e. within
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the confidence band. In this classification, sharp bear markets and short-lived downward
corrections fall into the first regime while pro-longed bull markets and short and steep
rallies are contained within the second one. With this point in mind we will simply refer
to the first regime as the bear regime and the second one as the bull regime. When first
lag of MKT is taken as the threshold variable the book-to-market and industry groups
share the same point estimate for the threshold with the size group. However, the
confidence band is slightly larger under the industry group, [-10.71, -3.31], and
considerably larger under the book-to-market group, [-12.67 -1.76]. This is in line with
the test results discussed above as the size group yielded the smallest p-values in general
and under MKT with 4 =1 in particular. On the other hand, the slight change in the
confidence interval under the industry group does not give a regime classification
different from the one obtained under the size portfolios while the book-to-market group
implies only 2% and 1% shifts to the uncertain category from the bear and bull regimes
respectively. When the twelve month average of HML is the threshold variable for the
book-to-market portfolios, the annualized point estimate is 15.03% with a lower bound of
14.18% and an upper bound of 17.56%. The large positive value for the point estimate is
due to the fact that the risk premium on relatively distressed firms (value firms in this
case) increases substantially when times are bad.'* Hence, low expected stock returns are
generally associated with a large positive value premium. The confidence band implies
that bear and bull regimes prevail 14% and 77% of the time respectively while 8% of the

time we cannot classify the regime since the observations on the threshold variable fall

14 Note that the unconditional correlation between MKT and HML is -0.42 and it is -0.51 between annual
averages of them.
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within the interval. For the industry group when the eight lag of SPREAD is the threshold
variable, the point estimate is 0.43 (or 43 basis points) and the confidence interval is
[0.27 0.5]. As the yield curve is usually inverted during economic downturns and gets
flatter as the economy approaches the slowdown, plummeting of the spread signals
slowdown in the economic activity and expected stock returns plunge. According to the
results obtained under SPREAD, bear markets prevail 20% of the time, bull markets
prevail 73% of the time, and we are uncertain about the state of the stock market 7% of
the time. The commonality between the classifications with respect to the lags of
SPREAD and the annual average of HML is that they imply a smaller fraction for the
bear regime compared to MKT. This is probably because they are strongly linked to the
underlying economic cycles, which go through downturns less frequently, but when they
do this is accompanied with sharp drops in equity prices. In addition, both SPREAD and
the annual average of HML are much less volatile compared to the monthly market
excess return, which is also reflected by relatively tight confidence bands around the
threshold estimates under these variables. This is another likely reason behind the more
distinct regime classification obtained under SPREAD and HML.

Table 3.4 summarizes the estimation results for the ten size deciles and the market.
The first decile exhibits the strongest expected return asymmetry. The annualized
expected return difference is 41.61% and it is significant at literally any significance
level. Difference in the expected returns across the regimes monotonically decreases as a
function of market value and it is not statistically significant at conventional levels for the

tenth decile. For the eight and ninth deciles the differences are significant only at 10%
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level. Point estimate of the bull-bear spread for the market portfolio is 10.66% and it is
statistically significant at 10% level with a p-value of 0.053. Firms with a large market
capitalization are less affected by changing business and financial market conditions
compared to the small firms, e.g. Perez-Quiros and Timmermann (2000). On the other
hand, large firms have a significant impact on the market return despite their small
number because the market portfolio is value weighted. These two facts explain the
relatively weak expected return asymmetry in the large caps and the market portfolio
compared to the small caps. For all size deciles and the market, volatility is substantially
higher in the bear state implying a larger degree of uncertainty associated with
considerably lower expected returns in this state. For example, the market portfolio has
an annualized volatility of %19.39 in the bear regime whereas it is only %12.56 in the
bull regime. The differences are highly statistically significant for all size deciles and the
market. Regarding the correlations of the size deciles with the market portfolio, the point
estimates indicate that they are higher in the bear regime, especially for small caps. For
the first decile the difference is 0.128 while it is only 0.016 for the tenth decile.
Interestingly, correlation asymmetry appears to be a monotonically decreasing function
of market value, just like mean asymmetry. However, they differ in terms of statistical
significance. For the first seven deciles, p-values associated with correlation asymmetry
tend to be much larger compared to the ones associated with mean asymmetry, even
though all correlation asymmetries are significant at 10% level. Similar to correlations,
betas also tend to be higher in the bear regime, with the exception of the tenth decile. The

largest difference in beta across the regimes is observed for the median sized firms (fifth
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decile) with a point estimate of 0.092, which is significant at 10% level with a p-value of
0.086. Interestingly, asymmetries across regimes in the small caps' betas are of smaller
magnitudes compared to their correlation counterparts and they are also insignificant. We
do not observe a clear pattern for beta asymmetry as a function of market capitalization.
Tables 3.5 and 3.6 summarize the results for the book-to-market group when
threshold variable is first lag of the annual average of HML and first lag of MKT
respectively. When HML is the threshold, the first decile exhibits the greatest expected
return asymmetry, with a highly significant annualized point estimate of 22.8%. The
remaining deciles display lower levels of expected return asymmetry but there is no
monotonic pattern. Differences across regimes are significant only at 10% level for
deciles three to nine and for the tenth decile the point estimate of 8.52% is insignificant
even at 10% level. The value firms, which are relatively distressed, carry a much greater
premium relative to growth firms in the bear regime (17.80% versus 3.48%). Point
estimates of volatility asymmetry are relatively small and mostly insignificant under this
definition of the threshold. The largest asymmetry is found to be 3.12% for the first
decile with a p-value of 0.021. Correlations tend to be higher in the bull regime but
differences are usually small. The largest correlation asymmetry is 0.072 for the tenth
decile, which is significant at 5% level with a p-value of 0.019. Betas are more
asymmetric compared to correlations both in terms of magnitude and significance. The
tenth decile's beta increases from 0.840 in the bear regime to 1.016 in the bull regime.
This is in line with the fact that the premium on value firms is greater in the bear regime,

i.e. their connection with the market gets stronger during upturns. When MKT is the
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variable determining the regimes we get a somewhat different picture for the book-to-
market group. The tenth decile has the greatest expected return asymmetry, with a highly
significant point estimate of 20.40%. Interestingly, the value firms carry a bigger
premium in the bull regime unlike the previous case, i.e. a higher expected return
environment becomes more relevant in terms of distinguishing value versus growth firms.
This is because when the value premium determines regimes, distress in the form of low
earnings is reflected strongly by a large premium on the value firms. Regime dependent
heteroskdeasticity is much better captured under MKT. Average of the absolute value of
volatility asymmetry across all portfolios increases from 0.86% to 6.67% when we switch
from HML to MKT and all volatility asymmetries become highly significant.
Correlations also become more regime dependent and the largest differences are observed
for value firms. For deciles eight to ten, the average correlation asymmetry is 0.09 and
the differences are all significant at 1% level. Correlations become stronger during bear
markets contrary to the case in which HML is the threshold variable. Finally, betas
exhibit a lesser degree of asymmetry than the correlations and also their counterparts
obtained under HML. In general, the model with MKT captures regime dependent
heteroskedasticity much better and delivers implications on asymmetric correlations in
line with previous findings in the literature.

In Tables 3.7 and 3.8 we present the results for the industry group when threshold
variable is first lag of MKT and eighth lag of SPREAD respectively. When MKT drives
the regimes, expected return differences across the regimes are not significant at

conventional levels for NonDurables, Energy, Telecommunications, Healthcare, and
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Utilities. The Utilities industry stands out as the most defensive industry for the investors
with a higher expected return in the bear regime. Durables industry exhibits the strongest
return asymmetry across bull and bear markets with a point estimate of 25.62%, which is
highly significant. Durables industry is followed by Shops, High-Technology, Other, and
Manufacturing categories in terms of the strength of expected return asymmetry.
Volatility asymmetry is strong for all industry categories. The Other category experiences
the biggest increase in volatility from the bull to the bear regime (14.96% to 22.38%).
The strongest correlation asymmetries are associated with defensive industries. For
example, point estimates suggest that the correlation of the Utilities industry with the
market is 0.710 in the bear regime while it is only 0.412 in the bull state. This difference
is significant at literally any significance level. Energy and Healthcare follow Ultilities in
terms of the strength of correlation asymmetry. The industry with the most cyclical
expected returns, Durables, has a correlation asymmetry of 0.104, which is significant at
5% level. Point estimates suggest considerable Beta asymmetry but it is significant at 5%
level only for Utilities and High-Technology industries. For Utilities (High-Technology)
beta is 0.617 (1.386) in the bear (bull) regime while it is 0.402 (1.232) in the bull (bear)
regime. When SPREAD is taken as the threshold variable, the general pattern of expected
return asymmetry across the industry groups does not change, but the returns on
Telecommunications and Utilities, especially the former, become much more cyclical.
Energy becomes the most defensive industry with the lowest expected return asymmetry
level of 6.53%, which is not significant even at 10% level. Another difference is that

expected return asymmetries are on average bigger in magnitude, which is expected
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because SPREAD implies less frequent but sharper low-return regimes. Similar to the
case of the book-to-market group, regime dependent volatility becomes much weaker
when we switch from MKT to SPREAD as the threshold variable. Volatility asymmetries
tend to be insignificant for some of the industries that have significant expected return
asymmetry, e.g. Durables. Correlation asymmetries continue to be relatively stronger for
defensive industries with the exception of Health-care and p-values increase. Beta
asymmetry tends to slightly increase for most of the industries. The model using MKT as
the threshold variable performs better by capturing volatility clustering and also
delivering more consistent results on correlations and expected returns.

3.6 Assessment of Predictive Ability of the Proposed Models

In this section we compare predictive ability of the proposed models with a benchmark
linear model that ignores asymmetries. Evaluation is implemented in an out-of-sample
setup. In particular, we use last 60 months of the sample (from January 2003 to
December 2007) as the forecast evaluation period. One-step ahead predictions of the
mean vectors and covariance matrices are obtained under alternative models in a
recursive fashion. First forecasts are constructed by using data from July 1963 to
December 2002, and then the estimation sample is increased by one observation at each
step until the last forecasts for December 2007 are obtained. For comparing model
performance, we consider ex-post Sharpe ratio and realized utility over the forecast
horizon.

At each point in time, the investor decides how much to invest in the stocks versus

the risk free asset. Minimum variance portfolio weights of stocks at time ¢ are given by
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where 1, is the target excess return for the portfolio, X,,;, is the conditional covariance
matrix, and gy, is the conditional mean of the excess stock return vector at 7 +1 given

information up to time ¢ Quadratic utility can be regarded as a second order
approximation to the investor's true utility function, e.g. Fleming et al (2001). Then the
realized utility is simply given by

aW2 2
U= WtRp,t+1 _TtRp,H—l >

where W, is the investor's wealth, R,,.; is the gross portfolio return, i.ec.
R, 1 =(+r, 1), at t+1, and a is the coefficient of absolute risk aversion. Following

Fleming et al. (2001) we consider total realized utility over the forecast horizon

TN _ S . 2
Ui)= W(’L,;TH{RP” 2(1+¢) R’”H ’

where T denotes the length of the forecast horizon and ¢ is the coefficient of relative risk

aversion. The performance measure is the maximum performance fee that the investor is
willing to pay to switch from the linear model to the threshold model. Let A denote this

fee, which is defined by the following equation

n

_ ¢ a2l N S
> {(sz,t_A)_z(l_i_(p)(sz,t A) }— > {Rpl,t 2(1+¢)Rpl,t}7 9)

t=n-T+1 t=n-T+1

where R, ;,; and R, ,, are the gross portfolio returns generated by the linear model

and the threshold model respectively.
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Table 3.9 summarizes the out-of-sample portfolio allocation results for annual
target excess return levels of 3% and 6% and the relative risk aversion levels of 1 and 10.
For the size group the threshold specification is superior to the linear benchmark with
respect to both ex-post Sharpe ratio and annualized performance fees regardless of target
excess return level. The difference between the Sharpe ratios is larger (1.57) for the lower
target return level, but the performance fee increases with the target return. This is
because certainty equivalent loss function less heavily penalizes the increased volatility
resulting from a higher target return level compared to Sharpe ratio. For an investor with
relative risk aversion coefficient of 10 the annualized performance fee that the investor is
willing to pay is found to be 3.888% (or 388.8 basis points). On average, the linear model
yields more allocation to stocks as a percentage of total wealth since it cannot capture the
time varying nature of the expected returns, volatilities, and the dependence structure.
This leaves the investor more vulnerable to unexpected shocks when the linear model is
used for modeling the data. For book-to-market portfolios, the model using MKT as the
threshold performs better than the one using HML. However, both threshold
specifications beat the linear benchmark with respect to the ex-post Sharpe ratio. The
model using HML is useful only to investors with high levels of risk aversion and the
gains are small (18 basis points with a risk aversion level of 10). When MKT is the
threshold variable the results improve substantially and performance fee can be as high as
1.548%. Similar observations apply to the industry portfolios but the model using
SPREAD cannot beat the linear benchmark under any risk aversion and target return

level in terms of the performance fee. The model with MKT as the threshold variable
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does well for highly risk averse investors but cannot do the same at low risk aversion
levels. In terms of the magnitudes of the loss differentials the size group stands out. This
is expected given the stronger rejections of linearity and significance of mean and
correlation asymmetries across regimes obtained with this data set. The general success
of the threshold model using MKT can be attributed to the fact that it captures regime
dependent heteroskedasticity and correlations better than the models using HML and
SPREAD. To assess statistical significance of the loss differences we use the stationary
bootstrap procedure of Politis and Romano (1994) and report the p-values for the null
hypothesis that imposes equality of model performances against the alternative that the
threshold model is superior. Performance fees are significantly positive under both target
excess returns for the size group even at 1% level. Under the remaining two portfolio
sorting schemes, the certainty equivalent gains (or losses) tend to be insignificant at
conventional levels. Differences between Sharpe ratios in favor of the threshold
specifications are always significant at 5% level for all three groups under both target
return levels. Overall, the results of this out-of-sample comparison indicate that modeling
asymmetries in a threshold framework can provide substantial economic gains that are

also statistically significant.

4 Conclusion

Motivated by existing evidence on asymmetries in distributions of stock returns, we
concentrate on the asymmetries in the first two moments of returns in a multivariate

threshold framework. We use monthly data on size, book-to-market and industry
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portfolios. Threshold nonlinearity test results and specification analysis indicate that
excess return on the market portfolio, value premium, and term spread capture systematic
regime shifts in the equity returns. The model using market excess return stands out as
the universal threshold model providing a good fit regardless of the characteristics
portfolios are sorted on. We find that small caps, value firms, and the Durables industry
exhibit the strongest expected return asymmetries. Substantial asymmetry in volatility is
found to be a common characteristic of all stock portfolios. Defensive industries, small
firms, and value firms tend to have significantly higher correlations with the market
during downturns. Correlation asymmetry usually translates into asymmetry in beta. In an
out-of-sample forecasting exercise, we also find that there can be significant economic
gains in incorporating asymmetries in the portfolio decisions.

A number of future research questions arise from the current study. As pointed out
by Andersen et al. (forthcoming), variability in the mean component of stock returns is of
a much smaller order of magnitude than the martingale component over shorter horizons.
This makes modeling of covariance matrices even more critical at higher frequencies. An
extension of the proposed threshold model to incorporate more sophisticated approaches
to conditional second moments at higher frequencies is an interesting topic for future
research. Assessing the out-of-sample economic value of modeling asymmetries under
alternative preference specifications, such as loss aversion preferences of Kahneman and
Tversky (1979), is another appealing direction to take since asymmetric dependence may

be potentially more important for loss averse investors. Finally, investigating
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performance of the proposed models with respect to multivariate density forecasts is

another potential future research topic.
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Appendix A: Consistency of the CLS Estimators
First, let us define the following
D(y) = E[X, X[ |z,_4 =71,
Dy (7) = E[(X, X)) [ 214 =71,
Vi) = ELX, Xieit | 24 = 7).
Vi, () = EL(X, X)) et | 2-g =]

for i =1,...,k . Now, assume that
Al. (X,,z,_,,¢,) 1s strictly stationary and absolutely regular (f-mixing) with mixing
coefficients satisfying §; = O( j_‘;) for some 0 > 4.
A2. Ele, [ 3,.]1=0 where J,_; is the o field generated by (X,_;.1,z,_4_ ;41,6 ;) for
j=1.
A3. E[|y; [*1< and E[|g;, [*]< o fori=1,...,k.
A4. The density function, f(y), of z,_, is positive on a bounded subset R, < R, and y,
is an interior point of R,,.
AS. f(7), D(y), Dy(y), Vi(7), and V, ;(y) are all continuous at y =y, .
A6. A=D; D, £0.

AT. A'D(y)A; >0, AV (3)A; >0 for j=1,....k, where A; is the /" column of A,
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Al rules out long-memory processes. A2 guarantees correct model specification. A4

ensures that n; — o0 as n — 0. Note that this implies (n;/n) - 4; € (0,1). A6 rules out

local to null parameterizations and is necessary for convergence of the threshold estimate

at rate n. A7 implies that the hyperplane of the conditional expectation, E[y, | J,_;] has a
discontinuity at the threshold z,_; = y,. The following theorem provides the asymptotic

results for the CLS estimators under these assumptions.

Theorem A.1 [Tsay (1998)] Under A1-47 d —>d, -y, © >0, and Q; > Q;,

almost surely as n — o . Furthermore, n(y, —y,) = 0,1, \/Zvec(é) -0)—, NO,I).

This theorem is a slightly different version of Theorem 3 of Tsay (1998). It is
essentially a generalization of the results given in Chan (1993) and Hansen (2000) in the

univariate framework.

Appendix B: Subsampling Inference for the Threshold

The basic idea of subsampling is to reconstruct the statistic of interest on smaller blocks

(subsamples) of the observed sample {y,...,y,} and use the resulting values to
approximate the associated sampling distribution. Let » denote the block size, such that

I<b<n, and )3?’t the threshold estimate on the block {y,,...,y,,,_1} for

t=1,...,n—b+1. Thus, with reference to our previous notation, we have 7y J’f" =9 Iz
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Define J,(x,P)=Probp(n|7;—y;|<x) where P is the probability law governing

{v} .* The subsampling approximation to J . (x, P) 1is defined as follows:

_ 1 n—b+1 Abt A
Lyp(ePy=———= D Ml 77" =5, 1< ).

Let ¢,,(1—a) be the a quantile of L, ,(x,P), then the corresponding symmetric
subsampling confidence interval is
Ipo =[7; 207",y (1= @),
The idea behind subsampling is actually quite intuitive. Each block is a valid

sample, so the exact distribution of b | )3?” =7, | 1s J,(P). If b increases at a suitable

rate as n gets large then the empirical distribution of the values b|33§7” -y, | for
t=1,...,n=b+1 provides a good approximation to J,(P). Finally, replacing y; by 7,

has an asymptotically negligible effect assuming that b/n— 0. The following

proposition formalizes these ideas in the present context.

Proposition B.1 Assume that b—> o and b/n—>0 as n— o. Then the confidence

interval given above has asymptotic coverage probability of (1-a).
Proof. From Al given in Appendix A, {y,} is f-mixing, which implies strong mixing.
Theorem 1 guarantees that J,(x,P) converges weakly to a continuous limiting

distribution. Then the result follows from Corollary 3.2.1 of Politis et al. (1999).

" Here we consider symmetric intervals only. Equal tailed two-sided intervals and one-sided intervals can
are treated along the same lines.

140



The only issue that remains is the choice of the block size. This problem closely
resembles the issue of bandwidth selection in nonparametric analysis. The requirements
for the block size given in Proposition 1 are satisfied by a wide range of alternatives, so
we need to use some specific criterion to determine the block size in practice. In our
applications we use the algorithm proposed by Politis et al. (1999), which minimizes
confidence interval volatility as a function of the block size. The steps of the algorithm

can be summarized as follows:

1. For be{b,...,b} form subsampling confidence intervals for which endpoints

are denoted by [ IZ,OLV and ;7 .

2. For be{b+1,....b -1}, compute a volatility index, VI 5> which is the sum of the
standard deviations of {Iéo_v?,a yeees Ill,oﬁ,a} and {1, ...}, -

3. Choose b associated with the smallest value of the volatility index.
Based on the simulation results, Politis et al. (1999) argue that the choice of / is not

critical and suggest using / € {2,3}. To satisfy the requirements on block size, Romano
and Wolf (2001) set b = ¢;n* and b = c,n* where 0<¢; <c¢,, 0 <x <1 and recommend
using ¢; €[0.5,1], ¢, €[2,3] and x« =0.5. In our applications we set ¢; =0.5 and ¢, =3,
to consider the broadest possible range. Even though this algorithm does not have a
theoretical optimality property its performance is found to be satisfactory in finite

samples according to the simulation results of Politis et al. (1999) and Romano and Wolf

(2001).
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Notes: This table reports p-values of the threshold nonlinearity test based on the arranged regression
of Tsay (1998). The threshold variable is subject to a standard delay lag, i.e. z;_q determines the
regimes, where d is the delay. Test statistics are asymptotically chi-squared distributed with 11
degrees of freedom. Threshold variables are given in the first column. MKT is the excess return on
the value weighted market portfolio, SMB and HML are size and value factors of Fama and French
(1993), MKTRYV is the realized volatility of the market portfolio, SPREAD is the yield on the 10-
year T-Bond minus the 3-month T-Bill rate, IP is the growth rate of monthly industrial production
index, and UR is the change in monthly unemployment rate.
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Notes: This table reports p-values of the threshold nonlinearity test based on the arranged regression
of Tsay (1998). The threshold variable is the 7-month average and the delay is set to be one, i.e. z;_1
derives the regimes, where Z; = (z;+- - -+ 2;_r41)/7. Test statistics are asymptotically chi-squared
distributed with 11 degrees of freedom. Threshold variables are given in the first column. MKT is
the excess return on the value weighted market portfolio, SMB and HML are size and value factors
of Fama and French (1993), MKTRYV is the realized volatility of the market portfolio, SPREAD is
the yield on the 10-year T-Bond minus the 3-month T-Bill rate, IP is the growth rate of monthly
industrial production index, and UR is the change in monthly unemployment rate.
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Table 3.3: Threshold Estimates and Subsampling Confidence Intervals
Cly, ge! Cly
Size Group (MKT, d = 1) 994 672 -4.24
Book-to-Market Group (HML, 7 = 12) | 14.18 15.03 17.56
Book-to-Market Group (MKT, d = 1) -12.67 -6.72 -1.76
Industry Group (MKT, d = 1) -10.71  -6.72 -3.31
Industry (SPREAD, d = 8) 0.27 0.43 0.50

Notes: This table reports the threshold estimates and 95% subsampling confidence intervals for
all portfolio groups. The results under MKT and HML are annualized by multiplying the original
results by 12 (% per annum). CIy, and C'Iy; denote the lower and upper bounds of the confidence
interval respectively.
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