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The main theme of this dissertation is multivariate modeling in financial econometrics. 

The first chapter uses the fundamental properties of the multivariate distributions of 

independent random variables to develop a new specification testing methodology for 

dynamic models. The second chapter generalizes this methodology to tests of 

distributional assumptions and dynamic specification in multivariate models. In the third 

chapter we focus on testing and modeling asymmetries in the second moments of 

multiple equity returns. 

The methodological advances in nonlinear time series models with non-normal 

density functions and in density forecasting have emphasized the need for developing 

dynamic specification tests for the joint hypothesis of i.i.d.-ness and density functional 

form. In Chapter I, we propose a new battery of tests that rely on the fundamental 

properties of independent random variables with identical distributions and we introduce 

a graphical device -the autocontour-that helps to visualize the modeling problems. Based 
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on the theoretical probability coverage of the autocontours, we construct a battery of 

asymptotic t-tests and chi-squared tests, which have standard convergence rates. The tests 

are very powerful against violations of both hypotheses. They do not require either a 

transformation of the original data or an assessment of goodness-of-fit à-la Kolmogorov 

and explicitly account for parameter uncertainty. Monte Carlo simulations show that their 

finite sample performance is very good even in relatively small samples. We illustrate the 

usefulness of this methodology within the context of GARCH and ACD models using 

returns and duration data from the US equity markets. 

In Chapter II, we generalize the testing methodology developed in Chapter I to 

time series models with multivariate GARCH disturbances. The tests are applied to the 

vector of generalized errors that must be i.i.d. with a certain parametric multivariate 

probability density function under the null hypothesis of correct specification. We 

develop t-tests based on a single autocontour and also more powerful chi-squared tests 

based on multiple autocontours. In the spirit of goodness-of-fit tests, we also propose an 

additional test that focuses on the multivariate density functional form of the vector of 

innovations. We perform Monte-Carlo simulations to investigate the size and power 

properties of the test statistics in finite samples. We apply our tests to multivariate 

GARCH models fitted to excess returns on portfolios sorted according to market 

capitalization. 

In Chapter III we test and model asymmetries in time-varying means, volatilities, 

correlations, and betas of equity returns in a multivariate threshold framework. We 

consider alternative specifications in which the threshold variable is based on market 



 ix 

excess return, the Fama-French size and value factors, realized volatility of the market 

portfolio, and variables reflecting economic fundamentals. We find strong threshold 

effects with respect to market excess return, value premium, and term spread. Our results 

indicate that the threshold model based on market excess return provides a flexible and 

computationally inexpensive specification for modeling asymmetries, especially when 

dimensionality is high. We find that small caps, value stocks, and the Durables industry 

exhibit the strongest expected return asymmetries. Correlations of small caps, value 

firms, and defensive industries with the market tend to be significantly larger during 

market downturns. Correlation asymmetry usually translates into asymmetry in beta. 

Regime dependent volatility is a common characteristic of all portfolio groups. We 

evaluate performance of the proposed threshold models in an out-of-sample setup and 

find that there can be substantial economic gains in incorporating asymmetries in 

portfolio decisions. 

 

 

 

 

 

 

 

 

 



 x 

TABLE OF CONTENTS 

CHAPTER I: AUTOCONTOURS: DYNAMIC SPECIFICATION TESTING  . . . . . . . . 1 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. The Joint Test of Density and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.1 Autocontour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

 2.1.1 Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2.1.2 Student-t Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2.1.3 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.2 Test Statistics and Asymptotic Distributions . . . . . . . . . . . . . . . . . . . 10 

3. Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

4. Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

4.1 The Case of Observable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

4.2 Model Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

5 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

5.1 GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

5.2 ACD Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

6. Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

Appendix A: Proofs of Propositions 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

Appendix B: Appendix B: Covariance and Gradient Terms of Gaussian 

Location-Scale Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 



 xi 

CHAPTER II: MULTIVARIATE AUTOCONTOURS FOR SPECIFICATION 

TESTING IN MULTIVARIETE GARCH MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

2. Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

2.1 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

2.2 Multivariate Contours and Autocontours . . . . . . . . . . . . . . . . . . . . . . 79 

 2.2.1 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . 79 

2.2.2 Multivariate Student-t Distribution . . . . . . . . . . . . . . . . . . . . . . 80 

3. Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

3.1 Size Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

3.2 Power Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

4 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

5. Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 

CHAPTER III: TESTING AND MODELING THRESHOLD ASYMMETRIES IN 

MULTIVARIATE DISTRIBUTIONS OF U.S. EQUITY RETURNS . . . . . . . . . . . . . . 103 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

2.1  Why Threshold Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

2.2  The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

2.3  Threshold Nonlinearity Test based on Arranged Regression . . . . . . . . .  110 



 xii 

2.4  Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

3. Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

3.2 Alternatives for the Threshold Variable . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

3.3  Threshold Nonlinearity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

3.4  Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

3.5  Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

3.6 Assessment of Predictive Ability of the Proposed Models . . . . . . . . . . .  129 

4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 

Appendix A: Consistency of the CLS Estimators . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

Appendix B: Subsampling Inference for the Threshold . . . . . . . . . . . . . . . . . . . . .  139 

Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

 

 

 

 

 

 

 

 

 

 



 xiii 

LIST OF TABLES 

Table 1.1: Size of the t-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

Table 1.2: Size of the Q-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

Table 1.3: Size of the J-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

Table 1.4: Power of the J-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

Table 1.5: Size of the t-Statistics under Parameter Uncertainty (All Contours) . . . . . 46 

Table 1.6: Size of the t-Statistics under Parameter Uncertainty . . . . . . . . . . . . . . . . . .  47 

Table 1.7: Size of the Q-Statistics under Parameter Uncertainty . . . . . . . . . . . . . . . . .  47 

Table 1.8: Size of the J-Statistics under Parameter Uncertainty . . . . . . . . . . . . . . . . . . 47 

Table 1.9: Power of the Q-Statistics under Parameter Uncertainty . . . . . . . . . . . . . . 48 

Table 1.10: Power of the J-Statistics under Parameter Uncertainty . . . . . . . . . . . . . . . . . . . 50 

Table 1.11: Size of the Tests applied to GARCH Residuals under Normal  

                   Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Table 1.12: Q-Statistics for GARCH (1,1) under Normal Distribution . . . . . . . . . . . 53 

Table 1.13: Q-Statistics for GARCH (1,1) under Student-t Distribution . . . . . . . . . .54 

Table 1.14: Q-Statistics for ACD(3,2) under Exponential Distribution . . . . . . . . . .  55 

Table 2.1a: Table 2.1a: Size of the l
nJ -statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Table 2.1b: Table 2.1a: Size of the l
nJ -statistics under Parameter Uncertainty  . . . . 92 

Table 2.2a: Size of the  nJ
~

-statistics (n = 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   93 

Table 2.2b: Size of the  nJ
~

-statistics (n = 13) under Parameter Uncertainty . . . . . .  93 

Table 2.3: Size of the t-statistics under Parameter Uncertainty . . . . . . . . . . . . . . . . . 94 



 xiv 

Table 2.4: Power of the l
nJ -statistics under Parameter Uncertainty . . . . . . . . . . . . . 95 

Table 2.5: Power of the nJ
~

-statistics (n = 13) under Parameter Uncertainty . . . . . .  95 

Table 2.6: Power of the t-statistics under Parameter Uncertainty . . . . . . . . . . . . . . .  96 

Table 2.7: Individual t and  13

~
J -statistics for Estimated GARCH Models . . . . . . . . 97 

Table 3.1: Threshold Non-linearity Test Results under the Standard Delay Lag . .  142 

Table 3.2: Threshold Non-linearity Test Results under the Averaging Scheme . . . 144 

Table 3.3: Threshold Estimates and Subsampling Confidence Intervals . . . . . . . .  146 

Table 3.4: Estimation Results for the Size Group (MKT, d = 1) . . . . . . . . . . . . . . . 147 

Table 3.5: Estimation Results for the Book-to-Market Group (HML, τ = 12) . . . .  148 

Table 3.6: Estimation Results for the Book-to-Market Group (MKT, d = 1) . . . . .  149 

Table 3.7: Estimation Results for the Industry Group (MKT, d = 1) . . . . . . . . . . .  150 

Table 3.8: Estimation Results for the Industry Group (SPREAD, d = 8) . . . . . . . .  151 

Table 3.9: Out of Sample Portfolio Allocation Results . . . . . . . . . . . . . . . . . . . . . . 152 

 

 

 

 

 

 

 

 



 xv 

LIST OF FIGURES 

Figure 1.1: Sample Autocontours of Bivariate Distributions under  

Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Figure 1.2:  Autocontours and Autocontourgrams of Standardized NYSE  

                   Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

Figure 1.3: Size of the t-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

Figure 1.4: Power of the t-Statistics under AR(1) DGP . . . . . . . . . . . . . . . . . . . . . .  59 

Figure 1.5: Power of the t-Statistics under i.i.d. Student-t DGP . . . . . . . . . . . . . . . .  60  

Figure 1.6: Power of the t-Statistics under GARCH (1,1) DGP . . . . . . . . . . . . . . . .  61 

Figure 1.7: Power of the t-Statistics under AR (1) DGP and Parameter  

                  Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Figure 1.8: Power of the t-Statistics under i.i.d. Student-t DGP and Parameter 

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  

Figure 1.9: Power of the t-Statistics under GARCH (1,1) DGP and  

Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Figure 1.10: t and J-Statistics for GARCH (1,1) Model of NYSE Returns under 

                    Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Figure 1.11: t and J-Statistics for GARCH (1,1) Model of NYSE Returns under  

                    Student-t Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

Figure 1.12: Autocontours and Standardized NYSE Returns under Normal and  

                     Student-t Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

 



 xvi 

Figure 1.13: t and J-Statistics for ACD (3,2) Model of Airgas Transaction Durations 

                    under Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

Figure 1.14: 90, 95, 99% Autocontours under Exponential Distribution and 

                    Standardized Airgas Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

Figure 2.1: Contour and Autocontour Plots under Normal and Student-t  

                   Distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

Figure 2.2: Daily Excess Returns on Five Size Portfolios . . . . . . . . . . . . . . . . . . . . 100 

Figure 2.3: lJ13 -statistics of BEKK Model under Multivariate Normal  

                   Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

Figure 2.4: lJ13 -statistics of DCC Model under Multivariate Normal  

                   Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

Figure 2.5: lJ13 -statistics of BEKK Model under Multivariate Student-t  

                   Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

Figure 2.6: lJ13 -statistics of DCC Model under Multivariate Student-t  

                   Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102 

  

 

 



  1 

 

 

CHAPTER I 

AUTOCONTOURS: DYNAMIC SPECIFICATION TESTING 

 

 

1   Introduction 

When we specify a time series model, our purpose is to capture the time dependence of 

the variable of interest as parsimoniously as possible. If this task is accomplished, the 

innovation of the model will be an independent random variable. In this chapter, we focus 

on models in which all the dependence is contained in the first and second moments such 

that for a process }{ ty  we write tttttt εθσθµy ),(),( 102101 −− ℑ+ℑ=  for K,2,1=t  where 

(.)tµ  is the conditional mean and (.)2
tσ  is the conditional variance, both functions of an 

information set 1−ℑt , ),( 0210 ′′′= θθθ  is a parameter vector, and tε  is an innovation that is 

independent and identically distributed. The innovation, tttt σµyε /)( −≡ , will be 

characterized by a parametric probability density function (p.d.f.), say )1,0(D . Within 

this context, it is easy to understand the importance of correctly specifying the 

conditional mean and conditional variance of }{ ty , as these two moments are the filters 

that contain the dependence of the data. However, what is the importance of correctly 

specifying the p.d.f. when robust estimation procedures are available? The correct 

specification of the p.d.f. has important implications for estimation, testing, and 

prediction, particularly in those instances in which the modeling of the conditional 

variance is the object of interest. Given that in many cases a quasi-maximum likelihood 
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(QML) estimator is available, the implementation of a maximum likelihood (ML) 

estimator, which requires the specification of the true density, must be desirable when the 

efficiency losses are large. In González-Rivera and Drost (1999), the efficiency losses of 

QML versus ML estimators are calculated both analytically and numerically for a variety 

of time series models. For some commonly used densities the losses are larger for the 

variance estimators than for the mean estimators. For instance, when the true density is a 

Student-t with 5 degrees of freedom, the efficiency loss for the variance parameters is 

about 150% compared to 25% for the parameter estimators in the mean. For a chi-square 

with 10 degrees of freedom, a similar comparison brings a loss of 167% versus 67%. 

These results underscore the importance of testing not only for independence in the 

innovation of the model but also for the correct density function. 

There is an extensive literature on testing for density functional form. The 

pioneering work of Kolmogorov (1933) and Smirnov (1939) (K-S) on goodness-of-fit 

represents the basis of numerous parametric and non-parametric tests. The original work 

of K-S assumes that the observations are i.i.d. Lillefors (1967) shows that when 

parameter estimation is involved the asymptotic distribution of the K-S test depends on 

the true c.d.f. and population parameters, and critical values need to be tabulated. 

Andrews (1997) and Stinchcombe and White (1998) extend the K-S framework to test for 

the conditional density implied by a regression model within the context of i.i.d. 

observations. Nonparametric kernel based methods for testing conditional and 

unconditional densities of i.i.d. random variables are also proposed in Fan (1994) and 

Zheng (2000). 
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Within the context of the time series literature, testing for uncorrelatedness in the 

innovations of a time series model is a primary diagnostic check for model specification. 

During the 1970’s with the advent of the Box-Jenkins methodology, portmanteau 

statistics as proposed by Box and Pierce (1970) and Ljung and Box (1978) were designed 

to test for autocorrelation in the residuals of ARMA and ARMA-X specifications. Since 

the prevalent distributional assumption in these studies was the normal density function, 

checking for the absence of autocorrelation implied an i.i.d. innovation process. During 

the 1980’s and 1990’s the econometric developments in nonlinear time series modeling 

and in particular the introduction of ARCH models by Engle (1982) brought further 

diagnostic checks to test for i.i.d-ness. The classical Box-Pierce-Ljung tests were not 

sufficient to test for the adequacy of non-linear specifications. Tests on squared-residual 

autocorrelations are found in McLeod and Li (1983), Li and Mak (1994), and, more 

recently, in Chen (2007). A different set of diagnostic tests to check for independence can 

be found in Brock et al. (1996), whose BDS test is based on the correlation dimension, 

and in Hong and Lee (2003), who propose a statistic based on the generalized spectral 

density. Additionally, time series modeling of the conditional variance underscored the 

importance of specifying the correct density function, mainly when unconditional and 

conditional normality has been almost universally rejected in the econometric analysis of 

financial time series. Thus, nonlinear modeling in conjunction with non-normal densities 

emphasizes the need for development of dynamic specification tests for the joint 

hypothesis of i.i.d.-ness and density functional form. 
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With the revival of density forecasting towards the end of the 1990’s, testing for 

density functional form has stirred a greater interest both in academia and among 

practitioners. Most of the density forecast evaluation methods are based on Rosenblatt’s 

probability integral transform. Diebold et al. (1998) show that if the proposed density 

forecast, say (.)tf , is correct, then the transformed random variables );|( 01 θyFu tttt −ℑ=  

will be i.i.d. uniformly distributed. The testing of i.i.d. uniformly distributed random 

variables is carried out in an informal way by means of a histogram of }{ tu  and 

autocorrelograms of different powers of it. Berkowitz (2001) proposes a further 

transformation to normality of the process }{ tu . If (.)Φ  is the normal cumulative 

distribution function then )(Φ 1
tt uz −≡  must be an i.i.d. )1,0(N  random variable. Since 

Berkowitz’s test is a likelihood ratio test, it has power only against fixed alternatives. 

Chen and Fan (2004) generalize Berkowitz’s approach by using copula functions. None 

of the three aforementioned articles deals with parameter uncertainty since they treat }{ tu  

as the primitive process. Bai (2003) studies this type of tests further and proposes a 

conditional Kolmogorov test to test for the properties of }{ tu . He deals with parameter 

uncertainty using a martingale transformation and obtains an asymptotically distribution 

free test statistic. Corradi and Swanson (2006) note that Bai’s test does not have power 

against violations of independence and they propose a Kolmogorov type test that, like the 

non-parametric test by Hong (2001), is robust to dependence. Corradi and Swanson rely 

on bootstrap techniques to deal with the effects of parameter uncertainty on the limiting 

distribution of the statistic. An alternative route to the construction of robust tests against 
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dependence is to search for tests with power against violations of both dependence and 

density functional form. In this line, Hong and Li (2005), again within the context of 

density forecast, emphasize the importance of jointly checking for i.i.d.-ness and 

uniformity of }{ tu . They propose a non-parametric test statistic based on the squared 

distance between the joint density of tu  and jtu −  under the null and its nonparametric 

kernel based estimator. The asymptotic distribution of their test is a standard normal and 

it is immune to parameter estimation due to the fact that parameter estimators converge at 

the standard rate T  while the nonparametric kernel estimators that form the test statistic 

converge at slower rates.  As in any nonparametric procedure, the choice of the optimal 

bandwidth is an issue. 

In a different vein Bontemps and Meddahi (2005, 2006) adopted the GMM 

approach for testing distributional assumptions based on moment conditions for the 

Pearson’s family of distributions. They describe moment conditions that are robust 

against parameter uncertainty. 

In this chapter we propose a battery of tests for the joint hypothesis of i.i.d.-ness 

and density functional form that are very powerful against violations of both. The tests 

have standard convergence rates and standard limiting distributions. They do not require 

either a transformation of the original data or an assessment of goodness-of-fit à-la 

Kolmogorov, and explicitly account for parameter uncertainty. The proposed tests focus 

on fundamental properties of independent random variables with identical distributions. 

Let the process under consideration be }{ tε  with density (.)f . The random variables in 

this process are independent if and only if their multivariate distribution is equal to the 
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product of their marginal distribution functions, in which case the null hypothesis simply 

boils down to N}{),()()(),...,,( 12121
∈= =−−−−−−

m
jjktktktktktkt kεfεfεfεεεf

mm
L . The 

specification tests we propose are based on a new concept that we term autocontour. 

Under the null, we horizontally slice the joint density at different levels and project the 

resulting segments down to the hyperplane ),...,,(
21 mktktkt εεε −−− . The projection is the 

autocontour containing a known percentage of the observations. Based on the sample 

estimates of these percentages we construct a battery of t-statistics and chi-squared 

statistics, which have standard asymptotic distributions. Our tests can be applied to 

primitive series and to residuals series, in which case we need to address the parameter 

uncertainty problem. While it is possible to obtain analytical results for special cases for 

the effect of parameter uncertainty on the asymptotic distribution of the tests, we show 

that a general bootstrap procedure to obtain their asymptotic variance delivers standard 

asymptotic tests with the right size. 

The structure of the chapter is as follows. In Section 2, we formalize the notion of 

autocontour and present the general framework of our testing methodology by 

introducing the resulting t and chi-squared test statistics. We also illustrate the application 

of our methodology to commonly used distributions: normal, Student-t, and exponential. 

In Section 3 we explicitly deal with the parameter uncertainty problem by deriving the 

asymptotic distributions of our test statistics and using a bootstrap procedure to make 

them feasible. In Section 4, we provide extensive Monte Carlo evidence regarding the 

size and power properties of the proposed tests. In Section 5, we show several empirical 
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applications within the context of GARCH and ACD modeling; and in Section 6 we 

conclude. 

 

2   The Joint Test of Density and Independence 

The class of dynamic models that we are interested in are of the following form, 

Ttεθσθµy tttttt ,...,1,),(),( 102101 =ℑ+ℑ= −− ,                              (1) 

where 1−ℑt  denotes the information set available at time 1−t , (.)tµ  and (.)tσ  are fully 

parameterized by ),( 02010 ′′′= θθθ  and measurable with respect to 1−ℑt , and T
ttε 1}{ =  is a 

series of i.i.d. innovations having a particular density function, (.)f . Usually, tε  is 

assumed to have zero mean and unit variance, but for nonnegative data it naturally has a 

nonzero mean. For the moment we assume that tε  is observable, i.e. 0θ  is known. Later 

on we will relax this assumption to account for the effects of estimation on distribution of 

our test statistics. 

2.1  Autocontour 

Under correct dynamic specification the null hypothesis in its most general form is stated 

as, 

01

0

 ofnegation:

(.)densitywithi.i.d.is:

HH

fεH t
 

Under this null hypothesis the multivariate density function for an m-dimensional vector 

),,(
1 mktkt εε −− K  is written as )()()(),...,,(

2121 mm ktktktktktkt εfεfεfεεεf −−−−−− = L . We 

define the ),( mα -autocontour, m
αACR ,  as the set of points in the hyperplane 
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),,(
1 mktkt εε −− K  that results from horizontally slicing the multivariate density function at 

a certain value to guarantee that the resulting set contains %α  of observations, that is, 









≤ℜ⊂= ∫ ∫ −−−−−−
1

1
111
...)()(),,(:

u

l

u

l ktktktkt
m

ktkt
m
a

m

m
mmm

αεdεdεfεfεεBACR KLK  2) 

where B is a set in mℜ , ),...,(
11 −−−≡

mktktmm εεuu , ),...,(
11 −−−≡

mktktmm εεll , and 

N}{ 1∈=
m
jjk . Let us focus on the bivariate case to show the construction of the 

autocontour for some specific distributions commonly encountered in financial 

econometrics: standard normal, Student-t, and exponential. In the bivariate case, the null 

hypothesis reduces to )()(),(:0 kttktt εfεfεεfH −− =  for Kk ,...,1=  and K is some 

positive integer. The implied bivariate autocontour is given by 









≤ℜ⊂= −−− ∫ ∫ αεdεdεfεfεεBACR kttkt

u

l

εu

εl tkttkα
tk

tk

)()(),(:
0

0

)(

)(

2
,             (3) 

where B is a set on the plane ),( ktt εε −  and the limits of integration are such that the 

contour shape of the hypothesized density is preserved. 

2.1.1  Standard Normal Distribution 

Suppose )10(i.i.d.~ ,Nεt , then the joint density of interest is given by 








 +−= −− )(
2

1
exp

2

1
),( 22

kttktt εε
π

εεf                                       (4) 

For a fixed value of this density, say f , we have 222 aεε ktt =+ −  where )2ln(2 fπa −= . 

Thus, autocontours are circles with radius a.  The value of a that describes the 
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autocountour with %α  coverage can be computed by numerical integration using the 

following equation, 

 αεdεdεεf kt

a

a

εg

εg
tktt

t

t

=−− − −∫ ∫
)(

)(
),(                                          (5) 

where 22)( tt εaεg −= . Alternatively one can get the a values based on the c.d.f. of a 

chi-squared random variable with two degrees of freedom due to the normality 

assumption, e.g. for 90% autocontour 61.4=a . 

2.1.2  Student-t Distribution 

Now let us consider the case where tε  ~ i.i.d. Student-t(v). In this case, the joint density 

under the null is given by, 

2

)1(
22

)1(
2

11),(

+−

−

+−

− 









+










+=

v

kt

v

t
ktt

v

ε

ν

ε
Aεεf                               (6) 

where 22 )]2/(Γ[)]2/)1((Γ[ vvπvA += . The equation pertaining to autocontours of this 

joint density is given by 22222 //)(1 vεεvεεa kttktt −− +++=  where )1/(2)( +−= vAfa .
1
 We 

rely on numerical integration to find the value of a that describes the autocountour with 

%α  coverage 

αεdεdεεf

av

av

εg

εg

kttktt

t

t

=∫ ∫
−+

−− −
−−

)1(

)1(

)(

)(

),(                                      (7) 

where )//1/()/1()( 222 vεvvεaεg ttt +−−= . 

                                                 
1 Note that the joint distribution given by the product of two marginal Student-t densities is not bivariate 

Student-t as opposed to the case of normal distribution. 



  10 

 

 

2.1.3  Exponential Distribution 

Finally we consider the case where )exp(.i.i.d~ βεt . The bivariate exponential density 

under the null is given by, 









+−= −− )(

1
exp

1
),(

2 kttktt εε
ββ

εεf                                      (8) 

For some fixed value of this density, the equation for the autocontours is given by 

ktt εεa −+=  where )ln( 2 fββa −= . Since we restrict our attention to the positive 

quadrant we obtain contours that are isosceles triangles. For a given α, the following 

equation can be iterated on a, until the desired probability is obtained. 

αεdεdεεf

a εa

kttktt

t

=∫ ∫
−

−−
0 0

),(                                             (9) 

In Figure 1.1, we show the graphical contours corresponding to three aforementioned 

bivariate density functions. 

2.2  Test Statistics and Asymptotic Distributions 

For a given autocontour kαi
ACR , , we define a binary variable as follows 

,,...,1
),(if0

),(if1

,

,, Tkt
ACRεε

ACRεε
I

kαktt

kαkttik
t

i

i +=






∈

∉
=

−

−
                          (10) 

where Kk ,,1K=  and Ci ,,1K= , i.e. K is the number of lags and C is the number of 

autocontours. Hence, this Bernoulli random variable takes on value 1 if an observation 

falls outside the autocontour and 0 otherwise. Since kαi
ACR ,  contains %iα  of 

observations, we expect to have )%1( iα−  outside the autocontour. Let ii αp −≡1 . Under 
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the null we have i
ik

t pIE =][ ,  and )1()( ,
ii

ik
t ppIVar −= . Furthermore, the indicator is a 

linearly dependent process with a MA structure. Its autocovariance function is given by 





 =−==

=≡ −
−

otherwise0

if)1,1(
),(

2,,
,, khpIIP

IICovγ i
ik
ht

ik
tik

ht
ik

t
i
h                     (11) 

Our first test statistic is a t-statistic based on this indicator series. 

 

Proposition 1 Let ∑ −
=

−−=
kT

t

ik
t

k
i IkTp

1

,1)(ˆ . Under the null hypothesis, 

),0()ˆ( ,, ik

d

i
k
iik σNppkTt →−−=  where i

kiiik γppσ 2)1(2
, +−= . 

Proof. Please see Appendix A for the proofs of Propositions 1-4. 

 

Note that since ip  is given under the null, to make this test operational we need to 

replace only the autocovariance, i
kγ , with its consistent estimate given by  

2

1

,2

1

,, 1

2

1
ˆ 








−

−
−

= ∑∑ −
=

−
= +

kT

t

ik
t

kT

t

ik
t

ik
kt

i
k I

kT
II

kT
γ . 

For a given autocontour i, we can examine the lag structure of ikt ,  for Kk ,,1K=  

and collect those t-statistics in a graph, which we call autocontourgram. As an 

illustration, consider the daily returns of NYSE index from June 1, 1995 to December 31, 

2004. In Figure 1.2-a, we plot the standardized return and the bivariate normal 

autocontours for 1=k . Figure 1.2-b shows the autocontourgram that summarizes the 

values of ikt ,  for 25,,1K=k  based on three autocontours ( %}99,50,10{∈α ).  
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As expected, we clearly reject the null hypothesis. It can be seen from the 

autocontourgram that the rejection in the largest autocontour %99=α  is due to the larger 

than expected theoretical number of observations outside of the autocontour, thus the tails 

are thicker than those of a normal. On the contrary, the rejection in the central 

autocontours %10=α  and %50=α  is due to the smaller than expected number of 

observations outside of the autocontours, thus the central empirical autocontours are more 

dense than the theoretical ones. 

In the spirit of Box-Pierce-Ljung statistics, the information contained in the 

individual ikt ,  statistics can be pooled either across K lags or across C contours.  The 

following two test statistics consider the joint distribution of asymptotically normal 

random variables associated with different lags or with different contours. 

 

Proposition 2 For a given autocontour i, consider all lags up to K. Let 

)ˆ(, i
k
iik ppkTq −−= , Kk ,,1K=  and stack them in a vector ),...,( ,,1 ′= iKii qqq . 

Under the null we have ),(
d

ii N Ω0q →  where any element kli,ω  in iΩ  is given by 







=+−

>+++
= +−−−

klγpp

klIICovIICovIICovIICov
ω

i
kii

ik
klt

il
t

ik
lt

il
t

il
kt

ik
t

il
t

ik
t

kli
                                                                         ,2)1(

,),(),(),(),( ,,,,,,,,

,  

It directly follows that 21
K

d

iii
K
i χQ →′≡ −

qΩq . 
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Proposition 3 For a given lag k, consider multiple contours. Let 

),ˆ(, i
k
iki ppkTz −−= Ci ,,1K= , and stack them in a vector ),...,( ,,1 ′= kCkk zzz . Under 

the null we have ),(
d

kk N Ξ0z →  where any element ijk ,ξ  in kΞ  is given by 

jiIICovIICovppppξ jk
t

ik
kt

jk
kt

ik
tjijiijk ,,),(),(),min(, ,,,, ∀++−= −− . Then, it directly 

follows that 21

C

d

kkk

C

kJ χ→′≡ − zΞz . 

 

To make these test statistics operational we replace the covariance terms with their 

corresponding sample counterparts. This has no impact on the asymptotic distributions. 

 

3   Parameter Uncertainty 

Even though the tests we propose can be applied to raw data, they will be most useful as 

a diagnostic tool for model specification. Thus, in practice we will be analyzing residuals, 

)ˆ(ˆ θεt , which depend on parameter estimates, instead of the true error )( 0θεt . Our tests 

are subject to the uncertainty created by parameter estimation. The following discussion 

will be centered around the t-statistics, ikt , , considered in Proposition 1, but the same 

conclusions will apply to the K
iQ and C

kJ  tests given in Propositions 2 and 3 respectively. 

To understand how parameter estimation affects the tests, let us consider the 

following mean value expansion
2
 

                                                 
2 For notational parsimony we use T instead of )( kT −  since they are asymptotically equivalent. 
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where *θ  is between 0θ  and θ̂ . Applying Slutsky’s Theorem yields 
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   (13) 

We make the following assumptions to obtain the asymptotic distribution under 

parameter uncertainty: 

A1. ( ) ),0(ˆ 11
0

−−→− BAANθθT
d

 where [ ])( 0θHEA −≡ , [ ])'()( 00 θSθSEB ≡ , and 

∑ =
−=

T

t t θHTθH
1 0

1
0 )()(  and ∑ =

−=
T

t t θsTθS
1 0

2/1
0 )()(  are the Hessian matrix and the 

score vector corresponding to QML estimation. 

A2. Let 














∂
∂

≡
=

∞→
0

)(ˆ
lim

θθ
θ
θk

i

T

p
ED . Assume ∞<jD  for qj ,,1K=  where q is the 

dimensionality of the parameter space. 

A3. ∞<))(,( 0
, θsICov t
ik

t  and ∞<− ))(,( 0
, θsICov kt
ik

t . 

A1 is based on standard QMLE arguments. A2 guarantees boundedness of the 

gradient vector. A3 is a weak assumption that is required to have a well defined 

asymptotic variance. A2 and A3 can be analytically verified for commonly used models 

(please see Proposition 5). 
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Proposition 4 Under A1-A3 we have ( ) ),0()ˆ(ˆ 2
,ik

d

i
k
i τNpθpT →−  where 

[ ] DAθSppTEDBAADστ iiikik
1

0
112

,
2
, )'()ˆ(2)( −−− −+′+= . 

 

Proposition 5 For a Gaussian location-scale model, tt εσµy 00 += ,  )1,0(Ni.i.d.~tε , 

the gradient vector D is equal to )/)(,0( 2
0 ′−= σafaD izi t

 where 
tz

f  is the p.d.f. of tz , a 

chi-squared random variable with 2 degrees of freedom; and the covariance term is 

)2/)][(,0(])'()ˆ([ 2
0

2,
0 ′−=− σpεIEθSppTE it

ik
tii . 

Proof. See Appendix B. 

 

This proposition says that the estimation of the parameters in the mean does not 

affect the asymptotic distribution of the test ( 01 =D ).
3
 In general it would be difficult to 

obtain an empirical counterpart of the gradient vector D.  In addition, for some models 

the covariance terms given in A3 may be difficult to estimate, e.g. simulation based 

methods reviewed in Gouriéroux and Monfort (1996). Therefore, we propose to estimate 

the asymptotic variance 2

,ikτ  using a bootstrap procedure. This is a commonly used 

approach in the literature to overcome the difficulties associated with asymptotic variance 

estimation in various contexts (see Efron (1979), Buchinsky (1995) and Ledoit et al. 

(2003) among others). The bootstrap estimator of the variance in Proposition 4 is given 

by 

                                                 
3 This result also holds for a model with Student-t innovations. We conjecture that with homoscedastic 

innovations, the symmetry of the density function is a sufficient condition for the estimation of the mean 

parameters not to have any effect in the asymptotic distribution of the test. 
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where B is the total number of bootstrap samples, bθ
~

 is the parameter estimator from the 

b
th
 bootstrap sample.

4
 We prefer a parametric bootstrap since the null hypothesis fully 

specifies the parametric DGP.
5
 In particular, bootstrap samples are obtained from 

Equation (1) by replacing 0θ  with θ̂  and generating tε  from the specified parametric 

distribution. Under suitable regularity conditions, this estimator should be consistent as 

proven within the linear regression context for i.i.d observations (Liu and Singh, 1992) 

and for dependent data (Goncalves and White, 2005). 

Alternatively, one can bootstrap the full distribution of the test statistics. However, 

our test statistics are not asymptotically pivotal under parameter uncertainty and this 

implies that the bootstrap distribution does not necessarily provide a superior 

approximation to the finite sample distributions of test statistics, see Horowitz (2001). 

Monte Carlo results (to be presented in the following section) indicate that bootstrapping 

the asymptotic covariance matrices and using standard asymptotic critical values delivers 

remarkable results in terms of size and power of the tests. 

 

                                                 
4 For the chi-squared statistics, the covariance matrix estimators are defined analogously. 
5 See Horowitz (2001) for a detailed discussion on the practical implementation of bootstrap techniques. 
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4   Monte Carlo Simulations 

In this section we investigate size and power properties of our test statistics in finite 

samples by Monte Carlo (MC) simulations. We first present results for the case of 

observable data followed by simulation evidence on model residuals. 

4.1  The Case of Observable Data 

For size simulations we consider the following three cases: (i) )1,0(.i.i.d~ Nεt , (ii) tε  ~ 

i.i.d. Student-t(5), and (iii) )1exp(.i.i.d~tε . The Gauss 7.0 random number generator is 

used to generate pseudo random numbers from these three distributions. The number of 

Monte Carlo replications is equal to 10,000. We consider 13 autocontours )13( =C  with 

coverage levels (%): 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, spanning the entire 

density function. We start with a sample size of 250 and consider increments of 250 up to 

2,000. The figures show results for all sample sizes whereas the tables report results for 

sample sizes 250, 500, 1,000 and 2,000.  In all cases the nominal size is 5%.
6
 

In Figure 1.3 we show the simulated size results associated with 13,,1,,1 K=it i  for 

normal, Student-t and exponential distributions respectively. For all three cases, we 

observe that that our t-statistics do not suffer from any systematic size distortions with the 

exception of 1% and 99% autocontours when 250=T . This result is not surprising 

because for small samples there is not enough variation in the indicator series at the 

extreme autocontours (1% or 99% coverage). In order to check the size robustness of the 

t-statistics for different lags, we exclusively focus on the 50% autocontour )7( =i  and 

                                                 
6 We also have simulation results for 1% and 10% nominal size levels, which are in line with the results for 

the 5% level. They are all available from the authors upon request. 
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consider 5,,1K=k . We report these results in Table 1.1. Overall the simulated size 

values are around 5% indicating good size for all distributions.
7
 

Simulated size values for the chi-squared statistic across lags for the 50% 

autocontour, i.e. 5,,1,7 K=KQK , are reported in Table 1.2. In general, this test statistic 

is oversized. The distortions in size are larger for small samples and especially for large 

values of K. This result stems from the difficulty associated with the estimation of off-

diagonal terms of the covariance matrix given in Proposition 2. For large values of K the 

number of terms to be estimated in the covariance matrix increases at a higher rate than 

K. Therefore, one needs more data to achieve a reasonable size. We have run an 

experiment with 5,000 observations and we have observed that even for 5=K  there is 

almost no distortion. From a practical point of view, one may want to choose a small 

number of lags if the sample size is relatively small. 

Simulated size values for the chi-squared statistic across autocontours for 1=k  

( 13
1J  and 7

1J ) are reported in Table 1.3. Although this test has a better size than the Q-

statistic, it is still oversized in small samples, especially when we consider the full set of 

13 contours. As we mentioned before, in the extreme contours (i.e., 1 and 99%) the 

indicator series may not exhibit enough variation in small samples and it may affect the 

finite sample performance of the J-statistic. We have dropped the first three (1, 5, 10%) 

and the last three (90, 95, 99%) autocontours to simulate the empirical size of 7
1J . There 

is a significant improvement in the size for all three distributions and for all sample sizes. 

                                                 
7 These results are robust across all the autocontours and also available from the authors upon request. 
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The size is acceptable for the most reasonable sample sizes encountered in financial data 

sets. From a practical point of view, one may not want to use autocontours too small or 

too large when the sample size is small. 

To analyze the power properties of our test statistics we consider three alternative 

data generating processes: 

(i) ttt uφεε += −1  where )1,0(i.i.d.~ 2φNut − ,  

(ii) vvuε tt )2( −=  where tu  ~ i.i.d. Student-t(v),  

(iii) ttt uhε =  where )1,0(i.i.d.~ Nut  and 1
2
1 −− ++= ttt hβαεωh  

For all three cases the null hypothesis is )1,0(i.i.d.~ Nεt . In case (i) we investigate 

departures from the independence hypothesis by considering different values of 

}9.0,7.0,5.0,3.0{∈φ . In case (ii), we maintain the independence hypothesis and 

investigate departures from the hypothesized density functional form by generating i.i.d. 

data from Student-t distribution for three different values of the shape parameter 

}15,10,5{∈v .
8
 Finally, in case (iii) we analyze departures from both dependence and 

functional form by generating data from a GARCH (1,1) model with }15.0,1.0,05.0{∈α , 

}8.0,85.0,9.0{∈β . We set βαω −−=1  to normalize the unconditional variance to one. 

The results of power simulations for 13,,1,,1 K=it i  are presented in Figures 1.4-

1.6. Figure 1.4 exhibits the results for case (i) for different degrees of dependence. For 

high values of the autoregressive parameter, i.e. 7.0=φ and 0.9, and for autocontours 

                                                 
8 The variance is normalized to unity to control for the effects of different moment structures of normal and 

Student-t distributions on the simulation results. 
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ranging from 5 to 50% coverage, the power of the t-statistics approaches 1 rather quickly. 

There is a substantial drop in power for autocontours with 70-90% coverage even with a 

high degree of dependence. There is not a general explanation for this phenomenon; we 

understand it as a result due to the specific DGP and the density under the null. In the 

following power simulations we also observe similar behavior of the power surfaces 

around the same contours. From a practical point of view, one may want to focus on the 

most informative autocontours, which are those covering the center and the tails of the 

distribution, i.e. %50≤ or %.95≥  

The results for case (ii) are reported in Figure 1.5. The range of autocontours that 

yield the highest power is wider for this case ranging from 5 to 70%. The power surface 

exhibits the lowest values at the 90% contour. In the 99% autocontour, the power is as 

high as in the central autocontours for all sample sizes. This is expected because of the 

leptokurtosis of the Student-t density. As anticipated, rejection rates decrease for larger 

values of v, for which the null and the alternative become less distinguishable.  

The results for case (iii) are presented in Figure 1.6. The data generated under this 

DGP is uncorrelated but nonlinearly dependent, and there is excess kurtosis relative to the 

normal distribution. Persistence is the same across three alternative parameterizations 

)95.0( =+ βα , but kurtosis is increasing with α . The power of the test is the highest for 

the largest levels of kurtosis indicating that the t-tests are stronger at detecting departures 

from the correct density functional form than departures from the independence 

hypothesis. When 05.0=α , the excess kurtosis in the data is only 0.16, so deviations 

from the null are mainly due to the dependence in higher moments. 
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In Table 1.4 we report the power simulation results for 5,,1,13
K=kJ k  for the three 

DGP’s mentioned above.
9
 A common characteristic across all the three DGP’s is that, for 

a given sample size, the power of the J-statistics is roughly the same as the maximum 

power of the t-statistics. The pattern on rejection frequencies is the same as that of the 

individual t-statistics. In case (i), the rejection is stronger when there is high dependence 

even for small samples. We note that there is a decrease in power as k increases, which is 

more evident when the autoregressive parameter is small. This is somehow expected 

because the DGP is only an AR(1) process. In case (ii), the test is more powerful for 

small degrees of freedom but we should mention that even for 15=ν  the power of the 

test is still around 43% for 2000 observations. In case (iii), we have stronger rejections 

rates when the data exhibits higher kurtosis. 

4.2  Model Residuals 

In this section, we analyze the size and power properties of our tests when they are 

applied to the residuals generated by model estimation. For the size experiments we use 

the same set of distributions as in section 4.1 and consider location-scale models with the 

following specifications: 

(i) tt σεµy += , )1,0(.i.i.d~ Nεt , 25.1=µ  and 2=σ ;  

(ii) vvσεµy tt /)2( −+= , )(tStudent.i.i.d~ vεt − , 25.1=µ , 2=σ , and 5=v ;  

(iii) tt βεy = , )1exp(.i.i.d~tε , and 25.1=β . 

                                                 
9 Power simulations for Q-statistics are deferred to the next section on “model residuals”. 
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For each case, we generate the data ty  and proceed to estimate µ  and σ . We retrieve the 

residuals and apply the tests to the properly standardized residuals. Because of 

computational considerations, we reduce the number of Monte Carlo replications to 

1,000. The number of bootstrap replications is 500. 

In Table 1.5 we report the results for 13,...,1,,1 =it i . There are not systematic 

deviations from the nominal size either across autocontours or across distributions. These 

results follow very closely those for observable data reported in Figure 1.3 and Table 1.1. 

         In Table 1.6, we report the size for 50% autocontour for lags 1 to 5 and we observe 

that the size of the t-statistics is very robust to the choice of lags. 

In Tables 1.7 and 1.8 we report the size results for the Q-statistic and the J-statistic 

respectively. We note that bootstrapping the variance helps tremendously to correct the 

size of the Q-statistic, which consistently over-rejects in the case of observable data 

reported in Table 1.2. For the J-statistic, when we consider all 13 autocontours, there is a 

tendency for the test to over-reject but when we focus on the middle autocontours by 

removing the first and the last three, the empirical size improves substantially, 

approaching the nominal size even for small samples. 

To investigate the power of our test statistics under parameter uncertainty, we 

consider the same DGP’s as in section 4.1, and apply the tests to the standardized 

residuals generated by the estimation of the following location-scale models: 

(i) ttttt uφεεσεµy +=+= −1,  where )1,0(i.i.d.~ 2φNut − ,  

(ii) vvσεµy tt )2( −+=  where )(Studenti.i.d.~ vtεt − ,  
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(iii) ttttt uhεσεµy =+= ,  where 1
2
1),1,0(i.i.d.~ −− ++= tttt hβαεωhNu   

In Figures 1.7, 1.8 and 1.9 we present the power surfaces for 13,,1,,1 K=it i for 

samples sizes ranging from 250 to 2000 observations and for the 13 autocontours. These 

figures are similar to Figures 1.4, 1.5, and 1.6 for the case of observable data. The 

common characteristic to these three figures is that bootstrapping the variance of the test 

lifts the power surfaces up. In case (i) this increase in power is more evident for the 

largest three autocontours (90, 95, 99%).  We also observe higher power at lower 

dependence levels in all autocontours with the exception of 80%. In this case the drop in 

power is similar to that we observe in Figure 1.4. For case (ii), power increases for all 

autocontours especially for larger values of the shape parameter. Finally, in case (iii) we 

observe that using bootstrap standard errors boosts the power to around 40% in those 

cases when the null and the alternative are almost undistinguishable.
10
 

In Table 1.9, we report the power of the Q-statistics. In each case we present power 

results for a different autocontour to offer a comprehensive analysis. In all three cases the 

rejection rates are high and behave in the right direction. The power is close to 1 for 

samples of size 1,000 and larger when there is high dependence, or a large departure from 

normality, or strong ARCH effects. In case (i) when dependence is high we observe an 

increase in rejection rates as K increases. This is expected given the sensitivity of the test 

to linear dependence. On the other hand, we do not observe a similar pattern in the 

GARCH (1,1) where the dependence comes through higher moments. 

                                                 
10 We also investigated the power of the t-statistics for different lags. The results are equally robust to 

parameter uncertainty. 
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In Table 1.10, we report the results for the J-statistic. Overall the power results 

under parameter uncertainty are similar to those for observable data. However, when 

detecting departures from normality, case (ii), bootstrapping increases the power of the 

test considerably. 

Finally, we apply our tests to the standardized residuals of a more complicated 

model to assess the robustness of our results. We estimate a GARCH (1,1) model: 

ttt εhy = , )1,0(i.i.d.~ Nεt  and 1
2
1 −− ++= ttt hβyαωh , with 1.0=ω , 15.0=α  and 

8.0=β . In Table 1.11, we summarize the size results for all test statistics. We observe 

that the results are very similar to those obtained when a location-scale model is 

estimated. Thus, provided that estimators are T  consistent, the finite sample properties 

of our test statistics are robust to alternative parameterizations. 

 

5   Empirical Applications 

To illustrate the application of the proposed autocontour tests, we provide two examples 

dealing with financial data. The first entails the estimation of a GARCH (1,1) model for 

stock returns with  conditional normal and Student-t distributions. The second deals with 

the estimation of an ACD model for duration data with a conditional exponential density. 

5.1  GARCH Models 

We consider the daily returns to the NYSE Composite Index from June 1, 1995 to 

December 31, 2004, with a total of 2,411 observations. In Figure 1.2, we have already 

provided the normal autocontours and the autocontourgram for the standardized data and 
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concluded that departures from normality come not only from the tail behavior but also 

from the central body of the distribution. We now proceed to estimate a GARCH (1,1) 

with a constant mean specification 

,)( 2
1 ttt

ttt

hβµyαωh

εhµy

+−+=

+=

−

                                             (15) 

where ty  denotes the continuously compounded return on the NYSE Index. We retrieve 

the residuals and apply our tests to their standardized version. First, we consider the case 

where ( )1,0i.i.d.~ Nεt . In Figure 1.10, we present the results for the t-statistics up to 25 

lags pertaining to the 10, 50, and 99% autocontours,
11
 and the J -statistics for all 13 

autocontours up to 25 lags.  

Even though the modeling of the dependence in the data clearly helps to bring down 

the t-statistics reported in Figure 1.2, we still reject the i.i.d. normality hypothesis for the 

innovations of GARCH (1,1) model. The rejection is stronger in the 10 and 50% 

autocontours than in the tail area (99% autocontour). Thus, the empirical distribution has 

more probability mass in the central autocontours than the hypothesized density. This 

finding suggests that we should aim towards a different distributional assumption, which 

is expected given the stylized facts of financial returns, see Bollerslev et al. (1994), and 

Engle and Patton (2001) among others.  Summarizing the information across all the 13 

autocontours, the J-statistics overwhelmingly reject the null. In Table 1.12, we present 

the results for the Q-statistics for all 13 autocontours and for }25,20,15,10,5{∈K . 

From the 5% to 80% autocontours, the tests reject the null for all values of K. It is only in 

                                                 
11 We select these three contours to represent the behavior of both the center and the tail of the distribution.  
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the 90% autocontour that the test fails to reject the null. However, this must be a 

reflection of the lack of power that we have observed in the Monte Carlo simulation 

results. 

Next, we consider the same model with a conditional Student-t distribution. We 

assume tt uvvε  )2( −=  where tu  ~ i.i.d. Student-t(v). Following Bai (2003) we rely on 

the QMLE results of Lee and Hansen (1994) and set  )2(ˆˆ −= vvεu tt  where we obtain 

tε̂  from a Gaussian QML estimator. We estimate the value of v by GMM using the fourth 

moment condition, )4()2(3][ 4 −−= vvεE t , as in Bontemps and Meddahi (2006).
12
 The 

GMM estimate is 7.48, thus we set 7=v  under the null. The results for 8=v  are very 

similar. In Figure 1.11, the t-statistics fail to reject the null at the 5% level except for the 

50% autocontour at the first lag. The J-statistics also deliver the same message. 

The Q-statistics, reported in Table 1.13, also fail to reject the null with the 

exception of the 30% and 80% autocontours. However, the values of the Q-statistics are 

considerably much lower than those in Table 1.12.  Overall, the Student-t is a remarkable 

improvement although some of the autocontours indicate the need for further 

investigation. 

In Figure 1.12, we describe graphically how the autocontours can guide the 

modeling of the NYSE returns. In Panel a, the standardized returns are superimposed on 

the normal and Student-t(7) autocontours. The rejection of normality is very clear and is 

mainly due to the many outliers spread all over the four quadrants. A similar picture with 

                                                 
12 This moment condition is used since the first two moments are normalized to zero and one respectively. 
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autocontours corresponding to the Student-t(7) helps on picking up some of the outliers 

but yet there is a rejection of the joint hypothesis of the i.i.d.-ness and density function. In 

Panel b, we proceed to model the dependence with a symmetric GARCH(1,1) but 

maintain the Student-t(7) hypothesis. The symmetric GARCH model is successful 

enough but yet there is a cluster of outliers in the south-west quadrant that alerts about the 

possibility of asymmetries in the model. A GARCH(1,1) with a leverage term in the 

variance will take care of this asymmetric behavior. 

5.2  ACD Models 

We estimate an Autoregressive Conditional Duration (ACD) model for the durations 

(time intervals between transactions) of the Airgas common stock from March 1 to 

December 31, 2001 with a total of 32,366 intra daily observations.
13
  Let ,...,...,, 21 ittt  

denote a sequence of transaction times. Durations are defined as 1−−= iii ttx . Engle and 

Russell’s model is specified as 

∑∑ = −= − ++=

=
q

j jij
p

j jiji

iii

ψβxαωψ

εψx

11

                                   (16) 

where ],...,,|[ 121 xxxxEψ iiii −−=  and iε  is i.i.d. with density (.)f . Following Engle and 

Russell (2004) we concentrate on the case where 2,3 == qp  and (.)f  is the exponential 

density with 1=β . The results of the t-tests and the J-statistics are presented in Figure 

1.13. Both tests reject the null hypothesis of i.i.d exponential innovations very strongly at 

all lags for all autocontours. 

                                                 
13 We are grateful to Jeff Russell for providing us with the data set. 
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The Q-statistics, reported in Table 1.14, deliver extremely large values indicating 

strong rejection of the null with the exception of the 70% autocontour. These results are 

in line with those of Engle and Russell (1998) who also reject the exponential distribution 

assumption using more conventional methods. In Figure 1.14 we offer a comparison of 

the standardized durations (durations divided by the sample mean) and the ACD (3,2) 

residuals. The dependence modeled by the ACD specification helps tremendously to 

reduce the magnitude of the standardized durations, however this is not enough to make it 

consistent with the hypothesized exponential distribution. 

 

6   Conclusion 

The methodological advances in two fronts of time series analysis -nonlinear models with 

non-normal density functions, and density forecasting- have emphasized the need for 

developing dynamic specification tests for the joint hypothesis of i.i.d.-ness and density 

functional form. In this chapter we have proposed a new battery of tests that rely on the 

fundamental properties of independent random variables with identical distributions and 

we have introduced a graphical device -the autocontour-  that helps to visualize the 

modeling problems. On reviewing the most relevant tests in the literature, from the 

pioneering work of Kolmogorov (1933) to the most recent insights, we believe that our 

tests bring considerable advantages. Among these, our tests are very powerful against 

violations of both hypotheses, i.i.d.-ness and density function. They have standard 

convergence rates and standard limiting distributions. They do not require either a 
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transformation of the original data or an assessment of goodness-of-fit à-la Kolmogorov 

and explicitly account for parameter uncertainty. 

We have introduced our methodology within the context of pair-wise independence 

but it can be extended to higher dimensions. On going further than the bivariate case we 

will be losing the graphical representation of the autocontour, which is helpful for the 

understanding of the modeling problem; however once the analytical functional form of 

the autocontour is obtained, the indicator variable is trivial to construct and the t-tests and 

chi-squared tests that we propose will follow naturally. Implementation of this 

methodology in the context of multivariate densities is presented in Chapter II. 
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Appendix A: Proofs of Propositions 1-4 

Proof of Proposition 1: 

The result directly follows from the Central Limit Theorem for covariance stationary 

processes presented in Anderson (1971).                                                                            ■ 

 

Proof of Proposition 2: 

Asymptotic Normality 

Without loss of generality, let us consider the joint distribution of ikq ,  and ilq , . Let 

ilik qλqλx ,2,1 +≡  where 1λ  and 2λ  are arbitrary constants and assume lk < . Then 

).ˆ()ˆ( 21 i
l
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k
i pplTλppkTλx −−+−−=  
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Therefore, heeCov htt ∀∞<− ,),( . From the CLT for covariance stationary processes, 
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σNx→  where ),(2),(2),(2)(2
klttlttktttx eeCoveeCoveeCoveVarσ +−−− +++= . 

Thus, we have shown that any linear combination of ikq ,  and ilq ,  is asymptotically 

normal establishing their joint asymptotic normality.                                                         ■                                                                 

Asymptotic Covariance Matrix 

Given that 0][][ ,, == ilik qEqE , we have ][),( ,,,, ilikilik qqEqqCov =  where 
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Proof of Proposition 3: 

Asymptotic Normality 

Without loss of generality, let us consider the joint distribution of kiz ,  and kjz , . Let 

kjki zλzλx ,2,1 +≡ . Then we have 

)ˆ()ˆ( 21 j
k
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k
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where ),(
,,, kj
kt
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t

ji
k IICovγ −=  and ),( ,,, ki

kt
kj

t
ij

k IICovγ −= . In general, 
ij

k
ji

k γγ
,, ≠  since they 

are cross autocovariances. Thus, heeCov htt ∀∞<− ,),( . It directly follows, from the CLT, 

that ),0( 2
x

d

σNx→  where ),(2)(2
ktttx eeCoveVarσ −+= . We have shown that any linear 

combination of kiz ,  and kjz ,  is asymptotically normal establishing their joint asymptotic 

normality.                                                                                                                             ■ 
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Asymptotic Covariance Matrix 

Given that 0][][ ,, == kjki zEzE  we have ][),( ,,,, kjkikjki zzEzzCov =  where 
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Proof of Proposition 4: 

From assumption A1 we have, 
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Note that finiteness of the variance and covariance expressions follows from A2-A3. As a 

result applying the CLT, we have ),0( 2
x

d

σNx→  where ),(2)(2
ktttx eeCoveVarσ −+= . The 

variables in the right hand side of (13) are both asymptotically normal due to Proposition 

1 and A1. We showed that their linear combinations are also asymptotically normal, 

which completes the proof.                                                                                                  ■ 

 

Appendix B: Covariance and Gradient Terms of Gaussian 

Location-Scale Model 

The model is given by 

tt εσµy 00 += ,  )1,0(Ni.i.d.~tε                                       (B.1) 

Let ),( 2
000 ′= σµθ . In this case the indicator series is constructed as follows 
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where )()()( 0
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2

0 θεθεθz kttt −+= . From the mean value expansion in the text we need the 

following: 
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Let us start with the first term given in (B.3). From the properties of the QML estimator  
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symmetric distribution with zero mean. 

0][:(ii) , =−kt
ik

t εIE , using analogous conditioning arguments as in (i). 

]|[)(]|[)(][:(iii) 22,222,22,
iktt

ik
tiktiktt

ik
tiktt

ik
t aεεIEaεPaεεIEaεPεIE ≤≤+>>= −−−−  

         



 ≤+≤+>= −

∞−

∞−−− ∫∫
−

−
iktεg ttt

εg

tttiktikt aεεdεfεεdεfεEaεPaεP
kt

kt 2

)(

2)( 222 |)()()()(  

         



 ≤−≤+>= −−−− ∫

−

−
ikt

εg

εg tttiktikt aεεdεfεEaεPaεP
kt

kt

2)(

)(

222 |)(1)()(  

                                                 
14 We suppress the arguments of the score and the indicator to simplify notation. 
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The last line follows from the properties of truncated distributions, i.e. 
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where )(xδ  is the Dirac delta function
15
. To simplify 1D  and 2D , we use the following 

properties of the Dirac delta function: 
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15 See Phillips (1991) for a similar application of the Dirac delta function in econometrics. See Arfken 

(2005) for further details on Dirac delta function. 
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where a is a finite constant and h is any continuous function. Let us start with 1D : 
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This establishes that .01 =D  Finally, applying (B.9) to (B.7) yields 2
02 /)( σafaD izi t

−=  

where 
tz

f  is the p.d.f. of tz , a chi-squared random variable with 2 degrees of freedom. 

Thus, we conclude that 

.)/)(,0( 2
0 ′−= σafaD izi t

                                         (B.11) 

■ 

The table below provides the size of t-statistics under parameter uncertainty for the 

model given in (B.1) where the covariance and the gradient terms are obtained from (B.5) 

and (B.11) respectively. These results are directly comparable to those presented in Table 

5, Panel-a, which is based on bootstrapping the asymptotic variance. 

T 1,1t  2,1t  3,1t  4,1t  5,1t  6,1t  7,1t  8,1t  9,1t  10,1t  11,1t  12,1t  13,1t  

250 2.2 5.3 5.6 5.2 5.0 4.6 5.3 6.5 7.0 6.2 5.6 9.1 16.4 

500 4.4 5.3 6.7 5.2 5.4 4.4 5.1 6.6 6.2 6.3 6.0 7.8 7.6 

1000 5.1 5.4 5.0 4.7 4.0 4.9 4.6 5.6 5.3 6.3 5.6 5.4 5.7 

2000 4.9 4.4 5.2 4.5 5.0 4.2 4.6 5.4 5.4 5.5 5.3 5.1 5.2 
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Tables and Figures 
 

          Table 1.1: Size of the t-Statistics                          Table 1.2: Size of the Q-Statistics 

T  7,1t  7,2t  7,3t  7,4t  7,5t   T  2
7Q  

3
7Q  4

7Q  5
7Q  

 Panel a: Normal   Panel a: Normal 

250 5.32 5.43 5.28 5.29 5.37  250 8.19 12.08 15.40 17.31 

500 4.98 4.77 4.86 5.01 4.89  500 6.86 9.12 13.39 17.43 

1000 4.98 4.84 4.72 5.01 5.08  1000 5.92 6.91 9.45 12.10 

2000 5.21 5.10 5.64 4.90 5.10  2000 6.01 6.02 7.15 8.30 

 Panel b: Student-t   Panel b: Student-t 

250 5.05 5.11 4.96 4.93 4.89  250 8.10 11.15 14.38 16.32 

500 4.83 4.61 4.51 5.08 4.79  500 6.58 8.91 13.60 18.16 

1000 5.31 5.07 5.35 5.09 5.19  1000 6.23 6.93 9.45 12.41 

2000 5.18 5.08 5.04 5.14 5.26  2000 5.43 5.84 7.03 8.12 

 Panel c: Exponential   Panel c: Exponential 

250 5.42 5.28 5.55 5.53 5.30  250 7.93 11.31 15.27 18.45 

500 5.07 4.75 5.17 4.91 5.02  500 5.96 8.01 11.29 15.26 

1000 5.37 4.79 5.26 5.00 4.99  1000 5.63 6.11 7.68 9.88 

2000 4.95 4.79 4.86 4.93 5.04  2000 5.08 5.54 6.28 7.06 

 

Table 1.3: Size of the J-Statistics 

T  Normal Student-t Exponential 

 Panel a: 13
1J  

250 9.34 9.17 10.38 

500 6.59 6.78 7.16 

1000 5.47 6.23 5.90 

2000 5.35 6.14 5.27 

 Panel b: 7
1J  

250 6.40 6.73 7.43 

500 5.58 5.90 6.14 

1000 5.44 5.63 5.47 

2000 5.53 5.21 5.38 

 

Notes: Simulated size (%) of the test statistics under three DGPs: (i) )1,0(.i.i.d~ Nεt , (ii) tε  ~ i.i.d. 

Student-t(5), (iii) )1exp(.i.i.d~tε . Table 1.1 presents the size of the t-statistic based on the 50% 

autocontour for 5,...,1=k . Table 1.2 presents the size of the Q-statistic based on the 50% autocontour for 

5,...,2=K . Table 1.3 presents the size of the J-statistic based on all contours (Panel a) and 7 contours, 

excluding the first and the last three, (Panel b) for 1=k . Number of MC replications is 10,000 and nominal 

size is 5% in all cases. 
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Table 1.4: Power of the J-Statistics 

Panel a: AR(1) 

 T  13
1J  

13
2J  

13
3J  13

4J  
13
5J  

250 76.23 67.12 62.03 58.79 57.53 

500 95.69 84.85 73.61 66.98 61.99 

1000 99.96 97.74 90.89 82.30 73.66 
9.0=φ  

2000 100.00 100.00 99.28 95.99 88.64 

       

250 36.88 23.41 20.92 19.99 19.55 

500 56.91 24.97 18.00 16.80 16.09 

1000 88.90 36.46 19.22 15.72 15.49 
7.0=φ  

2000 99.83 60.48 25.85 17.21 15.47 

       

250 17.28 12.88 11.86 12.89 11.62 

500 18.75 9.54 9.58 9.11 8.88 

1000 31.64 8.79 7.93 7.93 8.00 
5.0=φ  

2000 61.41 9.90 7.54 8.01 7.84 

       

250 10.59 9.88 10.26 10.33 10.02 

500 8.57 6.71 7.54 7.19 7.48 

1000 8.13 6.62 6.30 6.62 6.67 
3.0=φ  

2000 10.67 6.06 6.30 5.99 6.34 

Panel b: i.i.d. Student-t 

 T  13
1J  

13
2J  

13
3J  13

4J  
13
5J  

250 58.31 58.19 58.73 58.06 57.82 

500 88.85 88.84 88.65 88.54 88.55 

1000 99.76 99.78 99.78 99.85 99.77 
5=v  

2000 100.00 100.00 100.00 100.00 100.00 

       

250 18.44 18.65 17.96 18.23 17.88 

500 26.09 25.94 26.22 25.18 26.13 

1000 48.73 48.58 49.26 48.79 48.70 
10=v  

2000 84.68 84.44 84.36 84.20 84.22 

       

250 12.50 12.88 13.01 13.81 13.11 

500 13.34 13.41 13.55 13.61 13.47 

1000 20.87 20.87 21.14 21.62 21.37 
15=v  

2000 43.29 43.61 43.29 43.10 42.22 
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Table 1.4 (Continued) 

Panel c: GARCH(1,1) 

 T  13
1J  

13
2J  

13
3J  13

4J  
13
5J  

250 58.74 58.00 58.97 58.66 57.93 

500 77.54 76.86 76.67 75.64 75.60 

1000 95.54 94.90 94.76 94.20 93.98 8.0

15.0

=

=

β

α
 

2000 99.96 99.92 99.91 99.84 99.80 

       

250 38.14 38.46 38.35 38.55 38.18 

500 47.17 46.93 46.35 46.14 45.69 

1000 67.15 66.87 65.73 65.22 64.45 85.0

1.0

=

=

β

α
 

2000 90.61 90.83 89.63 88.76 88.37 

       

250 20.53 20.05 19.88 19.98 20.23 

500 18.69 18.90 18.59 18.92 19.10 

1000 21.61 20.97 21.10 20.90 20.33 9.0

05.0

=

=

β

α
 

2000 29.17 29.21 28.40 28.13 27.04 

 

Notes: Simulated power (%) of the J-statistic for 5,,1K=k  under the following DGPs: (i) ttt uφεε += −1  

where )1,0(i.i.d.~ 2φNut −  (Panel a), (ii) vvuε tt )2( −=  where tu  ~ i.i.d. Student-t(v) (Panel b), (iii) 

ttt uhε =  where )1,0(i.i.d.~ Nut , and 1

2

1 −− ++= ttt hβαεωh  (Panel c) . The null hypothesis is 

)1,0(.i.i.d~ Nεt . The test statistic is based on all 13 autocontours. Number of MC replications is 10,000 

and nominal size is 5%. 
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Table 1.5: Size of the t-Statistics under Parameter Uncertainty (All Contours) 

T  1,1t  2,1t  3,1t  4,1t  5,1t  6,1t  7,1t  8,1t  9,1t  10,1t  11,1t  12,1t  13,1t  

 Panel a: Normal 

250 5.3 5.9 7.0 5.8 5.1 5.3 5.6 4.9 4.8 4.8 5.8 4.4 2.4 

500 4.0 4.6 4.0 5.1 4.4 5.5 5.1 5.4 5.8 4.6 4.3 4.1 3.9 

1000 4.7 5.7 6.8 5.5 4.8 4.9 4.4 5.3 5.7 5.7 4.6 4.5 6.0 

2000 4.5 5.2 5.9 4.0 4.8 4.0 4.9 5.6 7.2 6.0 4.5 5.9 4.6 

 Panel b: Student-t 

250 3.6 4.4 4.7 4.3 4.1 4.2 4.3 5.6 4.6 5.3 5.2 4.5 2.0 

500 4.2 5.5 5.5 5.3 5.5 5.1 5.2 5.2 5.3 4.9 4.7 4.3 5.7 

1000 3.9 3.8 3.9 4.4 3.7 3.6 4.1 3.8 4.3 3.5 3.4 3.6 5.8 

2000 5.4 5.0 4.0 4.5 4.4 4.0 5.1 5.1 4.6 4.7 5.4 3.2 4.0 

 Panel c: Exponential 

250 4.9 4.7 4.8 4.4 5.2 5.6 5.0 4.1 5.3 4.4 5.4 4.8 4.2 

500 4.7 4.8 5.0 4.8 4.8 4.2 6.2 5.6 6.4 4.6 5.4 4.9 5.6 

1000 4.0 5.4 4.8 5.1 5.1 5.6 5.4 5.3 4.7 6.4 4.3 4.1 5.0 

2000 3.7 5.5 4.5 4.0 4.4 4.9 4.4 4.7 5.4 5.0 3.9 5.6 5.5 

 

Notes: Simulated size (%) of t-statistics ( 1=k ) applied to standardized residuals under three DGPs:  

(i) tt εy 225.1 += , )1,0(.i.i.d~ Nεt , (ii) 5/3225.1 tt εy += , tε ~ i.i.d. Student-t(5) (iii) tt εy 25.1= , 

)1exp(.i.i.d~tε . Number of MC replications:1,000; bootstrap replications:500; nominal size 5%. 
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            Table 1.6: Size of the t-Statistics                       Table 1.7: Size of the Q-Statistics 

                under Parameter Uncertainty                             under Parameter Uncertainty 

T  7,1t  7,2t  7,3t  7,4t  7,5t   T  2
7Q  

3
7Q  4

7Q  5
7Q  

 Panel a: Normal   Panel a: Normal 

250 5.0 6.2 4.9 6.4 5.8  250 5.3 6.7 6.4 6.5 

500 5.0 5.1 6.6 5.0 4.8  500 6.0 6.5 6.7 6.6 

1000 4.7 5.4 5.5 5.1 4.7  1000 5.5 6.6 6.4 6.5 

2000 5.0 4.6 4.8 5.3 4.6  2000 4.4 5.1 4.6 4.5 

 Panel b: Student-t   Panel b: Student-t 

250 4.5 4.6 4.1 4.6 4.6  250 4.4 4.3 4.4 5.1 

500 5.3 5.0 5.5 4.9 4.3  500 6.1 6.9 7.1 6.5 

1000 4.2 4.4 4.1 4.4 4.0  1000 5.0 6.5 6.3 6.0 

2000 5.0 5.4 4.7 5.5 5.2  2000 5.5 5.6 5.4 6.5 

 Panel c: Exponential   Panel c: Exponential 

250 5.3 5.3 5.6 4.6 5.0  250 5.9 5.5 5.3 4.7 

500 7.0 6.2 5.3 4.4 5.4  500 7.3 6.0 5.6 5.5 

1000 5.8 4.5 5.0 4.7 5.6  1000 5.1 5.2 6.0 6.1 

2000 4.5 4.5 5.5 5.3 6.0  2000 4.5 4.4 5.2 5.2 

 

Table 1.8: Size of the J-Statistics under Parameter Uncertainty 

T  Normal Student-t Exponential 

 Panel a: 13
1J  

250 6.6 6.0 7.1 

500 6.2 7.4 6.0 

1000 6.6 6.1 6.9 

2000 5.8 6.9 5.2 

 Panel b: 7
1J  

250 5.7 4.8 5.5 

500 6.0 6.2 5.4 

1000 5.4 5.4 5.7 

2000 5.4 6.3 5.2 

 

Notes: Simulated size (%) of the test statistics for three DGPs: (i) tt εy 225.1 += , )1,0(.i.i.d~ Nεt , (ii) 

5/3225.1 tt εy += , tε ~ i.i.d. Student-t(5) (iii) tt εy 25.1= , )1exp(.i.i.d~tε . Table 1.6 presents the size 

of the t-statistic based on the 50% autocontour for 5,...,1=k . Table 1.7 presents the size of the Q-statistic 

based on the 50% autocontour for 5,...,2=K . Table 1.8 presents the size of the J-statistic based on all 

autocontours (Panel a) and 7 autocontours, excluding the first and the last three, (Panel b) for 1=k . All 

test statistics are based on standardized residuals. Number of MC replications is 1,000, number of bootstrap 

replications is 500, and nominal size is 5% in all cases. 
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Table 1.9: Power of the Q-Statistics under Parameter Uncertainty 

Panel a: AR(1) 

 T  2
4Q  

3
4Q  4

4Q  5
4Q  

250 83.9 87.5 91.8 93.5 

500 99.5 99.7 100.0 100.0 

1000 100.0 100.0 100.0 100.0 
9.0=φ  

2000 100.0 100.0 100.0 100.0 

      

250 40.1 42.6 45.9 48.0 

500 70.7 74.7 79.7 80.7 

1000 96.3 98.4 99.3 99.5 
7.0=φ  

2000 99.9 100.0 100.0 100.0 

      

250 11.9 12.6 11.9 11.6 

500 19.2 18.2 18.1 17.7 

1000 40.0 41.7 42.3 43.9 
5.0=φ  

2000 67.6 72.3 75.7 75.0 

      

250 6.1 6.8 5.3 5.7 

500 4.5 5.4 6.4 6.1 

1000 8.5 8.7 9.5 9.8 
3.0=φ  

2000 14.0 13.6 11.9 13.3 

Panel b: i.i.d. Student-t 

 T  
2
8Q  

3
8Q  4

8Q  5
8Q  

250 73.8 71.0 69.2 67.3 

500 94.8 93.5 92.9 92.3 

1000 99.8 99.7 99.8 99.8 
5=v  

2000 100.0 100.0 100.0 100.0 

      

250 27.2 25.5 23.5 21.7 

500 48.5 42.9 39.8 37.5 

1000 71.2 66.7 64.9 62.2 
10=v  

2000 95.8 95.2 94.5 93.9 

      

250 15.8 14.1 12.3 11.3 

500 21.5 19.3 17.5 16.1 

1000 38.7 36.0 34.8 33.4 
15=v  

2000 67.7 62.6 59.7 57.9 

 



  49 

 

 

Table 1.9 (Continued) 

Panel c: GARCH(1,1) 

 T  
2
6Q  

3
6Q  4

6Q  5
6Q  

250 41.3 38.4 36.8 35.6 

500 69.5 66.4 64.6 63 

1000 94.1 92.7 91.5 90.6 9.0

15.0

=

=

β

α
 

2000 99.9 99.8 99.8 99.7 

      

250 19.7 18 15.8 15.8 

500 40.2 36.1 35 32.4 

1000 67.2 63.3 60.7 58.5 85.0

1.0

=

=

β

α
 

2000 91.9 90.8 88.5 86.2 

      

250 5.2 5.1 5.9 5.7 

500 10.5 10.1 9.6 8.9 

1000 16.7 14.4 14.2 13.1 8.0

05.0

=

=

β

α
 

2000 29.8 27.5 24.5 22.4 

 

Notes: Simulated power (%) of the Q-statistic for 5,,2K=K  under the following DGPs:  

(i) tt εy 225.1 += , ttt uφεε += −1 , )1,0(i.i.d.~ 2φNut −  (Panel a), (ii) vvεy tt )2(225.1 −+= , tε  ~ 

i.i.d. Student-t(v)  (Panel b), (iii) tt εy 225.1 += , ttt uhε = , )1,0(i.i.d.~ Nut , and 1
2
1 −− ++= ttt hβαεωh  

(Panel c).  The null hypothesis is )1,0(.i.i.d~ Nεt . All test statistics are based on standardized residuals. 

Number of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. 
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Table 1.10: Power of the J-Statistics under Parameter Uncertainty 

Panel a: AR(1) 

 T  13
1J  

13
2J  

13
3J  13

4J  
13
5J  

250 82.8 59.4 43.6 35.2 29.6 

500 98.0 84.8 69.4 53.2 44.9 

1000 100.0 99.0 90.6 78.8 65.7 
9.0=φ  

2000 100.0 100.0 99.5 94.9 85.5 

       

250 43.1 17.9 10.7 9.1 10.1 

500 69.2 27.2 16.1 9.1 9.0 

1000 94.1 41.8 19.5 12.4 10.1 
7.0=φ  

2000 99.8 66.5 25.1 13.0 8.2 

       

250 17.1 8.4 8.3 7.0 7.1 

500 27.8 9.2 7.2 7.7 7.3 

1000 46.4 11.2 7.5 7.5 6.9 
5.0=φ  

2000 75.0 12.8 8.6 4.4 6.3 

       

250 8.9 5.9 7.4 7.1 7.0 

500 9.0 6.6 7.8 7.4 7.4 

1000 12.5 7.5 5.8 7.0 7.9 
3.0=φ  

2000 17.4 6.5 5.7 6.8 6.1 

Panel b: i.i.d. Student-t 

 T  13
1J  

13
2J  

13
3J  13

4J  
13
5J  

250 83.4 81.9 81.8 81.1 81.0 

500 97.3 97.5 96.9 97.3 95.7 

1000 100.0 99.9 100.0 100.0 100.0 
5=v  

2000 100.0 100.0 100.0 100.0 100.0 

       

250 38.3 37.1 37.3 35.8 35.6 

500 54.6 55.4 54.7 53.7 52.7 

1000 79.2 78.7 76.0 77.5 75.8 
10=v  

2000 97.2 97.4 97.4 97.6 97.5 

       

250 21.9 22.4 20.2 20.5 19.7 

500 27.3 28.6 27.7 27.3 28.2 

1000 47.7 47.4 47.0 45.4 48.3 
15=v  

2000 69.3 69.1 69.7 69.0 68.9 
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Table 1.10 (Continued) 

Panel c: GARCH(1,1) 

 T  13
1J  13

2J  13
3J  13

4J  13
5J  

250 46.8 45.2 45.9 41.7 40.4 

500 72.8 70.8 70.9 70.3 68.1 

1000 94.1 93.4 93.4 92.5 92.2 8.0

15.0

=

=

β

α
 

2000 100.0 99.6 99.7 99.4 99.6 

       

250 24.9 25.6 23.2 22.8 21.6 

500 44.4 44.6 44.0 41.9 39.0 

1000 71.1 67.7 69.7 64.4 64.9 85.0

1.0

=

=

β

α
 

2000 94.1 92.4 92.4 91.2 90.8 

       

250 12.1 10.0 11.3 9.9 10.1 

500 15.9 13.8 14.7 14.2 14.6 

1000 20.7 21.2 19.3 19.5 18.7 9.0

05.0

=

=

β

α
 

2000 36.1 34.0 33.1 31.1 29.3 

 

Notes: Simulated power (%) of the J-statistic for 5,,1K=K  for the following DGPs: (i) tt εy 225.1 += , 

ttt uφεε += −1 , )1,0(i.i.d.~ 2φNut −  (Panel a), (ii) vvεy tt )2(225.1 −+= , tε  ~  i.i.d. Student-t(v)    

(Panel b), (iii) tt εy 225.1 += , ttt uhε = , )1,0(i.i.d.~ Nut , and 1
2
1 −− ++= ttt hβαεωh  (Panel c).  The 

null hypothesis is )1,0(.i.i.d~ Nεt . All test statistics are based on standardized residuals. Number of MC 

replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. 
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Table 1.11: Size of the Tests applied to GARCH Residuals under Normal Distribution 

T 1,1t  2,1t  3,1t  4,1t  5,1t  6,1t  7,1t  8,1t  9,1t  10,1t  11,1t  12,1t  13,1t  

500 4.6 3.9 4.5 5.3 5.8 5.3 6.0 6.5 6.5 4.7 4.1 4.0 4.2 

1000 5.1 5.7 6.9 5.0 5.6 5.2 5.2 6.3 6.5 4.0 6.7 5.1 5.7 

2000 4.3 4.6 6.3 4.4 4.4 4.2 4.6 4.8 6.9 6.4 3.2 4.9 4.9 

T  4,1t  4,2t  4,3t  4,4t  4,5t   2
7Q  

3
7Q  4

7Q  5
7Q    13

1J  

500 6.0 6.6 5.4 6.1 6.2  6.8 7.0 6.9 6.1   7.0 

1000 5.6 5.6 5.7 4.6 4.9  5.5 6.5 6.8 6.3   5.9 

2000 4.9 5.4 4.6 5.6 5.1  5.2 5.2 5.8 5.2   6.0 

 

Notes: Simulated size (%) of t, Q and J-statistics for the following DGP: ttt εhy =  where 

1
2
1 8.015.01.0 −− ++= ttt hyh , and )1,0(i.i.d.~ Nεt . The null hypothesis is )1,0(.i.i.d~ Nεt .  All test 

statistics are based on standardized residuals. Number of MC replications is 1,000, number of bootstrap 

replications is 500, and nominal size is 5%. 
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Table 1.12: Q-Statistics for GARCH (1,1) under Normal Distribution 

 5=K  10=K  15=K  20=K  25=K  

KQ1  4.96 8.55 10.40 13.58 15.76 

KQ2  20.39 31.29 32.42 43.41 45.99 

KQ3  31.51 40.82 43.76 45.39 47.13 

KQ4  51.54 68.02 70.88 83.26 96.83 

KQ5  44.58 58.35 62.14 64.33 79.00 

KQ6  47.09 50.78 58.11 60.27 68.73 

KQ7  41.95 53.74 56.76 58.54 59.64 

KQ8  31.05 32.25 33.60 38.36 46.20 

KQ9  18.66 20.84 27.83 32.24 34.19 

KQ10  32.10 37.84 44.30 50.78 58.86 

KQ11  5.01 8.42 13.86 18.73 21.68 

KQ12  10.58 19.11 22.54 26.39 37.38 

KQ13  11.69 16.12 19.47 24.54 29.31 

 

Notes: Q-statistics for all 13 autocontours applied to the standardized residuals of the GARCH(1,1) model 

for daily NYSE returns: ttt εhµy += , 1
2

1 )( −− +−+= ttt hβµyαωh , and )1,0(i.i.d.~ Nεt . The null 

hypothesis is )1,0(.i.i.d~ Nεt .  Covariance matrices are estimated by the parametric bootstrap procedure 

described in the text with 500 replications. Bold numbers indicate significance at 5% level. 
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Table 1.13: Q-Statistics for GARCH (1,1) under Student-t Distribution 

 5=K  10=K  15=K  20=K  25=K  

KQ1  3.61 4.34 6.23 8.81 11.65 

KQ2  5.51 9.28 11.34 17.33 21.14 

KQ3  7.02 13.25 18.11 20.70 22.58 

KQ4  9.78 16.79 21.33 23.44 32.13 

KQ5  17.34 27.51 31.67 34.34 51.42 

KQ6  8.46 12.11 20.14 23.93 35.65 

KQ7  14.38 19.89 26.01 30.09 35.00 

KQ8  10.47 11.97 13.03 17.51 22.57 

KQ9  4.15 6.73 10.66 14.77 18.04 

KQ10  12.93 29.41 37.82 43.68 55.37 

KQ11  5.44 7.16 11.62 20.33 30.50 

KQ12  6.47 16.18 17.30 22.01 34.15 

KQ13  1.71 5.86 8.89 13.74 16.58 

 

Notes: Q-statistics for all 13 autocontours and five lag values })25,20,15,10,5{( ∈K  for the standardized 

residuals  of the following GARCH(1,1) model fitted to daily NYSE returns: ttt εvvhµy /)2( −+=  

where ttt hβµyαωh +−+= −
2

1 )( , tε  ~ i.i.d. Student-t(v), and 7=v . The null hypothesis is tε  ~ i.i.d. 

Student-t(7).  Covariance matrices are estimated by the parametric bootstrap procedure described in the text 

with 500 replications. Bold numbers indicate significance at 5% level. 
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Table 1.14: Q-Statistics for ACD(3,2) under Exponential Distribution 

 5=K  10=K  15=K  20=K  25=K  

KQ1  15,707.94 18,063.22 18,257.23 19,077.22 19,613.71 
KQ2  8,053.69 8,648.05 9,079.96 9,149.96 9,357.13 
KQ3  5,387.60 5,721.03 5,840.05 5,989.33 6,128.28 
KQ4  2,825.55 2,941.91 2,992.49 3,054.07 3,098.97 
KQ5  1,619.36 1,646.27 1,697.05 1,738.21 1,777.32 
KQ6  899.63 922.26 943.10 952.72 958.68 
KQ7  384.22 389.80 398.84 400.46 402.91 
KQ8  105.79 120.92 129.72 131.98 134.26 
KQ9  11.58 16.11 22.97 25.70 30.01 
KQ10  187.85 188.81 191.41 193.92 197.34 
KQ11  679.17 739.94 744.11 758.21 762.26 
KQ12  1,166.99 1,223.89 1,238.99 1,271.75 1,287.17 
KQ13  1,901.58 1,987.34 2,123.62 2,132.91 2,196.79 

 

Notes: Q-statistics for all 13 autocontours and five lag values })25,20,15,10,5{( ∈K  for the standardized 

residuals of the following ACD(3,2) model fitted to Airgas intra-day transaction data: iii εψx =  where 

∑∑ = −= − ++= 2

1

3

1 j jijj jiji ψβxαωψ , )1exp(i.i.d.~iε . The null hypothesis is )1exp(i.i.d.~iε . Covariance 

matrices are estimated by the parametric bootstrap procedure described in the text with 500 replications. 

Bold numbers indicate significance at 5% level. 
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Figure 1.1 Sample Autocontours of Bivariate Distributions under Independence 

 

Panel a: Standard Normal                          Panel b: Student-t (v = 5) 

 
 

Panel c: Exponential (β = 1) 
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Figure 1.2 

Panel a: 90, 95, 99% Autocontours under Normal Distribution and Standardized  

NYSE Returns 
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Panel b: Autocontourgrams of NYSE Returns under Normal Distribution 
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Figure 1.3: Size of the t-Statistics 

 

Panel a: )1,0(.i.i.d~ Nεt                         Panel b: tε  ~ i.i.d. Student-t(5) 

250
500

750
1000

1250
1500

1750
2000

0 10
20

30 40
50

60 70
80

90 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T

Contours

250
500

750
1000

1250
1500

1750
2000

0
10

20
30

40
50

60
70

80
90
100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T

Contours

 
 

Panel c: )1exp(.i.i.d~tε  
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Notes: Simulated size of the t-statistic for all 13 autocontours and the first lag )1( =k  under three 

alternative DGPs: (i) )1,0(.i.i.d~ Nεt  (ii) tε  ~ i.i.d. Student-t(5), (iii) )1exp(.i.i.d~tε . Number of MC 

replications is 10,000 and nominal size is 0.05. 
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Figure 1.4: Power of the t-Statistics under AR(1) DGP 
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Notes: Simulated power of the t-statistic for all 13 autocontours and for 1=k  under the following DGP: 

ttt uφεε += −1  where )1,0(i.i.d.~ 2φNut − . Number of MC replications is 10,000 and nominal size is 

5%. 
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Figure 1.5: Power of the t-Statistics under i.i.d. Student-t DGP 
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Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag )1( =k  under the 

following DGP: vvuε tt )2( −=  where tu ~ i.i.d. Student-t(v). Number of MC replications is 10,000 and 

nominal size is 5%. 
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Figure 1.6: Power of the t-Statistics under GARCH (1,1) DGP 
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Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag )1( =k  under the 

following DGP: ttt uhε =  where )1,0(i.i.d.~ Nut  and 1
2
1 −− ++= ttt hβαεωh . Number of MC 

replications is 10,000 and nominal size is 5%. 
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Figure 1.7: Power of the t-Statistics under AR (1) DGP and  

Parameter Uncertainty 
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Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag )1( =k  under the 

following DGP: tt εy 225.1 +=  where ttt uφεε += −1 , and )1,0(i.i.d.~ 2φNut − . The null hypothesis is 

)1,0(.i.i.d~ Nεt . All test statistics are based on standardized residuals. Number of MC replications is 

1,000, number of bootstrap replications is 500, and nominal size is 5%. 
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Figure 1.8: Power of the t-Statistics under i.i.d. Student-t DGP and  

Parameter Uncertainty 
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Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag )1( =k  under the 

following DGP: vvεy tt /)2(225.1 −+=  where tε  ~ i.i.d. Student-t(v). The null hypothesis is 

)1,0(.i.i.d~ Nεt . All test statistics are based on standardized residuals. Number of MC replications is 

1,000, number of bootstrap replications is 500, and nominal size is 5%. 
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Figure 1.9: Power of the t-Statistics under GARCH (1,1) DGP and  

Parameter Uncertainty 
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Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag )1( =k  under the 

following DGP: tt εy 225.1 +=  where ttt uhε = , )1,0(i.i.d.~ Nut , 1
2
1 −− ++= ttt hβαεωh , and 

βαω −−≡1 . The null hypothesis is )1,0(.i.i.d~ Nεt . All test statistics are based on standardized 

residuals. Number of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is 

5%. 
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Figure 1.10 

Panel a: t-Statistics for GARCH (1,1) Model of NYSE Returns  

under Normal Distribution 
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Panel b: J-Statistics for GARCH (1,1) Model of NYSE Returns  

under Normal Distribution 
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Notes: t-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the normal 

GARCH(1,1) model fitted to daily NYSE returns (Panel a). J-statistic based on all 13 autocontours up to 25 

lags for the residuals of the normal GARCH(1,1) model (Panel b). CV denotes 5% critical value. 
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Figure 1.11 

Panel a: t-statistics for GARCH (1,1) Model of NYSE Returns  

under Student-t Distribution 
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Panel b: J-statistics for GARCH (1,1) Model of NYSE Returns  

under Student-t Distribution 
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Notes: t-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the Student-t 

GARCH(1,1) model fitted to daily NYSE returns (Panel a). J-statistic based on all 13 autocontours up to 25 

lags for the residuals of the Student-t GARCH(1,1) model (Panel b). CV denotes 5% critical value. 
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Figure 1.12 

Panel a: 90, 95, 99% Autocontours and Standardized NYSE Returns 

     under Normal distribution            under Student-t(7) Distribution 
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Panel b: 90, 95, 99% Autocontours under Student-t(7) Distribution and 

Standardized GARCH(1,1) Residuals 
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Figure 1.13 

Panel a: t-Statistics for ACD (3,2) Model of Airgas Transaction Durations  

under Exponential Distribution 
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Panel b: J-Statistics for ACD (3,2) Model of Airgas Transaction Durations  

under Exponential Distribution 
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Notes: t-statistic for three autocontours (10, 50, 99%) up to 25 lags for the residuals of the exponential 

ACD(3,2) model fitted to Airgas intra-day transaction durations (Panel a). J-statistic based on all 13 

autocontours up to 25 lags for the residuals of the exponential ACD(3,2) model (Panel b). CV denotes 5% 

critical value. 
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Figure 1.14: 90, 95, 99% Autocontours under Exponential Distribution and Standardized 

Airgas Durations 
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CHAPTER II 

MULTIVARIATE AUTOCONTOURS FOR SPECIFICATION TESTING 

IN MULTIVARIATE GARCH MODELS 

 

 

1   Introduction 

Even though there is an extensive literature on specification tests for univariate time 

series models, the development of new tests for multivariate models has been very slow. 

As an example, in the ARCH literature we have numerous univariate specifications for 

which we routinely scrutinize the standardized residuals for possible neglected 

dependence and deviation from the assumed conditional density. However, for 

multivariate GARCH models we rarely test for the assumed multivariate density and for 

cross-dependence in the residuals. Given the inherent difficulty of estimating multivariate 

GARCH models, the issue of dynamic misspecification at the system level -as important 

as it may be- seems to be secondary. Though univariate specification tests can be 

performed in each equation of the system, these tests are not independent from each 

other, and an evaluation of the system will demand adjustments in the size of any joint 

test that combines the results of the equation-by-equation univariate tests. Bauwens, 

Laurent, and Rombouts (2006) survey the latest developments in multivariate GARCH 

models and they also acknowledge the need for further research on multivariate 

diagnostic tests. There are some portmanteau statistics for neglected multivariate 
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conditional heteroskedasticity as in Ling and Li (1997), Tse and Tsui (1999), and 

Duchesne and Lalancette (2003). Some of these tests have unknown asymptotic 

distributions when applied to the generalized GARCH residuals. Tse (2002) proposes 

another type of misspecification test that is based on regressions of the standardized 

residuals on some explanatory variables. In that case, the usual OLS asymptotics do not 

apply, but it is possible to construct some statistics that are asymptotically chi-squared 

distributed under the null of no dynamic misspecification. None of these tests are 

concerned with the specification of the multivariate density. However, the knowledge of 

the density functional form is of paramount importance for density forecast evaluation, 

which is needed to assess the overall adequacy of the model. Recently, Bai and Chen 

(2008) adopted the empirical process based testing approach of Bai (2003), which is 

developed in the univariate framework, to multivariate models. They use single-indexed 

empirical processes to make computation feasible, but this causes loss of full consistency. 

Kalliovirta (2007) also takes an empirical process based approach and proposes several 

test statistics for checking dynamic misspecification and density functional form. 

We propose a new battery of tests for dynamic specification and density functional 

form in multivariate time series models. We focus on the most popular models for which 

all the time dependence is confined to the first and second moments of the multivariate 

process. Multivariate dynamics in moments further than the second are difficult to find in 

the data and, to our knowledge, there are only a few attempts in the literature restricted to 

upmost bivariate systems.  Our approach is not based on empirical processes, so we do 

not require probability integral transformations as opposed to the above mentioned 



 72 

studies testing for density specification. This makes dealing with parameter uncertainty 

relatively less challenging on theoretical grounds. When parameter estimation is required, 

we will adopt a quasi-maximum likelihood procedure as opposed to strict maximum 

likelihood, which assumes the knowledge of the true multivariate density. If the true 

density were known, it would be possible to construct tests for dynamic misspecification 

based on the martingale difference property of the score under the null. However, if the 

density function is unknown, a quasi-maximum likelihood estimator is the most desirable 

to avoid the inconsistency of the estimator that we would have obtained under a 

potentially false density function. The lack of consistency may also jeopardize the 

asymptotic distribution of the tests. Our approach is less demanding than any score-type 

testing in the sense that once quasi-maximum likelihood estimates are in place, we can 

proceed to test different proposals on the functional form of the conditional multivariate 

density function. 

The proposed tests are based on the concept of “autocontour” introduced in Chapter 

I for univariate processes. Our methodology is applicable to a wide range of models 

including linear and non-linear VAR specifications with multivariate GARCH 

disturbances. The variable of interest is the vector of generalized innovations 

),,,( 21 ′= ktttt εεεε K  in a model tttt εθHθµy )()( 02
2/1

01 += , where ty  is a 1×k  vector 

of variables with conditional mean vector tµ  and conditional covariance matrix tH . 

Under the null hypothesis of correct dynamic specification the vector tε  must be i.i.d. 

with a certain parametric multivariate probability density function (.)f . Thus, if we 
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consider the joint distribution of two vectors tε  and ltε − , then under the null we have 

)()(),( lttltt εfεfεεf −− = . The basic idea of the proposed tests is to calculate the 

percentage of observations contained within the probability autocontour planes 

corresponding to the assumed multivariate density of the vector of independent 

innovations, i.e. )()( ltt εfεf − , and to statistically compare it to the population 

percentage. We develop a battery of t-tests based on a single autocontour and also more 

powerful chi-squared tests based on multiple autocontours, which have standard 

asymptotic distributions. Without parameter uncertainty the test statistics are all 

distribution free, but under parameter uncertainty there are nuisance parameters affecting 

the asymptotic distributions. We show that a simple bootstrap procedure overcomes this 

problem and yields the correct size even for moderate sample sizes. We also investigate 

the power properties of the test statistics in finite samples. 

Since the null is a joint hypothesis, the rejection of the null begs the question on 

what is at fault. Thus, it is desirable to separate i.i.d-ness from density function. In the 

spirit of goodness-of-fit tests, we also propose an additional test that focuses on the 

multivariate density functional form of the vector of innovations. Following a similar 

approach, we construct the probability contours corresponding to the hypothesized 

multivariate density, )( tεf , and compare the sample percentage of observations falling 

within the contour to the population percentage. The goodness-of-fit tests are also 

constructed as t-statistics and chi-squared statistics with standard distributions. 

The organization of the chapter is as follows. In Section 2, we describe the battery 

of tests and the construction of the multivariate contours and autocontours. In Section 3, 
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we offer some Monte Carlo simulation to assess the size and power of the tests in finite 

samples. In Section 4, we apply the tests to the generalized residuals of GARCH models 

with hypothesized multivariate Normal and multivariate Student-t innovations fitted to 

excess returns on five size portfolios. In Section 5, we conclude. 

 

2   Testing Methodology 

2.1  Test Statistics 

Let ),,( 1 kttt yyy K=  and suppose that ty  evolves according to the following process 

,,,1,)()( 02
2/1

01 TtεθHθµy tttt K=+=                                  (1) 

where (.)tµ  and (.)2/1
tH  are both measurable with respect to time 1−t  sigma field, 

1−ℑt , (.)tH  is positive definite, and  }{ tε  is an i.i.d. vector process with zero mean and 

identity covariance matrix. The conditional mean vector, (.)tµ , and the conditional 

covariance matrix, (.)tH , are fully parameterized by the parameter vector 

),( 02010 ′′′= θθθ , which for now we assume to be known, but later on we will relax this 

assumption to account for parameter uncertainty. 

If all the dependence is contained in the first and second conditional moments of 

the process ty , then the null hypothesis of interest to test for model misspecification is 

(.)densitywithi.i.d.is:0 fεH t . 

The alternative hypothesis is the negation of the null. Though we wish to capture all the 

dynamic dependence of ty  through the modeling of the conditional mean and conditional 
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covariance matrix, there may be another degree of dependence that is built in the 

assumed multivariate density, (.)f . In fact, once we move beyond the assumption of 

multivariate normality, for instance when we assume a multivariate Student-t distribution, 

the components of the vector tε  are dependent among themselves and this information is 

only contained within the functional form of the density. This is why, among other 

reasons, it is of interest to incorporate the assumed density function in the null 

hypothesis. 

Let us consider the joint distribution of two 1×k  vectors tε  and ltε − , 

∞<= Ll ,,1K . Define a 12 ×k  vector ),( ′′′= −lttt εεη  and let (.)ψ  denote the associated 

density function. Under the null hypothesis of i.i.d. and correct probability density 

function, we can write )()()( lttt εfεfηψ −= . Then, under the null, we define the α-

autocontour, αlC , , as the set of vectors ),( ltt εε −′′  that results from slicing the multivariate 

density, (.)ψ , at a certain value to guarantee that the set contains %α  of observations, 

that is, 







 ≤ℜ⊂= ∫∫ αηηηψηSC

k

k

g

h tktt

g

h

k
tαl

2

2

1

1
,21

2
, dd)()( KL ,                  (2) 

where the limits of integration are determined by the density functional form so that the 

shape of the probability contours is preserved under integration, e.g. when the assumed 

density is normal, then the autocontours are 2k-spheres (a circle when 1=k ). We 

construct an indicator process defined as 



 ∉

=
otherwise0

if1 ,, αltαl
t

Cη
I .                                                 (3) 
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The process }{ ,αl
tI  forms the building block of the proposed test statistics. Let 

αpα −≡1 . Since the indicator is a Bernoulli random variable, its mean and variance are 

given by α
αl

t pIE =][ ,  and )1()( ,
αα

αl
t ppIVar −= . Although }{ tε  is an i.i.d. process, 

}{ ,αl
tI  exhibits some linear dependence because αl

tI
,  and αl

ltI ,
−  share common 

information contained in ltε − . Hence, the autocovariance function of }{ ,αl
tI  is given by 





 =−==

= −

otherwise0

if)1,1( 2,, lhpIIP
γ α

αl
ht

αl
tα

h                                     (4) 

 

Proposition 1 Define ∑ −
=

−−=
lT

t

αl
t

l
α IlTp

1

,1)(ˆ . Under the null hypothesis, 

),0(N)ˆ( ,, αldα
l
ααl σpplTt →−−= , where α

lαααl γppσ 2)1(2
, +−= . 

Proof: See the Appendences of Chapter I for all mathematical proofs. 

 

Now let us consider a finite number of contours, ),,( 1 nαα K , jointly. Let 

),,(
1

′=
nααα ppp K  where iα αp

i
−=1 , and define ∑ −

=
−−=

lT

t

αl
t

l
α

i

i
IlTp

1

,1)(ˆ  for 

ni ,,1K= . We then collect all the l
αi

p̂ ’s in a 1×n  vector, )ˆ,,ˆ(ˆ 1 ′= n
l
α ppp K . 
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Proposition 2 Under the null hypothesis, )Ξ,0(N)ˆ( dα
l
α pplT →−− , where the 

elements of Ξ  are ),(),min(
,, ji

jiji

αl

lt
αl

tααααij IICovppppξ −+−=  ),(
,,

ij αl
lt

αl

t IICov −+ . 

Then, it directly follows that )()ˆ(Ξ)ˆ)(( 21 nχpppplTJ dα
l
αα

l
α

l
n →−′−−= −

. 

 

A complementary test to those described above can be constructed in the spirit of 

goodness-of-fit. Suppose that we consider only the vector tε  and we wish to test in the 

direction of density functional form. We construct the probability contour sets αC  

corresponding to the probability density function that is assumed under the null 

hypothesis. The set is given by 







 ≤ℜ⊂= ∫∫ αεεεfεSC

k

k

g

h
kttt

g

h

k
tα dd)()( 1

1

1

KL .                        (5) 

Then, as before, we construct an indicator process as follows 



 ∉

=
otherwise0

if1 αtα
t

Cε
I ,                                                   (6) 

for which the mean and variance are αIE α
t −=1][  and  )1()( ααIVar α

t −= , respectively. 

The main difference between the sets αlC ,  and αC  is that the latter does not explicitly 

consider the time-independence assumed under the null and, therefore, the following tests 

based on αC  will be less powerful against independence. There is also a difference in the 

properties of the indicator process. Now, the indicator is also an i.i.d. process, and the 

analogous tests to those of Propositions 1 and 2 will have a simpler asymptotic 

distribution. 
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Let αpα −=1  and define an estimator of αp  as ∑ =
−=

T

t

α
tα ITp

1

1~ . Under the null 

hypothesis the distribution of the analogue test statistic to that of Proposition 1 is 

)1,0(N
)1(

)~(
d

αα

αα
α

pp

ppT
t →

−
−

= .                                           (7) 

If, as in Proposition 2, now we jointly consider a finite number of contours and define the 

vectors ),,(
1

′=
nααα ppp K  and )~,,~(~

1
′=

nααα ppp K , where iα αp
i

−=1  and 

∑ =
−=

T

t

α
tα

i

i
ITp
1

1~ . Then )Ξ,0(N)~( dαα ppT →−  where the elements of Ξ  simplify 

to  
jiji ααααij ppppξ −= ),min(  and, it follows that 

)()~(Ξ)~(
~ 21 nχppppTJ dααααn →−′−= −

. 

Note that to make these tests operational we replace the covariance terms by their 

sample counterparts. Furthermore, the asympotic normality results established above still 

hold under parameter uncertainty as shown in Chapter I. However, one needs to deal with 

nuisance parameters in the asymptotic covariance matrices to make the statistics 

operational. We use a parametric bootstrap procedure in Chapter I, which imposes all 

restrictions of the null hypothesis to estimate asymptotic covariance matrices under 

parameter uncertainty. Specifically, after the model is estimated, bootstrap samples are 

generated by using the estimated model as the data generating process where innovation 

vectors are drawn from the hypothesized parametric distribution. The Monte-Carlo 

simulations indicate that this approach provides satisfactory results. Hence, in this 

chapter we take the same approach. 
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2.2  Multivariate Contours and Autocontours 

2.2.1  Multivariate Normal Distribution 

In this case the density function is )5.0exp()2()( 2/
tt

k
t εεπεf ′−= −

. Let αf  denote the 

value of the density such that the corresponding probability contour contains %α  of the 

observations. Then the equation describing this contour is 

22
2

2
1 ktttttα εεεεεq +++≡′= L , 

where ))2(ln(2 2/k
αα πfq ×−= . Hence, the αC  contour set is defined as follows 







 ≤′−ℜ⊂= ∫∫ −

−
−

αεεεεπεSC
k

k

g

g ktttt
kg

g

k
tα dd)5.0exp()2()( 1

2/1

1

KL , 

where λqg =1 , ∑ −
=

−=
1

1

2i

j jtλi εqg  for ki ,,2K= , and αλ ≤ . We need to determine 

the mapping αq  in order to construct the indicator process. Let ttt εεx ′= , then 

)(~ 2 kχxt  and we have })(:inf{ αqFqq
txα ≥≡ , where 

txF  is the cumulative 

distribution function of a chi-squared random variable with k degrees of freedom. As a 

result, the indicator series is obtained as follows 



 >′

=
otherwise0

if1 αttα
t

qεε
I . 

To construct the autocontour αlC , , we consider the joint distribution of tε  and 

ltε − . Let ),( ′′′= −lttt εεη , then the density of interest is given by 

)5.0exp()2()( tt
k

t ηηπηψ ′−= −
. Hence, the autocontour equation is given by 

2
,2

2
1 tktttα ηηηηd ++≡′= L , 
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where ))2(ln(2 k
αα πψd ×−= . Following the same arguments as above, the 

corresponding indicator process is 



 >′

=
otherwise0

if1, αttαl
t

dηη
I , 

where })(:inf{ αdFdd
txα ≥≡ , ttt ηηx ′= , and 

txF  is the cumulative distribution function 

of a chi-squared random variable with k2  degrees of freedom. 

2.2.2  Multivariate Student-t Distribution 

The multivariate density function is 

[ ] 2/)(
)2/(1),()(

vk
ttt vεεvkGεf

+−−′+= , 

where )}2/(Γ)]2(/{[]2/)[(Γ),( 5.0 vvπkvvkG k−+= . Then the equation for the α-

probability contour is 

)2/(1 −′+= vεεq ttα , 

where .)],(/[ 2/)( vk
αα vkGfq +=  As a result, the αC  contour set is defined as 







 ≤−′+ℜ⊂= ∫∫ −−

αεεvεεvkGεSC
k

k

g

g ktttt

g

g

k
tα dd))2/(1)(,()( 1

1

1

KL , 

where )2)(1(1 −−= vqg λ , ∑ −
=

−−−=
1

1

2)2)(1(
i

j jtλi εvqg  for ki ,,2K= , and αλ ≤ . 

Now let )2/(1 −′+= vεεx ttt , then tt wvkx )/(1+≡  where tw  has an F-distribution with 

),( vk  degrees of freedom. Consequently, we have }]/)1([:inf{ αkqvFqq
twα ≥−≡ . 

Then the indicator series is defined as 
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 >−′+

=
otherwise0

)2/(1if1 αttα
t

qvεε
I . 

To construct the autocontour αlC , , we consider the joint distribution of tε  and ltε −  

under the null hypothesis, which is 

( )( )[ ] .)2/(1)2/(1),(),(
2/)(2 vk

ltltttltt vεεvεεvkGεεψ
+−

−−− −′+−′+=  

Then, the equation for the α-probability autocontour is given by 

2)2/())(()2/()(1 −′′+−′+′+= −−−− vεεεεvεεεεd ltltttltltttα . 

Let 2)2/())(()2/()(1 −′′+−′+′+= −−−− vεεεεvεεεεx ltltttltltttt , then  we have 

)/(1 vkxt +=  [ ]))(/()( 2121 tttt wwvkww ++×  where tw1  and tw2  are independent random 

variables with an F-distribution with ),( vk  degrees of freedom. Similar to the previous 

case, we have })(:inf{ αdFdd
txα ≥≡ , but we do not have readily available results for 

the quantiles of tx  as before. A plausible solution is using Monte-Carlo simulation to 

approximate the quantiles of interest as we already know that tx  is a specific function of 

two independent F-distributed random variables. 

As an illustration, we provide sample contour and autocontour plots under normal 

and Student-t (with 5=v ) distributions in Figure-2.1. Due to the graphical constraints 

imposed by high dimensionality, we consider  2=k  and 1=k  for αC  and αlC ,  

respectively. Note that while αC  and αlC ,  are of identical shape under normality, since 

the product of two independent normal densities yields a bivariate normal density, this is 

not the case under the Student-t distribution. 
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3   Monte-Carlo Simulations 

We investigate the size and power properties of the proposed tests in finite samples by 

Monte Carlo simulations for two cases: when the parameters of the model are known and 

when they are unknown and need to be estimated. 

3.1  Size Simulations 

For the size experiments we consider two alternative distributions for the innovation 

process: a multivariate Normal, )I,0(Ni.i.d.~ ktε , and a multivariate Student-t with 5 

degrees of freedom, )5,I,0(ti.i.d.~ ktε . Under parameter uncertainty, we consider a 

simple multivariate location-scale model: tt εHµy 2/1+=  where we set 0=µ  and 

kIH = . We consider both distributions under parameter uncertainty and apply the tests 

to the estimated standardized residual vector, )ˆ(ˆˆ 2/1 µyHε tt −= − , where we obtain 2/1H  

by using the Cholesky decomposition
1
. The asymptotic variance of the tests is obtained 

by the simple parametric bootstrap procedure outlined above (see Section 2.1). The 

number of Monte Carlo replications is equal to 1,000, and the number of bootstrap 

replications is set to 500. We consider 13 autocontours ( 13=n ) with coverage levels (%): 

1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, and 99, spanning the entire density function
2
. 

                                                 
1 Alternative decompositions can be used to calculate the square-root matrix. We conjecture that the choice 

of the decomposition technique is not critical for application of our tests. 
2 Our choice of the contour coverage levels is motivated by the need of covering the entire range of the 

density, from the tails to the very center as we do not have a theoretical result indicating the optimal choice 

of the number of contours to guide our practice. The flexibility of our approach permits considering 

different types of coverage levels depending on the purpose of application, e.g. concentrating on tails for 

risk models. Note also that the Monte-Carlo results presented below provide guidance as to how far one can 

go in the tails and the center of the denisty without losing precision in finite samples. Additional Monte-

Carlo simulations, not reported here to save space, also indicate that the size and power results are robust to 
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We start with a sample size of 250 and consider increments of 250 up to 2,000 

observations. In all experiments, the nominal size is 5%. 

In Tables 2.1a and 2.1b we present the simulated size results for the l
nJ -statistics. 

We consider a system of 2 equations ( 2=k ) and a system of 5 equations ( 5=k ). For a 

small sample of 250 observations, the l
nJ -statistics are oversized for both densities and 

both systems. However, under parameter uncertainty, the bootstrap procedure seems to 

correct to some extent the oversize behavior. For samples of 1000 and more observations, 

the simulated size is within an acceptable range of values. There are no major differences 

between the results for the small versus the large systems of equations indicating that the 

dimensionality of the system is not an issue for the implementation of these tests. 

In Tables 2.2a and 2.2b we show the simulated size for the nJ
~
-statistics, which 

should be understood primarily as goodness-of-fit tests as they do not explicitly take into 

account the independence of the innovations over time. The sizes reported in Table 2.1a 

are very good, though those in Table 2.1b tend to be slightly larger than 5% mainly for 

small samples. However, when we consider the tests with individual contours (see Table 

2.3), the size distortion tends to disappear. 

For the t-tests, which are based on individual contours, the simulated sizes are very 

good. In Table 2.3, we report these results for the case of parameter uncertainty. The 

major size distortions occur for small samples at the extreme contour 13t  (99% coverage), 

                                                                                                                                                 
the number of contours as long as the range considered is identical, i.e. a finer grid does not change the 

results. 
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but this is not very surprising since we do not expect enough variation in the indicator 

series for small samples. 

3.2  Power simulations 

We investigate the power of the tests by generating data from a system with two 

equations that follows three different stochastic processes. We maintain the null 

hypothesis as tt εHµy 2/1+= , where ),0(Ni.i.d.~ kt Iε , and consider the following 

DGP’s: 

DGP 1: ,2/1
tt εHµy +=  where )5,I,0(ti.i.d.~ 2tε , 0=µ , and 2I=H . In this case, we 

maintain the independence hypothesis and analyze departures from the hypothesized 

density function by generating i.i.d. observations from a multivariate Student-t 

distribution with 5 degrees of freedom. 

DGP 2: ,2/1
1 ttt εHAyy += −  where )I,0(Ni.i.d.~ 2tε , 7.011 =a , ,1.012 =a  ,03.021 =a  

85.022 =a , and 2I=H . In this case, we maintain the same density function as that of the 

null hypothesis and analyze departures from the independence assumption by considering 

a linear VAR(1). 

DGP 3: ,2/1
ttt εHy =  ),I,0(Ni.i.d.~ 2tε  with GHGAyyACH tttt 111 −−− ′+′′+=  and 

parameter values 2
2/1 I1.0 ×=A , 2

2/1 I85.0 ×=G , and VGGVAAVC ′−′−=  where V is 

the unconditional covariance matrix with 12211 == vv  and 5.012 =v . In this case, we 

analyze departures from both independence and density functional form by generating 

data from a system with multivariate conditional heteroscedasticity. 
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In Table 2.4 we report the power of the l
nJ -statistic. The test is the most powerful 

to detect departures from density functional form (DGP 1) as the rejection rates are 

almost 100% even in small samples. For departures from independence, the test has 

better power to detect dependence in the conditional mean (DGP 2) than in the 

conditional variance (DGP 3). As expected, in the case of the VAR(1) model (DGP 2), 

the power decreases as l becomes larger indicating first order linear dependence. The 

power is also very good (69%) for small samples of 250 observations. In the case of the 

GARCH model (DGP 3), the rejection rate reaches 60%  for sample sizes of 500 

observations and above. 

As expected, in Table 2.5 we observe that the goodness-of-fit test, nJ
~
, has the 

largest power for DGP 1 and it is not very powerful for DGP 2. It has reasonable power 

against DGP 3 mainly for samples of 1000 observations and above. 

We find a similar message in Table 2.6 when we analyze the power of the t-

statistics. The tests are the most powerful to detect DGP 1, the least powerful to detect 

DGP 2, and acceptable power against DGP 3 for samples of 1000 observations and 

above. There is a substantial drop in power for the 11t  test (90% contour) for the cases of 

DGP 1 and DGP 3. This behavior is similar to that encountered in the univariate test 

introduced in Chapter I. This is a result due to the specific density under the null. In the 

case of DGP 1, for some contour coverage levels the normal density and the Student-t are 

very similar. Hence it is very difficult for any test to discriminate the null from the 

alternative with respect to the coverage level of those contour planes. A similar argument 
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applies to DGP 3 as well, since the GARCH structure in the conditional covariance 

matrix is associated with a non-normal unconditional density. 

 

4   Empirical Applications 

In this section we apply the proposed testing methodology to the generalized residuals of 

multivariate GARCH models fitted to U.S. stock return data. Our data set consists of 

daily excess returns on five size portfolios, i.e. portfolios sorted with respect to market 

capitalization in an increasing order.
3
 The sample period runs from January 2, 1996 to 

December 29, 2006, providing a total of 2770 observations. A plot of the data is provided 

in Figure 2.2. 

Since we are working with daily data we assume a constant conditional mean 

vector. In terms of the multivariate GARCH specifications, we consider two popular 

alternatives: the BEKK model of Engle and Kroner (1995) and the DCC model of Engle 

(2002). Define µyu tt −=  where µ is the constant conditional mean vector. Then the 

),1,1(BEKK K  specification for the conditional covariance matrix, ]|[ 1−ℑ′≡ tttt uuEH , 

is given by 

∑∑ = −= − ′+′′+′=
K

j jtj
K

j jttjt GHGAuuACCH
1 11 1 .                            (8) 

In our applications we set 1=K  and use the scalar version of the model due to 

parsimony considerations where kIαA = , kIβA = , and α and β are scalars. We also use 

                                                 
3 Data is obtained from Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. 

We are grateful to him for making this data publicly available. 
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variance targeting to facilitate estimation, i.e. we set  VGGVAAVCC ′−′−=′  where 

][ ttuuEV ′= , e.g. Ding and Engle (2001). 

In the DCC specification, conditional variances and conditional correlations are 

modeled separately. Specifically, consider the following decomposition of the conditional 

covariance matrix: tttt DRDH =  where },,{ 2/1
,

2/1
,11 tkktt hhdiagD K= , and each element of 

tD  is modeled as an individual GARCH process. In our applications, we consider the 

standard GARCH (1,1) process: 

kjhβuαωh tiiitiiitii ,,1,1,
2
1,, K=++= −− . 

Now define ttt uDz 1−= , then 11 }{}{ −−= tttt QdiagQQdiagR  where 

11)1( −− +′+−−= tttt QβuuαQβαQ ,                                      (9) 

and ][ 1−′= tt zzEQ . 

Under both BEKK and DCC specifications, we consider two alternative 

distributional assumptions that are most commonly used in empirical applications 

involving multivariate GARCH models: multivariate Normal and multivariate Student-t 

distributions. Under multivariate normality, the sample log-likelihood function, up to a 

constant, is given by 

∑∑ ==
′−−=

T

t ttt
T

t tT uHuHθL
11 2

1
)]ln[det(

2

1
)( .                            (10) 

In the case of the DCC model, a two-step estimation procedure is applicable under 

normality as one can write the total likelihood as the sum of two parts where the former 

depends on the individual GARCH parameters and the latter on the correlation 
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parameters. Under this estimation strategy, consistency is still guaranteed to hold. For 

further details on two-step estimation in the DCC model, the interested reader is referred 

to Engle (2002), and Engle and Sheppard (2001). Under the assumption of multivariate 

Student-t distribution, we do not need to estimate the model with the corresponding 

likelihood since the estimates obtained under normality are consistent due to quasi 

maximum likelihood interpretation. Therefore, we obtain the standardized residual 

vectors under normality and then simply test the Student-t assumption on these residuals.
4
 

One remaining issue in the case of Student-t distribution is the choice of the degrees of 

freedom. We follow Pesaran and Zaffaroni (2008) and obtain estimates of the degrees of 

freedom parameters for all series separately and then consider an average of the 

individual estimates for the distributional specification in the multivariate model. 

The results are summarized in Figures 2.3 through 2.6 and Table 2.7. From the 

figures we observe that under both GARCH specifications, the l
nJ -statistics are highly 

statistically significant when multivariate normality is the maintained distributional 

assumption. The l
nJ -Statistics of the BEKK model are larger than those obtained under 

the DCC specification. Furthermore, there is an obvious pattern in the behavior of the 

statistics as a function of the lag order, especially under the BEKK specification. This 

indicates that the rejection is partly due to remaining dependence in the model residuals. 

When we switch to the multivariate Student-t distribution with 11 degrees of freedom,
5
 

                                                 
4 Note that in the specification of the multivariate Student-t distribution (see Section 2), the covariance 

matrix is already scaled to be an identity matrix, thus no re-scaling of residuals is necessary to implement 

the test, e.g. Harvey, Ruiz and Santana (1992). 
5 This value is obtained by averaging individual degrees of freedom estimates obtained from individual 

GARCH models under Student-t density. 
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the l
nJ -statistics go down substantially under both multivariate GARCH specifications. 

Hence, we can argue that the distributional assumption plays a greater role in the 

rejection of both models under normality. The l
nJ -statistics are barely significant at 5% 

level for only a few lag values under the DCC specification coupled with multivariate 

Student-t distribution. However, under the BEKK specification, l
nJ -statistics are 

significant at early lags, even at 1% level. Table 2.7 reports individual t-statistics and the 

nJ
~

-statistics. Both types of test statistics indicate that normality is very strongly rejected 

under both GARCH specifications. Similar to the case of l
nJ -statistics, the results 

dramatically change when the distributional assumption is altered to multivariate Student-

t. The DCC model produces better results with respect to both types of test statistics, but 

especially chi-squared test strongly supports the DCC specification compared to the 

BEKK model. Combining the information from all test statistics we can conclude that 

multivariate normality is a bad assumption to make regardless of the multivariate 

GARCH specification. Furthermore, the DCC model with multivariate Student-t 

distribution does a good job in terms of capturing dependence and producing a reasonable 

fit with respect to density functional form. 

 

5   Conclusion 

Motivated by the relative scarcity of tests for dynamic specification and density 

functional form in multivariate time series models, we proposed a new battery of tests 

based on the concept of “autocontour” introduced Chapter I for univariate processes. We 
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developed t-tests based on a single autocontour and also more powerful chi-squared tests 

based on multiple autocontours, which have standard asymptotic distributions. We also 

developed a second type of chi-squared test statistic, which is informative as a goodness-

of-fit test when combined with the first type of chi-squared test. Monte-Carlo simulations 

indicate that the tests have good size and power against dynamic misspecification and 

deviations from the hypothesized density. We applied our methodology to multivariate 

GARCH models and showed that the DCC specification of Engle (2002) coupled with a 

multivariate Student-t distribution provides a fine model for multivariate time 

dependence in a relative large system of stock returns. 
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Tables and Figures 
 

Table 2.1a: Size of the l
nJ -statistics 

T 1
13J  2

13J  3
13J  4

13J  5
13J   1

13J  2
13J  3

13J  4
13J  5

13J  

 Panel a: Normal ( 2=k )  Panel b: Student-t ( 2=k ) 

250 11.3 11.3 11.6 8.8 11.8  10.5 11.0 10.5 12.3 9.4 

500 6.5 6.0 5.8 5.9 8.0  7.5 5.8 5.9 7.0 6.2 

1000 6.8 5.0 6.2 5.3 4.9  7.2 5.2 5.1 5.4 6.0 

2000 6.4 5.1 5.7 4.1 4.8  7.2 5.8 5.5 6.4 6.4 

 Panel a: Normal ( 5=k )  Panel b: Student-t ( 5=k ) 

250 12.7 11.8 11.5 14.0 12.9  10.4 11.7 12.3 10.3 11.6 

500 9.2 8.4 6.9 7.6 8.3  7.3 6.6 7.3 7.9 8.1 

1000 6.3 7.1 5.5 6.0 6.4  5.9 4.8 6.6 5.7 7.8 

2000 5.3 5.6 5.3 3.4 6.5  6.9 4.8 5.7 5.5 5.4 

 

Notes: Simulated size (%) of the l
nJ -statistics under multivariate standard normal distribution 

( ),0(.i.i.d~ kt INε ) and multivariate student-t distribution ( )5,I,0(ti.i.d.~ ktε ). Number of MC 

replications is 1,000 and nominal size is 5%.  

 

Table 2.1b: Size of the l
nJ -statistics under Parameter Uncertainty 

T 1
13J  2

13J  3
13J  4

13J  5
13J   1

13J  2
13J  3

13J  4
13J  5

13J  

 Panel a: Normal ( 2=k )  Panel b: Student-t ( 2=k ) 

250 8.1 6.1 7.3 7.5 6.9  6.8 6.4 7.8 6.5 6.0 

500 7.5 5.9 5.8 7.3 7.4  7.5 6.7 8.3 8.0 8.1 

1000 8.1 5.8 8.0 7.3 6.6  8.5 6.9 8.8 8.3 7.6 

2000 5.7 5.4 7.7 6.4 4.8  6.2 7.6 7.6 6.4 7.0 

 Panel a: Normal ( 5=k )  Panel b: Student-t ( 5=k ) 

250 10.5 9.3 7.7 9.2 8.1  7.1 7.3 6.3 7.2 6.3 

500 7.7 6.9 6.3 6.9 7.6  6.8 5.5 6.0 6.9 6.4 

1000 5.9 6.1 7.1 5.5 5.5  6.4 5.7 6.8 7.5 6.6 

2000 8.0 8.0 7.4 6.8 7.1  7.0 6.5 7.3 6.3 7.9 

 

Notes: Simulated size (%) of the l
nJ -statistics when parameter estimation is involved. The model is 

tt εHµy 2/1+=  and tε  is either multivariate standard normal ( ),0(.i.i.d~ kt INε ) or multivariate student-t 

( )5,I,0(ti.i.d.~ ktε ) distributed. Number of MC replications is 1,000, number of  bootstrap replications is 

500, and nominal size is 5%. 
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Table 2.2a: Size of the nJ
~
-statistics (n = 13) 

 Normal Student-t 

T 2=k   5=k  2=k  5=k  

250 5.7 6.3 4.3 6.6 

500 4.9 5.3 3.1 5.1 

1000 5.7 5.7 5.6 5.3 

2000 5.6 6.2 4.9 5.6 

 

Notes: Simulated size (%) of the nJ
~
-statistics under multivariate standard normal distribution 

( ),0(.i.i.d~ kt INε ) and multivariate student-t distribution ( )5,I,0(ti.i.d.~ ktε ). Number of MC 

replications is 1,000 and nominal size is 5%.  

 

 

 

Table 2.2b: Size of the nJ
~
-statistics (n = 13) under Parameter Uncertainty 

 Normal Student-t 

T 2=k   5=k  2=k  5=k  

250 6.9 9.1 7.3 6.8 

500 7.0 6.1 6.8 6.7 

1000 6.7 5.5 6.7 5.6 

2000 6.4 7.4 6.8 5.7 

 

Notes: Simulated size (%) of the nJ
~
-statistics when parameter estimation is involved. The model is 

tt εHµy 2/1+=  and tε  is either multivariate standard normal ( ),0(.i.i.d~ kt INε ) or multivariate student-t 

( )5,I,0(ti.i.d.~ ktε ) distributed. Number of MC replications is 1,000, number of bootstrap replications is 

500, and nominal size is 5%. 
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Table 2.3: Size of the t-statistics under Parameter Uncertainty 

T 1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  
11t  12t  13t  

 Panel a: Normal ( 2=k ) 

250 5.0 4.6 5.2 5.1 6.5 6.7 5.7 4.9 5.2 4.6 6.0 4.8 2.0 

500 4.3 4.2 5.3 5.4 4.1 4.6 4.5 5.1 5.3 5.2 5.1 4.7 6.4 

1000 4.7 4.2 5.2 5.8 5.4 5.5 5.2 5.7 5.7 4.6 5.9 7.6 3.7 

2000 5.4 3.9 5.1 4.0 5.0 5.3 5.3 6.2 4.8 5.9 4.3 6.4 4.9 

 Panel b: Normal ( 5=k ) 

250 4.5 6.2 5.3 5.0 4.5 5.2 5.3 5.8 5.5 5.1 6.1 6.7 2.1 

500 4.1 4.8 5.8 4.8 6.0 5.6 5.3 6.4 6.5 4.3 6.3 6.0 6.3 

1000 3.8 5.3 5.7 5.3 4.9 5.2 3.8 3.3 4.6 5.3 6.0 4.7 3.9 

2000 4.5 5.3 5.0 5.0 4.6 4.1 5.4 6.0 4.6 5.5 5.5 4.4 6.5 

Panel c: Student-t ( 2=k ) 

250 4.5 5.1 5.3 4.9 4.9 6.0 4.8 4.6 4.5 5.4 5.7 4.3 8.7 

500 4.5 6.1 5.9 4.8 4.5 4.2 4.9 5.3 4.2 5.3 6.1 5.9 4.9 

1000 4.3 5.9 6.4 5.8 5.7 5.5 6.6 6.4 5.9 5.8 5.5 6.0 6.3 

2000 5.7 5.0 5.2 5.4 5.5 4.7 5.4 5.9 5.5 5.0 4.9 5.2 4.8 

Panel d: Student-t ( 5=k )  

250 4.5 5.5 4.8 4.6 5.8 6.0 7.6 6.7 7.0 6.6 5.8 4.1 8.4 

500 4.6 5.4 6.4 4.9 4.9 6.6 5.8 7.1 7.7 6.5 5.4 5.0 5.9 

1000 3.4 4.2 4.9 5.5 4.7 6.2 5.8 5.3 5.2 6.0 5.2 4.7 3.7 

2000 5.1 5.6 5.3 5.2 5.2 5.0 5.3 4.4 5.3 6.1 5.0 5.1 3.8 

 

Notes: Simulated size (%) of the t-statistics when parameter estimation is involved. The model is 

tt εHµy 2/1+=  and tε  is either multivariate standard normal ( ),0(.i.i.d~ kt INε ) or multivariate student-t 

( )5,I,0(ti.i.d.~ ktε ) distributed. Number of MC replications is 1,000, number of bootstrap replications is 

500, and nominal size is 5%. 
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Table 2.4: Power of the l
nJ -statistics under Parameter Uncertainty 

T 1
13J  2

13J  3
13J  4

13J  5
13J  

 Panel a: DGP 1 

250 98.6 98.2 98.6 97.8 98.3 

500 100.0 100.0 100.0 100.0 100.0 

1000 100.0 100.0 100.0 100.0 100.0 

2000 100.0 100.0 100.0 100.0 100.0 

 Panel b: DGP 2 

250 68.9 40.2 26.6 19.3 16.5 

500 93.6 60.0 38.1 27.9 20.4 

1000 99.9 84.8 58.0 39.2 28.9 

2000 100.0 99.4 83.7 59.8 40.6 

Panel c: DGP 3 

250 35.5 36.0 32.9 31.9 31.9 

500 62.8 61.6 60.5 61.4 60.3 

1000 90.5 88.8 88.1 86.9 86.7 

2000 99.4 99.6 99.7 98.9 99.2 

 

Table 2.5: Power of the nJ
~
-statistics (n = 13) under Parameter Uncertainty 

T DGP 1  DGP 2 DGP 3 

250 99.1 12.4 19.7 

500 100.0 12.1 44.5 

1000 100.0 12.9 70.2 

2000 100.0 14.2 94.7 

 

Notes: Simulated power (%) of the l
nJ  and nJ

~
 statistics when parameter estimation is involved. Number 

of MC replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. See the text 

for a detailed description of the alternative DGPs. 
 

 

 

 

 

 

 

 

 

 

 

 



 96 

Table 2.6: Power of the t-statistics under Parameter Uncertainty 

T 1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  
11t  12t  13t  

 Panel a: DGP 1 

250 23.1 55.3 76.6 91.8 96.1 97.7 98.0 96.6 89.9 59.6 8.5 33.7 85.2 

500 32.3 80.6 95.3 99.5 100.0 100.0 100.0 100.0 99.4 85.6 8.6 57.8 98.5 

1000 49.7 97.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 98.9 14.0 78.7 100.0 

2000 75.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 16.2 94.9 100.0 

 Panel b: DGP 2 

250 3.3 4.7 8.4 11.2 11.1 12.4 13.4 11.0 7.3 6.7 9.7 11.6 3.5 

500 3.6 5.6 7.6 11.5 12.8 11.5 11.8 11.0 8.9 7.0 7.2 10.9 13.1 

1000 5.1 6.4 8.4 11.2 13.5 14.0 11.7 11.9 9.6 7.1 7.9 11.9 13.2 

2000 4.4 6.7 9.2 10.8 13.3 15.3 14.6 11.6 9.5 8.7 8.7 12.3 14.0 

Panel c: DGP 3 

250 5.6 7.2 10.7 12.8 15.3 17.6 18.5 18.7 14.6 8.3 6.3 9.0 17.0 

500 7.2 11.9 17.7 25.5 33.4 38.3 41.5 41.1 32.6 15.6 5.3 20.0 48.0 

1000 8.1 20.5 31.4 46.3 58.6 64.3 68.7 67.1 59.1 32.1 8.6 34.8 70.4 

2000 13.5 35.3 56.8 77.7 86.7 91.5 92.8 91.8 85.4 54.7 9.5 60.0 93.5 

 
Notes: Simulated power (%) of the t-statistics when parameter estimation is involved. Number of MC 

replications is 1,000, number of bootstrap replications is 500, and nominal size is 5%. See the text for a 

detailed description of the alternative DGPs. 
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Table 2.7: Individual t and  13

~
J -statistics for Estimated GARCH Models 

 
BEKK 

Normal 

DCC 

Normal 

BEKK 

Student-t 

DCC 

Student-t 

1t  -1.85 -2.17 2.78 2.30 

2t  -8.52 -10.18 -0.31 -0.38 

3t  -9.97 -12.26 1.00 -0.64 

4t  -9.37 -11.22 0.84 -0.10 

5t  -10.34 -11.81 2.47 0.18 

6t  -11.54 -10.95 1.13 0.95 

7t  -9.28 -10.03 0.09 0.50 

8t  -6.85 -7.19 0.25 0.59 

9t  -2.74 -5.70 0.92 -0.32 

10t  0.24 -1.52 0.66 -0.89 

11t  5.39 2.17 0.08 -3.51 

12t  8.23 5.58 1.00 -1.30 

13t  12.18 12.50 1.26 0.74 

         

13

~
J  351.47 388.54 30.07 24.35 
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Figure 2.1: Contour and Autocontour Plots under Normal and Student-t Distributions 

 

Panel a: αC  under bivariate Normal and Student-t Distributions }99.0,9.0,7.0,5.0{∈α  
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Panel b: αlC ,  under bivariate Normal and Student-t Distributions }99.0,9.0,7.0,5.0{∈α  
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Figure 2.2: Daily Excess Returns on Five Size Portfolios (1/2/996-12/29/2006) 

(From the smallest quintile portfolio to the largest quintile portfolio) 
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Figure 2.3: lJ13 -statistics of BEKK Model under Multivariate Normal Distribution 
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Figure 2.4: lJ13 -statistics of DCC Model under Multivariate Normal Distribution 
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Figure 2.5: lJ13 -statistics of BEKK Model under Multivariate Student-t Distribution 
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Figure 2.6: lJ13 -statistics of DCC Model under Multivariate Student-t Distribution 
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CHAPTER III 

TESTING AND MODELING THRESHOLD ASYMMETRIES IN 

MULTIVARIATE DISTRIBUTIONS OF U.S. EQUITY RETURNS 

 

 

1   Introduction 

Modeling multivariate distributions of asset returns has crucial applications in asset 

pricing, portfolio allocation, and risk management. Extensive evidence in favor of various 

forms of asymmetries in stock return distributions has been documented in different 

contexts. It is well known that a broadly defined stock index has different expected return 

and volatility characteristics in bull versus bear markets, e.g. Maheu and McCurdy 

(2000). More recent empirical evidence shows that dependence between stocks also 

exhibit similar asymmetries. Longin and Solnik (2001) document significant asymmetric 

tail dependence between the U.S. stock market and international markets by using 

extreme value theory. Ang and Chen (2002) compare correlation asymmetry in the data 

with the pattern implied by a statistical model and find that U.S. equity portfolios have 

higher correlations with the market when returns are negative, and especially large in 

absolute value. Correlation asymmetries tend to be strong for small stocks, value stocks 

and past loser stocks. Hong et al. (2007) propose a nonparametric kernel based method to 

test for potential correlation and beta asymmetries in the data. According to their 

findings, correlations of small stocks with the market portfolio exhibit significant 
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asymmetries, but symmetric correlations cannot be rejected for book-to market and 

momentum portfolios. They also find a strong association between correlation and beta 

asymmetry. 

The aforementioned asymmetries have important implications for financial 

decisions, so a realistic multivariate model of stock returns should account for them. Ang 

and Chen (2002) argue that a bivariate Markov-switching model performs well in terms 

of matching the magnitudes of asymmetric correlations and also modeling mean and 

volatility asymmetries.
1
 On the other hand, Hong et al. (2007) use a multivariate mixture 

copula model to capture asymmetric dependence. Their in-sample analysis indicates that 

investors can obtain substantial utility gains by incorporating asymmetric dependence in 

their portfolio decisions. Patton (2004) adopts a copula approach to investigate the out-

of-sample importance of asymmetric dependence in equity returns for portfolio decisions, 

using data on large and small cap stocks. He finds that modeling asymmetric dependence 

can be beneficial for unconstrained investors. 

In this chapter we use a multivariate threshold approach to test and model 

asymmetries in expected returns, volatilities, correlations, and betas. The threshold 

approach offers a unified framework in which one can test for general regime switching 

dynamics with respect to observable state variables, construct a model that can 

incorporate the nonlinearities, and statistically assess significance of specific types of 

asymmetries in the data. We use monthly data on equity portfolios sorted on market 

capitalization, ratio of book value to market value, and industry classification. 

                                                 
1 Perez-Quiros and Timmermann (2000), Tu (2007) and Guidolin and Timmermann (2008) also adopt the 

Markov-Switching approach to analyze various asymmetric features of equity return data. 
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A natural starting point is to test for the presence of threshold effects, which also 

guides us in terms of choosing the variable driving the regimes. We construct threshold 

variables based on the three stock market factors of Fama and French (1993) (market 

excess return, size premium, and value premium), monthly realized volatility of the 

market portfolio, term spread, growth in industrial production, and changes in the 

unemployment rate. We consider this comprehensive set of alternatives as we aim to 

capture regime changes with respect to systematic risk factors driving stock returns, 

which are also observable. Test results obtained in the arranged regression framework of 

Tsay (1998) indicate strong threshold effects for all three portfolio groups. The most 

evident rejections of linearity in favor of threshold models are obtained under the Fama-

French factors, term spread, and growth in industrial production. 

For model specification we refine the alternatives implied by test results with 

respect to Schwarz information criterion and also consider the behavior of the model sum 

of squares as a function of the threshold. This leads us to settle on two regime threshold 

models resembling the familiar bull versus bear taxonomy in the stock market. We find 

that market excess return is the preferred threshold variable for the size portfolios while 

value premium is selected for the book-to-market group. Both market excess return and 

term spread are suitable threshold variables for the industry portfolios. To make results 

comparable across the portfolio groups, we consider the model with market excess return 

as the threshold variable for the book-to-market group as well. Estimation results show 

that the model using market excess return provides a good fit for all three portfolio 

groups and produces results in line with previous findings obtained in different settings. 
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We find that small caps, value firms, and the Durables industry exhibit the strongest 

expected return asymmetries. Volatility asymmetry is a common feature of all stock 

portfolios. By focusing on the correlation with the market in each regime, we find that 

defensive industries, small caps, and value firms display the biggest differences across 

regimes. Correlations increase during downturns. Point estimates suggest relatively 

stronger beta asymmetry for medium sized firms, value firms, and defensive industries. 

In order to assess statistical significance of the above mentioned asymmetries, we use the 

subsampling method of Politis et al. (1999). Asymmetries in expected returns are 

significant for the majority of the portfolios with the exceptions of large caps and 

defensive industries. Volatility asymmetries are significant for all portfolio groups. In 

general, correlation asymmetries that are relatively big in magnitude also tend to be 

statistically significant. A similar observation applies to betas, but we also find that betas 

on average are subject to more uncertainty compared to correlations. 

We evaluate out-of-sample predictive ability of the proposed threshold models 

relative to a linear benchmark. We consider two economic loss functions for this purpose: 

ex-post Sharpe ratio and realized utility of a quadratic utility investor over the forecast 

horizon. Our results indicate that substantial economic gains can be obtained by modeling 

asymmetries in the conditional distributions of returns in a threshold framework. With 

respect to Sharpe ratio, the threshold models are superior to the linear benchmark for all 

portfolio groups. These gains are also found to be statistically significant using the 

stationary bootstrap method. In terms of certainty equivalent utility gains, the threshold 

model outperforms the linear model by a substantial margin for the size portfolios, which 
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is also statistically significant. For book-to-market and industry groups, the threshold 

model performs better for highly risk averse investors but the differences are not 

statistically significant at conventional levels. 

To our knowledge this study is the first to adopt a threshold approach to investigate 

various forms of asymmetries in multiple equity portfolios sorted on different 

characteristics. We statistically determine the drivers of regime switching behavior from 

a comprehensive set of variables and also provide insight on return-volatility dynamics. 

We go beyond the tests of general regime-switching and test significance of specific 

types of asymmetries across regimes, using subsampling methods. Our findings on 

correlation asymmetries are mostly in line with that of Ang and Chen (2002). However, 

we find asymmetries smaller in magnitude, which is possibly because they focus on 

correlations calculated conditional on contemporaneous realizations of returns and give 

more weight to tail behavior. In the vein of Hong et al. (2007), we also find a strong 

association between correlation asymmetry and beta asymmetry, but contrary to their 

results we do find significant asymmetries for book-to-market portfolios. Our results on 

portfolio allocation reinforce findings of Patton (2004) in terms of the potential benefits 

of modeling asymmetric dependence for unconstrained investors. However, we make use 

of a larger number of equity portfolios and find bigger certainty equivalent gains, which 

can be due to differences in model specification and choice of the loss function. 

The rest of the chapter is organized as follows. Section 2 is devoted to 

methodological issues. A brief discussion comparing the threshold approach with the 

alternative modeling strategies is followed by a thorough presentation of the current 
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methodology. In Section 3 we provide a detailed description of the data and present the 

empirical results. Concluding remarks and directions for future research are provided in 

Section 4. 

 

2   Methodology 

2.1  Why Threshold Models? 

To our knowledge, no previous study used the threshold approach to model equity returns 

in a multivariate framework. To motivate the threshold approach further, let us provide a 

brief comparison with alternative modeling strategies. Threshold models feature regime 

switching, which proved to be a successful modeling strategy for financial data. In this 

regard, the closest alternative is the Markov-switching type of models, in which regimes 

are driven by unobservable Markov-chains. Threshold models feature observable state 

variables, which allow the researcher to relate certain asymmetric features of the data 

with observable financial and economic factors. This makes interpretation of the results 

easier and also simplifies estimation and inference greatly compared to Markov-

switching models.
2
 

Another recently popular alternative is the Copula approach, which provides a very 

flexible framework for modeling asymmetric dependence. An important issue in copula 

based modeling is that multiple copula functions may provide similar fit to the data and 

                                                 
2 Note also that it is standard practice to assume that the process driving the regimes is weakly exogenous 

with respect to the variables of interest in Markov-switching models. On the other hand, endogenous 

regime switching is straightforwardly incorporated in the threshold framework. 
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cannot be statistically distinguished from each other, e.g. Patton (2006). Furthermore, 

Copula functions are confined to the analysis of asymmetric dependence only. 

High-dimensional data sets are relatively easily handled in the threshold framework 

while numerical optimization becomes very problematic for both Markov-switching and 

Copula based models as dimensionality increases. Hong et al (2007) and Tu (2007) deal 

with this problem by using Bayesian inference techniques, which are very 

computationally intensive, for copula and Markov-switching models respectively. A 

multivariate threshold model can be estimated in a matter of seconds without resorting to 

gradient-based numerical optimization or simulation methods. 

2.2  The Model 

The object of interest is a k-dimensional vector process, ),,( 1 ′= kttt yyy K . The 

multivariate threshold autoregressive model is given by 

∑ = −− +≤<′=
s

j tjdtjtjt uγzγXy
1 1 )(1Φ ,                                  (1) 

where )Α,,Α,(Φ 1
′= j

p
j

jj c K , ),,,1( 1 ′′′= −− pttt yyX K , tz  is the threshold variable, d is 

the delay lag, s
jjγ 0}{ =  are the thresholds such that −∞=0γ  and ∞=sγ , (.)1  is a standard 

indicator function, and ∑ = −− ≤<=
s

j jdtjtjt γzγεu
1 1

2/1 )(1Ω  where }{ tε  is a vector 

martingale difference sequence with zero mean and identity covariance matrix. Notice 

that there are s different regimes in which ty  follows a linear process, but the general 

dynamics of ty  over time is described by a nonlinear process. 
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Obviously, when 1=s  the threshold model boils down to a linear model, which is 

much simpler to deal with in terms of estimation and inference. Thus, it is of practical 

interest to test whether the threshold model is needed in the first place. A Wald or 

likelihood ratio type testing approach for the existence of threshold effects is complicated 

by the presence of unidentified nuisance parameters under the null. In particular, under 

the null hypothesis of linearity, i.e. sH ΦΦ: 10 ==L , and sΩΩ1 ==L , the delay and 

the thresholds parameters are not identified. Consequently, the test statistics have 

nonstandard asymptotic distributions. Davies (1977) suggests using upper bounds for the 

critical values to deal with the problem, but Hansen (1996) argues that this is not a valid 

approach in the case of threshold models. He conducts Monte-Carlo simulations in the 

univariate threshold framework and shows that Davies’ procedure behaves very 

conservatively. Hansen suggests using a bootstrap procedure to approximate the 

asymptotic distribution of the likelihood ratio test. Theoretical validity of his approach 

relies on local-to-null parameterization, i.e. the alternative converges to the null as 

sample size gets larger. Tsay (1998), on the other hand, proposes a different approach 

that is much less demanding in terms of computational burden and operates under 

standard asymptotic theory. These properties are especially important in our applications 

since we analyze high dimensional data sets with reasonably large number of 

observations. Hence, a detailed description of this approach is given below. 

2.3  Threshold Nonlinearity Test based on Arranged Regression 

Let us rewrite the model given in (1) under the null of linearity, i.e. when 1=s : 

nhtuXy ttt ,,1,Φ K+=+′= ,                                          (2) 
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where ),max( dph = . If the null is true then the least squares estimates of the parameters 

of the model in (2) will be consistent under mild regularity conditions. However, under 

the alternative of threshold nonlinearity, least squares estimates based on (2) will be 

inconsistent and residuals will not be white noise. Tsay (1998) notes that if one arranges 

the ordering of the setup with respect to the threshold variable, the linear model is still 

useful under the alternative. In a given sample, the threshold variable takes values in 

},,{ 1 dndh zzZ −−+= K . Let )(iz  and )(it  denote the i
th
 smallest element of Z and its time 

index respectively. Then the arranged regression with respect to increasing order of the 

threshold variable is 

hniuXy ditditdit −=+′= +++ ,,1,Φ )()()( K .                                (3) 

Rearranging the model with respect to the threshold variable preserves the dynamics of 

the data while transforming the threshold problem into a change-point problem in terms 

of testing. Let mΦ̂  denote the least squares estimate of Φ based on the first m 

observations and consider predictive residuals and their standardized versions based on 

equation (3) 

dmtmdmtdmt Xyu ++++++ ′−= )1()1()1( Φ̂ˆ , 

2/1
)1()1(

)1(
)1(

]1[

ˆ
ˆ

dmtmdmt

dmt
dmt

XVX

u
η

++++

++
++

′+
= , 

where 
1

1 )()(

−

= ++ 



 ′= ∑m

i ditditm XXV . Now, consider the following regression 

hnmlwXη dltdltdlt −+=+′= +++ ,,1,Ψˆ 0)()()( K ,                            (4) 
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where 0m  denotes the starting point of the recursive least squares estimation.
3
 Then 

testing for the threshold effect amounts to testing 0Ψ:0 =H  against the alternative 

0Ψ:1 ≠H . To this end, Tsay proposes the following test statistic 

)]}ln[det()]{ln[det()1()( 100 SSkpmhndC −×−−−−= , 

where ∑ −
+= ++ ′

−−
=

hn

ml dltdlt ηη
mhn

S
1 )()(

0
0

0

ˆˆ
)(

1
, ∑ −

+= ++ ′
−−

=
hn

ml dltdlt ww
mhn

S
1 )()(

0
1

0

ˆˆ
)(

1
, 

and tŵ  is the residual of the regression given in equation (4). Under mild regularity 

conditions, )(dC  has an asymptotically chi-squared distribution with )1( +kpk  degrees 

of freedom. Conditional heteroskedasticity can be easily accommodated in this 

framework by modifying the way predictive residuals are standardized. Specifically, 

2/1
)1()1(

2

)1(,
)1(,

]ˆ[

ˆ
ˆ

dmtmdmtj

dmtj
dmtj

XVXσ

u
η

++
∗

++

++
++

′+
= , 

where ∑ = +
−−−=

m

i ditjj ukpmσ
1

2
)(,

12 ˆ)1(ˆ , m
m

i ditditditjmm VXXuVV 



 ′= ∑ = +++

∗
1 )()(
2

)(,ˆ , and 

mV  is defined above. We use this version of the test statistic in our applications since 

time varying volatility is a renowned characteristic of stock returns, e.g. Andersen et al. 

(forthcoming). 

 

 

                                                 
3 Choice of m0 is critical since it determines the trade off between having good power on the one hand, and 

a reliable starting regression on the other. Tsay (1998) suggests m0 ≈ 3n
1/2 for stationary data and m0 ≈ 5n

1/2 

for nonstationary data. We consider m0 = cn
1/2 where }5,4{∈c  and . is the ceiling function since 

monthly returns are subject to a high degree of uncertainty and a large number of observations are crucial 

for a reliable starting regression. The results are qualitatively similar for 4=c  and 5=c , so we report the 

results with 5=c  as it yields more observations for starting  the regression. 
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2.4  Estimation 

The estimation of the multivariate threshold model can be performed by conditional least 

squares (CLS). Given the threshold and the delay, the model reduces to s linear 

regressions for which the least squares estimation is straightforward. For ease of 

exposition let us focus on the case where there are only two regimes, i.e. 2=s . In this 

case the model is given by 

tdttdttt uγzXγzXy +>′+≤′= −− )(1Φ)(1Φ 1211 . 

Let ))(1,)(1(
~

11 ′′>′≤= −− tdttdtt XγzXγzX  and )Φ,Φ(Θ 21 ′′′= , then the model can be 

written as ttt uXy +′=
~

Θ . Based on this compact form, the CLS estimates of the 

intercepts and the autoregressive coefficients are defined as follows 





 ′





 ′= ∑∑ −

=

−−
=

hn

t tt
hn

t tt yXXXdγ
1

1

11

~~~
),(Θ̂ .                                    (5) 

Let ttt Xdγyu
~
),(Θ̂ˆ 1′−= , then the total sum of squares is given by 

( )∑ =
′=

n-h

t ttuudγSSR
11 ˆˆtr),( , where (.)tr  denotes the trace operator. The CLS estimates of 

1γ  and d are obtained from 

),(minarg)ˆ,ˆ( 1
,

1

1

dγSSRdγ
dγ

=  

where ],1[ dd ∈  and 01 ℜ∈γ , ℜ⊂ℜ0 , i.e. 0ℜ  is a bounded subset of the real line. In 

practice, we consider Zγ ∈1 , where Z  is a trimmed version of the set Z, defined above. 

Following the usual practice in the literature we trim 15% from the top and bottom of Z, 
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e.g.  Hansen (1996). The resultant least squares estimate of Θ is )ˆ,ˆ(Θ̂ 1 dγ  and the 

covariance matrix estimates are defined analogously 

2,1,ˆˆ
1

1
)ˆ,ˆ(Ω̂

11 =′
−−

= ∑ −
=

juuI
kpn

dγ
hn

t ttjt
j

j ,                             (6) 

where jn  is the number of observations in regime j, )(1 11 γzI dtt ≤= − , and 

)(1 12 γzI dtt >= − . The following theorem establishes asymptotic properties of the CLS 

estimators.
4
 

Tsay (1998) shows that under suitable regularity conditions the CLS estimators are 

consistent and the threshold estimate converges at rate n while the other model 

parameters are root-n consistent and asymptotically normal. This result provides a very 

practical first-order asymptotic approximation to the sampling distribution of the CLS 

estimates of the intercepts and autoregressive coefficients. One just needs to form 

consistent estimates of the associated asymptotic covariance matrices to make this 

approximation operational. However, the sampling error in the estimation of the 

threshold parameter is completely ignored in this setup. This poses an important problem 

in terms of inference since the point estimate of the threshold is likely to be different 

from its true value in finite samples despite consistency at rate n. Furthermore, Chan 

(1993) showed that the limiting distribution of the threshold estimate depends on several 

nuisance parameters, which renders inference with conventional methods unfeasible. 

Hansen (2000) uses local-to-null parameterization to reduce the rate of convergence, 

which in turn allows obtaining a nuisance parameter-free distribution for the threshold 

                                                 
4 We provide a list of the regularity conditions and summarize the asymptotic results in Appendix A. 
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estimator. However, his assumptions are restrictive and the procedure does not readily 

translate into confidence intervals for other model parameters without resorting to some 

ad hoc rule. We deal with this problem by using the subsampling method of Politis et al. 

(1999) to construct asymptotically valid confidence intervals and test statistics. Hence, 

we account for the uncertainty in the threshold estimate when testing for the significance 

of the differences in other parameters across regimes. Gonzalo and Wolf (2005) take the 

same approach for the univariate self exciting threshold autoregressive models.
5
 

 

3   Empirical Results 

3.1  Data 

We analyze a comprehensive data set consisting of equity portfolios classified with 

respect to different characteristics. We consider stocks sorted on market capitalization 

(size portfolios), ratio of book value to market value (book-to-market portfolios), and 

industry classification (industry portfolios). This allows us to analyze portfolio groups 

with different risk-return and dependence characteristics and also compare our results 

with those of the recent literature. Other data used in the analysis are market excess 

return, the size and value factors of Fama and French (1993), term spread (10-year T-

Note yield minus 3-month T-Bill yield), growth rate of the industrial production index, 

and change in the unemployment rate.
6
 All returns, except for size and value factors, are 

                                                 
5 In Appendix B we describe subsampling inference for the threshold. Construction of asymptotic test 

statistics for other model parameters is implemented in an analogous fashion, so we present the arguments 

only for the threshold parameter to save space. 
6 Portfolio returns and the Fama-French factors are obtained from Kenneth French's online Data Library. 

All remaining data are obtained from the FRED database provided by the Federal Reserve Bank of St. 
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in excess of the one month T-Bill rate. We use monthly data and the sample runs from 

July 1963 to December 2007 providing a total of 534 observations. We hold back the last 

60 observations (from January 2003 to December 2007) for out-of-sample analysis. 

3.2  Alternatives for the Threshold Variable 

As we are interested in systematic regime shifts in stock returns we consider functions of 

systematic stock market factors and variables reflecting economic fundamentals as 

potential threshold variables. In particular, we consider the following variables: (i) excess 

return on the value-weighted market portfolio (MKT); (ii) size premium from the Fama-

French factor model, which is the difference between the returns on a small cap portfolio 

and a big cap portfolio (SMB); (iii) value premium from the Fama-French factor model, 

which is the difference between the returns on high versus low book-to-market portfolios 

(HML);
7
 (iv) realized volatility of the market portfolio calculated from daily returns 

(MKTRV); (v) term spread implied by the Treasury yield curve, calculated as the 

difference between the yields on 10-year T-Notes and 3-month T-Bills (SPREAD); (vi) 

percentage change in the monthly industrial production index (IP); and (vii) change in the 

monthly unemployment rate (UR). 

Now let us briefly comment on relevance of these alternatives. Using market excess 

return as the threshold variable can be motivated by the celebrated CAPM, which implies 

that the cross section of expected stock returns is determined by the return on the market 

                                                                                                                                                 
Louis. We are grateful to Kenneth French and the Federal Reserve Bank of St. Louis for making these data 

sets publicly available. 
7 Fama and French (1993) control for the ratio of book value to market value when calculating the size 

premium and vice versa. Hence, SMB and HML reflect the pure size and value effects respectively. See 

Fama and French (1993) for further details regarding the construction of these factors. 
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portfolio. Moreover, in the investment practice bull and bear markets are classified with 

respect to a broadly defined stock market index. Inclusion of size and value premiums is 

due to empirical success of the Fama and French (1993) factor model in explaining the 

cross-section of stock returns. Moreover, Fama and French (1993) argue that size and 

value premiums proxy for unobservable systematic risk factors reflecting economic 

fundamentals since small versus big firms differ in terms of access to credit and a high 

book-to-market ratio is associated with persistently low earnings on book equity. We 

consider realized volatility of the market portfolio since different phases of the stock 

market can potentially be identified with respect to a measure of variability that exploits 

information from  a higher frequency.
8
 We define monthly realized volatility, tRV , as 

follows 

2/1
1

1 ,1,1

2
,

1
2 











−
+= ∑∑ −

= +=
tt m

i titi
t

tm

i tit rr
m

m
rRV ,  nt ,,1K= ,                    (7) 

where tm  and tir ,  denote the number of trading days and i
th
 daily return in month t, 

respectively. The second term is used to account for first order autocorrelation in the 

daily market return, e.g. Hansen and Lunde (2008).
9
 The Treasury term spread proved to 

                                                 
8 Under the assumptions that stock prices follow a special type of martingale and that there is no arbitrage, 

realized volatility consistently estimates the change in quadratic variation process over a certain horizon, 

which is the relevant measure of return variability [Andersen et al. (forthcoming)]. 
9 Note that presence of long-memory in financial asset return volatility is a well established stylized fact, 

e.g. Andersen et al. (2003). Hence, the realized volatility measure violates the mixing assumption required 

for consistency of the CLS estimates in our threshold model. We deal with this problem by modeling 

realized volatility as a fractionally integrated process, following Andersen et al. (2001, 2003, 2006). This 

filters out the long memory component of the realized volatility. Specifically, we use 

)ln()1( t

q

t RVLξ −= , )5.0,0(∈q  where L is the lag operator and q is the degree of fractional integration. 
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be successful in predicting the cycles in the aggregate economy, e.g. Estrella and 

Hardouvelis (1991). Finally, growth in the monthly industrial production index and 

change in the unemployment rate are solid indicators of the performance of the economy. 

3.3  Threshold Nonlinearity Tests 

Testing for the presence of threshold effects is the first step in our empirical exercise. 

While the test results indicate whether the threshold model is needed in the first place, 

they also provide an objective criterion to choose from competing definitions of the 

threshold variable. Intuitively, the test has the highest power when the threshold model is 

correctly specified. That is, a smaller p-value can be taken as an indication of better 

specification with respect to the threshold variable and the delay lag, e.g. Tsay (1989) and 

Teräsvirta (1994). Each major portfolio group contains ten portfolio sorts and the market 

portfolio. We include the market portfolio to explore the extent of the asymmetry in 

portfolio betas and correlations of the portfolios with the market. For selection of VAR 

order to implement the test, we consider Schwarz information criterion due to its 

consistency. Under the null of linearity, Schwarz criterion indicates 0=p  for all 

portfolio groups. This is not surprising given weak autocorrelations in monthly returns 

and difficulty of precisely estimating slope coefficients when dimensionality is high. 

Note also that Ang and Bekaert (2002) and Tu (2007), among others, also adopt regime-

switching models with no autoregressive terms due to parsimony considerations. 

                                                                                                                                                 

Based on previous results in the literature we set 42.0=q . We test the null that 42.0=q  within the log-

periodogram regression framework of Geweke and Porter-Hudak (1983) and obtain a p-value of 0.13. 

Moreover, the threshold non-linearity test results are not sensitive to the choice of the degree of fractional 

integration. We get qualitatively identical results in the empirically relevant range of [0.35, 0.45], which are 

available from the author upon request. 
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Besides the standard delay lag, dtz − , we also consider first lag of average of the 

threshold variable over the past τ-months, i.e. 1
~

−tz , where τzzz τttt /)(~
1+−++= L .

10
 

Tables 3.1 and 3.2 report p-values of the threshold nonlinearity test statistics obtained 

from the arranged regression under the standard delay lag and the averaging scheme 

respectively. Table 3.1 indicates strong threshold effects shared by all portfolio groups 

under the standard delay lag. The null of linearity is rejected for all groups at 5% 

significance level under a variety of threshold variables and delay lag values. For the size 

portfolios the strongest rejections occur under MKT and SMB with a delay lag equal to 

one )1( =d . HML, SPREAD and MKTRV also produce rejections, but with much larger 

p-values. For the book-to-market group, HML )8( =d  and IP )2( =d  yield the most 

significant rejections with p-values of similar magnitude, both smaller than 0.01. On the 

other hand, IP )5( =d  produces the smallest p-value for the industry portfolios followed 

by SMB, MKT, and SPREAD. When we switch to the first lag of the τ-month average, 

set of variables under which the null is rejected is identical that for the size group, except 

for MKTRV. In addition, the null is rejected under a broad range of τ-values for MKT, 

SMB, and SPREAD. The results for the book-to-market group show that IP and HML 

still produce the smallest p-values, but MKT and SMB no longer yield rejections at 5% 

level. For the industry portfolios, IP produces very strong rejections for all values of τ  

followed by SMB ( 3=τ ). In general, size portfolios exhibit the strongest threshold 

asymmetries under both of the threshold schemes we consider. 

                                                 
10 See Hansen (1997) and Tsay (1998) for similar approaches. 
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Interestingly, when market realized volatility is taken as the threshold variable, the 

null of linearity is either not rejected at all or rejections are much weaker compared to 

market excess return. According to our estimation results, discussed below, volatility 

significantly changes across regimes for most of the equity portfolios when market excess 

return is the variable driving regimes. This leads us to the conclusion that causality runs 

from returns to volatilities in the current framework. To be precise, when we consider 

returns and volatilities as distinct stochastic processes it is an innovation to the return 

process that triggers the regime shift and leads to higher/lower volatilities. In relation to 

the literature on the asymmetric relationship between volatility and stock returns, we can 

argue that a leverage type of explanation is empirically more relevant in the current 

context.
11
 

3.4  Model Specification 

The test results indicate strong threshold effects and point out to certain variables for each 

portfolio group. Since the results are obtained from the arranged regression, they are not 

informative about the number of regimes. To refine the competing alternatives further 

and get insight on the number of regimes, we resort to Schwarz information criterion 

calculated under threshold non-linearity, i.e. ∑ =
+=

s

j jjnsdpSIC
1

))Ω̂ln(det([),,(  

)]1()ln( +kpkn j .
12
 Moreover, we consider plot of the SSR as a function of the threshold 

in a two-regime model as an informal criterion to determine the number of regimes, i.e. 

                                                 
11 See Bollerslev et al. (2006) for a comprehensive list of references on the asymmetry between stock 

returns and volatility. They also provide an empirical investigation of the issue using intra-daily data and 

find that causality is from returns to volatility. 
12 This form of the Schwarz information criterion obtains under the assumption of mixtures of normal 

distributions, which proved to be very successful for financial data. 
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two minima distant from each other suggest a three-regime specification while a single 

global minimum is indicative of two-regimes. Finally, we check the sensitivity of the 

threshold estimate to trimming percentage by considering 10% and 7.5% besides the 

conventional 15% level, and abandon the specifications that are not robust. 

For the size group, SMB and MKT with 1=d  stand out under the standard delay 

lag. We first consider SMB and observe that SSR as a function of the threshold suggests 

a three regime specification.
13
 SIC goes down from 1,747.02 to 1,605.66 when we move 

from the two-regime specification to three regimes. However, the three-regime 

specification is sensitive to the level of trimming percentage. Hence, we next consider 

MKT with 1=d . The SSR plot is not very clear as to the number of regimes, but when 

we estimate the three-regime model we find that it is not robust to changes in the 

trimming percentage. While MKT (for 5,4,3,2=τ ) and SMB (for 3,2=τ ) yield strong 

rejections under averaging as well, the SIC values are larger than 1,711.12, which is 

obtained under MKT with 1=d  and 2=s . In addition SSR as a function of the 

threshold behaves very erratic for these alternatives. Thus, our specification for the size 

group is a two-regime model where first lag of MKT is the variable driving the regimes. 

For the book-to-market group we choose average HML with 12=τ  as this yields the 

smallest p-value and also the smallest SIC among specifications robust to trimming 

percentage, with comparable p-values. Regarding the number of regimes we select 2=s  

as SIC drops only 259.81, from 5,847.59 to 5,588.08, in the three-regime model and SSR 

plot also suggests 2=s . With regards to the industry group, IP yields the smallest p-

                                                 
13 Please note that we do not report the SSR graphs and all SIC values here to save space but they are all 

available from the author upon request. 
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value with 5=d  followed by 1=d , under the standard delay lag, but neither of these 

specifications are robust to the choice of the trimming level. IP produces very small p-

values under averaging as well, but none of the specifications is robust to the trimming 

level. The next candidate is SMB with 1=d , but under this choice SSR behaves very 

erratic as a function of the threshold and does not suggest a particular value for s. When it 

comes to SMB with 3=τ , SSR plot points out to a three-regime model, but the threshold 

estimates are sensitive to the trimming percentage. Therefore, we consider MKT with 

1=d  and SPREAD with 8=d . MKT yields a smaller p-value (0.002165 versus 

0.006455) but SPREAD produces a smaller SIC (10188.4 versus 10303.4), so we 

entertain both alternatives. In terms of the number of regimes, 2=s  is preferred in both 

cases based on the SSR plots and SIC values. As MKT with 1=d  turns out to be the best 

specification for the size group and is among the top two alternatives for the industry 

group, we consider this specification for the book-to-market group as well. This also 

facilitates comparisons across portfolio groups. 

3.5  Estimation Results 

Table 3.3 provides the threshold estimates and associated 95% subsampling confidence 

intervals for all three portfolio groups. For the size group, where the threshold variable is 

first lag of MKT, annualized point estimate of the threshold is -6.72%. The 95% 

confidence interval suggests that the threshold separating regimes can be as low as -

9.94% or as high as -4.74%. Taking the uncertainty in the threshold estimate into 

account, approximately 37% of the observations in the estimation sample fall into the low 

return regime, 59% in the high return regime and 4% in the uncertain category, i.e. within 
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the confidence band. In this classification, sharp bear markets and short-lived downward 

corrections fall into the first regime while pro-longed bull markets and short and steep 

rallies are contained within the second one. With this point in mind we will simply refer 

to the first regime as the bear regime and the second one as the bull regime. When first 

lag of MKT is taken as the threshold variable the book-to-market and industry groups 

share the same point estimate for the threshold with the size group. However, the 

confidence band is slightly larger under the industry group, [-10.71, -3.31], and 

considerably larger under the book-to-market group, [-12.67 -1.76]. This is in line with 

the test results discussed above as the size group yielded the smallest p-values in general 

and under MKT with 1=d  in particular. On the other hand, the slight change in the 

confidence interval under the industry group does not give a regime classification 

different from the one obtained under the size portfolios while the book-to-market group 

implies only 2% and 1% shifts to the uncertain category from the bear and bull regimes 

respectively. When the twelve month average of HML is the threshold variable for the 

book-to-market portfolios, the annualized point estimate is 15.03% with a lower bound of 

14.18% and an upper bound of 17.56%. The large positive value for the point estimate is 

due to the fact that the risk premium on relatively distressed firms (value firms in this 

case) increases substantially when times are bad.
14
 Hence, low expected stock returns are 

generally associated with a large positive value premium. The confidence band implies 

that bear and bull regimes prevail 14% and 77% of the time respectively while 8% of the 

time we cannot classify the regime since the observations on the threshold variable fall 

                                                 
14 Note that the unconditional correlation between MKT and HML is -0.42 and it is -0.51 between annual 

averages of them. 
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within the interval. For the industry group when the eight lag of SPREAD is the threshold 

variable, the point estimate is 0.43 (or 43 basis points) and the confidence interval is 

[0.27 0.5]. As the yield curve is usually inverted during economic downturns and gets 

flatter as the economy approaches the slowdown, plummeting of the spread signals 

slowdown in the economic activity and expected stock returns plunge. According to the 

results obtained under SPREAD, bear markets prevail 20% of the time, bull markets 

prevail 73% of the time, and we are uncertain about the state of the stock market 7% of 

the time. The commonality between the classifications with respect to the lags of 

SPREAD and the annual average of HML is that they imply a smaller fraction for the 

bear regime compared to MKT. This is probably because they are strongly linked to the 

underlying economic cycles, which go through downturns less frequently, but when they 

do this is accompanied with sharp drops in equity prices. In addition, both SPREAD and 

the annual average of HML are much less volatile compared to the monthly market 

excess return, which is also reflected by relatively tight confidence bands around the 

threshold estimates under these variables. This is another likely reason behind the more 

distinct regime classification obtained under SPREAD and HML. 

Table 3.4 summarizes the estimation results for the ten size deciles and the market. 

The first decile exhibits the strongest expected return asymmetry. The annualized 

expected return difference is 41.61% and it is significant at literally any significance 

level. Difference in the expected returns across the regimes monotonically decreases as a 

function of market value and it is not statistically significant at conventional levels for the 

tenth decile. For the eight and ninth deciles the differences are significant only at 10% 
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level. Point estimate of the bull-bear spread for the market portfolio is 10.66% and it is 

statistically significant at 10% level with a p-value of 0.053. Firms with a large market 

capitalization are less affected by changing business and financial market conditions 

compared to the small firms, e.g. Perez-Quiros and Timmermann (2000). On the other 

hand, large firms have a significant impact on the market return despite their small 

number because the market portfolio is value weighted. These two facts explain the 

relatively weak expected return asymmetry in the large caps and the market portfolio 

compared to the small caps. For all size deciles and the market, volatility is substantially 

higher in the bear state implying a larger degree of uncertainty associated with 

considerably lower expected returns in this state. For example, the market portfolio has 

an annualized volatility of %19.39 in the bear regime whereas it is only %12.56 in the 

bull regime. The differences are highly statistically significant for all size deciles and the 

market. Regarding the correlations of the size deciles with the market portfolio, the point 

estimates indicate that they are higher in the bear regime, especially for small caps. For 

the first decile the difference is 0.128 while it is only 0.016 for the tenth decile. 

Interestingly, correlation asymmetry appears to be a monotonically decreasing function 

of market value, just like mean asymmetry. However, they differ in terms of statistical 

significance. For the first seven deciles, p-values associated with correlation asymmetry 

tend to be much larger compared to the ones associated with mean asymmetry, even 

though all correlation asymmetries are significant at 10% level. Similar to correlations, 

betas also tend to be higher in the bear regime, with the exception of the tenth decile. The 

largest difference in beta across the regimes is observed for the median sized firms (fifth 
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decile) with a point estimate of 0.092, which is significant at 10% level with a p-value of 

0.086. Interestingly, asymmetries across regimes in the small caps' betas are of smaller 

magnitudes compared to their correlation counterparts and they are also insignificant. We 

do not observe a clear pattern for beta asymmetry as a function of market capitalization. 

Tables 3.5 and 3.6 summarize the results for the book-to-market group when 

threshold variable is first lag of the annual average of HML and first lag of MKT 

respectively. When HML is the threshold, the first decile exhibits the greatest expected 

return asymmetry, with a highly significant annualized point estimate of 22.8%. The 

remaining deciles display lower levels of expected return asymmetry but there is no 

monotonic pattern. Differences across regimes are significant only at 10% level for 

deciles three to nine and for the tenth decile the point estimate of 8.52% is insignificant 

even at 10% level. The value firms, which are relatively distressed, carry a much greater 

premium relative to growth firms in the bear regime (17.80% versus 3.48%). Point 

estimates of volatility asymmetry are relatively small and mostly insignificant under this 

definition of the threshold. The largest asymmetry is found to be 3.12% for the first 

decile with a p-value of 0.021. Correlations tend to be higher in the bull regime but 

differences are usually small. The largest correlation asymmetry is 0.072 for the tenth 

decile, which is significant at 5% level with a p-value of 0.019. Betas are more 

asymmetric compared to correlations both in terms of magnitude and significance. The 

tenth decile's beta increases from 0.840 in the bear regime to 1.016 in the bull regime. 

This is in line with the fact that the premium on value firms is greater in the bear regime, 

i.e. their connection with the market gets stronger during upturns. When MKT is the 
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variable determining the regimes we get a somewhat different picture for the book-to-

market group. The tenth decile has the greatest expected return asymmetry, with a highly 

significant point estimate of 20.40%. Interestingly, the value firms carry a bigger 

premium in the bull regime unlike the previous case, i.e. a higher expected return 

environment becomes more relevant in terms of distinguishing value versus growth firms. 

This is because when the value premium determines regimes, distress in the form of low 

earnings is reflected strongly by a large premium on the value firms. Regime dependent 

heteroskdeasticity is much better captured under MKT. Average of the absolute value of 

volatility asymmetry across all portfolios increases from 0.86% to 6.67% when we switch 

from HML to MKT and all volatility asymmetries become highly significant. 

Correlations also become more regime dependent and the largest differences are observed 

for value firms. For deciles eight to ten, the average correlation asymmetry is 0.09 and 

the differences are all significant at 1% level. Correlations become stronger during bear 

markets contrary to the case in which HML is the threshold variable. Finally, betas 

exhibit a lesser degree of asymmetry than the correlations and also their counterparts 

obtained under HML. In general, the model with MKT captures regime dependent 

heteroskedasticity much better and delivers implications on asymmetric correlations in 

line with previous findings in the literature. 

In Tables 3.7 and 3.8 we present the results for the industry group when threshold 

variable is first lag of MKT and eighth lag of SPREAD respectively. When MKT drives 

the regimes, expected return differences across the regimes are not significant at 

conventional levels for NonDurables, Energy, Telecommunications, Healthcare, and 



 128 

 

Utilities. The Utilities industry stands out as the most defensive industry for the investors 

with a higher expected return in the bear regime. Durables industry exhibits the strongest 

return asymmetry across bull and bear markets with a point estimate of 25.62%, which is 

highly significant. Durables industry is followed by Shops, High-Technology, Other, and 

Manufacturing categories in terms of the strength of expected return asymmetry. 

Volatility asymmetry is strong for all industry categories. The Other category experiences 

the biggest increase in volatility from the bull to the bear regime (14.96% to 22.38%). 

The strongest correlation asymmetries are associated with defensive industries. For 

example, point estimates suggest that the correlation of the Utilities industry with the 

market is 0.710 in the bear regime while it is only 0.412 in the bull state. This difference 

is significant at literally any significance level. Energy and Healthcare follow Utilities in 

terms of the strength of correlation asymmetry. The industry with the most cyclical 

expected returns, Durables, has a correlation asymmetry of 0.104, which is significant at 

5% level. Point estimates suggest considerable Beta asymmetry but it is significant at 5% 

level only for Utilities and High-Technology industries. For Utilities (High-Technology) 

beta is 0.617 (1.386) in the bear (bull) regime while it is 0.402 (1.232) in the bull (bear) 

regime. When SPREAD is taken as the threshold variable, the general pattern of expected 

return asymmetry across the industry groups does not change, but the returns on 

Telecommunications and Utilities, especially the former, become much more cyclical. 

Energy becomes the most defensive industry with the lowest expected return asymmetry 

level of 6.53%, which is not significant even at 10% level. Another difference is that 

expected return asymmetries are on average bigger in magnitude, which is expected 
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because SPREAD implies less frequent but sharper low-return regimes. Similar to the 

case of the book-to-market group, regime dependent volatility becomes much weaker 

when we switch from MKT to SPREAD as the threshold variable. Volatility asymmetries 

tend to be insignificant for some of the industries that have significant expected return 

asymmetry, e.g. Durables. Correlation asymmetries continue to be relatively stronger for 

defensive industries with the exception of Health-care and p-values increase. Beta 

asymmetry tends to slightly increase for most of the industries. The model using MKT as 

the threshold variable performs better by capturing volatility clustering and also 

delivering more consistent results on correlations and expected returns. 

3.6 Assessment of Predictive Ability of the Proposed Models 

In this section we compare predictive ability of the proposed models with a benchmark 

linear model that ignores asymmetries. Evaluation is implemented in an out-of-sample 

setup. In particular, we use last 60 months of the sample (from January 2003 to 

December 2007) as the forecast evaluation period. One-step ahead predictions of the 

mean vectors and covariance matrices are obtained under alternative models in a 

recursive fashion. First forecasts are constructed by using data from July 1963 to 

December 2002, and then the estimation sample is increased by one observation at each 

step until the last forecasts for December 2007 are obtained. For comparing model 

performance, we consider ex-post Sharpe ratio and realized utility over the forecast 

horizon. 

At each point in time, the investor decides how much to invest in the stocks versus 

the risk free asset. Minimum variance portfolio weights of stocks at time t are given by 
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where pµ  is the target excess return for the portfolio, tt |1Σ +  is the conditional covariance 

matrix, and ttµ |1+  is the conditional mean of the excess stock return vector at 1+t  given 

information up to time t. Quadratic utility can be regarded as a second order 

approximation to the investor's true utility function, e.g. Fleming et al (2001). Then the 

realized utility is simply given by 
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where 1+tW  is the investor's wealth, 1, +tpR  is the gross portfolio return, i.e. 

)1( 1,1, ++ +≡ tptp rR , at 1+t , and a is the coefficient of absolute risk aversion. Following 

Fleming et al. (2001) we consider total realized utility over the forecast horizon 
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where T denotes the length of the forecast horizon and φ is the coefficient of relative risk 

aversion. The performance measure is the maximum performance fee that the investor is 

willing to pay to switch from the linear model to the threshold model. Let ∆ denote this 

fee, which is defined by the following equation 
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where 1,1 +tpR  and 1,2 +tpR  are the gross portfolio returns generated by the linear model 

and the threshold model respectively. 
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Table 3.9 summarizes the out-of-sample portfolio allocation results for annual 

target excess return levels of 3% and 6% and the relative risk aversion levels of 1 and 10. 

For the size group the threshold specification is superior to the linear benchmark with 

respect to both ex-post Sharpe ratio and annualized performance fees regardless of target 

excess return level. The difference between the Sharpe ratios is larger (1.57) for the lower 

target return level, but the performance fee increases with the target return. This is 

because certainty equivalent loss function less heavily penalizes the increased volatility 

resulting from a higher target return level compared to Sharpe ratio. For an investor with 

relative risk aversion coefficient of 10 the annualized performance fee that the investor is 

willing to pay is found to be 3.888% (or 388.8 basis points). On average, the linear model 

yields more allocation to stocks as a percentage of total wealth since it cannot capture the 

time varying nature of the expected returns, volatilities, and the dependence structure. 

This leaves the investor more vulnerable to unexpected shocks when the linear model is 

used for modeling the data. For book-to-market portfolios, the model using MKT as the 

threshold performs better than the one using HML. However, both threshold 

specifications beat the linear benchmark with respect to the ex-post Sharpe ratio. The 

model using HML is useful only to investors with high levels of risk aversion and the 

gains are small (18 basis points with a risk aversion level of 10). When MKT is the 

threshold variable the results improve substantially and performance fee can be as high as 

1.548%. Similar observations apply to the industry portfolios but the model using 

SPREAD cannot beat the linear benchmark under any risk aversion and target return 

level in terms of the performance fee. The model with MKT as the threshold variable 
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does well for highly risk averse investors but cannot do the same at low risk aversion 

levels. In terms of the magnitudes of the loss differentials the size group stands out. This 

is expected given the stronger rejections of linearity and significance of mean and 

correlation asymmetries across regimes obtained with this data set. The general success 

of the threshold model using MKT can be attributed to the fact that it captures regime 

dependent heteroskedasticity and correlations better than the models using HML and 

SPREAD. To assess statistical significance of the loss differences we use the stationary 

bootstrap procedure of Politis and Romano (1994) and report the p-values for the null 

hypothesis that imposes equality of model performances against the alternative that the 

threshold model is superior. Performance fees are significantly positive under both target 

excess returns for the size group even at 1% level. Under the remaining two portfolio 

sorting schemes, the certainty equivalent gains (or losses) tend to be insignificant at 

conventional levels. Differences between Sharpe ratios in favor of the threshold 

specifications are always significant at 5% level for all three groups under both target 

return levels. Overall, the results of this out-of-sample comparison indicate that modeling 

asymmetries in a threshold framework can provide substantial economic gains that are 

also statistically significant. 

 

4  Conclusion 

Motivated by existing evidence on asymmetries in distributions of stock returns, we 

concentrate on the asymmetries in the first two moments of returns in a multivariate 

threshold framework. We use monthly data on size, book-to-market and industry 
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portfolios. Threshold nonlinearity test results and specification analysis indicate that 

excess return on the market portfolio, value premium, and term spread capture systematic 

regime shifts in the equity returns. The model using market excess return stands out as 

the universal threshold model providing a good fit regardless of the characteristics 

portfolios are sorted on. We find that small caps, value firms, and the Durables industry 

exhibit the strongest expected return asymmetries. Substantial asymmetry in volatility is 

found to be a common characteristic of all stock portfolios. Defensive industries, small 

firms, and value firms tend to have significantly higher correlations with the market 

during downturns. Correlation asymmetry usually translates into asymmetry in beta. In an 

out-of-sample forecasting exercise, we also find that there can be significant economic 

gains in incorporating asymmetries in the portfolio decisions. 

A number of future research questions arise from the current study. As pointed out 

by Andersen et al. (forthcoming), variability in the mean component of stock returns is of 

a much smaller order of magnitude than the martingale component over shorter horizons. 

This makes modeling of covariance matrices even more critical at higher frequencies. An 

extension of the proposed threshold model to incorporate more sophisticated approaches 

to conditional second moments at higher frequencies is an interesting topic for future 

research. Assessing the out-of-sample economic value of modeling asymmetries under 

alternative preference specifications, such as loss aversion preferences of Kahneman and 

Tversky (1979), is another appealing direction to take since asymmetric dependence may 

be potentially more important for loss averse investors. Finally, investigating 
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performance of the proposed models with respect to multivariate density forecasts is 

another potential future research topic. 
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Appendix A: Consistency of the CLS Estimators 

First, let us define the following 

]|[)(D γzXXEγ dttt =′= − , 

]|)[()(D 2
2 γzXXEγ dttt =′= − , 

]|[)(V 2 γzεXXEγ dtittti =′= − , 

]|)[()(V 42
,2 γzεXXEγ dtittti =′= − , 

for ki ,,1K= . Now, assume that 

A1. ),,( tdtt εzX −  is strictly stationary and absolutely regular (β-mixing) with mixing 

coefficients satisfying )( δ
j jOβ −=  for some .4>δ  

A2.  0]|[ 1 =ℑ −ttεE  where 1−ℑt  is the σ field generated by ),,( 11 jtjdtjt εzX −+−−+−  for 

.1≥j  

A3.  ∞<]|[| 4
ityE  and ∞<]|[| 4

itεE  for ki ,,1K= . 

A4. The density function, )(γf , of dtz −  is positive on a bounded subset ℜ⊂ℜ0 , and 1γ  

is an interior point of .0ℜ  

A5. )(γf , )(D γ , )(D2 γ , )(V γi , and )(V ,2 γi  are all continuous at 1γγ = . 

A6. 0ΦΦ∆ 21 ≠−= . 

A7. 0∆)(D∆ 1 >′ jj γ , 0∆)(V∆ 1 >′ jij γ  for kj ,,1K= , where j∆  is the j
th
 column of ∆. 
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A1 rules out long-memory processes. A2 guarantees correct model specification. A4 

ensures that ∞→jn  as ∞→n . Note that this implies )1,0()/( ∈→ jj λnn . A6 rules out 

local to null parameterizations and is necessary for convergence of the threshold estimate 

at rate n. A7 implies that the hyperplane of the conditional expectation, ]|[ 1−ℑttyE  has a 

discontinuity at the threshold 1γz dt =− . The following theorem provides the asymptotic 

results for the CLS estimators under these assumptions. 

 

Theorem A.1 [Tsay (1998)] Under A1-A7 dd →ˆ , 1ˆ γγ→ , ΘΘ̂→ , and jj ΩΩ̂ →  

almost surely as ∞→n . Furthermore, )1()ˆ( 11 pOγγn =− , )Γ,0()ΘΘ̂(vec Nn d→− . 

 

This theorem is a slightly different version of Theorem 3 of Tsay (1998). It is 

essentially a generalization of the results given in Chan (1993) and Hansen (2000) in the 

univariate framework. 

 

Appendix B: Subsampling Inference for the Threshold 

The basic idea of subsampling is to reconstruct the statistic of interest on smaller blocks 

(subsamples) of the observed sample },,{ 1 nyy K  and use the resulting values to 

approximate the associated sampling distribution. Let b denote the block size, such that 

nb <<1 , and tb
jγ
,ˆ  the threshold estimate on the block },,{ 1−+btt yy K  for 

.1,,1 +−= bnt K  Thus, with reference to our previous notation, we have jj γγ n ˆˆ 1, = . 
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Define )|ˆ|(obPr),( xγγnPxJ jjPn ≤−=  where P is the probability law governing 

}{ ty .
15
 The subsampling approximation to ),( PxJn  is defined as follows: 

∑ +−
=

≤−
+−

=
1

1

,
, )|ˆˆ|(1

1

1
),(

bn

t j
tb

jbn xγγn
bn

PxL . 

Let )1(, αc bn −  be the α quantile of ),(, PxL bn , then the corresponding symmetric 

subsampling confidence interval is 

)]1(ˆ[ ,
1

, αcnγI bnjαb −±= − . 

The idea behind subsampling is actually quite intuitive. Each block is a valid 

sample, so the exact distribution of  |ˆ| ,
j

tb
j γγb −  is )(PJb . If b increases at a suitable 

rate as n gets large then the empirical distribution of the values |ˆ| ,
j

tb
j γγb −  for 

1,,1 +−= bnt K  provides a good approximation to )(PJn . Finally, replacing jγ  by jγ̂  

has an asymptotically negligible effect assuming that 0/ →nb . The following 

proposition formalizes these ideas in the present context. 

 

Proposition B.1 Assume that ∞→b  and 0/ →nb  as ∞→n . Then the confidence 

interval given above has asymptotic coverage probability of )1( α− . 

Proof. From A1 given in Appendix A, }{ ty  is β-mixing, which implies strong mixing. 

Theorem 1 guarantees that ),( PxJn  converges weakly to a continuous limiting 

distribution. Then the result follows from Corollary 3.2.1 of Politis et al. (1999).                                       

■ 

                                                 
15 Here we consider symmetric intervals only. Equal tailed two-sided intervals and one-sided intervals can 

are treated along the same lines. 
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The only issue that remains is the choice of the block size. This problem closely 

resembles the issue of bandwidth selection in nonparametric analysis. The requirements 

for the block size given in Proposition 1 are satisfied by a wide range of alternatives, so 

we need to use some specific criterion to determine the block size in practice. In our 

applications we use the algorithm proposed by Politis et al. (1999), which minimizes 

confidence interval volatility as a function of the block size. The steps of the algorithm 

can be summarized as follows: 

1. For },,{ bbb K∈  form subsampling confidence intervals for which endpoints 

are denoted by low
αbI ,  and 

up
αbI , . 

2. For },,{ lblbb −+∈ K , compute a volatility index, bVI , which is the sum of the 

standard deviations of },,{ ,,
low

αlb
low

αlb II +− K  and },,{ ,,
up

αlb
up

αlb II +− K . 

3. Choose b associated with the smallest value of the volatility index. 

Based on the simulation results, Politis et al. (1999) argue that the choice of l is not 

critical and suggest using }3,2{∈l . To satisfy the requirements on block size, Romano 

and Wolf (2001) set κncb 1=  and κncb 2=  where 210 cc << , 10 << κ  and recommend 

using ]1,5.0[1∈c , ]3,2[2∈c  and 5.0=κ . In our applications we set 5.01 =c  and 32 =c , 

to consider the broadest possible range. Even though this algorithm does not have a 

theoretical optimality property its performance is found to be satisfactory in finite 

samples according to the simulation results of Politis et al. (1999) and Romano and Wolf 

(2001). 
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Notes: This table reports p-values of the threshold nonlinearity test based on the arranged regression
of Tsay (1998). The threshold variable is subject to a standard delay lag, i.e. zt−d determines the
regimes, where d is the delay. Test statistics are asymptotically chi-squared distributed with 11
degrees of freedom. Threshold variables are given in the first column. MKT is the excess return on
the value weighted market portfolio, SMB and HML are size and value factors of Fama and French
(1993), MKTRV is the realized volatility of the market portfolio, SPREAD is the yield on the 10-
year T-Bond minus the 3-month T-Bill rate, IP is the growth rate of monthly industrial production
index, and UR is the change in monthly unemployment rate.
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Notes: This table reports p-values of the threshold nonlinearity test based on the arranged regression
of Tsay (1998). The threshold variable is the τ -month average and the delay is set to be one, i.e. z̃t−1

derives the regimes, where z̃t = (zt+· · ·+zt−τ+1)/τ . Test statistics are asymptotically chi-squared
distributed with 11 degrees of freedom. Threshold variables are given in the first column. MKT is
the excess return on the value weighted market portfolio, SMB and HML are size and value factors
of Fama and French (1993), MKTRV is the realized volatility of the market portfolio, SPREAD is
the yield on the 10-year T-Bond minus the 3-month T-Bill rate, IP is the growth rate of monthly
industrial production index, and UR is the change in monthly unemployment rate.
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Table 3.3: Threshold Estimates and Subsampling Confidence Intervals
CIL γ̂1 CIU

Size Group (MKT, d = 1) -9.94 -6.72 -4.24
Book-to-Market Group (HML, τ = 12) 14.18 15.03 17.56
Book-to-Market Group (MKT, d = 1) -12.67 -6.72 -1.76
Industry Group (MKT, d = 1) -10.71 -6.72 -3.31
Industry (SPREAD, d = 8) 0.27 0.43 0.50

Notes: This table reports the threshold estimates and 95% subsampling confidence intervals for
all portfolio groups. The results under MKT and HML are annualized by multiplying the original
results by 12 (% per annum). CIL and CIU denote the lower and upper bounds of the confidence
interval respectively.
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